WO2015115334A1 - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
WO2015115334A1
WO2015115334A1 PCT/JP2015/051894 JP2015051894W WO2015115334A1 WO 2015115334 A1 WO2015115334 A1 WO 2015115334A1 JP 2015051894 W JP2015051894 W JP 2015051894W WO 2015115334 A1 WO2015115334 A1 WO 2015115334A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
coil
power
circuit
power receiving
Prior art date
Application number
PCT/JP2015/051894
Other languages
French (fr)
Japanese (ja)
Inventor
毅 三瓶
正史 田端
山本 正喜
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2015559915A priority Critical patent/JP6215969B2/en
Publication of WO2015115334A1 publication Critical patent/WO2015115334A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless power transmission system, and more particularly to a wireless power transmission system compatible with a plurality of transmission methods.
  • a power transmission method using magnetic coupling As a power transmission method using magnetic coupling (hereinafter, abbreviated as a transmission method), a power transmission coil and a power reception coil are placed close to each other, and electromagnetic power is transmitted from the power transmission device to the power reception device using the electromagnetic induction between the power transmission coil and the power reception coil.
  • a transmission method a power transmission method using magnetic coupling
  • a resonance method or the like is used.
  • FIG. 11 is an explanatory diagram showing a configuration of the non-contact power transmission apparatus 400 according to Patent Document 1.
  • the non-contact power transmission device 400 includes a primary circuit corresponding to the power transmission device and a secondary circuit corresponding to the power reception device.
  • the circuit on the primary side includes a DC power supply 410, an inverter circuit 403 connected to the DC power supply 410, and a primary coil 405 a connected to the inverter circuit 403.
  • the inverter circuit 403 includes capacitors 411, 412, 413, switching elements 414, 415 such as FETs, and diodes 414b, 415b.
  • the secondary circuit includes a secondary coil 405b having a center tap, a rectifier circuit 421 connected to the secondary coil 405b, and a load 409 connected to the rectifier circuit 421.
  • the rectifier circuit 421 includes a load matching capacitor 416, diodes 417 and 418, a current smoothing reactor 419, and a smoothing capacitor 240.
  • the inverter circuit 403 generates an AC electrical signal for power transmission.
  • the electric signal generated by the inverter circuit 403 is applied to the primary coil 405a.
  • the primary coil 405a and the secondary coil 405b constitute a separable and detachable transformer 405.
  • electromagnetic waves are generated between the primary coil 405a and the secondary coil 405b. Induction occurs.
  • the AC electrical signal applied to the primary coil 405a is transmitted to the secondary coil 405b using electromagnetic induction between the primary coil 405a and the secondary coil 405b.
  • the electric signal transmitted to the secondary coil 405b is converted into a DC electric signal via the rectifier circuit 421 and then output to the load 409.
  • the non-contact power transmission device 400 uses the electromagnetic induction of the primary coil 405a and the secondary coil 405b to transmit power from the primary side circuit to the secondary side circuit in a non-contact (wireless) manner. ing.
  • FIG. 12 is an explanatory diagram showing a configuration of a non-contact power feeding system 500 according to Patent Document 2. As shown in FIG.
  • the non-contact power supply system 500 includes a power supply facility 501 (power transmission device) and a power reception device 502.
  • the power supply facility 501 includes a high frequency power supply device 510, a primary coil 520, a primary self-resonant coil 530, and a control device 540.
  • the high frequency power supply device 510 generates a predetermined high frequency voltage based on a drive signal received from the control device 540 and supplies high frequency power for power transmission.
  • Primary coil 520 transmits high-frequency power supplied from high-frequency power supply device 510 to primary self-resonant coil 530.
  • Primary self-resonant coil 530 is an LC resonant coil for power transmission.
  • C1 is the stray capacitance of the primary self-resonant coil 530.
  • the power receiving apparatus 502 includes a secondary self-resonant coil 560 and a secondary coil 570.
  • Secondary self-resonant coil 560 is an LC resonant coil for receiving power.
  • C2 is the stray capacitance of the secondary self-resonant coil 560.
  • Secondary coil 570 extracts the power received by secondary self-resonant coil 560 and outputs the extracted power to load 503.
  • the non-contact power supply system 500 uses the resonance (magnetic resonance) via the electromagnetic field generated between the primary self-resonant coil 530 and the secondary self-resonant coil 560 to transfer power from the power supply facility 501 to the power receiving device 502. Power is transmitted by contact (wireless).
  • a method of arranging two power receiving coils corresponding to each transmission method and receiving an electric signal corresponding to each transmission method is conceivable.
  • magnetic field coupling occurs between the two power receiving coils.
  • a part of the electric signal received by one power receiving coil of the two power receiving coils is transmitted to the other power receiving coil, and accordingly, the power receiving device receives power from the power transmitting device.
  • the transmission efficiency to the apparatus is lowered.
  • the present invention has been made in view of the situation of the prior art as described above, and an object thereof is wireless power transmission capable of supporting two transmission methods and suppressing reduction in transmission efficiency from the power transmission apparatus to the power reception apparatus. To provide a system.
  • a wireless power transmission system includes a power transmission device having a power transmission coil and a power reception device having a power reception coil, and magnetic field coupling between the power transmission coil and the power reception coil.
  • a wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device, wherein the power transmission device includes a first power transmission circuit corresponding to a first transmission method, and a second transmission.
  • a first switch element that switches a connection state with the coil a second switch element that switches a connection state between the second power transmission circuit and the second power transmission coil, and the first switch element and the second switch element. And when the first power transmission circuit and the first power transmission coil are connected, the second power transmission circuit and the second power transmission coil are disconnected from each other. When the second power transmission circuit and the second power transmission coil are in a connected state, the first switch element and the second switch are set so that the first power transmission circuit and the first power transmission coil are in a disconnected state. The switch element is controlled.
  • the power transmission device includes a first power transmission circuit corresponding to the first transmission method, a second power transmission circuit corresponding to the second transmission method, and a first power transmission circuit corresponding to the first transmission method. 1 power transmission coil and a second power transmission coil corresponding to the second transmission system. Therefore, power can be transmitted from the power transmission apparatus to the power reception apparatus, regardless of which of the two transmission systems the power reception apparatus is.
  • the second power transmission circuit and the second power transmission coil are in a disconnected state, and the second power transmission circuit and the second power transmission coil are in a connected state.
  • the first power transmission circuit and the first power transmission coil are disconnected. Therefore, even if the electric signal applied to the first power transmission coil is transmitted to the second power transmission coil due to the magnetic field coupling between the first power transmission coil and the second power transmission coil, the second power transmission coil and the second power transmission circuit are not connected. By setting the connection state, it is possible to prevent unnecessary current from flowing through the second power transmission circuit.
  • the first power transmission coil and the first power transmission circuit are not connected. By setting it as a connection state, it can prevent that an unnecessary electric current flows into a 1st power transmission circuit. As a result, power loss on the power transmission device side can be suppressed, and a decrease in transmission efficiency from the power transmission device to the power reception device can be suppressed.
  • the first power transmission coil is a coil corresponding to electromagnetic induction wireless power transmission
  • the second power transmission coil is compatible with magnetic resonance wireless power transmission. It is a coil.
  • the first power transmission coil is a coil compatible with electromagnetic induction wireless power transmission
  • the second power transmission coil is a coil compatible with magnetic resonance wireless power transmission.
  • the electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other.
  • the magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, even when the power transmission device and the power reception device are close to each other or when the distance between the power transmission device and the power reception device is large, power can be transmitted from the power transmission device to the power reception device. As a result, the degree of freedom with respect to the distance between the power transmission device and the power reception device can be expanded.
  • the coil diameter of one coil of the first power transmission coil and the second power transmission coil is larger than the coil diameter of the other coil, and the one coil is In the plan view, the coil is disposed so as to surround the other coil.
  • the coil diameter of one coil of the first power transmission coil and the second power transmission coil is larger than the coil diameter of the other coil. It arrange
  • the power transmission device includes a power feeding surface on which the power receiving device is placed, and the first power transmission coil and the second power transmission coil are provided on a rear surface of the power feeding surface.
  • the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil.
  • the power transmission device has a power feeding surface on which the power receiving device is placed, and the first power transmission coil and the second power transmission coil are arranged on the back side of the power feeding surface. Therefore, it is easy to stabilize the distance between the power transmission coil and the power reception coil, and power can be stably transmitted from the power transmission device to the power reception device.
  • the second power transmission coil is a coil that supports magnetic resonance wireless power transmission, and the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil. Is also big.
  • the transmission distance distance where the power can be effectively transmitted
  • the transmission distance can be increased as the outer diameter of the power transmission coil is increased. Therefore, even when the power receiving device is separated from the power feeding surface, it is easy to maintain power transmission from the power transmitting device to the power receiving device.
  • the wireless power transmission system comprising: a power transmission device having a power transmission coil; and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil.
  • a wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power transmission device includes a first power transmission circuit corresponding to a first transmission method and a second power transmission circuit corresponding to a second transmission method. And a switch for switching a connection state between the first power transmission coil corresponding to the first transmission method, the second power transmission coil corresponding to the second transmission method, and the first power transmission circuit and the first power transmission coil.
  • An element and a control unit that controls the switch element wherein the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil, and the second power transmission coil is front in plan view. It arrange
  • the switch element is controlled such that when the electric signal for power transmission is applied to the second power transmission coil, the first power transmission circuit and the first power transmission coil are disconnected from each other.
  • the power transmission device includes a first power transmission circuit corresponding to the first transmission method, a second power transmission circuit corresponding to the second transmission method, and a first power transmission circuit corresponding to the first transmission method. 1 power transmission coil and a second power transmission coil corresponding to the second transmission system. Therefore, power can be transmitted from the power transmission apparatus to the power reception apparatus, regardless of which of the two transmission systems the power reception apparatus is.
  • the first power transmission circuit and the first power transmission coil are connected, and when the electrical signal for power transmission is applied to the second power transmission coil, the first power transmission is performed.
  • the circuit and the first power transmission coil are disconnected. Therefore, even if the electric signal applied to the second power transmission coil is transmitted to the first power transmission coil by the magnetic field coupling between the first power transmission coil and the second power transmission coil, the first power transmission coil and the first power transmission circuit are not connected. By setting it as a connection state, it can prevent that an unnecessary electric current flows into a 1st power transmission circuit.
  • the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil, and the second power transmission coil is disposed so as to surround the first power transmission coil in plan view. Therefore, compared with the magnetic field coupling of the 1st power transmission coil and the 2nd power transmission coil by the magnetic flux which the 2nd power transmission coil generated, the 1st power transmission coil and the 2nd power transmission coil by the magnetic flux which the 1st power transmission coil generated The magnetic field coupling can be weakened. And it can suppress that the electric signal applied to the 1st power transmission coil is transmitted to the 2nd power transmission coil. As a result, power loss on the power transmission device side can be suppressed, and a decrease in transmission efficiency from the power transmission device to the power reception device can be suppressed.
  • the wireless power transmission system wherein the first power transmission coil is a coil corresponding to electromagnetic induction wireless power transmission, and the second power transmission coil is compatible with magnetic resonance wireless power transmission. It is a coil.
  • the first power transmission coil is a coil compatible with electromagnetic induction wireless power transmission
  • the second power transmission coil is a coil compatible with magnetic resonance wireless power transmission.
  • the electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other.
  • the magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, even when the power transmission device and the power reception device are close to each other or when the distance between the power transmission device and the power reception device is large, power can be transmitted from the power transmission device to the power reception device. As a result, the degree of freedom with respect to the distance between the power transmission device and the power reception device can be expanded.
  • the wireless power transmission system comprising: a power transmission device having a power transmission coil; and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil.
  • a wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power receiving device includes a first power receiving coil corresponding to a first transmission method and a second power receiving coil corresponding to a second transmission method. And a first power receiving circuit corresponding to the first transmission method, a second power receiving circuit corresponding to the second transmission method, and a first switching circuit for switching a connection state between the first power receiving coil and the first power receiving circuit.
  • the control unit When the first power receiving coil and the first power receiving circuit are in a connected state, the control unit is in a state where the second power receiving coil and the second power receiving circuit are in a disconnected state, and the second power receiving coil and the first power receiving circuit are disconnected.
  • the third switch element and the fourth switch element are controlled such that the first power receiving coil and the first power receiving circuit are in a disconnected state.
  • the power receiving device includes a first power receiving coil corresponding to the first transmission method, a second power receiving coil corresponding to the second transmission method, and a first power receiving device corresponding to the first transmission method. 1 power receiving circuit and a second power receiving circuit corresponding to the second transmission method. Therefore, power can be transmitted from the power transmission device to the power receiving device, regardless of which of the two transmission methods the power transmission device is.
  • the second power receiving coil and the second power receiving circuit are disconnected, and the second power receiving coil and the second power receiving circuit are connected.
  • the first power receiving coil and the first power receiving circuit are disconnected. Therefore, even if a part of the electric signal transmitted from the power transmission coil to the first power receiving coil is transmitted to the second power receiving coil due to the magnetic field coupling between the first power receiving coil and the second power receiving coil, the second power receiving coil and the second power receiving coil By making the second power receiving circuit non-connected, it is possible to prevent unnecessary current from flowing through the second power receiving circuit.
  • the first power receiving coil and the second power receiving coil By setting the one power receiving circuit in a disconnected state, it is possible to prevent an unnecessary current from flowing through the first power receiving circuit. As a result, power loss on the power receiving device side can be suppressed, and a decrease in transmission efficiency from the power transmitting device to the power receiving device can be suppressed.
  • the wireless power transmission system comprising a power transmission device having a power transmission coil and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil.
  • a wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power receiving device includes a first power receiving coil corresponding to a first transmission method and a second power receiving coil corresponding to a second transmission method. And a switch for switching a connection state between the first power receiving circuit corresponding to the first transmission method, the second power receiving circuit corresponding to the second transmission method, and the first power receiving coil and the first power receiving circuit.
  • An element and a control unit that controls the switch element wherein a coil diameter of the second power receiving coil is larger than a coil diameter of the first power receiving coil, and the second power receiving coil is front in plan view. Arranged so as to surround the first power receiving coil, and when the control unit transmits an electrical signal from the power transmitting coil to the first power receiving coil, the first power receiving circuit and the first power receiving coil are connected to each other. When the electric signal is transmitted from the power transmission coil to the second power reception coil, the switch element is controlled so that the first power reception circuit and the first power reception coil are in a connected state. .
  • the power receiving device includes a first power receiving coil corresponding to the first transmission method, a second power receiving coil corresponding to the second transmission method, and a first power receiving device corresponding to the first transmission method. 1 power receiving circuit and a second power receiving circuit corresponding to the second transmission method. Therefore, power can be transmitted from the power transmission device to the power receiving device, regardless of which of the two transmission methods the power transmission device is.
  • the first power receiving circuit and the first power receiving coil are connected, and when the electric signal is transmitted from the power transmitting coil to the second power receiving coil, the first power receiving is received.
  • the circuit and the first power receiving coil are connected. Therefore, even if a part of the electrical signal transmitted from the power transmission coil 12 to the second power receiving coil is transmitted to the first power receiving coil by the magnetic field coupling between the first power receiving coil and the second power receiving coil, By setting the first power receiving circuit in a disconnected state, it is possible to prevent unnecessary current from flowing through the first power receiving circuit.
  • the coil diameter of the second power receiving coil is larger than the coil diameter of the first power receiving coil, and the second power receiving coil is disposed so as to surround the first power receiving coil in plan view. Therefore, compared with the magnetic coupling of the 1st receiving coil and the 2nd receiving coil by the magnetic flux which the 2nd receiving coil generated, the 1st receiving coil and the 2nd receiving power by the magnetic flux which the 1st receiving coil generated The magnetic field coupling with the coil can be weakened. And it can suppress that a part of electric signal transmitted to the 1st receiving coil is transmitted to the 2nd receiving coil. As a result, power loss on the power receiving device side can be suppressed, and a decrease in transmission efficiency from the power transmitting device to the power receiving device can be suppressed.
  • the present invention it is possible to provide a wireless power transmission system that can cope with two transmission methods and can suppress a decrease in transmission efficiency from the power transmitting apparatus to the power receiving apparatus.
  • FIG. 1 is a block diagram illustrating a configuration of a wireless power transmission system 1 according to a first embodiment of the present invention. It is explanatory drawing which shows the structure of the power transmission apparatus 10 shown in FIG. It is explanatory drawing which shows the connection state of the power transmission apparatus 10 shown in FIG. It is explanatory drawing which shows distribution of the magnetic flux which the power transmission coil 12 shown in FIG. 1 generate
  • FIG. 1 is a block diagram showing a configuration of a wireless power transmission system 1 according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram illustrating a structure of the power transmission device 10 illustrated in FIG. 1.
  • Fig.2 (a) is a schematic diagram which shows the structure at the time of seeing the power transmission apparatus 10 from the top.
  • the cover 16 is omitted for easy understanding of the internal structure.
  • FIG. 2B is a schematic diagram showing the structure of the A1-A1 cross section of FIG.
  • FIG. 3 is an explanatory diagram illustrating a connection state of the power transmission device 10 illustrated in FIG. 1.
  • FIG. 3A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed.
  • FIG. 3B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
  • the wireless power transmission system 1 includes a power transmission device 10 and a power reception device 20.
  • the wireless power transmission system 1 is a wireless power transmission system that supports both the electromagnetic induction method (first transmission method) and the magnetic resonance method (second transmission method).
  • the electromagnetic induction method is a transmission method in which a power transmission coil and a power reception coil are brought close to each other, and electric power is transmitted from the power transmission device to the power reception device using electromagnetic induction between the power transmission coil and the power reception coil.
  • the magnetic resonance method is a transmission method capable of transmitting electric power from the power transmission apparatus to the power reception apparatus using the magnetic resonance between the power transmission coil and the power reception coil even if the distance between the power transmission coil and the power reception coil is long. .
  • the power transmission device 10 is a power transmission device that supports both the electromagnetic induction method and the magnetic resonance method.
  • the power transmission device 10 includes two power transmission circuits 11, two power transmission coils 12, two switch elements 13, and a control circuit 14 (control unit) that controls the two switch elements 13, have.
  • the two power transmission circuits 11 are a first power transmission circuit 11a and a second power transmission circuit 11b.
  • the two power transmission coils 12 are a first power transmission coil 12a and a second power transmission coil 12b.
  • the two switch elements 13 are a first switch element 13a and a second switch element 13b.
  • the power transmission device 10 includes a case 15 for housing various circuits of the power transmission device 10 and the power transmission coil 12, and a cover 16 fixed to the upper side of the case 15. .
  • the first power transmission circuit 11a generates an electric signal for power transmission corresponding to the electromagnetic induction method.
  • an electric signal corresponding to the electromagnetic induction method an AC electric signal having a frequency in the vicinity of several tens of kHz to several hundreds of kHz is usually used.
  • a circuit such as an inverter circuit is used as the first power transmission circuit 11a.
  • the second power transmission circuit 11b generates an electric signal for power transmission corresponding to the magnetic resonance method.
  • an electrical signal corresponding to the magnetic resonance system an AC electrical signal having a frequency in the vicinity of several MHz to several tens of MHz is usually used.
  • a circuit such as an inverter circuit is used as the second power transmission circuit 11b.
  • the 1st power transmission coil 12a is a spiral coil wound along the outer periphery of a circle as shown in FIG.
  • the first power transmission coil 12a corresponds to an electromagnetic induction method. Both ends of the first power transmission coil 12a are connected to the first power transmission circuit 11a via the first switch element 13a and a wiring (not shown). Then, the electric signal generated by the first power transmission circuit 11a is applied to the first power transmission coil 12a.
  • the first power transmission coil 12a is formed by winding a conductive wire made of metal into a predetermined shape.
  • the second power transmission coil 12b is also a spiral coil wound around the outer circumference of the circle as shown in FIG.
  • the second power transmission coil 12b corresponds to the magnetic resonance method.
  • the coil diameter of the second power transmission coil 12b is set larger than the coil diameter of the first power transmission coil 12a.
  • the 2nd power transmission coil 12b is arrange
  • Both ends of the second power transmission coil 12b are connected to the second power transmission circuit 11b via the second switch element 13b and a wiring (not shown). Then, the electrical signal generated by the second power transmission circuit 11b is applied to the second power transmission coil 12b.
  • the second power transmission coil 12b is formed by winding a conductive wire made of metal into a predetermined shape.
  • the first switch element 13a switches the connection state between the first power transmission circuit 11a and the first power transmission coil 12a.
  • the first switch element 13a When the first switch element 13a is turned on, the first power transmission circuit 11a and the both ends of the first power transmission coil 12a are electrically connected, and when the first switch element 13a is turned off. The electrical connection between the first power transmission circuit 11a and both ends of the first power transmission coil 12a is disconnected.
  • the state where the first power transmission circuit 11a and both ends of the first power transmission coil 12a are electrically connected is abbreviated as the connection state between the first power transmission circuit 11a and the first power transmission coil 12a.
  • the first power transmission circuit 11a and the first power transmission coil 12a are in a disconnected state that the electrical connection between the first power transmission circuit 11a and the both ends of the first power transmission coil 12a is disconnected.
  • the first switch element 13a a switching semiconductor such as an FET is used.
  • the second switch element 13b switches the connection state between the second power transmission circuit 11b and the second power transmission coil 12b.
  • the second switch element 13b When the second switch element 13b is turned on, the second power transmission circuit 11b and the both ends of the second power transmission coil 12b are electrically connected, and when the second switch element 13b is turned off. The electrical connection between the second power transmission circuit 11b and both ends of the second power transmission coil 12b is disconnected.
  • the state where the second power transmission circuit 11b and the both ends of the second power transmission coil 12b are electrically connected is abbreviated as the connection state between the second power transmission circuit 11b and the second power transmission coil 12b. . Further, the second power transmission circuit 11b and the second power transmission coil 12b are in a disconnected state that the electrical connection between the second power transmission circuit 11b and the both ends of the second power transmission coil 12b is disconnected. Abbreviated.
  • the second switch element 13b a switching semiconductor such as an FET is used.
  • the control circuit 14 is connected to an input device such as an operation switch (not shown). Then, the control circuit 14 selects which one of the electromagnetic induction method and the magnetic resonance method is used for power transmission based on a predetermined input operation on the input device. Then, the first switch element 13a and the second switch element 13b are controlled corresponding to the selected transmission method, the connection state of the first power transmission circuit 11a and the first power transmission coil 12a, the second power transmission circuit 11b and the second power transmission circuit 11b. 2 The connection state with the power transmission coil 12b is switched.
  • an input device such as an operation switch (not shown).
  • the control circuit 14 turns the first switch element 13a on and the second switch element 13b off.
  • the first power transmission circuit 11a and the first power transmission coil 12a are connected, and the second power transmission circuit 11b and the second power transmission coil 12b are disconnected.
  • the electric signal corresponding to an electromagnetic induction system is applied from the 1st power transmission circuit 11a to the 1st power transmission coil 12a, and the magnetic field corresponding to the electrical signal to which the 1st power transmission coil 12a was applied is generated.
  • the second power transmission coil 12b is disconnected from the second power transmission circuit 11b.
  • the control circuit 14 sets the first switch element 13a to the OFF state and the second switch element 13b to the ON state.
  • the second power transmission circuit 11b and the second power transmission coil 12b are connected, and the first power transmission circuit 11a and the first power transmission coil 12a are disconnected.
  • the electric signal corresponding to a magnetic resonance system is applied to the 2nd power transmission coil 12b from the 2nd power transmission circuit 11b, and the magnetic field corresponding to the electrical signal to which the 2nd power transmission coil 12b was applied is generated.
  • the first power transmission coil 12a is disconnected from the first power transmission circuit 11a.
  • the case 15 is a substantially rectangular parallelepiped member made of synthetic resin or the like, and has a circuit housing portion 15a and a coil housing portion 15b. As shown in FIG. 2, the coil accommodating portion 15b accommodates a first power transmission coil 12a and a second power transmission coil 12b. Although not shown, the circuit housing portion 15a houses the first power transmission circuit 11a, the second power transmission circuit 11b, the first switch element 13a, the second switch element 13b, and the control circuit 14.
  • the cover 16 is a plate-like member made of synthetic resin or the like, and has a substantially rectangular plate surface at the top and bottom. And the cover 16 is being fixed to the upper side of the case 15 so that the circuit accommodating part 15a and the coil accommodating part 15b may be covered.
  • the upper surface of the cover 16 serves as a power feeding surface 16a on which the power receiving device 20 is placed.
  • the 1st power transmission coil 12a and the 2nd power transmission coil 12b are arrange
  • the power receiving device 20 is a power receiving device corresponding to one of the electromagnetic induction method and the magnetic resonance method.
  • the power receiving device 20 may be a power receiving device fixed to one of the transmission methods, or a power receiving device capable of switching the transmission method by an operation switch or the like.
  • the power receiving device 20 includes a power receiving coil 21, a power receiving circuit 22, and a load 23.
  • the power receiving device 20 is placed on the power feeding surface 16 a so that the power transmission coil 12 and the power receiving coil 21 face each other with the cover 16 interposed therebetween.
  • the power receiving coil 21 is magnetically coupled to either one of the two power transmitting coils 12.
  • the power receiving device 20 is a device compatible with the electromagnetic induction method
  • the power receiving coil 21 is magnetically coupled to the first power transmitting coil 12a as shown in FIG. In that case, the 1st power transmission coil 12a and the receiving coil 21 are couple
  • the power receiving coil 21 is magnetically coupled to the second power transmitting coil 12b as shown in FIG. In that case, the power receiving coil 21 resonates at a predetermined frequency, and the second power transmitting coil 12b and the power receiving coil 21 are coupled by magnetic resonance.
  • the power receiving coil 21 is also formed by winding a conductive wire made of metal into a predetermined shape, like the power transmitting coil 12.
  • the power receiving circuit 22 is a circuit having a rectifier circuit, a smoothing circuit, and the like.
  • the power receiving circuit 22 is connected to both ends of the power receiving coil 21.
  • the power receiving circuit 22 rectifies and smoothes the AC electrical signal transmitted to the power receiving coil 21 and converts it into a DC electrical signal, and then outputs it to the load 23.
  • the wireless power transmission system 1 wirelessly transmits power from the power transmission device 10 to the power reception device 20 by using the magnetic field coupling between the power transmission coil 12 and the power reception coil 21.
  • FIG. 4 is an explanatory diagram showing the distribution of magnetic flux generated by the power transmission coil 12 shown in FIG. Fig.4 (a) is a figure which shows typically distribution of the magnetic flux B1 which the 1st power transmission coil 12a generated.
  • FIG. 4B is a diagram schematically showing the distribution of the magnetic flux B2 generated by the second power transmission coil 12b. 4A and 4B show the distribution of magnetic flux when the first power transmission coil 12a and the second power transmission coil 12b are viewed from the side.
  • a magnetic field is also formed around the second power transmission coil 12b corresponding to the magnetic flux B1 generated by the first power transmission coil 12a. Then, the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled by the magnetic field formed around the second power transmission coil 12b. When the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b becomes strong, a part of the electrical signal applied to the first power transmission coil 12a is also transmitted to the second power transmission coil 12b.
  • the power transmitted from the power transmission device 10 using the first power transmission coil 12a is Pt
  • the power transmitted to the power reception device 20 by magnetic coupling between the first power transmission coil 12a and the power reception coil 21 is Pr
  • the first power transmission coil 12a is the power that is transmitted to the second power transmission circuit 11b by magnetic field coupling between the power transmission device 12b and the second power transmission coil 12b
  • the load resistance on the power receiving circuit 22 side as viewed from the power receiving coil 21 side is Rr
  • the current flowing through the power receiving circuit 22 along with the power transmission from the power transmitting device 10 to the power receiving device 20 is viewed from the second power transmitting coil 12b side.
  • the transmission efficiency ⁇ decreases as the current Im flowing through the second power transmission circuit 11b increases with the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b.
  • the second power transmission circuit 11b and the second power transmission coil 12b are not connected, and the current Im flows through the second power transmission circuit 11b. If not, no power loss occurs in the second power transmission circuit 11b, and a decrease in transmission efficiency can be suppressed.
  • the magnetic field coupling between the power transmission coil 12 and the power reception coil 21 when performing power transmission corresponding to the magnetic resonance method will be described.
  • an electrical signal for power transmission is applied to the second power transmission coil 12b.
  • the 2nd power transmission coil 12b generates the magnetic flux B2 around self.
  • a magnetic field is formed around the second power transmission coil 12b corresponding to the magnetic flux B2 generated by the second power transmission coil 12b.
  • the first power transmission coil 12a and the power reception coil 21 are magnetically coupled by the magnetic field formed above the second power transmission coil 12b, and power transmission from the power transmission device 10 to the power reception device 20 becomes possible.
  • a magnetic field is also formed around the first power transmission coil 12a corresponding to the magnetic flux B2 generated by the second power transmission coil 12b.
  • the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled by the magnetic field formed around the first power transmission coil 12a.
  • the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b becomes stronger, a part of the electrical signal applied to the second power transmission coil 12b is also transmitted to the first power transmission coil 12a.
  • the power receiving apparatus 20 is an apparatus corresponding to a magnetic resonance system, even if the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled, the first power transmission If the circuit 11a and the first power transmission coil 12a are not connected and no current flows through the first power transmission circuit 11a, no power loss occurs in the first power transmission circuit 11a, and a decrease in transmission efficiency is suppressed. be able to.
  • the magnetic flux generated by the coil concentrates inside the coil, so that the magnetic flux density inside the coil increases, and accordingly, the magnetic field strength inside the coil increases.
  • the magnetic flux density is reduced outside the coil, and accordingly, the magnetic field strength outside the coil is weakened.
  • the coil diameter of the 2nd power transmission coil 12b is larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b surrounds the circumference
  • the power transmission device 10 includes a first power transmission circuit 11a corresponding to the electromagnetic induction method, a second power transmission circuit 11b corresponding to the magnetic resonance method, and a first corresponding to the electromagnetic induction method. It has the power transmission coil 12a and the 2nd power transmission coil 12b corresponding to a magnetic resonance system. Therefore, power can be transmitted from the power transmission device 10 to the power reception device 20 regardless of which of the two transmission methods the power reception device 20 is.
  • the power transmission device 10 switches the first switch element 13a that switches the connection state between the first power transmission circuit 11a and the first power transmission coil 12a, and the second that switches the connection state between the second power transmission circuit 11b and the second power transmission coil 12b.
  • a switch element 13b and a control circuit 14 for controlling the first switch element 13a and the second switch element 13b are provided.
  • the control circuit 14 will be in a connection state with the 2nd power transmission circuit 11b and the 2nd power transmission coil 12b.
  • the first switch element 13a and the second switch element 13b are controlled so that the first power transmission circuit 11a and the first power transmission coil 12a are in a disconnected state. Yes.
  • the 1st power transmission circuit 11a and the 1st By setting the power transmission coil 12a to the disconnected state, it is possible to prevent unnecessary current from flowing through the first power transmission circuit 11a. As a result, power loss on the power transmission device 10 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 10 to the power reception device 20 can be suppressed.
  • the first power transmission coil 12a is a coil compatible with electromagnetic induction wireless power transmission
  • the second power transmission coil 12b is compatible with magnetic resonance wireless power transmission.
  • the electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other.
  • the magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, in the wireless power transmission system 1, even when the power transmission device 10 and the power reception device 20 are close to each other or when the distance between the power transmission device 10 and the power reception device 20 is long, the power transmission device 10 to the power reception device 20. Electric power can be transmitted. As a result, the degree of freedom with respect to the distance between the power transmission device 10 and the power reception device 20 can be expanded.
  • the coil diameter of the second power transmission coil 12b is larger than the coil diameter of the first power transmission coil 12a, and the second power transmission coil 12b is in the first view when viewed in plan. It is arranged so that it surrounds Therefore, even when the second power transmission coil 12b is a spiral coil wound around the outer periphery of the circle and a space is formed inside the second power transmission coil 12b, the inner side of the second power transmission coil 12b.
  • the power transmission device 10 can be downsized.
  • the power transmission device 10 has the power feeding surface 16a on which the power receiving device 20 is placed, and the first power transmission coil 12a and the second power transmission coil 12b are the power feeding surface 16a. It is arranged on the lower side (back side). Therefore, it is easy to stabilize the distance between the power transmission coil 12 and the power reception coil 21, and power can be stably transmitted from the power transmission device 10 to the power reception device 20.
  • the second power transmission coil 12b is a coil that supports magnetic resonance wireless power transmission, and the coil diameter of the second power transmission coil 12b is the coil diameter of the first power transmission coil 12a. Bigger than.
  • FIG. 5 is a block diagram showing a configuration of the wireless power transmission system 101 according to the second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram illustrating a method for switching the connection state of the power transmission device 110 illustrated in FIG. 5.
  • FIG. 6A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed.
  • FIG. 6B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
  • the wireless power transmission system 101 includes a power transmission device 110 and a power reception device 120 as shown in FIG.
  • the configuration of the power receiving device 120 is the same as the configuration of the power receiving device 20 in the first embodiment.
  • the configuration of the power transmission device 110 is substantially the same as the configuration of the power transmission device 10 in the first embodiment. However, in this embodiment, the connection between the second power transmission circuit 11b and the second power transmission coil 12b is different from that in the first embodiment. .
  • the power transmission device 110 there is no second switch element 13b, and the second power transmission circuit 11b and the second power transmission coil 12b are always connected.
  • the control circuit 14 when the control circuit 14 performs power transmission corresponding to the electromagnetic induction method, that is, when an electric signal for power transmission is applied to the first power transmission coil 12 a, the control circuit 14 and the first power transmission circuit 11 a The first switch element 13a is controlled so that the first power transmission coil 12a is connected.
  • the control circuit 14 performs power transmission corresponding to the magnetic resonance method, that is, when an electric signal for power transmission is applied to the second power transmission coil 12b, the first power transmission circuit 11a and the first power transmission coil 12a
  • the first switch element 13a is controlled so as to be in a disconnected state.
  • the structure of the power transmission coil 12 is the same as the structure of the power transmission coil 12 in the first embodiment. That is, the coil diameter of the 2nd power transmission coil 12b is larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b is arrange
  • the power transmission device 110 includes a first power transmission circuit 11a corresponding to the electromagnetic induction method, a second power transmission circuit 11b corresponding to the magnetic resonance method, and a first corresponding to the electromagnetic induction method. It has the power transmission coil 12a and the 2nd power transmission coil 12b corresponding to a magnetic resonance system. Therefore, power can be transmitted from power transmission device 110 to power reception device 120 regardless of which of the two transmission methods is used by power reception device 120.
  • the power transmission device 110 includes a switch element 13 that switches a connection state between the first power transmission circuit 11a and the first power transmission coil 12a, and a control circuit 14 that controls the switch element 13. And when the control circuit 14 applies the electric signal for power transmission to the 1st power transmission coil 12a, the 1st power transmission circuit 11a and the 1st power transmission coil 12a will be in a connection state, and the electric power for power transmission to the 2nd power transmission coil 12b. When a signal is applied, the switch element 13 is controlled so that the first power transmission circuit 11a and the first power transmission coil 12a are disconnected.
  • the first power transmission circuit 11a and the first power transmission circuit 11a By setting the power transmission coil 12a to the disconnected state, it is possible to prevent unnecessary current from flowing through the first power transmission circuit 11a.
  • the coil diameter of the 2nd power transmission coil 12b is set larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b is a 1st power transmission coil 12a seeing from a top (in planar view). It is arranged so that it surrounds Therefore, in comparison with the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b by the magnetic flux B2 generated by the second power transmission coil 12b, the first power transmission coil by the magnetic flux B1 generated by the first power transmission coil 12a. Magnetic field coupling between 12a and the second power transmission coil 12b can be weakened. And it can suppress that the electric signal applied to the 1st power transmission coil 12a is transmitted to the 2nd power transmission coil 12b. As a result, power loss on the power transmission device 110 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 110 to the power reception device 120 can be suppressed.
  • the first power transmission coil 12a is a coil compatible with electromagnetic induction wireless power transmission
  • the second power transmission coil 12b is compatible with magnetic resonance wireless power transmission.
  • the electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other.
  • the magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, in the wireless power transmission system 101, the power transmission device 110 and the power reception device 120 are connected to each other even when the power transmission device 110 and the power reception device 120 are close to each other or when the distance between the power transmission device 110 and the power reception device 120 is long. Electric power can be transmitted, and the degree of freedom with respect to the distance between the power transmission device 110 and the power reception device 120 can be expanded.
  • FIG. 7 is a block diagram showing a configuration of a wireless power transmission system 201 according to the third embodiment of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a method for switching the connection state of the power receiving device 220 illustrated in FIG. 7.
  • FIG. 8A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed.
  • FIG. 8B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
  • the wireless power transmission system 201 includes a power transmission device 210 and a power reception device 220 as shown in FIG.
  • the power transmission device 210 is a power transmission device corresponding to one of the electromagnetic induction method and the magnetic resonance method.
  • the power transmission device 210 may be a power transmission device fixed to one of the transmission methods, or may be a power transmission device whose transmission method can be switched by an operation switch or the like.
  • the power transmission device 210 includes a power transmission circuit 11 and a power transmission coil 12.
  • the power transmission circuit 11 and the power transmission coil 12 correspond to the electromagnetic induction method
  • the power transmission coil 12 corresponds to the magnetic resonance method.
  • the power receiving device 220 is a power receiving device that supports both the electromagnetic induction method and the magnetic resonance method. As shown in FIG. 7, the power receiving device 220 includes two power receiving coils 21, two power receiving circuits 22, a load 23, two switch elements 24, and a control circuit 25 (control unit) that controls the switch elements 24. And have.
  • the two power receiving coils 21 are a first power receiving coil 21a and a second power receiving coil 21b.
  • the two power receiving circuits 22 are a first power receiving circuit 22a and a second power receiving circuit 22b.
  • the two switch elements 24 are a third switch element 24a and a fourth switch element 24b.
  • the first power receiving coil 21a corresponds to the electromagnetic induction method. Although not shown, the first power receiving coil 21a is a spiral coil wound around the outer circumference of a circle. Both end portions of the first power receiving coil 21a are connected to the first power receiving circuit 22a via the third switch element 24a and wiring.
  • the second power receiving coil 21b corresponds to the magnetic resonance method.
  • the second power receiving coil 21b is a spiral coil wound around the outer circumference of a circle.
  • the coil diameter of the second power receiving coil 21b is set to be larger than the coil diameter of the first power receiving coil 21a.
  • the second power receiving coil 21b is viewed from above (in plan view) and around the first power receiving coil 21a. Is arranged so as to surround. Both ends of the second power receiving coil 21b are connected to the second power receiving circuit 22b through the fourth switch element 24b and wiring.
  • the first power receiving circuit 22a is a power receiving circuit compatible with the electromagnetic induction method
  • the second power receiving circuit 22b is a power receiving circuit compatible with the magnetic resonance method.
  • the third switch element 24a switches the connection state between the first power receiving coil 21a and the first power receiving circuit 22a.
  • the fourth switch element 24b switches the connection state between the second power receiving coil 21b and the second power receiving circuit 22b.
  • the control circuit 25 performs the second power reception when performing power transmission corresponding to the electromagnetic induction method, that is, when the first power reception coil 21a and the first power reception circuit 22a are in the connected state.
  • the third switch element 24a and the fourth switch element 24b are controlled so that the coil 21b and the second power receiving circuit 22b are disconnected.
  • the control circuit 25 performs power transmission corresponding to the magnetic resonance method, that is, when the second power receiving coil 21b and the second power receiving circuit 22b are in a connected state, the first power receiving coil 21a and the first power receiving circuit.
  • the third switch element 24a and the fourth switch element 24b are controlled so that the terminal 22a is disconnected.
  • the power receiving device 220 includes a first power receiving coil 21a that is compatible with the electromagnetic induction method, a second power receiving coil 21b that is compatible with the magnetic resonance method, and a first power source that is compatible with the electromagnetic induction method.
  • the power receiving circuit 22a and the second power receiving circuit 22b corresponding to the magnetic resonance method are included. Therefore, power can be transmitted from the power transmission apparatus 210 to the power reception apparatus 220 regardless of which of the two transmission systems the power transmission apparatus 210 is capable of.
  • the power receiving apparatus 220 is configured to switch the connection state between the third switch element 24a that switches the connection state between the first power reception coil 21a and the first power reception circuit 22a, and the connection state between the second power reception coil 21b and the second power reception circuit 22b.
  • a switch circuit 24b and a control circuit 25 that controls the third switch element 24a and the fourth switch element 24b are provided.
  • the first power receiving coil 21a By setting the first power receiving coil 21a and the first power receiving circuit 22a in a disconnected state, it is possible to prevent an unnecessary current from flowing through the first power receiving circuit 22a. As a result, power loss on the power receiving apparatus 220 side can be suppressed, and a decrease in transmission efficiency from the power transmitting apparatus 210 to the power receiving apparatus 220 can be suppressed.
  • FIG. 9 is a block diagram showing a configuration of a wireless power transmission system 301 according to the fourth embodiment of the present invention.
  • FIG. 10 is an explanatory diagram illustrating a method for switching the connection state of the power transmission device 320 illustrated in FIG. 9.
  • FIG. 10A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed.
  • FIG. 10B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
  • the wireless power transmission system 301 includes a power transmission device 310 and a power reception device 320 as shown in FIG.
  • the configuration of the power transmission device 310 is the same as the configuration of the power transmission device 210 in the third embodiment.
  • the configuration of the power receiving device 320 is substantially the same as the configuration of the power receiving device 220 in the third embodiment. However, in this embodiment, the connection between the second power receiving coil 21b and the second power receiving circuit 22b is different from that in the third embodiment. .
  • the power receiving device 320 there is no fourth switch element 24b, and the second power receiving coil 21b and the second power receiving circuit 22b are always connected.
  • the structure of the power receiving coil 21 is the same as the structure of the power receiving coil 21 in the third embodiment.
  • the control circuit 25 performs the first power receiving coil 21a when performing power transmission corresponding to the electromagnetic induction method, that is, when transmitting an electric signal from the power transmitting coil 12 to the first power receiving coil 21a. And the first power receiving circuit 22a are controlled so that the third switch element 24a is controlled. In addition, the control circuit 25 performs the power transmission corresponding to the magnetic resonance method, that is, when an electric signal is transmitted from the power transmission coil 12 to the second power receiving coil 21b, the first power receiving coil 21a and the first power receiving circuit 22a The third switch element 24a is controlled so as to be in a disconnected state.
  • the power receiving device 320 includes a first power receiving coil 21a corresponding to the electromagnetic induction method, a second power receiving coil 21b corresponding to the magnetic resonance method, and a first power corresponding to the electromagnetic induction method.
  • the power receiving circuit 22a and the second power receiving circuit 22b corresponding to the magnetic resonance method are included. Therefore, power can be transmitted from the power transmission device 310 to the power reception device 320 regardless of which of the two transmission methods the power transmission device 310 is.
  • the power receiving apparatus 320 includes a third switch element 24a that switches the connection state between the first power receiving coil 21a and the first power receiving circuit 22a, and a control circuit 25 that controls the third switch element 24a.
  • the first power reception coil 21a and the first power reception circuit 22a are connected, and the electric signal is transmitted from the power transmission coil 12 to the second power reception coil 21b.
  • the 1st receiving coil 21a and the 1st receiving circuit 22a will be in a disconnection state.
  • the coil diameter of the second power receiving coil 21b is set to be larger than the coil diameter of the first power receiving coil 21a, and the second power receiving coil 21b is viewed from above (in plan view), and the first power receiving coil 21a. It is arranged so that it surrounds Therefore, as compared with the magnetic field coupling between the first power receiving coil 21a and the second power receiving coil 21b by the magnetic flux generated by the second power receiving coil 21b, the first power receiving coil 21a by the magnetic flux generated by the first power receiving coil 21a and The magnetic field coupling with the second power receiving coil 21b can be weakened. And it can suppress that a part of electrical signal transmitted to the 1st receiving coil 21a is transmitted to the 2nd receiving coil 21b. As a result, power loss on the power reception device 320 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 310 to the power reception device 320 can be suppressed.
  • the wireless power transmission system 1 (or the wireless power transmission system 101, the wireless power transmission system 201, and the wireless power transmission system 301) has wireless power corresponding to an electromagnetic induction method and a magnetic resonance method.
  • a wireless power transmission system compatible with two transmission systems having different electromagnetic induction systems may be used.
  • the 1st power transmission coil 12a may be a coil corresponding to the 1st transmission system of an electromagnetic induction system
  • the 2nd power transmission coil 12b may be a coil corresponding to the 2nd transmission system of an electromagnetic induction system.
  • the first power receiving coil 21a may be a coil compatible with the first transmission method of the electromagnetic induction method
  • the second power receiving coil 21b may be a coil compatible with the second transmission method of the electromagnetic induction method.
  • the wireless power transmission system 1 (or the wireless power transmission system 101, the wireless power transmission system 201, and the wireless power transmission system 301) is a wireless device that supports two transmission methods with different magnetic resonance methods. It may be a power transmission system.
  • the 1st power transmission coil 12a may be a coil corresponding to the 1st transmission system of a magnetic resonance system
  • the 2nd power transmission coil 12b may be a coil corresponding to the 2nd transmission system of a magnetic resonance system.
  • the first power receiving coil 21a may be a coil corresponding to the magnetic resonance first transmission method
  • the second power receiving coil 21b may be a coil corresponding to the magnetic resonance second transmission method.
  • the power transmission circuit 11 may have a configuration other than that described above.
  • the first power transmission circuit 11a and the second power transmission circuit 11b may share part of the circuit.
  • the first power transmission circuit 11a and the second power transmission circuit 11b may be an amplifier circuit connected to the oscillation circuit instead of the inverter circuit.
  • the power transmission circuit 11 may appropriately change the frequency of the electric signal to be generated in accordance with the system standard.
  • the power receiving circuit 22 may have a configuration other than that described above.
  • the first power receiving circuit 22a and the second power receiving circuit 22b may share a part of the circuit.
  • the power receiving device 20 does not have the load 23, and the power receiving circuit 22 may be connected to another electronic device serving as a load.
  • the power transmission coil 12 and the power reception coil 21 may be made of materials and shapes other than those described above.
  • the number of turns of the power transmission coil 12 and the power reception coil 21 may be appropriately changed according to the system standard.
  • the power transmission coil 12 and the power reception coil 21 may be a spiral coil wound along a polygonal outer periphery instead of a spiral coil wound along a circular outer periphery.
  • the power transmission coil 12 and the power reception coil 21 may be helical coils instead of spiral coils.
  • the power transmission coil 12 and the power reception coil 21 may be coils formed as electrode patterns on the plate surface of the substrate.
  • capacitance etc. for adjusting a resonant frequency may be added to the 2nd power transmission coil 12b or the 2nd power receiving coil 21b.
  • the direction of the power feeding surface 16a may be appropriately changed according to the use conditions.
  • the power transmission coil 12 may be accommodated in a separate member separable from the case 15 and connected to the power transmission circuit 11 via wiring.
  • the switch element 13 and the switch element 24 may be mechanical switch elements such as a MEMS element and a relay. Moreover, if the predetermined function can be realized, the switch element 13 does not switch the connection state between the both ends of the power transmission coil 12 and the power transmission circuit 11, but instead of one end of the power transmission coil 12 and the power transmission circuit 11. It is possible to switch only the connection state.
  • the switch element 24 may switch only the connection state between one end of the power receiving coil 21 and the power receiving circuit 22 instead of switching the connection state between the both ends of the power receiving coil 21 and the power receiving circuit 22. .
  • the power transmission device 10 (or the power transmission device 110) performs wireless communication with the detection unit for detecting the transmission method of the power reception device 20 or the power reception device 20 (or the power reception device 120). You may further have a communication means for performing.
  • the control circuit 14 automatically determines which of the electromagnetic induction method and the magnetic resonance method is used for power transmission based on the detection result of the detection means, the communication result with the power receiving device 20, and the like. You can choose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To provide a wireless power transmission system capable of coping with two transmission methods and preventing the transmission efficiency from being reduced when transmitting power from a power transmission device to a power receiving device. [Solution] A wireless power transmission system (1) uses the magnetic field coupling between a power transmission coil (12) and a power receiving coil (21) to wirelessly transmit power from a power transmission device (10) to a power receiving device (20). The power transmission device (10) has: a first power transmission circuit (11a) corresponding to a first transmission method; a second power transmission circuit (11b) corresponding to a second transmission method; a first power transmission coil (12a) corresponding to the first transmission method; a second power transmission coil (12b) corresponding to the second transmission method; a first switching element (13a) for switching the connection states between the first power transmission circuit (11a) and the first power transmission coil (12a); a second switching element (13b) for switching the connection states between the second power transmission circuit (11b) and the second power transmission coil (12b); and a control unit (14) for controlling the first switching element (13a) and the second switching element (13b).

Description

無線電力伝送システムWireless power transmission system
 本発明は、無線電力伝送システムに関し、特に、複数の伝送方式に対応した無線電力伝送システムに関する。 The present invention relates to a wireless power transmission system, and more particularly to a wireless power transmission system compatible with a plurality of transmission methods.
 近年、送電コイルと受電コイルとの磁界結合を利用して、送電装置から受電装置に無線で電力を伝送する無線電力伝送システムが実用化されている。 In recent years, a wireless power transmission system that wirelessly transmits power from a power transmission device to a power reception device by using magnetic field coupling between the power transmission coil and the power reception coil has been put into practical use.
 磁界結合を利用した電力の伝送方式(以下、伝送方式と略称)としては、送電コイルと受電コイルとを近接させ、送電コイルと受電コイルとの電磁誘導を利用して送電装置から受電装置に電力を伝送する電磁誘導方式や、送電コイルと受電コイルとの磁気共鳴を利用して、送電コイルと受電コイルとの距離が離れていても送電装置から受電装置に電力を伝送することが可能な磁気共鳴方式等が用いられる。 As a power transmission method using magnetic coupling (hereinafter, abbreviated as a transmission method), a power transmission coil and a power reception coil are placed close to each other, and electromagnetic power is transmitted from the power transmission device to the power reception device using the electromagnetic induction between the power transmission coil and the power reception coil. Magnetics that can transmit power from the power transmitting device to the power receiving device even when the distance between the power transmitting coil and the power receiving coil is long by using the electromagnetic induction method for transmitting the power and the magnetic resonance between the power transmitting coil and the power receiving coil A resonance method or the like is used.
 電磁誘導方式の従来の無線電力伝送システムに関する装置としては、特許文献1に示すような非接触電力伝達装置(無線電力伝送システム)等が提案されている。図11は、特許文献1に係る非接触電力伝達装置400の構成を示す説明図である。 A non-contact power transmission device (wireless power transmission system) as shown in Patent Document 1 has been proposed as a device related to an electromagnetic induction type conventional wireless power transmission system. FIG. 11 is an explanatory diagram showing a configuration of the non-contact power transmission apparatus 400 according to Patent Document 1.
 図11に示すように、非接触電力伝達装置400は、送電装置に対応する一次側の回路と、受電装置に対応する二次側の回路と、を備えている。一次側の回路は、直流電源410と、直流電源410に接続されたインバータ回路403と、インバータ回路403に接続された一次コイル405aとを有している。インバータ回路403は、コンデンサ411、412、413と、FET等のスイッチング素子414、415と、ダイオード414b、415bと、を有している。 As shown in FIG. 11, the non-contact power transmission device 400 includes a primary circuit corresponding to the power transmission device and a secondary circuit corresponding to the power reception device. The circuit on the primary side includes a DC power supply 410, an inverter circuit 403 connected to the DC power supply 410, and a primary coil 405 a connected to the inverter circuit 403. The inverter circuit 403 includes capacitors 411, 412, 413, switching elements 414, 415 such as FETs, and diodes 414b, 415b.
 二次側の回路は、センタータップを備えた二次コイル405bと、二次コイル405bに接続された整流回路421と、整流回路421に接続された負荷409と、を有している。整流回路421は、負荷整合用のコンデンサ416と、ダイオード417、418と、電流平滑用のリアクトル419と、平滑コンデンサ240と、を有している。 The secondary circuit includes a secondary coil 405b having a center tap, a rectifier circuit 421 connected to the secondary coil 405b, and a load 409 connected to the rectifier circuit 421. The rectifier circuit 421 includes a load matching capacitor 416, diodes 417 and 418, a current smoothing reactor 419, and a smoothing capacitor 240.
 インバータ回路403は、送電用の交流の電気信号を発生させている。インバータ回路403が発生させた電気信号は、一次コイル405aに印加される。一次コイル405aと二次コイル405bとは、分離着脱自在なトランス405を構成しており、一次コイル405aと二次コイル405bとを近接させると、一次コイル405aと二次コイル405bとの間で電磁誘導が生じる。そして、一次コイル405aに印加された交流の電気信号は、一次コイル405aと二次コイル405bとの電磁誘導を利用して、二次コイル405bに伝送される。二次コイル405bに伝送された電気信号は、整流回路421を介して直流の電気信号に変換された後に、負荷409に出力される。 The inverter circuit 403 generates an AC electrical signal for power transmission. The electric signal generated by the inverter circuit 403 is applied to the primary coil 405a. The primary coil 405a and the secondary coil 405b constitute a separable and detachable transformer 405. When the primary coil 405a and the secondary coil 405b are brought close to each other, electromagnetic waves are generated between the primary coil 405a and the secondary coil 405b. Induction occurs. Then, the AC electrical signal applied to the primary coil 405a is transmitted to the secondary coil 405b using electromagnetic induction between the primary coil 405a and the secondary coil 405b. The electric signal transmitted to the secondary coil 405b is converted into a DC electric signal via the rectifier circuit 421 and then output to the load 409.
 非接触電力伝達装置400では、このように、一次コイル405aと二次コイル405bとの電磁誘導を利用して、一次側の回路から二次側の回路に非接触(無線)で電力を伝送している。 In this way, the non-contact power transmission device 400 uses the electromagnetic induction of the primary coil 405a and the secondary coil 405b to transmit power from the primary side circuit to the secondary side circuit in a non-contact (wireless) manner. ing.
 磁気共鳴方式の従来の無線電力伝送システムとしては、特許文献2に係る非接触給電システム(無線電力伝送システム)等が提案されている。図12は、特許文献2に係る非接触給電システム500の構成を示す説明図である。 As a conventional magnetic resonance system wireless power transmission system, a non-contact power feeding system (wireless power transmission system) according to Patent Document 2 has been proposed. FIG. 12 is an explanatory diagram showing a configuration of a non-contact power feeding system 500 according to Patent Document 2. As shown in FIG.
 図12に示すように、非接触給電システム500は、給電設備501(送電装置)と受電装置502とを備えている。給電設備501は、高周波電源装置510と一次コイル520と一次自己共振コイル530と制御装置540とを有している。高周波電源装置510は、制御装置540から受ける駆動信号に基づいて所定の高周波電圧を発生させ、送電用の高周波電力を供給している。一次コイル520は、高周波電源装置510から供給される高周波電力を一次自己共振コイル530へ伝送している。一次自己共振コイル530は、送電用のLC共振コイルである。C1は、一次自己共振コイル530の浮遊容量である。 As shown in FIG. 12, the non-contact power supply system 500 includes a power supply facility 501 (power transmission device) and a power reception device 502. The power supply facility 501 includes a high frequency power supply device 510, a primary coil 520, a primary self-resonant coil 530, and a control device 540. The high frequency power supply device 510 generates a predetermined high frequency voltage based on a drive signal received from the control device 540 and supplies high frequency power for power transmission. Primary coil 520 transmits high-frequency power supplied from high-frequency power supply device 510 to primary self-resonant coil 530. Primary self-resonant coil 530 is an LC resonant coil for power transmission. C1 is the stray capacitance of the primary self-resonant coil 530.
 受電装置502は、二次自己共振コイル560と二次コイル570とを有している。二次自己共振コイル560は、受電用のLC共振コイルである。C2は、二次自己共振コイル560の浮遊容量である。二次コイル570は、二次自己共振コイル560が受電した電力を取り出し、取り出した電力を負荷503へ出力している。 The power receiving apparatus 502 includes a secondary self-resonant coil 560 and a secondary coil 570. Secondary self-resonant coil 560 is an LC resonant coil for receiving power. C2 is the stray capacitance of the secondary self-resonant coil 560. Secondary coil 570 extracts the power received by secondary self-resonant coil 560 and outputs the extracted power to load 503.
 そして、非接触給電システム500は、一次自己共振コイル530と二次自己共振コイル560との間に発生する電磁場を介した共鳴(磁気共鳴)を利用して、給電設備501から受電装置502に非接触(無線)で電力を伝送している。 Then, the non-contact power supply system 500 uses the resonance (magnetic resonance) via the electromagnetic field generated between the primary self-resonant coil 530 and the secondary self-resonant coil 560 to transfer power from the power supply facility 501 to the power receiving device 502. Power is transmitted by contact (wireless).
特開2002-101578号公報JP 2002-101578 A 特開2010-193598号公報JP 2010-193598 A
 近年、電磁誘導方式と磁気共鳴方式という2つの伝送方式の両方に対応した無線電力伝送システムに対するニーズが高まってきている。すなわち、受電装置が電磁誘導方式と磁気共鳴方式とのどちらの伝送方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる無線電力伝送システムや、送電装置が電磁誘導方式と磁気共鳴方式とのどちらの伝送方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる無線電力伝送システムの実用化が望まれている。 In recent years, there has been an increasing need for a wireless power transmission system that supports both the electromagnetic induction method and the magnetic resonance method. That is, regardless of whether the power receiving apparatus is an electromagnetic induction system or a magnetic resonance system, the wireless power transmission system that can transmit power from the power transmitting apparatus to the power receiving apparatus or the power transmitting apparatus There is a demand for practical use of a wireless power transmission system capable of transmitting power from a power transmission device to a power reception device, regardless of whether the transmission method is an induction method or a magnetic resonance method.
 また、近年、電磁誘導方式においても、伝送周波数等が異なる複数の伝送方式が提案されており、これらの伝送方式に対応した無線電力伝送システムに対するニーズが高まってきている。同様に、磁気共鳴方式においても、伝送周波数等が異なる複数の伝送方式が提案されており、これらの伝送方式に対応した無線電力伝送システムに対するニーズが高まってきている。 In recent years, a plurality of transmission systems having different transmission frequencies have been proposed in the electromagnetic induction system, and the need for a wireless power transmission system corresponding to these transmission systems is increasing. Similarly, in the magnetic resonance system, a plurality of transmission systems having different transmission frequencies and the like have been proposed, and needs for wireless power transmission systems corresponding to these transmission systems are increasing.
 異なる2つの伝送方式に対応した無線電力伝送システムに関する技術は、特許文献1や特許文献2には開示されていないが、例えば、送電装置側では、それぞれの伝送方式に対応した送電用の電気信号を、2つの送電コイルに印加する方法が考えられる。しかしながら、このような方法では、2つの送電コイルを近接させて配置すると、2つの送電コイルの間で不要な磁界結合を生じてしまう。そして、2つの送電コイルの間の磁界結合によって、2つの送電コイルのうちの、一方の送電コイルから送信された電気信号が他方の送電コイルにも伝送され、それに伴って、送電装置から受電装置への伝送効率(送電装置から受電装置へ電力を伝送する際の電力の伝送効率)を低下させてしまう可能性があった。 Although the technique regarding the wireless power transmission system corresponding to two different transmission systems is not disclosed in Patent Documents 1 and 2, for example, on the power transmission device side, electric signals for power transmission corresponding to the respective transmission systems are disclosed. Can be applied to the two power transmission coils. However, in such a method, when two power transmission coils are arranged close to each other, unnecessary magnetic field coupling is generated between the two power transmission coils. And by the magnetic field coupling between two power transmission coils, the electric signal transmitted from one power transmission coil of the two power transmission coils is also transmitted to the other power transmission coil, and accordingly, the power transmission device receives power from the power transmission device. There is a possibility that the transmission efficiency (power transmission efficiency when transmitting power from the power transmission device to the power reception device) will be reduced.
また、受電装置側では、それぞれの伝送方式に対応した2つの受電コイルを配置し、それぞれの伝送方式に対応した電気信号を受信させる方法が考えられる。しかしながら、このような方法では、2つの受電コイルを近接させて配置すると、2つの受電コイルの間で磁界結合を生じてしまう。そして、2つの受電コイルの間の磁界結合によって、2つの受電コイルのうちの、一方の受電コイルが受信した電気信号の一部が他方の受電コイルに伝送され、それに伴って、送電装置から受電装置への伝送効率を低下させてしまう可能性があった。 Also, on the power receiving device side, a method of arranging two power receiving coils corresponding to each transmission method and receiving an electric signal corresponding to each transmission method is conceivable. However, in such a method, when two power receiving coils are arranged close to each other, magnetic field coupling occurs between the two power receiving coils. Then, due to magnetic field coupling between the two power receiving coils, a part of the electric signal received by one power receiving coil of the two power receiving coils is transmitted to the other power receiving coil, and accordingly, the power receiving device receives power from the power transmitting device. There is a possibility that the transmission efficiency to the apparatus is lowered.
 本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、2つの伝送方式に対応でき、且つ、送電装置から受電装置への伝送効率の低下を抑制できる無線電力伝送システムを提供することにある。 The present invention has been made in view of the situation of the prior art as described above, and an object thereof is wireless power transmission capable of supporting two transmission methods and suppressing reduction in transmission efficiency from the power transmission apparatus to the power reception apparatus. To provide a system.
 この課題を解決するために、請求項1に記載の無線電力伝送システムは、送電コイルを有する送電装置と、受電コイルを有する受電装置と、を備え、前記送電コイルと前記受電コイルとの磁界結合を利用して、前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、前記送電装置は、第1の伝送方式に対応した第1送電回路と、第2の伝送方式に対応した第2送電回路と、前記第1の伝送方式に対応した第1送電コイルと、前記第2の伝送方式に対応した第2送電コイルと、前記第1送電回路と前記第1送電コイルとの接続状態を切り替える第1スイッチ素子と、前記第2送電回路と前記第2送電コイルとの接続状態を切り替える第2スイッチ素子と、前記第1スイッチ素子と前記第2スイッチ素子とを制御する制御部と、を有し、前記制御部は、前記第1送電回路と前記第1送電コイルとが接続状態である時には、前記第2送電回路と前記第2送電コイルとが非接続状態となり、前記第2送電回路と前記第2送電コイルとが接続状態である時には、前記第1送電回路と前記第1送電コイルとが非接続状態となるように、前記第1スイッチ素子と前記第2スイッチ素子とを制御することを特徴とする。 In order to solve this problem, a wireless power transmission system according to claim 1 includes a power transmission device having a power transmission coil and a power reception device having a power reception coil, and magnetic field coupling between the power transmission coil and the power reception coil. A wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device, wherein the power transmission device includes a first power transmission circuit corresponding to a first transmission method, and a second transmission. A second power transmission circuit corresponding to the system, a first power transmission coil corresponding to the first transmission system, a second power transmission coil corresponding to the second transmission system, the first power transmission circuit, and the first power transmission. A first switch element that switches a connection state with the coil, a second switch element that switches a connection state between the second power transmission circuit and the second power transmission coil, and the first switch element and the second switch element. And when the first power transmission circuit and the first power transmission coil are connected, the second power transmission circuit and the second power transmission coil are disconnected from each other. When the second power transmission circuit and the second power transmission coil are in a connected state, the first switch element and the second switch are set so that the first power transmission circuit and the first power transmission coil are in a disconnected state. The switch element is controlled.
 この構成の無線電力伝送システムでは、送電装置は、第1の伝送方式に対応した第1送電回路と、第2の伝送方式に対応した第2送電回路と、第1の伝送方式に対応した第1送電コイルと、第2の伝送方式に対応した第2送電コイルと、を有している。そのため、受電装置が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる。 In the wireless power transmission system having this configuration, the power transmission device includes a first power transmission circuit corresponding to the first transmission method, a second power transmission circuit corresponding to the second transmission method, and a first power transmission circuit corresponding to the first transmission method. 1 power transmission coil and a second power transmission coil corresponding to the second transmission system. Therefore, power can be transmitted from the power transmission apparatus to the power reception apparatus, regardless of which of the two transmission systems the power reception apparatus is.
 しかも、第1送電回路と第1送電コイルとが接続状態である時には、第2送電回路と第2送電コイルとが非接続状態となり、第2送電回路と第2送電コイルとが接続状態である時には、第1送電回路と第1送電コイルとが非接続状態となる。そのため、第1送電コイルと第2送電コイルとの磁界結合によって、第1送電コイルに印加された電気信号が第2送電コイルに伝送されても、第2送電コイルと第2送電回路とを非接続状態とすることによって、第2送電回路に不要な電流が流れるのを防止することができる。また、第1送電コイルと第2送電コイルとの磁界結合によって、第2送電コイルに印加された電気信号が第1送電コイルに伝送されても、第1送電コイルと第1送電回路とを非接続状態とすることによって、第1送電回路に不要な電流が流れるのを防止することができる。その結果、送電装置側での電力の損失を抑制することができ、送電装置から受電装置への伝送効率の低下を抑制することができる。 Moreover, when the first power transmission circuit and the first power transmission coil are in a connected state, the second power transmission circuit and the second power transmission coil are in a disconnected state, and the second power transmission circuit and the second power transmission coil are in a connected state. Sometimes, the first power transmission circuit and the first power transmission coil are disconnected. Therefore, even if the electric signal applied to the first power transmission coil is transmitted to the second power transmission coil due to the magnetic field coupling between the first power transmission coil and the second power transmission coil, the second power transmission coil and the second power transmission circuit are not connected. By setting the connection state, it is possible to prevent unnecessary current from flowing through the second power transmission circuit. In addition, even when an electric signal applied to the second power transmission coil is transmitted to the first power transmission coil due to magnetic field coupling between the first power transmission coil and the second power transmission coil, the first power transmission coil and the first power transmission circuit are not connected. By setting it as a connection state, it can prevent that an unnecessary electric current flows into a 1st power transmission circuit. As a result, power loss on the power transmission device side can be suppressed, and a decrease in transmission efficiency from the power transmission device to the power reception device can be suppressed.
 請求項2に記載の無線電力伝送システムでは、前記第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、前記第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルであることを特徴とする。 In the wireless power transmission system according to claim 2, the first power transmission coil is a coil corresponding to electromagnetic induction wireless power transmission, and the second power transmission coil is compatible with magnetic resonance wireless power transmission. It is a coil.
 この構成の無線電力伝送システムでは、第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルである。電磁誘導方式は、送電コイルと受電コイルとを近接させて電力を伝送する伝送方式であり、磁気共鳴方式は、送電コイルと受電コイルとの距離が離れている場合でも電力を伝送することが可能な伝送方式である。そのため、送電装置と受電装置とが近接している場合でも、送電装置と受電装置との距離が離れている場合でも、送電装置から受電装置へ電力を伝送することができる。その結果、送電装置と受電装置との距離に対する自由度を拡げることができる。 In the wireless power transmission system having this configuration, the first power transmission coil is a coil compatible with electromagnetic induction wireless power transmission, and the second power transmission coil is a coil compatible with magnetic resonance wireless power transmission. The electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other. The magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, even when the power transmission device and the power reception device are close to each other or when the distance between the power transmission device and the power reception device is large, power can be transmitted from the power transmission device to the power reception device. As a result, the degree of freedom with respect to the distance between the power transmission device and the power reception device can be expanded.
 請求項3に記載の無線電力伝送システムでは、前記第1送電コイルと前記第2送電コイルとのうち、一方のコイルのコイル径は、他方のコイルのコイル径よりも大きく、前記一方のコイルは、平面視において前記他方のコイルの周囲を取り囲むように配置されていることを特徴とする。 In the wireless power transmission system according to claim 3, the coil diameter of one coil of the first power transmission coil and the second power transmission coil is larger than the coil diameter of the other coil, and the one coil is In the plan view, the coil is disposed so as to surround the other coil.
 この構成の無線電力伝送システムでは、第1送電コイルと第2送電コイルとのうち、一方のコイルのコイル径は、他方のコイルのコイル径よりも大きく、一方のコイルは、平面視において他方のコイルの周囲を取り囲むように配置されている。そのため、一方のコイルの内側の空間を有効に活用し、送電装置を小型化することができる。 In the wireless power transmission system having this configuration, the coil diameter of one coil of the first power transmission coil and the second power transmission coil is larger than the coil diameter of the other coil. It arrange | positions so that the circumference | surroundings of a coil may be enclosed. Therefore, the space inside one coil can be effectively used, and the power transmission device can be reduced in size.
 請求項4に記載の無線電力伝送システムでは、前記送電装置は、前記受電装置が載置される給電面を有し、前記第1送電コイルと前記第2送電コイルとは、前記給電面の背面側に配置され、前記第2送電コイルのコイル径の方が、前記第1送電コイルのコイル径よりも大きいことを特徴とする。 5. The wireless power transmission system according to claim 4, wherein the power transmission device includes a power feeding surface on which the power receiving device is placed, and the first power transmission coil and the second power transmission coil are provided on a rear surface of the power feeding surface. The coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil.
 この構成の無線電力伝送システムでは、送電装置は、受電装置が載置される給電面を有し、第1送電コイルと第2送電コイルとは、給電面の背面側に配置されている。そのため、送電コイルと受電コイルとの距離を安定させ易く、送電装置から受電装置へ電力を安定して伝送することができる。しかも、この構成の無線電力伝送システムでは、第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルであり、第2送電コイルのコイル径の方が、第1送電コイルのコイル径よりも大きい。磁気共鳴方式の無線電力伝送では、送電コイルの外径が大きい程、伝送距離(電力を有効に伝送できる距離)を長くすることができる。そのため、受電装置が給電面から離れた場合でも、送電装置から受電装置への電力伝送を維持し易い。 In the wireless power transmission system with this configuration, the power transmission device has a power feeding surface on which the power receiving device is placed, and the first power transmission coil and the second power transmission coil are arranged on the back side of the power feeding surface. Therefore, it is easy to stabilize the distance between the power transmission coil and the power reception coil, and power can be stably transmitted from the power transmission device to the power reception device. Moreover, in the wireless power transmission system with this configuration, the second power transmission coil is a coil that supports magnetic resonance wireless power transmission, and the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil. Is also big. In the magnetic resonance wireless power transmission, the transmission distance (distance where the power can be effectively transmitted) can be increased as the outer diameter of the power transmission coil is increased. Therefore, even when the power receiving device is separated from the power feeding surface, it is easy to maintain power transmission from the power transmitting device to the power receiving device.
 請求項5に記載の無線電力伝送システムでは、送電コイルを有する送電装置と、受電コイルを有する受電装置と、を備え、前記送電コイルと前記受電コイルとの磁界結合を利用して、前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、前記送電装置は、第1の伝送方式に対応した第1送電回路と、第2の伝送方式に対応した第2送電回路と、前記第1の伝送方式に対応した第1送電コイルと、前記第2の伝送方式に対応した第2送電コイルと、前記第1送電回路と前記第1送電コイルとの接続状態を切り替えるスイッチ素子と、前記スイッチ素子を制御する制御部と、を有し、前記第2送電コイルのコイル径は、前記第1送電コイルのコイル径よりも大きく、前記第2送電コイルは、平面視において前記第1送電コイルの周囲を取り囲むように配置され、前記制御部は、前記第1送電コイルに送電用の電気信号を印加する時には、前記第1送電回路と前記第1送電コイルとが接続状態となり、前記第2送電コイルに送電用の電気信号を印加する時には、前記第1送電回路と前記第1送電コイルとが非接続状態となるように、前記スイッチ素子を制御することを特徴とする。 The wireless power transmission system according to claim 5, comprising: a power transmission device having a power transmission coil; and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil. A wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power transmission device includes a first power transmission circuit corresponding to a first transmission method and a second power transmission circuit corresponding to a second transmission method. And a switch for switching a connection state between the first power transmission coil corresponding to the first transmission method, the second power transmission coil corresponding to the second transmission method, and the first power transmission circuit and the first power transmission coil. An element and a control unit that controls the switch element, wherein the coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil, and the second power transmission coil is front in plan view. It arrange | positions so that the circumference | surroundings of a 1st power transmission coil may be enclosed, and when the said control part applies the electric signal for power transmission to a said 1st power transmission coil, a said 1st power transmission circuit and a said 1st power transmission coil will be in a connection state. The switch element is controlled such that when the electric signal for power transmission is applied to the second power transmission coil, the first power transmission circuit and the first power transmission coil are disconnected from each other.
 この構成の無線電力伝送システムでは、送電装置は、第1の伝送方式に対応した第1送電回路と、第2の伝送方式に対応した第2送電回路と、第1の伝送方式に対応した第1送電コイルと、第2の伝送方式に対応した第2送電コイルと、を有している。そのため、受電装置が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる。 In the wireless power transmission system having this configuration, the power transmission device includes a first power transmission circuit corresponding to the first transmission method, a second power transmission circuit corresponding to the second transmission method, and a first power transmission circuit corresponding to the first transmission method. 1 power transmission coil and a second power transmission coil corresponding to the second transmission system. Therefore, power can be transmitted from the power transmission apparatus to the power reception apparatus, regardless of which of the two transmission systems the power reception apparatus is.
 しかも、第1送電コイルに送電用の電気信号を印加する時には、第1送電回路と第1送電コイルとが接続状態となり、第2送電コイルに送電用の電気信号を印加する時には、第1送電回路と第1送電コイルとが非接続状態となる。そのため、第1送電コイルと第2送電コイルとの磁界結合によって、第2送電コイルに印加された電気信号が第1送電コイルに伝送されても、第1送電コイルと第1送電回路とを非接続状態とすることによって、第1送電回路に不要な電流が流れるのを防止することができる。 In addition, when the electrical signal for power transmission is applied to the first power transmission coil, the first power transmission circuit and the first power transmission coil are connected, and when the electrical signal for power transmission is applied to the second power transmission coil, the first power transmission is performed. The circuit and the first power transmission coil are disconnected. Therefore, even if the electric signal applied to the second power transmission coil is transmitted to the first power transmission coil by the magnetic field coupling between the first power transmission coil and the second power transmission coil, the first power transmission coil and the first power transmission circuit are not connected. By setting it as a connection state, it can prevent that an unnecessary electric current flows into a 1st power transmission circuit.
 また、第2送電コイルのコイル径は、第1送電コイルのコイル径よりも大きく、第2送電コイルは、平面視において第1送電コイルの周囲を取り囲むように配置されている。そのため、第2送電コイルが発生させた磁束による第1送電コイルと第2送電コイルとの磁界結合と比較して、第1送電コイルが発生させた磁束による第1送電コイルと第2送電コイルとの磁界結合を弱くすることができる。そして、第1送電コイルに印加された電気信号が第2送電コイルに伝送されるのを抑制することができる。その結果、送電装置側での電力の損失を抑制することができ、送電装置から受電装置への伝送効率の低下を抑制することができる。 The coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil, and the second power transmission coil is disposed so as to surround the first power transmission coil in plan view. Therefore, compared with the magnetic field coupling of the 1st power transmission coil and the 2nd power transmission coil by the magnetic flux which the 2nd power transmission coil generated, the 1st power transmission coil and the 2nd power transmission coil by the magnetic flux which the 1st power transmission coil generated The magnetic field coupling can be weakened. And it can suppress that the electric signal applied to the 1st power transmission coil is transmitted to the 2nd power transmission coil. As a result, power loss on the power transmission device side can be suppressed, and a decrease in transmission efficiency from the power transmission device to the power reception device can be suppressed.
 請求項6に記載の無線電力伝送システムでは、前記第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、前記第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルであることを特徴とする。 The wireless power transmission system according to claim 6, wherein the first power transmission coil is a coil corresponding to electromagnetic induction wireless power transmission, and the second power transmission coil is compatible with magnetic resonance wireless power transmission. It is a coil.
 この構成の無線電力伝送システムでは、第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルである。電磁誘導方式は、送電コイルと受電コイルとを近接させて電力を伝送する伝送方式であり、磁気共鳴方式は、送電コイルと受電コイルとの距離が離れている場合でも電力を伝送することが可能な伝送方式である。そのため、送電装置と受電装置とが近接している場合でも、送電装置と受電装置との距離が離れている場合でも、送電装置から受電装置へ電力を伝送することができる。その結果、送電装置と受電装置との距離に対する自由度を拡げることができる。 In the wireless power transmission system having this configuration, the first power transmission coil is a coil compatible with electromagnetic induction wireless power transmission, and the second power transmission coil is a coil compatible with magnetic resonance wireless power transmission. The electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other. The magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, even when the power transmission device and the power reception device are close to each other or when the distance between the power transmission device and the power reception device is large, power can be transmitted from the power transmission device to the power reception device. As a result, the degree of freedom with respect to the distance between the power transmission device and the power reception device can be expanded.
 請求項7に記載の無線電力伝送システムでは、送電コイルを有する送電装置と、受電コイルを有する受電装置と、を備え、前記送電コイルと前記受電コイルとの磁界結合を利用して、前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、前記受電装置は、第1の伝送方式に対応した第1受電コイルと、第2の伝送方式に対応した第2受電コイルと、前記第1の伝送方式に対応した第1受電回路と、前記第2の伝送方式に対応した第2受電回路と、前記第1受電コイルと前記第1受電回路との接続状態を切り替える第3スイッチ素子と、前記第2受電コイルと前記第2受電回路との接続状態を切り替える第4スイッチ素子と、前記第3スイッチ素子と前記第4スイッチ素子とを制御する制御部と、を有し、前記制御部は、前記第1受電コイルと前記第1受電回路とが接続状態である時には、前記第2受電コイルと前記第2受電回路とが非接続状態となり、前記第2受電コイルと前記第2受電回路とが接続状態である時には、前記第1受電コイルと前記第1受電回路とが非接続状態となるように、前記第3スイッチ素子と前記第4スイッチ素子とを制御することを特徴とする。 The wireless power transmission system according to claim 7, comprising: a power transmission device having a power transmission coil; and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil. A wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power receiving device includes a first power receiving coil corresponding to a first transmission method and a second power receiving coil corresponding to a second transmission method. And a first power receiving circuit corresponding to the first transmission method, a second power receiving circuit corresponding to the second transmission method, and a first switching circuit for switching a connection state between the first power receiving coil and the first power receiving circuit. A third switch element, a fourth switch element that switches a connection state between the second power receiving coil and the second power receiving circuit, and a control unit that controls the third switch element and the fourth switch element. , When the first power receiving coil and the first power receiving circuit are in a connected state, the control unit is in a state where the second power receiving coil and the second power receiving circuit are in a disconnected state, and the second power receiving coil and the first power receiving circuit are disconnected. When the second power receiving circuit is in a connected state, the third switch element and the fourth switch element are controlled such that the first power receiving coil and the first power receiving circuit are in a disconnected state. And
 この構成の無線電力伝送システムでは、受電装置は、第1の伝送方式に対応した第1受電コイルと、第2の伝送方式に対応した第2受電コイルと、第1の伝送方式に対応した第1受電回路と、第2の伝送方式に対応した第2受電回路と、を有している。そのため、送電装置が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる。 In the wireless power transmission system configured as described above, the power receiving device includes a first power receiving coil corresponding to the first transmission method, a second power receiving coil corresponding to the second transmission method, and a first power receiving device corresponding to the first transmission method. 1 power receiving circuit and a second power receiving circuit corresponding to the second transmission method. Therefore, power can be transmitted from the power transmission device to the power receiving device, regardless of which of the two transmission methods the power transmission device is.
 しかも、第1受電コイルと第1受電回路とが接続状態である時には、第2受電コイルと第2受電回路とが非接続状態となり、第2受電コイルと第2受電回路とが接続状態である時には、第1受電コイルと第1受電回路とが非接続状態となる。そのため、第1受電コイルと第2受電コイルとの磁界結合によって、送電コイルから第1受電コイルに伝送された電気信号の一部が第2受電コイルに伝送されても、第2受電コイルと第2受電回路とを非接続状態とすることによって、第2受電回路に不要な電流が流れるのを防止することができる。また、第1受電コイルと第2受電コイルとの磁界結合によって、送電コイルから第2受電コイルに伝送された電気信号の一部が第1受電コイルに伝送されても、第1受電コイルと第1受電回路とを非接続状態とすることによって、第1受電回路に不要な電流が流れるのを防止することができる。その結果、受電装置側での電力の損失を抑制することができ、送電装置から受電装置への伝送効率の低下を抑制することができる。 Moreover, when the first power receiving coil and the first power receiving circuit are connected, the second power receiving coil and the second power receiving circuit are disconnected, and the second power receiving coil and the second power receiving circuit are connected. Sometimes, the first power receiving coil and the first power receiving circuit are disconnected. Therefore, even if a part of the electric signal transmitted from the power transmission coil to the first power receiving coil is transmitted to the second power receiving coil due to the magnetic field coupling between the first power receiving coil and the second power receiving coil, the second power receiving coil and the second power receiving coil By making the second power receiving circuit non-connected, it is possible to prevent unnecessary current from flowing through the second power receiving circuit. Further, even if a part of the electrical signal transmitted from the power transmission coil to the second power receiving coil is transmitted to the first power receiving coil due to the magnetic field coupling between the first power receiving coil and the second power receiving coil, the first power receiving coil and the second power receiving coil By setting the one power receiving circuit in a disconnected state, it is possible to prevent an unnecessary current from flowing through the first power receiving circuit. As a result, power loss on the power receiving device side can be suppressed, and a decrease in transmission efficiency from the power transmitting device to the power receiving device can be suppressed.
 請求項8に記載の無線電力伝送システムでは、送電コイルを有する送電装置と、受電コイルを有する受電装置と、を備え、前記送電コイルと前記受電コイルとの磁界結合を利用して、前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、前記受電装置は、第1の伝送方式に対応した第1受電コイルと、第2の伝送方式に対応した第2受電コイルと、前記第1の伝送方式に対応した第1受電回路と、前記第2の伝送方式に対応した第2受電回路と、前記第1受電コイルと前記第1受電回路との接続状態を切り替えるスイッチ素子と、前記スイッチ素子を制御する制御部と、を有し、前記第2受電コイルのコイル径は、前記第1受電コイルのコイル径よりも大きく、前記第2受電コイルは、平面視において前記第1受電コイルの周囲を取り囲むように配置され、前記制御部は、前記送電コイルから前記第1受電コイルに電気信号を伝送する時には、前記第1受電回路と前記第1受電コイルとが接続状態となり、前記送電コイルから前記第2受電コイルに電気信号を伝送する時には、前記第1受電回路と前記第1受電コイルとが接続状態となるように、前記スイッチ素子を制御することを特徴とする。 The wireless power transmission system according to claim 8, comprising a power transmission device having a power transmission coil and a power reception device having a power reception coil, and utilizing the magnetic field coupling between the power transmission coil and the power reception coil. A wireless power transmission system that wirelessly transmits power to the power receiving device, wherein the power receiving device includes a first power receiving coil corresponding to a first transmission method and a second power receiving coil corresponding to a second transmission method. And a switch for switching a connection state between the first power receiving circuit corresponding to the first transmission method, the second power receiving circuit corresponding to the second transmission method, and the first power receiving coil and the first power receiving circuit. An element and a control unit that controls the switch element, wherein a coil diameter of the second power receiving coil is larger than a coil diameter of the first power receiving coil, and the second power receiving coil is front in plan view. Arranged so as to surround the first power receiving coil, and when the control unit transmits an electrical signal from the power transmitting coil to the first power receiving coil, the first power receiving circuit and the first power receiving coil are connected to each other. When the electric signal is transmitted from the power transmission coil to the second power reception coil, the switch element is controlled so that the first power reception circuit and the first power reception coil are in a connected state. .
 この構成の無線電力伝送システムでは、受電装置は、第1の伝送方式に対応した第1受電コイルと、第2の伝送方式に対応した第2受電コイルと、第1の伝送方式に対応した第1受電回路と、第2の伝送方式に対応した第2受電回路と、を有している。そのため、送電装置が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置から受電装置へ電力を伝送することができる。 In the wireless power transmission system configured as described above, the power receiving device includes a first power receiving coil corresponding to the first transmission method, a second power receiving coil corresponding to the second transmission method, and a first power receiving device corresponding to the first transmission method. 1 power receiving circuit and a second power receiving circuit corresponding to the second transmission method. Therefore, power can be transmitted from the power transmission device to the power receiving device, regardless of which of the two transmission methods the power transmission device is.
 しかも、送電コイルから第1受電コイルに電気信号を伝送する時には、第1受電回路と第1受電コイルとが接続状態となり、送電コイルから第2受電コイルに電気信号を伝送する時には、第1受電回路と第1受電コイルとが接続状態となる。そのため、第1受電コイルと第2受電コイルとの磁界結合によって、送電コイル12から第2受電コイルに伝送された電気信号の一部が第1受電コイルに伝送されても、第1受電コイルと第1受電回路とを非接続状態とすることによって、第1受電回路に不要な電流が流れるのを防止することができる。 In addition, when the electric signal is transmitted from the power transmission coil to the first power receiving coil, the first power receiving circuit and the first power receiving coil are connected, and when the electric signal is transmitted from the power transmitting coil to the second power receiving coil, the first power receiving is received. The circuit and the first power receiving coil are connected. Therefore, even if a part of the electrical signal transmitted from the power transmission coil 12 to the second power receiving coil is transmitted to the first power receiving coil by the magnetic field coupling between the first power receiving coil and the second power receiving coil, By setting the first power receiving circuit in a disconnected state, it is possible to prevent unnecessary current from flowing through the first power receiving circuit.
 また、第2受電コイルのコイル径は、第1受電コイルのコイル径よりも大きく、第2受電コイルは、平面視において第1受電コイルの周囲を取り囲むように配置されている。そのため、そのため、第2受電コイルが発生させた磁束による第1受電コイルと第2受電コイルとの磁界結合と比較して、第1受電コイルが発生させた磁束による第1受電コイルと第2受電コイルとの磁界結合の方を弱くすることができる。そして、第1受電コイルに伝送された電気信号の一部が第2受電コイルに伝送されるのを抑制することができる。その結果、受電装置側での電力の損失を抑制することができ、送電装置から受電装置への伝送効率の低下を抑制することができる。 Further, the coil diameter of the second power receiving coil is larger than the coil diameter of the first power receiving coil, and the second power receiving coil is disposed so as to surround the first power receiving coil in plan view. Therefore, compared with the magnetic coupling of the 1st receiving coil and the 2nd receiving coil by the magnetic flux which the 2nd receiving coil generated, the 1st receiving coil and the 2nd receiving power by the magnetic flux which the 1st receiving coil generated The magnetic field coupling with the coil can be weakened. And it can suppress that a part of electric signal transmitted to the 1st receiving coil is transmitted to the 2nd receiving coil. As a result, power loss on the power receiving device side can be suppressed, and a decrease in transmission efficiency from the power transmitting device to the power receiving device can be suppressed.
 本発明によれば、2つの伝送方式に対応でき、且つ、送電装置から受電装置への伝送効率の低下を抑制できる無線電力伝送システムを提供することができる。 According to the present invention, it is possible to provide a wireless power transmission system that can cope with two transmission methods and can suppress a decrease in transmission efficiency from the power transmitting apparatus to the power receiving apparatus.
本発明の第1実施形態に係る無線電力伝送システム1の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a wireless power transmission system 1 according to a first embodiment of the present invention. 図1に示す送電装置10の構造を示す説明図である。It is explanatory drawing which shows the structure of the power transmission apparatus 10 shown in FIG. 図1に示す送電装置10の接続状態を示す説明図である。It is explanatory drawing which shows the connection state of the power transmission apparatus 10 shown in FIG. 図1に示す送電コイル12が発生させた磁束の分布を示す説明図である。It is explanatory drawing which shows distribution of the magnetic flux which the power transmission coil 12 shown in FIG. 1 generate | occur | produced. 本発明の第2実施形態に係る無線電力伝送システム101の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless power transmission system 101 which concerns on 2nd Embodiment of this invention. 図5に示す送電装置110の接続状態の切り替え方法を示す説明図である。It is explanatory drawing which shows the switching method of the connection state of the power transmission apparatus 110 shown in FIG. 本発明の第3実施形態に係る無線電力伝送システム201の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless power transmission system 201 which concerns on 3rd Embodiment of this invention. 図7に示す受電装置220の接続状態の切り替え方法を示す説明図である。It is explanatory drawing which shows the switching method of the connection state of the power receiving apparatus 220 shown in FIG. 本発明の第4実施形態に係る無線電力伝送システム301の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless power transmission system 301 which concerns on 4th Embodiment of this invention. 図9に示す受電装置320の接続状態の切り替え方法を示す説明図である。It is explanatory drawing which shows the switching method of the connection state of the power receiving apparatus 320 shown in FIG. 特許文献1に係る非接触電力伝達装置400の構成を示す説明図である。It is explanatory drawing which shows the structure of the non-contact electric power transmission apparatus 400 which concerns on patent document 1. 特許文献2に係る非接触給電システム500の構成を示す説明図である。It is explanatory drawing which shows the structure of the non-contact electric power feeding system 500 which concerns on patent document 2. FIG.
 [第1実施形態]
 以下、本発明の第1実施形態について図面を参照しながら説明する。尚、各図において、X1方向を左方向、X2方向を右方向、Y1方向を前方、Y2方向を後方、Z1方向を上方、Z2方向を下方として、説明を進める。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In each drawing, the description will be made with the X1 direction as the left direction, the X2 direction as the right direction, the Y1 direction as the front, the Y2 direction as the rear, the Z1 direction as the upper side, and the Z2 direction as the lower side.
 まず、本発明の第1実施形態に係る無線電力伝送システム1の構成について、図1ないし図3を用いて説明する。図1は、本発明の第1実施形態に係る無線電力伝送システム1の構成を示すブロック図である。図2は、図1に示す送電装置10の構造を示す説明図である。図2(a)は、送電装置10を上から見た場合の構造を示す模式図である。図2(a)では、内部構造を判り易くするために、カバー16を省略している。図2(b)は、図2(a)のA1-A1断面の構造を示す模式図である。図3は、図1に示す送電装置10の接続状態を示す説明図である。図3(a)は、電磁誘導方式に対応した電力伝送を行う場合の接続状態を示している。図3(b)は、磁気共鳴方式に対応した電力伝送を行う場合の接続状態を示している。 First, the configuration of the wireless power transmission system 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a block diagram showing a configuration of a wireless power transmission system 1 according to the first embodiment of the present invention. FIG. 2 is an explanatory diagram illustrating a structure of the power transmission device 10 illustrated in FIG. 1. Fig.2 (a) is a schematic diagram which shows the structure at the time of seeing the power transmission apparatus 10 from the top. In FIG. 2A, the cover 16 is omitted for easy understanding of the internal structure. FIG. 2B is a schematic diagram showing the structure of the A1-A1 cross section of FIG. FIG. 3 is an explanatory diagram illustrating a connection state of the power transmission device 10 illustrated in FIG. 1. FIG. 3A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed. FIG. 3B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
 無線電力伝送システム1は、図1に示すように、送電装置10と受電装置20とを備えている。無線電力伝送システム1は、電磁誘導方式(第1の伝送方式)と磁気共鳴方式(第2の伝送方式)との両方の伝送方式に対応した無線電力伝送システムである。電磁誘導方式は、送電コイルと受電コイルとを近接させ、送電コイルと受電コイルとの電磁誘導を利用して送電装置から受電装置に電力を伝送する伝送方式である。磁気共鳴方式は、送電コイルと受電コイルとの磁気共鳴を利用して、送電コイルと受電コイルとの距離が離れていても送電装置から受電装置に電力を伝送することが可能な伝送方式である。 As shown in FIG. 1, the wireless power transmission system 1 includes a power transmission device 10 and a power reception device 20. The wireless power transmission system 1 is a wireless power transmission system that supports both the electromagnetic induction method (first transmission method) and the magnetic resonance method (second transmission method). The electromagnetic induction method is a transmission method in which a power transmission coil and a power reception coil are brought close to each other, and electric power is transmitted from the power transmission device to the power reception device using electromagnetic induction between the power transmission coil and the power reception coil. The magnetic resonance method is a transmission method capable of transmitting electric power from the power transmission apparatus to the power reception apparatus using the magnetic resonance between the power transmission coil and the power reception coil even if the distance between the power transmission coil and the power reception coil is long. .
 送電装置10は、電磁誘導方式と磁気共鳴方式との両方の伝送方式に対応した送電装置である。送電装置10は、図1に示すように、2つの送電回路11と、2つの送電コイル12と、2つのスイッチ素子13と、2つのスイッチ素子13を制御する制御回路14(制御部)と、を有している。2つの送電回路11は、第1送電回路11aと第2送電回路11bとである。2つの送電コイル12は、第1送電コイル12aと第2送電コイル12bとである。2つのスイッチ素子13は、第1スイッチ素子13aと第2スイッチ素子13bとである。また、送電装置10は、図2に示すように、送電装置10の各種回路や送電コイル12を収容するためのケース15と、ケース15の上側に固定されるカバー16と、を有している。 The power transmission device 10 is a power transmission device that supports both the electromagnetic induction method and the magnetic resonance method. As shown in FIG. 1, the power transmission device 10 includes two power transmission circuits 11, two power transmission coils 12, two switch elements 13, and a control circuit 14 (control unit) that controls the two switch elements 13, have. The two power transmission circuits 11 are a first power transmission circuit 11a and a second power transmission circuit 11b. The two power transmission coils 12 are a first power transmission coil 12a and a second power transmission coil 12b. The two switch elements 13 are a first switch element 13a and a second switch element 13b. As shown in FIG. 2, the power transmission device 10 includes a case 15 for housing various circuits of the power transmission device 10 and the power transmission coil 12, and a cover 16 fixed to the upper side of the case 15. .
 第1送電回路11aは、電磁誘導方式に対応した送電用の電気信号を発生させている。電磁誘導方式に対応した電気信号としては、通常、数十kHz~数百kHz付近の周波数の交流の電気信号が用いられる。第1送電回路11aとしては、インバータ回路等の回路が使用される。 The first power transmission circuit 11a generates an electric signal for power transmission corresponding to the electromagnetic induction method. As an electric signal corresponding to the electromagnetic induction method, an AC electric signal having a frequency in the vicinity of several tens of kHz to several hundreds of kHz is usually used. A circuit such as an inverter circuit is used as the first power transmission circuit 11a.
 第2送電回路11bは、磁気共鳴方式に対応した送電用の電気信号を発生させている。磁気共鳴方式に対応した電気信号としては、通常、数MHz~数十MHz付近の周波数の交流の電気信号が用いられる。第2送電回路11bとしては、インバータ回路等の回路が使用される。 The second power transmission circuit 11b generates an electric signal for power transmission corresponding to the magnetic resonance method. As an electrical signal corresponding to the magnetic resonance system, an AC electrical signal having a frequency in the vicinity of several MHz to several tens of MHz is usually used. A circuit such as an inverter circuit is used as the second power transmission circuit 11b.
 第1送電コイル12aは、図2に示すように、円の外周に沿って巻き回されたスパイラルコイルである。第1送電コイル12aは、電磁誘導方式に対応している。第1送電コイル12aの両端部は、第1スイッチ素子13aと図示しない配線とを介して第1送電回路11aに接続されている。そして、第1送電回路11aが発生させた電気信号が、第1送電コイル12aに印加される。第1送電コイル12aは、金属でできた導線を所定の形状に巻き回して形成される。 The 1st power transmission coil 12a is a spiral coil wound along the outer periphery of a circle as shown in FIG. The first power transmission coil 12a corresponds to an electromagnetic induction method. Both ends of the first power transmission coil 12a are connected to the first power transmission circuit 11a via the first switch element 13a and a wiring (not shown). Then, the electric signal generated by the first power transmission circuit 11a is applied to the first power transmission coil 12a. The first power transmission coil 12a is formed by winding a conductive wire made of metal into a predetermined shape.
 第2送電コイル12bも、図2に示すように、円の外周に沿って巻き回されたスパイラルコイルである。第2送電コイル12bは、磁気共鳴方式に対応している。第2送電コイル12bのコイル径は、第1送電コイル12aのコイル径よりも大きく設定されている。そして、第2送電コイル12bは、上から見て、第1送電コイル12aの周囲を取り囲むように配置されている。また、第2送電コイル12bは、自身が有するインダクタンスと浮遊容量とによって、所定の周波数で共振するようになっている。 The second power transmission coil 12b is also a spiral coil wound around the outer circumference of the circle as shown in FIG. The second power transmission coil 12b corresponds to the magnetic resonance method. The coil diameter of the second power transmission coil 12b is set larger than the coil diameter of the first power transmission coil 12a. And the 2nd power transmission coil 12b is arrange | positioned so that the circumference | surroundings of the 1st power transmission coil 12a may be surrounded seeing from the top. Further, the second power transmission coil 12b resonates at a predetermined frequency due to its own inductance and stray capacitance.
 第2送電コイル12bの両端部は、第2スイッチ素子13bと図示しない配線とを介して第2送電回路11bに接続されている。そして、第2送電回路11bが発生させた電気信号が、第2送電コイル12bに印加される。第2送電コイル12bは、金属でできた導線を所定の形状に巻き回して形成される。 Both ends of the second power transmission coil 12b are connected to the second power transmission circuit 11b via the second switch element 13b and a wiring (not shown). Then, the electrical signal generated by the second power transmission circuit 11b is applied to the second power transmission coil 12b. The second power transmission coil 12b is formed by winding a conductive wire made of metal into a predetermined shape.
 第1スイッチ素子13aは、第1送電回路11aと第1送電コイル12aとの接続状態を切り替えている。第1スイッチ素子13aがON状態になった時に、第1送電回路11aと第1送電コイル12aの両端部とが電気的に接続された状態となり、第1スイッチ素子13aがOFF状態になった時に、第1送電回路11aと第1送電コイル12aの両端部との電気的な接続が切り離される。 The first switch element 13a switches the connection state between the first power transmission circuit 11a and the first power transmission coil 12a. When the first switch element 13a is turned on, the first power transmission circuit 11a and the both ends of the first power transmission coil 12a are electrically connected, and when the first switch element 13a is turned off. The electrical connection between the first power transmission circuit 11a and both ends of the first power transmission coil 12a is disconnected.
 以下、第1送電回路11aと第1送電コイル12aの両端部とが電気的に接続された状態であることを、第1送電回路11aと第1送電コイル12aとが接続状態であると略称する。また、第1送電回路11aと第1送電コイル12aの両端部との電気的な接続が切り離された状態であることを、第1送電回路11aと第1送電コイル12aとが非接続状態であると略称する。第1スイッチ素子13aとしては、FET等のスイッチ用の半導体が使用される。 Hereinafter, the state where the first power transmission circuit 11a and both ends of the first power transmission coil 12a are electrically connected is abbreviated as the connection state between the first power transmission circuit 11a and the first power transmission coil 12a. . In addition, the first power transmission circuit 11a and the first power transmission coil 12a are in a disconnected state that the electrical connection between the first power transmission circuit 11a and the both ends of the first power transmission coil 12a is disconnected. Abbreviated. As the first switch element 13a, a switching semiconductor such as an FET is used.
 第2スイッチ素子13bは、第2送電回路11bと第2送電コイル12bとの接続状態を切り替えている。第2スイッチ素子13bがON状態になった時に、第2送電回路11bと第2送電コイル12bの両端部とが電気的に接続された状態となり、第2スイッチ素子13bがOFF状態になった時に、第2送電回路11bと第2送電コイル12bの両端部との電気的な接続が切り離される。 The second switch element 13b switches the connection state between the second power transmission circuit 11b and the second power transmission coil 12b. When the second switch element 13b is turned on, the second power transmission circuit 11b and the both ends of the second power transmission coil 12b are electrically connected, and when the second switch element 13b is turned off. The electrical connection between the second power transmission circuit 11b and both ends of the second power transmission coil 12b is disconnected.
 以下、第2送電回路11bと第2送電コイル12bの両端部とが電気的に接続された状態であることを、第2送電回路11bと第2送電コイル12bとが接続状態であると略称する。また、第2送電回路11bと第2送電コイル12bの両端部との電気的な接続が切り離された状態であることを、第2送電回路11bと第2送電コイル12bとが非接続状態であると略称する。第2スイッチ素子13bとしては、FET等のスイッチ用の半導体が使用される。 Hereinafter, the state where the second power transmission circuit 11b and the both ends of the second power transmission coil 12b are electrically connected is abbreviated as the connection state between the second power transmission circuit 11b and the second power transmission coil 12b. . Further, the second power transmission circuit 11b and the second power transmission coil 12b are in a disconnected state that the electrical connection between the second power transmission circuit 11b and the both ends of the second power transmission coil 12b is disconnected. Abbreviated. As the second switch element 13b, a switching semiconductor such as an FET is used.
 制御回路14は、図示しない操作スイッチ等の入力装置に接続されている。そして、制御回路14は、入力装置に対する所定の入力操作に基づいて、電磁誘導方式と磁気共鳴方式とのうちのどちらの伝送方式で電力伝送を行うかを選択している。そして、選択した伝送方式に対応して第1スイッチ素子13aと第2スイッチ素子13bとを制御し、第1送電回路11aと第1送電コイル12aとの接続状態と、第2送電回路11bと第2送電コイル12bとの接続状態と、を切り替えている。 The control circuit 14 is connected to an input device such as an operation switch (not shown). Then, the control circuit 14 selects which one of the electromagnetic induction method and the magnetic resonance method is used for power transmission based on a predetermined input operation on the input device. Then, the first switch element 13a and the second switch element 13b are controlled corresponding to the selected transmission method, the connection state of the first power transmission circuit 11a and the first power transmission coil 12a, the second power transmission circuit 11b and the second power transmission circuit 11b. 2 The connection state with the power transmission coil 12b is switched.
 図3(a)に示すように、電磁誘導方式に対応した電力伝送を行う場合、制御回路14は、第1スイッチ素子13aをON状態とし、第2スイッチ素子13bをOFF状態とする。その結果、第1送電回路11aと第1送電コイル12aとが接続状態となり、第2送電回路11bと第2送電コイル12bとが非接続状態となる。そして、第1送電回路11aから第1送電コイル12aに電磁誘導方式に対応した電気信号が印加され、第1送電コイル12aが印加された電気信号に対応した磁界を発生させる。第2送電コイル12bは第2送電回路11bから切り離される。 As shown in FIG. 3 (a), when power transmission corresponding to the electromagnetic induction method is performed, the control circuit 14 turns the first switch element 13a on and the second switch element 13b off. As a result, the first power transmission circuit 11a and the first power transmission coil 12a are connected, and the second power transmission circuit 11b and the second power transmission coil 12b are disconnected. And the electric signal corresponding to an electromagnetic induction system is applied from the 1st power transmission circuit 11a to the 1st power transmission coil 12a, and the magnetic field corresponding to the electrical signal to which the 1st power transmission coil 12a was applied is generated. The second power transmission coil 12b is disconnected from the second power transmission circuit 11b.
 一方、図3(b)に示すように、磁気共鳴方式に対応した電力伝送を行う場合、制御回路14は、第1スイッチ素子13aをOFF状態とし、第2スイッチ素子13bをON状態にする。その結果、第2送電回路11bと第2送電コイル12bとが接続状態となり、第1送電回路11aと第1送電コイル12aとが非接続状態となる。そして、第2送電回路11bから第2送電コイル12bに磁気共鳴方式に対応した電気信号が印加され、第2送電コイル12bが印加された電気信号に対応した磁界を発生させる。第1送電コイル12aは第1送電回路11aから切り離される。 On the other hand, as shown in FIG. 3B, when power transmission corresponding to the magnetic resonance method is performed, the control circuit 14 sets the first switch element 13a to the OFF state and the second switch element 13b to the ON state. As a result, the second power transmission circuit 11b and the second power transmission coil 12b are connected, and the first power transmission circuit 11a and the first power transmission coil 12a are disconnected. And the electric signal corresponding to a magnetic resonance system is applied to the 2nd power transmission coil 12b from the 2nd power transmission circuit 11b, and the magnetic field corresponding to the electrical signal to which the 2nd power transmission coil 12b was applied is generated. The first power transmission coil 12a is disconnected from the first power transmission circuit 11a.
 ケース15は、合成樹脂等でできた略直方体の部材であり、回路収容部15aとコイル収容部15bとを有している。コイル収容部15bには、図2に示すように、第1送電コイル12aと第2送電コイル12bとが収容されている。図示しないが、回路収容部15aには、第1送電回路11aと第2送電回路11bと第1スイッチ素子13aと第2スイッチ素子13bと制御回路14とが収容されている。 The case 15 is a substantially rectangular parallelepiped member made of synthetic resin or the like, and has a circuit housing portion 15a and a coil housing portion 15b. As shown in FIG. 2, the coil accommodating portion 15b accommodates a first power transmission coil 12a and a second power transmission coil 12b. Although not shown, the circuit housing portion 15a houses the first power transmission circuit 11a, the second power transmission circuit 11b, the first switch element 13a, the second switch element 13b, and the control circuit 14.
 カバー16は、合成樹脂等でできた板状の部材であり、上下に略長方形の板面を有している。そして、カバー16は、回路収容部15aとコイル収容部15bとを覆うように、ケース15の上側に固定されている。カバー16の上面は、受電装置20が載置される給電面16aとなっている。第1送電コイル12aと第2送電コイル12bとは、給電面16aの下側(背面側)に配置されている。 The cover 16 is a plate-like member made of synthetic resin or the like, and has a substantially rectangular plate surface at the top and bottom. And the cover 16 is being fixed to the upper side of the case 15 so that the circuit accommodating part 15a and the coil accommodating part 15b may be covered. The upper surface of the cover 16 serves as a power feeding surface 16a on which the power receiving device 20 is placed. The 1st power transmission coil 12a and the 2nd power transmission coil 12b are arrange | positioned under the electric power feeding surface 16a (back side).
 受電装置20は、電磁誘導方式と磁気共鳴方式とのうちのどちらか一方の伝送方式に対応した受電装置である。受電装置20は、どちらか一方の伝送方式に固定された受電装置であっても、操作スイッチ等によって伝送方式を切り替え可能な受電装置であっても構わない。受電装置20は、図1に示すように、受電コイル21と受電回路22と負荷23とを有している。そして、受電装置20は、図2に示すように、カバー16を挟んで送電コイル12と受電コイル21とが対向するように、給電面16aの上に載置される。 The power receiving device 20 is a power receiving device corresponding to one of the electromagnetic induction method and the magnetic resonance method. The power receiving device 20 may be a power receiving device fixed to one of the transmission methods, or a power receiving device capable of switching the transmission method by an operation switch or the like. As illustrated in FIG. 1, the power receiving device 20 includes a power receiving coil 21, a power receiving circuit 22, and a load 23. As shown in FIG. 2, the power receiving device 20 is placed on the power feeding surface 16 a so that the power transmission coil 12 and the power receiving coil 21 face each other with the cover 16 interposed therebetween.
 受電コイル21は、2つの送電コイル12のうちのどちらか一方と磁界結合するようになっている。受電装置20が電磁誘導方式に対応した装置である場合、受電コイル21は、図3(a)に示すように、第1送電コイル12aと磁界結合する。その場合、第1送電コイル12aと受電コイル21とは、電磁誘導によって結合する。 The power receiving coil 21 is magnetically coupled to either one of the two power transmitting coils 12. When the power receiving device 20 is a device compatible with the electromagnetic induction method, the power receiving coil 21 is magnetically coupled to the first power transmitting coil 12a as shown in FIG. In that case, the 1st power transmission coil 12a and the receiving coil 21 are couple | bonded by electromagnetic induction.
 受電装置20が磁気共鳴方式に対応した装置である場合、受電コイル21は、図3(b)に示すように、第2送電コイル12bと磁界結合する。その場合、受電コイル21は、所定の周波数で共振し、第2送電コイル12bと受電コイル21とは、磁気共鳴によって結合する。 When the power receiving device 20 is a device compatible with the magnetic resonance method, the power receiving coil 21 is magnetically coupled to the second power transmitting coil 12b as shown in FIG. In that case, the power receiving coil 21 resonates at a predetermined frequency, and the second power transmitting coil 12b and the power receiving coil 21 are coupled by magnetic resonance.
 そして、送電コイル12と受電コイル21との磁界結合によって、送電コイル12に印加された交流の電気信号が受電コイル21に伝送される。尚、図示しないが、受電コイル21も、送電コイル12と同様に、金属でできた導線を所定の形状に巻き回して形成される。 Then, an AC electrical signal applied to the power transmission coil 12 is transmitted to the power reception coil 21 by magnetic field coupling between the power transmission coil 12 and the power reception coil 21. Although not shown, the power receiving coil 21 is also formed by winding a conductive wire made of metal into a predetermined shape, like the power transmitting coil 12.
 受電回路22は、整流回路や平滑化回路等を有した回路である。受電回路22は、受電コイル21の両端部と接続されている。そして、受電回路22は、受電コイル21に伝送された交流の電気信号を整流及び平滑化して直流の電気信号に変換した後に、負荷23に出力している。無線電力伝送システム1は、このように、送電コイル12と受電コイル21との磁界結合を利用して、送電装置10から受電装置20に無線で電力を伝送している。 The power receiving circuit 22 is a circuit having a rectifier circuit, a smoothing circuit, and the like. The power receiving circuit 22 is connected to both ends of the power receiving coil 21. The power receiving circuit 22 rectifies and smoothes the AC electrical signal transmitted to the power receiving coil 21 and converts it into a DC electrical signal, and then outputs it to the load 23. As described above, the wireless power transmission system 1 wirelessly transmits power from the power transmission device 10 to the power reception device 20 by using the magnetic field coupling between the power transmission coil 12 and the power reception coil 21.
 次に、送電装置10から受電装置20への伝送効率について、図4を用いて説明する。図4は、図1に示す送電コイル12が発生させた磁束の分布を示す説明図である。図4(a)は、第1送電コイル12aが発生させた磁束B1の分布を模式的に示す図である。図4(b)は、第2送電コイル12bが発生させた磁束B2の分布を模式的に示す図である。図4(a)と図4(b)とは、いずれも第1送電コイル12aと第2送電コイル12bとを横から見た場合の磁束の分布を示している。 Next, the transmission efficiency from the power transmitting apparatus 10 to the power receiving apparatus 20 will be described with reference to FIG. FIG. 4 is an explanatory diagram showing the distribution of magnetic flux generated by the power transmission coil 12 shown in FIG. Fig.4 (a) is a figure which shows typically distribution of the magnetic flux B1 which the 1st power transmission coil 12a generated. FIG. 4B is a diagram schematically showing the distribution of the magnetic flux B2 generated by the second power transmission coil 12b. 4A and 4B show the distribution of magnetic flux when the first power transmission coil 12a and the second power transmission coil 12b are viewed from the side.
 まず、電磁誘導方式に対応した電力伝送を行う場合の、送電コイル12と受電コイル21との磁界結合について説明する。電磁誘導方式に対応した電力伝送を行う場合、第1送電コイル12aに送電用の電気信号が印加される。そして、図4(a)に示すように、第1送電コイル12aが自身の周囲に磁束B1を発生させる。図示しないが、第1送電コイル12aが発生させた磁束B1に対応して、第1送電コイル12aの周囲に磁界が形成される。そして、第1送電コイル12aの上方に形成された磁界によって、第1送電コイル12aと受電コイル21とが磁界結合し、送電装置10から受電装置20への電力伝送が可能となる。 First, magnetic field coupling between the power transmission coil 12 and the power reception coil 21 when performing power transmission corresponding to the electromagnetic induction method will be described. When power transmission corresponding to the electromagnetic induction method is performed, an electric signal for power transmission is applied to the first power transmission coil 12a. And as shown to Fig.4 (a), the 1st power transmission coil 12a generates the magnetic flux B1 around self. Although not shown, a magnetic field is formed around the first power transmission coil 12a corresponding to the magnetic flux B1 generated by the first power transmission coil 12a. Then, the magnetic field formed above the first power transmission coil 12a magnetically couples the first power transmission coil 12a and the power reception coil 21, and power transmission from the power transmission device 10 to the power reception device 20 becomes possible.
 また、第1送電コイル12aが発生させた磁束B1に対応して、第2送電コイル12bの周囲にも磁界が形成される。そして、第2送電コイル12bの周囲に形成された磁界によって、第1送電コイル12aと第2送電コイル12bとが磁界結合する。第1送電コイル12aと第2送電コイル12bとの磁界結合が強くなると、第1送電コイル12aに印加された電気信号の一部が第2送電コイル12bにも伝送される。 Further, a magnetic field is also formed around the second power transmission coil 12b corresponding to the magnetic flux B1 generated by the first power transmission coil 12a. Then, the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled by the magnetic field formed around the second power transmission coil 12b. When the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b becomes strong, a part of the electrical signal applied to the first power transmission coil 12a is also transmitted to the second power transmission coil 12b.
 次に、電磁誘導方式に対応した電力伝送を行う場合の伝送効率について説明する。第1送電コイル12aを利用して送電装置10から伝送される電力をPt、第1送電コイル12aと受電コイル21との磁界結合によって受電装置20へ伝送される電力をPr、第1送電コイル12aと第2送電コイル12bとの磁界結合によって第2送電回路11bへ伝送されて損失となる電力をPm、送電装置10から受電装置20への伝送効率をηとし、電力Pm以外に電力の損失が無いとすると、伝送効率ηは、η=Pr/Pt=Pr/(Pr+Pm)として表すことができる。 Next, the transmission efficiency when power transmission corresponding to the electromagnetic induction method is performed will be described. The power transmitted from the power transmission device 10 using the first power transmission coil 12a is Pt, the power transmitted to the power reception device 20 by magnetic coupling between the first power transmission coil 12a and the power reception coil 21 is Pr, and the first power transmission coil 12a. Pm is the power that is transmitted to the second power transmission circuit 11b by magnetic field coupling between the power transmission device 12b and the second power transmission coil 12b, and η is the transmission efficiency from the power transmission device 10 to the power reception device 20, and there is power loss other than the power Pm. If there is no transmission efficiency, η can be expressed as η = Pr / Pt = Pr / (Pr + Pm).
 また、受電コイル21側から見た受電回路22側の負荷抵抗をRr、送電装置10から受電装置20への電力伝送に伴って受電回路22を流れる電流をIr、第2送電コイル12b側から見た第2送電回路11b側の負荷抵抗をRm、第1送電コイル12aと第2送電コイル12bとの磁界結合に伴って第2送電回路11bを流れる電流をImとすると、電力Prは、Pr=Rr・Ir^2、電力Pmは、Pm=Rm・Im^2、伝送効率ηは、η=(Rr・Ir^2)/(Rr・Ir^2+Rm・Im^2)として表すことができる。 Further, the load resistance on the power receiving circuit 22 side as viewed from the power receiving coil 21 side is Rr, the current flowing through the power receiving circuit 22 along with the power transmission from the power transmitting device 10 to the power receiving device 20 is viewed from the second power transmitting coil 12b side. When the load resistance on the second power transmission circuit 11b side is Rm, and the current flowing through the second power transmission circuit 11b due to the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b is Im, the power Pr is Pr = Rr · Ir ^ 2, power Pm can be expressed as Pm = Rm · Im ^ 2, and transmission efficiency η can be expressed as η = (Rr · Ir ^ 2) / (Rr · Ir ^ 2 + Rm · Im ^ 2).
 上記の式から判るように、第1送電コイル12aと第2送電コイル12bとの磁界結合に伴って第2送電回路11bを流れる電流Imが大きくなる程、伝送効率ηは低下していく。一方、第1送電コイル12aと第2送電コイル12bとが磁界結合しても、第2送電回路11bと第2送電コイル12bとが非接続状態であり、第2送電回路11bを電流Imが流れなければ、第2送電回路11bでの電力の損失は発生せず、伝送効率の低下を抑制することができる。 As can be seen from the above equation, the transmission efficiency η decreases as the current Im flowing through the second power transmission circuit 11b increases with the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b. On the other hand, even if the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled, the second power transmission circuit 11b and the second power transmission coil 12b are not connected, and the current Im flows through the second power transmission circuit 11b. If not, no power loss occurs in the second power transmission circuit 11b, and a decrease in transmission efficiency can be suppressed.
 次に、磁気共鳴方式に対応した電力伝送を行う場合の、送電コイル12と受電コイル21との磁界結合について説明する。磁気共鳴方式に対応した電力伝送を行う場合、第2送電コイル12bに送電用の電気信号が印加される。そして、図4(b)に示すように、第2送電コイル12bが自身の周囲に磁束B2を発生させる。図示しないが、第2送電コイル12bが発生させた磁束B2に対応して、第2送電コイル12bの周囲に磁界が形成される。そして、第2送電コイル12bの上方に形成された磁界によって、第1送電コイル12aと受電コイル21とが磁界結合し、送電装置10から受電装置20への電力伝送が可能となる。 Next, the magnetic field coupling between the power transmission coil 12 and the power reception coil 21 when performing power transmission corresponding to the magnetic resonance method will be described. When power transmission corresponding to the magnetic resonance method is performed, an electrical signal for power transmission is applied to the second power transmission coil 12b. And as shown in FIG.4 (b), the 2nd power transmission coil 12b generates the magnetic flux B2 around self. Although not shown, a magnetic field is formed around the second power transmission coil 12b corresponding to the magnetic flux B2 generated by the second power transmission coil 12b. The first power transmission coil 12a and the power reception coil 21 are magnetically coupled by the magnetic field formed above the second power transmission coil 12b, and power transmission from the power transmission device 10 to the power reception device 20 becomes possible.
 また、第2送電コイル12bが発生させた磁束B2に対応して、第1送電コイル12aの周囲にも磁界が形成される。そして、第1送電コイル12aの周囲に形成された磁界によって、第1送電コイル12aと第2送電コイル12bとが磁界結合する。第1送電コイル12aと第2送電コイル12bとの磁界結合が強くなると、第2送電コイル12bに印加された電気信号の一部が第1送電コイル12aにも伝送される。 Further, a magnetic field is also formed around the first power transmission coil 12a corresponding to the magnetic flux B2 generated by the second power transmission coil 12b. The first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled by the magnetic field formed around the first power transmission coil 12a. When the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b becomes stronger, a part of the electrical signal applied to the second power transmission coil 12b is also transmitted to the first power transmission coil 12a.
 受電装置20が磁気共鳴方式に対応した装置である場合の伝送効率については、詳細な説明は省略するが、第1送電コイル12aと第2送電コイル12bとが磁界結合しても、第1送電回路11aと第1送電コイル12aとが非接続状態であり、第1送電回路11aを電流が流れなければ、第1送電回路11aでの電力の損失は発生せず、伝送効率の低下を抑制することができる。 Although detailed description is omitted about the transmission efficiency when the power receiving apparatus 20 is an apparatus corresponding to a magnetic resonance system, even if the first power transmission coil 12a and the second power transmission coil 12b are magnetically coupled, the first power transmission If the circuit 11a and the first power transmission coil 12a are not connected and no current flows through the first power transmission circuit 11a, no power loss occurs in the first power transmission circuit 11a, and a decrease in transmission efficiency is suppressed. be able to.
 尚、通常、コイルが発生させた磁束はコイルの内側に集中するので、コイルの内側の磁束密度は高くなり、それに伴って、コイルの内側の磁界強度は強くなる。一方、コイルの外側では磁束密度は低くなり、それに伴って、コイルの外側の磁界強度は弱くなる。そして、本実施形態では、第2送電コイル12bのコイル径は、第1送電コイル12aのコイル径よりも大きく、第2送電コイル12bは、平面視において第1送電コイル12aの周囲を取り囲むように配置されている。そのため、第2送電コイル12bが発生させた磁束B2による第1送電コイル12aと第2送電コイル12bとの磁界結合と比較して、第1送電コイル12aが発生させた磁束B1による第1送電コイル12aと第2送電コイル12bとの磁界結合の方が弱くなる。 Normally, the magnetic flux generated by the coil concentrates inside the coil, so that the magnetic flux density inside the coil increases, and accordingly, the magnetic field strength inside the coil increases. On the other hand, the magnetic flux density is reduced outside the coil, and accordingly, the magnetic field strength outside the coil is weakened. And in this embodiment, the coil diameter of the 2nd power transmission coil 12b is larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b surrounds the circumference | surroundings of the 1st power transmission coil 12a in planar view. Has been placed. Therefore, in comparison with the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b by the magnetic flux B2 generated by the second power transmission coil 12b, the first power transmission coil by the magnetic flux B1 generated by the first power transmission coil 12a. Magnetic field coupling between 12a and the second power transmission coil 12b is weaker.
 次に、本実施形態の効果について説明する。本実施形態の無線電力伝送システム1では、送電装置10は、電磁誘導方式に対応した第1送電回路11aと、磁気共鳴方式に対応した第2送電回路11bと、電磁誘導方式に対応した第1送電コイル12aと、磁気共鳴方式に対応した第2送電コイル12bと、を有している。そのため、受電装置20が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置10から受電装置20へ電力を伝送することができる。 Next, the effect of this embodiment will be described. In the wireless power transmission system 1 according to the present embodiment, the power transmission device 10 includes a first power transmission circuit 11a corresponding to the electromagnetic induction method, a second power transmission circuit 11b corresponding to the magnetic resonance method, and a first corresponding to the electromagnetic induction method. It has the power transmission coil 12a and the 2nd power transmission coil 12b corresponding to a magnetic resonance system. Therefore, power can be transmitted from the power transmission device 10 to the power reception device 20 regardless of which of the two transmission methods the power reception device 20 is.
 しかも、送電装置10は、第1送電回路11aと第1送電コイル12aとの接続状態を切り替える第1スイッチ素子13aと、第2送電回路11bと第2送電コイル12bとの接続状態を切り替える第2スイッチ素子13bと、第1スイッチ素子13aと第2スイッチ素子13bとを制御する制御回路14と、を有している。そして、制御回路14は、第1送電回路11aと第1送電コイル12aとが接続状態である時には、第2送電回路11bと第2送電コイル12bとが非接続状態となり、第2送電回路11bと第2送電コイル12bとが接続状態である時には、第1送電回路11aと第1送電コイル12aとが非接続状態となるように、第1スイッチ素子13aと第2スイッチ素子13bとを制御している。 Moreover, the power transmission device 10 switches the first switch element 13a that switches the connection state between the first power transmission circuit 11a and the first power transmission coil 12a, and the second that switches the connection state between the second power transmission circuit 11b and the second power transmission coil 12b. A switch element 13b and a control circuit 14 for controlling the first switch element 13a and the second switch element 13b are provided. And when the 1st power transmission circuit 11a and the 1st power transmission coil 12a are a connection state, the control circuit 14 will be in a connection state with the 2nd power transmission circuit 11b and the 2nd power transmission coil 12b. When the second power transmission coil 12b is in a connected state, the first switch element 13a and the second switch element 13b are controlled so that the first power transmission circuit 11a and the first power transmission coil 12a are in a disconnected state. Yes.
 そのため、第1送電コイル12aと第2送電コイル12bとの磁界結合によって、第1送電コイル12aに印加された電気信号が第2送電コイル12bに伝送されても、第2送電回路11bと第2送電コイル12bとを非接続状態とすることによって、第2送電回路11bに不要な電流が流れるのを防止することができる。また、第1送電コイル12aと第2送電コイル12bとの磁界結合によって、第2送電コイル12bに印加された電気信号が第1送電コイル12aに伝送されても、第1送電回路11aと第1送電コイル12aとを非接続状態とすることによって、第1送電回路11aに不要な電流が流れるのを防止することができる。その結果、送電装置10側での電力の損失を抑制することができ、送電装置10から受電装置20への伝送効率の低下を抑制することができる。 Therefore, even if the electric signal applied to the 1st power transmission coil 12a is transmitted to the 2nd power transmission coil 12b by the magnetic field coupling of the 1st power transmission coil 12a and the 2nd power transmission coil 12b, the 2nd power transmission circuit 11b and the 2nd By making the power transmission coil 12b non-connected, it is possible to prevent unnecessary current from flowing through the second power transmission circuit 11b. Moreover, even if the electric signal applied to the 2nd power transmission coil 12b is transmitted to the 1st power transmission coil 12a by the magnetic field coupling of the 1st power transmission coil 12a and the 2nd power transmission coil 12b, the 1st power transmission circuit 11a and the 1st By setting the power transmission coil 12a to the disconnected state, it is possible to prevent unnecessary current from flowing through the first power transmission circuit 11a. As a result, power loss on the power transmission device 10 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 10 to the power reception device 20 can be suppressed.
 また、本実施形態の無線電力伝送システム1では、第1送電コイル12aは、電磁誘導方式の無線電力伝送に対応したコイルであり、第2送電コイル12bは、磁気共鳴方式の無線電力伝送に対応したコイルである。電磁誘導方式は、送電コイルと受電コイルとを近接させて電力を伝送する伝送方式であり、磁気共鳴方式は、送電コイルと受電コイルとの距離が離れている場合でも電力を伝送することが可能な伝送方式である。そのため、無線電力伝送システム1では、送電装置10と受電装置20とが近接している場合でも、送電装置10と受電装置20との距離が離れている場合でも、送電装置10から受電装置20へ電力を伝送することができる。その結果、送電装置10と受電装置20との距離に対する自由度を拡げることができる。 Further, in the wireless power transmission system 1 of the present embodiment, the first power transmission coil 12a is a coil compatible with electromagnetic induction wireless power transmission, and the second power transmission coil 12b is compatible with magnetic resonance wireless power transmission. Coil. The electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other. The magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, in the wireless power transmission system 1, even when the power transmission device 10 and the power reception device 20 are close to each other or when the distance between the power transmission device 10 and the power reception device 20 is long, the power transmission device 10 to the power reception device 20. Electric power can be transmitted. As a result, the degree of freedom with respect to the distance between the power transmission device 10 and the power reception device 20 can be expanded.
 また、本実施形態の無線電力伝送システム1では、第2送電コイル12bのコイル径は、第1送電コイル12aのコイル径よりも大きく、第2送電コイル12bは、平面視において第1送電コイル12aの周囲を取り囲むように配置されている。そのため、第2送電コイル12bが、円の外周に沿って巻き回されたスパイラルコイルであり、第2送電コイル12bの内側に空間が形成されているような場合でも、第2送電コイル12bの内側の空間を有効に活用し、送電装置10を小型化することができる。 Moreover, in the wireless power transmission system 1 of the present embodiment, the coil diameter of the second power transmission coil 12b is larger than the coil diameter of the first power transmission coil 12a, and the second power transmission coil 12b is in the first view when viewed in plan. It is arranged so that it surrounds Therefore, even when the second power transmission coil 12b is a spiral coil wound around the outer periphery of the circle and a space is formed inside the second power transmission coil 12b, the inner side of the second power transmission coil 12b. Thus, the power transmission device 10 can be downsized.
 また、本実施形態の無線電力伝送システム1では、送電装置10は、受電装置20が載置される給電面16aを有し、第1送電コイル12aと第2送電コイル12bとは、給電面16aの下側(背面側)に配置されている。そのため、送電コイル12と受電コイル21との距離を安定させ易く、送電装置10から受電装置20へ電力を安定して伝送することができる。しかも、無線電力伝送システム1では、第2送電コイル12bは、磁気共鳴方式の無線電力伝送に対応したコイルであり、第2送電コイル12bのコイル径の方が、第1送電コイル12aのコイル径よりも大きい。磁気共鳴方式の無線電力伝送では、送電コイル12の外径が大きい程、伝送距離(電力を有効に伝送できる距離)を長くすることができる。そのため、受電装置20が給電面16aから離れた場合でも、送電装置10から受電装置20への電力伝送を維持し易い。 Moreover, in the wireless power transmission system 1 of the present embodiment, the power transmission device 10 has the power feeding surface 16a on which the power receiving device 20 is placed, and the first power transmission coil 12a and the second power transmission coil 12b are the power feeding surface 16a. It is arranged on the lower side (back side). Therefore, it is easy to stabilize the distance between the power transmission coil 12 and the power reception coil 21, and power can be stably transmitted from the power transmission device 10 to the power reception device 20. Moreover, in the wireless power transmission system 1, the second power transmission coil 12b is a coil that supports magnetic resonance wireless power transmission, and the coil diameter of the second power transmission coil 12b is the coil diameter of the first power transmission coil 12a. Bigger than. In the magnetic resonance type wireless power transmission, the larger the outer diameter of the power transmission coil 12, the longer the transmission distance (distance at which power can be transmitted effectively). Therefore, even when the power receiving device 20 is separated from the power feeding surface 16a, it is easy to maintain power transmission from the power transmitting device 10 to the power receiving device 20.
 [第2実施形態]
 以下、本発明の第2実施形態について図面を参照しながら説明する。尚、本実施形態において、前述した第1実施形態と同一の構成である場合、同一符号を付して詳細な説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In addition, in this embodiment, when it is the same structure as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 まず、本発明の第2実施形態に係る無線電力伝送システム101の構成について、図5及び図6を用いて説明する。図5は、本発明の第2実施形態に係る無線電力伝送システム101の構成を示すブロック図である。図6は、図5に示す送電装置110の接続状態の切り替え方法を示す説明図である。図6(a)は、電磁誘導方式に対応した電力伝送を行う場合の接続状態を示している。図6(b)は、磁気共鳴方式に対応した電力伝送を行う場合の接続状態を示している。 First, the configuration of the wireless power transmission system 101 according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 is a block diagram showing a configuration of the wireless power transmission system 101 according to the second embodiment of the present invention. FIG. 6 is an explanatory diagram illustrating a method for switching the connection state of the power transmission device 110 illustrated in FIG. 5. FIG. 6A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed. FIG. 6B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
 無線電力伝送システム101は、図5に示すように、送電装置110と受電装置120とを備えている。受電装置120の構成は、第1実施形態における受電装置20の構成と同じである。送電装置110の構成は、第1実施形態における送電装置10の構成とほぼ同じであるが、本実施形態では、第2送電回路11bと第2送電コイル12bとの接続が第1実施形態と異なる。送電装置110では、第2スイッチ素子13bが無く、第2送電回路11bと第2送電コイル12bとは常に接続状態となっている。 The wireless power transmission system 101 includes a power transmission device 110 and a power reception device 120 as shown in FIG. The configuration of the power receiving device 120 is the same as the configuration of the power receiving device 20 in the first embodiment. The configuration of the power transmission device 110 is substantially the same as the configuration of the power transmission device 10 in the first embodiment. However, in this embodiment, the connection between the second power transmission circuit 11b and the second power transmission coil 12b is different from that in the first embodiment. . In the power transmission device 110, there is no second switch element 13b, and the second power transmission circuit 11b and the second power transmission coil 12b are always connected.
 そして、図6に示すように、制御回路14は、電磁誘導方式に対応した電力伝送を行う場合、すなわち、第1送電コイル12aに送電用の電気信号を印加する時には、第1送電回路11aと第1送電コイル12aとが接続状態となるように、第1スイッチ素子13aを制御している。また、制御回路14は、磁気共鳴方式に対応した電力伝送を行う場合、すなわち、第2送電コイル12bに送電用の電気信号を印加する時には、第1送電回路11aと第1送電コイル12aとが非接続状態となるように、第1スイッチ素子13aを制御している。 As shown in FIG. 6, when the control circuit 14 performs power transmission corresponding to the electromagnetic induction method, that is, when an electric signal for power transmission is applied to the first power transmission coil 12 a, the control circuit 14 and the first power transmission circuit 11 a The first switch element 13a is controlled so that the first power transmission coil 12a is connected. In addition, when the control circuit 14 performs power transmission corresponding to the magnetic resonance method, that is, when an electric signal for power transmission is applied to the second power transmission coil 12b, the first power transmission circuit 11a and the first power transmission coil 12a The first switch element 13a is controlled so as to be in a disconnected state.
 送電コイル12の構造は、第1実施形態における送電コイル12の構造と同じである。すなわち、第2送電コイル12bのコイル径は、第1送電コイル12aのコイル径よりも大きく、第2送電コイル12bは、平面視において第1送電コイル12aの周囲を取り囲むように配置されている。そのため、第1実施形態と同様に、第2送電コイル12bが発生させた磁束B2による第1送電コイル12aと第2送電コイル12bとの磁界結合と比較して、第1送電コイル12aが発生させた磁束B1による第1送電コイル12aと第2送電コイル12bとの磁界結合の方が弱くなる。 The structure of the power transmission coil 12 is the same as the structure of the power transmission coil 12 in the first embodiment. That is, the coil diameter of the 2nd power transmission coil 12b is larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b is arrange | positioned so that the circumference | surroundings of the 1st power transmission coil 12a may be enclosed in planar view. Therefore, as in the first embodiment, the first power transmission coil 12a is generated compared to the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b by the magnetic flux B2 generated by the second power transmission coil 12b. Magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b by the magnetic flux B1 becomes weaker.
 次に、本実施形態の効果について説明する。本実施形態の無線電力伝送システム101では、送電装置110は、電磁誘導方式に対応した第1送電回路11aと、磁気共鳴方式に対応した第2送電回路11bと、電磁誘導方式に対応した第1送電コイル12aと、磁気共鳴方式に対応した第2送電コイル12bと、を有している。そのため、受電装置120が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置110から受電装置120へ電力を伝送することができる。 Next, the effect of this embodiment will be described. In the wireless power transmission system 101 according to the present embodiment, the power transmission device 110 includes a first power transmission circuit 11a corresponding to the electromagnetic induction method, a second power transmission circuit 11b corresponding to the magnetic resonance method, and a first corresponding to the electromagnetic induction method. It has the power transmission coil 12a and the 2nd power transmission coil 12b corresponding to a magnetic resonance system. Therefore, power can be transmitted from power transmission device 110 to power reception device 120 regardless of which of the two transmission methods is used by power reception device 120.
 しかも、送電装置110は、第1送電回路11aと第1送電コイル12aとの接続状態を切り替えるスイッチ素子13と、スイッチ素子13を制御する制御回路14と、を有している。そして、制御回路14は、第1送電コイル12aに送電用の電気信号を印加する時には、第1送電回路11aと第1送電コイル12aとが接続状態となり、第2送電コイル12bに送電用の電気信号を印加する時には、第1送電回路11aと第1送電コイル12aとが非接続状態となるように、スイッチ素子13を制御している。そのため、第1送電コイル12aと第2送電コイル12bとの磁界結合によって、第2送電コイル12bに印加された電気信号が第1送電コイル12aに伝送されても、第1送電回路11aと第1送電コイル12aとを非接続状態とすることによって、第1送電回路11aに不要な電流が流れるのを防止することができる。 Moreover, the power transmission device 110 includes a switch element 13 that switches a connection state between the first power transmission circuit 11a and the first power transmission coil 12a, and a control circuit 14 that controls the switch element 13. And when the control circuit 14 applies the electric signal for power transmission to the 1st power transmission coil 12a, the 1st power transmission circuit 11a and the 1st power transmission coil 12a will be in a connection state, and the electric power for power transmission to the 2nd power transmission coil 12b. When a signal is applied, the switch element 13 is controlled so that the first power transmission circuit 11a and the first power transmission coil 12a are disconnected. Therefore, even if the electric signal applied to the second power transmission coil 12b is transmitted to the first power transmission coil 12a due to the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b, the first power transmission circuit 11a and the first power transmission circuit 11a By setting the power transmission coil 12a to the disconnected state, it is possible to prevent unnecessary current from flowing through the first power transmission circuit 11a.
 また、第2送電コイル12bのコイル径は、第1送電コイル12aのコイル径よりも大きく設定されており、第2送電コイル12bは、上から見て(平面視において)、第1送電コイル12aの周囲を取り囲むように配置されている。そのため、第2送電コイル12bが発生させた磁束B2による第1送電コイル12aと第2送電コイル12bとの磁界結合と比較して、第1送電コイル12aが発生させた磁束B1による第1送電コイル12aと第2送電コイル12bとの磁界結合の方を弱くすることができる。そして、第1送電コイル12aに印加された電気信号が第2送電コイル12bに伝送されるのを抑制することができる。その結果、送電装置110側での電力の損失を抑制することができ、送電装置110から受電装置120への伝送効率の低下を抑制することができる。 Moreover, the coil diameter of the 2nd power transmission coil 12b is set larger than the coil diameter of the 1st power transmission coil 12a, and the 2nd power transmission coil 12b is a 1st power transmission coil 12a seeing from a top (in planar view). It is arranged so that it surrounds Therefore, in comparison with the magnetic field coupling between the first power transmission coil 12a and the second power transmission coil 12b by the magnetic flux B2 generated by the second power transmission coil 12b, the first power transmission coil by the magnetic flux B1 generated by the first power transmission coil 12a. Magnetic field coupling between 12a and the second power transmission coil 12b can be weakened. And it can suppress that the electric signal applied to the 1st power transmission coil 12a is transmitted to the 2nd power transmission coil 12b. As a result, power loss on the power transmission device 110 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 110 to the power reception device 120 can be suppressed.
 また、本実施形態の無線電力伝送システム101では、第1送電コイル12aは、電磁誘導方式の無線電力伝送に対応したコイルであり、第2送電コイル12bは、磁気共鳴方式の無線電力伝送に対応したコイルである。電磁誘導方式は、送電コイルと受電コイルとを近接させて電力を伝送する伝送方式であり、磁気共鳴方式は、送電コイルと受電コイルとの距離が離れている場合でも電力を伝送することが可能な伝送方式である。そのため、無線電力伝送システム101では、送電装置110と受電装置120とが近接している場合でも、送電装置110と受電装置120との距離が離れている場合でも、送電装置110から受電装置120へ電力を伝送することができ、送電装置110と受電装置120との距離に対する自由度を拡げることができる。 Further, in the wireless power transmission system 101 of the present embodiment, the first power transmission coil 12a is a coil compatible with electromagnetic induction wireless power transmission, and the second power transmission coil 12b is compatible with magnetic resonance wireless power transmission. Coil. The electromagnetic induction method is a transmission method that transmits power by bringing a power transmission coil and a power reception coil close to each other. The magnetic resonance method can transmit power even when the distance between the power transmission coil and the power reception coil is long. It is a simple transmission method. Therefore, in the wireless power transmission system 101, the power transmission device 110 and the power reception device 120 are connected to each other even when the power transmission device 110 and the power reception device 120 are close to each other or when the distance between the power transmission device 110 and the power reception device 120 is long. Electric power can be transmitted, and the degree of freedom with respect to the distance between the power transmission device 110 and the power reception device 120 can be expanded.
 [第3実施形態]
 以下、本発明の第3実施形態について図面を参照しながら説明する。本実施形態は、第1実施形態の送電装置10における、送電回路11と送電コイル12との接続状態の切り替えを、受電装置側に応用したものである。尚、本実施形態において、前述した第1実施形態と同一の構成である場合、同一符号を付して詳細な説明は省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. In the present embodiment, switching of the connection state between the power transmission circuit 11 and the power transmission coil 12 in the power transmission device 10 of the first embodiment is applied to the power reception device side. In addition, in this embodiment, when it is the same structure as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 まず、本発明の第3実施形態に係る無線電力伝送システム201の構成について、図7及び図8を用いて説明する。図7は、本発明の第3実施形態に係る無線電力伝送システム201の構成を示すブロック図である。図8は、図7に示す受電装置220の接続状態の切り替え方法を示す説明図である。図8(a)は、電磁誘導方式に対応した電力伝送を行う場合の接続状態を示している。図8(b)は、磁気共鳴方式に対応した電力伝送を行う場合の接続状態を示している。 First, the configuration of the wireless power transmission system 201 according to the third embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a block diagram showing a configuration of a wireless power transmission system 201 according to the third embodiment of the present invention. FIG. 8 is an explanatory diagram illustrating a method for switching the connection state of the power receiving device 220 illustrated in FIG. 7. FIG. 8A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed. FIG. 8B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
 無線電力伝送システム201は、図7に示すように、送電装置210と受電装置220とを備えている。 The wireless power transmission system 201 includes a power transmission device 210 and a power reception device 220 as shown in FIG.
 送電装置210は、電磁誘導方式と磁気共鳴方式とのうちのどちらか一方の伝送方式に対応した送電装置である。送電装置210は、どちらか一方の伝送方式に固定された送電装置であっても、操作スイッチ等によって伝送方式を切り替え可能な送電装置であっても構わない。送電装置210は、図7に示すように、送電回路11と送電コイル12とを有している。送電装置210が電磁誘導方式に対応した装置である場合、送電回路11と送電コイル12とは電磁誘導方式に対応し、送電装置210が磁気共鳴方式に対応した装置である場合、送電回路11と送電コイル12は磁気共鳴方式に対応したものとなる。 The power transmission device 210 is a power transmission device corresponding to one of the electromagnetic induction method and the magnetic resonance method. The power transmission device 210 may be a power transmission device fixed to one of the transmission methods, or may be a power transmission device whose transmission method can be switched by an operation switch or the like. As illustrated in FIG. 7, the power transmission device 210 includes a power transmission circuit 11 and a power transmission coil 12. When the power transmission device 210 is a device compatible with the electromagnetic induction method, the power transmission circuit 11 and the power transmission coil 12 correspond to the electromagnetic induction method, and when the power transmission device 210 is a device compatible with the magnetic resonance method, The power transmission coil 12 corresponds to the magnetic resonance method.
 受電装置220は、電磁誘導方式と磁気共鳴方式との両方の伝送方式に対応した受電装置である。受電装置220は、図7に示すように、2つの受電コイル21と、2つの受電回路22と、負荷23と、2つのスイッチ素子24と、スイッチ素子24を制御する制御回路25(制御部)と、を有している。2つの受電コイル21は、第1受電コイル21aと第2受電コイル21bとである。2つの受電回路22は、第1受電回路22aと第2受電回路22bとである。2つのスイッチ素子24は、第3スイッチ素子24aと第4スイッチ素子24bとである。 The power receiving device 220 is a power receiving device that supports both the electromagnetic induction method and the magnetic resonance method. As shown in FIG. 7, the power receiving device 220 includes two power receiving coils 21, two power receiving circuits 22, a load 23, two switch elements 24, and a control circuit 25 (control unit) that controls the switch elements 24. And have. The two power receiving coils 21 are a first power receiving coil 21a and a second power receiving coil 21b. The two power receiving circuits 22 are a first power receiving circuit 22a and a second power receiving circuit 22b. The two switch elements 24 are a third switch element 24a and a fourth switch element 24b.
 第1受電コイル21aは、電磁誘導方式に対応している。図示しないが、第1受電コイル21aは、円の外周に沿って巻き回されたスパイラルコイルである。第1受電コイル21aの両端部は、第3スイッチ素子24aと配線とを介して第1受電回路22aに接続されている。 The first power receiving coil 21a corresponds to the electromagnetic induction method. Although not shown, the first power receiving coil 21a is a spiral coil wound around the outer circumference of a circle. Both end portions of the first power receiving coil 21a are connected to the first power receiving circuit 22a via the third switch element 24a and wiring.
 第2受電コイル21bは、磁気共鳴方式に対応している。図示しないが、第2受電コイル21bは、円の外周に沿って巻き回されたスパイラルコイルである。第2受電コイル21bのコイル径は、第1受電コイル21aのコイル径よりも大きく設定されており、第2受電コイル21bは、上から見て(平面視において)、第1受電コイル21aの周囲を取り囲むように配置されている。第2受電コイル21bの両端部は、第4スイッチ素子24bと配線とを介して第2受電回路22bに接続されている。 The second power receiving coil 21b corresponds to the magnetic resonance method. Although not shown, the second power receiving coil 21b is a spiral coil wound around the outer circumference of a circle. The coil diameter of the second power receiving coil 21b is set to be larger than the coil diameter of the first power receiving coil 21a. The second power receiving coil 21b is viewed from above (in plan view) and around the first power receiving coil 21a. Is arranged so as to surround. Both ends of the second power receiving coil 21b are connected to the second power receiving circuit 22b through the fourth switch element 24b and wiring.
 第1受電回路22aは、電磁誘導方式に対応した受電回路であり、第2受電回路22bは、磁気共鳴方式に対応した受電回路である。第3スイッチ素子24aは、第1受電コイル21aと第1受電回路22aとの接続状態を切り替えている。第4スイッチ素子24bは、第2受電コイル21bと第2受電回路22bとの接続状態を切り替えている。 The first power receiving circuit 22a is a power receiving circuit compatible with the electromagnetic induction method, and the second power receiving circuit 22b is a power receiving circuit compatible with the magnetic resonance method. The third switch element 24a switches the connection state between the first power receiving coil 21a and the first power receiving circuit 22a. The fourth switch element 24b switches the connection state between the second power receiving coil 21b and the second power receiving circuit 22b.
 そして、図8に示すように、制御回路25は、電磁誘導方式に対応した電力伝送を行う場合、すなわち、第1受電コイル21aと第1受電回路22aとが接続状態である時には、第2受電コイル21bと第2受電回路22bとが非接続状態となるように、第3スイッチ素子24aと第4スイッチ素子24bとを制御している。また、制御回路25は、磁気共鳴方式に対応した電力伝送を行う場合、すなわち、第2受電コイル21bと第2受電回路22bとが接続状態である時には、第1受電コイル21aと第1受電回路22aとが非接続状態となるように、第3スイッチ素子24aと第4スイッチ素子24bとを制御している。 Then, as shown in FIG. 8, the control circuit 25 performs the second power reception when performing power transmission corresponding to the electromagnetic induction method, that is, when the first power reception coil 21a and the first power reception circuit 22a are in the connected state. The third switch element 24a and the fourth switch element 24b are controlled so that the coil 21b and the second power receiving circuit 22b are disconnected. Further, the control circuit 25 performs power transmission corresponding to the magnetic resonance method, that is, when the second power receiving coil 21b and the second power receiving circuit 22b are in a connected state, the first power receiving coil 21a and the first power receiving circuit. The third switch element 24a and the fourth switch element 24b are controlled so that the terminal 22a is disconnected.
 次に、本実施形態の効果について説明する。本実施形態の無線電力伝送システム201では、受電装置220は、電磁誘導方式に対応した第1受電コイル21aと、磁気共鳴方式に対応した第2受電コイル21bと、電磁誘導方式に対応した第1受電回路22aと、磁気共鳴方式に対応した第2受電回路22bと、を有している。そのため、送電装置210が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置210から受電装置220へ電力を伝送することができる。 Next, the effect of this embodiment will be described. In the wireless power transmission system 201 of the present embodiment, the power receiving device 220 includes a first power receiving coil 21a that is compatible with the electromagnetic induction method, a second power receiving coil 21b that is compatible with the magnetic resonance method, and a first power source that is compatible with the electromagnetic induction method. The power receiving circuit 22a and the second power receiving circuit 22b corresponding to the magnetic resonance method are included. Therefore, power can be transmitted from the power transmission apparatus 210 to the power reception apparatus 220 regardless of which of the two transmission systems the power transmission apparatus 210 is capable of.
 しかも、受電装置220は、第1受電コイル21aと第1受電回路22aとの接続状態を切り替える第3スイッチ素子24aと、第2受電コイル21bと第2受電回路22bとの接続状態を切り替える第4スイッチ素子24bと、第3スイッチ素子24aと第4スイッチ素子24bとを制御する制御回路25と、を有している。そして、第1受電コイル21aと第1受電回路22aとが接続状態である時には、第2受電コイル21bと第2受電回路22bとが非接続状態となり、第2受電コイル21bと第2受電回路22bとが接続状態である時には、第1受電コイル21aと第1受電回路22aとが非接続状態となる。 Moreover, the power receiving apparatus 220 is configured to switch the connection state between the third switch element 24a that switches the connection state between the first power reception coil 21a and the first power reception circuit 22a, and the connection state between the second power reception coil 21b and the second power reception circuit 22b. A switch circuit 24b and a control circuit 25 that controls the third switch element 24a and the fourth switch element 24b are provided. When the first power receiving coil 21a and the first power receiving circuit 22a are connected, the second power receiving coil 21b and the second power receiving circuit 22b are disconnected from each other, and the second power receiving coil 21b and the second power receiving circuit 22b are connected. Are in a connected state, the first power receiving coil 21a and the first power receiving circuit 22a are in a disconnected state.
 そのため、第1受電コイル21aと第2受電コイル21bとの磁界結合によって、送電コイル12から第1受電コイル21aに伝送された電気信号の一部が第2受電コイル21bに伝送されても、第2受電コイル21bと第2受電回路22bとを非接続状態とすることによって、第2受電回路22bに不要な電流が流れるのを防止することができる。また、第1受電コイル21aと第2受電コイル21bとの磁界結合によって、送電コイル12から第2受電コイル21bに伝送された電気信号の一部が第1受電コイル21aに伝送されても、第1受電コイル21aと第1受電回路22aとを非接続状態とすることによって、第1受電回路22aに不要な電流が流れるのを防止することができる。その結果、受電装置220側での電力の損失を抑制することができ、送電装置210から受電装置220への伝送効率の低下を抑制することができる。 Therefore, even if a part of the electrical signal transmitted from the power transmission coil 12 to the first power receiving coil 21a is transmitted to the second power receiving coil 21b by the magnetic field coupling between the first power receiving coil 21a and the second power receiving coil 21b, By setting the second power receiving coil 21b and the second power receiving circuit 22b in a disconnected state, it is possible to prevent unnecessary current from flowing through the second power receiving circuit 22b. Further, even if a part of the electrical signal transmitted from the power transmission coil 12 to the second power receiving coil 21b is transmitted to the first power receiving coil 21a by the magnetic field coupling between the first power receiving coil 21a and the second power receiving coil 21b, the first power receiving coil 21a By setting the first power receiving coil 21a and the first power receiving circuit 22a in a disconnected state, it is possible to prevent an unnecessary current from flowing through the first power receiving circuit 22a. As a result, power loss on the power receiving apparatus 220 side can be suppressed, and a decrease in transmission efficiency from the power transmitting apparatus 210 to the power receiving apparatus 220 can be suppressed.
 [第4実施形態]
 以下、本発明の第4実施形態について図面を参照しながら説明する。本実施形態は、第2実施形態の送電装置110における、送電回路11と送電コイル12との接続状態の切り替えを、受電装置側に応用したものである。尚、本実施形態において、前述した第1実施形態ないし第3実施形態と同一の構成である場合、同一符号を付して詳細な説明は省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. In the present embodiment, switching of the connection state between the power transmission circuit 11 and the power transmission coil 12 in the power transmission device 110 of the second embodiment is applied to the power reception device side. In addition, in this embodiment, when it is the same structure as 1st Embodiment thru | or 3rd Embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 まず、本発明の第4実施形態に係る無線電力伝送システム301の構成について、図9及び図10を用いて説明する。図9は、本発明の第4実施形態に係る無線電力伝送システム301の構成を示すブロック図である。図10は、図9に示す送電装置320の接続状態の切り替え方法を示す説明図である。図10(a)は、電磁誘導方式に対応した電力伝送を行う場合の接続状態を示している。図10(b)は、磁気共鳴方式に対応した電力伝送を行う場合の接続状態を示している。 First, the configuration of the wireless power transmission system 301 according to the fourth embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 9 is a block diagram showing a configuration of a wireless power transmission system 301 according to the fourth embodiment of the present invention. FIG. 10 is an explanatory diagram illustrating a method for switching the connection state of the power transmission device 320 illustrated in FIG. 9. FIG. 10A shows a connection state when power transmission corresponding to the electromagnetic induction method is performed. FIG. 10B shows a connection state when power transmission corresponding to the magnetic resonance method is performed.
 無線電力伝送システム301は、図9に示すように、送電装置310と受電装置320とを備えている。送電装置310の構成は、第3実施形態における送電装置210の構成と同じである。受電装置320の構成は、第3実施形態における受電装置220の構成とほぼ同じであるが、本実施形態では、第2受電コイル21bと第2受電回路22bとの接続が第3実施形態と異なる。受電装置320では、第4スイッチ素子24bが無く、第2受電コイル21bと第2受電回路22bとは常に接続状態となっている。受電コイル21の構造は、第3実施形態における受電コイル21の構造と同じである。 The wireless power transmission system 301 includes a power transmission device 310 and a power reception device 320 as shown in FIG. The configuration of the power transmission device 310 is the same as the configuration of the power transmission device 210 in the third embodiment. The configuration of the power receiving device 320 is substantially the same as the configuration of the power receiving device 220 in the third embodiment. However, in this embodiment, the connection between the second power receiving coil 21b and the second power receiving circuit 22b is different from that in the third embodiment. . In the power receiving device 320, there is no fourth switch element 24b, and the second power receiving coil 21b and the second power receiving circuit 22b are always connected. The structure of the power receiving coil 21 is the same as the structure of the power receiving coil 21 in the third embodiment.
 そして、図10に示すように、制御回路25は、電磁誘導方式に対応した電力伝送を行う場合、すなわち、送電コイル12から第1受電コイル21aに電気信号を伝送する時には、第1受電コイル21aと第1受電回路22aとが接続状態となるように、第3スイッチ素子24aを制御している。また、制御回路25は、磁気共鳴方式に対応した電力伝送を行う場合、すなわち、送電コイル12から第2受電コイル21bに電気信号を伝送する時には、第1受電コイル21aと第1受電回路22aとが非接続状態となるように、第3スイッチ素子24aを制御している。 As shown in FIG. 10, the control circuit 25 performs the first power receiving coil 21a when performing power transmission corresponding to the electromagnetic induction method, that is, when transmitting an electric signal from the power transmitting coil 12 to the first power receiving coil 21a. And the first power receiving circuit 22a are controlled so that the third switch element 24a is controlled. In addition, the control circuit 25 performs the power transmission corresponding to the magnetic resonance method, that is, when an electric signal is transmitted from the power transmission coil 12 to the second power receiving coil 21b, the first power receiving coil 21a and the first power receiving circuit 22a The third switch element 24a is controlled so as to be in a disconnected state.
 次に、本実施形態の効果について説明する。本実施形態の無線電力伝送システム301では、受電装置320は、電磁誘導方式に対応した第1受電コイル21aと、磁気共鳴方式に対応した第2受電コイル21bと、電磁誘導方式に対応した第1受電回路22aと、磁気共鳴方式に対応した第2受電回路22bと、を有している。そのため、送電装置310が2つの伝送方式のうちのどちらの方式に対応した装置であっても、送電装置310から受電装置320へ電力を伝送することができる。 Next, the effect of this embodiment will be described. In the wireless power transmission system 301 according to the present embodiment, the power receiving device 320 includes a first power receiving coil 21a corresponding to the electromagnetic induction method, a second power receiving coil 21b corresponding to the magnetic resonance method, and a first power corresponding to the electromagnetic induction method. The power receiving circuit 22a and the second power receiving circuit 22b corresponding to the magnetic resonance method are included. Therefore, power can be transmitted from the power transmission device 310 to the power reception device 320 regardless of which of the two transmission methods the power transmission device 310 is.
 しかも、受電装置320は、第1受電コイル21aと第1受電回路22aとの接続状態を切り替える第3スイッチ素子24aと、第3スイッチ素子24aを制御する制御回路25と、を有している。そして、送電コイル12から第1受電コイル21aに電気信号を伝送する時には、第1受電コイル21aと第1受電回路22aとが接続状態となり、送電コイル12から第2受電コイル21bに電気信号を伝送する時には、第1受電コイル21aと第1受電回路22aとが非接続状態となる。そのため、第1受電コイル21aと第2受電コイル21bとの磁界結合によって、送電コイル12から第1受電コイル21aに伝送された電気信号の一部が第2受電コイル21bに伝送されても、第2受電コイル21bと第2受電回路22bとを非接続状態とすることによって、第2受電回路22bに不要な電流が流れるのを防止することができる。 Moreover, the power receiving apparatus 320 includes a third switch element 24a that switches the connection state between the first power receiving coil 21a and the first power receiving circuit 22a, and a control circuit 25 that controls the third switch element 24a. When the electric signal is transmitted from the power transmission coil 12 to the first power reception coil 21a, the first power reception coil 21a and the first power reception circuit 22a are connected, and the electric signal is transmitted from the power transmission coil 12 to the second power reception coil 21b. When it does, the 1st receiving coil 21a and the 1st receiving circuit 22a will be in a disconnection state. Therefore, even if a part of the electrical signal transmitted from the power transmission coil 12 to the first power receiving coil 21a is transmitted to the second power receiving coil 21b by the magnetic field coupling between the first power receiving coil 21a and the second power receiving coil 21b, By setting the second power receiving coil 21b and the second power receiving circuit 22b in a disconnected state, it is possible to prevent unnecessary current from flowing through the second power receiving circuit 22b.
 また、第2受電コイル21bのコイル径は、第1受電コイル21aのコイル径よりも大きく設定されており、第2受電コイル21bは、上から見て(平面視において)、第1受電コイル21aの周囲を取り囲むように配置されている。そのため、第2受電コイル21bが発生させた磁束による第1受電コイル21aと第2受電コイル21bとの磁界結合と比較して、第1受電コイル21aが発生させた磁束による第1受電コイル21aと第2受電コイル21bとの磁界結合の方を弱くすることができる。そして、第1受電コイル21aに伝送された電気信号の一部が第2受電コイル21bに伝送されるのを抑制することができる。その結果、受電装置320側での電力の損失を抑制することができ、送電装置310から受電装置320への伝送効率の低下を抑制することができる。 The coil diameter of the second power receiving coil 21b is set to be larger than the coil diameter of the first power receiving coil 21a, and the second power receiving coil 21b is viewed from above (in plan view), and the first power receiving coil 21a. It is arranged so that it surrounds Therefore, as compared with the magnetic field coupling between the first power receiving coil 21a and the second power receiving coil 21b by the magnetic flux generated by the second power receiving coil 21b, the first power receiving coil 21a by the magnetic flux generated by the first power receiving coil 21a and The magnetic field coupling with the second power receiving coil 21b can be weakened. And it can suppress that a part of electrical signal transmitted to the 1st receiving coil 21a is transmitted to the 2nd receiving coil 21b. As a result, power loss on the power reception device 320 side can be suppressed, and a decrease in transmission efficiency from the power transmission device 310 to the power reception device 320 can be suppressed.
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に限定されず、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することができる。 As mentioned above, although the embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the object of the present invention.
 例えば、本発明の実施形態において、無線電力伝送システム1(又は、無線電力伝送システム101、無線電力伝送システム201、無線電力伝送システム301)は、電磁誘導方式と磁気共鳴方式とに対応した無線電力伝送システムではなく、電磁誘導方式の異なる2つの伝送方式に対応した無線電力伝送システムであっても構わない。そして、第1送電コイル12aが電磁誘導方式の第1の伝送方式に対応したコイルであり、第2送電コイル12bが電磁誘導方式の第2の伝送方式に対応したコイルであっても構わない。また、第1受電コイル21aが電磁誘導方式の第1の伝送方式に対応したコイルであり、第2受電コイル21bが電磁誘導方式の第2の伝送方式に対応したコイルであっても構わない。 For example, in the embodiment of the present invention, the wireless power transmission system 1 (or the wireless power transmission system 101, the wireless power transmission system 201, and the wireless power transmission system 301) has wireless power corresponding to an electromagnetic induction method and a magnetic resonance method. Instead of a transmission system, a wireless power transmission system compatible with two transmission systems having different electromagnetic induction systems may be used. And the 1st power transmission coil 12a may be a coil corresponding to the 1st transmission system of an electromagnetic induction system, and the 2nd power transmission coil 12b may be a coil corresponding to the 2nd transmission system of an electromagnetic induction system. Further, the first power receiving coil 21a may be a coil compatible with the first transmission method of the electromagnetic induction method, and the second power receiving coil 21b may be a coil compatible with the second transmission method of the electromagnetic induction method.
 また、本発明の実施形態において、無線電力伝送システム1(又は、無線電力伝送システム101、無線電力伝送システム201、無線電力伝送システム301)は、磁気共鳴方式の異なる2つの伝送方式に対応した無線電力伝送システムであっても構わない。そして、第1送電コイル12aが磁気共鳴方式の第1の伝送方式に対応したコイルであり、第2送電コイル12bが磁気共鳴方式の第2の伝送方式に対応したコイルであっても構わない。また、第1受電コイル21aが磁気共鳴方式の第1の伝送方式に対応したコイルであり、第2受電コイル21bが磁気共鳴方式の第2の伝送方式に対応したコイルであっても構わない。 In the embodiment of the present invention, the wireless power transmission system 1 (or the wireless power transmission system 101, the wireless power transmission system 201, and the wireless power transmission system 301) is a wireless device that supports two transmission methods with different magnetic resonance methods. It may be a power transmission system. And the 1st power transmission coil 12a may be a coil corresponding to the 1st transmission system of a magnetic resonance system, and the 2nd power transmission coil 12b may be a coil corresponding to the 2nd transmission system of a magnetic resonance system. Further, the first power receiving coil 21a may be a coil corresponding to the magnetic resonance first transmission method, and the second power receiving coil 21b may be a coil corresponding to the magnetic resonance second transmission method.
 また、本発明の実施形態において、送電回路11は、前述した以外の構成であっても構わない。例えば、第1送電回路11aと第2送電回路11bとは、回路の一部を共有していても構わない。また、第1送電回路11aと第2送電回路11bとは、インバータ回路ではなく、発振回路に接続された増幅回路であっても構わない。また、送電回路11は、発生させる電気信号の周波数を、システムの規格に合わせて適宜変更しても構わない。また、受電回路22は、前述した以外の構成であっても構わない。例えば、第1受電回路22aと第2受電回路22bとは、回路の一部を共有していても構わない。また、受電装置20(又は、受電装置120、受電装置220、受電装置320)は負荷23を有しておらず、受電回路22は負荷となる他の電子機器に接続されても構わない。 Further, in the embodiment of the present invention, the power transmission circuit 11 may have a configuration other than that described above. For example, the first power transmission circuit 11a and the second power transmission circuit 11b may share part of the circuit. Further, the first power transmission circuit 11a and the second power transmission circuit 11b may be an amplifier circuit connected to the oscillation circuit instead of the inverter circuit. The power transmission circuit 11 may appropriately change the frequency of the electric signal to be generated in accordance with the system standard. The power receiving circuit 22 may have a configuration other than that described above. For example, the first power receiving circuit 22a and the second power receiving circuit 22b may share a part of the circuit. Further, the power receiving device 20 (or the power receiving device 120, the power receiving device 220, and the power receiving device 320) does not have the load 23, and the power receiving circuit 22 may be connected to another electronic device serving as a load.
 また、本発明の実施形態において、送電コイル12や受電コイル21は、前述した以外の材質や形状であっても構わない。例えば、送電コイル12や受電コイル21の巻き数は、システムの規格に合わせて適宜変更しても構わない。また、送電コイル12や受電コイル21は、円の外周に沿って巻き回されたスパイラルコイルではなく、多角形の外周に沿って巻き回されたスパイラルコイルであっても構わない。また、送電コイル12や受電コイル21は、スパイラルコイルではなく、ヘリカルコイルであっても構わない。また、送電コイル12や受電コイル21は、基板の板面に電極パターンとして形成されたコイルであっても構わない。また、第2送電コイル12bや第2受電コイル21bには、共振周波数を調整するための容量等が付加されていても構わない。 In the embodiment of the present invention, the power transmission coil 12 and the power reception coil 21 may be made of materials and shapes other than those described above. For example, the number of turns of the power transmission coil 12 and the power reception coil 21 may be appropriately changed according to the system standard. Moreover, the power transmission coil 12 and the power reception coil 21 may be a spiral coil wound along a polygonal outer periphery instead of a spiral coil wound along a circular outer periphery. The power transmission coil 12 and the power reception coil 21 may be helical coils instead of spiral coils. The power transmission coil 12 and the power reception coil 21 may be coils formed as electrode patterns on the plate surface of the substrate. Moreover, the capacity | capacitance etc. for adjusting a resonant frequency may be added to the 2nd power transmission coil 12b or the 2nd power receiving coil 21b.
 また、本発明の実施形態において、所定の機能を実現できるのであれば、使用条件に合わせて給電面16aの向きを適宜変更しても構わない。また、送電コイル12は、ケース15と分離可能な別の部材に収容され、配線を介して送電回路11と接続されていても構わない。 Further, in the embodiment of the present invention, as long as a predetermined function can be realized, the direction of the power feeding surface 16a may be appropriately changed according to the use conditions. Moreover, the power transmission coil 12 may be accommodated in a separate member separable from the case 15 and connected to the power transmission circuit 11 via wiring.
 また、本発明の実施形態において、スイッチ素子13やスイッチ素子24は、MEMS素子やリレー等の機械式のスイッチ素子であっても構わない。また、所定の機能を実現できるのであれば、スイッチ素子13は、送電コイル12の両端部と送電回路11との接続状態を切り替えるのではなく、送電コイル12の一方の端部と送電回路11との接続状態のみを切り替えても構わない。また、スイッチ素子24は、受電コイル21の両端部と受電回路22との接続状態を切り替えるのではなく、受電コイル21の一方の端部と受電回路22との接続状態のみを切り替えても構わない。 In the embodiment of the present invention, the switch element 13 and the switch element 24 may be mechanical switch elements such as a MEMS element and a relay. Moreover, if the predetermined function can be realized, the switch element 13 does not switch the connection state between the both ends of the power transmission coil 12 and the power transmission circuit 11, but instead of one end of the power transmission coil 12 and the power transmission circuit 11. It is possible to switch only the connection state. The switch element 24 may switch only the connection state between one end of the power receiving coil 21 and the power receiving circuit 22 instead of switching the connection state between the both ends of the power receiving coil 21 and the power receiving circuit 22. .
 また、本発明の実施形態において、送電装置10(又は、送電装置110)は、受電装置20の伝送方式を検知するための検知手段や、受電装置20(又は、受電装置120)と無線通信を行うための通信手段等を更に有していても構わない。そして、制御回路14は、検知手段の検知結果や受電装置20との通信結果等に基づいて、電磁誘導方式と磁気共鳴方式とのうちのどちらの伝送方式で電力伝送を行うかを自動的に選択しても構わない。 In the embodiment of the present invention, the power transmission device 10 (or the power transmission device 110) performs wireless communication with the detection unit for detecting the transmission method of the power reception device 20 or the power reception device 20 (or the power reception device 120). You may further have a communication means for performing. The control circuit 14 automatically determines which of the electromagnetic induction method and the magnetic resonance method is used for power transmission based on the detection result of the detection means, the communication result with the power receiving device 20, and the like. You can choose.
 1 無線電力伝送システム
 10 送電装置
 11 送電回路
 11a 第1送電回路
 11b 第2送電回路
 12 送電コイル
 12a 第1送電コイル
 12b 第2送電コイル
 13 スイッチ素子
 13a 第1スイッチ素子
 13b 第2スイッチ素子
 14 制御回路
 15 ケース
 15a 回路収容部
 15b コイル収容部
 16 カバー
 16a 給電面
 20 受電装置
 21 受電コイル
 22 受電回路
 23 負荷
 101 無線電力伝送システム
 110 送電装置
 120 受電装置
 201 無線電力伝送システム
 210 送電装置
 220 受電装置
 21a 第1受電コイル
 21b 第2受電コイル
 22a 第1受電回路
 22b 第2受電回路
 24 スイッチ素子
 24a 第3スイッチ素子
 24b 第4スイッチ素子
 25 制御回路
 301 無線電力伝送システム
 310 送電装置
 320 受電装置
DESCRIPTION OF SYMBOLS 1 Wireless power transmission system 10 Power transmission apparatus 11 Power transmission circuit 11a 1st power transmission circuit 11b 2nd power transmission circuit 12 Power transmission coil 12a 1st power transmission coil 12b 2nd power transmission coil 13 Switch element 13a 1st switch element 13b 2nd switch element 14 Control circuit DESCRIPTION OF SYMBOLS 15 Case 15a Circuit accommodating part 15b Coil accommodating part 16 Cover 16a Power feeding surface 20 Power receiving apparatus 21 Power receiving coil 22 Power receiving circuit 23 Load 101 Wireless power transmission system 110 Power transmitting apparatus 120 Power receiving apparatus 201 Wireless power transmission system 210 Power transmitting apparatus 220 Power receiving apparatus 21a 1st 1 receiving coil 21b 2nd receiving coil 22a 1st receiving circuit 22b 2nd receiving circuit 24 switch element 24a 3rd switch element 24b 4th switch element 25 control circuit 301 wireless power transmission system 310 power transmission apparatus 20 powered device

Claims (8)

  1.  送電コイルを有する送電装置と、
     受電コイルを有する受電装置と、を備え、
     前記送電コイルと前記受電コイルとの磁界結合を利用して、
     前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、
     前記送電装置は、
     第1の伝送方式に対応した第1送電回路と、
     第2の伝送方式に対応した第2送電回路と、
     前記第1の伝送方式に対応した第1送電コイルと、
     前記第2の伝送方式に対応した第2送電コイルと、
     前記第1送電回路と前記第1送電コイルとの接続状態を切り替える第1スイッチ素子と、
     前記第2送電回路と前記第2送電コイルとの接続状態を切り替える第2スイッチ素子と、
     前記第1スイッチ素子と前記第2スイッチ素子とを制御する制御部と、を有し、
     前記制御部は、
     前記第1送電回路と前記第1送電コイルとが接続状態である時には、
     前記第2送電回路と前記第2送電コイルとが非接続状態となり、
     前記第2送電回路と前記第2送電コイルとが接続状態である時には、
     前記第1送電回路と前記第1送電コイルとが非接続状態となるように、
     前記第1スイッチ素子と前記第2スイッチ素子とを制御することを特徴とする無線電力伝送システム。
    A power transmission device having a power transmission coil;
    A power receiving device having a power receiving coil,
    Utilizing magnetic field coupling between the power transmission coil and the power reception coil,
    A wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device,
    The power transmission device is:
    A first power transmission circuit corresponding to the first transmission method;
    A second power transmission circuit corresponding to the second transmission method;
    A first power transmission coil corresponding to the first transmission method;
    A second power transmission coil corresponding to the second transmission method;
    A first switch element for switching a connection state between the first power transmission circuit and the first power transmission coil;
    A second switch element for switching a connection state between the second power transmission circuit and the second power transmission coil;
    A control unit that controls the first switch element and the second switch element;
    The controller is
    When the first power transmission circuit and the first power transmission coil are in a connected state,
    The second power transmission circuit and the second power transmission coil are disconnected from each other,
    When the second power transmission circuit and the second power transmission coil are in a connected state,
    In order for the first power transmission circuit and the first power transmission coil to be in a disconnected state,
    A wireless power transmission system that controls the first switch element and the second switch element.
  2.  前記第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、
     前記第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルであることを特徴とする、
     請求項1に記載の無線電力伝送システム。
    The first power transmission coil is a coil corresponding to electromagnetic induction type wireless power transmission,
    The second power transmission coil is a coil corresponding to magnetic resonance wireless power transmission,
    The wireless power transmission system according to claim 1.
  3.  前記第1送電コイルと前記第2送電コイルとのうち、
     一方のコイルのコイル径は、他方のコイルのコイル径よりも大きく、
     前記一方のコイルは、平面視において前記他方のコイルの周囲を取り囲むように配置されていることを特徴とする、
     請求項2に記載の無線電力伝送システム。
    Of the first power transmission coil and the second power transmission coil,
    The coil diameter of one coil is larger than the coil diameter of the other coil,
    The one coil is arranged to surround the other coil in a plan view,
    The wireless power transmission system according to claim 2.
  4.  前記送電装置は、
     前記受電装置が載置される給電面を有し、
     前記第1送電コイルと前記第2送電コイルとは、
     前記給電面の背面側に配置され、
     前記第2送電コイルのコイル径の方が、
     前記第1送電コイルのコイル径よりも大きいことを特徴とする、
     請求項3記載の無線電力伝送システム。
    The power transmission device is:
    A power supply surface on which the power receiving device is placed;
    The first power transmission coil and the second power transmission coil are:
    Arranged on the back side of the feeding surface,
    The coil diameter of the second power transmission coil is
    The coil diameter of the first power transmission coil is larger,
    The wireless power transmission system according to claim 3.
  5.  送電コイルを有する送電装置と、
     受電コイルを有する受電装置と、を備え、
     前記送電コイルと前記受電コイルとの磁界結合を利用して、
     前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、
     前記送電装置は、
     第1の伝送方式に対応した第1送電回路と、
     第2の伝送方式に対応した第2送電回路と、
     前記第1の伝送方式に対応した第1送電コイルと、
     前記第2の伝送方式に対応した第2送電コイルと、
     前記第1送電回路と前記第1送電コイルとの接続状態を切り替えるスイッチ素子と、
     前記スイッチ素子を制御する制御部と、を有し、
     前記第2送電コイルのコイル径は、前記第1送電コイルのコイル径よりも大きく、
     前記第2送電コイルは、平面視において前記第1送電コイルの周囲を取り囲むように配置され、
     前記制御部は、
     前記第1送電コイルに送電用の電気信号を印加する時には、
     前記第1送電回路と前記第1送電コイルとが接続状態となり、
     前記第2送電コイルに送電用の電気信号を印加する時には、
     前記第1送電回路と前記第1送電コイルとが非接続状態となるように、
     前記スイッチ素子を制御することを特徴とする無線電力伝送システム。
    A power transmission device having a power transmission coil;
    A power receiving device having a power receiving coil,
    Utilizing magnetic field coupling between the power transmission coil and the power reception coil,
    A wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device,
    The power transmission device is:
    A first power transmission circuit corresponding to the first transmission method;
    A second power transmission circuit corresponding to the second transmission method;
    A first power transmission coil corresponding to the first transmission method;
    A second power transmission coil corresponding to the second transmission method;
    A switch element for switching a connection state between the first power transmission circuit and the first power transmission coil;
    A control unit for controlling the switch element,
    The coil diameter of the second power transmission coil is larger than the coil diameter of the first power transmission coil,
    The second power transmission coil is disposed so as to surround the first power transmission coil in a plan view.
    The controller is
    When applying an electric signal for power transmission to the first power transmission coil,
    The first power transmission circuit and the first power transmission coil are connected,
    When applying an electrical signal for power transmission to the second power transmission coil,
    In order for the first power transmission circuit and the first power transmission coil to be in a disconnected state,
    A wireless power transmission system for controlling the switch element.
  6.  前記第1送電コイルは、電磁誘導方式の無線電力伝送に対応したコイルであり、
     前記第2送電コイルは、磁気共鳴方式の無線電力伝送に対応したコイルであることを特徴とする、
     請求項5に記載の無線電力伝送システム。
    The first power transmission coil is a coil corresponding to electromagnetic induction type wireless power transmission,
    The second power transmission coil is a coil corresponding to magnetic resonance wireless power transmission,
    The wireless power transmission system according to claim 5.
  7.  送電コイルを有する送電装置と、
     受電コイルを有する受電装置と、を備え、
     前記送電コイルと前記受電コイルとの磁界結合を利用して、
     前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、
     前記受電装置は、
     第1の伝送方式に対応した第1受電コイルと、
     第2の伝送方式に対応した第2受電コイルと、
     前記第1の伝送方式に対応した第1受電回路と、
     前記第2の伝送方式に対応した第2受電回路と、
     前記第1受電コイルと前記第1受電回路との接続状態を切り替える第3スイッチ素子と、
     前記第2受電コイルと前記第2受電回路との接続状態を切り替える第4スイッチ素子と、
     前記第3スイッチ素子と前記第4スイッチ素子とを制御する制御部と、を有し、
     前記制御部は、
     前記第1受電コイルと前記第1受電回路とが接続状態である時には、
     前記第2受電コイルと前記第2受電回路とが非接続状態となり、
     前記第2受電コイルと前記第2受電回路とが接続状態である時には、
     前記第1受電コイルと前記第1受電回路とが非接続状態となるように、
     前記第3スイッチ素子と前記第4スイッチ素子とを制御することを特徴とする無線電力伝送システム。
    A power transmission device having a power transmission coil;
    A power receiving device having a power receiving coil,
    Utilizing magnetic field coupling between the power transmission coil and the power reception coil,
    A wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device,
    The power receiving device is:
    A first power receiving coil corresponding to the first transmission method;
    A second power receiving coil corresponding to the second transmission method;
    A first power receiving circuit corresponding to the first transmission method;
    A second power receiving circuit corresponding to the second transmission method;
    A third switch element for switching a connection state between the first power receiving coil and the first power receiving circuit;
    A fourth switch element for switching a connection state between the second power receiving coil and the second power receiving circuit;
    A control unit for controlling the third switch element and the fourth switch element;
    The controller is
    When the first power receiving coil and the first power receiving circuit are in a connected state,
    The second power receiving coil and the second power receiving circuit are disconnected from each other,
    When the second power receiving coil and the second power receiving circuit are in a connected state,
    The first power receiving coil and the first power receiving circuit are disconnected from each other.
    A wireless power transmission system that controls the third switch element and the fourth switch element.
  8.  送電コイルを有する送電装置と、
     受電コイルを有する受電装置と、を備え、
     前記送電コイルと前記受電コイルとの磁界結合を利用して、
     前記送電装置から前記受電装置に無線で電力を伝送する無線電力伝送システムであって、
     前記受電装置は、
     第1の伝送方式に対応した第1受電コイルと、
     第2の伝送方式に対応した第2受電コイルと、
     前記第1の伝送方式に対応した第1受電回路と、
     前記第2の伝送方式に対応した第2受電回路と、
     前記第1受電コイルと前記第1受電回路との接続状態を切り替えるスイッチ素子と、
     前記スイッチ素子を制御する制御部と、を有し、
     前記第2受電コイルのコイル径は、前記第1受電コイルのコイル径よりも大きく、
     前記第2受電コイルは、平面視において前記第1受電コイルの周囲を取り囲むように配置され、
     前記制御部は、
     前記送電コイルから前記第1受電コイルに電気信号を伝送する時には、
     前記第1受電回路と前記第1受電コイルとが接続状態となり、
     前記送電コイルから前記第2受電コイルに電気信号を伝送する時には、
     前記第1受電回路と前記第1受電コイルとが接続状態となるように、
     前記スイッチ素子を制御することを特徴とする無線電力伝送システム。
    A power transmission device having a power transmission coil;
    A power receiving device having a power receiving coil,
    Utilizing magnetic field coupling between the power transmission coil and the power reception coil,
    A wireless power transmission system that wirelessly transmits power from the power transmission device to the power reception device,
    The power receiving device is:
    A first power receiving coil corresponding to the first transmission method;
    A second power receiving coil corresponding to the second transmission method;
    A first power receiving circuit corresponding to the first transmission method;
    A second power receiving circuit corresponding to the second transmission method;
    A switch element for switching a connection state between the first power receiving coil and the first power receiving circuit;
    A control unit for controlling the switch element,
    The coil diameter of the second power receiving coil is larger than the coil diameter of the first power receiving coil,
    The second power receiving coil is disposed so as to surround the first power receiving coil in a plan view,
    The controller is
    When transmitting an electrical signal from the power transmission coil to the first power reception coil,
    The first power receiving circuit and the first power receiving coil are connected,
    When transmitting an electrical signal from the power transmission coil to the second power reception coil,
    In order for the first power receiving circuit and the first power receiving coil to be connected,
    A wireless power transmission system for controlling the switch element.
PCT/JP2015/051894 2014-01-31 2015-01-23 Wireless power transmission system WO2015115334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559915A JP6215969B2 (en) 2014-01-31 2015-01-23 Wireless power transmission system and power transmission device and power reception device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014016540 2014-01-31
JP2014-016540 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015115334A1 true WO2015115334A1 (en) 2015-08-06

Family

ID=53756908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051894 WO2015115334A1 (en) 2014-01-31 2015-01-23 Wireless power transmission system

Country Status (2)

Country Link
JP (1) JP6215969B2 (en)
WO (1) WO2015115334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177738A (en) * 2014-03-13 2015-10-05 エルジー イノテック カンパニー リミテッド wireless power transmission apparatus and method
CN105871074A (en) * 2015-12-20 2016-08-17 华南理工大学 Wireless energy transmission coil system for counteracting and restraining frequency splitting by magnetoelectric coupling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268665A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Coil unit, noncontact power transmission device, noncontact power feed system, and vehicle
JP2012205379A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Charging system, power supply device, mobile body, wireless power transmission and reception system, and power reception device
JP2012213252A (en) * 2011-03-30 2012-11-01 Toshiba Corp Power transmitter and power transmission system
WO2013073051A1 (en) * 2011-11-18 2013-05-23 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183812A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system
KR101251436B1 (en) * 2009-03-30 2013-04-05 후지쯔 가부시끼가이샤 Wireless power supply system, wireless power transmission device, and wireless power receiving device
JP5499534B2 (en) * 2009-07-07 2014-05-21 ソニー株式会社 Non-contact power receiving apparatus, power receiving method in non-contact power receiving apparatus, and non-contact power feeding system
US8373388B2 (en) * 2009-12-11 2013-02-12 Electronics And Telecommunications Research Institute Portable device and battery charging method thereof
JP5804694B2 (en) * 2010-11-29 2015-11-04 キヤノン株式会社 Electronic apparatus and method
JP5691724B2 (en) * 2011-03-25 2015-04-01 沖電気工業株式会社 Wireless power transmission system, power transmission device, and power supply control program
JP6207152B2 (en) * 2012-12-27 2017-10-04 キヤノン株式会社 Power supply apparatus, control method, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268665A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Coil unit, noncontact power transmission device, noncontact power feed system, and vehicle
JP2012205379A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Charging system, power supply device, mobile body, wireless power transmission and reception system, and power reception device
JP2012213252A (en) * 2011-03-30 2012-11-01 Toshiba Corp Power transmitter and power transmission system
WO2013073051A1 (en) * 2011-11-18 2013-05-23 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177738A (en) * 2014-03-13 2015-10-05 エルジー イノテック カンパニー リミテッド wireless power transmission apparatus and method
US9973009B2 (en) 2014-03-13 2018-05-15 Lg Innotek Co., Ltd. Wireless power transmisson apparatus and wireless power transmisson method
CN105871074A (en) * 2015-12-20 2016-08-17 华南理工大学 Wireless energy transmission coil system for counteracting and restraining frequency splitting by magnetoelectric coupling

Also Published As

Publication number Publication date
JPWO2015115334A1 (en) 2017-03-23
JP6215969B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6233780B2 (en) Wireless power transmission system
JP4258505B2 (en) Power supply system
US9923388B2 (en) Wireless power transmitter
EP1927176B1 (en) Device for recharging batteries
KR101461549B1 (en) Non-Contact Charging Module and Non-Contact Charging Apparatus
EP2754226B1 (en) Wireless power repeater
US8981597B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2018196322A (en) Non-contact power supply device
JP2017077166A (en) Coil device, method for manufacturing coil device, wireless power transfer device including coil device, and wireless power receiver device {coil device of wireless power transfer system}
WO2013145788A1 (en) Power transmitting device, electronic equipment and wireless power transmission system
JP5790189B2 (en) Non-contact power feeding device
US10204731B2 (en) Transmitting coil structure and wireless power transmitting terminal using the same
JP6252051B2 (en) Power converter
JP6215969B2 (en) Wireless power transmission system and power transmission device and power reception device thereof
JP2015039281A (en) Power transmitter, power transmission method and power transmission system
JP2012085426A (en) Power supply device and power supply system
US10305330B2 (en) Power transmission device
JP2016004990A (en) Resonator
US20140111020A1 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
JP2015220891A (en) Resonator and wireless power supply system
JP2018207670A (en) Transmission device of wireless power transmission system and wireless power transmission system
JP2019022263A (en) Power transmission device
WO2022144993A1 (en) Foreign object detection device, power transmission device, power reception device, and power transmission system
KR102483566B1 (en) Wire type and wireless type power supplying apparatus
JP2014236542A (en) Transmitter and coil unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743216

Country of ref document: EP

Kind code of ref document: A1