WO2015115314A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2015115314A1
WO2015115314A1 PCT/JP2015/051772 JP2015051772W WO2015115314A1 WO 2015115314 A1 WO2015115314 A1 WO 2015115314A1 JP 2015051772 W JP2015051772 W JP 2015051772W WO 2015115314 A1 WO2015115314 A1 WO 2015115314A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
inorganic layer
silicon
barrier film
Prior art date
Application number
PCT/JP2015/051772
Other languages
French (fr)
Japanese (ja)
Inventor
森健太郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167010494A priority Critical patent/KR102355268B1/en
Priority to JP2015510220A priority patent/JP6578943B2/en
Priority to CN201580003271.5A priority patent/CN105829093B/en
Publication of WO2015115314A1 publication Critical patent/WO2015115314A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a gas barrier film used for food and pharmaceutical packaging applications that require high gas barrier properties and electronic device applications such as solar cells, electronic paper, and organic electroluminescence (EL) displays.
  • gas barrier film used for food and pharmaceutical packaging applications that require high gas barrier properties
  • electronic device applications such as solar cells, electronic paper, and organic electroluminescence (EL) displays.
  • a film of an inorganic substance (including inorganic oxides) such as aluminum oxide, silicon oxide, magnesium oxide, etc. on the surface of the polymer substrate is deposited by physical vapor deposition (PVD) such as vacuum deposition, sputtering, or ion plating.
  • PVD physical vapor deposition
  • a gas barrier film formed using a chemical vapor deposition method (CVD method) such as a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, a photochemical vapor deposition method, or the like.
  • CVD method chemical vapor deposition method
  • This film is used as a packaging material for foods, pharmaceuticals, and the like that require blocking of various gases such as water vapor and oxygen, and as an electronic device member such as a flat-screen TV and a solar battery.
  • a gas containing an organic silicon compound vapor and oxygen is used to form a silicon oxide as a main component on a substrate by a plasma CVD method, and at least one kind of carbon, hydrogen, silicon and oxygen.
  • a method for improving gas barrier properties while maintaining transparency by using a contained compound has been disclosed (Patent Document 1).
  • a gas barrier property improving technique other than a film forming method such as a plasma CVD method
  • a method using a smooth base material in which protrusions and unevenness causing generation of pinholes and cracks that reduce the gas barrier property are reduced or surface smoothing is used.
  • Some have used a base material provided with an undercoat layer for the purpose of conversion Patent Documents 2, 3 and 4).
  • Also known is a method of converting a polysilazane film formed by a wet coating method into a silicon oxide film or a silicon oxynitride film (Patent Documents 5 and 6).
  • JP-A-8-142252 JP 2002-113826 A International Publication No. 2012/137762 International Publication No. 2013/061726 International Publication No. 2011/007543 International Publication No. 2011/004698
  • Patent Document 1 in the method of forming a gas barrier layer mainly composed of silicon oxide by the plasma CVD method, the film quality of the formed gas barrier layer differs depending on the type of substrate, and stable gas barrier properties are obtained. It was not obtained. In order to stabilize the gas barrier property, it is necessary to increase the film thickness, and as a result, there is a problem that the bending resistance is lowered and the manufacturing cost is increased.
  • Patent Document 2 a method using a smooth substrate for forming a gas barrier layer or a method using a substrate provided with an undercoat layer for the purpose of smoothing the surface includes pinholes and cracks. Although the gas barrier property is improved by preventing the occurrence of the above, the performance improvement is insufficient.
  • Patent Documents 3 and 4 have a problem that although the film quality of the formed gas barrier layer is improved, the performance is improved, but it is difficult to stably exhibit a high gas barrier property.
  • the gas barrier film is easily affected by conditions at the time of forming the layer, and a gas barrier film having sufficient gas barrier properties can be stably obtained. Needed to laminate a plurality of polysilazane layers. As a result, there has been a problem that the bending resistance is lowered and the manufacturing cost is increased.
  • the present invention has been made in view of the background of the prior art, and it is an object of the present invention to provide a gas barrier film having a high gas barrier property and excellent in bending resistance and adhesion without being thickened or multilayered. .
  • the gas barrier film according to (1) wherein the inorganic layer [A] contains a zinc compound and a silicon oxide.
  • inorganic layer [A] is any one selected from the following inorganic layers [A1] to [A3].
  • Inorganic layer [A1] Inorganic layer consisting of coexisting phases of (i) to (iii) (i) Zinc oxide (ii) Silicon dioxide (iii) Aluminum oxide
  • Inorganic layer [A2] From the coexisting phase of zinc sulfide and silicon dioxide
  • Inorganic layer [A3] An inorganic layer mainly composed of silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0.
  • the inorganic layer [A] is the inorganic layer.
  • Layer [A1], and the inorganic layer [A1] has a zinc atom concentration of 20 to 40 atom%, a silicon atom concentration of 5 to 20 atom%, and an aluminum atom concentration of 0.5 to 0.5 as measured by ICP emission spectroscopy.
  • the gas barrier film according to (4) which is constituted by a composition having 5 atom% and an oxygen atom concentration of 35 to 70 atom%.
  • the inorganic layer [A] is the inorganic layer [A2], and the inorganic layer [A2] has a molar fraction of zinc sulfide to the total of zinc sulfide and silicon dioxide of 0.7 to 0.9.
  • the gas barrier film according to (4) which is constituted by a certain composition.
  • the present invention also provides the following electronic device using a gas barrier film.
  • a gas barrier film having a high gas barrier property against water vapor and excellent in bending resistance and adhesion is provided.
  • SiN x H y Nitrogen and hydrogen are bonded to a silicon atom present in the compound, and the number of bonds from silicon to each element is x and y.
  • SiO p N q Oxygen and nitrogen are bonded to a silicon atom present in the compound, and the number of bonds from silicon to each element is p and q.
  • SiO a (OH) 4-2a The structure of the compound when the silicon atom is 1.
  • FIG. 1 is a cross-sectional view showing an example of the gas barrier film of the present invention.
  • the gas barrier film of the present invention has an inorganic layer [A] (reference numeral 2), SiN x H y , SiO on one side of the polymer base material (reference numeral 1) from the polymer base material side.
  • a silicon compound layer [B] (reference numeral 3) containing three silicon compounds having a structure represented by p N q and SiO a (OH) 4-2a (x + y 4, a ⁇ 2) is laminated in this order. It is what you are doing.
  • the gas barrier film of the present invention shows the minimum structure of the gas barrier film of the present invention, and only the inorganic layer [A] and the silicon compound layer [B] are arranged on one side of the polymer substrate.
  • another layer may be disposed between the polymer base material and the inorganic layer [A], and the other side of the polymer base material 1 opposite to the side on which the inorganic layer [A] is laminated. These layers may be arranged.
  • the reason why a remarkable effect is obtained in the present invention is estimated as follows. That is, by contacting the inorganic layer [A] and the silicon compound layer [B], defects such as pinholes and cracks existing near the surface of the inorganic layer [A] on the side on which the silicon compound layer [B] is formed are treated. The components constituting the silicon compound layer [B] are filled, and high barrier properties can be expressed.
  • the above three types of silicon compounds can easily form chemical bonds with the components constituting the inorganic layer [A]
  • the adhesion between the inorganic layer [A] and the silicon compound layer [B] is improved. Needless to say, excellent adhesion can be obtained also when another layer is laminated on the silicon compound layer [B].
  • the silicon compound layer [B] including the above structure is excellent in flexibility, excellent bending resistance can be obtained.
  • the polymer substrate used in the present invention preferably has a film form from the viewpoint of ensuring flexibility.
  • the structure of the film may be a single-layer film or a film having two or more layers, for example, a film formed by a coextrusion method.
  • a film stretched in a uniaxial direction or a biaxial direction may be used.
  • the material of the polymer substrate used in the present invention is not particularly limited, but is preferably an organic polymer as a main constituent.
  • organic polymer that can be suitably used in the present invention include crystalline polyolefins such as polyethylene and polypropylene, amorphous cyclic polyolefins having a cyclic structure, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, Examples include polystyrene, polyvinyl alcohol, saponified ethylene vinyl acetate copolymer, various polymers such as polyacrylonitrile and polyacetal.
  • the organic polymer may be either a homopolymer or a copolymer, and only one type may be used as the organic polymer, or a plurality of types may be mixed and used.
  • the surface of the polymer base on which the inorganic layer [A] is formed has a corona treatment, a plasma treatment, an ultraviolet treatment, an ion bombard treatment, a solvent treatment, an organic substance or an inorganic substance to improve adhesion and smoothness.
  • a pretreatment such as an undercoat layer forming treatment composed of the above mixture may be applied.
  • a coating layer of an organic material, an inorganic material, or a mixture thereof may be laminated for the purpose of improving the slipping property at the time of winding the film.
  • the thickness of the polymer substrate used in the present invention is not particularly limited, but is preferably 500 ⁇ m or less from the viewpoint of ensuring flexibility, and preferably 5 ⁇ m or more from the viewpoint of securing strength against tension or impact. Furthermore, the thickness of the polymer substrate is more preferably 10 ⁇ m or more and 200 ⁇ m or less because of the ease of film processing and handling.
  • the inorganic layer [A] in the present invention includes zinc (Zn), silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), tin (Sn), indium (In), niobium (Nb), Examples include oxides, nitrides, sulfides, or mixtures of elements such as molybdenum (Mo) and tantalum (Ta). Although it will not specifically limit if such an inorganic substance is included, It is preferable that inorganic layer [A] contains a silicon oxide, and it is more preferable that a zinc compound and a silicon oxide are further included.
  • any one selected from the following inorganic layers [A1] to [A3] is preferably used.
  • the thickness of the inorganic layer [A] in the present invention is preferably 10 nm or more and 1,000 nm or less as the thickness of the layer exhibiting gas barrier properties. If the thickness of the layer is small, there may be places where sufficient gas barrier properties cannot be secured, and the gas barrier properties may vary within the polymer substrate surface. In addition, if the thickness of the layer is too large, the stress remaining in the layer becomes large, so that the inorganic layer [A] is liable to be cracked by bending or external impact, and the gas barrier properties are lowered with use. There is a case. Therefore, the thickness of the inorganic layer [A] is 10 nm or more, more preferably 100 nm or more, while 1,000 nm or less and 500 nm or less. The thickness of the inorganic layer [A] can usually be measured by cross-sectional observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the center plane average roughness SRa of the inorganic layer [A] used in the present invention is preferably 10 nm or less.
  • SRa is larger than 10 nm, the irregular shape on the surface of the inorganic layer [A] becomes large, and a gap is formed between the sputtered particles to be laminated. The improvement effect may be difficult to obtain.
  • SRa is larger than 10 nm, the film quality of the silicon compound layer [B] laminated on the inorganic layer [A] is not uniform, and the gas barrier property may be lowered. Therefore, SRa of the inorganic layer [A] is preferably 10 nm or less, and more preferably 7 nm or less.
  • SRa of the inorganic layer [A] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
  • the method for forming the inorganic layer [A] is not particularly limited, and can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like.
  • the sputtering method or the CVD method is preferable because the inorganic layer [A] can be easily and precisely formed.
  • the reason why the gas barrier property is improved by applying the inorganic layer [A1] in the gas barrier film of the present invention is that the crystalline component contained in zinc oxide and the amorphous component of silicon dioxide coexist. It is presumed that the crystal growth of zinc oxide, which tends to generate crystals, is suppressed and the particle diameter is reduced, so that the layer is densified and the permeation of water vapor is suppressed.
  • the coexistence of aluminum oxide can suppress the crystal growth more than the case of coexistence of zinc oxide and silicon dioxide, so that the layer can be further densified, and accordingly, cracks during use can be reduced. It is considered that the gas barrier property deterioration due to the generation could be suppressed.
  • the composition of the inorganic layer [A1] can be measured by ICP emission spectroscopy as described later.
  • the zinc atom concentration measured by ICP emission spectroscopy is 20 to 40 atom%
  • the silicon atom concentration is 5 to 20 atom%
  • the aluminum atom concentration is 0.5 to 5 atom%
  • the O atom concentration is 35 to 70 atom%.
  • the zinc atom concentration is higher than 40 atom% or the silicon atom concentration is lower than 5 atom%, the silicon dioxide and / or aluminum oxide that suppresses the crystal growth of zinc oxide is insufficient, so that void portions and defect portions increase. High gas barrier properties may not be obtained.
  • the amorphous component of silicon dioxide inside the layer may increase and the flexibility of the layer may be lowered.
  • the aluminum atom concentration is higher than 5 atom%, the affinity between zinc oxide and silicon dioxide becomes excessively high, so that the film becomes hard, and cracks are likely to occur due to heat and external stress.
  • the aluminum atom concentration is smaller than 0.5 atom%, the affinity between zinc oxide and silicon dioxide becomes insufficient, and the bonding force between the particles forming the layer cannot be improved, so that the flexibility may be lowered.
  • the oxygen atom concentration is higher than 70 atom%, the amount of defects in the inorganic layer [A1] increases, so that a desired gas barrier property may not be obtained.
  • the oxygen atom concentration is lower than 35 atom%, the oxidation state of zinc, silicon, and aluminum becomes insufficient, the crystal growth cannot be suppressed, and the particle diameter increases, so that the gas barrier property may be lowered.
  • the zinc atom concentration is 25 to 35 atom%
  • the silicon atom concentration is 10 to 15 atom%
  • the aluminum atom concentration is 1 to 3 atom%
  • the oxygen atom concentration is 50 to 64 atom%. It is more preferable.
  • the composition of the inorganic layer [A1] is formed with the same composition as the mixed sintered material used at the time of forming the layer. Therefore, by using a mixed sintered material having a composition that matches the composition of the target layer, the inorganic layer [A1] It is possible to adjust the composition of the layer [A1].
  • the composition of the inorganic layer [A1] is calculated as a composition ratio of zinc oxide, silicon dioxide, aluminum oxide, and the inorganic oxide contained by quantifying each element of zinc, silicon, and aluminum by ICP emission spectroscopy.
  • the oxygen atoms are calculated on the assumption that zinc atoms, silicon atoms, and aluminum atoms exist as zinc oxide (ZnO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), respectively.
  • the ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis.
  • ICP emission spectroscopic analysis can be performed after removing the layer by ion etching or chemical treatment as necessary.
  • a coexisting phase of zinc sulfide and silicon dioxide (hereinafter referred to as a coexisting phase of zinc sulfide and silicon dioxide) is preferably used as the inorganic layer [A] in the present invention.
  • the details of the inorganic layer [A2], which is a layer formed from the above, will be described.
  • silicon dioxide (SiO 2 ) may be generated (SiO to SiO 2 ) slightly deviating from the composition ratio of silicon and oxygen in the composition formula on the left depending on the conditions at the time of production. Alternatively, it will be expressed as SiO 2 .
  • the deviation of the composition ratio from the chemical formula the same applies to zinc sulfide, and it is expressed as zinc sulfide or ZnS regardless of the deviation of the composition ratio depending on the conditions at the time of production.
  • the reason why the gas barrier property is improved by applying the inorganic layer [A2] in the gas barrier film of the present invention is that the crystalline component contained in zinc sulfide and the amorphous component of silicon dioxide coexist. It is presumed that the crystal growth of zinc sulfide, which tends to generate crystals, is suppressed and the particle diameter is reduced, so that the layer is densified and the permeation of water vapor is suppressed.
  • the zinc sulfide-silicon dioxide coexisting phase containing zinc sulfide with suppressed crystal growth is more flexible than a layer formed only of inorganic oxides or metal oxides, and is resistant to heat and external stress.
  • produce a crack it is thought by applying this inorganic layer [A2] that the gas barrier property fall resulting from the production
  • the composition of the inorganic layer [A2] is preferably such that the molar fraction of zinc sulfide relative to the total of zinc sulfide and silicon dioxide is 0.7 to 0.9. If the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is greater than 0.9, there will be insufficient silicon dioxide to suppress zinc sulfide crystal growth, resulting in an increase in voids and defects, resulting in the prescribed gas barrier properties. May not be obtained.
  • the molar fraction of zinc sulfide relative to the total of zinc sulfide and silicon dioxide is less than 0.7, the amorphous component of silicon dioxide inside the inorganic layer [A2] increases and the flexibility of the layer decreases. The flexibility of the gas barrier film against mechanical bending may be reduced.
  • a more preferable range of the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is 0.75 to 0.85 from the tendency due to the content of each compound shown above.
  • the composition of the inorganic layer [A2] is formed with the same composition as the mixed sintered material used at the time of forming the layer, by using the mixed sintered material having a composition suitable for the purpose, the inorganic layer [A2] It is possible to adjust the composition.
  • the composition ratio of zinc and silicon is first obtained by ICP emission spectroscopic analysis. Based on this value, each element is quantitatively analyzed by using Rutherford backscattering method, and zinc sulfide and silicon dioxide are analyzed. And the composition ratio of other inorganic oxides contained.
  • the ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis.
  • the inorganic layer [A2] is a composite layer of sulfide and oxide, analysis by Rutherford backscattering method capable of analyzing the composition ratio of sulfur and oxygen is performed.
  • the layer is removed by ion etching or chemical treatment as necessary, and then analyzed by ICP emission spectroscopic analysis and Rutherford backscattering method. be able to.
  • the inorganic layer [A3] mainly composed of a silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0, which is preferably used as the inorganic layer [A] in the present invention. Details will be described.
  • the main component means 60% by mass or more of the entire inorganic layer [A3], and preferably 80% by mass or more.
  • the main component silicon dioxide (SiO 2 ) may be slightly shifted from the composition ratio of silicon and oxygen in the composition formula (SiO to SiO 2 ) depending on the conditions at the time of generation. It will be expressed as silicon dioxide or SiO 2 .
  • the formation method of the inorganic layer [A3] is preferably a CVD method capable of forming a dense film.
  • a gas of silane or an organosilicon compound which will be described later, is used as a monomer, activated by high-intensity plasma, and a dense film can be formed by a polymerization reaction.
  • organic silicon compound examples include methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane, triethylsilane, tetraethylsilane, propoxysilane, dipropoxysilane, tripropoxysilane, tetrapropoxysilane, tetra Methoxysilane, tetraethoxysilane, tetrapropoxysilane, dimethyldisiloxane, tetramethyldisiloxane, hexamethyldisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentanesiloxane, undecamethylcyclohexasiloxane, Dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, t
  • the composition of the inorganic layer [A3] can be measured by X-ray photoelectron spectroscopy (XPS method) as described later.
  • the number ratio of oxygen atoms to silicon atoms measured by XPS method is preferably in the range of 1.5 to 2.0, more preferably in the range of 1.4 to 1.8.
  • the ratio of the number of silicon atoms to oxygen atoms is larger than 2.0, the amount of oxygen atoms contained is increased, so that void portions and defect portions increase, and a predetermined gas barrier property may not be obtained.
  • the atomic ratio of silicon atoms to oxygen atoms is smaller than 1.5, oxygen atoms are reduced to form a dense film, but flexibility may be lowered.
  • other silicon compounds such as alkoxysilane and organopolysiloxane may be included.
  • the composition of each compound in the silicon compound layer [B] can be measured by 29 Si CP / MAS NMR method.
  • the layer contains silicon oxynitride represented by SiO p N q , so that the layer becomes denser than the layer formed only of SiO 2 , and oxygen and water vapor are transmitted. Since it is suppressed, it becomes a layer with a high gas barrier property, and in addition, since it is more flexible than a layer formed only of Si 3 N 4 , cracks are hardly generated against heat and external stress during use. It is presumed that the layer can suppress a decrease in gas barrier properties due to crack generation.
  • the thickness of the silicon compound layer [B] used in the present invention is preferably from 50 nm to 2,000 nm, more preferably from 50 nm to 1,000 nm. If the thickness of the silicon compound layer [B] is small, stable water vapor barrier performance may not be obtained. When the thickness of the silicon compound layer [B] becomes too large, the residual stress in the silicon compound layer [B] increases, causing the polymer substrate to warp, and the silicon compound layer [B] and / or the inorganic layer [A] ] May be cracked to lower the gas barrier properties.
  • the thickness of the silicon compound layer [B] can be measured from a cross-sectional observation image by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the center surface average roughness SRa of the silicon compound layer [B] used in the present invention is preferably 10 nm or less. It is preferable to set SRa to 10 nm or less because the repeatability of gas barrier properties is improved.
  • the SRa on the surface of the silicon compound layer [B] is larger than 10 nm, cracks due to stress concentration are likely to occur in a portion with many irregularities, which may cause a decrease in reproducibility of gas barrier properties. Therefore, in the present invention, the SRa of the silicon compound layer [B] is preferably 10 nm or less, more preferably 7 nm or less.
  • SRa of the silicon compound layer [B] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
  • FIG. 4 shows the 29 Si CP / MAS NMR spectrum of the silicon compound layer [B] of the present invention.
  • the absorption of silicon is observed in the chemical shift region of ⁇ 30 to ⁇ 50 ppm, ⁇ 50 to ⁇ 90 ppm region, and ⁇ 90 to ⁇ 120 ppm.
  • the total peak area of ⁇ 30 to ⁇ 120 ppm is 100
  • the total peak area of ⁇ 30 to ⁇ 50 ppm is 10 to 40
  • the total peak area of ⁇ 50 to ⁇ 90 ppm is 10 to 40
  • the silicon compound layer [B] preferably contains 0.1 to 100% by mass of the total of the three silicon compounds of the present invention.
  • a silicon compound having a polysilazane skeleton is preferably used as a raw material of the silicon compound layer [B] used in the present invention.
  • the silicon compound having a polysilazane skeleton for example, a compound having a partial structure represented by the following chemical formula (1) can be preferably used.
  • at least one selected from the group consisting of perhydropolysilazane, organopolysilazane, and derivatives thereof can be used.
  • perhydropolysilazane in which all of R 1 , R 2 , and R 3 represented by the following chemical formula (1) are hydrogen from the viewpoint of improving gas barrier properties, but part or all of hydrogen is used.
  • an organopolysilazane substituted with an organic group such as an alkyl group may be used.
  • n represents an integer of 1 or more.
  • the solid content concentration of the paint containing the compound (1) on the inorganic layer [A] is adjusted so that the thickness after drying becomes a desired thickness, and reverse coating, gravure coating, rod coating, bar coating It is preferably applied by a method, a die coating method, a spray coating method, a spin coating method or the like. Moreover, in this invention, it is also preferable to dilute the coating material containing the said Chemical formula (1) using an organic solvent from a viewpoint of coating suitability.
  • hydrocarbon solvents such as xylene, toluene, terpene, and solvesso
  • ether solvents such as dibutyl ether, ethyl butyl ether, and tetrahydrofuran can be used. And it is preferable to use it, diluting solid content concentration to 10 mass% or less. These solvents may be used alone or in combination of two or more.
  • Various additives can be blended in the coating material containing the raw material of the silicon compound layer [B] as necessary within a range that does not impair the effect of the silicon compound layer [B].
  • a catalyst an antioxidant, a light stabilizer, a stabilizer such as an ultraviolet absorber, a surfactant, a leveling agent, an antistatic agent, or the like can be used.
  • the heating temperature is preferably 50 to 150 ° C.
  • the heat treatment time is preferably several seconds to 1 hour.
  • the temperature may be constant during the heat treatment, or the temperature may be gradually changed.
  • the heat treatment may be performed while adjusting the humidity within the range of 20 to 90% RH in terms of relative humidity. You may perform the said heat processing in the state enclosed with air
  • the composition of the coating film is modified by subjecting the dried coating film to active energy ray irradiation treatment such as plasma treatment, ultraviolet irradiation treatment, and flash pulse treatment, and contains the three types of silicon compounds of the present invention.
  • a silicon compound layer [B] can be obtained.
  • the active energy ray irradiation treatment it is preferable to use an ultraviolet treatment since it is simple and excellent in productivity and it is easy to obtain a uniform composition of the silicon compound layer [B].
  • the ultraviolet treatment may be performed under atmospheric pressure or reduced pressure, but it is preferable to perform ultraviolet treatment under atmospheric pressure from the viewpoint of versatility and production efficiency.
  • the oxygen gas partial pressure is preferably 1.0% or less, and more preferably 0.5% or less.
  • the relative humidity can be set to a desired composition ratio. In the ultraviolet treatment, it is more preferable to reduce the oxygen concentration using nitrogen gas.
  • an ultraviolet ray generation source a known source such as a high pressure mercury lamp, a metal halide lamp, a microwave type electrodeless lamp, a low pressure mercury lamp, a xenon lamp, or the like can be used, but a xenon lamp is used in the present invention from the viewpoint of production efficiency. It is preferable.
  • the accumulated amount of ultraviolet irradiation is preferably 0.5 to 10 J / cm 2 , more preferably 0.8 to 7 J / cm 2 . If the integrated light quantity is 0.5 J / cm 2 or more, a desired silicon compound layer [B] composition can be obtained, which is preferable. Moreover, it is preferable if the integrated light quantity is 10 J / cm 2 or less because damage to the polymer substrate and the inorganic layer [B] can be reduced.
  • the heating temperature is preferably 50 to 150 ° C, more preferably 80 to 130 ° C.
  • a heating temperature of 50 ° C. or higher is preferable because high production efficiency can be obtained, and a heating temperature of 150 ° C. or lower is preferable because deformation and alteration of other materials such as a polymer base material hardly occur.
  • the gas barrier film of the present invention is preferably provided with an undercoat layer [C] between the polymer substrate and the inorganic layer [A] in order to improve gas barrier properties and flex resistance.
  • an undercoat layer [C] between the polymer substrate and the inorganic layer [A] in order to improve gas barrier properties and flex resistance.
  • the undercoat layer [C] used in the present invention preferably includes a structure obtained by crosslinking the polyurethane compound [C1] having an aromatic ring structure from the viewpoint of thermal dimensional stability and flex resistance. Furthermore, it is more preferable to contain one or more silicon compounds selected from ethylenically unsaturated compounds [C2], photopolymerization initiators [C3], organic silicon compounds [C4] and inorganic silicon compounds [C5].
  • the polyurethane compound [C1] having an aromatic ring structure that can be used in the present invention has an aromatic ring and a urethane bond in the main chain or side chain.
  • a hydroxyl group and an aromatic ring are present in the molecule. It can be obtained by polymerizing the epoxy (meth) acrylate (c1), the diol compound (c2), and the diisocyanate compound (c3).
  • Examples of the epoxy (meth) acrylate (c1) having a hydroxyl group and an aromatic ring in the molecule include aromatic glycols such as bisphenol A type, hydrogenated bisphenol A type, bisphenol F type, hydrogenated bisphenol F type, resorcin, and hydroquinone. This can be obtained by reacting the diepoxy compound with a (meth) acrylic acid derivative.
  • diol compound (c2) examples include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 2,4-dimethyl-2-ethylhexane-1,3-diol Neopentyl glycol, 2-ethyl-2-butyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2 , 4,4-Tetramethyl-1,3-cyclobutanediol,
  • diisocyanate compound (c3) examples include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-diphenylmethane diisocyanate, 4,4.
  • -Aromatic diisocyanates such as diphenylmethane diisocyanate, aliphatic diisocyanates such as ethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate
  • Diisocyanate compounds isophorone diisocyanate, dicyclohexylmethane-4,4-diisocyanate, methylcyclohexylene diisocyanate
  • Alicyclic isocyanate compounds such as xylylene diisocyanate, aromatic aliphatic isocyanate compounds such as tetramethyl xylylene diisocyanate. These can be used alone or in combination of two or more.
  • the component ratios of (c1), (c2), and (c3) are not particularly limited as long as they are within a desired weight average molecular weight.
  • the polyurethane compound [C1] having an aromatic ring structure of the present invention preferably has a weight average molecular weight (Mw) of 5,000 to 100,000.
  • a weight average molecular weight (Mw) of 5,000 to 100,000 is preferable because the resulting cured film has excellent thermal dimensional stability and flex resistance.
  • the weight average molecular weight (Mw) in this invention is the value measured using the gel permeation chromatography method and converted with standard polystyrene.
  • Ethylenically unsaturated compound [C2] examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like.
  • Di (meth) acrylate pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • Epoxy acrylates such as polyfunctional (meth) acrylate, bisphenol A type epoxy di (meth) acrylate, bisphenol F type epoxy di (meth) acrylate, bisphenol S type epoxy di (meth) acrylate, etc. It is. Among these, polyfunctional (meth) acrylates excellent in thermal dimensional stability and surface protection performance are preferable. Moreover, these may be used by a single composition, and may mix and use two or more components.
  • the content of the ethylenically unsaturated compound [C2] is not particularly limited, but from the viewpoint of thermal dimensional stability and surface protection performance, the total amount with the polyurethane compound [C1] having an aromatic ring structure is 100% by mass. It is preferably in the range of -90% by mass, more preferably in the range of 10-80% by mass.
  • the photopolymerization initiator [C3] that can be used as a raw material for the undercoat layer [C] is particularly limited as long as the gas barrier property and the bending resistance of the gas barrier film of the present invention can be maintained and the photopolymerization can be started. Not. The following are illustrated as a photoinitiator which can be used suitably for this invention.
  • Acylphosphine oxide photopolymerization initiators such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • a titanocene photopolymerization initiator such as bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
  • Photopolymerization initiators having an oxime ester structure such as 1,2-octanedione, 1- [4- (phenylthio)-, 2- (0-benzoyloxime)].
  • a photopolymerization initiator selected from -trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred.
  • these may be used by a single composition, and may mix and use two or more components.
  • the content of the photopolymerization initiator [C3] is not particularly limited, but is in the range of 0.01 to 10% by mass with respect to 100% by mass of the total amount of polymerizable components from the viewpoint of curability and surface protection performance.
  • the range is preferably 0.1 to 5% by mass.
  • organosilicon compound [C4] examples include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3 -Glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropi Me
  • the content of the organosilicon compound [C4] is not particularly limited, but is preferably in the range of 0.01 to 10% by mass in 100% by mass of the total amount of polymerizable components from the viewpoint of curability and surface protection performance.
  • the range of 0.1 to 5% by mass is more preferable.
  • the inorganic silicon compound [C5] that can be used as the raw material for the undercoat layer [C] is preferably silica particles from the viewpoint of surface protection performance and transparency, and the primary particle diameter of the silica particles is in the range of 1 to 300 nm. Preferably, it is in the range of 5 to 80 nm.
  • the primary particle diameter here refers to the particle diameter d calculated
  • required by the gas adsorption method to following formula (2). d 6 / ⁇ s (2) where ⁇ is the density of the particles.
  • the thickness of the undercoat layer [C] is preferably from 200 nm to 4,000 nm, more preferably from 300 nm to 3,000 nm, and further preferably from 500 nm to 2,000 nm. If the thickness of the undercoat layer [C] is too small, the adverse effects of defects due to protrusions or small scratches present on the polymer substrate may not be suppressed. If the thickness of the undercoat layer [C] is too large, the smoothness of the undercoat layer [C] is reduced, and the uneven shape on the surface of the inorganic layer [A] laminated on the undercoat layer [C] is also increased. Since gaps are formed between the sputtered particles to be stacked, the film quality is difficult to be dense, and the effect of improving the gas barrier property may be difficult to obtain.
  • the thickness of the silicon compound layer [B] can be measured from a cross-sectional observation image by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the center surface average roughness SRa of the undercoat layer [C] is preferably 10 nm or less. SRa of 10 nm or less is preferable because a homogeneous inorganic layer [A] can be easily obtained on the undercoat layer [C], and the reproducibility of gas barrier properties is improved. If the SRa on the surface of the undercoat layer [C] is too large, the uneven shape on the surface of the inorganic layer [A] on the undercoat layer [C] also increases and gaps are formed between the laminated sputtered particles, so that the film quality is improved. In some cases, the gas barrier property is hardly obtained and the effect of improving the gas barrier property is hardly obtained.
  • the SRa of the undercoat layer [C] is preferably 10 nm or less, more preferably 7 nm or less.
  • SRa of the undercoat layer [C] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
  • a hard coat layer may be formed for the purpose of improving scratch resistance as long as the gas barrier property does not deteriorate, or a film made of an organic polymer compound is laminated. It is good also as a laminated structure.
  • the outermost surface as used herein refers to the side that is not in contact with the inorganic layer [A] after being laminated in this order so that the inorganic layer [A] and the silicon compound layer [B] are in contact with each other on the polymer substrate. The surface of the silicon compound layer [B].
  • the gas barrier film of the present invention Since the gas barrier film of the present invention has a high gas barrier property, it can be used in various electronic devices. For example, it can be suitably used for an electronic device such as a back sheet of a solar cell or a flexible circuit board. Since the electronic device using the gas barrier film of the present invention has an excellent gas barrier property, it is possible to suppress degradation of the device performance due to water vapor or the like.
  • the gas barrier film of the present invention has a high gas barrier property, it can be suitably used as a packaging film for foods and electronic parts in addition to electronic devices.
  • Layer thickness A sample for cross-sectional observation was prepared by a focused ion beam (FIB) method using a micro sampling system (FB-2000A manufactured by Hitachi, Ltd.). Using a transmission electron microscope (H-9000UHRII, manufactured by Hitachi, Ltd.), the cross section of the observation sample was observed at an acceleration voltage of 300 kV, and the inorganic layer [A], silicon compound layer [B], and undercoat layer [C] The thickness of was measured.
  • FIB focused ion beam
  • the number of samples of water vapor permeability was 2 samples per level, the number of measurements was 5 times for each sample, and the average value of 10 points obtained was the water vapor permeability (g / (m 2 ⁇ d)).
  • composition analysis of [A1] was performed by ICP emission spectroscopic analysis (manufactured by SII Nanotechnology, SPS4000). Samples sampled at the stage of forming the inorganic layer [A1] on the polymer substrate or undercoat layer (before the silicon compound layer [B] is laminated) are thermally decomposed with nitric acid and sulfuric acid, and heated and dissolved with dilute nitric acid And then filtered. The insoluble matter was ashed by heating, melted with sodium carbonate, dissolved with dilute nitric acid, and made up to a constant volume with the previous filtrate.
  • composition of inorganic layer [A2] was performed by ICP emission spectroscopic analysis (SPS4000, manufactured by SII Nanotechnology). Samples sampled at the stage of forming the inorganic layer [A2] on the polymer substrate or undercoat layer (before the silicon compound layer [B] is laminated) are thermally decomposed with nitric acid and sulfuric acid and heated with dilute nitric acid Dissolved and filtered. The insoluble matter was ashed by heating, melted with sodium carbonate, dissolved with dilute nitric acid, and made up to a constant volume with the previous filtrate. About this solution, content of a zinc atom and a silicon atom was measured.
  • SPS4000 ICP emission spectroscopic analysis
  • the Rutherford backscattering method (AN-2500 manufactured by Nissin High Voltage Co., Ltd.) was used to quantitatively analyze zinc atoms, silicon atoms, sulfur atoms, and oxygen atoms. And the composition ratio of silicon dioxide.
  • composition analysis of inorganic layer [A3] was performed by calculating the atomic ratio of oxygen atoms to silicon atoms by using X-ray photoelectron spectroscopy (XPS method). The measurement conditions were as follows. Apparatus: Quantera SXM (manufactured by PHI) Excitation X-ray: monochromatic AlK ⁇ 1,2 X-ray diameter: 100 ⁇ m Photoelectron escape angle: 10 °.
  • composition of silicon compound layer [B] A powder sample obtained by scraping the silicon compound layer [B] with a single blade is filled in a 7.5 mm ⁇ sample tube, and a composition analysis is performed using 29 Si CP / MAS NMR, and a spectrum as shown in FIG. 4 is obtained. Asked. The sum of peak areas of ⁇ 30 to ⁇ 50 ppm, the sum of peak areas of ⁇ 50 to ⁇ 90 ppm, and the sum of peak areas of ⁇ 90 to ⁇ 120 ppm when the sum of peak areas of ⁇ 30 to ⁇ 120 ppm in the spectrum is defined as 100 was calculated. .
  • the measurement conditions were as follows.
  • the gas barrier film is formed of a metal cylinder having a diameter of 5 mm at the center on the side opposite to the surface (reference numeral 21) on which the inorganic layer [A] and silicon compound layer [B] of (reference numeral 19) are formed.
  • the holding angle of the cylinder is 0 ° (the sample is in a flat state) and the holding angle to the cylinder is 180 ° (a state where the sample is folded back) along the cylinder.
  • the water vapor permeability was evaluated by the method shown in (3). The number of measurements was 5 for each specimen, and the average value of the 10 points obtained was the water vapor permeability after the flex resistance test.
  • the polymer substrate is set on the unwinding roll (symbol 8) so that the surface on which the inorganic layer [A1] is provided faces the sputter electrode, unwinding, unwinding side guide roll (symbol 9, 10 and 11) and passed through a cooling drum (reference numeral 12).
  • Argon gas and oxygen gas were introduced at an oxygen gas partial pressure of 10% so that the degree of decompression was 2 ⁇ 10 ⁇ 1 Pa, and an argon / oxygen gas plasma was generated by applying an input power of 4,000 W from a DC power source.
  • the inorganic layer [A1] was formed on the surface of the polymer substrate by sputtering. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll (code
  • a sputter target which is a mixed sintered material formed of zinc sulfide and silicon dioxide, is formed on one surface of a polymer substrate (reference numeral 5) using a winding type sputtering apparatus (reference numeral 6a) having the structure shown in FIG. Sputtering was used to provide an inorganic layer [A2].
  • the specific operation is as follows. First, unwinding in a winding chamber (symbol 7) of a winding type sputtering apparatus in which a sputtering target sintered with a zinc sulfide / silicon dioxide molar ratio of 80/20 is installed on the sputtering electrode (symbol 13).
  • the polymer base material was set on the roll (symbol 8), unwound, and passed through the cooling drum (symbol 12) through the unwinding side guide rolls (symbol 9, 10, 11).
  • Argon gas was introduced so that the degree of decompression was 2 ⁇ 10 ⁇ 1 Pa, and an applied power of 500 W was applied from a high-frequency power source to generate argon gas plasma, and an inorganic layer [on the surface of the polymer substrate by sputtering [ A2] was formed. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll (code
  • the specific operation is as follows. First, in the winding chamber (symbol 7) of the winding type CVD apparatus, the polymer base material is set on the unwinding roll (symbol 8), unwinding, and unwinding side guide rolls (symbols 9, 10, 11). ) was passed through a cooling drum (reference numeral 12). Oxygen gas 0.5 L / min and hexamethyldisiloxane 70 cc / min are introduced so that the degree of decompression is 2 ⁇ 10 ⁇ 1 Pa, and plasma is generated by applying an input power of 3,000 W from a high-frequency power source to the CVD electrode. Then, an inorganic layer [A3] was formed on the surface of the polymer substrate by CVD. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll via the winding side guide roll (code
  • Example 1 A polyethylene terephthalate film (“Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) having a thickness of 50 ⁇ m was used as the polymer substrate, and the inorganic layer [A1] was provided on one side of the polymer substrate so as to have a thickness of 180 nm. .
  • the Zn atom concentration was 27.5 atom%
  • the Si atom concentration was 13.1 atom%
  • the Al atom concentration was 2.3 atom%
  • the O atom concentration was 57.1 atom%.
  • a test piece having a length of 100 mm and a width of 100 mm was cut out from the film on which the inorganic layer [A1] was formed, and the center plane average roughness SRa of the inorganic layer [A1] was evaluated.
  • the results are shown in Table 1.
  • a coating liquid for forming the silicon compound layer [B] 100 parts by mass of a coating agent mainly composed of perhydropolysilazane (“NN120-20” manufactured by AZ Electronic Materials, solid content concentration: 20% by mass)
  • a coating liquid 1 diluted with 300 parts by mass of butyl ether was prepared.
  • the coating liquid 1 is applied onto the inorganic layer [A1] with a micro gravure coater (gravure wire number 200UR, gravure rotation ratio 100%), dried at 120 ° C. for 1 minute, dried, and then subjected to UV treatment under the following conditions.
  • a silicon compound layer [B] having a thickness of 120 nm was provided to obtain a gas barrier film.
  • Ultraviolet treatment device MEIRH-M-1-152-H (manufactured by M. D. Excimer) Introduced gas: N 2 Oxygen concentration: 300-800ppm Integrated light quantity: 3,000 mJ / cm 2 Sample temperature control: 100 ° C.
  • the obtained gas barrier film was subjected to composition analysis using 29 Si CP / MAS NMR method, and the total peak area of ⁇ 30 to ⁇ 50 ppm when the total peak area of ⁇ 30 to ⁇ 120 ppm in the obtained spectrum was taken as 100.
  • the sum of peak areas from -50 to -90 ppm and the sum of peak areas from -90 to -120 ppm were calculated. The results are shown in Table 1.
  • Example 2 A polyethylene terephthalate film (“Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) having a thickness of 50 ⁇ m was used as the polymer substrate.
  • a coating liquid for forming the undercoat layer [C] 150 parts by mass of the polyurethane compound, 20 parts by mass of dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate DPE-6A), and 1-hydroxy- 5 parts by mass of cyclohexyl phenyl-ketone (trade name: “IRGACURE” (registered trademark) 184) manufactured by BASF Japan Ltd.) and 3-methacryloxypropylmethyldiethoxysilane (trade name: KBM-503) manufactured by Shin-Etsu Silicone Co., Ltd.
  • a coating liquid 2 was prepared by blending part by mass, 170 parts by mass of ethyl acetate, 350 parts by mass of toluene, and 170 parts by mass of cyclohexanone. Next, the coating liquid 2 is applied onto the polymer substrate with a micro gravure coater (gravure wire number 150UR, gravure rotation ratio 100%), dried at 100 ° C. for 1 minute, dried, and then subjected to UV treatment under the following conditions. An undercoat layer [C] having a thickness of 1,000 nm was provided.
  • a micro gravure coater gravure wire number 150UR, gravure rotation ratio 100%
  • Ultraviolet treatment device LH10-10Q-G (manufactured by Fusion UV Systems Japan) Introduced gas: N 2 (nitrogen inert BOX) Ultraviolet light source: Microwave type electrodeless lamp Integrated light quantity: 400 mJ / cm 2 Sample temperature control: room temperature.
  • Example 1 an inorganic layer [A1] and a silicon compound layer [B] were provided on the undercoat layer [C] in the same manner as in Example 1, and the same evaluation as in Example 1 was performed.
  • the results are shown in Table 1.
  • Example 3 A gas barrier film was prepared in the same manner as in Example 1 except that an amorphous cyclic polyolefin film having a thickness of 100 ⁇ m (“ZEONOR FILM” ZF14 manufactured by ZEON Corporation) (“ZEONOR” is a registered trademark) was used as the polymer substrate. Obtained.
  • an amorphous cyclic polyolefin film having a thickness of 100 ⁇ m (“ZEONOR FILM” ZF14 manufactured by ZEON Corporation) (“ZEONOR” is a registered trademark) was used as the polymer substrate. Obtained.
  • Example 4 A gas barrier film was obtained in the same manner as in Example 2 except that an amorphous cyclic polyolefin film having a thickness of 100 ⁇ m (“ZEONOR FILM” ZF14 manufactured by Nippon Zeon Co., Ltd.) was used as the polymer substrate.
  • an amorphous cyclic polyolefin film having a thickness of 100 ⁇ m (“ZEONOR FILM” ZF14 manufactured by Nippon Zeon Co., Ltd.) was used as the polymer substrate.
  • Example 5 A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A1] was provided to have a thickness of 950 nm.
  • Example 6 A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A2] was provided to a thickness of 150 nm in place of the inorganic layer [A1].
  • Example 7 A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A3] was provided to a thickness of 150 nm in place of the inorganic layer [A1].
  • Example 8 A gas barrier film was obtained in the same manner as in Example 2 except that the silicon compound layer [B] was provided to have a thickness of 50 nm.
  • Example 9 A gas barrier film was obtained in the same manner as in Example 2 except that the silicon compound layer [B] was provided to have a thickness of 1,000 nm.
  • Example 10 A gas barrier film was obtained in the same manner as in Example 2 except that when the silicon compound layer [B] was formed, the amount of UV irradiation integrated light was changed to 1,500 mJ / cm 2 .
  • Example 11 A gas barrier film was obtained in the same manner as in Example 2 except that when the silicon compound layer [B] was formed, the UV irradiation integrated light amount was changed to 1,000 mJ / cm 2 .
  • Example 1 Comparative Example 1 Except that the inorganic layer [A] was not formed on the polymer substrate, and the silicon compound layer [B] was provided directly on the surface of the polymer substrate so as to have a thickness of 120 nm, the same as in Example 1. A gas barrier film was obtained.
  • Example 2 A gas barrier film was obtained in the same manner as in Example 1 except that the silicon compound layer [B] was not provided on the inorganic layer [A].
  • Example 3 (Comparative Example 3) In Example 1, the order of forming the inorganic layer [A] and the silicon compound layer [B] was changed to obtain a gas barrier film having a layer configuration different from that of Example 1.
  • Example 4 A gas barrier film was obtained in the same manner as in Example 7 except that the silicon compound layer [B] was not provided on the inorganic layer [A].
  • Example 5 A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A3] was provided on the inorganic layer [A] by the CVD method.
  • Example 2 is the same as Example 2 except that instead of the silicon compound layer [B], a layer made of only SiO p N q without SiN x H y and SiO a (OH) 4-2a is formed. Thus, a gas barrier film was obtained.
  • the method of forming the layer consisting only of SiO p N q uses a winding type sputtering apparatus having the structure shown in FIG. 2, on one side of the polymer substrate, using a sputtering target formed of silicon nitride Sputtering was performed to provide a layer made of only SiO p N q .
  • a polymer substrate is placed on the winding roll with a SiO p N q layer.
  • the surface to be provided was set so as to face the sputter electrode, and the polymer substrate was unwound and passed through a cooling drum through a guide roll.
  • Argon gas and oxygen gas were introduced into the sputtering chamber at an oxygen gas partial pressure of 10% so that the degree of vacuum was 2 ⁇ 10 ⁇ 1 Pa.
  • the gas barrier film of the present invention is excellent in gas barrier properties against oxygen gas, water vapor, etc., it can be usefully used, for example, as a packaging material for foods, pharmaceuticals, etc., and as a member for electronic devices such as thin televisions and solar cells. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a gas barrier film which exhibits high gas barrier performance, while having excellent bending resistance. A gas barrier film according to the present invention sequentially comprises, on at least one surface of a polymer base, an inorganic layer (A) and a silicon compound layer (B) in this order from the polymer base side. The silicon compound layer (B) contains at least silicon compounds having structures represented by SiNxHy, SiOpNq and SiOa(OH)4-2a (wherein x + y = 4, p + q =4, a < 2 and x, y, p, q > 0); and the inorganic layer (A) and the silicon compound layer (B) are in contact with each other.

Description

ガスバリア性フィルムGas barrier film
 本発明は、高いガスバリア性が必要とされる食品、医薬品の包装用途や太陽電池、電子ペーパー、有機エレクトロルミネッセンス(EL)ディスプレーなどの電子デバイス用途に使用されるガスバリア性フィルムに関する。 The present invention relates to a gas barrier film used for food and pharmaceutical packaging applications that require high gas barrier properties and electronic device applications such as solar cells, electronic paper, and organic electroluminescence (EL) displays.
 高分子基材の表面に、酸化アルミニウム、酸化ケイ素、酸化マグネシウム等の無機物(無機酸化物を含む)の膜を、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(PVD法)、ならびにプラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(CVD法)等を利用して、形成してなるガスバリア性フィルムがある、このフィルムは、水蒸気や酸素などの各種ガスの遮断を必要とする食品や医薬品などの包装材および薄型テレビ、太陽電池などの電子デバイス部材として用いられている。 A film of an inorganic substance (including inorganic oxides) such as aluminum oxide, silicon oxide, magnesium oxide, etc. on the surface of the polymer substrate is deposited by physical vapor deposition (PVD) such as vacuum deposition, sputtering, or ion plating. A gas barrier film formed using a chemical vapor deposition method (CVD method) such as a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, a photochemical vapor deposition method, or the like. This film is used as a packaging material for foods, pharmaceuticals, and the like that require blocking of various gases such as water vapor and oxygen, and as an electronic device member such as a flat-screen TV and a solar battery.
 ガスバリア性向上技術としては、例えば、有機ケイ素化合物の蒸気と酸素を含有するガスを用いてプラズマCVD法により基材上に、ケイ素酸化物を主体とし、炭素、水素、ケイ素及び酸素を少なくとも1種類含有した化合物とすることによって、透明性を維持しつつガスバリア性を向上させる方法が開示されている(特許文献1)。また、プラズマCVD法などの成膜方法以外によるガスバリア性向上技術としては、ガスバリア性を低下させるピンホールやクラックの発生原因となる突起や凹凸を減少させた平滑基材を利用するものや表面平滑化を目的としたアンダーコート層を設けた基材を用いるものがあった(特許文献2、3および4)。またウェットコート法により形成したポリシラザン膜を酸化ケイ素膜や酸窒化ケイ素膜へ転化させる方法が知られている(特許文献5および6)。 As a gas barrier property improving technique, for example, a gas containing an organic silicon compound vapor and oxygen is used to form a silicon oxide as a main component on a substrate by a plasma CVD method, and at least one kind of carbon, hydrogen, silicon and oxygen. A method for improving gas barrier properties while maintaining transparency by using a contained compound has been disclosed (Patent Document 1). In addition, as a gas barrier property improving technique other than a film forming method such as a plasma CVD method, a method using a smooth base material in which protrusions and unevenness causing generation of pinholes and cracks that reduce the gas barrier property are reduced or surface smoothing is used. Some have used a base material provided with an undercoat layer for the purpose of conversion (Patent Documents 2, 3 and 4). Also known is a method of converting a polysilazane film formed by a wet coating method into a silicon oxide film or a silicon oxynitride film (Patent Documents 5 and 6).
特開平8-142252号公報JP-A-8-142252 特開2002-113826号公報JP 2002-113826 A 国際公開第2012/137662号International Publication No. 2012/137762 国際公開第2013/061726号International Publication No. 2013/061726 国際公開第2011/007543号International Publication No. 2011/007543 国際公開第2011/004698号International Publication No. 2011/004698
 しかしながら、特許文献1のように、プラズマCVD法によりケイ素酸化物を主成分としたガスバリア層を形成する方法では、基材の種類によって、形成されるガスバリア層の膜質は異なり、安定したガスバリア性が得られなかった。ガスバリア性を安定させるために厚膜化する必要があり、その結果耐屈曲性の低下や製造コストの増加という問題があった。また、特許文献2のように、ガスバリア層を形成する基材に平滑なものを用いる方法や、表面の平滑化を目的としたアンダーコート層を設けた基材を用いる方法は、ピンホールやクラックの発生を防止することでガスバリア性は向上するものの、性能の向上は不十分であった。一方、特許文献3、4では、形成されるガスバリア層の膜質は改善されるため性能の向上は見られるものの、安定して高いガスバリア性を発現させることが困難であるという問題がある。また、特許文献5および6が開示するポリシラザン層でガスバリア層を形成する方法では、層を形成する際の条件に影響を受けやすく、十分なガスバリア性のあるガスバリア性フィルムを安定して得るためには複数のポリシラザン層を積層する必要があった。その結果、耐屈曲性の低下や製造コストの増加という問題があった。 However, as in Patent Document 1, in the method of forming a gas barrier layer mainly composed of silicon oxide by the plasma CVD method, the film quality of the formed gas barrier layer differs depending on the type of substrate, and stable gas barrier properties are obtained. It was not obtained. In order to stabilize the gas barrier property, it is necessary to increase the film thickness, and as a result, there is a problem that the bending resistance is lowered and the manufacturing cost is increased. In addition, as in Patent Document 2, a method using a smooth substrate for forming a gas barrier layer or a method using a substrate provided with an undercoat layer for the purpose of smoothing the surface includes pinholes and cracks. Although the gas barrier property is improved by preventing the occurrence of the above, the performance improvement is insufficient. On the other hand, Patent Documents 3 and 4 have a problem that although the film quality of the formed gas barrier layer is improved, the performance is improved, but it is difficult to stably exhibit a high gas barrier property. In addition, in the method of forming a gas barrier layer with a polysilazane layer disclosed in Patent Documents 5 and 6, the gas barrier film is easily affected by conditions at the time of forming the layer, and a gas barrier film having sufficient gas barrier properties can be stably obtained. Needed to laminate a plurality of polysilazane layers. As a result, there has been a problem that the bending resistance is lowered and the manufacturing cost is increased.
 本発明は、かかる従来技術の背景に鑑み、厚膜化や多層積層をせずとも高度なガスバリア性を有し、耐屈曲性、密着性に優れたガスバリア性フィルムを提供することを課題とする。 The present invention has been made in view of the background of the prior art, and it is an object of the present invention to provide a gas barrier film having a high gas barrier property and excellent in bending resistance and adhesion without being thickened or multilayered. .
 本発明は、かかる課題を解決するために、次のような手段を採用する。すなわち、
(1)高分子基材の少なくとも片側に、無機層[A]とケイ素化合物層[B]とを前記高分子基材側からこの順に有するガスバリア性フィルムであって、ケイ素化合物層[B]が、少なくともSiN、SiOおよびSiO(OH)4-2a(x+y=4、p+q=4、a≦2 x,y,p,q>0)で表される構造を有するケイ素化合物を含み、かつ無機層[A]とケイ素化合物層[B]が接しているガスバリア性フィルム。
The present invention employs the following means in order to solve such problems. That is,
(1) A gas barrier film having an inorganic layer [A] and a silicon compound layer [B] in this order from the polymer substrate side on at least one side of the polymer substrate, wherein the silicon compound layer [B] , Silicon having a structure represented by at least SiN x H y , SiO p N q and SiO a (OH) 4-2a (x + y = 4, p + q = 4, a ≦ 2 x, y, p, q> 0) A gas barrier film containing a compound and in contact with an inorganic layer [A] and a silicon compound layer [B].
 また本発明の好ましい態様としては以下のような手段がある。
(2)前記無機層[A]が、亜鉛化合物とケイ素酸化物とを含む(1)に記載のガスバリア性フィルム。
(3)前記ケイ素化合物層[B]の29Si CP/MAS NMRスペクトルにおいて、-30~-120ppmのピーク面積総和を100としたとき、-30~-50ppmのピーク面積総和が10以上、-50~-90ppmのピーク面積総和が10以上、かつ-90~-120ppmのピーク面積総和が80以下である(1)または(2)に記載のガスバリア性フィルム。
(4)前記無機層[A]が、以下の無機層[A1]~[A3]から選ばれるいずれかである(1)~(3)のいずれかに記載のガスバリア性フィルム。
無機層[A1]:(i)~(iii)の共存相からなる無機層
(i)酸化亜鉛
(ii)二酸化ケイ素
(iii)酸化アルミニウム
無機層[A2]:硫化亜鉛と二酸化ケイ素の共存相からなる無機層
無機層[A3]:ケイ素原子に対する酸素原子の原子数比が1.5~2.0であるケイ素
酸化物を主成分とする無機層
(5)前記無機層[A]が前記無機層[A1]であり、該無機層[A1]が、ICP発光分光分析法により測定される亜鉛原子濃度が20~40atom%、ケイ素原子濃度が5~20atom%、アルミニウム原子濃度が0.5~5atom%、酸素原子濃度が35~70atom%である組成により構成されたものである(4)に記載のガスバリア性フィルム。
(6)前記無機層[A]が前記無機層[A2]であり、該無機層[A2]が、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9である組成により構成されたものである(4)に記載のガスバリア性フィルム。
(7)前記高分子基材と前記無機層[A]との間に、芳香族環構造を有するポリウレタン化合物[C1]を架橋して得られる構造を含むアンダーコート層[C]を有する(1)~(6)のいずれかに記載のガスバリア性フィルム。
(8)前記アンダーコート層[C]が有機ケイ素化合物および/または無機ケイ素化合物を含む(7)に記載のガスバリア性フィルム。
Further, as a preferred embodiment of the present invention, there are the following means.
(2) The gas barrier film according to (1), wherein the inorganic layer [A] contains a zinc compound and a silicon oxide.
(3) In the 29 Si CP / MAS NMR spectrum of the silicon compound layer [B], when the total peak area of −30 to −120 ppm is defined as 100, the total peak area of −30 to −50 ppm is 10 or more, −50 The gas barrier film according to (1) or (2), wherein the total peak area at ˜−90 ppm is 10 or more and the total peak area at −90 to −120 ppm is 80 or less.
(4) The gas barrier film according to any one of (1) to (3), wherein the inorganic layer [A] is any one selected from the following inorganic layers [A1] to [A3].
Inorganic layer [A1]: Inorganic layer consisting of coexisting phases of (i) to (iii) (i) Zinc oxide (ii) Silicon dioxide (iii) Aluminum oxide Inorganic layer [A2]: From the coexisting phase of zinc sulfide and silicon dioxide Inorganic layer [A3]: An inorganic layer mainly composed of silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0. (5) The inorganic layer [A] is the inorganic layer. Layer [A1], and the inorganic layer [A1] has a zinc atom concentration of 20 to 40 atom%, a silicon atom concentration of 5 to 20 atom%, and an aluminum atom concentration of 0.5 to 0.5 as measured by ICP emission spectroscopy. The gas barrier film according to (4), which is constituted by a composition having 5 atom% and an oxygen atom concentration of 35 to 70 atom%.
(6) The inorganic layer [A] is the inorganic layer [A2], and the inorganic layer [A2] has a molar fraction of zinc sulfide to the total of zinc sulfide and silicon dioxide of 0.7 to 0.9. The gas barrier film according to (4), which is constituted by a certain composition.
(7) Between the polymer substrate and the inorganic layer [A], there is an undercoat layer [C] including a structure obtained by crosslinking a polyurethane compound [C1] having an aromatic ring structure (1) ) To (6).
(8) The gas barrier film according to (7), wherein the undercoat layer [C] contains an organosilicon compound and / or an inorganic silicon compound.
 また、本発明ではガスバリア性フィルムを用いた以下の電子デバイスも提供する。
(9)(1)~(8)のいずれかに記載のガスバリア性フィルムを用いた電子デバイス。
The present invention also provides the following electronic device using a gas barrier film.
(9) An electronic device using the gas barrier film according to any one of (1) to (8).
 本発明によれば、水蒸気に対する高度なガスバリア性を有し、耐屈曲性、密着性に優れたガスバリア性フィルムが提供される。 According to the present invention, a gas barrier film having a high gas barrier property against water vapor and excellent in bending resistance and adhesion is provided.
本発明のガスバリア性フィルムの一例を示した断面図である。It is sectional drawing which showed an example of the gas barrier film of this invention. 本発明のガスバリア性フィルムを製造するための巻き取り式スパッタリング装置を模式的に示す概略図である。It is the schematic which shows typically the winding-type sputtering apparatus for manufacturing the gas barrier film of this invention. 本発明のガスバリア性フィルムを製造するための巻き取り式CVD装置を模式的に示す概略図である。It is the schematic which shows typically the winding type CVD apparatus for manufacturing the gas barrier film of this invention. 実施例1で得られた本発明のガスバリア性フィルムの、ケイ素化合物層[B]の29Si CP/MAS NMRスペクトルを示したグラフである。2 is a graph showing a 29 Si CP / MAS NMR spectrum of the silicon compound layer [B] of the gas barrier film of the present invention obtained in Example 1. FIG. 耐屈曲性試験の概略図である。It is the schematic of a bending resistance test. 本発明のガスバリア性フィルムの一例を示した断面図である。It is sectional drawing which showed an example of the gas barrier film of this invention.
 発明者らは、水蒸気等に対する高度なガスバリア性を有し、耐屈曲性、密着性にも優れたガスバリア性フィルムを得ることを目的として鋭意検討を重ね、高分子基材の少なくとも片側に、無機層[A]と、SiN、SiOおよびSiO(OH)4-2a(x+y=4、p+q=4、a≦2 x,y,p,q>0)で表される構造を有する3つのケイ素化合物を含むケイ素化合物層[B]とを、この順に接するように積層したところ、前記課題を解決することを見出したものである。
なお、上記3つの構造の意味はそれぞれ以下のとおりである。
SiN:化合物中に存在するケイ素原子へ窒素および水素が結合し、ケイ素からそれぞれの元素への結合数がxおよびyである。
SiO:化合物中に存在するケイ素原子へ酸素および窒素が結合し、ケイ素からそれぞれの元素への結合数がpおよびqである。
SiO(OH)4-2a:ケイ素原子を1としたときの化合物の構造。
The inventors have made extensive studies for the purpose of obtaining a gas barrier film having a high gas barrier property against water vapor and the like, and having excellent bending resistance and adhesion, and at least one side of the polymer base material is inorganic. Layer [A] and represented by SiN x H y , SiO p N q and SiO a (OH) 4-2 a (x + y = 4, p + q = 4, a ≦ 2 x, y, p, q> 0) When the silicon compound layer [B] containing three silicon compounds having a structure is laminated so as to be in this order, it has been found that the above-mentioned problems are solved.
The meanings of the three structures are as follows.
SiN x H y : Nitrogen and hydrogen are bonded to a silicon atom present in the compound, and the number of bonds from silicon to each element is x and y.
SiO p N q : Oxygen and nitrogen are bonded to a silicon atom present in the compound, and the number of bonds from silicon to each element is p and q.
SiO a (OH) 4-2a : The structure of the compound when the silicon atom is 1.
 図1は、本発明のガスバリア性フィルムの一例を示す断面図である。本発明のガスバリア性フィルムは、図1に示すように、高分子基材(符号1)の片側に、高分子基材側から無機層[A](符号2)と、SiN、SiOおよびSiO(OH)4-2a(x+y=4、a≦2)で表される構造を有する3つのケイ素化合物を含むケイ素化合物層[B](符号3)とが、この順に積層しているものである。なお、図1の例は、本発明のガスバリア性フィルムの最小限の構成を示すものであり、無機層[A]とケイ素化合物層[B]のみが高分子基材の片側に配置されているが、高分子基材と無機層[A]との間に他の層が配されてもよく、また、高分子基材1の無機層[A]が積層されている側と反対側に他の層が配されていてもよい。 FIG. 1 is a cross-sectional view showing an example of the gas barrier film of the present invention. As shown in FIG. 1, the gas barrier film of the present invention has an inorganic layer [A] (reference numeral 2), SiN x H y , SiO on one side of the polymer base material (reference numeral 1) from the polymer base material side. A silicon compound layer [B] (reference numeral 3) containing three silicon compounds having a structure represented by p N q and SiO a (OH) 4-2a (x + y = 4, a ≦ 2) is laminated in this order. It is what you are doing. In addition, the example of FIG. 1 shows the minimum structure of the gas barrier film of the present invention, and only the inorganic layer [A] and the silicon compound layer [B] are arranged on one side of the polymer substrate. However, another layer may be disposed between the polymer base material and the inorganic layer [A], and the other side of the polymer base material 1 opposite to the side on which the inorganic layer [A] is laminated. These layers may be arranged.
 本発明において顕著な効果が得られる理由は以下のように推定している。すなわち、無機層[A]とケイ素化合物層[B]とを接することで、無機層[A]のケイ素化合物層[B]を形成する側の表面近傍に存在するピンホールやクラック等の欠陥にケイ素化合物層[B]を構成する成分が充填され、高いバリア性を発現することが可能となる。また、上記3種のケイ素化合物は、無機層[A]を構成する成分と化学結合を形成することが容易であるため、無機層[A]とケイ素化合物層[B]との密着性が向上することは勿論、ケイ素化合物層[B]上へ他の層が積層された場合にも優れた密着性を得ることができる。更に、前記構造を含むケイ素化合物層[B]は柔軟性にも優れるため、優れた耐屈曲性も得ることができる。 The reason why a remarkable effect is obtained in the present invention is estimated as follows. That is, by contacting the inorganic layer [A] and the silicon compound layer [B], defects such as pinholes and cracks existing near the surface of the inorganic layer [A] on the side on which the silicon compound layer [B] is formed are treated. The components constituting the silicon compound layer [B] are filled, and high barrier properties can be expressed. In addition, since the above three types of silicon compounds can easily form chemical bonds with the components constituting the inorganic layer [A], the adhesion between the inorganic layer [A] and the silicon compound layer [B] is improved. Needless to say, excellent adhesion can be obtained also when another layer is laminated on the silicon compound layer [B]. Furthermore, since the silicon compound layer [B] including the above structure is excellent in flexibility, excellent bending resistance can be obtained.
 [高分子基材]
 本発明に用いられる高分子基材は、柔軟性を確保する観点からフィルム形態を有することが好ましい。フィルムの構成としては、単層フィルム、または2層以上の、例えば、共押し出し法で製膜したフィルムであってもよい。フィルムの種類としては、一軸方向あるいは二軸方向に延伸されたフィルム等を使用してもよい。
[Polymer substrate]
The polymer substrate used in the present invention preferably has a film form from the viewpoint of ensuring flexibility. The structure of the film may be a single-layer film or a film having two or more layers, for example, a film formed by a coextrusion method. As the type of film, a film stretched in a uniaxial direction or a biaxial direction may be used.
 本発明に用いられる高分子基材の素材は特に限定されないが、有機高分子を主たる構成成分とするものであることが好ましい。本発明に好適に用いることができる有機高分子としては、例えば、ポリエチレンやポリプロピレン等の結晶性ポリオレフィン、環状構造を有する非晶性環状ポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリアミド、ポリカーボネート、ポリスチレン、ポリビニルアルコール、エチレン酢酸ビニル共重合体のケン化物、ポリアクリロニトリル、ポリアセタール等の各種ポリマーなどを挙げることができる。これらの中でも、透明性や汎用性、機械特性に優れた非晶性環状ポリオレフィンまたはポリエチレンテレフタレートを含むことが好ましい。また、前記有機高分子は、単独重合体、共重合体のいずれでもよいし、有機高分子として1種類のみを用いてもよいし、複数種類を混合して用いてもよい。 The material of the polymer substrate used in the present invention is not particularly limited, but is preferably an organic polymer as a main constituent. Examples of the organic polymer that can be suitably used in the present invention include crystalline polyolefins such as polyethylene and polypropylene, amorphous cyclic polyolefins having a cyclic structure, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, Examples include polystyrene, polyvinyl alcohol, saponified ethylene vinyl acetate copolymer, various polymers such as polyacrylonitrile and polyacetal. Among these, it is preferable to include amorphous cyclic polyolefin or polyethylene terephthalate having excellent transparency, versatility, and mechanical properties. Further, the organic polymer may be either a homopolymer or a copolymer, and only one type may be used as the organic polymer, or a plurality of types may be mixed and used.
 高分子基材の無機層[A]を形成する側の表面には、密着性や平滑性を良くするためにコロナ処理、プラズマ処理、紫外線処理、イオンボンバード処理、溶剤処理、有機物もしくは無機物またはそれらの混合物で構成されるアンダーコート層の形成処理、等の前処理が施されていてもよい。また、無機層[A]を形成する側の反対側には、フィルムの巻き取り時の滑り性の向上を目的として、有機物や無機物あるいはこれらの混合物のコーティング層が積層されていてもよい。 The surface of the polymer base on which the inorganic layer [A] is formed has a corona treatment, a plasma treatment, an ultraviolet treatment, an ion bombard treatment, a solvent treatment, an organic substance or an inorganic substance to improve adhesion and smoothness. A pretreatment such as an undercoat layer forming treatment composed of the above mixture may be applied. Further, on the side opposite to the side on which the inorganic layer [A] is formed, a coating layer of an organic material, an inorganic material, or a mixture thereof may be laminated for the purpose of improving the slipping property at the time of winding the film.
 本発明に使用する高分子基材の厚みは特に限定されないが、柔軟性を確保する観点から500μm以下が好ましく、引張りや衝撃に対する強度を確保する観点から5μm以上が好ましい。さらに、フィルムの加工やハンドリングの容易性から高分子基材の厚みは10μm以上、200μm以下がより好ましい。 The thickness of the polymer substrate used in the present invention is not particularly limited, but is preferably 500 μm or less from the viewpoint of ensuring flexibility, and preferably 5 μm or more from the viewpoint of securing strength against tension or impact. Furthermore, the thickness of the polymer substrate is more preferably 10 μm or more and 200 μm or less because of the ease of film processing and handling.
 [無機層[A]]
 本発明における無機層[A]は、亜鉛(Zn)、ケイ素(Si)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、スズ(Sn)、インジウム(In)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)等の元素の酸化物、窒化物、硫化物、または、それらの混合物が例示される。このような無機物を含んでいれば特に限定されるものではないが、無機層[A]がケイ素酸化物を含むことが好ましく、さらに亜鉛化合物とケイ素酸化物とを含むことがより好ましい。また、高いガスバリア性が得られる無機層[A]として、以下の無機層[A1]~[A3]から選ばれるいずれかが好適に用いられる。
無機層[A1]:(i)~(iii)の共存相からなる無機層
(i)酸化亜鉛
(ii)二酸化ケイ素
(iii)酸化アルミニウム
無機層[A2]:硫化亜鉛と二酸化ケイ素の共存相からなる無機層
無機層[A3]:ケイ素原子に対する酸素原子の原子数比が1.5~2.0であるケイ素酸化物を主成分とする無機層
無機層[A1]から[A3]のそれぞれの詳細は後述する。
[Inorganic layer [A]]
The inorganic layer [A] in the present invention includes zinc (Zn), silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), tin (Sn), indium (In), niobium (Nb), Examples include oxides, nitrides, sulfides, or mixtures of elements such as molybdenum (Mo) and tantalum (Ta). Although it will not specifically limit if such an inorganic substance is included, It is preferable that inorganic layer [A] contains a silicon oxide, and it is more preferable that a zinc compound and a silicon oxide are further included. In addition, as the inorganic layer [A] from which high gas barrier properties can be obtained, any one selected from the following inorganic layers [A1] to [A3] is preferably used.
Inorganic layer [A1]: Inorganic layer consisting of coexisting phases of (i) to (iii) (i) Zinc oxide (ii) Silicon dioxide (iii) Aluminum oxide Inorganic layer [A2]: From the coexisting phase of zinc sulfide and silicon dioxide Each of the inorganic layers [A3]: [A3]: the inorganic layers [A1] to [A3] each of which is mainly composed of silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0 Details will be described later.
 本発明における無機層[A]の厚みは、ガスバリア性を発現する層の厚みとして10nm以上、1,000nm以下が好ましい。層の厚みが小さいと、十分にガスバリア性が確保できない箇所が発生し、高分子基材面内でガスバリア性がばらつく場合がある。また、層の厚みが大きすぎると、層内に残留する応力が大きくなるため、曲げや外部からの衝撃によって無機層[A]にクラックが発生しやすくなり、使用に伴ってガスバリア性が低下する場合がある。従って、無機層[A]の厚みは10nm以上、さらには100nm以上、一方1,000nm以下、500nm以下が。無機層[A]の厚みは、通常は透過型電子顕微鏡(TEM)による断面観察により測定することが可能である。 The thickness of the inorganic layer [A] in the present invention is preferably 10 nm or more and 1,000 nm or less as the thickness of the layer exhibiting gas barrier properties. If the thickness of the layer is small, there may be places where sufficient gas barrier properties cannot be secured, and the gas barrier properties may vary within the polymer substrate surface. In addition, if the thickness of the layer is too large, the stress remaining in the layer becomes large, so that the inorganic layer [A] is liable to be cracked by bending or external impact, and the gas barrier properties are lowered with use. There is a case. Therefore, the thickness of the inorganic layer [A] is 10 nm or more, more preferably 100 nm or more, while 1,000 nm or less and 500 nm or less. The thickness of the inorganic layer [A] can usually be measured by cross-sectional observation with a transmission electron microscope (TEM).
 本発明に使用する無機層[A]の中心面平均粗さSRaは、10nm以下であることが好ましい。SRaが10nmより大きくなると、無機層[A]表面の凹凸形状が大きくなり、積層されるスパッタ粒子間に隙間ができるため、膜質が緻密になりにくく、膜厚を厚く形成してもガスバリア性の向上効果は得られにくくなる場合がある。また、SRaが10nmより大きくなると、無機層[A]上に積層するケイ素化合物層[B]の膜質が均一にならないため、ガスバリア性が低下する場合がある。従って、無機層[A]のSRaは10nm以下であることが好ましく、さらに好ましくは7nm以下である。 The center plane average roughness SRa of the inorganic layer [A] used in the present invention is preferably 10 nm or less. When SRa is larger than 10 nm, the irregular shape on the surface of the inorganic layer [A] becomes large, and a gap is formed between the sputtered particles to be laminated. The improvement effect may be difficult to obtain. Further, when SRa is larger than 10 nm, the film quality of the silicon compound layer [B] laminated on the inorganic layer [A] is not uniform, and the gas barrier property may be lowered. Therefore, SRa of the inorganic layer [A] is preferably 10 nm or less, and more preferably 7 nm or less.
 本発明における無機層[A]のSRaは、三次元表面粗さ測定機を用いて測定することができる。 SRa of the inorganic layer [A] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
 本発明において無機層[A]を形成する方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法等によって形成することができる。これらの方法の中でも、簡便かつ緻密に無機層[A]を形成可能であることから、スパッタリング法若しくはCVD法が好ましい。 In the present invention, the method for forming the inorganic layer [A] is not particularly limited, and can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like. Among these methods, the sputtering method or the CVD method is preferable because the inorganic layer [A] can be easily and precisely formed.
 [無機層[A1]]
 本発明において無機層[A]として好適に用いられる、(i)酸化亜鉛、(ii)二酸化ケイ素、および(iii)酸化アルミニウムの共存相(以下、(i)酸化亜鉛、(ii)二酸化ケイ素、および(iii)酸化アルミニウムの共存相を「酸化亜鉛-二酸化ケイ素-酸化アルミニウム共存相」と表記することもある)からなる層である無機層[A1]について詳細を説明する。なお、二酸化ケイ素(SiO)は、生成時の条件によって、左記組成式のケイ素と酸素の組成比率から若干ずれたもの(SiO~SiO)が生成することがあるが、ここでは二酸化ケイ素あるいはSiOと表記することとする。かかる組成比の化学式からのずれに関しては、酸化亜鉛、酸化アルミニウムについても同様の扱いとし、それぞれ、生成時の条件に依存する組成比のずれに関わらず、それぞれ酸化亜鉛またはZnO、酸化アルミニウムまたはAlと表記することとする。
[Inorganic layer [A1]]
In the present invention, (i) zinc oxide, (ii) silicon dioxide, and (iii) a coexisting phase of aluminum oxide (hereinafter referred to as (i) zinc oxide, (ii) silicon dioxide, And (iii) the inorganic layer [A1], which is a layer composed of the coexisting phase of aluminum oxide (sometimes referred to as “zinc oxide-silicon dioxide-aluminum oxide coexisting phase”) will be described in detail. Note that silicon dioxide (SiO 2 ) may be generated (SiO to SiO 2 ) that slightly deviates from the composition ratio of silicon and oxygen in the composition formula on the left, depending on the conditions at the time of production. It shall be described as SiO 2 . Regarding the deviation of the composition ratio from the chemical formula, the same applies to zinc oxide and aluminum oxide. Regardless of the deviation of the composition ratio depending on the conditions at the time of production, zinc oxide or ZnO, aluminum oxide or Al, respectively. It shall be expressed as 2 O 3 .
 本発明のガスバリア性フィルムにおいて無機層[A1]を適用することによりガスバリア性が良好となる理由は、酸化亜鉛に含まれる結晶質成分と二酸化ケイ素の非晶質成分とが共存することによって、微結晶を生成しやすい酸化亜鉛の結晶成長が抑制され、粒子径が小さくなるため、層が緻密化し、水蒸気の透過が抑制されるためと推測している。 The reason why the gas barrier property is improved by applying the inorganic layer [A1] in the gas barrier film of the present invention is that the crystalline component contained in zinc oxide and the amorphous component of silicon dioxide coexist. It is presumed that the crystal growth of zinc oxide, which tends to generate crystals, is suppressed and the particle diameter is reduced, so that the layer is densified and the permeation of water vapor is suppressed.
 また、酸化アルミニウムを共存させることによって、酸化亜鉛と二酸化ケイ素を共存させる場合に比べて、より結晶成長を抑制することができるため、さらなる層の緻密化ができること、それに伴い、使用時におけるクラックの生成に起因するガスバリア性低下についても抑制できたものと考えられる。 In addition, the coexistence of aluminum oxide can suppress the crystal growth more than the case of coexistence of zinc oxide and silicon dioxide, so that the layer can be further densified, and accordingly, cracks during use can be reduced. It is considered that the gas barrier property deterioration due to the generation could be suppressed.
 無機層[A1]の組成は、後述するようにICP発光分光分析法により測定することができる。ICP発光分光分析法により測定される亜鉛原子濃度は20~40atom%、ケイ素原子濃度は5~20atom%、アルミニウム原子濃度は0.5~5atom%、O原子濃度は35~70atom%であることが好ましい。亜鉛原子濃度が40atom%より大きくなる、またはケイ素原子濃度が5atom%より小さくなると、酸化亜鉛の結晶成長を抑制する二酸化ケイ素および/または酸化アルミニウムが不足するため、空隙部分や欠陥部分が増加し、高いガスバリア性が得られない場合がある。亜鉛原子濃度が20atom%より小さくなる、またはケイ素原子濃度が20atom%より大きくなると、層内部の二酸化ケイ素の非晶質成分が増加して層の柔軟性が低下する場合がある。また、アルミニウム原子濃度が5atom%より大きくなると、酸化亜鉛と二酸化ケイ素の親和性が過剰に高くなるため膜が硬くなり、熱や外部からの応力に対してクラックが生じやすくなる場合がある。アルミニウム原子濃度が0.5atom%より小さくなると、酸化亜鉛と二酸化ケイ素の親和性が不十分となり、層を形成する粒子間の結合力が向上できないため、柔軟性が低下する場合がある。また、酸素原子濃度が70atom%より大きくなると、無機層[A1]内の欠陥量が増加するため、所望のガスバリア性が得られない場合がある。酸素原子濃度が35atom%より小さくなると、亜鉛、ケイ素、アルミニウムの酸化状態が不十分となり、結晶成長が抑制できず粒子径が大きくなるため、ガスバリア性が低下する場合がある。上で示した各原子の含有量による傾向から、亜鉛原子濃度が25~35atom%、ケイ素原子濃度が10~15atom%、アルミニウム原子濃度が1~3atom%、酸素原子濃度が50~64atom%であることがより好ましい。 The composition of the inorganic layer [A1] can be measured by ICP emission spectroscopy as described later. The zinc atom concentration measured by ICP emission spectroscopy is 20 to 40 atom%, the silicon atom concentration is 5 to 20 atom%, the aluminum atom concentration is 0.5 to 5 atom%, and the O atom concentration is 35 to 70 atom%. preferable. When the zinc atom concentration is higher than 40 atom% or the silicon atom concentration is lower than 5 atom%, the silicon dioxide and / or aluminum oxide that suppresses the crystal growth of zinc oxide is insufficient, so that void portions and defect portions increase. High gas barrier properties may not be obtained. When the zinc atom concentration is lower than 20 atom% or the silicon atom concentration is higher than 20 atom%, the amorphous component of silicon dioxide inside the layer may increase and the flexibility of the layer may be lowered. On the other hand, when the aluminum atom concentration is higher than 5 atom%, the affinity between zinc oxide and silicon dioxide becomes excessively high, so that the film becomes hard, and cracks are likely to occur due to heat and external stress. When the aluminum atom concentration is smaller than 0.5 atom%, the affinity between zinc oxide and silicon dioxide becomes insufficient, and the bonding force between the particles forming the layer cannot be improved, so that the flexibility may be lowered. In addition, when the oxygen atom concentration is higher than 70 atom%, the amount of defects in the inorganic layer [A1] increases, so that a desired gas barrier property may not be obtained. When the oxygen atom concentration is lower than 35 atom%, the oxidation state of zinc, silicon, and aluminum becomes insufficient, the crystal growth cannot be suppressed, and the particle diameter increases, so that the gas barrier property may be lowered. From the tendency of the content of each atom shown above, the zinc atom concentration is 25 to 35 atom%, the silicon atom concentration is 10 to 15 atom%, the aluminum atom concentration is 1 to 3 atom%, and the oxygen atom concentration is 50 to 64 atom%. It is more preferable.
 無機層[A1]の組成は、層の形成時に使用した混合焼結材料と同様の組成で形成されるため、目的とする層の組成に合わせた組成の混合焼結材料を使用することで無機層[A1]の組成を調整することが可能である。 The composition of the inorganic layer [A1] is formed with the same composition as the mixed sintered material used at the time of forming the layer. Therefore, by using a mixed sintered material having a composition that matches the composition of the target layer, the inorganic layer [A1] It is possible to adjust the composition of the layer [A1].
 無機層[A1]の組成は、ICP発光分光分析法により、亜鉛、ケイ素、アルミニウムの各元素を定量し、酸化亜鉛と二酸化ケイ素、酸化アルミニウムおよび含有する無機酸化物の組成比として算出する。なお、酸素原子は亜鉛原子、ケイ素原子、アルミニウム原子が、それぞれ酸化亜鉛(ZnO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)として存在すると仮定して算出する。ICP発光分光分析は、試料をアルゴンガスとともにプラズマ光源部に導入した際に発生する発光スペクトルから、多元素の同時計測が可能な分析手法であり、組成分析に適用することができる。無機層[A1]上にさらに無機層や樹脂層が積層されている場合、必要に応じてイオンエッチングや薬液処理により層を除去した後、ICP発光分光分析を行うことができる。 The composition of the inorganic layer [A1] is calculated as a composition ratio of zinc oxide, silicon dioxide, aluminum oxide, and the inorganic oxide contained by quantifying each element of zinc, silicon, and aluminum by ICP emission spectroscopy. The oxygen atoms are calculated on the assumption that zinc atoms, silicon atoms, and aluminum atoms exist as zinc oxide (ZnO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), respectively. The ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis. When an inorganic layer or a resin layer is further laminated on the inorganic layer [A1], ICP emission spectroscopic analysis can be performed after removing the layer by ion etching or chemical treatment as necessary.
 [無機層[A2]]
 次に、本発明において無機層[A]として好適に用いられる、硫化亜鉛と二酸化ケイ素の共存相(以下、硫化亜鉛と二酸化ケイ素の共存相を「硫化亜鉛-二酸化ケイ素共存相」と表記することもある)からなる層である無機層[A2]について詳細を説明する。なお、ここでも二酸化ケイ素(SiO)は、その生成時の条件によって、左記組成式のケイ素と酸素の組成比率から若干ずれたもの(SiO~SiO)が生成することがあるが、二酸化ケイ素あるいはSiOと表記することとする。かかる組成比の化学式からのずれに関しては、硫化亜鉛についても同様の扱いとし、生成時の条件に依存する組成比のずれに関わらず、硫化亜鉛またはZnSと表記することとする。
[Inorganic layer [A2]]
Next, a coexisting phase of zinc sulfide and silicon dioxide (hereinafter referred to as a coexisting phase of zinc sulfide and silicon dioxide) is preferably used as the inorganic layer [A] in the present invention. The details of the inorganic layer [A2], which is a layer formed from the above, will be described. In this case as well, silicon dioxide (SiO 2 ) may be generated (SiO to SiO 2 ) slightly deviating from the composition ratio of silicon and oxygen in the composition formula on the left depending on the conditions at the time of production. Alternatively, it will be expressed as SiO 2 . Regarding the deviation of the composition ratio from the chemical formula, the same applies to zinc sulfide, and it is expressed as zinc sulfide or ZnS regardless of the deviation of the composition ratio depending on the conditions at the time of production.
 本発明のガスバリア性フィルムにおいて無機層[A2]を適用することによりガスバリア性が良好となる理由は、硫化亜鉛に含まれる結晶質成分と二酸化ケイ素の非晶質成分とが共存することによって、微結晶を生成しやすい硫化亜鉛の結晶成長が抑制され、粒子径が小さくなるため、層が緻密化し、水蒸気の透過が抑制されるためと推測している。 The reason why the gas barrier property is improved by applying the inorganic layer [A2] in the gas barrier film of the present invention is that the crystalline component contained in zinc sulfide and the amorphous component of silicon dioxide coexist. It is presumed that the crystal growth of zinc sulfide, which tends to generate crystals, is suppressed and the particle diameter is reduced, so that the layer is densified and the permeation of water vapor is suppressed.
 また、結晶成長が抑制された硫化亜鉛を含む硫化亜鉛-二酸化ケイ素共存相は、無機酸化物または金属酸化物だけで形成された層よりも柔軟性がより高くなり、熱や外部からの応力に対してクラックが生じにくい層となるため、かかる無機層[A2]を適用することにより、使用時におけるクラックの生成に起因するガスバリア性低下についても抑制できたものと考えられる。 In addition, the zinc sulfide-silicon dioxide coexisting phase containing zinc sulfide with suppressed crystal growth is more flexible than a layer formed only of inorganic oxides or metal oxides, and is resistant to heat and external stress. On the other hand, since it becomes a layer which is hard to generate | occur | produce a crack, it is thought by applying this inorganic layer [A2] that the gas barrier property fall resulting from the production | generation of the crack at the time of use was also suppressed.
 無機層[A2]の組成は、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9であることが好ましい。硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.9より大きくなると、硫化亜鉛の結晶成長を抑制する二酸化ケイ素が不足するため、空隙部分や欠陥部分が増加し、所定のガスバリア性が得られない場合がある。また、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7より小さくなると、無機層[A2]内部の二酸化ケイ素の非晶質成分が増加して層の柔軟性が低下するため、機械的な曲げに対するガスバリア性フィルムの柔軟性が低下する場合がある。硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率のさらに好ましい範囲は、上で示した各化合物の含有量による傾向から、0.75~0.85である。 The composition of the inorganic layer [A2] is preferably such that the molar fraction of zinc sulfide relative to the total of zinc sulfide and silicon dioxide is 0.7 to 0.9. If the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is greater than 0.9, there will be insufficient silicon dioxide to suppress zinc sulfide crystal growth, resulting in an increase in voids and defects, resulting in the prescribed gas barrier properties. May not be obtained. Also, if the molar fraction of zinc sulfide relative to the total of zinc sulfide and silicon dioxide is less than 0.7, the amorphous component of silicon dioxide inside the inorganic layer [A2] increases and the flexibility of the layer decreases. The flexibility of the gas barrier film against mechanical bending may be reduced. A more preferable range of the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is 0.75 to 0.85 from the tendency due to the content of each compound shown above.
 無機層[A2]の組成は、層の形成時に使用した混合焼結材料と同様の組成で形成されるため、目的に合わせた組成の混合焼結材料を使用することで無機層[A2]の組成を調整することが可能である。 Since the composition of the inorganic layer [A2] is formed with the same composition as the mixed sintered material used at the time of forming the layer, by using the mixed sintered material having a composition suitable for the purpose, the inorganic layer [A2] It is possible to adjust the composition.
 無機層[A2]の組成分析は、ICP発光分光分析によりまず亜鉛及びケイ素の組成比を求め、この値を基にラザフォード後方散乱法を使用して、各元素を定量分析し硫化亜鉛と二酸化ケイ素および含有する他の無機酸化物の組成比を知ることができる。ICP発光分光分析は、試料をアルゴンガスとともにプラズマ光源部に導入した際に発生する発光スペクトルから、多元素の同時計測が可能な分析手法であり、組成分析に適用することができる。また、ラザフォード後方散乱法は高電圧で加速させた荷電粒子を試料に照射し、そこから跳ね返る荷電粒子の数、エネルギーから元素の特定、定量を行い、各元素の組成比を知ることができる。なお、無機層[A2]は硫化物と酸化物の複合層であるため、硫黄と酸素の組成比分析が可能なラザフォード後方散乱法による分析を実施する。無機層[A2]上にさらに無機層や樹脂層が積層されている場合、必要に応じてイオンエッチングや薬液処理により層を除去した後、ICP発光分光分析及び、ラザフォード後方散乱法にて分析することができる。 In the composition analysis of the inorganic layer [A2], the composition ratio of zinc and silicon is first obtained by ICP emission spectroscopic analysis. Based on this value, each element is quantitatively analyzed by using Rutherford backscattering method, and zinc sulfide and silicon dioxide are analyzed. And the composition ratio of other inorganic oxides contained. The ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis. In Rutherford backscattering method, a charged particle accelerated by a high voltage is irradiated on a sample, and the number of charged particles bounced from the sample and the element are identified and quantified from the energy, and the composition ratio of each element can be known. Note that since the inorganic layer [A2] is a composite layer of sulfide and oxide, analysis by Rutherford backscattering method capable of analyzing the composition ratio of sulfur and oxygen is performed. When an inorganic layer or a resin layer is further laminated on the inorganic layer [A2], the layer is removed by ion etching or chemical treatment as necessary, and then analyzed by ICP emission spectroscopic analysis and Rutherford backscattering method. be able to.
 [無機層[A3]]
 次に、本発明において無機層[A]として好適に用いられる、ケイ素原子に対する酸素原子の原子数比が1.5~2.0であるケイ素酸化物を主成分とする無機層[A3]について詳細を説明する。ここで、主成分とは無機層[A3]全体の60質量%以上であることを意味し、80質量%以上であれば好ましい。なお、前記の主成分二酸化ケイ素(SiO)は、その生成時の条件によって、前記組成式のケイ素と酸素の組成比率から若干ずれたもの(SiO~SiO)が生成することがあるが、二酸化ケイ素あるいはSiOと表記することとする。
[Inorganic layer [A3]]
Next, the inorganic layer [A3] mainly composed of a silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0, which is preferably used as the inorganic layer [A] in the present invention. Details will be described. Here, the main component means 60% by mass or more of the entire inorganic layer [A3], and preferably 80% by mass or more. The main component silicon dioxide (SiO 2 ) may be slightly shifted from the composition ratio of silicon and oxygen in the composition formula (SiO to SiO 2 ) depending on the conditions at the time of generation. It will be expressed as silicon dioxide or SiO 2 .
 無機層[A3]の形成方法は、緻密な膜を形成することができるCVD法が好ましい。CVD法では、後述するシランまたは有機ケイ素化合物の気体をモノマーとし、高強度のプラズマにより活性化し、重合反応によって緻密な膜を形成することができる。ここでいう有機ケイ素化合物とは、例えば、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、エチルシラン、ジエチルシラン、トリエチルシラン、テトラエチルシラン、プロポキシシラン、ジプロポキシシラン、トリプロポキシシラン、テトラプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ジメチルジシロキサン、テトラメチルジシロキサン、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタンシロキサン、ウンデカメチルシクロヘキサシロキサン、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、デカメチルシクロペンタシラザン、ウンデカメチルシクロヘキサシラザンなどが挙げられる。中でも取り扱い上の点からヘキサメチルジシロキサン、テトラエトキシシランが好ましい。 The formation method of the inorganic layer [A3] is preferably a CVD method capable of forming a dense film. In the CVD method, a gas of silane or an organosilicon compound, which will be described later, is used as a monomer, activated by high-intensity plasma, and a dense film can be formed by a polymerization reaction. Examples of the organic silicon compound include methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane, triethylsilane, tetraethylsilane, propoxysilane, dipropoxysilane, tripropoxysilane, tetrapropoxysilane, tetra Methoxysilane, tetraethoxysilane, tetrapropoxysilane, dimethyldisiloxane, tetramethyldisiloxane, hexamethyldisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentanesiloxane, undecamethylcyclohexasiloxane, Dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, hexamethyldisilazane, hexamethylcyclotrisilazane Octamethylcyclotetrasilazane, decamethylcyclopentasiloxane silazane, such undecapeptide methyl cyclohexasilane La disilazane and the like. Of these, hexamethyldisiloxane and tetraethoxysilane are preferred from the viewpoint of handling.
 無機層[A3]の組成は、後述するようにX線光電子分光法(XPS法)により測定することができる。XPS法により測定されるケイ素原子に対する酸素原子の原子数比は、1.5~2.0の範囲であることが好ましく、さらに1.4~1.8の範囲であることがより好ましい。酸素原子に対するケイ素原子の原子数比が2.0より大きくなると、含まれる酸素原子量が多くなるため、空隙部分や欠陥部分が増加し、所定のガスバリア性が得られない場合がある。また、酸素原子に対するケイ素原子の原子数比が1.5より小さくなると、酸素原子が減少し緻密な膜になるが、柔軟性が低下する場合がある。 The composition of the inorganic layer [A3] can be measured by X-ray photoelectron spectroscopy (XPS method) as described later. The number ratio of oxygen atoms to silicon atoms measured by XPS method is preferably in the range of 1.5 to 2.0, more preferably in the range of 1.4 to 1.8. When the ratio of the number of silicon atoms to oxygen atoms is larger than 2.0, the amount of oxygen atoms contained is increased, so that void portions and defect portions increase, and a predetermined gas barrier property may not be obtained. On the other hand, when the atomic ratio of silicon atoms to oxygen atoms is smaller than 1.5, oxygen atoms are reduced to form a dense film, but flexibility may be lowered.
 [ケイ素化合物層[B]]
 次に、ケイ素化合物層[B]について詳細を説明する。本発明におけるケイ素化合物層[B]は、SiN、SiOおよびSiO(OH)4-2a(x+y=4、p+q=4、a≦2 x,y,p,q>0)で表される構造を有するケイ素化合物を含む層である。屈折率、硬さ、密着性などの制御を目的として、アルコキシシランやオルガノポリシロキサンなど他のケイ素化合物を含んでいてもよい。なお、ケイ素化合物層[B]の各化合物の組成は、29Si CP/MAS NMR法により測定することができる。
[Silicon compound layer [B]]
Next, the silicon compound layer [B] will be described in detail. In the present invention, the silicon compound layer [B] includes SiN x H y , SiO p N q and SiO a (OH) 4-2a (x + y = 4, p + q = 4, a ≦ 2 x, y, p, q> 0 ) Is a layer containing a silicon compound having a structure represented by: For the purpose of controlling the refractive index, hardness, adhesion, etc., other silicon compounds such as alkoxysilane and organopolysiloxane may be included. The composition of each compound in the silicon compound layer [B] can be measured by 29 Si CP / MAS NMR method.
 本発明のガスバリア性フィルムにおいてケイ素化合物層[B]を適用することによりガスバリア性が良好となる理由は以下の(i)および(ii)のように推定している。 The reason why the gas barrier property is improved by applying the silicon compound layer [B] in the gas barrier film of the present invention is estimated as follows (i) and (ii).
 (i)まず、層としての寄与として、層がSiOで表されるケイ素酸窒化物を含むことでSiOのみで形成された層よりも緻密な層となり、酸素および水蒸気の透過が抑制されるためガスバリア性が高い層となること、加えて、Siのみで形成された層よりも柔軟性が高いため、使用時において熱や外部からの応力に対してクラックが生じにくく、クラック生成に起因するガスバリア性低下が抑制できる層となることと推定している。 (I) First, as a contribution to the layer, the layer contains silicon oxynitride represented by SiO p N q , so that the layer becomes denser than the layer formed only of SiO 2 , and oxygen and water vapor are transmitted. Since it is suppressed, it becomes a layer with a high gas barrier property, and in addition, since it is more flexible than a layer formed only of Si 3 N 4 , cracks are hardly generated against heat and external stress during use. It is presumed that the layer can suppress a decrease in gas barrier properties due to crack generation.
 (ii)次に、無機層[A]とケイ素化合物層[B]とを接するように積層していることによる寄与として以下のものを推定している。
無機層[A]が有するピンホールやクラック等の欠陥にケイ素化合物層[B]を構成する成分が充填され高いバリア性を発現することが可能となること。
ケイ素化合物層[B]が無機層[A]と接することで、前記無機層[A]に含まれる亜鉛等の成分が触媒として作用してケイ素化合物層[B]の膜質が改質し易くなり、ガスバリア性がさらに向上する。
(Ii) Next, the following are estimated as contributions by laminating the inorganic layer [A] and the silicon compound layer [B] in contact with each other.
The defect that the inorganic layer [A] has, such as pinholes and cracks, is filled with the components constituting the silicon compound layer [B], and high barrier properties can be expressed.
When the silicon compound layer [B] is in contact with the inorganic layer [A], components such as zinc contained in the inorganic layer [A] act as a catalyst to easily improve the film quality of the silicon compound layer [B]. Further, the gas barrier property is further improved.
 3種のケイ素化合物を含むことで、SiOのみを主成分として形成された層よりも無機層[A]を構成する成分と化学結合を形成することが容易であるため、無機層[A]とケイ素化合物層[B]との界面領域における密着性が向上し、使用時における優れた耐屈曲性を得ることができる。 By including three types of silicon compounds, it is easier to form a chemical bond with the component constituting the inorganic layer [A] than the layer formed using only SiO p N q as the main component. Adhesion in the interface region between A] and the silicon compound layer [B] is improved, and excellent bending resistance during use can be obtained.
 本発明に用いるケイ素化合物層[B]の厚みは、50nm以上、2,000nm以下が好ましく、50nm以上、1,000nmがより好ましい。ケイ素化合物層[B]の厚みが小さくなると、安定した水蒸気バリア性能を得ることができない場合がある。ケイ素化合物層[B]の厚みが大きくなりすぎなると、ケイ素化合物層[B]内に残留する応力が大きくなることによって高分子基材が反り、ケイ素化合物層[B]および/または無機層[A]にクラックが発生してガスバリア性が低下する場合がある。 The thickness of the silicon compound layer [B] used in the present invention is preferably from 50 nm to 2,000 nm, more preferably from 50 nm to 1,000 nm. If the thickness of the silicon compound layer [B] is small, stable water vapor barrier performance may not be obtained. When the thickness of the silicon compound layer [B] becomes too large, the residual stress in the silicon compound layer [B] increases, causing the polymer substrate to warp, and the silicon compound layer [B] and / or the inorganic layer [A] ] May be cracked to lower the gas barrier properties.
 ケイ素化合物層[B]の厚みは、透過型電子顕微鏡(TEM)による断面観察画像から測定することが可能である。 The thickness of the silicon compound layer [B] can be measured from a cross-sectional observation image by a transmission electron microscope (TEM).
 本発明に使用するケイ素化合物層[B]の中心面平均粗さSRaは、10nm以下であることが好ましい。SRaを10nm以下にすると、ガスバリア性の繰り返し再現性が向上するため好ましい。ケイ素化合物層[B]の表面のSRaが10nmより大きくなると、凹凸が多い部分で応力集中によるクラックが発生し易いため、ガスバリア性の繰り返し再現性が低下する原因となる場合がある。従って、本発明においては、ケイ素化合物層[B]のSRaを10nm以下にすることが好ましく、より好ましくは7nm以下である。 The center surface average roughness SRa of the silicon compound layer [B] used in the present invention is preferably 10 nm or less. It is preferable to set SRa to 10 nm or less because the repeatability of gas barrier properties is improved. When the SRa on the surface of the silicon compound layer [B] is larger than 10 nm, cracks due to stress concentration are likely to occur in a portion with many irregularities, which may cause a decrease in reproducibility of gas barrier properties. Therefore, in the present invention, the SRa of the silicon compound layer [B] is preferably 10 nm or less, more preferably 7 nm or less.
 本発明におけるケイ素化合物層[B]のSRaは、三次元表面粗さ測定機を用いて測定することができる。 SRa of the silicon compound layer [B] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
 本発明のケイ素化合物層[B]の、29Si CP/MAS NMRスペクトルを図4に示す。化学シフトが-30~-50ppmの領域、-50~-90ppmの領域、および-90~-120ppmにケイ素の吸収がみられることは、図の左からそれぞれSiN、SiOおよびSiO(OH)4-2a(x+y=4、p+q=4、a≦2 x,y,p,q>0)が存在していることを意味する(参考文献:P. Diehl, E. Fluck, R. Kosfeld 等著「NMR Basic Principles and Progress」Springer-Verlag Berlin Heidelberg発行、1981年152-163頁)。そして-30~-120ppmのピーク面積総和を100としたとき、-30~-50ppmのピーク面積総和が10以上、-50~-90ppmのピーク面積総和が10以上、かつ-90~-120ppmのピーク面積総和が80以下であると、高度なガスバリア性を有し、かつ、耐屈曲性、密着性に優れる層となるため好ましい。さらに、-30~-120ppmのピーク面積総和を100としたとき、-30~-50ppmのピーク面積総和が10~40、-50~-90ppmのピーク面積総和が10~40、かつ-90~-120ppmのピーク面積総和が30~80であるとより好ましい。前記範囲を満たさない場合、ケイ素化合物層[B]が過剰に緻密な膜となって柔軟性が不足し、熱や外部からの応力でクラックが生じやすくなり、ガスバリア性を低下させる場合がある。また、逆にケイ素化合物層[B]の緻密性が不足し、充分なガスバリア性が得られなくなる場合がある。かかる観点から、前記-30~-50ppmのピーク面積総和が13~30、かつ-50~-90ppmのピーク面積総和が13~35、かつ-90~-120ppmのピーク面積総和が40~75であることがより好ましい。水蒸気透過度の観点から、ケイ素化合物層[B]は、本発明の3種のケイ素化合物を総和で0.1~100質量%含むことが好ましい。 FIG. 4 shows the 29 Si CP / MAS NMR spectrum of the silicon compound layer [B] of the present invention. The absorption of silicon is observed in the chemical shift region of −30 to −50 ppm, −50 to −90 ppm region, and −90 to −120 ppm. From the left of the figure, SiN x H y , SiO p N q and SiO a (OH) 4-2a (x + y = 4, p + q = 4, a ≦ 2 x, y, p, q> 0) is present (reference: P. Diehl, E. Fluck) , R. Kosfeld et al. “NMR Basic Principles and Progress” published by Springer-Verlag Berlin Heidelberg, 1981, pages 152-163). When the sum of peak areas from -30 to -120 ppm is taken as 100, the sum of peak areas from -30 to -50 ppm is 10 or more, the sum of peak areas from -50 to -90 ppm is 10 or more, and the peak is from -90 to -120 ppm. A total area of 80 or less is preferable because it is a layer having high gas barrier properties and excellent bending resistance and adhesion. Further, assuming that the total peak area of −30 to −120 ppm is 100, the total peak area of −30 to −50 ppm is 10 to 40, the total peak area of −50 to −90 ppm is 10 to 40, and −90 to − More preferably, the total peak area at 120 ppm is 30-80. When the above range is not satisfied, the silicon compound layer [B] becomes an excessively dense film and lacks flexibility, and cracks are likely to occur due to heat or external stress, and gas barrier properties may be lowered. In contrast, the silicon compound layer [B] may not be dense enough to provide sufficient gas barrier properties. From this point of view, the total peak area of −30 to −50 ppm is 13 to 30, the total peak area of −50 to −90 ppm is 13 to 35, and the total peak area of −90 to −120 ppm is 40 to 75. It is more preferable. From the viewpoint of water vapor permeability, the silicon compound layer [B] preferably contains 0.1 to 100% by mass of the total of the three silicon compounds of the present invention.
 本発明に用いられるケイ素化合物層[B]の原料としては、ポリシラザン骨格を持つケイ素化合物が好ましく用いられる。ポリシラザン骨格を持つケイ素化合物としては、例えば下記の化学式(1)で表される部分構造を有する化合物を好ましく用いることができる。具体的には、パーヒドロポリシラザン、オルガノポリシラザン、およびこれらの誘導体からなる群より選択される少なくとも一種を用いることができる。本発明においては、ガスバリア性向上の観点から下記の化学式(1)に示されるR、R、Rの全てが水素であるパーヒドロポリシラザンを用いることが好ましいが、水素の一部又は全部がアルキル基等の有機基で置換されたオルガノポリシラザンを用いてもよい。また、単一の組成で用いてもよいし、二成分以上を混合して使用してもよい。なお、nは1以上の整数を表す。 As a raw material of the silicon compound layer [B] used in the present invention, a silicon compound having a polysilazane skeleton is preferably used. As the silicon compound having a polysilazane skeleton, for example, a compound having a partial structure represented by the following chemical formula (1) can be preferably used. Specifically, at least one selected from the group consisting of perhydropolysilazane, organopolysilazane, and derivatives thereof can be used. In the present invention, it is preferable to use perhydropolysilazane in which all of R 1 , R 2 , and R 3 represented by the following chemical formula (1) are hydrogen from the viewpoint of improving gas barrier properties, but part or all of hydrogen is used. Alternatively, an organopolysilazane substituted with an organic group such as an alkyl group may be used. Moreover, you may use by a single composition and may mix and use two or more components. Note that n represents an integer of 1 or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 次に、本発明のケイ素化合物層[B]の形成方法を説明する。まず無機層[A]上に前記化合物(1)を含む塗料を、乾燥後の厚みが所望の厚みになるよう固形分濃度を調整し、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、ダイコート法、スプレーコート法、スピンコート法などにより塗布することが好ましい。また、本発明においては、塗工適性の観点から有機溶剤を用いて前記化学式(1)を含む塗料を希釈することも好ましい。具体的には、キシレン、トルエン、ターペン、ソルベッソなどの炭化水素系溶剤、ジブチルエーテル、エチルブチルエーテル、テトラヒドロフランなどのエーテル系溶剤などを用いることができる。そして固形分濃度を10質量%以下に希釈して使用することが好ましい。これらの溶剤は、単独あるいは2種以上を混合して用いてもよい。 Next, a method for forming the silicon compound layer [B] of the present invention will be described. First, the solid content concentration of the paint containing the compound (1) on the inorganic layer [A] is adjusted so that the thickness after drying becomes a desired thickness, and reverse coating, gravure coating, rod coating, bar coating It is preferably applied by a method, a die coating method, a spray coating method, a spin coating method or the like. Moreover, in this invention, it is also preferable to dilute the coating material containing the said Chemical formula (1) using an organic solvent from a viewpoint of coating suitability. Specifically, hydrocarbon solvents such as xylene, toluene, terpene, and solvesso, ether solvents such as dibutyl ether, ethyl butyl ether, and tetrahydrofuran can be used. And it is preferable to use it, diluting solid content concentration to 10 mass% or less. These solvents may be used alone or in combination of two or more.
 ケイ素化合物層[B]の原料を含む塗料には、ケイ素化合物層[B]の効果が損なわれない範囲で、各種の添加剤を必要に応じて配合することができる。例えば、触媒、酸化防止剤、光安定剤、紫外線吸収剤などの安定剤、界面活性剤、レベリング剤、帯電防止剤などを用いることができる。 Various additives can be blended in the coating material containing the raw material of the silicon compound layer [B] as necessary within a range that does not impair the effect of the silicon compound layer [B]. For example, a catalyst, an antioxidant, a light stabilizer, a stabilizer such as an ultraviolet absorber, a surfactant, a leveling agent, an antistatic agent, or the like can be used.
 次いで、塗布後の塗膜を乾燥させて希釈溶剤を除去することが好ましい。ここで、乾燥に用いられる熱源としては特に制限は無く、スチームヒーター、電気ヒーター、赤外線ヒーターなど任意の熱源を用いることができる。なお、ガスバリア性向上のため、加熱温度は50~150℃で行うことが好ましい。また、加熱処理時間は数秒~1時間行うことが好ましい。さらに、加熱処理中は温度が一定であってもよく、徐々に温度を変化させてもよい。また、乾燥処理中は湿度を相対湿度で20~90%RHの範囲で調整しながら加熱処理してもよい。前記加熱処理は、大気中もしくは不活性ガス中に封入した状態で行ってもよい。 Next, it is preferable to dry the coated film after application to remove the diluted solvent. Here, there is no restriction | limiting in particular as a heat source used for drying, Arbitrary heat sources, such as a steam heater, an electric heater, and an infrared heater, can be used. In order to improve gas barrier properties, the heating temperature is preferably 50 to 150 ° C. The heat treatment time is preferably several seconds to 1 hour. Furthermore, the temperature may be constant during the heat treatment, or the temperature may be gradually changed. Further, during the drying treatment, the heat treatment may be performed while adjusting the humidity within the range of 20 to 90% RH in terms of relative humidity. You may perform the said heat processing in the state enclosed with air | atmosphere or inert gas.
 次に、乾燥後の塗膜にプラズマ処理、紫外線照射処理、フラッシュパルス処理などの活性エネルギー線照射処理を施すことで前記塗膜の組成を変性させ、本発明の3種のケイ素化合物を含有するケイ素化合物層[B]を得ることができる。活性エネルギー線照射処理としては、簡便で生産性に優れ、かつ均一なケイ素化合物層[B]の組成を得ることが容易であることから、紫外線処理を使用することが好ましい。紫外線処理としては、大気圧下または減圧下のどちらでも構わないが、汎用性、生産効率の観点から大気圧下にて紫外線処理を行うことが好ましい。前記紫外線処理を行う際の酸素濃度は、ケイ素化合物層[B]の組成制御の観点から、酸素ガス分圧が1.0%以下が好ましく、0.5%以下がより好ましい。相対湿度は所望の組成比となるように設定できる。また、前記紫外線処理では窒素ガスを用いて酸素濃度を低下させることがより好ましい。 Next, the composition of the coating film is modified by subjecting the dried coating film to active energy ray irradiation treatment such as plasma treatment, ultraviolet irradiation treatment, and flash pulse treatment, and contains the three types of silicon compounds of the present invention. A silicon compound layer [B] can be obtained. As the active energy ray irradiation treatment, it is preferable to use an ultraviolet treatment since it is simple and excellent in productivity and it is easy to obtain a uniform composition of the silicon compound layer [B]. The ultraviolet treatment may be performed under atmospheric pressure or reduced pressure, but it is preferable to perform ultraviolet treatment under atmospheric pressure from the viewpoint of versatility and production efficiency. From the viewpoint of composition control of the silicon compound layer [B], the oxygen gas partial pressure is preferably 1.0% or less, and more preferably 0.5% or less. The relative humidity can be set to a desired composition ratio. In the ultraviolet treatment, it is more preferable to reduce the oxygen concentration using nitrogen gas.
 紫外線発生源としては、高圧水銀ランプメタルハライドランプ、マイクロ波方式無電極ランプ、低圧水銀ランプ、キセノンランプ等、既知のものを用いることができるが、生産効率の観点から本発明ではキセノンランプを使用することが好ましい。 As an ultraviolet ray generation source, a known source such as a high pressure mercury lamp, a metal halide lamp, a microwave type electrodeless lamp, a low pressure mercury lamp, a xenon lamp, or the like can be used, but a xenon lamp is used in the present invention from the viewpoint of production efficiency. It is preferable.
 紫外線照射の積算光量は、0.5~10J/cmであることが好ましく、0.8~7J/cmがより好ましい。前記積算光量が0.5J/cm以上であれば所望のケイ素化合物層[B]組成が得られるため好ましい。また、前記積算光量が10J/cm以下であれば高分子基材、無機層[B]へのダメージを少なくすることができるため好ましい。 The accumulated amount of ultraviolet irradiation is preferably 0.5 to 10 J / cm 2 , more preferably 0.8 to 7 J / cm 2 . If the integrated light quantity is 0.5 J / cm 2 or more, a desired silicon compound layer [B] composition can be obtained, which is preferable. Moreover, it is preferable if the integrated light quantity is 10 J / cm 2 or less because damage to the polymer substrate and the inorganic layer [B] can be reduced.
 また、本発明では、紫外線処理の際、生産効率を向上させるために乾燥後の塗膜を加熱しながら紫外線処理を行うことがより好ましい。加熱温度としては、50~150℃が好ましく、80~130℃がより好ましい。加熱温度が50℃以上であれば高い生産効率が得られるため好ましく、また、加熱温度が150℃以下であれば高分子基材など他の材料の変形や変質が起こりにくいため好ましい。 In the present invention, it is more preferable to perform the ultraviolet treatment while heating the coating film after drying in order to improve the production efficiency during the ultraviolet treatment. The heating temperature is preferably 50 to 150 ° C, more preferably 80 to 130 ° C. A heating temperature of 50 ° C. or higher is preferable because high production efficiency can be obtained, and a heating temperature of 150 ° C. or lower is preferable because deformation and alteration of other materials such as a polymer base material hardly occur.
 [アンダーコート層[C]]
 本発明のガスバリア性フィルムには、ガスバリア性向上、耐屈曲性向上のため、前記高分子基材と前記無機層[A]との間にアンダーコート層[C]を設けることが好ましい。高分子基材上に突起や小擦り傷などの欠点が存在する場合、前記欠点を起点に高分子基材上に積層する無機層[A]にもピンホールやクラックが発生してガスバリア性や耐屈曲性が損なわれる場合があるため、本発明のアンダーコート層[C]を設けるのが好ましい。また、高分子基材と無機層[A]との熱寸法安定性の差が大きい場合も、ガスバリア性や耐屈曲性が低下する場合があるため、アンダーコート層[C]を設けるのが好ましい。また、本発明に用いられるアンダーコート層[C]は、熱寸法安定性、耐屈曲性の観点から芳香族環構造を有するポリウレタン化合物[C1]を架橋して得られる構造を含むことが好ましく、さらに、エチレン性不飽和化合物[C2]、光重合開始剤[C3]ならびに有機ケイ素化合物[C4]および無機ケイ素化合物[C5]から選ばれる1種以上のケイ素化合物を含有することがより好ましい。
[Undercoat layer [C]]
The gas barrier film of the present invention is preferably provided with an undercoat layer [C] between the polymer substrate and the inorganic layer [A] in order to improve gas barrier properties and flex resistance. When defects such as protrusions and small scratches are present on the polymer substrate, pinholes and cracks also occur in the inorganic layer [A] laminated on the polymer substrate starting from the defects, resulting in gas barrier properties and resistance. Since the flexibility may be impaired, it is preferable to provide the undercoat layer [C] of the present invention. In addition, even when the difference in thermal dimensional stability between the polymer substrate and the inorganic layer [A] is large, it is preferable to provide the undercoat layer [C] because the gas barrier property and the bending resistance may be lowered. . The undercoat layer [C] used in the present invention preferably includes a structure obtained by crosslinking the polyurethane compound [C1] having an aromatic ring structure from the viewpoint of thermal dimensional stability and flex resistance. Furthermore, it is more preferable to contain one or more silicon compounds selected from ethylenically unsaturated compounds [C2], photopolymerization initiators [C3], organic silicon compounds [C4] and inorganic silicon compounds [C5].
 [芳香族環構造を有するポリウレタン化合物[C1]]
 本発明に用いることができる芳香族環構造を有するポリウレタン化合物[C1]は、主鎖あるいは側鎖に芳香族環およびウレタン結合を有するものであり、例えば、分子内に水酸基と芳香族環とを有するエポキシ(メタ)アクリレート(c1)、ジオール化合物(c2)、ジイソシアネート化合物(c3)とを重合させて得ることができる。
[Polyurethane compound having an aromatic ring structure [C1]]
The polyurethane compound [C1] having an aromatic ring structure that can be used in the present invention has an aromatic ring and a urethane bond in the main chain or side chain. For example, a hydroxyl group and an aromatic ring are present in the molecule. It can be obtained by polymerizing the epoxy (meth) acrylate (c1), the diol compound (c2), and the diisocyanate compound (c3).
 分子内に水酸基と芳香族環とを有するエポキシ(メタ)アクリレート(c1)としては、ビスフェノールA型、水添ビスフェノールA型、ビスフェノールF型、水添ビスフェノールF型、レゾルシン、ヒドロキノン等の芳香族グリコールのジエポキシ化合物と(メタ)アクリル酸誘導体とを反応させて得ることができる。 Examples of the epoxy (meth) acrylate (c1) having a hydroxyl group and an aromatic ring in the molecule include aromatic glycols such as bisphenol A type, hydrogenated bisphenol A type, bisphenol F type, hydrogenated bisphenol F type, resorcin, and hydroquinone. This can be obtained by reacting the diepoxy compound with a (meth) acrylic acid derivative.
 ジオール化合物(c2)としては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、2,4-ジメチル-2-エチルヘキサン-1,3-ジオール、ネオペンチルグリコール、2-エチル-2-ブチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、4,4’-チオジフェノール、ビスフェノールA、4,4’-メチレンジフェノール、4,4’-(2-ノルボルニリデン)ジフェノール、4,4’-ジヒドロキシビフェノール、o-,m-,及びp-ジヒドロキシベンゼン、4,4’-イソプロピリデンフェノール、4,4’-イソプロピリデンビンジオール、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、ビスフェノールAなどを用いることができる。これらは1種を単独で、又は2種以上を併用して用いることができる。 Examples of the diol compound (c2) include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 2,4-dimethyl-2-ethylhexane-1,3-diol Neopentyl glycol, 2-ethyl-2-butyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2 , 4,4-Tetramethyl-1,3-cyclobutanediol, 4,4 ' Thiodiphenol, bisphenol A, 4,4′-methylenediphenol, 4,4 ′-(2-norbornylidene) diphenol, 4,4′-dihydroxybiphenol, o-, m-, and p-dihydroxybenzene, 4 4,4′-isopropylidenephenol, 4,4′-isopropylidenebindiol, cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, bisphenol A, etc. it can. These can be used alone or in combination of two or more.
 ジイソシアネート化合物(c3)としては、例えば、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-ジフェニルメタンジイソシアネート、4,4-ジフェニルメタンジイソシアネート等の芳香族系ジイソシアネート、エチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ジイソシアネート化合物、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、メチルシクロヘキシレンジイソシアネート等の脂環族系イソシアネート化合物、キシレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香脂肪族系イソシアネート化合物等が挙げられる。これらは1種を単独で、又は2種以上を併用して用いることができる。 Examples of the diisocyanate compound (c3) include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-diphenylmethane diisocyanate, 4,4. -Aromatic diisocyanates such as diphenylmethane diisocyanate, aliphatic diisocyanates such as ethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate Diisocyanate compounds, isophorone diisocyanate, dicyclohexylmethane-4,4-diisocyanate, methylcyclohexylene diisocyanate Alicyclic isocyanate compounds such as xylylene diisocyanate, aromatic aliphatic isocyanate compounds such as tetramethyl xylylene diisocyanate. These can be used alone or in combination of two or more.
 前記(c1)、(c2)、(c3)の成分比率は所望の重量平均分子量になる範囲であれば特に限定されない。本発明の芳香族環構造を有するポリウレタン化合物[C1]の重量平均分子量(Mw)は、5,000~100,000であることが好ましい。重量平均分子量(Mw)が5,000~100,000であれば、得られる硬化皮膜の熱寸法安定性、耐屈曲性が優れるため好ましい。なお、本発明における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法を用いて測定され、標準ポリスチレンで換算された値である。 The component ratios of (c1), (c2), and (c3) are not particularly limited as long as they are within a desired weight average molecular weight. The polyurethane compound [C1] having an aromatic ring structure of the present invention preferably has a weight average molecular weight (Mw) of 5,000 to 100,000. A weight average molecular weight (Mw) of 5,000 to 100,000 is preferable because the resulting cured film has excellent thermal dimensional stability and flex resistance. In addition, the weight average molecular weight (Mw) in this invention is the value measured using the gel permeation chromatography method and converted with standard polystyrene.
 [エチレン性不飽和化合物[C2]]
 アンダーコート層[C]の原料とすることができるエチレン性不飽和化合物[C2]としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールS型エポキシジ(メタ)アクリレート等のエポキシアクリレート等を挙げられる。これらの中でも、熱寸法安定性、表面保護性能に優れた多官能(メタ)アクリレートが好ましい。また、これらは単一の組成で用いてもよいし、二成分以上を混合して使用してもよい。
[Ethylenically unsaturated compound [C2]]
Examples of the ethylenically unsaturated compound [C2] that can be used as a raw material for the undercoat layer [C] include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like. Di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Epoxy acrylates such as polyfunctional (meth) acrylate, bisphenol A type epoxy di (meth) acrylate, bisphenol F type epoxy di (meth) acrylate, bisphenol S type epoxy di (meth) acrylate, etc. It is. Among these, polyfunctional (meth) acrylates excellent in thermal dimensional stability and surface protection performance are preferable. Moreover, these may be used by a single composition, and may mix and use two or more components.
 エチレン性不飽和化合物[C2]の含有量は特に限定されないが、熱寸法安定性、表面保護性能の観点から、芳香族環構造を有するポリウレタン化合物[C1]との合計量100質量%中、5~90質量%の範囲であることが好ましく、10~80質量%の範囲であることがより好ましい。 The content of the ethylenically unsaturated compound [C2] is not particularly limited, but from the viewpoint of thermal dimensional stability and surface protection performance, the total amount with the polyurethane compound [C1] having an aromatic ring structure is 100% by mass. It is preferably in the range of -90% by mass, more preferably in the range of 10-80% by mass.
 [光重合開始剤[C3]]
 アンダーコート層[C]の原料とすることができる光重合開始剤[C3]としては、本発明のガスバリア性フィルムのガスバリア性および耐屈曲性を保持することができ、光重合を開始できれば特に限定されない。本発明に好適に用いることができる光重合開始剤としては、以下のものが例示される。
2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルーケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤。
2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系光重合開始剤。
ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン系光重合開始剤。
1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(0-ベンゾイルオキシム)]等オキシムエステル構造を持つ光重合開始剤等。
[Photoinitiator [C3]]
The photopolymerization initiator [C3] that can be used as a raw material for the undercoat layer [C] is particularly limited as long as the gas barrier property and the bending resistance of the gas barrier film of the present invention can be maintained and the photopolymerization can be started. Not. The following are illustrated as a photoinitiator which can be used suitably for this invention.
2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexylphenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- ( 2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl ] Phenyl} -2-methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] 1- [4- (4-morpholinyl) phenyl] -1-alkyl phenone photopolymerization initiator such as butanone.
Acylphosphine oxide photopolymerization initiators such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
A titanocene photopolymerization initiator such as bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
Photopolymerization initiators having an oxime ester structure such as 1,2-octanedione, 1- [4- (phenylthio)-, 2- (0-benzoyloxime)].
 これらの中でも、硬化性、表面保護性能の観点から、1-ヒドロキシ-シクロヘキシルフェニルーケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシドから選ばれる光重合開始剤が好ましい。また、これらは単一の組成で用いてもよいし、二成分以上を混合して使用してもよい。 Among these, from the viewpoint of curability and surface protection performance, 1-hydroxy-cyclohexylphenyl-ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2,4,6 A photopolymerization initiator selected from -trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred. Moreover, these may be used by a single composition, and may mix and use two or more components.
 光重合開始剤[C3]の含有量は特に限定されないが、硬化性、表面保護性能の観点から、重合性成分の合計量100質量%に対して、0.01~10質量%の範囲であることが好ましく、0.1~5質量%の範囲であることがより好ましい。 The content of the photopolymerization initiator [C3] is not particularly limited, but is in the range of 0.01 to 10% by mass with respect to 100% by mass of the total amount of polymerizable components from the viewpoint of curability and surface protection performance. The range is preferably 0.1 to 5% by mass.
 [有機ケイ素化合物[C4]]
 アンダーコート層[C]の原料とすることができる有機ケイ素化合物[C4]としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
[Organic silicon compound [C4]]
Examples of the organosilicon compound [C4] that can be used as the raw material for the undercoat layer [C] include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3 -Glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropi Methyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanate propyl triethoxysilane, and the like.
 これらの中でも、硬化性、活性エネルギー線照射による重合活性の観点から、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシランおよびビニルトリエトキシシランからなる群より選ばれる少なくとも1つを含む有機ケイ素化合物が好ましい。また、これらは単一の組成で用いてもよいし、二成分以上を混合して使用してもよい。 Among these, from the viewpoint of curability and polymerization activity by active energy ray irradiation, selected from the group consisting of 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. Organosilicon compounds containing at least one of these are preferred. Moreover, these may be used by a single composition, and may mix and use two or more components.
 有機ケイ素化合物[C4]の含有量は特に限定されないが、硬化性、表面保護性能の観点から、重合性成分の合計量100質量%中、0.01~10質量%の範囲であることが好ましく、0.1~5質量%の範囲であることがより好ましい。 The content of the organosilicon compound [C4] is not particularly limited, but is preferably in the range of 0.01 to 10% by mass in 100% by mass of the total amount of polymerizable components from the viewpoint of curability and surface protection performance. The range of 0.1 to 5% by mass is more preferable.
 [無機ケイ素化合物[C5]]
 アンダーコート層[C]の原料とすることができる無機ケイ素化合物[C5]としては、表面保護性能、透明性の観点からシリカ粒子が好ましく、さらにシリカ粒子の一次粒子径が1~300nmの範囲であることが好ましく、5~80nmの範囲であることがより好ましい。なお、ここでいう一次粒子径とは、ガス吸着法により求めた比表面積sを下記の式(2)に適用することで求められる粒子直径dを指す。
d=6/ρs(2)ここでρは粒子の密度である。
[Inorganic silicon compound [C5]]
The inorganic silicon compound [C5] that can be used as the raw material for the undercoat layer [C] is preferably silica particles from the viewpoint of surface protection performance and transparency, and the primary particle diameter of the silica particles is in the range of 1 to 300 nm. Preferably, it is in the range of 5 to 80 nm. In addition, the primary particle diameter here refers to the particle diameter d calculated | required by applying the specific surface area s calculated | required by the gas adsorption method to following formula (2).
d = 6 / ρs (2) where ρ is the density of the particles.
 [アンダーコート層[C]の厚み]
 アンダーコート層[C]の厚みは、200nm以上、4,000nm以下が好ましく、300nm以上3,000nm以下がより好ましく、500nm以上、2,000nm以下がさらに好ましい。アンダーコート層[C]の厚みが小さすぎると、高分子基材上に存在する突起や、小擦り傷などによる欠点の悪影響を抑制できない場合がある。アンダーコート層[C]の厚みが大きすぎると、アンダーコート層[C]の平滑性が低下して前記アンダーコート層[C]上に積層する無機層[A]表面の凹凸形状も大きくなり、積層されるスパッタ粒子間に隙間ができるため、膜質が緻密になりにくく、ガスバリア性の向上効果が得られにくくなる場合がある。
[Thickness of undercoat layer [C]]
The thickness of the undercoat layer [C] is preferably from 200 nm to 4,000 nm, more preferably from 300 nm to 3,000 nm, and further preferably from 500 nm to 2,000 nm. If the thickness of the undercoat layer [C] is too small, the adverse effects of defects due to protrusions or small scratches present on the polymer substrate may not be suppressed. If the thickness of the undercoat layer [C] is too large, the smoothness of the undercoat layer [C] is reduced, and the uneven shape on the surface of the inorganic layer [A] laminated on the undercoat layer [C] is also increased. Since gaps are formed between the sputtered particles to be stacked, the film quality is difficult to be dense, and the effect of improving the gas barrier property may be difficult to obtain.
 ケイ素化合物層[B]の厚みは、透過型電子顕微鏡(TEM)による断面観察画像から測定することが可能である。 The thickness of the silicon compound layer [B] can be measured from a cross-sectional observation image by a transmission electron microscope (TEM).
 アンダーコート層[C]の中心面平均粗さSRaは、10nm以下であることが好ましい。SRaを10nm以下にすると、アンダーコート層[C]上に均質な無機層[A]を得やすくなり、ガスバリア性の繰り返し再現性が向上するため好ましい。アンダーコート層[C]の表面のSRaが大きすぎると、アンダーコート層[C]上の無機層[A]表面の凹凸形状も大きくなり、積層されるスパッタ粒子間に隙間ができるため、膜質が緻密になりにくく、ガスバリア性の向上効果が得られにくくなる場合がある。また、凹凸が多い部分で応力集中によるクラックが発生し易いため、ガスバリア性の繰り返し再現性が低下する原因となる場合がある。従って、本発明においては、アンダーコート層[C]のSRaを10nm以下にすることが好ましく、さらに好ましくは7nm以下である。 The center surface average roughness SRa of the undercoat layer [C] is preferably 10 nm or less. SRa of 10 nm or less is preferable because a homogeneous inorganic layer [A] can be easily obtained on the undercoat layer [C], and the reproducibility of gas barrier properties is improved. If the SRa on the surface of the undercoat layer [C] is too large, the uneven shape on the surface of the inorganic layer [A] on the undercoat layer [C] also increases and gaps are formed between the laminated sputtered particles, so that the film quality is improved. In some cases, the gas barrier property is hardly obtained and the effect of improving the gas barrier property is hardly obtained. In addition, since cracks due to stress concentration are likely to occur in portions where there are many irregularities, it may cause a reduction in the reproducibility of gas barrier properties. Therefore, in the present invention, the SRa of the undercoat layer [C] is preferably 10 nm or less, more preferably 7 nm or less.
 本発明におけるアンダーコート層[C]のSRaは、三次元表面粗さ測定機を用いて測定することができる。 SRa of the undercoat layer [C] in the present invention can be measured using a three-dimensional surface roughness measuring machine.
 [その他の層]
 本発明のガスバリア性フィルムの最表面の上には、ガスバリア性が低下しない範囲で耐擦傷性の向上を目的としたハードコート層を形成してもよいし、有機高分子化合物からなるフィルムをラミネートした積層構成としてもよい。なお、ここでいう最表面とは、高分子基材上に無機層[A]およびケイ素化合物層[B]が接するようにこの順に積層された後の、無機層[A]と接していない側のケイ素化合物層[B]の表面をいう。
[Other layers]
On the outermost surface of the gas barrier film of the present invention, a hard coat layer may be formed for the purpose of improving scratch resistance as long as the gas barrier property does not deteriorate, or a film made of an organic polymer compound is laminated. It is good also as a laminated structure. The outermost surface as used herein refers to the side that is not in contact with the inorganic layer [A] after being laminated in this order so that the inorganic layer [A] and the silicon compound layer [B] are in contact with each other on the polymer substrate. The surface of the silicon compound layer [B].
 [電子デバイス]
 本発明のガスバリア性フィルムは高いガスバリア性を有するため、様々な電子デバイスに用いることができる。例えば、太陽電池のバックシートやフレキシブル回路基板のような電子デバイスに好適に用いることができる。本発明のガスバリア性フィルムを用いた電子デバイスは、優れたガスバリア性を有するため、水蒸気等によるデバイスの性能低下を抑制することができる。
[Electronic device]
Since the gas barrier film of the present invention has a high gas barrier property, it can be used in various electronic devices. For example, it can be suitably used for an electronic device such as a back sheet of a solar cell or a flexible circuit board. Since the electronic device using the gas barrier film of the present invention has an excellent gas barrier property, it is possible to suppress degradation of the device performance due to water vapor or the like.
 [その他の用途]
 本発明のガスバリア性フィルムは高いガスバリア性を有するため、電子デバイス以外にも、食品や電子部品の包装用フィルム等として好適に用いることができる。
[Other uses]
Since the gas barrier film of the present invention has a high gas barrier property, it can be suitably used as a packaging film for foods and electronic parts in addition to electronic devices.
 以下、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
 [評価方法]
 まず、各実施例および比較例における評価方法を説明する。特に記載のない限り評価n数は水準当たり5検体とし、得られた5検体の測定値の平均値を測定結果とした。
[Evaluation methods]
First, an evaluation method in each example and comparative example will be described. Unless otherwise stated, the number of evaluation n was 5 samples per level, and the average value of the measured values of the 5 samples obtained was used as the measurement result.
 (1)層の厚み
 断面観察用サンプルをマイクロサンプリングシステム((株)日立製作所製 FB-2000A)を使用して集束イオンビーム(Focused Ion Beam:FIB)法により作製した。透過型電子顕微鏡((株)日立製作所製 H-9000UHRII)により、加速電圧300kVとして、観察用サンプルの断面を観察し、無機層[A]、ケイ素化合物層[B]、アンダーコート層[C]の厚みを測定した。
(1) Layer thickness A sample for cross-sectional observation was prepared by a focused ion beam (FIB) method using a micro sampling system (FB-2000A manufactured by Hitachi, Ltd.). Using a transmission electron microscope (H-9000UHRII, manufactured by Hitachi, Ltd.), the cross section of the observation sample was observed at an acceleration voltage of 300 kV, and the inorganic layer [A], silicon compound layer [B], and undercoat layer [C] The thickness of was measured.
 (2)中心面平均粗さSRa
 三次元表面粗さ測定機(小坂研究所社製)を用いて、以下の条件で各層表面について測定した。
システム:三次元表面粗さ解析システム「i-Face model TDA31」
X軸測定長さ/ピッチ:500μm/1.0μm
Y軸測定長さ/ピッチ:400μm/5.0μm
測定速度:0.1mm/s
測定環境:温度23℃、相対湿度65%RH、大気中。
(2) Center plane average roughness SRa
Using a three-dimensional surface roughness measuring machine (manufactured by Kosaka Laboratory), the surface of each layer was measured under the following conditions.
System: Three-dimensional surface roughness analysis system “i-Face model TDA31”
X-axis measurement length / pitch: 500 μm / 1.0 μm
Y-axis measurement length / pitch: 400 μm / 5.0 μm
Measurement speed: 0.1 mm / s
Measurement environment: temperature 23 ° C., relative humidity 65% RH, in air.
 (3)水蒸気透過度(g/(m・d))
 真空蒸着により、ガスバリア性フィルムのケイ素化合物層[B]面に厚さ100nmのカルシウム層を形成し、次いで、同じく真空蒸着により前記カルシウム層上に、カルシウム層全域を覆うように厚さ3000nmのアルミニウム層を形成した。さらに、アルミニウム層形成後、前記アルミニウム層面に熱硬化性エポキシ樹脂を介して厚さ1mmのガラスを貼り合わせ、100℃で1時間処理し、評価サンプルを得た。得られたサンプルを、温度40℃、相対湿度90%RH、800時間処理し、前記処理後、水蒸気により腐食したカルシウムの量を算出することにより水蒸気の透過量を測定した。水蒸気透過度サンプル数は水準当たり2検体とし、測定回数は各検体について5回とし、得られた10点の平均値を水蒸気透過度(g/(m・d))とした。
(3) Water vapor permeability (g / (m 2 · d))
A calcium layer having a thickness of 100 nm is formed on the silicon compound layer [B] side of the gas barrier film by vacuum deposition, and then aluminum having a thickness of 3000 nm so as to cover the entire calcium layer on the calcium layer by vacuum deposition. A layer was formed. Furthermore, after the aluminum layer was formed, glass having a thickness of 1 mm was bonded to the surface of the aluminum layer via a thermosetting epoxy resin and treated at 100 ° C. for 1 hour to obtain an evaluation sample. The obtained sample was treated at a temperature of 40 ° C. and a relative humidity of 90% RH for 800 hours, and after the treatment, the amount of calcium corroded by water vapor was calculated to measure the amount of water vapor permeated. The number of samples of water vapor permeability was 2 samples per level, the number of measurements was 5 times for each sample, and the average value of 10 points obtained was the water vapor permeability (g / (m 2 · d)).
 (4)無機層[A1]の組成
 [A1]の組成分析はICP発光分光分析(エスアイアイ・ナノテクノロジー社製、SPS4000)により行った。高分子基材またはアンダーコート層上に無機層[A1]を形成した段階(ケイ素化合物層[B]を積層する前)でサンプリングした試料を硝酸および硫酸で加熱分解し、希硝酸で加温溶解してろ別した。不溶解分は加熱灰化したのち、炭酸ナトリウムで融解し、希硝酸で溶解して、先のろ液とあわせて定容とした。この溶液について、亜鉛原子、ケイ素原子、アルミニウム原子の含有量を測定し、原子数比に換算した。なお、酸素原子は亜鉛原子、ケイ素原子、アルミニウム原子が、それぞれ酸化亜鉛(ZnO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)として存在すると仮定して求めた計算値とした。
(4) Composition of inorganic layer [A1] The composition analysis of [A1] was performed by ICP emission spectroscopic analysis (manufactured by SII Nanotechnology, SPS4000). Samples sampled at the stage of forming the inorganic layer [A1] on the polymer substrate or undercoat layer (before the silicon compound layer [B] is laminated) are thermally decomposed with nitric acid and sulfuric acid, and heated and dissolved with dilute nitric acid And then filtered. The insoluble matter was ashed by heating, melted with sodium carbonate, dissolved with dilute nitric acid, and made up to a constant volume with the previous filtrate. About this solution, content of a zinc atom, a silicon atom, and an aluminum atom was measured, and it converted into atomic ratio. The oxygen atoms were calculated values assuming that zinc atoms, silicon atoms, and aluminum atoms exist as zinc oxide (ZnO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), respectively.
 (5)無機層[A2]の組成
 無機層[A2]の組成分析はICP発光分光分析(エスアイアイ・ナノテクノロジー社製、SPS4000)により行った。高分子基材またはアンダーコート層上に無機層[A2]を形成した段階(ケイ素化合物層[B]を積層する前)でサンプリングした試料を、硝酸および硫酸で加熱分解し、希硝酸で加温溶解してろ別した。不溶解分は加熱灰化したのち、炭酸ナトリウムで融解し、希硝酸で溶解して、先のろ液とあわせて定容とした。この溶液について、亜鉛原子、ケイ素原子の含有量を測定した。次に、この値をもとにさらにラザフォード後方散乱法(日新ハイボルテージ(株)製 AN-2500)を使用して、亜鉛原子、ケイ素原子、硫黄原子、酸素原子を定量分析し、硫化亜鉛と二酸化ケイ素の組成比を求めた。
(5) Composition of inorganic layer [A2] The composition analysis of the inorganic layer [A2] was performed by ICP emission spectroscopic analysis (SPS4000, manufactured by SII Nanotechnology). Samples sampled at the stage of forming the inorganic layer [A2] on the polymer substrate or undercoat layer (before the silicon compound layer [B] is laminated) are thermally decomposed with nitric acid and sulfuric acid and heated with dilute nitric acid Dissolved and filtered. The insoluble matter was ashed by heating, melted with sodium carbonate, dissolved with dilute nitric acid, and made up to a constant volume with the previous filtrate. About this solution, content of a zinc atom and a silicon atom was measured. Next, based on this value, the Rutherford backscattering method (AN-2500 manufactured by Nissin High Voltage Co., Ltd.) was used to quantitatively analyze zinc atoms, silicon atoms, sulfur atoms, and oxygen atoms. And the composition ratio of silicon dioxide.
 (6)無機層[A3]の組成
 無機層[A3]の組成分析はX線光電子分光法(XPS法)を用いることにより、ケイ素原子に対する酸素原子の原子数比を算出した。測定条件は下記の通りとした。
装置:Quantera SXM(PHI社製)
励起X線:monochromatic AlKα1,2
X線径:100μm
光電子脱出角度:10°  。
(6) Composition of inorganic layer [A3] The composition analysis of inorganic layer [A3] was performed by calculating the atomic ratio of oxygen atoms to silicon atoms by using X-ray photoelectron spectroscopy (XPS method). The measurement conditions were as follows.
Apparatus: Quantera SXM (manufactured by PHI)
Excitation X-ray: monochromatic AlKα1,2
X-ray diameter: 100 μm
Photoelectron escape angle: 10 °.
 (7)ケイ素化合物層[B]の組成、
 ケイ素化合物層[B]を片刃で削り取った粉末試料を7.5mmφの試料管に充填し、29Si CP/MAS NMR法を用いて組成分析を行い、図4に例を示したようなスペクトルを求めた。前記スペクトルにおける-30~-120ppmのピーク面積総和を100としたときの-30~-50ppmのピーク面積総和、-50~-90ppmのピーク面積総和、-90~-120ppmのピーク面積総和を算出した。測定条件は下記のとおりとした。
装置:Chemagnetics社製 CMX-300
測定核周波数:59.636511MHz(29Si核)
スペクトル幅:30.03kHz
パルス幅:4.5sec(90°パルス)、2.2sec(45°パルス)
パルス繰り返し時間:ACQTM;0.0682sec,PD;5.0sec
コンタクトタイム:2.0sec
観測ポイント:2048 データポイント;8192
基準物質:ヘキサメチルシクロトリシロキサン(外部基準;-9.66ppm)
温度:室温(約22℃)
試料回転数:5.0kHz
ピーク面積の算出:積分法。
(7) Composition of silicon compound layer [B],
A powder sample obtained by scraping the silicon compound layer [B] with a single blade is filled in a 7.5 mmφ sample tube, and a composition analysis is performed using 29 Si CP / MAS NMR, and a spectrum as shown in FIG. 4 is obtained. Asked. The sum of peak areas of −30 to −50 ppm, the sum of peak areas of −50 to −90 ppm, and the sum of peak areas of −90 to −120 ppm when the sum of peak areas of −30 to −120 ppm in the spectrum is defined as 100 was calculated. . The measurement conditions were as follows.
Equipment: CMX-300 manufactured by Chemanetics
Measurement nuclear frequency: 59.636511 MHz ( 29 Si nucleus)
Spectrum width: 30.03 kHz
Pulse width: 4.5 sec (90 ° pulse), 2.2 sec (45 ° pulse)
Pulse repetition time: ACQTM; 0.0682 sec, PD; 5.0 sec
Contact time: 2.0 sec
Observation point: 2048 data points; 8192
Reference material: Hexamethylcyclotrisiloxane (external standard; -9.66 ppm)
Temperature: Room temperature (about 22 ° C)
Sample rotation speed: 5.0 kHz
Peak area calculation: integration method.
 (8)耐屈曲性
 ガスバリア性フィルムを100mm×140mmに水準当たり2検体サンプリングした。図5に示すとおり、ガスバリア性フィルムを(符号19)の無機層[A]およびケイ素化合物層[B]が形成された面と反対面(符号21)の側の中央部に直径5mmの金属円柱(符号20)を固定し、この円柱に沿って、円柱の抱き角0°(サンプルが平面の状態)から、円柱への抱き角が180°(円柱で折り返した状態)となる範囲で、100回折り曲げ動作を行った後、(3)に示す方法で水蒸気透過度評価を行った。測定回数は各検体について5回とし、得られた10点の平均値を耐屈曲性試験後の水蒸気透過度とした。
(8) Flexibility Two samples of gas barrier film were sampled per 100 mm × 140 mm per level. As shown in FIG. 5, the gas barrier film is formed of a metal cylinder having a diameter of 5 mm at the center on the side opposite to the surface (reference numeral 21) on which the inorganic layer [A] and silicon compound layer [B] of (reference numeral 19) are formed. In the range where the holding angle of the cylinder is 0 ° (the sample is in a flat state) and the holding angle to the cylinder is 180 ° (a state where the sample is folded back) along the cylinder. After performing the folding operation, the water vapor permeability was evaluated by the method shown in (3). The number of measurements was 5 for each specimen, and the average value of the 10 points obtained was the water vapor permeability after the flex resistance test.
 (9)密着性
 JIS K5600-5-6:1999に準拠し、ケイ素化合物層[B]に1×1mmの直角の格子パターン25マスの切り込みを入れ、密着性を評価した。評価結果を密着性良好なものから順に分類0から分類5までの6段階に分類した。
(9) Adhesiveness In accordance with JIS K5600-5-6: 1999, the silicon compound layer [B] was cut into a 1 × 1 mm square lattice pattern of 25 squares to evaluate the adhesiveness. The evaluation results were classified into 6 levels from classification 0 to classification 5 in order from the one with good adhesion.
 [実施例1~11における無機層[A]の形成方法]
 (無機層[A1]の形成)
 図2に示す構造の巻き取り式のスパッタリング装置(符号6a)を使用し、高分子基材(符号5)の片面に酸化亜鉛と二酸化ケイ素と酸化アルミニウムで形成された混合焼結材であるスパッタターゲットを用いてスパッタリングを実施し、無機層[A1]を設けた。
[Method for Forming Inorganic Layer [A] in Examples 1 to 11]
(Formation of inorganic layer [A1])
Sputtering, which is a mixed sintered material formed of zinc oxide, silicon dioxide and aluminum oxide on one side of a polymer substrate (reference numeral 5) using a winding type sputtering apparatus (reference numeral 6a) having the structure shown in FIG. Sputtering was performed using a target to provide an inorganic layer [A1].
 具体的な操作は以下のとおりである。まず、スパッタ電極(符号13)に酸化亜鉛/二酸化ケイ素/酸化アルミニウムの組成質量比が77/20/3で焼結されたスパッタターゲットを設置した巻き取り式スパッタ装置の巻き取り室(符号7)の中で、巻き出しロール(符号8)に高分子基材を無機層[A1]を設ける側の面がスパッタ電極に対向するようにセットし、巻き出し、巻き出し側ガイドロール(符号9,10,11)を介して、クーリングドラム(符号12)に通した。減圧度2×10-1Paとなるように酸素ガス分圧10%としてアルゴンガスおよび酸素ガスを導入し、直流電源により投入電力4,000Wを印加することにより、アルゴン・酸素ガスプラズマを発生させ、スパッタリングにより高分子基材の表面上に無機層[A1]を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール(符号15,16,17)を介して巻き取りロール(符号18)に巻き取った。 The specific operation is as follows. First, a winding chamber (symbol 7) of a winding-type sputtering apparatus in which a sputtering target sintered with a zinc oxide / silicon dioxide / aluminum oxide composition mass ratio of 77/20/3 is installed on the sputtering electrode (symbol 13). Among them, the polymer substrate is set on the unwinding roll (symbol 8) so that the surface on which the inorganic layer [A1] is provided faces the sputter electrode, unwinding, unwinding side guide roll (symbol 9, 10 and 11) and passed through a cooling drum (reference numeral 12). Argon gas and oxygen gas were introduced at an oxygen gas partial pressure of 10% so that the degree of decompression was 2 × 10 −1 Pa, and an argon / oxygen gas plasma was generated by applying an input power of 4,000 W from a DC power source. The inorganic layer [A1] was formed on the surface of the polymer substrate by sputtering. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll (code | symbol 18) via the winding side guide roll (code | symbol 15,16,17).
 (無機層[A2]の形成)
 図2に示す構造の巻き取り式のスパッタリング装置(符号6a)を使用し、高分子基材(符号5)の片面に、硫化亜鉛および二酸化ケイ素で形成された混合焼結材であるスパッタターゲットを用いてスパッタリングを実施し無機層[A2]を設けた。
(Formation of inorganic layer [A2])
A sputter target, which is a mixed sintered material formed of zinc sulfide and silicon dioxide, is formed on one surface of a polymer substrate (reference numeral 5) using a winding type sputtering apparatus (reference numeral 6a) having the structure shown in FIG. Sputtering was used to provide an inorganic layer [A2].
 具体的な操作は以下のとおりである。まず、スパッタ電極(符号13)に硫化亜鉛/二酸化ケイ素のモル比が80/20で焼結されたスパッタターゲットを設置した巻き取り式スパッタ装置の巻き取り室(符号7)の中で、巻き出しロール(符号8)に高分子基材をセットし、巻き出し、巻き出し側ガイドロール(符号9,10,11)を介して、クーリングドラム(符号12)に通した。減圧度2×10-1Paとなるようにアルゴンガスを導入し、高周波電源により投入電力500Wを印加することにより、アルゴンガスプラズマを発生させ、スパッタリングにより高分子基材の表面上に無機層[A2]を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール(符号15,16,17)を介して巻き取りロール(符号18)に巻き取った。 The specific operation is as follows. First, unwinding in a winding chamber (symbol 7) of a winding type sputtering apparatus in which a sputtering target sintered with a zinc sulfide / silicon dioxide molar ratio of 80/20 is installed on the sputtering electrode (symbol 13). The polymer base material was set on the roll (symbol 8), unwound, and passed through the cooling drum (symbol 12) through the unwinding side guide rolls (symbol 9, 10, 11). Argon gas was introduced so that the degree of decompression was 2 × 10 −1 Pa, and an applied power of 500 W was applied from a high-frequency power source to generate argon gas plasma, and an inorganic layer [on the surface of the polymer substrate by sputtering [ A2] was formed. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll (code | symbol 18) via the winding side guide roll (code | symbol 15,16,17).
 (無機層[A3]の形成)
 図3に示す構造の巻き取り式のCVD装置(符号6b)を使用し、高分子基材(5)の片面に、ヘキサメチルジシロキサンを原料とした化学気相蒸着を実施し無機層[A3]を設けた。
(Formation of inorganic layer [A3])
Using a roll-up type CVD apparatus (symbol 6b) having the structure shown in FIG. 3, chemical vapor deposition using hexamethyldisiloxane as a raw material was performed on one side of the polymer substrate (5) to form an inorganic layer [A3 ] Was provided.
 具体的な操作は以下のとおりである。まず、巻き取り式CVD装置の巻き取り室(符号7)の中で、巻き出しロール(符号8)に高分子基材をセットし、巻き出し、巻き出し側ガイドロール(符号9,10,11)を介して、クーリングドラム(符号12)に通した。減圧度2×10-1Paとなるように酸素ガス0.5L/分とヘキサメチルジシロキサン70cc/分を導入し、高周波電源からCVD電極に投入電力3,000Wを印加することによりプラズマを発生させ、CVDにより前記高分子基材の表面上に無機層[A3]を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール(符号15,16,17)を介して巻き取りロールに巻き取った。 The specific operation is as follows. First, in the winding chamber (symbol 7) of the winding type CVD apparatus, the polymer base material is set on the unwinding roll (symbol 8), unwinding, and unwinding side guide rolls (symbols 9, 10, 11). ) Was passed through a cooling drum (reference numeral 12). Oxygen gas 0.5 L / min and hexamethyldisiloxane 70 cc / min are introduced so that the degree of decompression is 2 × 10 −1 Pa, and plasma is generated by applying an input power of 3,000 W from a high-frequency power source to the CVD electrode. Then, an inorganic layer [A3] was formed on the surface of the polymer substrate by CVD. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll via the winding side guide roll (code | symbol 15,16,17).
 [芳香族環構造を有するポリウレタン化合物[C1]の合成例]
 5リットルの4つ口フラスコに、ビスフェノールAジグリシジルエーテルアクリル酸付加物(共栄社化学社製、商品名:エポキシエステル3000A)300質量部と、酢酸エチル710質量部とを入れ、内温60℃になるよう加温した。合成触媒としてジラウリン酸ジ-n-ブチル錫0.2質量部を添加し、攪拌しながらジシクロヘキシルメタン4,4’-ジイソシアネート(東京化成工業社製)200質量部を1時間かけて滴下した。滴下終了後2時間反応を続行し、続いてジエチレングリコール(和光純薬工業社製)25質量部を1時間かけて滴下した。滴下後5時間反応を続行し、重量平均分子量20,000の芳香族環構造を有するポリウレタン化合物を得た。
[Synthesis example of polyurethane compound [C1] having an aromatic ring structure]
In a 5 liter four-necked flask, 300 parts by mass of bisphenol A diglycidyl ether acrylic acid adduct (trade name: Epoxy ester 3000A, manufactured by Kyoeisha Chemical Co., Ltd.) and 710 parts by mass of ethyl acetate were placed, and the internal temperature was 60 ° C It was heated so that it might become. As a synthesis catalyst, 0.2 part by mass of di-n-butyltin dilaurate was added, and 200 parts by mass of dicyclohexylmethane 4,4′-diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 1 hour with stirring. Reaction was continued for 2 hours after completion | finish of dripping, and 25 mass parts of diethylene glycol (made by Wako Pure Chemical Industries Ltd.) was dripped over 1 hour continuously. The reaction was continued for 5 hours after the dropwise addition to obtain a polyurethane compound having an aromatic ring structure with a weight average molecular weight of 20,000.
 (実施例1)
 高分子基材として厚み50μmのポリエチレンテレフタレートフィルム(東レ株式会社製 “ルミラー”(登録商標)U48)を使用し、この高分子基材の片面に無機層[A1]を厚み180nmとなるよう設けた。無機層[A1]の組成は、Zn原子濃度が27.5atom%、Si原子濃度が13.1atom%、Al原子濃度が2.3atom%、O原子濃度が57.1atom%であった。無機層[A1]を形成したフィルムから縦100mm、横100mmの試験片を切り出し、無機層[A1]の中心面平均粗さSRaの評価を実施した。結果を表1に示す。
Example 1
A polyethylene terephthalate film (“Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) having a thickness of 50 μm was used as the polymer substrate, and the inorganic layer [A1] was provided on one side of the polymer substrate so as to have a thickness of 180 nm. . As for the composition of the inorganic layer [A1], the Zn atom concentration was 27.5 atom%, the Si atom concentration was 13.1 atom%, the Al atom concentration was 2.3 atom%, and the O atom concentration was 57.1 atom%. A test piece having a length of 100 mm and a width of 100 mm was cut out from the film on which the inorganic layer [A1] was formed, and the center plane average roughness SRa of the inorganic layer [A1] was evaluated. The results are shown in Table 1.
 次いで、ケイ素化合物層[B]形成用の塗液として、パーヒドロポリシラザンを主成分とするコート剤(AZエレクトロニックマテリアルズ社製「NN120-20」、固形分濃度20質量%)100質量部をジブチルエーテル300質量部で希釈した塗液1を調製した。塗液1を無機層[A1]上にマイクログラビアコーター(グラビア線番200UR、グラビア回転比100%)で塗布し、120℃で1分間乾燥し、乾燥後、下記条件にて紫外線処理を施して、厚み120nmのケイ素化合物層[B]を設けて、ガスバリア性フィルムを得た。
紫外線処理装置:MEIRH-M-1-152-H(エム・ディ・エキシマ社製)
導入ガス:N
酸素濃度:300~800ppm
積算光量:3,000mJ/cm
試料温調:100℃。
Next, as a coating liquid for forming the silicon compound layer [B], 100 parts by mass of a coating agent mainly composed of perhydropolysilazane (“NN120-20” manufactured by AZ Electronic Materials, solid content concentration: 20% by mass) A coating liquid 1 diluted with 300 parts by mass of butyl ether was prepared. The coating liquid 1 is applied onto the inorganic layer [A1] with a micro gravure coater (gravure wire number 200UR, gravure rotation ratio 100%), dried at 120 ° C. for 1 minute, dried, and then subjected to UV treatment under the following conditions. A silicon compound layer [B] having a thickness of 120 nm was provided to obtain a gas barrier film.
Ultraviolet treatment device: MEIRH-M-1-152-H (manufactured by M. D. Excimer)
Introduced gas: N 2
Oxygen concentration: 300-800ppm
Integrated light quantity: 3,000 mJ / cm 2
Sample temperature control: 100 ° C.
 得られたガスバリア性フィルムに29Si CP/MAS NMR法を用いて組成分析を行い、求めたスペクトルにおける-30~-120ppmのピーク面積総和を100としたときの-30~-50ppmのピーク面積総和、-50~-90ppmのピーク面積総和、-90~-120ppmのピーク面積総和を算出した。結果を表1に示す。 The obtained gas barrier film was subjected to composition analysis using 29 Si CP / MAS NMR method, and the total peak area of −30 to −50 ppm when the total peak area of −30 to −120 ppm in the obtained spectrum was taken as 100. The sum of peak areas from -50 to -90 ppm and the sum of peak areas from -90 to -120 ppm were calculated. The results are shown in Table 1.
 また、得られたガスバリア性フィルムから縦100mm、横140mmの試験片を切り出し、水蒸気透過度の評価を実施した。結果を表1に示す。 Further, a test piece having a length of 100 mm and a width of 140 mm was cut out from the obtained gas barrier film, and the water vapor permeability was evaluated. The results are shown in Table 1.
 (実施例2)
 高分子基材として厚み50μmのポリエチレンテレフタレートフィルム(東レ株式会社製 “ルミラー”(登録商標)U48)を使用した。
アンダーコート層[C]形成用の塗液として、前記ポリウレタン化合物150質量部と、ジペンタエリスリトールヘキサアクリレート(共栄社化学社製、商品名:ライトアクリレートDPE-6A)20質量部と、1-ヒドロキシ-シクロヘキシルフェニルーケトン(BASFジャパン社製、商品名:“IRGACURE”(登録商標)184)5質量部と、3-メタクリロキシプロピルメチルジエトキシシラン(信越シリコーン社製、商品名:KBM-503)3質量部と、酢酸エチル170質量部と、トルエン350質量部と、シクロヘキサノン170質量部とを配合して塗液2を調整した。次いで、塗液2を高分子基材上にマイクログラビアコーター(グラビア線番150UR、グラビア回転比100%)で塗布、100℃で1分間乾燥し、乾燥後、下記条件にて紫外線処理を施して厚み1,000nmのアンダーコート層[C]を設けた。
(Example 2)
A polyethylene terephthalate film (“Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) having a thickness of 50 μm was used as the polymer substrate.
As a coating liquid for forming the undercoat layer [C], 150 parts by mass of the polyurethane compound, 20 parts by mass of dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate DPE-6A), and 1-hydroxy- 5 parts by mass of cyclohexyl phenyl-ketone (trade name: “IRGACURE” (registered trademark) 184) manufactured by BASF Japan Ltd.) and 3-methacryloxypropylmethyldiethoxysilane (trade name: KBM-503) manufactured by Shin-Etsu Silicone Co., Ltd. 3 A coating liquid 2 was prepared by blending part by mass, 170 parts by mass of ethyl acetate, 350 parts by mass of toluene, and 170 parts by mass of cyclohexanone. Next, the coating liquid 2 is applied onto the polymer substrate with a micro gravure coater (gravure wire number 150UR, gravure rotation ratio 100%), dried at 100 ° C. for 1 minute, dried, and then subjected to UV treatment under the following conditions. An undercoat layer [C] having a thickness of 1,000 nm was provided.
 紫外線処理装置:LH10-10Q-G(フュージョンUVシステムズ・ジャパン社製)
 導入ガス:N(窒素イナートBOX)
 紫外線発生源:マイクロ波方式無電極ランプ
 積算光量:400mJ/cm
 試料温調:室温。
Ultraviolet treatment device: LH10-10Q-G (manufactured by Fusion UV Systems Japan)
Introduced gas: N 2 (nitrogen inert BOX)
Ultraviolet light source: Microwave type electrodeless lamp Integrated light quantity: 400 mJ / cm 2
Sample temperature control: room temperature.
 次いで、アンダーコート層[C]上に無機層[A1]とケイ素化合物層[B]を、実施例1と同様に設けて実施例1と同様の評価を行った。結果を表1に示す。 Next, an inorganic layer [A1] and a silicon compound layer [B] were provided on the undercoat layer [C] in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
 (実施例3)
 高分子基材として厚み100μmの非晶性環状ポリオレフィンフィルム(日本ゼオン社製 “ゼオノアフィルム”ZF14)(“ゼオノア”は登録商標)を使用した以外は、実施例1と同様にしてガスバリア性フィルムを得た。
Example 3
A gas barrier film was prepared in the same manner as in Example 1 except that an amorphous cyclic polyolefin film having a thickness of 100 μm (“ZEONOR FILM” ZF14 manufactured by ZEON Corporation) (“ZEONOR” is a registered trademark) was used as the polymer substrate. Obtained.
 (実施例4)
 高分子基材として厚み100μmの非晶性環状ポリオレフィンフィルム(日本ゼオン社製 “ゼオノアフィルム”ZF14)を使用した以外は、実施例2と同様にしてガスバリア性フィルムを得た。
Example 4
A gas barrier film was obtained in the same manner as in Example 2 except that an amorphous cyclic polyolefin film having a thickness of 100 μm (“ZEONOR FILM” ZF14 manufactured by Nippon Zeon Co., Ltd.) was used as the polymer substrate.
 (実施例5)
 無機層[A1]を厚み950nmとなるよう設けた以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 5)
A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A1] was provided to have a thickness of 950 nm.
 (実施例6)
 無機層[A1]に代えて無機層[A2]を厚み150nmとなるよう設けた以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 6)
A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A2] was provided to a thickness of 150 nm in place of the inorganic layer [A1].
 (実施例7)
 無機層[A1]に代えて無機層[A3]を厚み150nmとなるよう設けた以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 7)
A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A3] was provided to a thickness of 150 nm in place of the inorganic layer [A1].
 (実施例8)
 ケイ素化合物層[B]を厚み50nmとなるよう設けた以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 8)
A gas barrier film was obtained in the same manner as in Example 2 except that the silicon compound layer [B] was provided to have a thickness of 50 nm.
 (実施例9)
 ケイ素化合物層[B]を厚み1,000nmとなるよう設けた以外は、実施例2と同様にしてガスバリア性フィルムを得た。
Example 9
A gas barrier film was obtained in the same manner as in Example 2 except that the silicon compound layer [B] was provided to have a thickness of 1,000 nm.
 (実施例10)
 ケイ素化合物層[B]形成時、紫外線照射積算光量を1,500mJ/cmに変更した以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 10)
A gas barrier film was obtained in the same manner as in Example 2 except that when the silicon compound layer [B] was formed, the amount of UV irradiation integrated light was changed to 1,500 mJ / cm 2 .
 (実施例11)
 ケイ素化合物層[B]形成時、紫外線照射積算光量を1,000mJ/cmに変更した以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Example 11)
A gas barrier film was obtained in the same manner as in Example 2 except that when the silicon compound layer [B] was formed, the UV irradiation integrated light amount was changed to 1,000 mJ / cm 2 .
 (比較例1)
 高分子基材上に無機層[A]を形成しないで、高分子基材の表面に直接、ケイ素化合物層[B]を厚み120nmとなるように設けた以外は、実施例1と同様にしてガスバリア性フィルムを得た。
(Comparative Example 1)
Except that the inorganic layer [A] was not formed on the polymer substrate, and the silicon compound layer [B] was provided directly on the surface of the polymer substrate so as to have a thickness of 120 nm, the same as in Example 1. A gas barrier film was obtained.
 (比較例2)
 無機層[A]上にケイ素化合物層[B]設けない以外は、実施例1と同様にしてガスバリア性フィルムを得た。
(Comparative Example 2)
A gas barrier film was obtained in the same manner as in Example 1 except that the silicon compound layer [B] was not provided on the inorganic layer [A].
 (比較例3)
 実施例1において、無機層[A]とケイ素化合物層[B]とを形成する順序を入れ替え、実施例1と層構成が異なるガスバリア性フィルムを得た。
(Comparative Example 3)
In Example 1, the order of forming the inorganic layer [A] and the silicon compound layer [B] was changed to obtain a gas barrier film having a layer configuration different from that of Example 1.
 (比較例4)
 無機層[A]上にケイ素化合物層[B]を設けない以外は、実施例7と同様にしてガスバリア性フィルムを得た。
(Comparative Example 4)
A gas barrier film was obtained in the same manner as in Example 7 except that the silicon compound layer [B] was not provided on the inorganic layer [A].
 (比較例5)
 CVD法により無機層[A]上に無機層[A3]を設ける以外は、実施例2と同様にしてガスバリア性フィルムを得た。
(Comparative Example 5)
A gas barrier film was obtained in the same manner as in Example 2 except that the inorganic layer [A3] was provided on the inorganic layer [A] by the CVD method.
 (比較例6)
実施例2において、ケイ素化合物層[B]に代えてSiN並びにSiO(OH)4-2aを含まずSiOのみからなる層を形成すること以外は、実施例2と同様にしてガスバリア性フィルムを得た。
なお、SiOのみからなる層の形成方法は、図2に示す構造の巻き取り式のスパッタリング装置を使用し、高分子基材の片面に、窒化珪素で形成されたスパッタターゲットを用いてスパッタリングを実施しSiOのみからなる層を設けた。具体的な操作は、まず、スパッタ電極に窒化珪素で形成されたスパッタターゲットを設置した巻き取り式スパッタ装置の巻き取り室の中で、巻き出しロールに高分子基材をSiO層を設ける側の面がスパッタ電極に対向するようにセットし、高分子基材を巻き出し、ガイドロールを介して、クーリングドラムに通した。減圧度2×10-1Paとなるように酸素ガス分圧10%としてアルゴンガスおよび酸素ガスをスパッタリング室へ導入した。さらに高周波電源により投入電力1,000Wを印加することにより、アルゴン・酸素ガスプラズマを発生させ、スパッタリングにより高分子基材の表面上にSiO層を形成した。厚みは、フィルム搬送速度により調整した。その後、ガイドロールを介して巻き取りロールに巻き取った。
(Comparative Example 6)
Example 2 is the same as Example 2 except that instead of the silicon compound layer [B], a layer made of only SiO p N q without SiN x H y and SiO a (OH) 4-2a is formed. Thus, a gas barrier film was obtained.
In addition, the method of forming the layer consisting only of SiO p N q uses a winding type sputtering apparatus having the structure shown in FIG. 2, on one side of the polymer substrate, using a sputtering target formed of silicon nitride Sputtering was performed to provide a layer made of only SiO p N q . Specifically, first, in the winding chamber of a winding-type sputtering apparatus in which a sputtering target formed of silicon nitride is installed on the sputtering electrode, a polymer substrate is placed on the winding roll with a SiO p N q layer. The surface to be provided was set so as to face the sputter electrode, and the polymer substrate was unwound and passed through a cooling drum through a guide roll. Argon gas and oxygen gas were introduced into the sputtering chamber at an oxygen gas partial pressure of 10% so that the degree of vacuum was 2 × 10 −1 Pa. Further, by applying an input power of 1,000 W from a high frequency power source, argon / oxygen gas plasma was generated, and a SiO p N q layer was formed on the surface of the polymer substrate by sputtering. The thickness was adjusted by the film transport speed. Then, it wound up on the winding roll via the guide roll.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のガスバリア性フィルムは、酸素ガス、水蒸気等に対するガスバリア性に優れているので、例えば、食品、医薬品などの包装材および薄型テレビ、太陽電池などの電子デバイス用部材として有用に用いることができる。 Since the gas barrier film of the present invention is excellent in gas barrier properties against oxygen gas, water vapor, etc., it can be usefully used, for example, as a packaging material for foods, pharmaceuticals, etc., and as a member for electronic devices such as thin televisions and solar cells. .
1 高分子基材
2 無機層[A]
3 ケイ素化合物層[B]
4 アンダーコート層[C]
5 高分子基材
6a 巻き取り式スパッタリング装置
6b 巻き取り式CVD装置
7 巻き取り室
8 巻き出しロール
9、10、11 巻き出し側ガイドロール
12 クーリングドラム
13 スパッタ電極
14 CVD電極
15、16、17 巻き取り側ガイドロール
18 巻き取りロール
19 ガスバリア性フィルム
20 金属円柱
21 無機層[A]およびケイ素化合物層[B]が形成された面と反対面
1 Polymer substrate 2 Inorganic layer [A]
3 Silicon compound layer [B]
4 Undercoat layer [C]
5 Polymer substrate 6a Winding type sputtering device 6b Winding type CVD device 7 Winding chamber 8 Unwinding rolls 9, 10, 11 Unwinding side guide roll 12 Cooling drum 13 Sputtering electrode 14 CVD electrodes 15, 16, 17 Winding Take-up side guide roll 18 Take-up roll 19 Gas barrier film 20 Metal cylinder 21 Surface opposite to the surface on which inorganic layer [A] and silicon compound layer [B] are formed

Claims (9)

  1.  高分子基材の少なくとも片側に、無機層[A]とケイ素化合物層[B]とを前記高分子基材側からこの順に有するガスバリア性フィルムであって、ケイ素化合物層[B]が、少なくともSiN、SiOおよびSiO(OH)4-2a(x+y=4、p+q=4、a≦2 x,y,p,q>0)で表される構造を有するケイ素化合物を含み、かつ無機層[A]とケイ素化合物層[B]が接しているガスバリア性フィルム。 A gas barrier film having an inorganic layer [A] and a silicon compound layer [B] in this order from the polymer substrate side on at least one side of the polymer substrate, in which the silicon compound layer [B] is at least SiN a silicon compound having a structure represented by x H y , SiO p N q and SiO a (OH) 4-2a (x + y = 4, p + q = 4, a ≦ 2 x, y, p, q> 0) And a gas barrier film in which the inorganic layer [A] and the silicon compound layer [B] are in contact.
  2.  前記無機層[A]が、亜鉛化合物とケイ素酸化物とを含む請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the inorganic layer [A] contains a zinc compound and a silicon oxide.
  3.  前記ケイ素化合物層[B]の29Si CP/MAS NMRスペクトルにおいて、-30~-120ppmのピーク面積総和を100としたとき、-30~-50ppmのピーク面積総和が10以上、-50~-90ppmのピーク面積総和が10以上、かつ-90~-120ppmのピーク面積総和が80以下である請求項1または2に記載のガスバリア性フィルム。 In the 29 Si CP / MAS NMR spectrum of the silicon compound layer [B], when the total peak area of −30 to −120 ppm is defined as 100, the total peak area of −30 to −50 ppm is 10 or more, −50 to −90 ppm The gas barrier film according to claim 1 or 2, wherein the total peak area is 10 or more and the total peak area of -90 to -120 ppm is 80 or less.
  4.  前記無機層[A]が、以下の無機層[A1]~[A3]から選ばれるいずれかである請求項1~3のいずれかに記載のガスバリア性フィルム。
    無機層[A1]:(i)~(iii)の共存相からなる無機層
    (i)酸化亜鉛
    (ii)二酸化ケイ素
    (iii)酸化アルミニウム
    無機層[A2]:硫化亜鉛と二酸化ケイ素の共存相からなる無機層
    無機層[A3]:ケイ素原子に対する酸素原子の原子数比が1.5~2.0であるケイ素酸化物を主成分とする無機層
    The gas barrier film according to any one of claims 1 to 3, wherein the inorganic layer [A] is any one selected from the following inorganic layers [A1] to [A3].
    Inorganic layer [A1]: Inorganic layer consisting of coexisting phases of (i) to (iii) (i) Zinc oxide (ii) Silicon dioxide (iii) Aluminum oxide Inorganic layer [A2]: From the coexisting phase of zinc sulfide and silicon dioxide Inorganic layer [A3]: inorganic layer mainly composed of silicon oxide having an atomic ratio of oxygen atoms to silicon atoms of 1.5 to 2.0
  5.  前記無機層[A]が前記無機層[A1]であり、該無機層[A1]が、ICP発光分光分析法により測定される亜鉛原子濃度が20~40atom%、ケイ素原子濃度が5~20atom%、アルミニウム原子濃度が0.5~5atom%、酸素原子濃度が35~70atom%である組成により構成されたものである請求項4に記載のガスバリア性フィルム。 The inorganic layer [A] is the inorganic layer [A1], and the inorganic layer [A1] has a zinc atom concentration of 20 to 40 atom% and a silicon atom concentration of 5 to 20 atom% as measured by ICP emission spectroscopy. The gas barrier film according to claim 4, wherein the gas barrier film is composed of a composition having an aluminum atom concentration of 0.5 to 5 atom% and an oxygen atom concentration of 35 to 70 atom%.
  6.  前記無機層[A]が前記無機層[A2]であり、該無機層[A2]が、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9である組成により構成されたものである請求項4に記載のガスバリア性フィルム。 The inorganic layer [A] is the inorganic layer [A2], and the inorganic layer [A2] has a composition in which the molar fraction of zinc sulfide to the total of zinc sulfide and silicon dioxide is 0.7 to 0.9. The gas barrier film according to claim 4, which is constituted.
  7.  前記高分子基材と前記無機層[A]との間に、芳香族環構造を有するポリウレタン化合物[C1]を架橋して得られる構造を含むアンダーコート層[C]を有する請求項1~6のいずれかに記載のガスバリア性フィルム。 An undercoat layer [C] including a structure obtained by crosslinking a polyurethane compound [C1] having an aromatic ring structure is provided between the polymer substrate and the inorganic layer [A]. The gas barrier film according to any one of the above.
  8.  前記アンダーコート層[C]が有機ケイ素化合物および/または無機ケイ素化合物を含む請求項7に記載のガスバリア性フィルム。 The gas barrier film according to claim 7, wherein the undercoat layer [C] contains an organosilicon compound and / or an inorganic silicon compound.
  9.  請求項1~8のいずれかに記載のガスバリア性フィルムを用いた電子デバイス。 An electronic device using the gas barrier film according to any one of claims 1 to 8.
PCT/JP2015/051772 2014-01-29 2015-01-23 Gas barrier film WO2015115314A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167010494A KR102355268B1 (en) 2014-01-29 2015-01-23 Gas barrier film
JP2015510220A JP6578943B2 (en) 2014-01-29 2015-01-23 Gas barrier film
CN201580003271.5A CN105829093B (en) 2014-01-29 2015-01-23 Gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014014052 2014-01-29
JP2014-014052 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115314A1 true WO2015115314A1 (en) 2015-08-06

Family

ID=53756888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051772 WO2015115314A1 (en) 2014-01-29 2015-01-23 Gas barrier film

Country Status (5)

Country Link
JP (1) JP6578943B2 (en)
KR (1) KR102355268B1 (en)
CN (1) CN105829093B (en)
TW (1) TWI668120B (en)
WO (1) WO2015115314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065054A (en) * 2015-09-30 2017-04-06 東レ株式会社 Gas barrier film and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102351069B1 (en) * 2019-03-27 2022-01-14 한국전자기술연구원 Passivation layer preventing humidity and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240222A (en) * 2011-05-16 2012-12-10 Toppan Printing Co Ltd Gas barrier film, and back protection sheet for solar cell using the same
JP2013188871A (en) * 2012-03-12 2013-09-26 Toppan Printing Co Ltd Gas barrier laminated film
JP2013198983A (en) * 2012-03-23 2013-10-03 Toray Advanced Film Co Ltd Gas barrier film
JP2013226757A (en) * 2012-04-26 2013-11-07 Konica Minolta Inc Gas barrier film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481001B2 (en) 1994-11-22 2003-12-22 大日本印刷株式会社 Barrier film and method for producing the same
JP2002113826A (en) 2000-10-06 2002-04-16 Toppan Printing Co Ltd Plastic base material and gas-barrier film using it
JP5640976B2 (en) 2009-07-10 2014-12-17 コニカミノルタ株式会社 Gas barrier film and method for producing the same, and photoelectric conversion element using the same
JP5646478B2 (en) 2009-07-17 2014-12-24 三井化学株式会社 Laminated body and method for producing the same
CN103476579B (en) 2011-04-05 2015-11-25 东丽株式会社 Gas barrier film
JP6070194B2 (en) 2011-10-28 2017-02-01 東レ株式会社 Gas barrier film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240222A (en) * 2011-05-16 2012-12-10 Toppan Printing Co Ltd Gas barrier film, and back protection sheet for solar cell using the same
JP2013188871A (en) * 2012-03-12 2013-09-26 Toppan Printing Co Ltd Gas barrier laminated film
JP2013198983A (en) * 2012-03-23 2013-10-03 Toray Advanced Film Co Ltd Gas barrier film
JP2013226757A (en) * 2012-04-26 2013-11-07 Konica Minolta Inc Gas barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065054A (en) * 2015-09-30 2017-04-06 東レ株式会社 Gas barrier film and electronic device

Also Published As

Publication number Publication date
JP6578943B2 (en) 2019-09-25
TW201534481A (en) 2015-09-16
CN105829093A (en) 2016-08-03
CN105829093B (en) 2018-10-09
JPWO2015115314A1 (en) 2017-03-23
KR102355268B1 (en) 2022-01-25
KR20160114038A (en) 2016-10-04
TWI668120B (en) 2019-08-11

Similar Documents

Publication Publication Date Title
JP6269476B2 (en) Gas barrier film
JP6465019B2 (en) Gas barrier film
JP6340843B2 (en) Gas barrier film
JP2016185705A (en) Gas barrier film
JP6879209B2 (en) Laminate
JP6578943B2 (en) Gas barrier film
JP6601216B2 (en) Gas barrier film, electronic device using the same, and method for producing gas barrier film
JP6918446B2 (en) Gas barrier film
JP7334624B2 (en) laminate
JP2018052041A (en) Laminate
JP7017041B2 (en) Laminate
JP6507632B2 (en) Laminate
JP2016120460A (en) Manufacturing method of gas barrier film
JP2020114659A (en) Laminate
JP2018083383A (en) Laminate
JP2023043359A (en) laminate
JP2021112869A (en) Laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510220

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743286

Country of ref document: EP

Kind code of ref document: A1