WO2015115736A1 - 3d printer using shaft linear motor - Google Patents

3d printer using shaft linear motor Download PDF

Info

Publication number
WO2015115736A1
WO2015115736A1 PCT/KR2014/012692 KR2014012692W WO2015115736A1 WO 2015115736 A1 WO2015115736 A1 WO 2015115736A1 KR 2014012692 W KR2014012692 W KR 2014012692W WO 2015115736 A1 WO2015115736 A1 WO 2015115736A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
coil
linear motor
stator
printer
Prior art date
Application number
PCT/KR2014/012692
Other languages
French (fr)
Korean (ko)
Inventor
김홍윤
권영목
심호근
윤영민
Original Assignee
(주)티피씨 메카트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티피씨 메카트로닉스 filed Critical (주)티피씨 메카트로닉스
Publication of WO2015115736A1 publication Critical patent/WO2015115736A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material

Definitions

  • the present invention relates to a 3D printer using a shaft linear motor, and more particularly to a 3D printer using a shaft linear motor that can ensure the work accuracy and work stability in the process of working the 3D model.
  • the 3D printer refers to a device that converts three-dimensional design data and stacks materials such as polymer resin, metal, and the like in a liquid, powder form, and stacks them in a layer-by-layer process to produce a 3D model, that is, a three-dimensional object.
  • 3D printing is a technology derived from RP (Rapid Prototyping), which refers to a technology for rapidly forming shapes to be produced by using various materials. In official technical terms, it is called additive manufacturing. Layer Mfg., Freeform Fab. Etc. are mixed and used.
  • Such 3D printers can be classified according to the lamination method and materials available for the production of three-dimensional objects.
  • lamination extrusion, jetting, light polymerization, powder sintering, etc.
  • materials include polymers such as PLA, ABS, HDPE, metals, Paper and the like.
  • the extrusion method is a method of extruding and molding a material heated to a high temperature through a fine nozzle.
  • the spray method is a method of ejecting and molding a high pressure liquid raw material.
  • the photocuring method is a method of solidifying a material by using a polymerization reaction occurring in a photocurable plastic by irradiation of light
  • the powder sintering method is a powder having a melting point or It is a method of solidifying by heating enough to cause partial melting.
  • the extrusion type 3D printer is a method of stacking materials by melting a thin thread, that is, a filament-like thermoplastic material in a nozzle 330 and outputting a thin film. It emits high temperature enough to melt the plastic and hardens it at room temperature.
  • the filament wound on the filament spool 310 is moved to the nozzle 330 side by the extruder 320, and the filament heated in the nozzle 330 is discharged from the nozzle 330 and laminated, The 3D model is produced.
  • This extrusion type 3D printer has the advantage of low equipment cost and maintenance cost because the structure and program of the device is simpler than other methods.
  • it is developed in the form of open source, leading the popularization of 3D printing technology, it is possible to apply a variety of materials, and due to the simple structure, it is easy to large-scale and has an advantage that can be applied to various industrial fields.
  • the surface roughness is relatively low, there is a disadvantage that the implementation of the detailed shape is insufficient, a support for preventing the flow of the material during the curing is required, there is a disadvantage that the manufacturing speed is relatively slow.
  • the extrusion-type 3D printer is expected to achieve the mainstream of the 3D printer market in the future because it is easy to be distributed to the home, such as personal, due to the above advantages.
  • the printing module composed of the extruder and the feeder shown in Figure 1 must move in the X-axis and Y-axis direction in order to produce a 3D model, responsible for the linear motion of the printing module.
  • Structure is installed.
  • a structure that is responsible for movement in the Z-axis direction must also be installed.
  • the structure responsible for the linear motion is to use a motorized belt structure applied to the motor, there is a problem that it is not suitable for the production of a more precise 3D model due to the problem of repetition precision or accuracy due to the backlash (Backlash).
  • an object of the present invention is to provide a 3D printer using a shaft linear motor capable of producing a precise 3D model by guaranteeing repeatability and accuracy.
  • the conventional rotary motor solves the problems caused by the cooling effect caused by cooling by using a heat sink or a fan to improve the stability of the work and the accuracy of the work, and at the same time extend the product life of the shaft linear motor
  • Another object is to provide a used 3D printer.
  • a work table in which a 3D model is manufactured, a printing module for printing a 3D model on the work table, and a printing shaft linear motor for linearly moving at least one of the printing module and the work table.
  • the printing shaft linear motor is installed along a linear movement direction of at least one of the printing module and the work table to guide the linear movement of at least one of the printing module and the work table, and a stator part having a permanent magnet provided therein.
  • a space is provided, connected to at least one of the printing module and the work table, a frame part for linearly moving at least one of the printing module and the work table according to a linear movement of the movable part, and installed at one side of the frame part.
  • the low temperature fluid is achieved by a 3D printer using a shaft linear motor, characterized in that for cooling the heat generated in the stator portion and the movable portion while flowing through the inner space of the frame portion.
  • a flow control valve for adjusting the flow rate of the fluid in the inner space of the frame portion.
  • stator portion is a hollow inside, the stator frame is provided with a plurality of through holes on the outer peripheral surface; And the permanent magnet installed in the inner space of the stator frame, and when the fluid is supplied from the fluid providing part to the frame part, the fluid introduced into the inner space of the frame part passes through the plurality of through holes through the movable part. Through the flow into the stator frame, it is possible to remove the heat of the permanent magnet.
  • the stator frame may be made of aluminum.
  • a plurality of coil members installed in the fixing unit frame so as to surround the outer periphery of the stator frame, having a ring-shaped cross section; And a plurality of insulating members installed on the stator frame to be in close contact with the annular cross section of the coil member, and installed between the plurality of coil members.
  • the insulating member the insulating plate having a ring shape corresponding to the cross section of the coil member; And an insulation guide formed to protrude from both outer surfaces of the insulation plate to both sides of the insulation plate.
  • the frame unit the coil receiving space is provided, the movable frame provided with the fluid providing unit on the outside;
  • a first coupling member coupled to an open side of the mover frame;
  • a second coupling member coupled to the other open side of the mover frame to close the coil accommodation space, thereby fixing positions of the plurality of coil members and the plurality of insulation members in the coil accommodation space.
  • the first coupling member may be inserted into the coil accommodation space and may be integrally formed with the first protrusion and the first protrusion, which surround the coil member accommodated in the coil accommodation space and contact the insulating member.
  • the first coupling body may cover one side of the mover frame and have a structure through which the stator frame penetrates, and the first coupling body may be bolted to the mover frame.
  • the first protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than the inner diameter of the coil accommodating member, and the first protrusion has the insulation when inserted as the coil accommodating space.
  • a force may be applied to the insulating member while being in contact with the member to prevent the occurrence of a gap between the plurality of coil members and the plurality of insulating members.
  • the second coupling member may be inserted into the coil accommodation space, and may be integrally formed with the second protrusion and the second protrusion that surround the coil member accommodated in the coil accommodation space and contact the insulating member.
  • the second coupling body may cover the other side of the mover frame and have a structure through which the stator frame penetrates, and the second coupling body may be bolted to the mover frame.
  • the second protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than an inner diameter of the coil accommodating member, and the second protrusion has the insulation when inserted as the coil accommodating space.
  • a force may be applied to the insulating member while being in contact with the member to prevent the occurrence of a gap between the plurality of coil members and the plurality of insulating members.
  • an accommodation space for accommodating the work table and the printing module is formed, the main body frame having an opening opening in the front, a door for opening and closing the opening of the main body frame, a lock for locking and unlocking the door Further comprising a shaft linear motor;
  • the locking shaft linear motor is a cylindrical locking mover module in which a locking permanent magnet is accommodated therein, and is installed in the door to surround an outer circumferential surface of the locking mover module, and the locking permanent magnet is applied when a current is applied.
  • a coil for generating an electromagnetic force therebetween with a magnet is received therein, the locking stator module for linearly moving the locking mover module by the electromagnetic force;
  • the locking frame is formed in a lock hole into which the lock mover module is inserted and released, and the lock mover module is inserted into and released from the lock hole according to a current applied to the lock stator module. Can be locked and unlocked.
  • control unit for controlling the printing module and the printing shaft linear motor to print the 3D model on the work table, and controlling the locking shaft linear motor to lock the door during printing of the 3D model. It may further include.
  • the performance of the coil member is reduced by the heat generated in the coil member when the current is applied to the coil member, thereby reducing the frequency of failure of the stator part and the movable part, thereby reducing the overall 3D printer. Can extend the life of the product.
  • FIG. 2 is a perspective view of a 3D printer according to the present invention.
  • FIG. 3 is a view for explaining the internal structure of the 3D printer shown in FIG.
  • FIG. 4 is a view for explaining a shaft linear motor for printing of a 3D printer according to the present invention
  • FIG. 5 is a view schematically showing a connection state between the components of the shaft linear motor for printing of the 3D printer according to the present invention
  • FIG. 6 is a schematic exploded perspective view of a shaft linear motor for printing of a 3D printer according to the present invention
  • FIG. 7 is a view schematically showing an exploded perspective view of a movable part of a shaft linear motor for printing of a 3D printer according to the present invention
  • FIG. 8 is a view for explaining the operating state of the locking shaft linear motor of the 3D printer according to the present invention.
  • 3D printer using a shaft linear motor is a printing table for printing a 3D model work, a printing module for printing a 3D model on the work table, and at least one of the printing module and the work table for linear movement
  • a shaft linear motor is installed along a linear movement direction of at least one of the printing module and the work table to guide the linear movement of at least one of the printing module and the work table, and a stator part having a permanent magnet provided therein.
  • a space is provided, connected to at least one of the printing module and the work table, a frame part for linearly moving at least one of the printing module and the work table according to a linear movement of the movable part, and installed at one side of the frame part.
  • the 3D printer 1 includes a main frame 10, a door 20, a printing module 30, and a shaft linear motor 100 for printing. .
  • the main body frame 10 has a substantially rectangular shape, and an accommodation space is formed therein to accommodate components such as the printing module 30 and the shaft linear motor 100 for printing.
  • An open opening is formed in front of the main body frame 10, and the door 20 opens and closes the opening, thereby moving the 3D model manufactured through the 3D printing operation to the outside through the door 20.
  • the technical idea of the present invention is not limited to the shape of the main body frame 10, the position of the door 20, etc. in various forms based on the technical idea of the present invention if those skilled in the art Of course it can be produced.
  • the work table 40 on which the 3D model generated by the printing module 30 is seated is formed in the lower part of the main frame 10, and printing is performed on the work table 40 while being spaced apart from the work table 40. Module 30 is installed.
  • the printing module 30 prints the 3D printing model on the work table 40.
  • the 3D printer 1 according to the present invention is an example of the extrusion method 3D printer 1 bar, the printing module 30 is an extruder (not shown) for moving the filament 50 and the filament moving by the extruder ( A nozzle (not shown) for heating and discharging 50 may be included.
  • the configuration of the printing module 30 may be provided in various forms known in the art, the detailed description thereof will be omitted.
  • the 3D printer 1 uses an extrusion method as an embodiment.
  • the printing module 30 includes components according to the method.
  • the printing shaft linear motor 100 linearly reciprocates at least one of the printing module 30 and the work table 40.
  • the printing shaft linear motor 100 is provided to linearly move the printing module 30 in the X axis direction and the Y axis direction, and the printing shaft linear motor 100 moves the work table 40 on the Z axis.
  • the linear movement in the direction is taken as an example.
  • reference numeral 110a of FIG. 3 is a guide bar for guiding a linear movement of the printing module 30 and the work table 40.
  • the printing shaft linear motor 100 includes a stator 110, a mover 120, a frame 130, and a fluid providing unit 140. It includes a flow control valve 150.
  • the stator part 110 is installed inside the main body frame 10 along the linear movement direction of the printing module 30 and the work table 40 to print the module 30 and the work table 40. Guides a straight line movement.
  • the stator part 110 includes a stator frame 111 and a permanent magnet 113.
  • a plurality of through holes 112 are provided on an outer circumferential surface thereof.
  • the plurality of through holes 112 are openings that can communicate with the internal space of the stator frame 111.
  • the stator frame 111 is preferably made of aluminum.
  • the permanent magnet 113 in which the N pole and the S pole are sequentially arranged is installed in the internal space of the stator frame 111.
  • Arrangement structure of the permanent magnet 113 installed in the stator frame 111 and the operation method of the stator part 110 and the movable part 120 is a technology falling within the obvious range from the position of those skilled in the art, in the present specification The description will be omitted.
  • the movable unit 120 and the frame unit 130 will be described.
  • the movable part 120 includes a plurality of coil members 121 and a plurality of insulating members 122.
  • the movable part 120 is installed to surround the outer circumference of the stator frame 111, and is a member that linearly moves along the longitudinal direction of the stator frame 111 when a current is applied to the coil member 121.
  • the plurality of coil members 121 are installed in the stator frame 111 to surround the outer circumference of the stator frame 111.
  • the plurality of coil members 121 are members that generate electromagnetic force with respect to the permanent magnet 113 provided in the stator part 110 when the current is applied.
  • the coil member 121 As shown in Figure 6, the coil member 121 according to an embodiment of the present invention has an annular cross-section, it is preferable to have a cylindrical structure having a predetermined thickness depending on the degree of the coil wound.
  • Coil member 121 according to an embodiment of the present invention has a structure in which the stator frame 111 penetrates. Accordingly, the inner diameter of the coil member 121 according to an embodiment of the present invention preferably has a diameter larger than the outer diameter of the stator frame 111.
  • Coil member 121 is inserted into the stator frame 111, the stator frame 111 to be movable along the longitudinal direction of the stator frame 111 when the current is applied to the coil member 121 It is preferably installed in. As shown in FIG. 7, an insulating member 122 is disposed between the plurality of coil members 121.
  • the plurality of insulating members 122 are installed between the plurality of coil members 121.
  • stator frame 111 It is installed in the stator frame 111 to be in close contact with the annular cross-section of the plurality of coil members 121, so that the current of the coil member 121 is not directly transmitted to the stator frame 111.
  • the plurality of insulating members 122 are provided between the plurality of coil members 121, partitioning the plurality of coil members 121, to any one coil member 121 While the current flowing does not affect the coil member 121 positioned adjacent thereto, the plurality of coil members 121 are prevented from directly contacting the stator frame 111, and thus the coil member 121 It is possible to prevent the current flowing through the stator frame 111.
  • the insulating member 122 is composed of an insulating plate 122a and an insulating guide 122b.
  • the insulating plate 122a preferably has an annular structure corresponding to the cross section of the coil member 121.
  • the inner diameter of the insulating plate 122a preferably has a diameter larger than the outer diameter of the stator frame 111.
  • the outer diameter of the insulating plate 122a preferably has the same diameter as the outer diameter of the coil member 121.
  • An insulating guide 122b is formed on the outer circumferential surface of the insulating plate 122a.
  • the insulating guide 122b is preferably formed to protrude to both sides of the insulating plate 122a from the outer peripheral surface of the insulating plate 122a.
  • the insulating guide 122b Is preferably installed to surround a portion of the outer circumference of the two coil member 121.
  • the frame unit 130 is connected to the printing module 30 and the work table 40 in accordance with the linear movement of the movable unit 120, the printing module ( 30) and the work table 40 is linearly moved.
  • the frame part 130 is a member for fixing the movable part 120. That is, the frame unit 130 according to the embodiment of the present invention closes the coil receiving space 132 in a state where the plurality of coil members 121 and the plurality of insulating members 122 are accommodated in the coil receiving space 132. To fix the arrangement between the plurality of coil members 121 and the plurality of insulating members 122.
  • the frame unit 130 includes a mover frame 131, a first coupling member 133, and a second coupling member 137. .
  • the mover frame 131 is a member provided with a coil accommodation space 132 therein, and has a structure in which the coil accommodation space 132 can communicate with the outside.
  • the coil accommodating space 132 is a space in which the coil member 11 and the insulating member 122 are installed, and preferably has a cylindrical shape.
  • the inner diameter of the movable frame 131 preferably has a diameter larger than the outer diameter of the coil member 121 and the insulating member 122.
  • the mover frame 131 is preferably made of an insulating material so that the current applied to the coil member 121 does not flow.
  • the fluid inlet opening 131a and the fluid outlet opening 131b having a structure in communication with the coil receiving space 132 is provided on the outer surface of the movable frame 131.
  • the fluid inlet opening 131a is connected to the fluid providing unit 140.
  • a flow rate control valve 150 is installed at the fluid outlet opening 131b. The fluid providing unit 140 and the flow control valve 150 will be described later.
  • the first coupling member 133 is a member coupled to one side of the movable frame 131 to close the open one side of the coil receiving space 132.
  • the first coupling member 133 is composed of a first protrusion 134 and the first coupling body 135 inserted into the coil receiving space 132.
  • the first protrusion 134 is provided to protrude from one side of the first coupling body 135, the inner diameter is larger than the outer diameter of the coil, the outer diameter is smaller than the diameter of the coil receiving space 132 annular cross section It is preferable to have.
  • the first protrusion 134 may have a first coupling member having an inner circumferential surface of the first protrusion 134. Surrounding the outer circumference of the coil member 121 positioned adjacent to (133), the longitudinal section of the first protrusion 134 is installed to engage with one side of the insulating guide 122b of the insulating member 122. At this time, the first protrusion 134 is preferably fitted into the coil receiving space 132 of the mover frame 131.
  • the first coupling body 135 is formed integrally with the first protrusion 134, it is preferable to have a structure that can cover one side of the movable frame (131).
  • the appearance of the first coupling body 135 according to an embodiment of the present invention preferably has a structure corresponding to the appearance of the movable frame 131.
  • the first coupling body 135 is preferably provided with a body through hole 135a through which the stator frame 111 passes.
  • the first coupling body 135 is preferably bolted to the mover frame 131 by a bolt 136.
  • the second coupling member 137 is composed of a second protrusion 138 and the second coupling body 139 is inserted into the coil receiving space 132.
  • the second protrusion 138 is provided to protrude from one side of the second coupling body 139, the inner diameter is larger than the outer diameter of the coil, the outer diameter is smaller than the diameter of the coil receiving space 132 annular cross section It is preferable to have.
  • the second protrusion 138 may have a second coupling member having an inner circumferential surface of the second protrusion 138. Surrounding the outer circumference of the coil member 121 positioned adjacent to (137), the longitudinal section of the second protrusion 138 is installed to engage with one side of the insulating guide 122b of the insulating member 122. At this time, the second protrusion 138 is preferably fitted to the coil receiving space 132 of the mover frame 131.
  • the second coupling body 139 is formed integrally with the second protrusion 138, it is preferable to have a structure that can cover the other side of the movable frame 131.
  • the appearance of the second coupling body 139 according to an embodiment of the present invention preferably has a structure corresponding to the appearance of the movable frame 131 as in the first coupling body 135 described above.
  • the second coupling body 139 is provided with a body through-hole 139a through which the stator frame 111 passes.
  • the second coupling body 139 is preferably bolted to the mover frame 131 by a bolt 136.
  • the fluid supply unit 140 is connected to the fluid inlet opening 131a provided on the outside of the mover frame 131 by a fluid supply pipe, and the mover frame 131 at a predetermined pressure.
  • the coil receiving space 132 is a member for providing a low temperature fluid.
  • an air pressure pump may be used as the fluid providing unit 140 according to an embodiment of the present invention.
  • the present invention is not limited thereto.
  • the low-temperature fluid may be used at room temperature air, and a fluid capable of easily cooling the heated coil member 121 from the standpoint of the industry, without limiting the type of fluid Is variable.
  • the fluid providing unit 140 when the fluid providing unit 140 is operated, the fluid providing unit 140 is provided to the coil receiving space 132 of the mover frame 131.
  • the fluid contacts the plurality of coil members 121 accommodated in the coil accommodating space 132, and serves to absorb the heat of the coil member 121 to cool the coil member 121.
  • the fluid introduced into the coil accommodating space 132 not only cools the coil member 121 but also flows into the internal space of the stator frame 111 through the plurality of through holes 112 provided in the stator frame 111.
  • the permanent magnets 113 serve to cool the same.
  • Fluid providing unit 140 is connected to the frame portion 130 to protect the movable part 120, heated to about 100 °C or more during operation of the printing shaft linear motor 100 Provides a low temperature fluid directly to the coil member 121, absorbs heat to the coil member 121 in a high temperature state, and absorbs the heat of the permanent magnet 113 heated by the heat generated from the coil member 121 Thereby, by cooling the movable part 120 and the stator part 110, the operation efficiency of the printing shaft linear motor 100 can be improved.
  • the flow control valve 150 is connected to the fluid outlet opening (131b).
  • the flow control valve 150 is a member for adjusting the amount of fluid introduced into the mover frame 131 through the fluid providing unit 140. That is, in one embodiment of the present invention, the flow control valve 150 controls the opening and closing degree of the fluid outlet opening (131b), the amount of fluid introduced into the coil receiving space 132 of the mover frame (131) I can regulate it.
  • the 3D printer 1 according to the present invention may further include a locking shaft linear motor 200 that locks and unlocks the door 20 with respect to the body frame 10. 8 is a view for explaining the operating state of the locking shaft linear motor 200 of the 3D printer 1 according to the present invention.
  • the locking shaft linear motor 200 may include a locking mover module 220 and a locking stator module 210.
  • the lock mover module 220 has a cylindrical shape in which a lock permanent magnet (not shown) is accommodated.
  • the locking stator module 210 is installed in the door 20 to surround the outer circumferential surface of the locking mover module 220.
  • a coil (not shown) for generating an electromagnetic force between the locking permanent magnet is accommodated inside the locking stator module 210 and movable for locking by the electromagnetic force.
  • the child module 220 is moved linearly.
  • control unit (not shown) for controlling the printing module 30 and the printing shaft linear motor 100 so that the 3D model is printed on the function of the 3D printer 1 according to the present invention, that is, the work table 40 is
  • the locking shaft linear motor 200 may be controlled to lock the door 20.
  • the opening of the door 20 is automatically blocked in the 3D printing process, thereby preventing the damage of the 3D model in operation or a disaster that may occur to the worker by opening the door 20 due to a mistake.
  • 3D printer 10 Body frame
  • movable frame 131a fluid inlet opening
  • first protrusion 135 first coupling body
  • the present invention converts three-dimensional design data into a 3D printer, which is a device for manufacturing 3D models, that is, three-dimensional objects, by stacking materials such as polymer resin, metal, and the like in liquid and powder form by processing and layering-by-layer. Applicable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Linear Motors (AREA)

Abstract

The present invention relates to a 3D printer using a shaft linear motor, comprising: a worktable on which a 3D model is manufactured; a printing module for printing the 3D model on the worktable; and the shaft linear motor for printing, which linearly moves the printing module and/or the worktable, wherein the shaft linear motor for printing comprises: a stator unit which is provided in a linear movement direction of the printing module and/or the worktable so as to guide a linear movement of the printing module and/or the worktable and has a permanent magnet provided therein; a mover unit which is provided to cover the outer circumferential surface of the stator unit and linearly moves along the stator unit by means of electromagnetic force which is generated between the mover unit and the permanent magnet when current is applied; a frame unit having a coil accommodating space in which the mover unit is provided, and is connected to the printing module and/or the worktable so as to linearly move the printing module and/or the worktable according to the linear movement of the mover unit; and a fluid providing unit provided at one side of the frame unit so as to provide low-temperature fluid into the frame unit, thereby allowing the low-temperature fluid to flow into the inner space of the frame unit so as to cool heat generated from the stator unit and the mover unit.

Description

샤프트 리니어 모터를 이용한 3D 프린터3D printer using shaft linear motor
본 발명은 샤프트 리니어 모터를 이용한 3D 프린터에 관한 것으로서, 보다 상세하게는 3D 모형의 작업 과정에서 작업 정밀도와 작업 안정성을 확보할 수 있는 샤프트 리니어 모터를 이용한 3D 프린터에 관한 것이다.The present invention relates to a 3D printer using a shaft linear motor, and more particularly to a 3D printer using a shaft linear motor that can ensure the work accuracy and work stability in the process of working the 3D model.
3D 프린터란 3차원 설계 데이터를 변환하여 액체, 파우더 형태의 폴리머 수지, 금속 등의 재료를 가공, 적층 방식(Layer-by-layer)으로 쌓아 올려 3D 모형, 즉 입체물을 제조하는 장비를 의미한다. 3D 프린팅은 생산하고자 하는 형상을 여러 가지 재료를 활용하여 속하게 조형하는 기술을 의미하는 RP(Rapid Prototyping)에서 유래된 기술로, 공식적인 기술 용어로는 적층 가공(Additive Manufacturing)으로 불리며, Additive Fab., Layer Mfg., Freeform Fab. 등이 혼용되어 사용되고 있다.The 3D printer refers to a device that converts three-dimensional design data and stacks materials such as polymer resin, metal, and the like in a liquid, powder form, and stacks them in a layer-by-layer process to produce a 3D model, that is, a three-dimensional object. 3D printing is a technology derived from RP (Rapid Prototyping), which refers to a technology for rapidly forming shapes to be produced by using various materials. In official technical terms, it is called additive manufacturing. Layer Mfg., Freeform Fab. Etc. are mixed and used.
이와 같은 3D 프린터는 적층 방식과 입체물 제조에 활용 가능한 재료에 따라 분류될 수 있다. 적층 방식의 경우, 압출(Extrusion) 방식, 분사(Jetting) 방식, 광경화(Light Polymerized) 방식, 파우더 소결(Granular Sintering) 방식 등이 있으며, 재료로는 PLA, ABS, HDPE 등의 폴리머, 금속, 종이 등이 있다.Such 3D printers can be classified according to the lamination method and materials available for the production of three-dimensional objects. In the case of lamination, extrusion, jetting, light polymerization, powder sintering, etc., and materials include polymers such as PLA, ABS, HDPE, metals, Paper and the like.
여기서, 압출 방식은 고온으로 가열한 재료를 미세한 노즐을 통해 압출하여 성형하는 방식이다. 분사 방식은 고압의 액체 원료를 분출하여 성형하는 방식이고, 광경화 방식은 빛의 조사에 의해 광경화성 플라스틱에서 일어나는 중합 반응을 이용하여 재료를 고형화하는 방식이며, 파우더 소결 방식은 분체를 융점 이하 또는 부분적인 용융이 일어날 정도로 가열하여 고형화하는 방식이다.Here, the extrusion method is a method of extruding and molding a material heated to a high temperature through a fine nozzle. The spray method is a method of ejecting and molding a high pressure liquid raw material. The photocuring method is a method of solidifying a material by using a polymerization reaction occurring in a photocurable plastic by irradiation of light, and the powder sintering method is a powder having a melting point or It is a method of solidifying by heating enough to cause partial melting.
도 1은 통상적인 압출 방식의 3D 프린터의 원리를 설명하기 위한 도면이다. 도 1을 참조하여 설명하면, 압출 방식의 3D 프린터는 가는 실, 즉 필라멘트 형태의 열가소성 물질을 노즐(330) 안에서 녹여 얇은 필름 형태로 출력하는 방식으로 재료를 적층하는 방식으로, 노즐(330)은 플라스틱을 녹일 수 있을 정도의 고온을 발산하며 플라스틱은 상온에서 경화한다.1 is a view for explaining the principle of a conventional extrusion type 3D printer. Referring to FIG. 1, the extrusion type 3D printer is a method of stacking materials by melting a thin thread, that is, a filament-like thermoplastic material in a nozzle 330 and outputting a thin film. It emits high temperature enough to melt the plastic and hardens it at room temperature.
보다 구체적으로 설명하면, 필라멘트 스풀(310)에 감겨있는 필라멘트를 압출기(320)에 의해 노즐(330) 측으로 이동하게 되고, 노즐(330)에서 가열된 필라멘트가 노즐(330)로부터 토출되어 적층됨으로써, 3D 모형이 제작된다.In more detail, the filament wound on the filament spool 310 is moved to the nozzle 330 side by the extruder 320, and the filament heated in the nozzle 330 is discharged from the nozzle 330 and laminated, The 3D model is produced.
이와 같은 압출 방식의 3D 프린터는 타 방식에 비해 장치의 구조와 프로그램이 간단하기 때문에 장비 가격과 유지보수 비용이 낮은 장점이 있다. 또한, 오픈 소스 형태로 개발되어, 3D 프린팅 기술 대중화를 주도하고 있으며, 다양한 소재의 적용이 가능하며 단순한 구조로 인해 대형화에 용이하고 다양한 산업 분야에 적용 가능한 장점이 있다.This extrusion type 3D printer has the advantage of low equipment cost and maintenance cost because the structure and program of the device is simpler than other methods. In addition, it is developed in the form of open source, leading the popularization of 3D printing technology, it is possible to apply a variety of materials, and due to the simple structure, it is easy to large-scale and has an advantage that can be applied to various industrial fields.
반면, 표면 조도가 비교적 낮아 세부 형상 구현이 미흡한 단점이 있고, 경화시 소재의 흘러내림을 방지하기 위한 지지대가 필요하며, 제작 속도가 상대적으로 느린 단점이 있다. 그러나, 압출 방식의 3D 프린터는 상기와 같은 장점으로 인해 개인용과 같은 가정용으로 보급이 용이하여 향후 3D 프린터 시장의 주력을 이룰 것으로 예측되고 있다.On the other hand, the surface roughness is relatively low, there is a disadvantage that the implementation of the detailed shape is insufficient, a support for preventing the flow of the material during the curing is required, there is a disadvantage that the manufacturing speed is relatively slow. However, the extrusion-type 3D printer is expected to achieve the mainstream of the 3D printer market in the future because it is easy to be distributed to the home, such as personal, due to the above advantages.
여기서, 압출 방식의 3D 프린터를 비롯한 3D 프린터의 경우, 3D 모형의 제작을 위해 도 1에 도시된 압출기 및 피더로 구성된 프린팅 모듈이 X축 및 Y축 방향으로 움직여야 하므로, 프린팅 모듈의 리니어 모션을 담당하는 구조가 설치된다. 일부 3D 프린터의 경우에는 Z축 방향으로의 이동을 담당하는 구조도 설치되어야 한다.Here, in the case of a 3D printer, including an extrusion-type 3D printer, the printing module composed of the extruder and the feeder shown in Figure 1 must move in the X-axis and Y-axis direction in order to produce a 3D model, responsible for the linear motion of the printing module. Structure is installed. In some 3D printers, a structure that is responsible for movement in the Z-axis direction must also be installed.
리니어 모션을 담당하는 구조로는 모터가 적용된 전동 벨트 구조를 이용하게 되는데, 백래쉬(Backlash)로 인한 반복 정밀도나 정확도의 문제가 발생하여 보다 정밀한 3D 모형의 제작에 적합하지 않은 문제점이 있다.The structure responsible for the linear motion is to use a motorized belt structure applied to the motor, there is a problem that it is not suitable for the production of a more precise 3D model due to the problem of repetition precision or accuracy due to the backlash (Backlash).
이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 반복 정밀도와 정확도를 보장하여 정밀한 3D 모형의 제작이 가능한 샤프트 리니어 모터를 이용한 3D 프린터를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a 3D printer using a shaft linear motor capable of producing a precise 3D model by guaranteeing repeatability and accuracy.
또한, 기존의 회전식 모터는 방열판이나 팬을 이용하여 냉각함으로써 발생하는 냉각 효과의 저하에 따른 문제점을 해소하여, 작업의 안정성과 작업의 정밀도를 높임과 동시에 제품 수명을 연장시킬 수 있는 샤프트 리니어 모터를 이용한 3D 프린터를 제공하는데 또 다른 목적이 있다.In addition, the conventional rotary motor solves the problems caused by the cooling effect caused by cooling by using a heat sink or a fan to improve the stability of the work and the accuracy of the work, and at the same time extend the product life of the shaft linear motor Another object is to provide a used 3D printer.
또한, 작업 중에 3D 프린터에 설치된 도어를 개방하여 제작 중인 3D 모형을 손상시키는 문제점을 해소하여 보다 안정적인 3D 프린팅 작업이 가능한 샤프트 리니어 모터를 이용한 3D 프린터를 제공하는데 또 다른 목적이 있다.In addition, it is another object to provide a 3D printer using a shaft linear motor that can solve the problem of damaging the 3D model being produced by opening the door installed in the 3D printer during the work more stable.
상기 목적은 본 발명에 따라, 3D 모형이 제작되는 작업 테이블과, 상기 작업 테이블에 3D 모형을 프린팅하는 프린팅 모듈과, 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프린팅용 샤프트 리니어 모터를 포함하며; 상기 프린팅용 샤프트 리니어 모터는 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동 방향을 따라 설치되어 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동을 안내하며, 내부에 영구자석이 마련된 고정자부와, 상기 고정자부의 외주면을 감싸도록 설치되고, 전류 인가시 상기 영구자석과의 사이에서 발생하는 전자기력에 의해 상기 고정자부를 따라 직선 이동하는 가동자부와, 내부에 상기 가동자부가 설치되는 코일수용공간이 마련되며, 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나와 연결되어 상기 가동자부의 직선 이동에 따라 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프레임부와, 상기 프레임부의 일측에 설치되어, 상기 프레임부의 내부로 저온의 유체를 제공하는 유체제공부를 포함하여; 상기 저온의 유체가 상기 프레임부의 내부공간을 유동하면서 상기 고정자부와 상기 가동자부에서 발생된 열을 냉각시키는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터에 의해서 달성된다.According to the present invention, there is provided a work table in which a 3D model is manufactured, a printing module for printing a 3D model on the work table, and a printing shaft linear motor for linearly moving at least one of the printing module and the work table. Includes; The printing shaft linear motor is installed along a linear movement direction of at least one of the printing module and the work table to guide the linear movement of at least one of the printing module and the work table, and a stator part having a permanent magnet provided therein. And, it is installed so as to surround the outer circumferential surface of the stator portion, the movable part for moving linearly along the stator part by the electromagnetic force generated between the permanent magnet when the current is applied, and the coil housing in which the movable part is installed inside A space is provided, connected to at least one of the printing module and the work table, a frame part for linearly moving at least one of the printing module and the work table according to a linear movement of the movable part, and installed at one side of the frame part. To provide a low temperature fluid into the frame portion Including the systems studied; The low temperature fluid is achieved by a 3D printer using a shaft linear motor, characterized in that for cooling the heat generated in the stator portion and the movable portion while flowing through the inner space of the frame portion.
여기서, 상기 프레임부의 다른 일측에 설치되어, 상기 프레임부의 내부공간의 유체의 유량을 조절하는 유량조절밸브를 더 포함할 수 있다.Here, it may be provided on the other side of the frame portion, further comprising a flow control valve for adjusting the flow rate of the fluid in the inner space of the frame portion.
또한, 상기 고정자부는 내부가 중공되고, 외주면에 복수의 관통홀이 마련된 고정자프레임; 및 상기 고정자프레임의 내부공간에 설치된 상기 영구자석을 포함하고, 상기 유체제공부에서 상기 프레임부로의 유체공급시, 상기 프레임부의 내부공간으로 유입된 유체는 상기 가동자부를 경유하여 상기 복수의 관통홀을 통해 상기 고정자프레임의 내부로 유입되어, 상기 영구자석의 열을 제거할 수 있다.In addition, the stator portion is a hollow inside, the stator frame is provided with a plurality of through holes on the outer peripheral surface; And the permanent magnet installed in the inner space of the stator frame, and when the fluid is supplied from the fluid providing part to the frame part, the fluid introduced into the inner space of the frame part passes through the plurality of through holes through the movable part. Through the flow into the stator frame, it is possible to remove the heat of the permanent magnet.
그리고, 상기 고정자프레임은 알루미늄 재질로 이루어질 수 있다.The stator frame may be made of aluminum.
또한, 상기 고정자프레임의 외주를 둘러싸도록 상기 고정부프레임에 설치되고, 고리형 단면을 가진 복수의 코일부재; 및 상기 코일부재의 고리형 단면과 밀접하게 접하도록 상기 고정자프레임에 설치되고, 상기 복수의 코일부재 사이마다 설치되는 복수의 절연부재를 포함할 수 있다.In addition, a plurality of coil members installed in the fixing unit frame so as to surround the outer periphery of the stator frame, having a ring-shaped cross section; And a plurality of insulating members installed on the stator frame to be in close contact with the annular cross section of the coil member, and installed between the plurality of coil members.
또한, 상기 절연부재는, 상기 코일부재의 단면에 대응되는 고리 형상을 가진 절연플레이트; 및 상기 절연플레이트의 외주면으로부터 상기 절연플레이트의 양측으로 돌출되어 형성된 절연가이드로 이루어질 수 있다.In addition, the insulating member, the insulating plate having a ring shape corresponding to the cross section of the coil member; And an insulation guide formed to protrude from both outer surfaces of the insulation plate to both sides of the insulation plate.
여기서, 상기 프레임부는, 상기 코일수용공간이 마련되고, 외측에 상기 유체제공부가 설치된 가동자프레임; 상기 가동자프레임의 개방된 일측에 결합된 제 1 결합부재; 및 상기 가동자프레임의 개방된 다른 일측에 결합되어 상기 코일수용공간을 폐쇄하는 제 2 결합부재를 포함하여, 상기 코일수용공간에서의 상기 복수의 코일부재와 상기 복수의 절연부재의 위치를 고정할 수 있다.Here, the frame unit, the coil receiving space is provided, the movable frame provided with the fluid providing unit on the outside; A first coupling member coupled to an open side of the mover frame; And a second coupling member coupled to the other open side of the mover frame to close the coil accommodation space, thereby fixing positions of the plurality of coil members and the plurality of insulation members in the coil accommodation space. Can be.
그리고, 상기 제 1 결합부재는, 상기 코일수용공간으로 삽입되어, 상기 코일수용공간에 수용된 상기 코일부재를 둘러싸면서 상기 절연부재와 접하는 제 1 돌출부와, 상기 제 1 돌출부와 일체로 형성되며, 상기 가동자프레임의 일측을 덮을 수 있고 상기 고정자프레임이 관통되는 구조를 가진 제 1 결합몸체로 이루어지고, 상기 제 1 결합몸체는 상기 가동자프레임에 볼팅결합될 수 있다.The first coupling member may be inserted into the coil accommodation space and may be integrally formed with the first protrusion and the first protrusion, which surround the coil member accommodated in the coil accommodation space and contact the insulating member. The first coupling body may cover one side of the mover frame and have a structure through which the stator frame penetrates, and the first coupling body may be bolted to the mover frame.
또한, 상기 제 1 돌출부는 내경이 상기 코일부재의 외경보다 크고, 외경이 상기 코일수용부재의 내경보다 작은 외경을 가진 고리형 단면을 가지며, 상기 제 1 돌출부는 상기 코일수용공간으로서 삽입시 상기 절연부재와 접하면서 상기 절연부재로 힘을 가하여 상기 복수의 코일부재와 상기 복수의 절연부재 사이의 갭(gap)의 발생을 방지할 수 있다.In addition, the first protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than the inner diameter of the coil accommodating member, and the first protrusion has the insulation when inserted as the coil accommodating space. A force may be applied to the insulating member while being in contact with the member to prevent the occurrence of a gap between the plurality of coil members and the plurality of insulating members.
그리고, 상기 제 2 결합부재는, 상기 코일수용공간으로 삽입되어, 상기 코일수용공간에 수용된 상기 코일부재를 둘러싸면서 상기 절연부재와 접하는 제 2 돌출부와, 상기 제 2 돌출부와 일체로 형성되며, 상기 가동자프레임의 다른 일측을 덮을 수 있고 상기 고정자프레임이 관통되는 구조를 가진 제 2 결합몸체로 이루어지고, 상기 제 2 결합몸체는 상기 가동자프레임에 볼팅결합될 수 있다.The second coupling member may be inserted into the coil accommodation space, and may be integrally formed with the second protrusion and the second protrusion that surround the coil member accommodated in the coil accommodation space and contact the insulating member. The second coupling body may cover the other side of the mover frame and have a structure through which the stator frame penetrates, and the second coupling body may be bolted to the mover frame.
그리고, 상기 제 2 돌출부는 내경이 상기 코일부재의 외경보다 크고, 외경이 상기 코일수용부재의 내경보다 작은 외경을 가진 고리형 단면을 가지며, 상기 제 2 돌출부는 상기 코일수용공간으로서 삽입시 상기 절연부재와 접하면서 상기 절연부재로 힘을 가하여 상기 복수의 코일부재와 상기 복수의 절연부재 사이의 갭(gap)의 발생을 방지할 수 있다.The second protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than an inner diameter of the coil accommodating member, and the second protrusion has the insulation when inserted as the coil accommodating space. A force may be applied to the insulating member while being in contact with the member to prevent the occurrence of a gap between the plurality of coil members and the plurality of insulating members.
여기서, 상기 작업 테이블 및 상기 프린팅 모듈이 수용되는 수용 공간이 형성되고, 전방이 개방된 개구부를 갖는 본체 프레임과, 상기 본체 프레임의 상기 개구부를 개폐하는 도어와, 상기 도어를 잠금 및 잠금 해제시키는 잠금용 샤프트 리니어 모터를 더 포함하고; 상기 잠금용 샤프트 리니어 모터는, 내부에 잠금용 영구자석이 수용되는 원통형의 잠금용 가동자 모듈과, 상기 잠금용 가동자 모듈의 외주면을 감싸도록 상기 도어에 설치되고, 전류 인가시 상기 잠금용 영구자석과의 사이에서 전자기력을 발생시키는 코일이 내부에 수용되며, 상기 전자기력에 의해 상기 잠금용 가동자 모듈을 직선 이동시키는 잠금용 고정자 모듈을 포함하며; 상기 본체 프레임에는 상기 잠금용 가동자 모듈이 삽입 및 삽입 해제되는 잠금공에 형성되어 상기 잠금용 고정자 모듈에 인가되는 전류에 따라 상기 잠금용 가동자 모듈이 상기 잠금공에 삽입 및 삽입 해제되어 상기 도어를 잠금 및 잠금 해제시킬 수 있다.Here, an accommodation space for accommodating the work table and the printing module is formed, the main body frame having an opening opening in the front, a door for opening and closing the opening of the main body frame, a lock for locking and unlocking the door Further comprising a shaft linear motor; The locking shaft linear motor is a cylindrical locking mover module in which a locking permanent magnet is accommodated therein, and is installed in the door to surround an outer circumferential surface of the locking mover module, and the locking permanent magnet is applied when a current is applied. A coil for generating an electromagnetic force therebetween with a magnet is received therein, the locking stator module for linearly moving the locking mover module by the electromagnetic force; The locking frame is formed in a lock hole into which the lock mover module is inserted and released, and the lock mover module is inserted into and released from the lock hole according to a current applied to the lock stator module. Can be locked and unlocked.
그리고, 상기 작업 테이블에서 상기 3D 모형이 프린팅되도록 상기 프린팅 모듈 및 상기 프린팅용 샤프트 리니어 모터를 제어하며, 상기 3D 모형의 프린팅 작업시 상기 도어가 잠금 상태가 되도록 상기 잠금용 샤프트 리니어 모터를 제어하는 제어부를 더 포함할 수 있다.And a control unit for controlling the printing module and the printing shaft linear motor to print the 3D model on the work table, and controlling the locking shaft linear motor to lock the door during printing of the 3D model. It may further include.
상기와 같은 구성에 따라, 본 발명에 따르면, 샤프트 리니어 모터에 의한 리니어 모션의 구현으로 인해 기존의 풀리나 기어에 의한 리니어 모션에서의 백래쉬(Backlash)가 제거되어 구조의 간소화와 함께 높은 반복 정밀도와, 높은 정확도, 그리고 높은 속도 및 가속도로 인한 제작 속도가 향상된 샤프트 리니어 모터를 이용한 3D 프린터가 제공된다.According to the configuration as described above, according to the present invention, due to the implementation of the linear motion by the shaft linear motor, the backlash in the linear motion by the conventional pulley or gear is eliminated to simplify the structure and high repeatability, A 3D printer with a shaft linear motor with high accuracy and improved manufacturing speed due to high speed and acceleration is provided.
또한, 프린팅용 샤프트 리니어 모터의 가동자부에 직접적으로 저온의 유체를 공급하여 가동자부의 작동시 발생하는 열이 저온의 유체에 의해 흡수됨에 따라, 가열된 코일을 냉각시킬 수 있고, 이로 인해 프린팅용 샤프트 리니어 모터의 효율을 향상시켜 3D 프린팅 작업의 안정성과 작업의 정밀도를 향상시킬 수 있다.In addition, by supplying a low-temperature fluid directly to the mover portion of the printing shaft linear motor, the heat generated during operation of the mover portion is absorbed by the low-temperature fluid, it is possible to cool the heated coil, thereby printing By improving the efficiency of the shaft linear motor, the stability and accuracy of 3D printing can be improved.
아울러, 고온의 열을 발생하는 코일을 냉각시킴으로써, 코일부재로의 전류 인가시에 코일부재에 발생한 열에 의한 코일부재의 성능 저하를 감소시켜 고정자부 및 가동자부의 고장빈도를 저감시켜, 전체적으로 3D 프린터의 수명을 연장시킬 수 있다.In addition, by cooling the coil generating high temperature heat, the performance of the coil member is reduced by the heat generated in the coil member when the current is applied to the coil member, thereby reducing the frequency of failure of the stator part and the movable part, thereby reducing the overall 3D printer. Can extend the life of the product.
도 1은 통상적인 압출 방식의 3D 프린터의 원리를 설명하기 위한 도면이고,1 is a view for explaining the principle of a conventional extrusion type 3D printer,
도 2는 본 발명에 따른 3D 프린터의 사시도이고,2 is a perspective view of a 3D printer according to the present invention;
도 3은 도 2에 도시된 3D 프린터의 내부 구조를 설명하기 위한 도면이고,3 is a view for explaining the internal structure of the 3D printer shown in FIG.
도 4는 본 발명에 따른 3D 프린터의 프린팅용 샤프트 리니어 모터를 설명하기 위한 도면이고,4 is a view for explaining a shaft linear motor for printing of a 3D printer according to the present invention,
도 5는 본 발명에 따른 3D 프린터의 프린팅용 샤프트 리니어 모터의 구성요소 간의 연결상태를 개략적으로 도시한 도면이고,5 is a view schematically showing a connection state between the components of the shaft linear motor for printing of the 3D printer according to the present invention,
도 6은 본 발명에 따른 3D 프린터의 프린팅용 샤프트 리니어 모터의 분해사시도를 개략적으로 도시이고,6 is a schematic exploded perspective view of a shaft linear motor for printing of a 3D printer according to the present invention;
도 7은 본 발명에 따른 3D 프린터의 프린팅용 샤프트 리니어 모터의 가동자부의 분해사시도를 개략적으로 도시한 도면이고,7 is a view schematically showing an exploded perspective view of a movable part of a shaft linear motor for printing of a 3D printer according to the present invention;
도 8은 본 발명에 따른 3D 프린터의 잠금용 샤프트 리니어 모터의 작동 상태를 설명하기 위한 도면이다.8 is a view for explaining the operating state of the locking shaft linear motor of the 3D printer according to the present invention.
본 발명에 따른 샤프트 리니어 모터를 이용한 3D 프린터는 3D 모형이 제작되는 작업 테이블과, 상기 작업 테이블에 3D 모형을 프린팅하는 프린팅 모듈과, 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프린팅용 샤프트 리니어 모터를 포함하며; 상기 프린팅용 샤프트 리니어 모터는 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동 방향을 따라 설치되어 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동을 안내하며, 내부에 영구자석이 마련된 고정자부와, 상기 고정자부의 외주면을 감싸도록 설치되고, 전류 인가시 상기 영구자석과의 사이에서 발생하는 전자기력에 의해 상기 고정자부를 따라 직선 이동하는 가동자부와, 내부에 상기 가동자부가 설치되는 코일수용공간이 마련되며, 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나와 연결되어 상기 가동자부의 직선 이동에 따라 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프레임부와, 상기 프레임부의 일측에 설치되어, 상기 프레임부의 내부로 저온의 유체를 제공하는 유체제공부를 포함하여; 상기 저온의 유체가 상기 프레임부의 내부공간을 유동하면서 상기 고정자부와 상기 가동자부에서 발생된 열을 냉각시키는 것을 특징으로 한다.3D printer using a shaft linear motor according to the present invention is a printing table for printing a 3D model work, a printing module for printing a 3D model on the work table, and at least one of the printing module and the work table for linear movement A shaft linear motor; The printing shaft linear motor is installed along a linear movement direction of at least one of the printing module and the work table to guide the linear movement of at least one of the printing module and the work table, and a stator part having a permanent magnet provided therein. And, it is installed so as to surround the outer circumferential surface of the stator portion, the movable part for moving linearly along the stator part by the electromagnetic force generated between the permanent magnet when the current is applied, and the coil housing in which the movable part is installed inside A space is provided, connected to at least one of the printing module and the work table, a frame part for linearly moving at least one of the printing module and the work table according to a linear movement of the movable part, and installed at one side of the frame part. To provide a low temperature fluid into the frame portion Including the systems studied; The low temperature fluid cools heat generated in the stator part and the movable part while flowing in the inner space of the frame part.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment according to the present invention.
도 2는 본 발명에 따른 3D 프린터(1)의 사시도이고, 도 3은 도 2에 도시된 3D 프린터(1)의 내부 구조를 설명하기 위한 도면이다. 도 2 및 도 3을 참조하여 설명하면, 본 발명에 따른 3D 프린터(1)는 본체 프레임(10), 도어(20), 프린팅 모듈(30)과, 프린팅용 샤프트 리니어 모터(100)를 포함한다.2 is a perspective view of the 3D printer 1 according to the present invention, Figure 3 is a view for explaining the internal structure of the 3D printer 1 shown in FIG. Referring to FIGS. 2 and 3, the 3D printer 1 according to the present invention includes a main frame 10, a door 20, a printing module 30, and a shaft linear motor 100 for printing. .
본체 프레임(10)은 대략 사각 형상으로 마련되어, 내부에 수용 공간이 형성되어 프린팅 모듈(30) 및 프린팅용 샤프트 리니어 모터(100) 등의 구성 요소들을 수용한다. 그리고, 본체 프레임(10)의 전방에는 개방된 개구부가 형성되고, 도어(20)가 개구부를 개폐함으로써, 3D 프린팅 작업을 통해 제작된 3D 모형을 도어(20)를 통해 외부로 이동시킬 수 있다.The main body frame 10 has a substantially rectangular shape, and an accommodation space is formed therein to accommodate components such as the printing module 30 and the shaft linear motor 100 for printing. An open opening is formed in front of the main body frame 10, and the door 20 opens and closes the opening, thereby moving the 3D model manufactured through the 3D printing operation to the outside through the door 20.
여기서, 본 발명의 기술적 사상이 본체 프레임(10)의 형상이나 도어(20)의 위치 등이 도 2 및 도 3에 도시된 형태에 국한되지 않고 당업자라면 본 발명의 기술적 사상에 기초하여 다양한 형태로 제작할 수 있음은 물론이다.Here, the technical idea of the present invention is not limited to the shape of the main body frame 10, the position of the door 20, etc. in various forms based on the technical idea of the present invention if those skilled in the art Of course it can be produced.
본체 프레임(10)의 하부에는 프린팅 모듈(30)에 의해 생성되는 3D 모형이 안착되는 작업 테이블(40)이 형성되고, 작업 테이블(40)의 상부에 작업 테이블(40)에 이격된 상태로 프린팅 모듈(30)이 설치된다.The work table 40 on which the 3D model generated by the printing module 30 is seated is formed in the lower part of the main frame 10, and printing is performed on the work table 40 while being spaced apart from the work table 40. Module 30 is installed.
프린팅 모듈(30)은 작업 테이블(40)에 3D 프린팅 모형을 프린팅한다. 본 발명에 따른 3D 프린터(1)는 압출 방식의 3D 프린터(1)인 것으로 예로 하는 바, 프린팅 모듈(30)은 필라멘트(50)를 이동시키는 압출기(미도시)와 압출기에 의해 이동하는 필라멘트(50)를 가열하여 토출하는 노즐(미도시)을 포함할 수 있다.The printing module 30 prints the 3D printing model on the work table 40. The 3D printer 1 according to the present invention is an example of the extrusion method 3D printer 1 bar, the printing module 30 is an extruder (not shown) for moving the filament 50 and the filament moving by the extruder ( A nozzle (not shown) for heating and discharging 50 may be included.
여기서, 프린팅 모듈(30)의 구성은 기 공지된 다양한 형태로 마련될 수 있는 바, 그 상세한 설명은 본 명세서에서 생략한다. 또한, 본 발명에 3D 프린터(1)가 압출 방식을 이용하는 것은 일 실시예로서, 다른 방식의 3D 프린터(1)에 적용되는 경우 프린팅 모듈(30)은 해당 방식에 따른 구성 요소를 포함하게 된다.Here, the configuration of the printing module 30 may be provided in various forms known in the art, the detailed description thereof will be omitted. In addition, in the present invention, the 3D printer 1 uses an extrusion method as an embodiment. When the 3D printer 1 is applied to another method of the 3D printer 1, the printing module 30 includes components according to the method.
한편, 프린팅용 샤프트 리니어 모터(100)는 프린팅 모듈(30)과 작업 테이블(40) 중 적어도 하나를 직선 왕복 이동 시킨다. 본 발명에서는 프린팅용 샤프트 리니어 모터(100)가 프린팅 모듈(30)을 X축 방향 및 Y축 방향으로 직선 이동시키도록 마련되고, 프린팅용 샤프트 리니어 모터(100)가 작업 테이블(40)을 Z축 방향으로 직선 이동시키는 것을 예로 하고 있다.Meanwhile, the printing shaft linear motor 100 linearly reciprocates at least one of the printing module 30 and the work table 40. In the present invention, the printing shaft linear motor 100 is provided to linearly move the printing module 30 in the X axis direction and the Y axis direction, and the printing shaft linear motor 100 moves the work table 40 on the Z axis. The linear movement in the direction is taken as an example.
여기서, 도 3의 미설명 참조 번호 110a는 프린팅 모듈(30) 및 작업 테이블(40)의 직선 이동을 안내하는 가이드 바이다.Here, reference numeral 110a of FIG. 3 is a guide bar for guiding a linear movement of the printing module 30 and the work table 40.
이하에서는 도 4 내지 도 7을 참조하여 본 발명에 따른 프린팅용 샤프트 리니어 모터에 대해 상세히 설명한다.Hereinafter, a shaft linear motor for printing according to the present invention will be described in detail with reference to FIGS. 4 to 7.
도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 프린팅용 샤프트 리니어 모터(100)는 고정자부(110), 가동자부(120), 프레임부(130), 유체제공부(140)와 유량조절밸브(150)를 포함한다. As shown in FIG. 4, the printing shaft linear motor 100 according to the embodiment of the present invention includes a stator 110, a mover 120, a frame 130, and a fluid providing unit 140. It includes a flow control valve 150.
본 발명의 일 실시예에 따른 고정자부(110)는 프린팅 모듈(30) 및 작업 테이블(40)의 직선 이동 방향을 따라 본체 프레임(10) 내부에 설치되어 프린팅 모듈(30) 및 작업 테이블(40)의 직선 이동을 안내한다.The stator part 110 according to an embodiment of the present invention is installed inside the main body frame 10 along the linear movement direction of the printing module 30 and the work table 40 to print the module 30 and the work table 40. Guides a straight line movement.
본 발명에 따른 고정자부(110)는 고정자프레임(111)과 영구자석(113)을 포함한다. 본 발명의 일 실시예에 따른 고정자프레임(111)은 도 6에 도시된 바와 같이, 외주면에 복수의 관통홀(112)이 마련된다. The stator part 110 according to the present invention includes a stator frame 111 and a permanent magnet 113. In the stator frame 111 according to the exemplary embodiment of the present invention, as illustrated in FIG. 6, a plurality of through holes 112 are provided on an outer circumferential surface thereof.
여기서, 복수의 관통홀(112)은 고정자프레임(111)의 내부공간과 연통가능한 개구이다. 본 발명의 일 실시예에서, 고정자프레임(111)은 알루미늄 재질로 이루어진 것이 바람직하다. Here, the plurality of through holes 112 are openings that can communicate with the internal space of the stator frame 111. In one embodiment of the present invention, the stator frame 111 is preferably made of aluminum.
본 발명의 일 실시예에서, 고정자프레임(111)의 내부공간에는 N극과 S극이 순차적으로 배열된 영구자석(113)이 설치된다. 고정자프레임(111)에 설치되는 영구자석(113)의 배치구조 및 고정자부(110)와 가동자부(120)와의 작동방식은 당업자의 입장에서 자명한 범위 내에 속하는 기술인 바, 본 명세서에서는 이에 대한 구체적인 설명은 생략하기로 한다. In an embodiment of the present invention, the permanent magnet 113 in which the N pole and the S pole are sequentially arranged is installed in the internal space of the stator frame 111. Arrangement structure of the permanent magnet 113 installed in the stator frame 111 and the operation method of the stator part 110 and the movable part 120 is a technology falling within the obvious range from the position of those skilled in the art, in the present specification The description will be omitted.
본 발명의 일 실시예에서, 가동자부(120)와 프레임부(130)에 대해 설명하기로 한다. In an embodiment of the present invention, the movable unit 120 and the frame unit 130 will be described.
도 5 내지 도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 가동자부(120)는 복수의 코일부재(121)와 복수의 절연부재(122)를 포함한다. 여기서, 가동자부(120)는 고정자프레임(111)의 외주를 둘러싸도록 설치되어, 코일부재(121)로의 전류인가시 고정자프레임(111)의 길이방향을 따라 직선운동하는 부재이다. 5 to 7, the movable part 120 according to the exemplary embodiment of the present invention includes a plurality of coil members 121 and a plurality of insulating members 122. Here, the movable part 120 is installed to surround the outer circumference of the stator frame 111, and is a member that linearly moves along the longitudinal direction of the stator frame 111 when a current is applied to the coil member 121.
본 발명의 일 실시예에서, 복수의 코일부재(121)는 고정자프레임(111)의 외주를 둘러싸도록 고정자프레임(111)에 설치된다. 본 실시예에서, 복수의 코일부재(121)는 전류인가시 고정자부(110)에 마련된 영구자석(113)에 대해 전자기력을 발생하는 부재이다. In one embodiment of the present invention, the plurality of coil members 121 are installed in the stator frame 111 to surround the outer circumference of the stator frame 111. In the present embodiment, the plurality of coil members 121 are members that generate electromagnetic force with respect to the permanent magnet 113 provided in the stator part 110 when the current is applied.
도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 코일부재(121)는 고리형 단면을 가지며, 권선된 코일의 정도에 따라 소정의 두께를 가진 원통형 구조를 가진 것이 바람직하다. As shown in Figure 6, the coil member 121 according to an embodiment of the present invention has an annular cross-section, it is preferable to have a cylindrical structure having a predetermined thickness depending on the degree of the coil wound.
본 발명의 일 실시예에 따른 코일부재(121)는 고정자프레임(111)이 관통되는 구조를 가진다. 이에 따라, 본 발명의 일 실시예에 따른 코일부재(121)의 내경은 고정자프레임(111)의 외경보다 큰 직경을 가지는 것이 바람직하다. Coil member 121 according to an embodiment of the present invention has a structure in which the stator frame 111 penetrates. Accordingly, the inner diameter of the coil member 121 according to an embodiment of the present invention preferably has a diameter larger than the outer diameter of the stator frame 111.
본 발명의 일 실시예에 따른 코일부재(121)는 고정자프레임(111)에 삽입되어, 코일부재(121)로의 전류인가시 고정자프레임(111)의 길이방향을 따라 이동가능하게 고정자프레임(111)에 설치된 것이 바람직하다. 도 7에 도시된 바와 같이, 복수의 코일부재(121) 사이에는 절연부재(122)가 배치된다. Coil member 121 according to an embodiment of the present invention is inserted into the stator frame 111, the stator frame 111 to be movable along the longitudinal direction of the stator frame 111 when the current is applied to the coil member 121 It is preferably installed in. As shown in FIG. 7, an insulating member 122 is disposed between the plurality of coil members 121.
도 6 및 도 7에 도시된 바와 같이, 본 발명의 일 실시예에서, 복수의 절연부재(122)는 복수의 코일부재(121) 사이마다 설치된다. 6 and 7, in one embodiment of the present invention, the plurality of insulating members 122 are installed between the plurality of coil members 121.
복수의 코일부재(121)의 고리형 단면과 밀접하게 접하도록 고정자프레임(111)에 설치되어, 코일부재(121)의 전류가 고정자프레임(111)으로 직접적으로 전달되지 않도록 하는 부재이다. It is installed in the stator frame 111 to be in close contact with the annular cross-section of the plurality of coil members 121, so that the current of the coil member 121 is not directly transmitted to the stator frame 111.
즉, 본 발명의 일 실시에에서, 복수의 절연부재(122)는 복수의 코일부재(121) 사이에 설치되어, 복수의 코일부재(121)를 구획하고, 어느 하나의 코일부재(121)에 흐르는 전류가 이에 인접하게 위치된 코일부재(121)로 영향을 미치지 않게 함과 동시에, 복수의 코일부재(121)가 직접적으로 고정자프레임(111)에 접촉되는 것을 방지하여, 코일부재(121)에 흐르는 전류가 고정자프레임(111)으로 전달되지 않게 할 수 있다. That is, in one embodiment of the present invention, the plurality of insulating members 122 are provided between the plurality of coil members 121, partitioning the plurality of coil members 121, to any one coil member 121 While the current flowing does not affect the coil member 121 positioned adjacent thereto, the plurality of coil members 121 are prevented from directly contacting the stator frame 111, and thus the coil member 121 It is possible to prevent the current flowing through the stator frame 111.
본 발명의 일 실시예에 있어서, 절연부재(122)는 절연플레이트(122a)와 절연가이드(122b)로 이루어진다.In one embodiment of the present invention, the insulating member 122 is composed of an insulating plate 122a and an insulating guide 122b.
도 6에 도시된 바와 같이, 본 발명의 일 실시에에 따른 절연플레이트(122a)는 코일부재(121)의 단면에 대응되는 고리 형 구조를 가진 것이 바람직하다. 절연플레이트(122a)의 내경은 고정자프레임(111)의 외경보다 큰 직경을 가지는 것이 바람직하다.As shown in Figure 6, the insulating plate 122a according to an embodiment of the present invention preferably has an annular structure corresponding to the cross section of the coil member 121. The inner diameter of the insulating plate 122a preferably has a diameter larger than the outer diameter of the stator frame 111.
본 발명의 일 실시예에서, 절연플레이트(122a)의 외경은 코일부재(121)의 외경과 같은 직경을 가지는 것이 바람직하다. 그리고, 절연플레이트(122a)의 외주면에는 절연가이드(122b)가 형성된다. In one embodiment of the present invention, the outer diameter of the insulating plate 122a preferably has the same diameter as the outer diameter of the coil member 121. An insulating guide 122b is formed on the outer circumferential surface of the insulating plate 122a.
본 발명의 일 실시예에서, 절연가이드(122b)는 절연플레이트(122a)의 외주면으로부터 절연플레이트(122a)의 양측으로 돌출되어 형성된 것이 바람직하다. 어느 하나의 절연부재(122)가 두 개의 코일부재(121) 사이에 설치될 때, 절연플레이트(122a)는 인접하게 위치된 두 개의 코일부재(121)의 측면과 밀접하게 접하고, 절연가이드(122b)는 두 개의 코일부재(121)의 외주의 일부를 둘러싸도록 설치된 것이 바람직하다. In one embodiment of the present invention, the insulating guide 122b is preferably formed to protrude to both sides of the insulating plate 122a from the outer peripheral surface of the insulating plate 122a. When any one of the insulating members 122 is installed between the two coil members 121, the insulating plate 122a is in close contact with the side of the two adjacent coil members 121, the insulating guide 122b ) Is preferably installed to surround a portion of the outer circumference of the two coil member 121.
이하에서는 프레임부(130)에 대해 설명하기로 한다. Hereinafter, the frame unit 130 will be described.
본 발명의 일 실시예에서, 프레임부(130)는, 도 3에 도시된 바와 같이, 프린팅 모듈(30) 및 작업 테이블(40)과 연결되어 가동자부(120)의 직선 이동에 따라 프린팅 모듈(30) 및 작업 테이블(40)을 직선 이동시킨다.In one embodiment of the present invention, the frame unit 130, as shown in Figure 3, is connected to the printing module 30 and the work table 40 in accordance with the linear movement of the movable unit 120, the printing module ( 30) and the work table 40 is linearly moved.
그리고, 프레임부(130)는 가동자부(120)를 고정하기 위한 부재이다. 즉, 본 발명의 일 실시예에 따른 프레임부(130)는 복수의 코일부재(121)와 복수의 절연부재(122)가 코일수용공간(132)에 수용된 상태에서 코일수용공간(132)을 폐쇄하여 복수의 코일부재(121)와 복수의 절연부재(122) 간의 배치 구조를 고정하기 위한 부재이다. In addition, the frame part 130 is a member for fixing the movable part 120. That is, the frame unit 130 according to the embodiment of the present invention closes the coil receiving space 132 in a state where the plurality of coil members 121 and the plurality of insulating members 122 are accommodated in the coil receiving space 132. To fix the arrangement between the plurality of coil members 121 and the plurality of insulating members 122.
도 6 및 도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 프레임부(130)는 가동자프레임(131), 제 1 결합부재(133)와 제 2 결합부재(137)를 포함한다. 6 and 7, the frame unit 130 according to an embodiment of the present invention includes a mover frame 131, a first coupling member 133, and a second coupling member 137. .
본 발명의 일 실시예에 따른 가동자프레임(131)은 내부에 코일수용공간(132)이 마련된 부재로서, 코일수용공간(132)이 외부와 연통가능한 구조를 가진다. 여기서, 코일수용공간(132)은 코일부재(11)와 절연부재(122)가 설치되는 공간으로서, 원통형 형상을 가진 것이 바람직하다. The mover frame 131 according to an embodiment of the present invention is a member provided with a coil accommodation space 132 therein, and has a structure in which the coil accommodation space 132 can communicate with the outside. Here, the coil accommodating space 132 is a space in which the coil member 11 and the insulating member 122 are installed, and preferably has a cylindrical shape.
이때, 가동자프레임(131)의 내경은 코일부재(121)와 절연부재(122)의 외경보다 큰 직경을 가진 것이 바람직하다. 그리고, 본 발명의 일 실시예에서, 가동자프레임(131)은 코일부재(121)에 인가된 전류가 흐르지 않도록 절연재질로 이루어진 것이 바람직하다. At this time, the inner diameter of the movable frame 131 preferably has a diameter larger than the outer diameter of the coil member 121 and the insulating member 122. And, in one embodiment of the present invention, the mover frame 131 is preferably made of an insulating material so that the current applied to the coil member 121 does not flow.
본 발명의 일 실시예에서, 가동자프레임(131)의 외면에는 코일수용공간(132)과 연통되는 구조를 가진 유체유입개구부(131a)와 유체유출개구부(131b)가 마련된다. 여기서, 유체유입개구부(131a)에는 유체제공부(140)가 연결된다. 그리고, 유체유출개구부(131b)에는 유량조절밸브(150)가 설치된다. 유체제공부(140)와 유량조절밸브(150)에 대해서는 후술하기로 한다. In one embodiment of the present invention, the fluid inlet opening 131a and the fluid outlet opening 131b having a structure in communication with the coil receiving space 132 is provided on the outer surface of the movable frame 131. Here, the fluid inlet opening 131a is connected to the fluid providing unit 140. In addition, a flow rate control valve 150 is installed at the fluid outlet opening 131b. The fluid providing unit 140 and the flow control valve 150 will be described later.
한편, 본 발명의 일 실시예에서, 제 1 결합부재(133)는 코일수용공간(132)의 개방된 일측을 폐쇄토록 가동자프레임(131)의 일측에 결합되는 부재이다. 본 발명의 일 실시예에 있어서, 제 1 결합부재(133)는 코일수용공간(132)으로 삽입되는 제 1 돌출부(134)와 제 1 결합몸체(135)로 이루어진다. On the other hand, in one embodiment of the present invention, the first coupling member 133 is a member coupled to one side of the movable frame 131 to close the open one side of the coil receiving space 132. In one embodiment of the present invention, the first coupling member 133 is composed of a first protrusion 134 and the first coupling body 135 inserted into the coil receiving space 132.
본 실시예에서, 제 1 돌출부(134)는 제 1 결합몸체(135)의 일측으로부터 돌출되어 마련된 것으로서, 내경은 코일의 외경보다 크고, 외경이 코일수용공간(132)의 직경보다 작은 고리형 단면을 가진 것이 바람직하다. In this embodiment, the first protrusion 134 is provided to protrude from one side of the first coupling body 135, the inner diameter is larger than the outer diameter of the coil, the outer diameter is smaller than the diameter of the coil receiving space 132 annular cross section It is preferable to have.
이에 따라, 본 발명의 일 실시예에 따른 제 1 결합부재(133)가 가동자프레임(131)에 설치될 때, 제 1 돌출부(134)는 제 1 돌출부(134)의 내주면이 제 1 결합부재(133)에 인접하게 위치된 코일부재(121)의 외주를 둘러싸고, 제 1 돌출부(134)의 종단면은 절연부재(122)의 절연가이드(122b)의 일측과 맞물리도록 설치된다. 이때, 제 1 돌출부(134)는 가동자프레임(131)의 코일수용공간(132)에 끼움결합되는 것이 바람직하다. Accordingly, when the first coupling member 133 according to the exemplary embodiment of the present invention is installed in the movable frame 131, the first protrusion 134 may have a first coupling member having an inner circumferential surface of the first protrusion 134. Surrounding the outer circumference of the coil member 121 positioned adjacent to (133), the longitudinal section of the first protrusion 134 is installed to engage with one side of the insulating guide 122b of the insulating member 122. At this time, the first protrusion 134 is preferably fitted into the coil receiving space 132 of the mover frame 131.
본 발명의 일 실시예에서, 제 1 결합몸체(135)는 제 1 돌출부(134)와 일체로 형성되며, 가동자프레임(131)의 일측을 덮을 수 있는 구조를 가진 것이 바람직하다. 또한, 본 발명의 일 실시예에 따른 제 1 결합몸체(135)의 외관은 가동자프레임(131)의 외관에 대응되는 구조를 가진 것이 바람직하다. In one embodiment of the present invention, the first coupling body 135 is formed integrally with the first protrusion 134, it is preferable to have a structure that can cover one side of the movable frame (131). In addition, the appearance of the first coupling body 135 according to an embodiment of the present invention preferably has a structure corresponding to the appearance of the movable frame 131.
제 1 결합몸체(135)에는 고정자프레임(111)이 관통되는 몸체관통홀(135a)이 마련된 것이 바람직하다. 본 발명의 일 실시예에서, 제 1 결합몸체(135)는 볼트(136)에 의해 가동자프레임(131)에 볼팅결합되는 것이 바람직하다. The first coupling body 135 is preferably provided with a body through hole 135a through which the stator frame 111 passes. In one embodiment of the invention, the first coupling body 135 is preferably bolted to the mover frame 131 by a bolt 136.
한편, 본 발명의 일 실시예에 있어서, 제 2 결합부재(137)는 코일수용공간(132)으로 삽입되는 제 2 돌출부(138)와 제 2 결합몸체(139)로 이루어진다. On the other hand, in one embodiment of the present invention, the second coupling member 137 is composed of a second protrusion 138 and the second coupling body 139 is inserted into the coil receiving space 132.
본 실시예에서, 제 2 돌출부(138)는 제 2 결합몸체(139)의 일측으로부터 돌출되어 마련된 것으로서, 내경은 코일의 외경보다 크고, 외경이 코일수용공간(132)의 직경보다 작은 고리형 단면을 가진 것이 바람직하다. In this embodiment, the second protrusion 138 is provided to protrude from one side of the second coupling body 139, the inner diameter is larger than the outer diameter of the coil, the outer diameter is smaller than the diameter of the coil receiving space 132 annular cross section It is preferable to have.
이에 따라, 본 발명의 일 실시예에 따른 제 2 결합부재(137)가 가동자프레임(131)에 설치될 때, 제 2 돌출부(138)는 제 2 돌출부(138)의 내주면이 제 2 결합부재(137)에 인접하게 위치된 코일부재(121)의 외주를 둘러싸고, 제 2 돌출부(138)의 종단면은 절연부재(122)의 절연가이드(122b)의 일측과 맞물리도록 설치된다. 이때, 제 2 돌출부(138)는 가동자프레임(131)의 코일수용공간(132)에 끼움결합되는 것이 바람직하다. Accordingly, when the second coupling member 137 according to the exemplary embodiment of the present invention is installed in the mover frame 131, the second protrusion 138 may have a second coupling member having an inner circumferential surface of the second protrusion 138. Surrounding the outer circumference of the coil member 121 positioned adjacent to (137), the longitudinal section of the second protrusion 138 is installed to engage with one side of the insulating guide 122b of the insulating member 122. At this time, the second protrusion 138 is preferably fitted to the coil receiving space 132 of the mover frame 131.
본 발명의 일 실시예에서, 제 2 결합몸체(139)는 제 2 돌출부(138)와 일체로 형성되며, 가동자프레임(131)의 타측을 덮을 수 있는 구조를 가진 것이 바람직하다. 또한, 본 발명의 일 실시예에 따른 제 2 결합몸체(139)의 외관은 상술한 제 1 결합몸체(135)와 마찬가지로 가동자프레임(131)의 외관에 대응되는 구조를 가진 것이 바람직하다.In one embodiment of the present invention, the second coupling body 139 is formed integrally with the second protrusion 138, it is preferable to have a structure that can cover the other side of the movable frame 131. In addition, the appearance of the second coupling body 139 according to an embodiment of the present invention preferably has a structure corresponding to the appearance of the movable frame 131 as in the first coupling body 135 described above.
제 2 결합몸체(139)에는 고정자프레임(111)이 관통되는 몸체관통홀(139a)이 마련된 것이 바람직하다. 본 발명의 일 실시예에서, 제 2 결합몸체(139)는 볼트(136)에 의해 가동자프레임(131)에 볼팅결합되는 것이 바람직하다. It is preferable that the second coupling body 139 is provided with a body through-hole 139a through which the stator frame 111 passes. In one embodiment of the invention, the second coupling body 139 is preferably bolted to the mover frame 131 by a bolt 136.
이하에서는 도 4 내지 도 6을 참조하여, 본 발명의 일 실시예에 따른 유체제공부(140)와 유량조절밸브(150)에 대해 설명하기로 한다. Hereinafter, the fluid providing unit 140 and the flow regulating valve 150 according to an embodiment of the present invention will be described with reference to FIGS. 4 to 6.
도 4에 도시된 바와 같이, 유체제공부(140)는 유체제공관에 의해 가동자프레임(131)의 외측에 마련된 유체유입개구부(131a)에 연결되어, 소정의 압력으로 가동자프레임(131)의 코일수용공간(132)으로 저온의 유체를 제공하는 부재이다. 본 발명의 일 실시예에 따른 유체제공부(140)로는 공기압펌프가 사용될 수 있다. 다만, 이에 반드시 한정되는 것은 아니다.As shown in FIG. 4, the fluid supply unit 140 is connected to the fluid inlet opening 131a provided on the outside of the mover frame 131 by a fluid supply pipe, and the mover frame 131 at a predetermined pressure. The coil receiving space 132 is a member for providing a low temperature fluid. As the fluid providing unit 140 according to an embodiment of the present invention, an air pressure pump may be used. However, the present invention is not limited thereto.
본 발명의 일 실시예에서, 저온의 유체란 상온의 공기가 사용될 수 있으며, 당업장의 입장에서 가열된 코일부재(121)를 용이하게 냉각시킬 수 있는 유체라면 유체의 종류에 한정을 두지 않고 다양하게 가변가능하다. In one embodiment of the present invention, the low-temperature fluid may be used at room temperature air, and a fluid capable of easily cooling the heated coil member 121 from the standpoint of the industry, without limiting the type of fluid Is variable.
본 발명의 일 실시예에 따른 프린팅용 샤프트 리니어 모터(100)에서, 유체제공부(140)의 작동시, 유체제공부(140)에서 가동자프레임(131)의 코일수용공간(132)으로 제공된 유체는 코일수용공간(132)에 수용된 복수의 코일부재(121)와 접촉되면서, 코일부재(121)의 열을 흡수하여 코일부재(121)를 냉각시키는 역할을 한다. In the printing shaft linear motor 100 according to an embodiment of the present invention, when the fluid providing unit 140 is operated, the fluid providing unit 140 is provided to the coil receiving space 132 of the mover frame 131. The fluid contacts the plurality of coil members 121 accommodated in the coil accommodating space 132, and serves to absorb the heat of the coil member 121 to cool the coil member 121.
또한, 코일수용공간(132)으로 유입된 유체는 코일부재(121)만을 냉각시키는 것이 아니라, 고정자프레임(111)에 마련된 복수의 관통홀(112)을 통해 고정자프레임(111)의 내부공간으로 유입되어, 영구자석(113)과 접촉되면서 영구자석(113)의 열을 흡수하여, 영구자석(113)을 냉각시키는 역할을 동시에 수행한다. In addition, the fluid introduced into the coil accommodating space 132 not only cools the coil member 121 but also flows into the internal space of the stator frame 111 through the plurality of through holes 112 provided in the stator frame 111. In order to absorb the heat of the permanent magnets 113 while being in contact with the permanent magnets 113, the permanent magnets 113 serve to cool the same.
본 발명의 일 실시에에 따른 유체제공부(140)는 가동자부(120)를 보호하는 프레임부(130)에 연결되어, 프린팅용 샤프트 리니어 모터(100)의 작동시 대략 100℃ 이상으로 가열된 코일부재(121)에 저온의 유체를 직접적으로 제공하여, 고온 상태의 코일부재(121)에 열을 흡수하고, 코일부재(121)에서 발생된 열에 의해 가열된 영구자석(113)의 열을 흡수함으로써, 가동자부(120)와 고정자부(110)를 냉각함으로써, 프린팅용 샤프트 리니어 모터(100)의 작동효율을 향상시킬 수 있다. Fluid providing unit 140 according to an embodiment of the present invention is connected to the frame portion 130 to protect the movable part 120, heated to about 100 ℃ or more during operation of the printing shaft linear motor 100 Provides a low temperature fluid directly to the coil member 121, absorbs heat to the coil member 121 in a high temperature state, and absorbs the heat of the permanent magnet 113 heated by the heat generated from the coil member 121 Thereby, by cooling the movable part 120 and the stator part 110, the operation efficiency of the printing shaft linear motor 100 can be improved.
한편, 본 발명의 일 실시예에 따른 유량조절밸브(150)는 유체유출개구부(131b)에 연결된다. 본 발명의 일 실시예에서, 유량조절밸브(150)는 유체제공부(140)를 통해 가동자프레임(131)으로 유입된 유체의 양을 조절하기 위한 부재이다. 즉, 본 발명의 일 실시예에서, 유량조절밸브(150)는 유체유출개구부(131b)의 개폐정도를 조절하여, 가동자프레임(131)의 코일수용공간(132)으로 유입된 유체의 양을 조절할 수 있다. On the other hand, the flow control valve 150 according to an embodiment of the present invention is connected to the fluid outlet opening (131b). In one embodiment of the present invention, the flow control valve 150 is a member for adjusting the amount of fluid introduced into the mover frame 131 through the fluid providing unit 140. That is, in one embodiment of the present invention, the flow control valve 150 controls the opening and closing degree of the fluid outlet opening (131b), the amount of fluid introduced into the coil receiving space 132 of the mover frame (131) I can regulate it.
한편, 본 발명에 따른 3D 프린터(1)는 도어(20)를 본체 프레임(10)에 대해 잠금 및 잠금 해제시키는 잠금용 샤프트 리니어 모터(200)를 더 포함할 수 있다. 도 8은 본 발명에 따른 3D 프린터(1)의 잠금용 샤프트 리니어 모터(200)의 작동 상태를 설명하기 위한 도면이다.Meanwhile, the 3D printer 1 according to the present invention may further include a locking shaft linear motor 200 that locks and unlocks the door 20 with respect to the body frame 10. 8 is a view for explaining the operating state of the locking shaft linear motor 200 of the 3D printer 1 according to the present invention.
도 8을 참조하여 설명하면, 본 발명에 따른 잠금용 샤프트 리니어 모터(200)는 잠금용 가동자 모듈(220)과 잠금용 고정자 모듈(210)을 포함할 수 있다.Referring to FIG. 8, the locking shaft linear motor 200 according to the present invention may include a locking mover module 220 and a locking stator module 210.
잠금용 가동자 모듈(220)은 내부에 잠금용 영구자석(미도시)이 수용되는 원통 형상을 갖는다. 그리고, 잠금용 고정자 모듈(210)은 잠금용 가동자 모듈(220)의 외주면을 감싸도록 도어(20)에 설치된다. 그리고, 잠금용 고정자 모듈(210)에 전류가 인가되면 잠금용 영구자석과의 사이에서 전자기력을 발생시키는 코일(미도시)이 잠금용 고정자 모듈(210) 내부에 수용되며, 전자기력에 의해 잠금용 가동자 모듈(220)을 직선 이동시킨다.The lock mover module 220 has a cylindrical shape in which a lock permanent magnet (not shown) is accommodated. In addition, the locking stator module 210 is installed in the door 20 to surround the outer circumferential surface of the locking mover module 220. When a current is applied to the locking stator module 210, a coil (not shown) for generating an electromagnetic force between the locking permanent magnet is accommodated inside the locking stator module 210 and movable for locking by the electromagnetic force. The child module 220 is moved linearly.
여기서, 본체 프레임(10)에는, 도 8에 도시된 바와 같이, 잠금용 가동자 모듈(220)이 삽입 및 삽입 해제되는 잠금공(11)에 형성되어 잠금용 고정자 모듈(210)에 인가되는 전류에 따라 잠금용 가동자 모듈(220)이 잠금공(11)에 삽입 및 삽입 해제되어 도어(20)를 잠금 및 잠금 해제시키게 된다.Here, the main body frame 10, as shown in Figure 8, the locking mover module 220 is formed in the lock hole 11 is inserted and released, the current applied to the lock stator module 210 As a result, the locking mover module 220 is inserted into and released from the lock hole 11 to lock and unlock the door 20.
여기서, 본 발명에 따른 3D 프린터(1)의 제 기능, 즉 작업 테이블(40)에서 3D 모형이 프린팅되도록 프린팅 모듈(30) 및 프린팅용 샤프트 리니어 모터(100)를 제어하는 제어부(미도시)는 3D 모형의 프린팅 작업시 도어(20)가 잠금 상태가 되도록 잠금용 샤프트 리니어 모터(200)를 제어할 수 있다.Here, the control unit (not shown) for controlling the printing module 30 and the printing shaft linear motor 100 so that the 3D model is printed on the function of the 3D printer 1 according to the present invention, that is, the work table 40 is When the printing operation of the 3D model, the locking shaft linear motor 200 may be controlled to lock the door 20.
이를 통해, 3D 프린팅 작업 과정에서는 도어(20)의 개방이 자동으로 차단됨으로써, 실수 등으로 인해 도어(20)가 개방되어 작업 중인 3D 모형의 파손이나 작업자에게 발생할 수 있는 재해를 예방할 수 있게 된다.As a result, the opening of the door 20 is automatically blocked in the 3D printing process, thereby preventing the damage of the 3D model in operation or a disaster that may occur to the worker by opening the door 20 due to a mistake.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes within the scope not departing from the technical idea of the present invention are common in the art. It will be apparent to those who have knowledge.
<부호의 설명><Description of the code>
1 : 3D 프린터 10 : 본체 프레임1: 3D printer 10: Body frame
20 : 도어 30 : 프린팅 모듈20: door 30: printing module
40 : 작업 테이블40: work table
100: 프린팅용 샤프트 리니어 모터 110: 고정자부100: printing shaft linear motor 110: stator part
120: 가동자부 130: 프레임부120: movable part 130: frame part
131: 가동자프레임 131a: 유체유입개구부131: movable frame 131a: fluid inlet opening
131b: 유체유출개구부 133: 제 1 결합부재131b: fluid outlet opening 133: first coupling member
134: 제 1 돌출부 135: 제 1 결합몸체134: first protrusion 135: first coupling body
137: 제 2 결합부재 138: 제 2 돌출부137: second coupling member 138: second projection
139: 제 2 결합몸체 140: 유체제공부139: second coupling body 140: fluid supply
150: 유량조절밸브150: flow control valve
200: 잠금용 샤프트 리니어 모터 210: 잠금용 고정자 모듈200: locking shaft linear motor 210: locking stator module
220: 잠금용 가동자 모듈220: locking mover module
본 발명은 3차원 설계 데이터를 변환하여 액체, 파우더 형태의 폴리머 수지, 금속 등의 재료를 가공, 적층 방식(Layer-by-layer)으로 쌓아 올려 3D 모형, 즉 입체물을 제조하는 장비인 3D 프린터에 적용 가능하다.The present invention converts three-dimensional design data into a 3D printer, which is a device for manufacturing 3D models, that is, three-dimensional objects, by stacking materials such as polymer resin, metal, and the like in liquid and powder form by processing and layering-by-layer. Applicable

Claims (13)

  1. 3D 모형이 제작되는 작업 테이블과,A work table on which the 3D model is built,
    상기 작업 테이블에 3D 모형을 프린팅하는 프린팅 모듈과,A printing module for printing a 3D model on the work table;
    상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프린팅용 샤프트 리니어 모터를 포함하며;A printing shaft linear motor for linearly moving at least one of the printing module and the work table;
    상기 프린팅용 샤프트 리니어 모터는The printing shaft linear motor
    상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동 방향을 따라 설치되어 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나의 직선 이동을 안내하며, 내부에 영구자석이 마련된 고정자부와,A stator unit installed along a linear movement direction of at least one of the printing module and the work table to guide the linear movement of at least one of the printing module and the work table, and having a permanent magnet provided therein;
    상기 고정자부의 외주면을 감싸도록 설치되고, 전류 인가시 상기 영구자석과의 사이에서 발생하는 전자기력에 의해 상기 고정자부를 따라 직선 이동하는 가동자부와,A movable part installed to surround an outer circumferential surface of the stator part and linearly moving along the stator part by an electromagnetic force generated between the permanent magnets when an electric current is applied;
    내부에 상기 가동자부가 설치되는 코일수용공간이 마련되며, 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나와 연결되어 상기 가동자부의 직선 이동에 따라 상기 프린팅 모듈 및 상기 작업 테이블 중 적어도 하나를 직선 이동시키는 프레임부와,A coil accommodating space in which the movable part is installed is provided, and connected to at least one of the printing module and the work table to linearly move at least one of the printing module and the work table according to the linear movement of the movable part. With frame part,
    상기 프레임부의 일측에 설치되어, 상기 프레임부의 내부로 저온의 유체를 제공하는 유체제공부를 포함하여;A fluid providing part installed at one side of the frame part to provide a low temperature fluid into the frame part;
    상기 저온의 유체가 상기 프레임부의 내부공간을 유동하면서 상기 고정자부와 상기 가동자부에서 발생된 열을 냉각시키는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The low temperature fluid flows through the inner space of the frame portion to cool the heat generated in the stator portion and the mover portion 3D printer using a shaft linear motor.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 프레임부의 다른 일측에 설치되어, 상기 프레임부의 내부공간의 유체의 유량을 조절하는 유량조절밸브를 더 포함하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.Is installed on the other side of the frame portion, 3D printer using a shaft linear motor, characterized in that it further comprises a flow control valve for adjusting the flow rate of the fluid in the inner space of the frame portion.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 고정자부는 The stator part
    내부가 중공되고, 외주면에 복수의 관통홀이 마련된 고정자프레임; 및A stator frame having a hollow inside and provided with a plurality of through holes on an outer circumferential surface thereof; And
    상기 고정자프레임의 내부공간에 설치된 상기 영구자석을 포함하고, It includes the permanent magnet installed in the inner space of the stator frame,
    상기 유체제공부에서 상기 프레임부로의 유체공급시, 상기 프레임부의 내부공간으로 유입된 유체는 상기 가동자부를 경유하여 상기 복수의 관통홀을 통해 상기 고정자프레임의 내부로 유입되어, 상기 영구자석의 열을 제거하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.When the fluid is supplied from the fluid providing part to the frame part, the fluid introduced into the inner space of the frame part is introduced into the stator frame through the plurality of through holes via the movable part, thereby heating the permanent magnet. 3D printer using a shaft linear motor, characterized in that for removing.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 고정자프레임은 알루미늄 재질로 이루어진 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The stator frame is a 3D printer using a shaft linear motor, characterized in that made of aluminum material.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 가동자부는, The movable part,
    상기 고정자프레임의 외주를 둘러싸도록 상기 고정부프레임에 설치되고, 고리형 단면을 가진 복수의 코일부재; 및 A plurality of coil members installed in the fixing part frame to surround the outer circumference of the stator frame and having an annular cross section; And
    상기 코일부재의 고리형 단면과 밀접하게 접하도록 상기 고정자프레임에 설치되고, 상기 복수의 코일부재 사이마다 설치되는 복수의 절연부재를 포함하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.3D printer using a shaft linear motor, characterized in that it is provided in the stator frame so as to be in close contact with the annular cross-section of the coil member, a plurality of insulating members provided between each of the plurality of coil members.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 절연부재는, The insulating member,
    상기 코일부재의 단면에 대응되는 고리 형상을 가진 절연플레이트; 및An insulation plate having an annular shape corresponding to a cross section of the coil member; And
    상기 절연플레이트의 외주면으로부터 상기 절연플레이트의 양측으로 돌출되어 형성된 절연가이드로 이루어지는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.3D printer using a shaft linear motor, characterized in that made of an insulating guide protruding from the outer peripheral surface of the insulating plate to both sides of the insulating plate.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 프레임부는,The frame portion,
    상기 코일수용공간이 마련되고, 외측에 상기 유체제공부가 설치된 가동자프레임; A movable frame provided with the coil receiving space and provided with the fluid providing part at an outer side thereof;
    상기 가동자프레임의 개방된 일측에 결합된 제 1 결합부재; 및 A first coupling member coupled to an open side of the mover frame; And
    상기 가동자프레임의 개방된 다른 일측에 결합되어 상기 코일수용공간을 폐쇄하는 제 2 결합부재를 포함하여, 상기 코일수용공간에서의 상기 복수의 코일부재와 상기 복수의 절연부재의 위치를 고정하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.And a second coupling member coupled to the other open side of the mover frame to close the coil accommodation space, thereby fixing the positions of the plurality of coil members and the plurality of insulation members in the coil accommodation space. 3D printer using a shaft linear motor.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 1 결합부재는,The first coupling member,
    상기 코일수용공간으로 삽입되어, 상기 코일수용공간에 수용된 상기 코일부재를 둘러싸면서 상기 절연부재와 접하는 제 1 돌출부와,A first protrusion inserted into the coil accommodating space and surrounding the coil member accommodated in the coil accommodating space and in contact with the insulating member;
    상기 제 1 돌출부와 일체로 형성되며, 상기 가동자프레임의 일측을 덮을 수 있고 상기 고정자프레임이 관통되는 구조를 가진 제 1 결합몸체로 이루어지고, It is formed integrally with the first protrusion, it is made of a first coupling body having a structure that can cover one side of the mover frame and the stator frame is penetrated,
    상기 제 1 결합몸체는 상기 가동자프레임에 볼팅결합되는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The first coupling body is a 3D printer using a shaft linear motor, characterized in that the bolting coupled to the mover frame.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 제 1 돌출부는 내경이 상기 코일부재의 외경보다 크고, 외경이 상기 코일수용부재의 내경보다 작은 외경을 가진 고리형 단면을 가지며, The first protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than an inner diameter of the coil receiving member.
    상기 제 1 돌출부는 상기 코일수용공간으로서 삽입시 상기 절연부재와 접하면서 상기 절연부재로 힘을 가하여 상기 복수의 코일부재와 상기 복수의 절연부재 사이의 갭(gap)의 발생을 방지하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The first protrusion is applied to the insulating member while contacting the insulating member when inserted as the coil receiving space to prevent the occurrence of a gap (gap) between the plurality of coil members and the plurality of insulating members. 3D printer using a shaft linear motor.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 2 결합부재는,The second coupling member,
    상기 코일수용공간으로 삽입되어, 상기 코일수용공간에 수용된 상기 코일부재를 둘러싸면서 상기 절연부재와 접하는 제 2 돌출부와,A second protrusion inserted into the coil accommodating space and surrounding the coil member accommodated in the coil accommodating space and in contact with the insulating member;
    상기 제 2 돌출부와 일체로 형성되며, 상기 가동자프레임의 다른 일측을 덮을 수 있고 상기 고정자프레임이 관통되는 구조를 가진 제 2 결합몸체로 이루어지고, 상기 제 2 결합몸체는 상기 가동자프레임에 볼팅결합되는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.It is formed integrally with the second protruding portion, the second coupling body may cover the other side of the mover frame and has a structure through which the stator frame penetrates, and the second coupling body is bolted to the mover frame. 3D printer using a shaft linear motor, characterized in that coupled.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 제 2 돌출부는 내경이 상기 코일부재의 외경보다 크고, 외경이 상기 코일수용부재의 내경보다 작은 외경을 가진 고리형 단면을 가지며, The second protrusion has an annular cross section having an outer diameter larger than an outer diameter of the coil member and an outer diameter smaller than an inner diameter of the coil receiving member.
    상기 제 2 돌출부는 상기 코일수용공간으로서 삽입시 상기 절연부재와 접하면서 상기 절연부재로 힘을 가하여 상기 복수의 코일부재와 상기 복수의 절연부재 사이의 갭(gap)의 발생을 방지하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The second protrusion is applied to the insulating member while contacting the insulating member when inserted as the coil receiving space to prevent the occurrence of a gap (gap) between the plurality of coil members and the plurality of insulating members. 3D printer using a shaft linear motor.
  12. 제 1 항에 있어서, The method of claim 1,
    상기 작업 테이블 및 상기 프린팅 모듈이 수용되는 수용 공간이 형성되고, 전방이 개방된 개구부를 갖는 본체 프레임과,An accommodation space for accommodating the work table and the printing module, the body frame having an opening that is open in front;
    상기 본체 프레임의 상기 개구부를 개폐하는 도어와,A door for opening and closing the opening of the main body frame;
    상기 도어를 잠금 및 잠금 해제시키는 잠금용 샤프트 리니어 모터를 더 포함하고;A locking shaft linear motor for locking and unlocking the door;
    상기 잠금용 샤프트 리니어 모터는,The locking shaft linear motor,
    내부에 잠금용 영구자석이 수용되는 원통형의 잠금용 가동자 모듈과,Cylindrical locking mover module for receiving a permanent magnet for locking therein,
    상기 잠금용 가동자 모듈의 외주면을 감싸도록 상기 도어에 설치되고, 전류 인가시 상기 잠금용 영구자석과의 사이에서 전자기력을 발생시키는 코일이 내부에 수용되며, 상기 전자기력에 의해 상기 잠금용 가동자 모듈을 직선 이동시키는 잠금용 고정자 모듈을 포함하며;It is installed on the door to surround the outer circumferential surface of the locking mover module, a coil for generating an electromagnetic force between the locking permanent magnet when the current is applied is received therein, the locking mover module by the electromagnetic force A locking stator module for linearly moving the screw;
    상기 본체 프레임에는 상기 잠금용 가동자 모듈이 삽입 및 삽입 해제되는 잠금공에 형성되어 상기 잠금용 고정자 모듈에 인가되는 전류에 따라 상기 잠금용 가동자 모듈이 상기 잠금공에 삽입 및 삽입 해제되어 상기 도어를 잠금 및 잠금 해제시키는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.The locking frame is formed in a lock hole into which the lock mover module is inserted and released, and the lock mover module is inserted into and released from the lock hole according to a current applied to the lock stator module. 3D printer using a shaft linear motor, characterized in that for locking and unlocking.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 작업 테이블에서 상기 3D 모형이 프린팅되도록 상기 프린팅 모듈 및 상기 프린팅용 샤프트 리니어 모터를 제어하며, 상기 3D 모형의 프린팅 작업시 상기 도어가 잠금 상태가 되도록 상기 잠금용 샤프트 리니어 모터를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 샤프트 리니어 모터를 이용한 3D 프린터.A control unit for controlling the printing module and the printing shaft linear motor to print the 3D model on the work table, and controlling the locking shaft linear motor to lock the door during printing of the 3D model. 3D printer using a shaft linear motor, characterized in that it comprises a.
PCT/KR2014/012692 2014-02-03 2014-12-23 3d printer using shaft linear motor WO2015115736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140012082 2014-02-03
KR10-2014-0012082 2014-02-03

Publications (1)

Publication Number Publication Date
WO2015115736A1 true WO2015115736A1 (en) 2015-08-06

Family

ID=53757282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012692 WO2015115736A1 (en) 2014-02-03 2014-12-23 3d printer using shaft linear motor

Country Status (1)

Country Link
WO (1) WO2015115736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698324A (en) * 2016-03-10 2018-10-23 惠普发展公司,有限责任合伙企业 Techonosphere covering analyzing
EP4353451A1 (en) * 2022-10-13 2024-04-17 SOMIC Verpackungsmaschinen GmbH & Co. KG Additive manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218443A (en) * 1999-12-24 2001-08-10 Nikon Corp Linear motor, fluid circulation system for the same and exposing apparatus
US6722872B1 (en) * 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
KR20080055950A (en) * 2005-09-28 2008-06-19 티에치케이 가부시끼가이샤 Linear motor and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722872B1 (en) * 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
JP2001218443A (en) * 1999-12-24 2001-08-10 Nikon Corp Linear motor, fluid circulation system for the same and exposing apparatus
KR20080055950A (en) * 2005-09-28 2008-06-19 티에치케이 가부시끼가이샤 Linear motor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698324A (en) * 2016-03-10 2018-10-23 惠普发展公司,有限责任合伙企业 Techonosphere covering analyzing
EP4353451A1 (en) * 2022-10-13 2024-04-17 SOMIC Verpackungsmaschinen GmbH & Co. KG Additive manufacturing apparatus

Similar Documents

Publication Publication Date Title
US10398059B2 (en) System and method for cryogenic cooling of electromagnetic induction filter
WO2015115736A1 (en) 3d printer using shaft linear motor
WO2016148332A1 (en) Printing apparatus for building three-dimensional object
WO2018117351A1 (en) Lcd type 3d printer
WO2016200015A1 (en) Three-dimensional printer and operation method therefor
KR19980041925A (en) Equipment and process for forming micro system structure
KR101849592B1 (en) Three dimensional printer material with replacable nozzles
WO2015002418A1 (en) Centrifugal spinning apparatus
CN213198823U (en) Post-curing equipment for 3D printing
JP2011189695A (en) In-mold coating molding device and method
WO2023003182A1 (en) Method for manufacturing laminated core
WO2023243889A1 (en) Water-cooled linear motor system
WO2016148343A1 (en) Printing apparatus for building three-dimensional object
US9802345B2 (en) Injection molding machine for multiple injection operations
KR19980041932A (en) Equipment and process for forming micro system structure
WO2015002419A1 (en) Centrifugal spinning apparatus
WO2020222426A1 (en) Three-dimensional printed molded article washing device for washing molded article manufactured by means of three-dimensional printer
KR101082266B1 (en) Tow-axis film stretching machine
WO2015072671A1 (en) Valve motor device of injection molding apparatus
US6139790A (en) Equipment for moulding products of thermoplastics material, and the use of such equipment in blow-moulding apparatus
WO2024010421A1 (en) Device for post-curing of 3d-printed product
WO2019182260A1 (en) Inline thin film processing device
WO2020071626A1 (en) 3d printer
WO2022225324A1 (en) Rotor, and propeller driving device and aircraft using same
WO2015152662A1 (en) Automatic adjusting device for horizontal adjustment of worktable for 3d printer, and adjusting method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881226

Country of ref document: EP

Kind code of ref document: A1