WO2015115289A1 - Porous film, moisture-permeable waterproof sheet, complex, and protective clothing - Google Patents
Porous film, moisture-permeable waterproof sheet, complex, and protective clothing Download PDFInfo
- Publication number
- WO2015115289A1 WO2015115289A1 PCT/JP2015/051619 JP2015051619W WO2015115289A1 WO 2015115289 A1 WO2015115289 A1 WO 2015115289A1 JP 2015051619 W JP2015051619 W JP 2015051619W WO 2015115289 A1 WO2015115289 A1 WO 2015115289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- stretching
- porous film
- temperature
- width direction
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/726—Permeability to liquids, absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2437/00—Clothing
Definitions
- the present invention relates to a porous film having excellent water pressure resistance and moisture permeability, high elongation, and excellent laminating properties with a nonwoven fabric. Further, by using the porous film, the present invention relates to a moisture permeable waterproof sheet, a composite, and protective clothing that are excellent in water pressure resistance and moisture permeability, have high elongation, reduce stuffiness when worn, and have excellent clothing comfort. .
- a material obtained by coating or bonding a water-repellent resin to a fabric is often used because it is excellent in water resistance and processability.
- conventional materials are inferior in moisture permeability or air permeability, moisture is trapped inside the protective clothing in a hot and humid working environment, causing discomfort, and when used as a waterproof sheet, There was a problem that mold and the like occurred.
- Patent Document 1 a laminated cloth in which a porous resin film is laminated on a fiber material cloth has been proposed.
- Patent Documents 5, 6, and 7 a moisture permeable film that does not use inorganic particles such as calcium carbonate or organic particles has been proposed (for example, Patent Documents 5, 6, and 7).
- JP 2001-38839 A JP-A-6-316022 JP 2003-145697 A JP-A-8-53561 JP 2006-28495 A JP 2001-342272 A Japanese Patent Laid-Open No. 9-3226
- Patent Document 1 as a laminated fabric, a technique in which a porous resin film is formed by applying and drying a coating material in which silica or zeolite or the like is added to a polyurethane resin as an adsorbent in an amount of 10% by weight or more is dried.
- a coating material in which silica or zeolite or the like is added to a polyurethane resin as an adsorbent in an amount of 10% by weight or more is dried.
- the object of the present invention is to solve the above-mentioned problems. In other words, it is excellent in water pressure and moisture permeability, high in elongation, excellent in laminating properties with non-woven fabric, reduced in stuffiness when worn, and suitable for protective clothing base materials with excellent clothing comfort. It is to provide an adhesive film and a moisture permeable waterproof sheet, a composite, and protective clothing using the same. Furthermore, another object is to provide a moisture permeable waterproof sheet and protective clothing with very little incineration residue when no longer needed.
- an object of the present invention is to provide a porous film having excellent water pressure resistance and moisture permeability, high elongation, excellent laminating property with a non-woven fabric, hardly torn, and excellent process passability.
- Another object of the present invention is to provide a moisture-permeable waterproof sheet, a composite, and protective clothing using the porous film, which has excellent water pressure resistance, high elongation, reduces the feeling of stuffiness when worn, and is excellent in clothing comfort.
- Another object of the present invention is to provide a moisture-permeable waterproof sheet and protective clothing that have very little residue (ash) when incinerated when no longer needed.
- the moisture permeability is 250 g / m 2 ⁇ h or more
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film is 100 to 500%
- the water pressure resistance is 4,500 mmH 2 O or more.
- it can be achieved by a porous film having an ash content (JIS L 1013) after incineration at a temperature of 850 ° C. of 0.5% by mass or less.
- the porous film of the present invention is excellent in water pressure resistance, reduces the feeling of stuffiness when worn, and is suitable for a base material of a protective garment excellent in clothes comfort and a moisture-permeable waterproof sheet using the same, Complexes and protective clothing can be provided.
- the present invention can provide a porous film excellent in water pressure resistance and moisture permeability. Since the breaking elongation is high, it is possible to provide a porous film excellent in laminate processability (that is, process passability) with a nonwoven fabric. Further, by using the porous film, it is possible to provide a moisture permeable waterproof sheet, a composite, and protective clothing that are excellent in water pressure resistance, reduce the feeling of stuffiness when worn, and have excellent clothing comfort. Furthermore, it is possible to provide a moisture-permeable waterproof sheet and protective clothing that have very little ash after incineration when it is no longer needed.
- the porous film of the present invention is a film having many fine through-holes penetrating both surfaces of the film and having air permeability.
- the resin constituting the porous film may be any of polyolefin resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin, etc., but heat resistance, moldability, production cost reduction, chemical resistance, A polyolefin resin is desirable from the viewpoint of oxidation resistance and reduction resistance. Therefore, the porous film of the present invention preferably contains a polyolefin resin.
- Examples of the monomer component constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-pentene, 3-methyl-1-butene, 1-hexene and 4-methyl.
- These homopolymers and at least two or more types of copolymers selected from the above monomer components examples include, but are not limited to, blends of copolymers and copolymers.
- vinyl alcohol, maleic anhydride or the like may be copolymerized or graft polymerized, but is not limited thereto.
- polyethylene using ethylene as a monomer component and / or polypropylene using propylene as a monomer component is preferable.
- Propylene is particularly preferable from the viewpoint of heat resistance, air permeability, porosity, and the like.
- Polypropylene using as a monomer component is preferable, and the main component is preferable.
- the porous film of the present invention contains a polyolefin resin, and the polyolefin resin is polypropylene.
- the “main component” means that the proportion of a specific component in all components is 50% by mass. % Or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and most preferably 95% by mass or more.
- an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
- the wet method means that a polyolefin resin is used as a matrix resin, an extractable to be extracted after sheeting is added, and the mixed resin composition is made into a sheet, and then the additive is used using a good solvent of the extractable. This is a method in which voids are generated in the matrix resin by extracting only.
- the dry method is, for example: By adopting low temperature extrusion and high draft ratio at the time of melt extrusion, the lamella structure in the film before stretching is controlled, and this is uniaxially stretched after heat treatment to generate cleavage at the lamella interface, and voids are created.
- Forming method (so-called lamellar stretching method); A method of forming voids by adding a large amount of incompatible resin as particles to polypropylene, which is an inorganic particle or matrix resin, forming a sheet and stretching it to cause cleavage at the interface between the particle and the polypropylene resin (particle method) , Phase separation method); and a method of forming voids in the film by utilizing the crystal density difference and crystal transition between ⁇ -type crystal ( ⁇ crystal) and ⁇ -type crystal ( ⁇ crystal), which are polymorphs of polypropylene (So-called ⁇ crystal method)
- ⁇ crystal method a method of forming voids in the film by utilizing the crystal density difference and crystal transition between ⁇ -type crystal ( ⁇ crystal) and ⁇ -type crystal ( ⁇ crystal), which are polymorphs of polypropylene
- the ⁇ crystal forming ability of the porous film is preferably 40% or more. If the ⁇ -crystal forming ability is less than 40%, the amount of ⁇ -crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to ⁇ -crystal, and as a result, only a film with low permeability is obtained. It may not be possible.
- the upper limit of the ⁇ -crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the ⁇ -crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, the ⁇ -crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
- a polypropylene resin with a high isotactic index is used, or a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
- the crystallization nucleating agent to be used is preferably used as an additive.
- ⁇ crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide.
- Amide compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid
- aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments.
- amides disclosed in JP-A-5-310665 are preferred.
- ⁇ crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the polypropylene composition. If it is less than 0.05% by mass, formation of ⁇ crystals becomes insufficient, and the air permeability of the porous film may be lowered. If it exceeds 0.5% by mass, coarse voids are formed, and physical property changes during application of organic solvents and drying may increase.
- a polypropylene composition is a composition containing all the materials which comprise porous films, such as a beta crystal nucleating agent and antioxidant, in addition to a polypropylene resin.
- the polypropylene resin constituting the porous film of the present invention preferably has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min. It is preferable that it is an isotactic polypropylene resin.
- MFR melt flow rate
- measurement conditions are 230 ° C., 2.16 kg
- MFR isotactic polypropylene resin.
- the MFR is less than 2 g / 10 minutes, the melt viscosity of the resin becomes high and high-precision filtration becomes difficult, and the quality of the film may be lowered.
- the MFR exceeds 30 g / 10 min, the molecular weight becomes too low, so that the film is easily broken during stretching, and the productivity may be lowered. More preferably, the MFR is 3 to 20 g / 10 minutes.
- the isotactic index is preferably 90 to 99.9%, more preferably 95 to 99%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
- a polypropylene resin in the present invention not only a homopolypropylene resin can be used, but also from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, an ethylene component or butene is added to polypropylene.
- a resin obtained by copolymerizing an ⁇ -olefin component such as hexene or octene in an amount of 5% by mass or less, more preferably 2.5% by mass or less can be used.
- the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
- polypropylene high MFR polypropylene
- MFR polypropylene
- the upper limit of MFR is preferably 5000 g / 10 min or less. If the MFR exceeds 5000 g / 10 min, it may be difficult to make it uniform with the above-mentioned isotactic polypropylene.
- high MFR polypropylene (especially isotactic polypropylene) having an MFR of 70 g / 10 min or more has not been used in the field of films because it has poor stretchability and causes a decrease in elongation.
- the high MFR polypropylene is contained in an amount of 0.1 to 20% by mass, preferably 0.5 to 10% by mass, more preferably 0.7 to 5% by mass.
- the high MFR polypropylene added in a small amount increases the molecular chain end concentration at the crystal interface and promotes pore formation at the crystal interface in the longitudinal stretching, that is, it acts as a pore opening aid, resulting in uniform pore opening. While having water pressure resistance and elongation, it can have moisture permeability and can achieve conflicting properties.
- an antioxidant In the polypropylene resin that forms the porous film of the present invention, an antioxidant, a heat stabilizer, a light stabilizer, a neutralizer, an antistatic agent and a lubricant composed of organic particles, as long as the effects of the present invention are not impaired. Furthermore, you may contain various additives, such as an antiblocking agent, a filler, and an incompatible polymer. In particular, it is preferable to add an antioxidant for the purpose of suppressing the oxidative deterioration due to the heat history of the polypropylene resin, but when the polypropylene composition is 100% by mass, the antioxidant addition amount is 2% by mass or less. More preferably, it is 1 mass% or less, More preferably, it is 0.5 mass% or less.
- the inorganic filler is preferably not added because it remains as ash after incineration.
- the porous film of the present invention has a moisture permeability of 250 g / m 2 ⁇ h or more.
- the moisture permeability is less than 250 g / m 2 ⁇ h, when the porous film of the present invention is worn as protective clothing, the feeling of stuffiness may be felt strongly, and the clothing comfort may be low.
- the moisture permeability is preferably high, but the upper limit is practically 2,000 g / m 2 ⁇ h.
- the moisture permeability is preferably 250 to 2,000 g / m 2 ⁇ h, more preferably 300 to 2,000 g / m 2 ⁇ h, and further preferably 350 to 2,000 g / m 2 ⁇ h. preferable.
- the moisture permeability is adjusted by adjusting the amount of ⁇ -crystal nucleating agent added in the raw material, the amount of high MFR polypropylene added in the raw material, adjusting the stretching ratio and temperature in the longitudinal direction, re-stretching, and re-stretching. It can be controlled by adjusting the stretching temperature and the magnification.
- the addition amount of the ⁇ crystal nucleating agent in the raw material is further increased within the range of 0.05 to 0.5% by mass
- the temperature of the cast drum is increased within the range of 105 to 130 ° C.
- Increase the moisture permeability by increasing the amount of high MFR polypropylene in the range of 0.1 to 20% by mass or lowering the longitudinal stretching temperature in the range of 90 to 140 ° C.
- the moisture permeability can be increased by increasing the draw ratio in the longitudinal direction within a range of 3 to 7 times.
- the film stretched in the longitudinal direction and the width direction is re-stretched in the longitudinal direction, and the re-stretching stretching temperature is lowered within the range of 130 to 170 ° C., or the re-stretching stretching ratio is 1.02.
- Moisture permeability can be increased by stretching at a high magnification within a range of up to 2.0 times.
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film is 100 to 500%.
- the porous film breaks during the operation, and the water pressure resistance decreases.
- the process passability may be inferior in the process of bonding to a nonwoven fabric.
- the process passability in processing such as stretching of the film when tension is applied in the processing step may be inferior.
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film is preferably 100 to 400%. 130 to 400% is more preferable, and 150 to 400% is more preferable.
- the sum of the tensile elongation in the longitudinal and width directions of the film is to adjust the temperature of the cast drum, the stretching ratio and temperature and stretching speed in the longitudinal direction, the stretching speed and magnification in the width direction, and the temperature and time in the heat treatment process. In particular, it can be easily controlled by the redrawing temperature and the magnification in the longitudinal direction.
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film is, for example, higher in the temperature of the cast drum in the range of 105 to 130 ° C. or more in the range of 90 to 140 ° C. in the longitudinal direction.
- the stretching ratio in the longitudinal direction is in the range of 3 to 7 times, and the moisture permeability value is lowered to such a degree as to satisfy the above-mentioned preferable numerical range, or the stretching speed in the longitudinal direction is set to 200.
- the draw ratio in the width direction is in the range of 4 to 15 times, and the water pressure resistance value is lowered to a value that satisfies a suitable numerical range described later, or the draw speed in the width direction is set to 500 to 10, Accelerating within the range of 000% / min, increasing the heat treatment temperature in the heat treatment step before the relaxation treatment, and heat treatment temperature in the heat treatment step after the relaxation treatment within the range of 140 to 170 ° C, or relaxing treatment
- the heat treatment time in the previous heat treatment step and the heat treatment time in the heat treatment step after the relaxation treatment are made longer in the range of 0.1 to 10 seconds, or the draw ratio of redrawing is 1.02 to 2.0.
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film can be increased.
- the sum of the tensile elongation in the longitudinal direction and the width direction of the film can be increased.
- the porous film of the present invention has a water pressure resistance of 4,500 mmH 2 O or more. If the water pressure resistance is less than 4,500mmH 2 O, when used as protective clothing, water may permeate when it is in strong rain and wind, with elbows, knees, or sitting down. If so, water may soak in and mold may form inside.
- the upper limit of the water pressure resistance is preferably 25,000 mmH 2 O from the viewpoint of moisture permeability. From the viewpoint of workability and workability on site, the water pressure resistance is preferably 5,000 to 25,000 mmH 2 O, and more preferably 8,000 to 25,000 mmH 2 O.
- the water pressure resistance is adjusted by adjusting the temperature of the cast drum, the stretching ratio and temperature and stretching speed in the longitudinal direction, the stretching speed and magnification in the width direction, the temperature and time in the heat treatment process, and the relaxation rate in the relaxation process. It can be controlled by stretching, adjusting the redrawing temperature and magnification, and adjusting the temperature of the heat treatment after redrawing.
- the water pressure can be increased by increasing the temperature of the cast drum within the range of 105 to 130 ° C., or by increasing the stretching temperature in the longitudinal direction within the range of 90 to 140 ° C.
- the stretching ratio is increased within the range of 3 to 7 times, the longitudinal stretching speed is increased within the range of 200,000 to 1,000,000% / min, or the stretching speed in the width direction is increased.
- the heat treatment in the heat treatment step is set to a higher temperature within the range of 140 to 170 ° C., or the heat treatment time in the heat treatment step before the relaxation treatment or the heat treatment time in the heat treatment step after the relaxation treatment is 0.1 to 10 seconds.
- Ri Within a longer range Ri, it is possible to increase the water pressure by a higher relaxation rate in the relaxation process in the range of 5 to 35%.
- the stretching temperature at the time of re-stretching in the longitudinal direction and / or the width direction is set to a high temperature such that the film does not melt within the range of 130 to 170 ° C., or the stretching ratio of re-stretching is 1.02 to 2.0 times.
- the water pressure resistance can be increased by stretching at a high magnification within the range, or by increasing the temperature of the heat treatment after re-stretching within a range of 145 to 175 ° C. so that the film does not melt.
- the amount of ⁇ crystal nucleating agent added in the raw material is adjusted.
- adjusting the addition amount of the ⁇ crystal nucleating agent in the raw material adjusting the temperature of the cast drum, adjusting the stretching ratio, temperature and stretching speed in the longitudinal direction.
- the balance of characteristics is insufficient by adjusting only the process conditions such as adjusting the magnification in the width direction, adjusting the temperature and time in the heat treatment step, and adjusting the relaxation rate in the relaxation treatment step. .
- the stretching speed in the width direction is within the range described below
- re-stretching and the re-stretching temperature and magnification are within the range described below.
- the content of the high MFR polypropylene is preferably 0.1 to 20% by mass.
- the porous film of the present invention has an ash content (JIS L1013) after incineration at a temperature of 850 ° C. of 0.5% by mass or less. If the ash content after incineration at a temperature of 850 ° C. is more than 0.5% by mass, ash content is generated by incineration for disposable use. In the case of protective clothing, ash content may be further processed for safety and health. .
- the lower limit of the ash content after incineration at a temperature of 850 ° C. is ideally 0%, but is substantially about 0.01%. In order to reduce the ash content after incineration at a temperature of 850 ° C. to 0.5% by mass or less, it can be achieved by making the raw material porous by a method in which inorganic particles are not added.
- the porous film of the present invention preferably has a tensile elongation ratio in the (longitudinal direction / width direction) of 0.6 to 1.5.
- the tensile elongation ratio in the (longitudinal direction / width direction) of the film means the ratio of the tensile elongation in the film longitudinal direction to the tensile elongation in the film width direction (that is, tensile elongation / longitudinal / (Tensile elongation in the width direction).
- the ratio of the tensile elongation in the longitudinal direction to the tensile elongation in the width direction of the film is 0.6 to 1.5. It is preferable that When the ratio of the tensile elongation in the longitudinal direction to the tensile elongation in the width direction of the film is less than 0.6 or greater than 1.5, when the porous film is used as a base material for protective clothing, the porous film is anisotropic.
- the ratio is more preferably 0.6 to 1.4, and even more preferably 0.7 to 1.3.
- the basis weight of the porous film of the present invention is preferably 5 g / m 2 or more.
- the basis weight is less than 5 g / m 2 , the elongation of the film, for example, the tensile elongation is low, and in the case of a protective garment based on the porous film of the present invention, the porous film breaks during work, The water pressure resistance is lowered, water leakage occurs, or the process passability in the process of bonding the porous film of the present invention to a nonwoven fabric may be inferior.
- the upper limit of the basis weight is actually 40 g / m 2 .
- Basis weight, from the viewpoint of tensile elongation and wear preferably 5 ⁇ 30g / m 2, more preferably 5 ⁇ 20g / m 2, more preferably 8 ⁇ 15g / m 2.
- a moisture-permeable waterproof sheet using the above-mentioned porous film.
- complex of fiber layers, such as this moisture-permeable waterproof sheet and a nonwoven fabric can also be comprised.
- a preferable composite is a composite of the moisture permeable waterproof sheet and the nonwoven fabric.
- the basis weight of the composite of the present invention is preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 45 g / m 2 or less.
- the basis weight is larger than 50 g / m 2 , the clothing becomes heavy and the comfort of clothing may be reduced. In particular, when the basis weight is larger than 100 g / m 2 , the tendency becomes more remarkable.
- the lower limit of the basis weight is preferably 25 g / m 2 or more from the viewpoint of the strength of the composite.
- the porous film of the present invention preferably has a film thickness of 5 ⁇ m or more. If the thickness is less than 5 ⁇ m, the film may break during processing or use.
- the film thickness is more preferably 10 ⁇ m or more, and even more preferably 10 to 50 ⁇ m.
- the method for producing the porous film of the present invention will be described based on a specific example.
- the manufacturing method of the porous film of this invention is not limited to this.
- Extruders used in melt blending may be either single-screw extruders or twin-screw extruders, but they can be mixed at high shear, and the mixing ratio is easily controlled to be uniform, raw material uniformity, resin deterioration suppression, and production. It is preferable to carry out with a twin screw extruder from a viewpoint of property. Moreover, in order to control a dispersion state, you may melt-knead in multiple times with a twin-screw extruder.
- polypropylene resin 96.5 parts by mass of homopolypropylene resin with MFR 4 g / 10 min, 3 parts by mass of high MFR polypropylene resin with MFR 1,000 g / 10 min, and N, N′-dicyclohexyl-2,6-naphthalene as ⁇ crystal nucleating agent
- the raw material is supplied from the measuring hopper to the twin screw extruder so that 0.3 parts by mass of dicarboxamide and 0.2 parts by mass of the antioxidant are mixed at this ratio, and then melt-kneaded and discharged from the die in a strand shape. Then, it is cooled and solidified in a 25 ° C. water tank, and cut into chips to prepare a polypropylene raw material (propylene composition).
- the melting temperature is preferably 280 to 310 ° C.
- the film forming method of the porous film of the present invention will be described, but the following film forming method can also be applied when a raw material other than the above-mentioned polypropylene raw material is used.
- the cast drum preferably has a surface temperature of 105 to 130 ° C. from the viewpoint of controlling the ⁇ crystal fraction of the cast film to be high.
- the end portion is sprayed with spot air to be brought into close contact with the drum.
- the obtained cast film is biaxially oriented to form pores in the film.
- a biaxial orientation method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
- the simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method from the viewpoint of moisture permeability, elongation, and water pressure resistance, and in particular, stretching in the longitudinal direction and then stretching in the width direction. It is preferable.
- the stretching temperature in the longitudinal direction is preferably 90 to 140 ° C. If the stretching temperature in the longitudinal direction is less than 90 ° C., the film may break, the elongation may decrease, or the water pressure resistance may decrease. If the stretching temperature in the longitudinal direction exceeds 140 ° C., moisture permeability may be reduced.
- the stretching temperature in the longitudinal direction is more preferably 110 to 135 ° C, particularly preferably 125 to 130 ° C.
- the stretching ratio in the longitudinal direction is preferably 3 to 7 times.
- the draw ratio in the longitudinal direction is less than 3, the moisture permeability may be lowered.
- the higher the stretching ratio in the longitudinal direction the better the moisture permeability.
- stretching more than 7 times may cause the film to break, the elongation to decrease, or the water pressure resistance to decrease.
- the draw ratio in the longitudinal direction is more preferably 4 to 7 times.
- the stretching speed in the longitudinal direction at this time is preferably 200,000% / min or more, more preferably 250,000% / min or more, and further 300,000% / min or more. preferable.
- the pore structure after biaxial stretching forms a network in the three-dimensional direction, making it easy to achieve both moisture permeability, water pressure resistance, and elongation.
- the upper limit of the stretching speed is 1,000,000% / min from the viewpoint of film breakage (productivity) and moisture permeability during stretching in the longitudinal direction.
- the stretching temperature in the width direction is preferably 130 to 155 ° C.
- the film may break, the elongation may decrease, or the water pressure resistance may decrease.
- the stretching temperature in the width direction exceeds 155 ° C.
- moisture permeability may decrease.
- the stretching temperature in the width direction is more preferably 140 to 155 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance.
- the draw ratio in the width direction is preferably 4 to 15 times. If the draw ratio in the width direction is less than 4, moisture permeability may be reduced.
- the draw ratio in the width direction is preferably high, but if it exceeds 15 times, the film may be broken and productivity may be lowered or moisture permeability may be lowered.
- the stretching ratio in the width direction is more preferably 4 to 12 times, still more preferably 6 to 12 times, and particularly preferably 8 to 11 times.
- the stretching speed in the width direction at this time is generally 500 to 10,000% / min. From the viewpoint of achieving both moisture permeability, water pressure resistance and elongation, 1,500 to 7,000. % / Min is preferable, and 2,000 to 5,000% / min is more preferable.
- rate of a longitudinal direction and the width direction is computable with the following formula
- Stretching speed [% / min] stretching ratio [%] / (stretching section length [m] / speed passing through stretching section [m / min])
- stretching area of a longitudinal direction can be calculated with the following formula
- Speed passing through stretching section (Roll peripheral speed before stretching + Roll peripheral speed after stretching) / 2
- the speed of passing through the stretching section in the width direction is the speed of the tenter type stretching machine when passing through the stretching section in the width direction.
- the “longitudinal draw ratio ⁇ width draw ratio” (a value obtained by multiplying the draw ratio in the longitudinal direction by the draw ratio in the width direction) is preferably 20 to 90 times, more preferably 30 to 90 times. .
- the pre-relaxation heat treatment refers to performing heat treatment with the width after stretching in the width direction.
- Relaxation treatment refers to heat treatment while relaxing the film by narrowing the width of the tenter.
- the heat treatment after relaxation treatment refers to performing heat treatment with the width after the relaxation treatment.
- the heat treatment step before the relaxation treatment, the relaxation treatment step, and the heat treatment step after the relaxation treatment may be collectively referred to as “heat treatment step”.
- the heat treatment temperature before relaxation is preferably 140 to 170 ° C. If the heat treatment temperature before relaxation is less than 140 ° C., the elongation may be lowered or the water pressure resistance may be lowered. If the heat treatment temperature before relaxation exceeds 170 ° C., the porous film surface melts and moisture permeability decreases, or the porous film shrinks in the width direction and breaks, which may reduce productivity. is there.
- the heat treatment temperature before relaxation is more preferably 150 to 168 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance.
- the heat treatment time before relaxation is preferably 0.1 seconds or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less, from the viewpoint of achieving both elongation, water pressure resistance and productivity.
- the relaxation rate is preferably 5 to 35%. If the relaxation rate is less than 5%, the elongation may decrease, the water pressure resistance may decrease, or the thermal contraction rate in the width direction in the width direction may increase. If the relaxation rate exceeds 35%, the moisture permeability may decrease or the physical property unevenness may increase. From the viewpoint of coexistence of moisture permeability, elongation, and water pressure resistance, it is more preferably 5 to 15%.
- the relaxation rate can be calculated by [(width of porous film before relaxation ⁇ width of porous film after relaxation) / (width of porous film before relaxation)].
- the relaxation temperature (heat treatment temperature) is preferably 155 to 170 ° C.
- the relaxation temperature is lower than 155 ° C.
- the contraction stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, the elongation may be decreased, and the water pressure resistance may be decreased.
- the relaxation temperature exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease.
- the relaxation temperature is more preferably 160 to 168 ° C. from the viewpoints of moisture permeability, elongation, and water pressure resistance.
- the relaxation rate is preferably 100 to 1,000% / min.
- the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity.
- the relaxation speed exceeds 1,000% / min, the speed at which the film contracts is slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and tears, the unevenness in the width direction increases, It may cause deterioration of sex.
- the relaxation rate is more preferably 150 to 500% / min.
- the heat treatment temperature after relaxation is preferably 155 to 170 ° C.
- the heat treatment temperature after relaxation is less than 155 ° C., the contraction stress for relaxation becomes low, and the above-described high relaxation rate may not be achieved, the elongation may decrease, and the water pressure resistance may decrease.
- the heat treatment temperature after relaxation exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease.
- the heat treatment temperature after relaxation is more preferably 160 to 168 ° C. from the viewpoints of moisture permeability, elongation, and water pressure resistance.
- the heat treatment time after relaxation is preferably 0.1 second or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less from the viewpoint of achieving both elongation, water pressure resistance and productivity.
- the film after initial stretching (the film after being stretched once each in the longitudinal direction and the width direction) may be subsequently stretched (re-stretched) again.
- Re-stretching may be performed either before or after the heat treatment step.
- the heat treatment process before redrawing can be omitted.
- a re-stretching method re-stretching in the longitudinal direction or re-stretching in the width direction can be used.
- a method of re-stretching in the width direction after re-stretching in the longitudinal direction, a method of re-stretching in the longitudinal direction after re-stretching in the width direction, and the like can also be used.
- a simultaneous biaxial stretching method in which the longitudinal direction and the width direction of the film are stretched almost simultaneously can also be used.
- the film after initial stretching (the film after being stretched once each in the longitudinal direction and the width direction) is controlled to a temperature at which it can be re-stretched in the longitudinal direction.
- a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
- the re-stretching temperature in the longitudinal direction is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher, from the viewpoint of film properties and uniformity.
- the stretching stress increases, so the number of film breaks may increase.
- the re-stretching temperature in the longitudinal direction is too high, the polymer around the pores may melt at a high temperature and the water vapor transmission rate may be lowered, so 170 ° C. is the upper limit.
- the redrawing ratio in the longitudinal direction is preferably 1.02 to 2.0 times, more preferably 1.1 to 1.7 times, and still more preferably 1.1 to 1.4 times. If the redrawing ratio in the longitudinal direction is less than 1.02, the redrawing effect may not be exhibited.
- the re-stretch ratio in the longitudinal direction exceeds 2.0 times, the normal temperature shrinkage in the longitudinal direction of the film increases, and when the porous film is wound as a roll, the tightening becomes stronger and the flatness is lowered. There is a case.
- the film When re-stretching in the longitudinal direction, following re-stretching, the film may be introduced by holding the film end by a tenter-type stretching machine and re-stretching in the width direction, or in the width direction. Heat treatment may be performed by passing through a tenter type stretching machine without re-stretching.
- the re-stretching temperature in the width direction is preferably from 130 to 170 ° C., more preferably from 140 to 170 ° C., and still more preferably from 150 to 165 ° C. from the viewpoint of film characteristics and uniformity. If the re-stretching temperature in the width direction is less than 140 ° C., the stretching stress increases, so the number of film breaks may increase. If the re-stretching temperature in the width direction is higher than 170 ° C., the polymer around the pores may melt and the moisture permeability may be lowered.
- the redrawing ratio in the width direction is preferably 1.02 to 2.0 times, more preferably 1.05 to 1.5 times, and still more preferably 1.05 to 1.3 times.
- the re-stretch ratio in the width direction is less than 1.0, it means contraction in the width direction and is not usually referred to as stretching.
- the re-stretch ratio in the width direction exceeds 2.0 times, the normal temperature shrinkage amount in the width direction of the film becomes large, and when the porous film is wound as a roll, the tightening becomes strong and the flatness is increased. May decrease.
- the heat treatment temperature is preferably 145 to 175 ° C.
- the heat treatment temperature is lower than 145 ° C.
- the elongation may decrease or the water pressure resistance may decrease.
- the heat treatment temperature exceeds 175 ° C.
- the porous film surface melts and moisture permeability decreases, and the porous film shrinks in the width direction and breaks, which may reduce productivity.
- the heat treatment temperature is more preferably 155 to 170 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance.
- the heat treatment time is preferably from 0.1 seconds to 10 seconds.
- a wound porous film can be obtained with a winder after re-stretching and roll heat treatment.
- the porous film of the present invention is excellent in moisture permeability, elongation and water pressure resistance, it can be suitably used as a moisture permeable waterproof sheet, for protective clothing, packaging materials for warmers, diapers, sanitary products, adhesive bandages, oil It can also be suitably used for adsorption sheets, civil engineering and building materials, and medical applications. Moreover, the porous film of this invention and a moisture-permeable waterproof sheet using the same are excellent in the process passage property in a process. In addition, since the composite of the moisture permeable waterproof sheet and the nonwoven fabric of the present invention is excellent in low basis weight and moisture permeability, it can be suitably used as a base material for protective clothing and protective clothing.
- the base material and the protective clothing of the protective clothing of the present invention are not heavy when worn, and are excellent in the comfort of clothing to reduce the stuffiness in the clothing, and excellent in water pressure resistance. Therefore, the base material and protective clothing of the protective clothing of the present invention can be suitably used not only for chemical protective clothing but also for medical use.
- ⁇ -crystal forming ability 5 mg of a porous film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220).
- the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min.
- the melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C.
- the melting of the ⁇ crystal is the melting peak of the ⁇ crystal
- the melting peak of the ⁇ crystal is taken as the melting peak of the base
- ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
- the ⁇ crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the ⁇ crystal in the same manner from the melting peak observed in the first run.
- the measurement was performed by stacking two test pieces. However, even when two test pieces are stacked and measured, it is not necessary to divide the measured value by 2, and the obtained measured value is used as it is.
- Ash content after incineration (JIS L 1013) Based on JIS L 1013: 2010 8.25, the ash content after incineration of the porous film or composite at 850 ° C. was measured.
- MFR Melt flow rate
- Weight per unit A porous film or composite was cut into a square of 100 mm in the longitudinal direction and 100 mm in the width direction to obtain a sample. Using an analytical electronic balance (HR-202i manufactured by A & D Co., Ltd.), the mass was measured in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%. The measurement was performed three times, the average value was defined as the mass W of the film or composite, and the basis weight was calculated using the following equation.
- HR-202i manufactured by A & D Co., Ltd.
- the subject In the constant temperature and humidity chamber set to 35 ° C and 50% Rh assuming the outdoor temperature in summer, the subject wore a dress made from one shirt and one work pants. The subject attached a thermo-hygrometer near the center of the chest from the top of the shirt and measured the humidity in the clothes after entering the room. This was performed on three subjects. The case where the average humidity of three people after 30 minutes was 60% Rh or less was evaluated as Good, and the case where the average humidity difference was higher than 60% Rh was evaluated as Bad.
- the obtained polypropylene composition (I) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is adjusted to 116 ° C. with a T-die.
- a cast film was obtained by discharging onto a controlled cast drum. Next, preheating was performed using a ceramic roll heated to 122 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching temperature of 122 ° C. and a stretching speed of 380,000% / min. Next, the end portion was introduced into a tenter type stretching machine with a clip, preheated at 150 ° C. for 3 seconds, then stretched 9.0 times at 150 ° C., and stretched in the width direction at a stretching rate of 3,300% / min.
- heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching (distance between the clips in the film width direction), and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 10%.
- Heat treatment was performed at 164 ° C. for 5 seconds while keeping the distance.
- preheating is performed using a ceramic roll heated to 155 ° C., the film is re-stretched 1.2 times in the longitudinal direction of the film at a re-stretching temperature of 155 ° C., and then the ceramic roll heated to 150 ° C. is used.
- Heat treatment was performed for 5 seconds, and the porous film was wound around the core with a winder to a thickness of 500 m to obtain a porous film having a thickness of 20 ⁇ m.
- Example 2 In the stretching process of Example 1, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching temperature of 125 ° C. and a stretching speed of 390,000% / min. Next, it was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 150 ° C. for 3 seconds, then stretched 9.0 times at 150 ° C., and stretched at a stretching speed of 4,000% / min. A porous film having a thickness of 20 ⁇ m was obtained under the same conditions as in 1.
- a porous film having a thickness of 20 ⁇ m was obtained from the obtained polypropylene composition (II) under the same conditions as in Example 1.
- Example 4 The porous film obtained in Example 1 was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and porous with a winder The porous film was wound around the core by 500 m to obtain a porous film having a thickness of 19 ⁇ m.
- Example 5 The porous film obtained in Example 1 was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and then While maintaining the distance between the clips after stretching, heat treatment was performed at 165 ° C. for 3 seconds, and the porous film was wound around the core with a winder by 500 m to obtain a porous film having a thickness of 18 ⁇ m.
- Example 6 A cast film was obtained using the resin raw material (polypropylene composition (I) described in Example 1 under the casting conditions described in Example 1. The film was then preheated using a ceramic roll heated to 130 ° C. In the longitudinal direction, the film was stretched 4.5 times at a stretching temperature of 130 ° C. at a stretching speed of 360,000% / min. After preheating at 3 ° C. for 3 seconds, the film was stretched 5.0 times at 150 ° C. at a stretching speed of 3,600% / min.
- heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 15%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds. Subsequently, preheating is performed using a ceramic roll heated to 155 ° C., and the film is re-stretched 1.1 times in the longitudinal direction of the film at a re-stretching temperature of 155 ° C., and then the ceramic roll heated to 150 ° C. is used.
- Heat treated for 5 seconds introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 160 ° C for 3 seconds, stretched 1.1 times at 160 ° C, and then the distance between the clips after stretching While being maintained at 165 ° C., heat treatment was performed at 165 ° C. for 3 seconds to obtain a porous film having a thickness of 20 ⁇ m.
- Comparative Example 1 40 parts by mass of high-density polyethylene powder (“Hi-Zex” 340M, manufactured by Mitsui Chemicals, Inc.), 30 parts by mass of polyethylene wax (“High Wax” 110P, manufactured by Mitsui Chemicals, Inc.), and calcium carbonate (trade name: A composition in which 30 parts by weight of “Star Piggot” 15A, manufactured by Shiraishi Calcium Co., Ltd., average particle size of 0.15 ⁇ m) was supplied to a twin-screw extruder, melted and mixed at 200 ° C., and then passed through the T die die. The film was extruded into a sheet shape, closely contacted on a cast drum having a surface temperature of 30 ° C., and 20 ° C.
- Example 2 It was produced according to the conditions described in Example 1 of JP-A-2006-28495.
- a resin composition of the polypropylene film a polypropylene having a melting temperature of 165 ° C. (manufactured by Sumitomo Chemical Co., Ltd., WF836 DG-3, MFR: 7 g / 10 min) and 50 wt% of a polypropylene containing a ⁇ crystal nucleating agent manufactured by SUNOCO Bepol ”(type: B022-SP) 50% by weight is added and mixed, fed to a twin screw extruder, melted and mixed at 300 ° C., extruded into a gut shape, cooled through a 10 ° C.
- the ⁇ crystal nucleating agent-added polypropylene is supplied to an extruder heated to 300 ° C., melted, extruded into a sheet through a T die die, and placed on a cast drum heated to a surface temperature of 125 ° C.
- the cast film was produced by intimately adhering and blowing hot air at 120 ° C. from the non-drum surface side.
- the porous film was wound around the core by 500 m with a winder to obtain a porous film having a thickness of 20 ⁇ m.
- the raw material is fed to the twin screw extruder, melt kneaded at 302 ° C., discharged from the die into strands, cooled and solidified in a 25 ° C. water bath, cut into chips, and the polypropylene composition (III) is obtained. Obtained.
- the obtained polypropylene composition (III) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is adjusted to 116 ° C. with a T-die.
- a cast film was obtained by discharging onto a controlled cast drum. Next, preheating was performed using a ceramic roll heated to 122 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching speed of 150,000% / min. Next, the end portion was introduced into a tenter type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 150 ° C., and stretched at a stretching rate of 3,300% / min.
- heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 15%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
- porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 ⁇ m.
- the polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die.
- the film was discharged onto a drum to obtain a cast film.
- preheating was performed using a ceramic roll heated to 135 ° C., and the film was stretched 4 times in the longitudinal direction of the film at a stretching speed of 450,000% / min.
- the end portion was introduced into a tenter type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching rate of 3,300% / min.
- heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 20%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
- porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 ⁇ m.
- the polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die.
- the film was discharged onto a drum to obtain a cast film.
- preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film under conditions of a stretching temperature of 125 ° C. and a stretching speed of 400,000% / min.
- the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching speed of 8,500% / min.
- heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 10%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
- porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 ⁇ m.
- porous films of Examples satisfying the requirements of the present invention were excellent in moisture permeability, water pressure resistance, and elongation.
- the porous films of the examples were able to be suitably used as moisture permeable waterproof sheets and protective clothing with reduced ash content after incineration by reducing the stuffiness in the clothes when worn.
- the porous film of the comparative example had insufficient moisture permeability, elongation, water pressure resistance, and ash content after incineration. Therefore, it was insufficient as a moisture-permeable waterproof sheet and protective clothing.
- Spunbond 1 / porous film of Example 1 / spunbond 1 in a three-layer structure was performed at a temperature of 2 ° C. and a roll pressure of 2 MPa to obtain a composite having a bonding area of 10%.
- the network pattern hot press roll has a mesh pattern height of 3 mm that does not touch the porous film and the spunbond of which the roll surface other than the bonded part forms a composite so as to exhibit moisture permeability even after the bonding process. A roll was used.
- Reference Example 201 A composite having an adhesion area of 10% was obtained in the same manner as in Reference Example 101 except that the porous film obtained in Comparative Example 1 was used as the porous film.
- the composite of Reference Example 101 using the porous film of Example 1 that satisfies the requirements of the present invention was excellent in moisture permeability and water pressure resistance. Further, Reference Example 101 was not heavy and had little ash after incineration. On the other hand, the composite of Reference Example 201 using the porous film of Comparative Example 1 was insufficient in moisture permeability and water pressure resistance. In addition, Reference Example 201 was heavy and a large amount of ash remained after incineration.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
Abstract
The objective is to provide a porous film that is suitable as a base material for a protective clothing having excellent water pressure resistance and wearing comfort by reducing the internal heating of the worn clothing, as well as a moisture-permeable waterproof sheet and a protective clothing using the porous film.
The objective is achieved with a porous film wherein the moisture permeability is 250 g/m2∙h or greater, the sum of the degrees of tensile elongation in the length direction and the width direction of the film is 100 to 500%, the water pressure resistance is 4,500 mm H2O or greater, and the ash content after incineration at a temperature of 850°C (JIS L 1013) is 0.5% by mass or less.
Description
本発明は、耐水圧および透湿性に優れ、伸度が高く、さらに不織布とのラミネート加工性に優れた多孔性フィルムに関する。また、前記多孔性フィルムを用いることで、耐水圧および透湿性に優れ、伸度が高く、着用した際の蒸れ感を軽減し着衣快適性に優れた透湿防水シート、複合体および防護服に関する。
The present invention relates to a porous film having excellent water pressure resistance and moisture permeability, high elongation, and excellent laminating properties with a nonwoven fabric. Further, by using the porous film, the present invention relates to a moisture permeable waterproof sheet, a composite, and protective clothing that are excellent in water pressure resistance and moisture permeability, have high elongation, reduce stuffiness when worn, and have excellent clothing comfort. .
従来、防水シート、防水服の生地としては、布帛に撥水性の樹脂をコーティングまたは貼り合わせた素材が耐水性と共に加工性にも優れることから多用されている。しかしながら、従来素材では、透湿性または透気性に劣るために、高温多湿の作業環境下では防護服の内部に湿気が籠もるため、不快感を生じたり、また防水シート用として用いると内部にカビなどが発生するという問題があった。
Conventionally, as a fabric for waterproof sheets and waterproof clothes, a material obtained by coating or bonding a water-repellent resin to a fabric is often used because it is excellent in water resistance and processability. However, since conventional materials are inferior in moisture permeability or air permeability, moisture is trapped inside the protective clothing in a hot and humid working environment, causing discomfort, and when used as a waterproof sheet, There was a problem that mold and the like occurred.
これらの問題解決策として、繊維材料布帛に多孔質樹脂被膜をラミネートしたラミネート加工布の提案がなされている(例えば、特許文献1参照)。
As a solution to these problems, a laminated cloth in which a porous resin film is laminated on a fiber material cloth has been proposed (see, for example, Patent Document 1).
また、透湿性フィルムと不織布からなる生地の提案もなされている(例えば、特許文献2,3,4参照)。
In addition, a cloth made of a moisture permeable film and a nonwoven fabric has been proposed (see, for example, Patent Documents 2, 3, and 4).
また、炭酸カルシウム等の無機粒子や有機粒子を使用しない透湿性フィルムの提案もなされている(例えば、特許文献5,6,7)。
Also, a moisture permeable film that does not use inorganic particles such as calcium carbonate or organic particles has been proposed (for example, Patent Documents 5, 6, and 7).
特許文献1にては、ラミネート加工布として、ポリウレタン系樹脂に吸着剤としてシリカやゼオライトなどを10重量%以上添加した塗剤を塗工して乾燥することで多孔質樹脂被膜を形成せしめた技術が提案されているが、被膜の伸度が低くラミネート加工時または衣服着用時に破れやすいという問題がある。
In Patent Document 1, as a laminated fabric, a technique in which a porous resin film is formed by applying and drying a coating material in which silica or zeolite or the like is added to a polyurethane resin as an adsorbent in an amount of 10% by weight or more is dried. However, there is a problem that the elongation of the film is low and it is easily broken when laminating or wearing clothes.
また、特許文献2,3および4にて提案されている技術においては、炭酸カルシウム等の無機粒子や有機粒子を多量に添加混合した樹脂シートを延伸して多孔質化したフィルムを用いるため、耐水圧性が不十分であり、機械的伸度に異方性があり、また、生地の破断伸度が低く、衣服着用時に粒子が起点となり破れやすいという問題がある。さらに、フィルムに腰がない(フィルムの剛性が十分ではない)ため、不織布と貼り合わせる加工での工程通過性が劣るという問題がある。
Further, in the techniques proposed in Patent Documents 2, 3 and 4, since a film made by stretching a resin sheet in which a large amount of inorganic particles such as calcium carbonate and organic particles are added and mixed is made porous, There is a problem that the compressibility is insufficient, the mechanical elongation is anisotropic, the elongation at break of the fabric is low, and the particles are the starting point when wearing clothes and are easily broken. Furthermore, since the film is not thin (the rigidity of the film is not sufficient), there is a problem that the process passability in the process of bonding to the nonwoven fabric is inferior.
特許文献5,6および7にて提案されている技術においては、透湿性に劣るために、高温多湿の作業環境下では防護服の内部に湿気が籠もるため不快感を生じたり、また防水シート用として用いると内部にカビなどが発生するという問題、もしくは、機械的伸度に異方性があり、また、生地の破断伸度が低く、衣服着用時に破れやすいという問題がある。
In the techniques proposed in Patent Documents 5, 6 and 7, the moisture permeability is inferior, so that moisture is trapped inside the protective garment in a high-temperature and high-humidity working environment, causing discomfort or waterproofing. When used for a sheet, there is a problem that mold or the like is generated inside, or there is anisotropy in mechanical elongation, and there is a problem that the breaking elongation of the fabric is low and it is easily broken when wearing clothes.
本発明の課題は、上記した問題点を解決することにある。すなわち、耐水圧および透湿性に優れ、伸度が高く、さらに不織布とのラミネート加工性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた防護服の基材などに好適な多孔性フィルムおよびそれを用いた透湿防水シート、複合体および防護服を提供することにある。さらには、不要となった際の焼却残渣もきわめて少ない透湿防水シート、防護服を提供することにある。
The object of the present invention is to solve the above-mentioned problems. In other words, it is excellent in water pressure and moisture permeability, high in elongation, excellent in laminating properties with non-woven fabric, reduced in stuffiness when worn, and suitable for protective clothing base materials with excellent clothing comfort. It is to provide an adhesive film and a moisture permeable waterproof sheet, a composite, and protective clothing using the same. Furthermore, another object is to provide a moisture permeable waterproof sheet and protective clothing with very little incineration residue when no longer needed.
つまり、本発明の課題は、耐水圧および透湿性に優れ、伸度が高く、さらに不織布とのラミネート加工性に優れた、破れにくく、工程通過性に優れた多孔性フィルムを提供することである。また、耐水圧に優れ、伸度が高く、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた透湿防水シート、複合体および防護服を提供することにある。さらには、不要となった際の焼却処分した際に残渣(灰分)がきわめて少ない透湿防水シート、防護服を提供することにある。
That is, an object of the present invention is to provide a porous film having excellent water pressure resistance and moisture permeability, high elongation, excellent laminating property with a non-woven fabric, hardly torn, and excellent process passability. . Another object of the present invention is to provide a moisture-permeable waterproof sheet, a composite, and protective clothing using the porous film, which has excellent water pressure resistance, high elongation, reduces the feeling of stuffiness when worn, and is excellent in clothing comfort. . Another object of the present invention is to provide a moisture-permeable waterproof sheet and protective clothing that have very little residue (ash) when incinerated when no longer needed.
上記した課題は、透湿度が250g/m2・h以上であり、フィルムの長手方向と幅方向の引張伸度の和が100~500%であり、耐水圧が4,500mmH2O以上であり、かつ温度850℃で焼却後の灰分(JIS L 1013)が0.5質量%以下である多孔性フィルムによって達成可能である。
The above-mentioned problems are that the moisture permeability is 250 g / m 2 · h or more, the sum of the tensile elongation in the longitudinal direction and the width direction of the film is 100 to 500%, and the water pressure resistance is 4,500 mmH 2 O or more. In addition, it can be achieved by a porous film having an ash content (JIS L 1013) after incineration at a temperature of 850 ° C. of 0.5% by mass or less.
本発明の多孔性フィルムは、耐水圧に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた防護服の基材などに好適な多孔性フィルムおよびそれを用いた透湿防水シート、複合体および防護服を提供することができる。
The porous film of the present invention is excellent in water pressure resistance, reduces the feeling of stuffiness when worn, and is suitable for a base material of a protective garment excellent in clothes comfort and a moisture-permeable waterproof sheet using the same, Complexes and protective clothing can be provided.
本発明は、耐水圧および透湿性に優れた多孔性フィルムを提供することができる。破断伸度が高いことから、不織布とのラミネート加工性(つまり、工程通過性)に優れた多孔性フィルムを提供することができる。また、前記多孔性フィルムを用いたことで、耐水圧に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた透湿防水シート、複合体および防護服を提供することができる。さらには、不要となった際の焼却後の灰分もきわめて少ない透湿防水シート、防護服を提供することができる。
The present invention can provide a porous film excellent in water pressure resistance and moisture permeability. Since the breaking elongation is high, it is possible to provide a porous film excellent in laminate processability (that is, process passability) with a nonwoven fabric. Further, by using the porous film, it is possible to provide a moisture permeable waterproof sheet, a composite, and protective clothing that are excellent in water pressure resistance, reduce the feeling of stuffiness when worn, and have excellent clothing comfort. Furthermore, it is possible to provide a moisture-permeable waterproof sheet and protective clothing that have very little ash after incineration when it is no longer needed.
本発明の多孔性フィルムとは、フィルムの両表面を貫通し、透気性を有する微細な貫通孔を多数有しているフィルムである。多孔性フィルムを構成する樹脂は、ポリオレフィン樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などいずれでも構わないが、耐熱性、成形性、生産コストの低減、耐薬品性、耐酸化・還元性などの観点からポリオレフィン樹脂が望ましい。したがって、本発明の多孔性フィルムはポリオレフィン樹脂を含むことが好ましい。
The porous film of the present invention is a film having many fine through-holes penetrating both surfaces of the film and having air permeability. The resin constituting the porous film may be any of polyolefin resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin, etc., but heat resistance, moldability, production cost reduction, chemical resistance, A polyolefin resin is desirable from the viewpoint of oxidation resistance and reduction resistance. Therefore, the porous film of the present invention preferably contains a polyolefin resin.
上記ポリオレフィン樹脂を構成する単量体成分としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、5-エチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられ、これらの単独重合体や上記単量体成分から選ばれる少なくとも2種以上の共重合体、およびこれら単独重合体や共重合体のブレンド物などが挙げられるが、これらに限定されるわけではない。上記の単量体成分以外にも、例えば、ビニルアルコール、無水マレイン酸などを共重合、グラフト重合しても構わないが、これらに限定されるわけではない。透湿防水シートの基材としてはエチレンを単量体成分として用いたポリエチレンおよび/またはプロピレンを単量体成分として用いたポリプロピレンが好ましく、特に耐熱性、透気性、空孔率などの観点からプロピレンを単量体成分として用いたポリプロピレンが好ましく、主成分であることが好ましい。したがって、本発明の多孔性フィルムはポリオレフィン樹脂を含み、かつ、当該ポリオレフィン樹脂がポリプロピレンであることが特に好ましい、なお、「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは80質量%以上、さらに好ましくは90質量%以上、最も好ましくは95質量%以上であることを意味する。なお、上限は特に限定されないが、100質量%が実質的な上限になる。
Examples of the monomer component constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-pentene, 3-methyl-1-butene, 1-hexene and 4-methyl. -1-pentene, 5-ethyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene, vinyl And cyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene, and the like. These homopolymers and at least two or more types of copolymers selected from the above monomer components, Examples include, but are not limited to, blends of copolymers and copolymers. In addition to the above monomer components, for example, vinyl alcohol, maleic anhydride or the like may be copolymerized or graft polymerized, but is not limited thereto. As the base material of the moisture permeable waterproof sheet, polyethylene using ethylene as a monomer component and / or polypropylene using propylene as a monomer component is preferable. Propylene is particularly preferable from the viewpoint of heat resistance, air permeability, porosity, and the like. Polypropylene using as a monomer component is preferable, and the main component is preferable. Therefore, it is particularly preferable that the porous film of the present invention contains a polyolefin resin, and the polyolefin resin is polypropylene. The “main component” means that the proportion of a specific component in all components is 50% by mass. % Or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and most preferably 95% by mass or more. In addition, although an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
多孔性フィルム中に貫通孔を形成する方法としては、湿式法、乾式法どちらでも構わない。具体的には、湿式法とは、ポリオレフィン樹脂をマトリックス樹脂とし、シート化後に抽出する被抽出物を添加、混合した樹脂組成物をシート化し、その後、被抽出物の良溶媒を用いて添加剤のみを抽出することで、マトリックス樹脂中に空隙を生成せしめる方法である。
As a method for forming the through-hole in the porous film, either a wet method or a dry method may be used. Specifically, the wet method means that a polyolefin resin is used as a matrix resin, an extractable to be extracted after sheeting is added, and the mixed resin composition is made into a sheet, and then the additive is used using a good solvent of the extractable. This is a method in which voids are generated in the matrix resin by extracting only.
一方、乾式法とは、たとえば:
溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを熱処理後に一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(所謂、ラメラ延伸法);
無機粒子またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量添加し、シートを形成して延伸することにより粒子とポリプロピレン樹脂界面で開裂を発生させ、空隙を形成する方法(粒子法、相分離法);および
ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる方法(所謂、β晶法)
など溶媒による抽出を行わない方法全般を意味する。これらの方法の中でも乾式法、特にβ晶法を採用するのが生産性の点で好ましい。 On the other hand, the dry method is, for example:
By adopting low temperature extrusion and high draft ratio at the time of melt extrusion, the lamella structure in the film before stretching is controlled, and this is uniaxially stretched after heat treatment to generate cleavage at the lamella interface, and voids are created. Forming method (so-called lamellar stretching method);
A method of forming voids by adding a large amount of incompatible resin as particles to polypropylene, which is an inorganic particle or matrix resin, forming a sheet and stretching it to cause cleavage at the interface between the particle and the polypropylene resin (particle method) , Phase separation method); and a method of forming voids in the film by utilizing the crystal density difference and crystal transition between α-type crystal (α crystal) and β-type crystal (β crystal), which are polymorphs of polypropylene ( (So-called β crystal method)
This means all methods that do not use solvent extraction. Among these methods, it is preferable in terms of productivity to employ a dry method, particularly a β crystal method.
溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを熱処理後に一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(所謂、ラメラ延伸法);
無機粒子またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量添加し、シートを形成して延伸することにより粒子とポリプロピレン樹脂界面で開裂を発生させ、空隙を形成する方法(粒子法、相分離法);および
ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる方法(所謂、β晶法)
など溶媒による抽出を行わない方法全般を意味する。これらの方法の中でも乾式法、特にβ晶法を採用するのが生産性の点で好ましい。 On the other hand, the dry method is, for example:
By adopting low temperature extrusion and high draft ratio at the time of melt extrusion, the lamella structure in the film before stretching is controlled, and this is uniaxially stretched after heat treatment to generate cleavage at the lamella interface, and voids are created. Forming method (so-called lamellar stretching method);
A method of forming voids by adding a large amount of incompatible resin as particles to polypropylene, which is an inorganic particle or matrix resin, forming a sheet and stretching it to cause cleavage at the interface between the particle and the polypropylene resin (particle method) , Phase separation method); and a method of forming voids in the film by utilizing the crystal density difference and crystal transition between α-type crystal (α crystal) and β-type crystal (β crystal), which are polymorphs of polypropylene ( (So-called β crystal method)
This means all methods that do not use solvent extraction. Among these methods, it is preferable in terms of productivity to employ a dry method, particularly a β crystal method.
β晶法を用いてフィルムに貫通孔を形成するためには、多孔性フィルムのβ晶形成能が40%以上であることが好ましい。β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透過性の低いフィルムしか得られない場合がある。一方、β晶形成能の上限は特に限定されるものではないが、99.9%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が低下するなど工業的な実用価値が低い。工業的にはβ晶形成能は65~99.9%が好ましく、70~95%が特に好ましい。
In order to form through holes in the film using the β crystal method, the β crystal forming ability of the porous film is preferably 40% or more. If the β-crystal forming ability is less than 40%, the amount of β-crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to α-crystal, and as a result, only a film with low permeability is obtained. It may not be possible. On the other hand, the upper limit of the β-crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the β-crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, the β-crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
β晶形成能を40%以上に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、フタロシアンニン系顔料、キナクリドン系顔料を好ましく挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量としては、ポリプロピレン組成物を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性フィルムの透気性が低下する場合がある。0.5質量%を超えると、粗大ボイドを形成し、有機溶媒塗布、乾燥時の物性変化が大きくなる場合がある。なお、本発明において、ポリプロピレン組成物とは、ポリプロピレン樹脂に加えて、β晶核剤、および酸化防止剤など多孔性フィルムを構成する全ての材料を含む組成物である。
In order to control the β-crystal forming ability to 40% or more, a polypropylene resin with a high isotactic index is used, or a β crystal is selectively formed by adding it to a polypropylene resin called a β crystal nucleating agent. The crystallization nucleating agent to be used is preferably used as an additive. Examples of β crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide. Amide compounds, tetraoxaspiro compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid Preferable examples include aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments. Particularly, amides disclosed in JP-A-5-310665 are preferred. Compounds can be preferably usedThe addition amount of the β crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the polypropylene composition. If it is less than 0.05% by mass, formation of β crystals becomes insufficient, and the air permeability of the porous film may be lowered. If it exceeds 0.5% by mass, coarse voids are formed, and physical property changes during application of organic solvents and drying may increase. In addition, in this invention, a polypropylene composition is a composition containing all the materials which comprise porous films, such as a beta crystal nucleating agent and antioxidant, in addition to a polypropylene resin.
本発明の多孔性フィルムを構成するポリプロピレン樹脂は、メルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2~30g/10分の範囲であることが好ましく、さらにアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが2g/10分未満であると、樹脂の溶融粘度が高くなり高精度濾過が困難となり、フィルムの品位が低下する場合がある。MFRが30g/10分を超えると、分子量が低くなりすぎるため、延伸時のフィルム破れが起こりやすくなり、生産性が低下する場合がある。より好ましくは、MFRは3~20g/10分である。
The polypropylene resin constituting the porous film of the present invention preferably has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min. It is preferable that it is an isotactic polypropylene resin. When the MFR is less than 2 g / 10 minutes, the melt viscosity of the resin becomes high and high-precision filtration becomes difficult, and the quality of the film may be lowered. When the MFR exceeds 30 g / 10 min, the molecular weight becomes too low, so that the film is easily broken during stretching, and the productivity may be lowered. More preferably, the MFR is 3 to 20 g / 10 minutes.
また、アイソタクチックポリプロピレン樹脂を用いる場合、アイソタクチックインデックスは90~99.9%であることが好ましく、95~99%がより好ましい。アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。
In the case of using an isotactic polypropylene resin, the isotactic index is preferably 90 to 99.9%, more preferably 95 to 99%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
本発明でポリプロピレン樹脂を用いる場合、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5質量%以下、より好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。
In the case of using a polypropylene resin in the present invention, not only a homopolypropylene resin can be used, but also from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, an ethylene component or butene is added to polypropylene. A resin obtained by copolymerizing an α-olefin component such as hexene or octene in an amount of 5% by mass or less, more preferably 2.5% by mass or less can be used. The form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
また、上記したポリプロピレン樹脂に、MFRが70g/10分以上、好ましくは100g/10分以上、さらに好ましくは500g/10分以上のポリプロピレン(高MFRポリプロピレン)を添加することが透湿性向上の点で好ましい。MFRの上限は5000g/10分以下が好ましい。MFRが5000g/10分を超える場合には、上述したアイソタクチックポリプロピレンと均一化することが困難となる可能性がある。通常、MFRが70g/10分以上の高MFRポリプロピレン(特に、アイソタクチックポリプロピレン)は延伸性が悪く、伸度の低下を招くために、フィルムの分野では使用されてこなかった。しかしながら、ポリプロピレン組成物を100質量%としたときに、高MFRポリプロピレンを0.1~20質量%、好ましくは0.5~10質量%、さらに好ましくは0.7~5質量%含有することで、少量添加した高MFRポリプロピレンが、結晶界面の分子鎖末端濃度を高め、長手方向の延伸において結晶界面での孔形成を促進させる、すなわち開孔助剤として働くことから均一な開孔が起こり、耐水圧、伸度を有しながら、透湿性を有することができ、相反する特性の両立を図ることができる。
In addition, it is possible to add polypropylene (high MFR polypropylene) having an MFR of 70 g / 10 minutes or more, preferably 100 g / 10 minutes or more, more preferably 500 g / 10 minutes or more to the polypropylene resin described above in terms of improving moisture permeability. preferable. The upper limit of MFR is preferably 5000 g / 10 min or less. If the MFR exceeds 5000 g / 10 min, it may be difficult to make it uniform with the above-mentioned isotactic polypropylene. Usually, high MFR polypropylene (especially isotactic polypropylene) having an MFR of 70 g / 10 min or more has not been used in the field of films because it has poor stretchability and causes a decrease in elongation. However, when the polypropylene composition is 100% by mass, the high MFR polypropylene is contained in an amount of 0.1 to 20% by mass, preferably 0.5 to 10% by mass, more preferably 0.7 to 5% by mass. The high MFR polypropylene added in a small amount increases the molecular chain end concentration at the crystal interface and promotes pore formation at the crystal interface in the longitudinal stretching, that is, it acts as a pore opening aid, resulting in uniform pore opening. While having water pressure resistance and elongation, it can have moisture permeability and can achieve conflicting properties.
本発明の多孔性フィルムを形成するポリプロピレン樹脂には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、光安定剤、中和剤、帯電防止剤や有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましいが、ポリプロピレン組成物を100質量%としたときに、酸化防止剤添加量は2質量%以下とすることが好ましく、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。一方、充填剤を含有させた場合、脱落する場合があり、作業時に悪影響を及ぼす可能性があり、また、充填剤が起点となり、伸度が低下する場合があり、添加しないほうが好ましい。特に、無機充填剤は、焼却後の灰分として残存することから添加しないほうが好ましい。
In the polypropylene resin that forms the porous film of the present invention, an antioxidant, a heat stabilizer, a light stabilizer, a neutralizer, an antistatic agent and a lubricant composed of organic particles, as long as the effects of the present invention are not impaired. Furthermore, you may contain various additives, such as an antiblocking agent, a filler, and an incompatible polymer. In particular, it is preferable to add an antioxidant for the purpose of suppressing the oxidative deterioration due to the heat history of the polypropylene resin, but when the polypropylene composition is 100% by mass, the antioxidant addition amount is 2% by mass or less. More preferably, it is 1 mass% or less, More preferably, it is 0.5 mass% or less. On the other hand, when a filler is contained, it may fall off, which may adversely affect the work, and the filler may be the starting point and the elongation may be lowered. In particular, the inorganic filler is preferably not added because it remains as ash after incineration.
本発明の多孔性フィルムは、透湿度が250g/m2・h以上である。透湿度が250g/m2・h未満では、本発明の多孔性フィルムを防護服として着用した時、蒸れ感を強く感じ、着衣快適性が低い場合がある。耐水圧、および伸度との両立の観点から、透湿度は高いほうが好ましいが、上限は現実的には2,000g/m2・hとなる。着衣快適性の観点から、透湿度は、250~2,000g/m2・hが好ましく、300~2,000g/m2・hがより好ましく、350~2,000g/m2・hが更に好ましい。透湿度は、原料中のβ晶核剤の添加量、原料中に添加する高MFRポリプロピレンの添加量を調整すること、長手方向の延伸倍率と温度を調整すること、再延伸を行い、かつ再延伸温度と倍率を調整することで制御することができる。例えば、原料中のβ晶核剤の添加量を0.05~0.5質量%の範囲内でより増加させたり、キャストドラムの温度を105~130℃の範囲内でより高温にしたり、原料中に高MFRポリプロピレンを0.1~20質量%の範囲内で添加量をより増加したり、長手方向の延伸温度を90~140℃の範囲内でより低温にすることで透湿度を高めることができ、長手方向の延伸倍率を3~7倍の範囲内でより高倍にすることで透湿度を高めることができる。また、長手方向および幅方向に延伸せしめたフィルムを長手方向に再延伸し、かつ、再延伸の延伸温度を130~170℃の範囲内でより低温にしたり、再延伸の延伸倍率を1.02~2.0倍の範囲内で高倍で延伸することで透湿度を高めることができる。
The porous film of the present invention has a moisture permeability of 250 g / m 2 · h or more. When the moisture permeability is less than 250 g / m 2 · h, when the porous film of the present invention is worn as protective clothing, the feeling of stuffiness may be felt strongly, and the clothing comfort may be low. From the viewpoint of achieving both water pressure resistance and elongation, the moisture permeability is preferably high, but the upper limit is practically 2,000 g / m 2 · h. From the viewpoint of clothing comfort, the moisture permeability is preferably 250 to 2,000 g / m 2 · h, more preferably 300 to 2,000 g / m 2 · h, and further preferably 350 to 2,000 g / m 2 · h. preferable. The moisture permeability is adjusted by adjusting the amount of β-crystal nucleating agent added in the raw material, the amount of high MFR polypropylene added in the raw material, adjusting the stretching ratio and temperature in the longitudinal direction, re-stretching, and re-stretching. It can be controlled by adjusting the stretching temperature and the magnification. For example, the addition amount of the β crystal nucleating agent in the raw material is further increased within the range of 0.05 to 0.5% by mass, the temperature of the cast drum is increased within the range of 105 to 130 ° C., Increase the moisture permeability by increasing the amount of high MFR polypropylene in the range of 0.1 to 20% by mass or lowering the longitudinal stretching temperature in the range of 90 to 140 ° C. The moisture permeability can be increased by increasing the draw ratio in the longitudinal direction within a range of 3 to 7 times. Further, the film stretched in the longitudinal direction and the width direction is re-stretched in the longitudinal direction, and the re-stretching stretching temperature is lowered within the range of 130 to 170 ° C., or the re-stretching stretching ratio is 1.02. Moisture permeability can be increased by stretching at a high magnification within a range of up to 2.0 times.
本発明の多孔性フィルムは、フィルムの長手方向と幅方向の引張伸度の和が100~500%である。フィルムの長手方向と幅方向の引張伸度の和が100%未満では、本発明の多孔性フィルムを基材とした防護服の場合、作業時に多孔性フィルムが破膜し、耐水圧が低下し、水漏れが起こったり、本発明の多孔性フィルムを防護服の基材とする場合、不織布と貼り合わせる加工での工程通過性が劣る場合がある。フィルムの長手方向と幅方向の引張伸度の和が500%より高い場合、加工工程において張力がかかる際にフィルムが伸びてしまうなどの加工での工程通過性が劣る場合がある。加工性および現場での作業性の観点および加工時に多孔性フィルムが伸びてしまい、耐水圧が低下することから、フィルムの長手方向と幅方向の引張伸度の和は、100~400%が好ましく、130~400%がより好ましく、150~400%が更に好ましい。フィルムの長手方向と幅方向の引張伸度の和は、キャストドラムの温度、長手方向の延伸倍率と温度と延伸速度、幅方向の延伸速度と倍率、熱処理工程での温度と時間を調整することで制御でき、特に長手方向の再延伸温度と倍率により容易にコントロールすることができる。フィルムの長手方向と幅方向の引張伸度の和は、例えば、キャストドラムの温度を105~130℃の範囲内でより高温にしたり、長手方向の延伸温度を90~140℃の範囲内でより高温にしたり、長手方向の延伸倍率は、3~7倍の範囲内であって、透湿度の値が前述した好適な数値範囲を満足する程度に低倍にしたり、長手方向の延伸速度を200,000~1,000,000%/分の範囲内でより速くすることでフィルムの長手方向と幅方向の引張伸度の和を高めることができる。また、幅方向の延伸倍率を4~15倍の範囲内であって、耐水圧の値が後述する好適な数値範囲を満足する程度に低倍にしたり、幅方向の延伸速度を500~10,000%/分の範囲内でより速くしたり、弛緩処理前の熱処理工程での熱処理温度や弛緩処理後の熱処理工程での熱処理温度を140~170℃の範囲内でより高温にしたり、弛緩処理前の熱処理工程での熱処理時間や弛緩処理後の熱処理工程での熱処理時間を0.1秒~10秒の範囲内でより長時間にしたり、再延伸の延伸倍率を1.02~2.0倍の範囲内で低倍で延伸することでフィルムの長手方向と幅方向の引張伸度の和を高めることができる。特に、長手方向に再延伸を行い、再延伸温度を130℃以上でフィルムが溶融しない程度に高温にすることでフィルムの長手方向と幅方向の引張伸度の和を高くすることができる。
In the porous film of the present invention, the sum of the tensile elongation in the longitudinal direction and the width direction of the film is 100 to 500%. When the sum of the tensile elongation in the longitudinal direction and the width direction of the film is less than 100%, in the case of the protective clothing based on the porous film of the present invention, the porous film breaks during the operation, and the water pressure resistance decreases. When water leaks or the porous film of the present invention is used as a base material for protective clothing, the process passability may be inferior in the process of bonding to a nonwoven fabric. When the sum of the tensile elongation in the longitudinal direction and the width direction of the film is higher than 500%, the process passability in processing such as stretching of the film when tension is applied in the processing step may be inferior. From the viewpoint of workability and workability in the field and because the porous film stretches during processing and the water pressure resistance decreases, the sum of the tensile elongation in the longitudinal direction and the width direction of the film is preferably 100 to 400%. 130 to 400% is more preferable, and 150 to 400% is more preferable. The sum of the tensile elongation in the longitudinal and width directions of the film is to adjust the temperature of the cast drum, the stretching ratio and temperature and stretching speed in the longitudinal direction, the stretching speed and magnification in the width direction, and the temperature and time in the heat treatment process. In particular, it can be easily controlled by the redrawing temperature and the magnification in the longitudinal direction. The sum of the tensile elongation in the longitudinal direction and the width direction of the film is, for example, higher in the temperature of the cast drum in the range of 105 to 130 ° C. or more in the range of 90 to 140 ° C. in the longitudinal direction. The stretching ratio in the longitudinal direction is in the range of 3 to 7 times, and the moisture permeability value is lowered to such a degree as to satisfy the above-mentioned preferable numerical range, or the stretching speed in the longitudinal direction is set to 200. By increasing the speed within the range of 1,000 to 1,000,000% / min, the sum of the tensile elongation in the longitudinal direction and the width direction of the film can be increased. Further, the draw ratio in the width direction is in the range of 4 to 15 times, and the water pressure resistance value is lowered to a value that satisfies a suitable numerical range described later, or the draw speed in the width direction is set to 500 to 10, Accelerating within the range of 000% / min, increasing the heat treatment temperature in the heat treatment step before the relaxation treatment, and heat treatment temperature in the heat treatment step after the relaxation treatment within the range of 140 to 170 ° C, or relaxing treatment The heat treatment time in the previous heat treatment step and the heat treatment time in the heat treatment step after the relaxation treatment are made longer in the range of 0.1 to 10 seconds, or the draw ratio of redrawing is 1.02 to 2.0. By stretching at a low magnification within the range of double, the sum of the tensile elongation in the longitudinal direction and the width direction of the film can be increased. In particular, by performing re-stretching in the longitudinal direction and increasing the re-stretching temperature to 130 ° C. or higher so that the film does not melt, the sum of the tensile elongation in the longitudinal direction and the width direction of the film can be increased.
本発明の多孔性フィルムは、耐水圧が4,500mmH2O以上である。耐水圧が4,500mmH2O未満では、防護服として用いたときに、強い雨風の時や肘、膝部をついた時や座り込んだ時に水が染みこむ場合があり、透湿防水シートとして用いたときに、水が染みこみ内部にカビなどが発生する場合がある。耐水圧の上限は透湿度の観点から25,000mmH2Oが好ましい。加工性および現場での作業性の観点から、耐水圧は、5,000~25,000mmH2Oが好ましく、8,000~25,000mmH2Oがより好ましい。耐水圧は、キャストドラムの温度、長手方向の延伸倍率と温度と延伸速度、幅方向の延伸速度と倍率、熱処理工程での温度と時間、および弛緩処理工程での弛緩率を調整すること、再延伸を行い、かつ再延伸温度と倍率を調整すること、再延伸後の熱処理の温度を調整することで制御することができる。例えば、キャストドラムの温度を105~130℃の範囲内でより高温にしたり、長手方向の延伸温度を90~140℃の範囲内でより高温にすることで耐水圧を高めることができ、長手方向の延伸倍率を3~7倍の範囲内でより高倍にしたり、長手方向の延伸速度を200,000~1,000,000%/分の範囲内でより速くにしたり、幅方向の延伸速度を500~10,000%/分の範囲内でより早くしたり、幅方向の延伸倍率を4~15倍の範囲内でより高倍にしたり、弛緩処理前の熱処理工程での熱処理温度や弛緩処理後の熱処理工程での熱処理を140~170℃の範囲内でより高温にしたり、弛緩処理前の熱処理工程での熱処理時間や弛緩処理後の熱処理工程での熱処理時間を0.1秒~10秒の範囲内でより長時間にしたり、弛緩処理工程での弛緩率を5~35%の範囲内でより高くすることで耐水圧を高めることができる。また、長手方向および/または幅方向の再延伸時の延伸温度を130~170℃の範囲内でフィルムが溶融しない程度に高温にしたり、再延伸の延伸倍率を1.02~2.0倍の範囲内で高倍で延伸したり、再延伸後の熱処理の温度を145~175℃の範囲内でフィルムが溶融しない程度に高温にすることで耐水圧を高めることができる。
The porous film of the present invention has a water pressure resistance of 4,500 mmH 2 O or more. If the water pressure resistance is less than 4,500mmH 2 O, when used as protective clothing, water may permeate when it is in strong rain and wind, with elbows, knees, or sitting down. If so, water may soak in and mold may form inside. The upper limit of the water pressure resistance is preferably 25,000 mmH 2 O from the viewpoint of moisture permeability. From the viewpoint of workability and workability on site, the water pressure resistance is preferably 5,000 to 25,000 mmH 2 O, and more preferably 8,000 to 25,000 mmH 2 O. The water pressure resistance is adjusted by adjusting the temperature of the cast drum, the stretching ratio and temperature and stretching speed in the longitudinal direction, the stretching speed and magnification in the width direction, the temperature and time in the heat treatment process, and the relaxation rate in the relaxation process. It can be controlled by stretching, adjusting the redrawing temperature and magnification, and adjusting the temperature of the heat treatment after redrawing. For example, the water pressure can be increased by increasing the temperature of the cast drum within the range of 105 to 130 ° C., or by increasing the stretching temperature in the longitudinal direction within the range of 90 to 140 ° C. The stretching ratio is increased within the range of 3 to 7 times, the longitudinal stretching speed is increased within the range of 200,000 to 1,000,000% / min, or the stretching speed in the width direction is increased. Faster within the range of 500 to 10,000% / min, higher draw ratio in the width direction within the range of 4 to 15 times, heat treatment temperature in the heat treatment process before relaxation treatment and after relaxation treatment The heat treatment in the heat treatment step is set to a higher temperature within the range of 140 to 170 ° C., or the heat treatment time in the heat treatment step before the relaxation treatment or the heat treatment time in the heat treatment step after the relaxation treatment is 0.1 to 10 seconds. Within a longer range Ri, it is possible to increase the water pressure by a higher relaxation rate in the relaxation process in the range of 5 to 35%. Further, the stretching temperature at the time of re-stretching in the longitudinal direction and / or the width direction is set to a high temperature such that the film does not melt within the range of 130 to 170 ° C., or the stretching ratio of re-stretching is 1.02 to 2.0 times. The water pressure resistance can be increased by stretching at a high magnification within the range, or by increasing the temperature of the heat treatment after re-stretching within a range of 145 to 175 ° C. so that the film does not melt.
透湿度、耐水圧、フィルムの長手方向と幅方向の引張伸度の和の特性バランスを両立させ、本発明の多孔性フィルムを得る方法としては、原料中のβ晶核剤の添加量を調整すること、原料中に添加される高MFRポリプロピレンの添加量を調整すること、キャストドラムの温度を調整すること、長手方向の延伸倍率と温度と延伸速度を調整すること、幅方向の延伸速度と倍率を調整すること、熱処理工程での温度と時間を調整すること、弛緩処理工程における弛緩率を調整すること、再延伸を行い、かつ再延伸温度と倍率を後述する範囲内とすること、および再延伸後の熱処理温度を後述範囲とすることにより制御することができる。
As a method of obtaining the porous film of the present invention by balancing moisture permeability, water pressure resistance, and the balance of properties of the sum of tensile elongation in the longitudinal direction and width direction of the film, the amount of β crystal nucleating agent added in the raw material is adjusted. Adjusting the amount of high MFR polypropylene added to the raw material, adjusting the temperature of the cast drum, adjusting the stretching ratio and temperature and the stretching speed in the longitudinal direction, and the stretching speed in the width direction Adjusting the magnification, adjusting the temperature and time in the heat treatment step, adjusting the relaxation rate in the relaxation treatment step, performing re-stretching, and setting the re-stretching temperature and magnification within the ranges described below, and It can control by making the heat processing temperature after redrawing into the below-mentioned range.
特に、本発明の多孔性フィルムを得るに際して、原料中のβ晶核剤の添加量を調整すること、キャストドラムの温度を調整すること、長手方向の延伸倍率と温度と延伸速度を調整すること、幅方向の倍率を調整すること、熱処理工程での温度と時間を調整すること、および弛緩処理工程での弛緩率を調整することといったプロセス条件のみを調整するだけでは特性バランスが不十分となる。
In particular, in obtaining the porous film of the present invention, adjusting the addition amount of the β crystal nucleating agent in the raw material, adjusting the temperature of the cast drum, adjusting the stretching ratio, temperature and stretching speed in the longitudinal direction. The balance of characteristics is insufficient by adjusting only the process conditions such as adjusting the magnification in the width direction, adjusting the temperature and time in the heat treatment step, and adjusting the relaxation rate in the relaxation treatment step. .
そこで、原料中に高MFRポリプロピレン(特に、高MFRアイソタクチックポリプロピレン)を特定量含有せしめ、幅方向の延伸速度を後述する範囲とし、再延伸を行い、かつ再延伸温度と倍率を後述する範囲内とするが重要であり、それによって初めて透湿度、耐水圧、フィルムの長手方向と幅方向の引張伸度の和の特性バランスを両立させることができる。高MFRポリプロピレンの含有量は、前述のとおり、0.1~20質量%が好ましい。
Therefore, a specific amount of high MFR polypropylene (especially high MFR isotactic polypropylene) is included in the raw material, the stretching speed in the width direction is within the range described below, re-stretching, and the re-stretching temperature and magnification are within the range described below. However, it is important to achieve both the moisture permeability, the water pressure resistance, and the balance of properties of the sum of the tensile elongation in the longitudinal direction and the width direction of the film for the first time. As described above, the content of the high MFR polypropylene is preferably 0.1 to 20% by mass.
本発明の多孔性フィルムは、温度850℃で焼却した後の灰分(JIS L 1013)が0.5質量%以下である。温度850℃で焼却した後の灰分が0.5質量%より多い場合、使い捨て用途の場合焼却処分によって灰分が発生し、防護服の場合には、安全衛生上さらに灰分の処理を行う場合がある。温度850℃で焼却後の灰分の下限は理想的には0%であるが、実質的には0.01%程度である。温度850℃で焼却後の灰分を0.5質量%以下にせしめるためには、原料に無機粒子を添加しない方法で多孔化することによって達成することができる。
The porous film of the present invention has an ash content (JIS L1013) after incineration at a temperature of 850 ° C. of 0.5% by mass or less. If the ash content after incineration at a temperature of 850 ° C. is more than 0.5% by mass, ash content is generated by incineration for disposable use. In the case of protective clothing, ash content may be further processed for safety and health. . The lower limit of the ash content after incineration at a temperature of 850 ° C. is ideally 0%, but is substantially about 0.01%. In order to reduce the ash content after incineration at a temperature of 850 ° C. to 0.5% by mass or less, it can be achieved by making the raw material porous by a method in which inorganic particles are not added.
本発明の多孔性フィルムは、フィルムの(長手方向/幅方向)の引張伸度比が0.6~1.5であることが好ましい。ここで、「フィルムの(長手方向/幅方向)の引張伸度比」とは、フィルム幅方向の引張伸度に対する、フィルム長手方向の引張伸度の比(つまり、長手方向の引張伸度/幅方向の引張伸度)を意味する。すなわち、本発明の多孔性フィルムは、フィルムの幅方向の引張伸度に対する長手方向の引張伸度の比(長手方向の引張伸度/幅方向の引張伸度)が0.6~1.5であることが好ましい。フィルムの幅方向の引張伸度に対する長手方向の引張伸度の比が0.6未満または1.5より大きい場合、多孔性フィルムを防護服の基材とした場合、多孔性フィルムに異方性があり、作業時、着脱時にある一方向で裂けやすくなったり、ある一方向の伸度が高いことによって、耐水圧が低下する場合がある。耐水圧の観点から、当該比は0.6~1.4がより好ましく、0.7~1.3がさらに好ましい。
The porous film of the present invention preferably has a tensile elongation ratio in the (longitudinal direction / width direction) of 0.6 to 1.5. Here, “the tensile elongation ratio in the (longitudinal direction / width direction) of the film” means the ratio of the tensile elongation in the film longitudinal direction to the tensile elongation in the film width direction (that is, tensile elongation / longitudinal / (Tensile elongation in the width direction). That is, in the porous film of the present invention, the ratio of the tensile elongation in the longitudinal direction to the tensile elongation in the width direction of the film (tensile elongation in the longitudinal direction / tensile elongation in the width direction) is 0.6 to 1.5. It is preferable that When the ratio of the tensile elongation in the longitudinal direction to the tensile elongation in the width direction of the film is less than 0.6 or greater than 1.5, when the porous film is used as a base material for protective clothing, the porous film is anisotropic. There is a case where the water pressure resistance is lowered due to easy tearing in one direction at the time of work and detachment or high elongation in one direction. From the viewpoint of water pressure resistance, the ratio is more preferably 0.6 to 1.4, and even more preferably 0.7 to 1.3.
本発明の多孔性フィルムは、目付が5g/m2以上が好ましい。目付が5g/m2未満の場合、フィルムの伸度、たとえば、引張伸度が低くなり、本発明の多孔性フィルムを基材とした防護服の場合、作業時に多孔性フィルムが破膜し、耐水圧が低下し、水漏れが起こったり、本発明の多孔性フィルムを不織布と貼り合わせる加工での工程通過性が劣る場合がある。目付の上限は現実的には40g/m2となる。目付は、着心地と引張伸度の観点から、5~30g/m2が好ましく、5~20g/m2がより好ましく、8~15g/m2がさらに好ましい。
The basis weight of the porous film of the present invention is preferably 5 g / m 2 or more. When the basis weight is less than 5 g / m 2 , the elongation of the film, for example, the tensile elongation is low, and in the case of a protective garment based on the porous film of the present invention, the porous film breaks during work, The water pressure resistance is lowered, water leakage occurs, or the process passability in the process of bonding the porous film of the present invention to a nonwoven fabric may be inferior. The upper limit of the basis weight is actually 40 g / m 2 . Basis weight, from the viewpoint of tensile elongation and wear, preferably 5 ~ 30g / m 2, more preferably 5 ~ 20g / m 2, more preferably 8 ~ 15g / m 2.
本発明においては、上記した多孔性フィルムを用いて透湿防水シートを構成することが好ましい。また、本発明においては、この透湿防水シートと不織布などの繊維層との複合体を構成することもできる。本発明において好ましい複合体は、前記透湿防水シートと不織布との複合体である。本発明の複合体の目付は100g/m2以下が好ましく、50g/m2以下であることがより好ましく、45g/m2以下であることがさらに好ましい。透湿防水シートと繊維層(不織布)との複合体の防護服の場合、目付が50g/m2より大きいと服が重くなり、着衣快適性が低下する場合がある。特に、目付が100g/m2より大きいと、その傾向が一層顕著になる。目付の下限は複合体の強度の観点から25g/m2以上が好ましい。
In this invention, it is preferable to comprise a moisture-permeable waterproof sheet using the above-mentioned porous film. Moreover, in this invention, the composite_body | complex of fiber layers, such as this moisture-permeable waterproof sheet and a nonwoven fabric, can also be comprised. In the present invention, a preferable composite is a composite of the moisture permeable waterproof sheet and the nonwoven fabric. The basis weight of the composite of the present invention is preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 45 g / m 2 or less. In the case of a protective clothing composed of a composite of a moisture permeable waterproof sheet and a fiber layer (nonwoven fabric), if the basis weight is larger than 50 g / m 2 , the clothing becomes heavy and the comfort of clothing may be reduced. In particular, when the basis weight is larger than 100 g / m 2 , the tendency becomes more remarkable. The lower limit of the basis weight is preferably 25 g / m 2 or more from the viewpoint of the strength of the composite.
本発明の多孔性フィルムは、フィルム厚みが5μm以上であることが好ましい。厚みが5μm未満では加工時または使用時にフィルムが破断する場合がある。フィルム厚みは10μm以上であればより好ましく、10~50μmであればなお好ましい。
The porous film of the present invention preferably has a film thickness of 5 μm or more. If the thickness is less than 5 μm, the film may break during processing or use. The film thickness is more preferably 10 μm or more, and even more preferably 10 to 50 μm.
以下に本発明の多孔性フィルムの製造方法を具体的な一例をもとに説明する。なお、本発明の多孔性フィルムの製造方法はこれに限定されるものではない。
Hereinafter, the method for producing the porous film of the present invention will be described based on a specific example. In addition, the manufacturing method of the porous film of this invention is not limited to this.
2以上のポリプロピレン樹脂を原料として用いる場合、樹脂原料の混合方法としては、ドライブレンド、メルトブレンドなどあるが、本発明では使用するポリプロピレン樹脂の粘度が大きく異なることがあるため、ドライブレンドで原料の混合を行うとシート化した際に粘度の異なる樹脂がシート中に不均一に分散してしまい、シートの特性が不十分になる場合がある。本発明では樹脂原料の混合方法としては、メルトブレンドを採用するのが好ましい。メルトブレンドにて使用する押出機は1軸押出機、2軸押出機いずれでも良いが、高せん断にて混合できることと、混合比率が一定に制御しやすく、原料の均一性、樹脂劣化抑制、生産性の観点から2軸押出機で行うことが好ましい。また、分散状態を制御するために、2軸押出機で複数回溶融混練を行っても良い。
When two or more polypropylene resins are used as raw materials, there are dry blending, melt blending, etc. as a method for mixing the resin raw materials. However, in the present invention, the viscosity of the polypropylene resin used may be greatly different. When mixed, resins having different viscosities are dispersed unevenly in the sheet when formed into a sheet, and the sheet characteristics may be insufficient. In the present invention, it is preferable to employ melt blending as a method for mixing the resin raw materials. Extruders used in melt blending may be either single-screw extruders or twin-screw extruders, but they can be mixed at high shear, and the mixing ratio is easily controlled to be uniform, raw material uniformity, resin deterioration suppression, and production. It is preferable to carry out with a twin screw extruder from a viewpoint of property. Moreover, in order to control a dispersion state, you may melt-knead in multiple times with a twin-screw extruder.
ポリプロピレン樹脂として、MFR4g/10分のホモポリプロピレン樹脂96.5質量部、MFR1,000g/10分の高MFRポリプロピレン樹脂3質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(プロピレン組成物)を準備する。この際、溶融温度は280~310℃とすることが好ましい。
As polypropylene resin, 96.5 parts by mass of homopolypropylene resin with MFR 4 g / 10 min, 3 parts by mass of high MFR polypropylene resin with MFR 1,000 g / 10 min, and N, N′-dicyclohexyl-2,6-naphthalene as β crystal nucleating agent The raw material is supplied from the measuring hopper to the twin screw extruder so that 0.3 parts by mass of dicarboxamide and 0.2 parts by mass of the antioxidant are mixed at this ratio, and then melt-kneaded and discharged from the die in a strand shape. Then, it is cooled and solidified in a 25 ° C. water tank, and cut into chips to prepare a polypropylene raw material (propylene composition). At this time, the melting temperature is preferably 280 to 310 ° C.
続いて、本発明の多孔性フィルムの製膜方法について説明するが、以下の製膜方法は、上述のポリプロピレン原料以外の原料を用いたときにも適用することができる。
Subsequently, the film forming method of the porous film of the present invention will be described, but the following film forming method can also be applied when a raw material other than the above-mentioned polypropylene raw material is used.
ポリプロピレン原料を単軸押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸のキャストフィルムを得る。キャストドラムは、表面温度が105~130℃であることが、キャストフィルムのβ晶分率を高く制御する観点から好ましい。この際、特にキャストフィルムの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、キャストフィルム全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。
Supplied polypropylene raw material to a single screw extruder and melt extruded at 200-230 ° C. And after removing a foreign material, a modified | denatured polymer, etc. with the filter installed in the middle of the polymer pipe | tube, it discharges on a cast drum from T-die, and an unstretched cast film is obtained. The cast drum preferably has a surface temperature of 105 to 130 ° C. from the viewpoint of controlling the β crystal fraction of the cast film to be high. At this time, since the molding of the end portion of the cast film particularly affects the subsequent stretchability, it is preferable that the end portion is sprayed with spot air to be brought into close contact with the drum. Moreover, you may spray air on the whole surface using an air knife from the close_contact | adherence state on the drum of the whole cast film as needed.
次に、得られたキャストフィルムを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、透湿性、伸度、耐水圧の観点で逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。
Next, the obtained cast film is biaxially oriented to form pores in the film. As a biaxial orientation method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction. The simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method from the viewpoint of moisture permeability, elongation, and water pressure resistance, and in particular, stretching in the longitudinal direction and then stretching in the width direction. It is preferable.
具体的な延伸条件としては、まず、キャストフィルムを長手方向に延伸する温度に制御するとよい。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、90~140℃であることが好ましい。長手方向の延伸温度が90℃未満では、フィルムが破断したり、伸度が低下したり、耐水圧が低下する場合がある。長手方向の延伸温度が140℃を超えると、透湿性が低下する場合がある。長手方向の延伸温度は、より好ましくは110~135℃、特に好ましくは125~130℃である。長手方向の延伸倍率としては、3~7倍であることが好ましい。長手方向の延伸倍率が、3倍未満では透湿性が低下する場合がある。長手方向の延伸倍率を高くするほど透湿性は良化するが、7倍を超えて延伸すると、フィルムが破断したり、伸度が低下したり、耐水圧が低下する場合がある。透湿性、伸度、耐水圧の両立の観点から、長手方向の延伸倍率はより好ましくは4~7倍である。なお、このときの長手方向の延伸速度としては、200,000%/分以上であることが好ましく、250,000%/分以上であるとより好ましく、300,000%/分以上であるとさらに好ましい。延伸速度を速くすることで二軸延伸後の孔構造が3次元方向にネットワークを形成し、透湿性、耐水圧、伸度を両立させやすくなる。延伸速度の上限は、長手方向の延伸時におけるフィルム破れ(生産性)および透湿性の観点から、1,000,000%/分になる。
As specific stretching conditions, first, it is preferable to control the temperature at which the cast film is stretched in the longitudinal direction. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The stretching temperature in the longitudinal direction is preferably 90 to 140 ° C. If the stretching temperature in the longitudinal direction is less than 90 ° C., the film may break, the elongation may decrease, or the water pressure resistance may decrease. If the stretching temperature in the longitudinal direction exceeds 140 ° C., moisture permeability may be reduced. The stretching temperature in the longitudinal direction is more preferably 110 to 135 ° C, particularly preferably 125 to 130 ° C. The stretching ratio in the longitudinal direction is preferably 3 to 7 times. If the draw ratio in the longitudinal direction is less than 3, the moisture permeability may be lowered. The higher the stretching ratio in the longitudinal direction, the better the moisture permeability. However, stretching more than 7 times may cause the film to break, the elongation to decrease, or the water pressure resistance to decrease. From the viewpoint of coexistence of moisture permeability, elongation, and water pressure resistance, the draw ratio in the longitudinal direction is more preferably 4 to 7 times. The stretching speed in the longitudinal direction at this time is preferably 200,000% / min or more, more preferably 250,000% / min or more, and further 300,000% / min or more. preferable. By increasing the stretching speed, the pore structure after biaxial stretching forms a network in the three-dimensional direction, making it easy to achieve both moisture permeability, water pressure resistance, and elongation. The upper limit of the stretching speed is 1,000,000% / min from the viewpoint of film breakage (productivity) and moisture permeability during stretching in the longitudinal direction.
次に、テンター式延伸機にフィルム端部を把持させて導入し幅方向の延伸を行う。幅方向の延伸温度は、好ましくは130~155℃である。幅方向の延伸温度が、130℃未満ではフィルムが破断したり、伸度が低下したり、耐水圧が低下する場合がある。幅方向の延伸温度が、155℃を超えると透湿性が低下する場合がある。幅方向の延伸温度は、透湿性、伸度、耐水圧の両立の観点から、より好ましくは140~155℃である。幅方向の延伸倍率は4~15倍であることが好ましい。幅方向の延伸倍率が、4倍未満であると、透湿性が低下する場合がある。耐水圧、伸度の観点から、幅方向の延伸倍率は高倍が好ましいが、15倍を超えると、フィルムが破断し生産性が低下したり、透湿性が低下する場合がある。透湿性、伸度、耐水圧の両立の観点から、幅方向の延伸倍率はより好ましくは4~12倍、更に好ましくは6~12倍、特に好ましくは8~11倍である。なお、このときの幅方向の延伸速度としては、一般的には500~10,000%/分で行うが、透湿度、耐水圧、伸度の両立の観点から、1,500~7,000%/分が好ましく、2,000~5,000%/分であればより好ましい。なお、長手方向および幅方向の延伸速度は以下の式で算出することができる。
延伸速度[%/分]=延伸倍率[%]/(延伸区間長[m]/延伸区間を通過する速度[m/分])
なお、長手方向の延伸区間を通過する速度は以下の式で算出することができる。
延伸区間を通過する速度=(延伸前のロール周速+延伸後のロール周速)/2
また、幅方向の延伸区間を通過する速度は幅方向の延伸区間を通過する際のテンター式延伸機の速度になる。 Next, the end of the film is held and introduced into a tenter type stretching machine and stretched in the width direction. The stretching temperature in the width direction is preferably 130 to 155 ° C. When the stretching temperature in the width direction is less than 130 ° C., the film may break, the elongation may decrease, or the water pressure resistance may decrease. If the stretching temperature in the width direction exceeds 155 ° C., moisture permeability may decrease. The stretching temperature in the width direction is more preferably 140 to 155 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance. The draw ratio in the width direction is preferably 4 to 15 times. If the draw ratio in the width direction is less than 4, moisture permeability may be reduced. From the viewpoints of water pressure resistance and elongation, the draw ratio in the width direction is preferably high, but if it exceeds 15 times, the film may be broken and productivity may be lowered or moisture permeability may be lowered. From the viewpoint of coexistence of moisture permeability, elongation, and water pressure resistance, the stretching ratio in the width direction is more preferably 4 to 12 times, still more preferably 6 to 12 times, and particularly preferably 8 to 11 times. The stretching speed in the width direction at this time is generally 500 to 10,000% / min. From the viewpoint of achieving both moisture permeability, water pressure resistance and elongation, 1,500 to 7,000. % / Min is preferable, and 2,000 to 5,000% / min is more preferable. In addition, the extending | stretching speed | rate of a longitudinal direction and the width direction is computable with the following formula | equation.
Stretching speed [% / min] = stretching ratio [%] / (stretching section length [m] / speed passing through stretching section [m / min])
In addition, the speed | rate which passes through the extending | stretching area of a longitudinal direction can be calculated with the following formula | equation.
Speed passing through stretching section = (Roll peripheral speed before stretching + Roll peripheral speed after stretching) / 2
Further, the speed of passing through the stretching section in the width direction is the speed of the tenter type stretching machine when passing through the stretching section in the width direction.
延伸速度[%/分]=延伸倍率[%]/(延伸区間長[m]/延伸区間を通過する速度[m/分])
なお、長手方向の延伸区間を通過する速度は以下の式で算出することができる。
延伸区間を通過する速度=(延伸前のロール周速+延伸後のロール周速)/2
また、幅方向の延伸区間を通過する速度は幅方向の延伸区間を通過する際のテンター式延伸機の速度になる。 Next, the end of the film is held and introduced into a tenter type stretching machine and stretched in the width direction. The stretching temperature in the width direction is preferably 130 to 155 ° C. When the stretching temperature in the width direction is less than 130 ° C., the film may break, the elongation may decrease, or the water pressure resistance may decrease. If the stretching temperature in the width direction exceeds 155 ° C., moisture permeability may decrease. The stretching temperature in the width direction is more preferably 140 to 155 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance. The draw ratio in the width direction is preferably 4 to 15 times. If the draw ratio in the width direction is less than 4, moisture permeability may be reduced. From the viewpoints of water pressure resistance and elongation, the draw ratio in the width direction is preferably high, but if it exceeds 15 times, the film may be broken and productivity may be lowered or moisture permeability may be lowered. From the viewpoint of coexistence of moisture permeability, elongation, and water pressure resistance, the stretching ratio in the width direction is more preferably 4 to 12 times, still more preferably 6 to 12 times, and particularly preferably 8 to 11 times. The stretching speed in the width direction at this time is generally 500 to 10,000% / min. From the viewpoint of achieving both moisture permeability, water pressure resistance and elongation, 1,500 to 7,000. % / Min is preferable, and 2,000 to 5,000% / min is more preferable. In addition, the extending | stretching speed | rate of a longitudinal direction and the width direction is computable with the following formula | equation.
Stretching speed [% / min] = stretching ratio [%] / (stretching section length [m] / speed passing through stretching section [m / min])
In addition, the speed | rate which passes through the extending | stretching area of a longitudinal direction can be calculated with the following formula | equation.
Speed passing through stretching section = (Roll peripheral speed before stretching + Roll peripheral speed after stretching) / 2
Further, the speed of passing through the stretching section in the width direction is the speed of the tenter type stretching machine when passing through the stretching section in the width direction.
「長手方向の延伸倍率×幅方向の延伸倍率」(長手方向の延伸倍率に幅方向の延伸倍率を乗じた値。)としては、好ましくは20~90倍、より好ましくは30~90倍である。
The “longitudinal draw ratio × width draw ratio” (a value obtained by multiplying the draw ratio in the longitudinal direction by the draw ratio in the width direction) is preferably 20 to 90 times, more preferably 30 to 90 times. .
透湿性、伸度、耐水圧の制御の観点から、幅方向の延伸に続いて、テンター内で弛緩処理前熱処理、弛緩処理、弛緩処理後熱処理を、この順で施すことが好ましい。ここで弛緩処理前熱処理とは、幅方向の延伸後の幅のまま熱処理を施すことを指す。弛緩処理とは、テンターの幅を狭めてフィルムを弛緩させながら熱処理を施すことを指す。弛緩処理後熱処理とは、弛緩処理後の幅のまま熱処理を行うことを指す。また、弛緩処理前熱処理工程、弛緩処理工程、および弛緩処理後熱処理工程を「熱処理工程」と総称することがある。
From the viewpoint of controlling moisture permeability, elongation, and water pressure resistance, it is preferable to perform heat treatment before relaxation treatment, relaxation treatment, and heat treatment after relaxation treatment in this order in the tenter following stretching in the width direction. Here, the pre-relaxation heat treatment refers to performing heat treatment with the width after stretching in the width direction. Relaxation treatment refers to heat treatment while relaxing the film by narrowing the width of the tenter. The heat treatment after relaxation treatment refers to performing heat treatment with the width after the relaxation treatment. Further, the heat treatment step before the relaxation treatment, the relaxation treatment step, and the heat treatment step after the relaxation treatment may be collectively referred to as “heat treatment step”.
弛緩前の熱処理温度は、140~170℃であることが好ましい。弛緩前の熱処理温度が、140℃未満であると、伸度が低下したり、耐水圧が低下する場合がある。弛緩前の熱処理温度が、170℃を超えると、多孔性フィルム表面が溶融し透湿性が低下したり、さらに多孔性フィルムが幅方向に収縮し、破断してしまい、生産性が低下する場合がある。弛緩前の熱処理温度は、透湿性、伸度、耐水圧の両立の観点から150~168℃であればより好ましい。
The heat treatment temperature before relaxation is preferably 140 to 170 ° C. If the heat treatment temperature before relaxation is less than 140 ° C., the elongation may be lowered or the water pressure resistance may be lowered. If the heat treatment temperature before relaxation exceeds 170 ° C., the porous film surface melts and moisture permeability decreases, or the porous film shrinks in the width direction and breaks, which may reduce productivity. is there. The heat treatment temperature before relaxation is more preferably 150 to 168 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance.
弛緩前の熱処理時間は、伸度、耐水圧と生産性の両立の観点から0.1秒以上10秒以下であることが好ましく、3秒以上8秒以下であるとより好ましい。
The heat treatment time before relaxation is preferably 0.1 seconds or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less, from the viewpoint of achieving both elongation, water pressure resistance and productivity.
弛緩処理工程における、弛緩率は5~35%であることが好ましい。弛緩率が5%未満であると伸度が低下したり、耐水圧が低下したり、幅方向の幅方向の熱収縮率が大きくなる場合がある。弛緩率が35%を超えると透湿性が低下したり物性ムラが大きくなる場合がある。透湿性、伸度、耐水圧の両立の観点から、5~15%であるとより好ましい。なお、弛緩率は[(弛緩前の多孔性フィルムの幅-弛緩後の多孔性フィルムの幅)/(弛緩前の多孔性フィルムの幅)]で算出することができる。
In the relaxation treatment step, the relaxation rate is preferably 5 to 35%. If the relaxation rate is less than 5%, the elongation may decrease, the water pressure resistance may decrease, or the thermal contraction rate in the width direction in the width direction may increase. If the relaxation rate exceeds 35%, the moisture permeability may decrease or the physical property unevenness may increase. From the viewpoint of coexistence of moisture permeability, elongation, and water pressure resistance, it is more preferably 5 to 15%. The relaxation rate can be calculated by [(width of porous film before relaxation−width of porous film after relaxation) / (width of porous film before relaxation)].
弛緩処理工程における、弛緩温度(熱処理温度)は、155~170℃であることが好ましい。弛緩温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、伸度が低下したり、耐水圧が低下する場合がある。弛緩温度が、170℃を超えると、高温により孔周辺のポリマーが溶けて透湿性が低下する場合がある。弛緩温度は、透湿性、伸度、耐水圧の観点から、160~168℃であるとより好ましい。
In the relaxation treatment step, the relaxation temperature (heat treatment temperature) is preferably 155 to 170 ° C. When the relaxation temperature is lower than 155 ° C., the contraction stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, the elongation may be decreased, and the water pressure resistance may be decreased. When the relaxation temperature exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease. The relaxation temperature is more preferably 160 to 168 ° C. from the viewpoints of moisture permeability, elongation, and water pressure resistance.
弛緩速度は、100~1,000%/分であることが好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性に劣る場合がある。弛緩速度が1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、幅方向のムラが大きくなったり平面性低下を生じる場合がある。弛緩速度は、150~500%/分であることがより好ましい。
The relaxation rate is preferably 100 to 1,000% / min. When the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity. When the relaxation speed exceeds 1,000% / min, the speed at which the film contracts is slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and tears, the unevenness in the width direction increases, It may cause deterioration of sex. The relaxation rate is more preferably 150 to 500% / min.
弛緩後の熱処理温度は、155~170℃であることが好ましい。弛緩後の熱処理温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、伸度が低下したり、耐水圧が低下する場合がある。弛緩後の熱処理温度が170℃を超えると、高温により孔周辺のポリマーが溶けて透湿性が低下する場合がある。弛緩後の熱処理温度は、透湿性、伸度、耐水圧の観点から、160~168℃であるとより好ましい。
The heat treatment temperature after relaxation is preferably 155 to 170 ° C. When the heat treatment temperature after relaxation is less than 155 ° C., the contraction stress for relaxation becomes low, and the above-described high relaxation rate may not be achieved, the elongation may decrease, and the water pressure resistance may decrease. When the heat treatment temperature after relaxation exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease. The heat treatment temperature after relaxation is more preferably 160 to 168 ° C. from the viewpoints of moisture permeability, elongation, and water pressure resistance.
弛緩後の熱処理時間は、伸度、耐水圧と生産性の両立の観点から0.1秒以上10秒以下であることが好ましく、3秒以上8秒以下であるとより好ましい。
The heat treatment time after relaxation is preferably 0.1 second or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less from the viewpoint of achieving both elongation, water pressure resistance and productivity.
初期延伸後のフィルム(長手方向と幅方向にそれぞれ一回ずつ延伸された後のフィルム)は、続いて再び延伸(再延伸)を行ってもよい。再延伸は、熱処理工程前、熱処理工程後のどちらで行ってもよい。再延伸後に後述する熱処理を行う場合、再延伸前の熱処理工程を省略することができる。再延伸の方法としては、長手方向への再延伸、あるいは幅方向への再延伸を用いることができる。また、長手方向へ再延伸後、幅方向へさらに再延伸する方法、幅方向へ再延伸後、長手方向へさらに再延伸する方法などを用いることもできる。またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることもできる。
The film after initial stretching (the film after being stretched once each in the longitudinal direction and the width direction) may be subsequently stretched (re-stretched) again. Re-stretching may be performed either before or after the heat treatment step. When performing the heat processing mentioned later after redrawing, the heat treatment process before redrawing can be omitted. As a re-stretching method, re-stretching in the longitudinal direction or re-stretching in the width direction can be used. In addition, a method of re-stretching in the width direction after re-stretching in the longitudinal direction, a method of re-stretching in the longitudinal direction after re-stretching in the width direction, and the like can also be used. Alternatively, a simultaneous biaxial stretching method in which the longitudinal direction and the width direction of the film are stretched almost simultaneously can also be used.
具体的な再延伸条件としては、まず初期延伸後のフィルム(長手方向と幅方向にそれぞれ一回ずつ延伸された後のフィルム)を長手方向に再延伸可能な温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の再延伸温度としてはフィルム特性とその均一性の観点から、130℃以上が好ましく、140℃以上がより好ましい。長手方向の再延伸温度が130℃未満では、延伸応力が大きくなるため、フィルム破れの数が多くなる場合がある。長手方向の再延伸温度が高過ぎると、高温により孔周辺のポリマーが溶けて透湿度が低くなる場合があるため、170℃が上限である。長手方向への再延伸倍率は1.02~2.0倍であることが好ましく、より好ましくは1.1~1.7倍であり、さらに好ましくは1.1~1.4倍である。長手方向への再延伸倍率が1.02倍未満であると再延伸の効果が発現しない場合がある。長手方向への再延伸倍率が2.0倍を超えると、フィルムの長手方向の常温収縮量が大きくなり、多孔性フィルムをロールとして巻いた際に、巻き締まりが強くなり、平面性が低下する場合がある。
As specific re-stretching conditions, first, the film after initial stretching (the film after being stretched once each in the longitudinal direction and the width direction) is controlled to a temperature at which it can be re-stretched in the longitudinal direction. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The re-stretching temperature in the longitudinal direction is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher, from the viewpoint of film properties and uniformity. When the re-stretching temperature in the longitudinal direction is less than 130 ° C., the stretching stress increases, so the number of film breaks may increase. If the re-stretching temperature in the longitudinal direction is too high, the polymer around the pores may melt at a high temperature and the water vapor transmission rate may be lowered, so 170 ° C. is the upper limit. The redrawing ratio in the longitudinal direction is preferably 1.02 to 2.0 times, more preferably 1.1 to 1.7 times, and still more preferably 1.1 to 1.4 times. If the redrawing ratio in the longitudinal direction is less than 1.02, the redrawing effect may not be exhibited. When the re-stretch ratio in the longitudinal direction exceeds 2.0 times, the normal temperature shrinkage in the longitudinal direction of the film increases, and when the porous film is wound as a roll, the tightening becomes stronger and the flatness is lowered. There is a case.
長手方向に再延伸を行った場合は、再延伸に続いて、フィルムをテンター式延伸機にフィルム端部を把持させて導入し、幅方向への再延伸を行ってもよいし、幅方向への再延伸をせずテンター式延伸機を通過させて熱処理を施してもよい。
When re-stretching in the longitudinal direction, following re-stretching, the film may be introduced by holding the film end by a tenter-type stretching machine and re-stretching in the width direction, or in the width direction. Heat treatment may be performed by passing through a tenter type stretching machine without re-stretching.
幅方向の再延伸を行う場合は以下の条件が好ましい。幅方向の再延伸温度としてはフィルム特性とその均一性の観点から、130~170℃が好ましく、140~170℃がより好ましく、150~165℃が更に好ましい。幅方向の再延伸温度が140℃未満では、延伸応力が大きくなるため、フィルム破れの数が多くなる場合がある。幅方向の再延伸温度が170℃より高くなると、孔周辺のポリマーが溶けて透湿度が低くなる場合がある。幅方向への再延伸倍率は1.02~2.0倍であることが好ましく、より好ましくは1.05~1.5倍であり、さらに好ましくは1.05~1.3倍である。幅方向への再延伸倍率が1.0倍未満とは、幅方向に収縮させることであり、通常、延伸とは言わない。また、幅方向への再延伸倍率が2.0倍を超えると、フィルムの幅方向の常温収縮量が大きくなり、多孔性フィルムをロールとして巻いた際に、巻き締まりが強くなり、平面性が低下する場合がある。
The following conditions are preferred when re-stretching in the width direction. The re-stretching temperature in the width direction is preferably from 130 to 170 ° C., more preferably from 140 to 170 ° C., and still more preferably from 150 to 165 ° C. from the viewpoint of film characteristics and uniformity. If the re-stretching temperature in the width direction is less than 140 ° C., the stretching stress increases, so the number of film breaks may increase. If the re-stretching temperature in the width direction is higher than 170 ° C., the polymer around the pores may melt and the moisture permeability may be lowered. The redrawing ratio in the width direction is preferably 1.02 to 2.0 times, more preferably 1.05 to 1.5 times, and still more preferably 1.05 to 1.3 times. When the re-stretch ratio in the width direction is less than 1.0, it means contraction in the width direction and is not usually referred to as stretching. Moreover, when the re-stretch ratio in the width direction exceeds 2.0 times, the normal temperature shrinkage amount in the width direction of the film becomes large, and when the porous film is wound as a roll, the tightening becomes strong and the flatness is increased. May decrease.
幅方向の再延伸を行わず熱処理を行う場合、または長手方向や幅方向の再延伸後に熱処理を行う場合は以下の条件が好ましい。熱処理温度は145~175℃であることが好ましい。熱処理温度が145℃未満であると、伸度が低下したり、耐水圧が低下する場合がある。熱処理温度が175℃を超えると、多孔性フィルム表面が溶融し透湿性が低下したり、さらに多孔性フィルムが幅方向に収縮し、破断してしまい、生産性が低下する場合がある。熱処理温度は、透湿性、伸度、耐水圧の両立の観点から155~170℃であればより好ましい。熱処理時間は、0.1秒以上10秒以下であることが好ましい。
When the heat treatment is performed without re-stretching in the width direction, or when the heat treatment is performed after re-stretching in the longitudinal direction or the width direction, the following conditions are preferable. The heat treatment temperature is preferably 145 to 175 ° C. When the heat treatment temperature is lower than 145 ° C., the elongation may decrease or the water pressure resistance may decrease. When the heat treatment temperature exceeds 175 ° C., the porous film surface melts and moisture permeability decreases, and the porous film shrinks in the width direction and breaks, which may reduce productivity. The heat treatment temperature is more preferably 155 to 170 ° C. from the viewpoint of achieving both moisture permeability, elongation, and water pressure resistance. The heat treatment time is preferably from 0.1 seconds to 10 seconds.
テンター式延伸機による再延伸および熱処理を行わない場合は再延伸、ロール熱処理後に、ワインダーにて巻き取り多孔性フィルムを得ることができる。
When re-stretching and heat treatment by a tenter-type stretching machine are not performed, a wound porous film can be obtained with a winder after re-stretching and roll heat treatment.
本発明の多孔性フィルムは、透湿性、伸度、耐水圧に優れることから、透湿防水シートとして好適に用いることができ、防護服用途、カイロ用包材、おむつや生理用品、絆創膏、油吸着シート、土木建材用途、更には医療用途においても好適に用いることができる。また、本発明の多孔性フィルムおよびそれを用いてなる透湿防水シートは、加工での工程通過性に優れる。加えて、本発明の透湿防水シートと不織布との複合体は、低目付および透湿性に優れることから、防護服の基材や防護服として好適に用いることができる。本発明の防護服の基材や防護服は、着用した際に重くなく、また服内の蒸れを軽減する着衣快適性に優れ、かつ耐水圧に優れる。そのため、本発明の防護服の基材や防護服は、化学防護服のみではなく、医療用途にも好適に用いることができる。
Since the porous film of the present invention is excellent in moisture permeability, elongation and water pressure resistance, it can be suitably used as a moisture permeable waterproof sheet, for protective clothing, packaging materials for warmers, diapers, sanitary products, adhesive bandages, oil It can also be suitably used for adsorption sheets, civil engineering and building materials, and medical applications. Moreover, the porous film of this invention and a moisture-permeable waterproof sheet using the same are excellent in the process passage property in a process. In addition, since the composite of the moisture permeable waterproof sheet and the nonwoven fabric of the present invention is excellent in low basis weight and moisture permeability, it can be suitably used as a base material for protective clothing and protective clothing. The base material and the protective clothing of the protective clothing of the present invention are not heavy when worn, and are excellent in the comfort of clothing to reduce the stuffiness in the clothing, and excellent in water pressure resistance. Therefore, the base material and protective clothing of the protective clothing of the present invention can be suitably used not only for chemical protective clothing but also for medical use.
以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.
(1)β晶形成能
多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、40℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。 (1) β-crystal forming ability 5 mg of a porous film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min. The melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C. The melting of the α crystal is the melting peak of the α crystal, the melting peak of the α crystal is taken as the melting peak of the base, and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. When the heat of fusion of ΔHα and β crystals is ΔHβ, the value calculated by the following formula is β crystal forming ability. The heat of fusion was calibrated using indium.
多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、40℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。 (1) β-crystal forming ability 5 mg of a porous film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min. The melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C. The melting of the α crystal is the melting peak of the α crystal, the melting peak of the α crystal is taken as the melting peak of the base, and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. When the heat of fusion of ΔHα and β crystals is ΔHβ, the value calculated by the following formula is β crystal forming ability. The heat of fusion was calibrated using indium.
β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。 β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
In addition, the β crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the β crystal in the same manner from the melting peak observed in the first run.
なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。 β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
In addition, the β crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the β crystal in the same manner from the melting peak observed in the first run.
(2)耐水圧
JIS L 1092:2009 7.1.1 B法に基づき測定した。多孔性フィルムまたは複合体から約150mm×150mmの試験片を採取し、耐水度試験装置の表側に水があたるよう取り付け、シリンダに水を入れ、ピストンハンドルを回して1分間に100kPaの割合で水圧を加えて、試験片の裏側に3か所から水が出たときの水圧(kPa)を測定した。測定は5回行い、5回の平均値を耐水圧とした。 (2) Water pressure resistance Measured based on JIS L 1092: 2009 7.1.1 B method. Take a test piece of about 150mm x 150mm from the porous film or composite, attach it to the front side of the water resistance test equipment so that water hits it, put water into the cylinder, turn the piston handle and water pressure at a rate of 100 kPa per minute Was added, and the water pressure (kPa) when water came out from three places on the back side of the test piece was measured. The measurement was performed 5 times, and the average value of 5 times was taken as the water pressure resistance.
JIS L 1092:2009 7.1.1 B法に基づき測定した。多孔性フィルムまたは複合体から約150mm×150mmの試験片を採取し、耐水度試験装置の表側に水があたるよう取り付け、シリンダに水を入れ、ピストンハンドルを回して1分間に100kPaの割合で水圧を加えて、試験片の裏側に3か所から水が出たときの水圧(kPa)を測定した。測定は5回行い、5回の平均値を耐水圧とした。 (2) Water pressure resistance Measured based on JIS L 1092: 2009 7.1.1 B method. Take a test piece of about 150mm x 150mm from the porous film or composite, attach it to the front side of the water resistance test equipment so that water hits it, put water into the cylinder, turn the piston handle and water pressure at a rate of 100 kPa per minute Was added, and the water pressure (kPa) when water came out from three places on the back side of the test piece was measured. The measurement was performed 5 times, and the average value of 5 times was taken as the water pressure resistance.
なお、試験片1枚で10000mmH2O未満で破膜する場合は、試験片を2枚重ねて測定した。ただし、試験片を2枚重ねて測定する場合であっても、測定値を2で除する必要は無く、得られた測定値をそのまま用いる。
In addition, in the case where the film was broken at less than 10000 mmH 2 O with one test piece, the measurement was performed by stacking two test pieces. However, even when two test pieces are stacked and measured, it is not necessary to divide the measured value by 2, and the obtained measured value is used as it is.
(3)焼却後の灰分(JIS L 1013)
JIS L 1013:2010 8.25に基づき、多孔性フィルムまたは複合体の850℃で焼却後の灰分を測定した。 (3) Ash content after incineration (JIS L 1013)
Based on JIS L 1013: 2010 8.25, the ash content after incineration of the porous film or composite at 850 ° C. was measured.
JIS L 1013:2010 8.25に基づき、多孔性フィルムまたは複合体の850℃で焼却後の灰分を測定した。 (3) Ash content after incineration (JIS L 1013)
Based on JIS L 1013: 2010 8.25, the ash content after incineration of the porous film or composite at 850 ° C. was measured.
(4)透湿度
JIS L 1099:2012 7.1 A-1法に基づき、多孔性フィルムまたは複合体の透湿度を測定し、単位:g/m2・hで評価した。 (4) Moisture permeability The moisture permeability of the porous film or the composite was measured based on JIS L 1099: 2012 7.1 A-1 method, and evaluated in units of g / m 2 · h.
JIS L 1099:2012 7.1 A-1法に基づき、多孔性フィルムまたは複合体の透湿度を測定し、単位:g/m2・hで評価した。 (4) Moisture permeability The moisture permeability of the porous film or the composite was measured based on JIS L 1099: 2012 7.1 A-1 method, and evaluated in units of g / m 2 · h.
(5)メルトフローレート(MFR)
JIS K 7210:1995に準拠して測定した。試験温度および荷重については、JIS K 7210:1995の附属書AおよびBを参照した。例えば、ポリプロピレン樹脂のMFRは、条件M(230℃、2.16kg)で測定する。 (5) Melt flow rate (MFR)
It measured based on JISK7210: 1995. For the test temperature and load, refer to Annexes A and B of JIS K 7210: 1995. For example, the MFR of polypropylene resin is measured under condition M (230 ° C., 2.16 kg).
JIS K 7210:1995に準拠して測定した。試験温度および荷重については、JIS K 7210:1995の附属書AおよびBを参照した。例えば、ポリプロピレン樹脂のMFRは、条件M(230℃、2.16kg)で測定する。 (5) Melt flow rate (MFR)
It measured based on JISK7210: 1995. For the test temperature and load, refer to Annexes A and B of JIS K 7210: 1995. For example, the MFR of polypropylene resin is measured under condition M (230 ° C., 2.16 kg).
(6)引張伸度
(6-1)フィルムの長手方向の引張伸度
多孔性フィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。このとき、サンプルの長さ方向をフィルムの長手方向とした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期チャック間距離50mmとし、引張速度を300mm/分として、サンプルの長さ方向に引張試験を行った。サンプルが破断した時の伸度を測定した。なお、サンプルを5枚作成して、測定を5回行い、その平均値をフィルムの長手方向の引張伸度とした。 (6) Tensile elongation (6-1) Tensile elongation in the longitudinal direction of the film A porous film was cut into a rectangle having a length of 150 mm and a width of 10 mm as a sample. At this time, the length direction of the sample was the longitudinal direction of the film. Using a tensile tester (Orientec Tensilon UCT-100), the initial chuck distance was 50 mm, the tensile speed was 300 mm / min, and a tensile test was performed in the length direction of the sample. The elongation when the sample broke was measured. In addition, five samples were created, the measurement was performed 5 times, and the average value was taken as the tensile elongation in the longitudinal direction of the film.
(6-1)フィルムの長手方向の引張伸度
多孔性フィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。このとき、サンプルの長さ方向をフィルムの長手方向とした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期チャック間距離50mmとし、引張速度を300mm/分として、サンプルの長さ方向に引張試験を行った。サンプルが破断した時の伸度を測定した。なお、サンプルを5枚作成して、測定を5回行い、その平均値をフィルムの長手方向の引張伸度とした。 (6) Tensile elongation (6-1) Tensile elongation in the longitudinal direction of the film A porous film was cut into a rectangle having a length of 150 mm and a width of 10 mm as a sample. At this time, the length direction of the sample was the longitudinal direction of the film. Using a tensile tester (Orientec Tensilon UCT-100), the initial chuck distance was 50 mm, the tensile speed was 300 mm / min, and a tensile test was performed in the length direction of the sample. The elongation when the sample broke was measured. In addition, five samples were created, the measurement was performed 5 times, and the average value was taken as the tensile elongation in the longitudinal direction of the film.
(6-2)フィルムの幅方向の引張伸度
サンプルの長さ方向をフィルムの幅方向とする以外は、「フィルムの長手方向の引張伸度」の測定と同様の方法で伸度を測定した。なお、サンプルを5枚作成して、測定を5回行い、その平均値をフィルムの幅方向の引張伸度とした。 (6-2) Tensile elongation in the width direction of the film Except that the length direction of the sample was the width direction of the film, the elongation was measured by the same method as the measurement of “tensile elongation in the longitudinal direction of the film” . In addition, five samples were created, the measurement was performed 5 times, and the average value was taken as the tensile elongation in the width direction of the film.
サンプルの長さ方向をフィルムの幅方向とする以外は、「フィルムの長手方向の引張伸度」の測定と同様の方法で伸度を測定した。なお、サンプルを5枚作成して、測定を5回行い、その平均値をフィルムの幅方向の引張伸度とした。 (6-2) Tensile elongation in the width direction of the film Except that the length direction of the sample was the width direction of the film, the elongation was measured by the same method as the measurement of “tensile elongation in the longitudinal direction of the film” . In addition, five samples were created, the measurement was performed 5 times, and the average value was taken as the tensile elongation in the width direction of the film.
(7)フィルム厚み
ミツトヨ社製ライトマチックVL-50A(10.5mmφ超硬球面測定子、測定荷重0.06N)を用いて、多孔性フィルムの厚みを5箇所測定し、その平均値を当該フィルムの厚みとした。 (7) Film thickness Using a Mitsutoyo Lightmatic VL-50A (10.5 mmφ carbide spherical surface probe, measuring load 0.06 N), the thickness of the porous film was measured at five locations, and the average value was determined for the film. It was set as the thickness.
ミツトヨ社製ライトマチックVL-50A(10.5mmφ超硬球面測定子、測定荷重0.06N)を用いて、多孔性フィルムの厚みを5箇所測定し、その平均値を当該フィルムの厚みとした。 (7) Film thickness Using a Mitsutoyo Lightmatic VL-50A (10.5 mmφ carbide spherical surface probe, measuring load 0.06 N), the thickness of the porous film was measured at five locations, and the average value was determined for the film. It was set as the thickness.
(8)目付
多孔性フィルムまたは複合体を長手方向100mm×幅方向100mmの正方形に切り出しサンプルとした。分析用電子天秤((株)A&D製HR-202i)を用いて、室温23℃、相対湿度65%の雰囲気にて質量の測定を行った。測定を3回行い、平均値をそのフィルムまたは複合体の質量Wとし、目付は以下の式を用いて算出した。 (8) Weight per unit A porous film or composite was cut into a square of 100 mm in the longitudinal direction and 100 mm in the width direction to obtain a sample. Using an analytical electronic balance (HR-202i manufactured by A & D Co., Ltd.), the mass was measured in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%. The measurement was performed three times, the average value was defined as the mass W of the film or composite, and the basis weight was calculated using the following equation.
多孔性フィルムまたは複合体を長手方向100mm×幅方向100mmの正方形に切り出しサンプルとした。分析用電子天秤((株)A&D製HR-202i)を用いて、室温23℃、相対湿度65%の雰囲気にて質量の測定を行った。測定を3回行い、平均値をそのフィルムまたは複合体の質量Wとし、目付は以下の式を用いて算出した。 (8) Weight per unit A porous film or composite was cut into a square of 100 mm in the longitudinal direction and 100 mm in the width direction to obtain a sample. Using an analytical electronic balance (HR-202i manufactured by A & D Co., Ltd.), the mass was measured in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%. The measurement was performed three times, the average value was defined as the mass W of the film or composite, and the basis weight was calculated using the following equation.
目付(g/m2)=W/(0.1×0.1)。
Weight per unit area (g / m 2 ) = W / (0.1 × 0.1).
(9)多孔性フィルムの融点(℃)
多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。窒素雰囲気下で室温から260℃まで10℃/分で昇温させたときの最大融解吸熱ピーク温度を融点(Tm)とした。測定は各サンプル2回ずつ行い、その平均値で評価を行った。 (9) Melting point of porous film (° C)
A porous film of 5 mg was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). The maximum melting endothermic peak temperature when the temperature was raised from room temperature to 260 ° C. at 10 ° C./min under a nitrogen atmosphere was defined as the melting point (Tm). The measurement was performed twice for each sample, and the average value was evaluated.
多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。窒素雰囲気下で室温から260℃まで10℃/分で昇温させたときの最大融解吸熱ピーク温度を融点(Tm)とした。測定は各サンプル2回ずつ行い、その平均値で評価を行った。 (9) Melting point of porous film (° C)
A porous film of 5 mg was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). The maximum melting endothermic peak temperature when the temperature was raised from room temperature to 260 ° C. at 10 ° C./min under a nitrogen atmosphere was defined as the melting point (Tm). The measurement was performed twice for each sample, and the average value was evaluated.
(10)工程通過性
長さ50mの多孔性フィルムの両表面に目付20g/m2のポリプロピレン製不織布が積層されるように熱ラミネートを行い、複合体を得た。熱ラミネートの条件は、接着面積20%、ロール温度:(多孔性フィルムの融点-20)℃、ライン速度:5m/分である。 (10) Process passability Thermal lamination was performed so that a polypropylene nonwoven fabric having a weight per unit area of 20 g / m 2 was laminated on both surfaces of a 50 m long porous film to obtain a composite. The conditions for thermal lamination are 20% adhesion area, roll temperature: (melting point of porous film−20) ° C., and line speed: 5 m / min.
長さ50mの多孔性フィルムの両表面に目付20g/m2のポリプロピレン製不織布が積層されるように熱ラミネートを行い、複合体を得た。熱ラミネートの条件は、接着面積20%、ロール温度:(多孔性フィルムの融点-20)℃、ライン速度:5m/分である。 (10) Process passability Thermal lamination was performed so that a polypropylene nonwoven fabric having a weight per unit area of 20 g / m 2 was laminated on both surfaces of a 50 m long porous film to obtain a composite. The conditions for thermal lamination are 20% adhesion area, roll temperature: (melting point of porous film−20) ° C., and line speed: 5 m / min.
得られた複合体について、以下の基準にて工程通過性を評価した。
Best:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれもしわが入らず、複合体にしわがない。
Better:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれかでしわが入るものの、複合体にしわがない。
Bad:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれかでしわが入り、複合体にしわがある。 About the obtained composite_body | complex, the process passability was evaluated on the following references | standards.
Best: No wrinkles are formed in the conveyance process from unwinding to heat laminating, heat laminating, and from the heat laminating to winding, and the composite is not wrinkled.
Better: Wrinkles occur in any of the transporting process from unwinding to thermal laminating, during thermal laminating, and from thermal laminating to winding, but the composite is free from wrinkles.
Bad: Wrinkles occur in any of the unwinding to heat laminating conveyance process, the heat laminating, and the heat laminating to winding winding process, and the composite has wrinkles.
Best:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれもしわが入らず、複合体にしわがない。
Better:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれかでしわが入るものの、複合体にしわがない。
Bad:巻出しから熱ラミネートの搬送工程、熱ラミネート時、熱ラミネートから巻取りの搬送工程のいずれかでしわが入り、複合体にしわがある。 About the obtained composite_body | complex, the process passability was evaluated on the following references | standards.
Best: No wrinkles are formed in the conveyance process from unwinding to heat laminating, heat laminating, and from the heat laminating to winding, and the composite is not wrinkled.
Better: Wrinkles occur in any of the transporting process from unwinding to thermal laminating, during thermal laminating, and from thermal laminating to winding, but the composite is free from wrinkles.
Bad: Wrinkles occur in any of the unwinding to heat laminating conveyance process, the heat laminating, and the heat laminating to winding winding process, and the composite has wrinkles.
(11)着衣快適性(着用性)
(10)で得た複合体をLLサイズの型紙に合わせて切り出し、切り出した複合体の縫製部分をミシンにて縫製し、服を得た。 (11) Clothing comfort (wearability)
The composite obtained in (10) was cut out according to the LL size paper pattern, and the sewing part of the cut out composite was sewn with a sewing machine to obtain clothes.
(10)で得た複合体をLLサイズの型紙に合わせて切り出し、切り出した複合体の縫製部分をミシンにて縫製し、服を得た。 (11) Clothing comfort (wearability)
The composite obtained in (10) was cut out according to the LL size paper pattern, and the sewing part of the cut out composite was sewn with a sewing machine to obtain clothes.
夏場の外気温を想定した35℃、50%Rhに設定した恒温恒湿室に、被験者がシャツ1枚、作業ズボン1枚の上から作製した服を着用し入室した。被験者は、胸の中心付近に温湿度計をシャツの上から貼り付け、入室後の服内の湿度を測定した。これを3人の被験者に対して実施した。30分後の3人の平均値湿度が60%Rh以下の場合をGood、平均湿度差が60%Rhより高い場合をBadと評価した。
In the constant temperature and humidity chamber set to 35 ° C and 50% Rh assuming the outdoor temperature in summer, the subject wore a dress made from one shirt and one work pants. The subject attached a thermo-hygrometer near the center of the chest from the top of the shirt and measured the humidity in the clothes after entering the room. This was performed on three subjects. The case where the average humidity of three people after 30 minutes was 60% Rh or less was evaluated as Good, and the case where the average humidity difference was higher than 60% Rh was evaluated as Bad.
以下に実施例に基づいて本発明をより具体的に説明する。もちろん、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described more specifically based on examples. Of course, the present invention is not limited to these.
(実施例1)
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を96.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを3質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASFジャパン製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(I)を得た。 Example 1
As the polypropylene resin, 96.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., MFR = 7.5 g / 10 min, 3 parts by mass of Homopolypropylene S10CL manufactured by Prime Polymer Co., Ltd., MFR 1,000 g / 10 min, 0.3 parts by mass of N, N'-dicyclohexyl-2,6-naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), which is a β crystal nucleating agent, and BASF Japan, which is an antioxidant IRGANOX 1010 and IRGAFOS 168 are each fed with raw materials from a weighing hopper to a twin screw extruder so that 0.1 parts by mass are mixed at this ratio, melt kneaded at 302 ° C., discharged from a die in a strand shape, and 25 It was solidified by cooling in a water bath at 0 ° C. and cut into chips to obtain a polypropylene composition (I).
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を96.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを3質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASFジャパン製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(I)を得た。 Example 1
As the polypropylene resin, 96.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., MFR = 7.5 g / 10 min, 3 parts by mass of Homopolypropylene S10CL manufactured by Prime Polymer Co., Ltd., MFR 1,000 g / 10 min, 0.3 parts by mass of N, N'-dicyclohexyl-2,6-naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), which is a β crystal nucleating agent, and BASF Japan, which is an antioxidant IRGANOX 1010 and IRGAFOS 168 are each fed with raw materials from a weighing hopper to a twin screw extruder so that 0.1 parts by mass are mixed at this ratio, melt kneaded at 302 ° C., discharged from a die in a strand shape, and 25 It was solidified by cooling in a water bath at 0 ° C. and cut into chips to obtain a polypropylene composition (I).
得られたポリプロピレン組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、122℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸温度122℃、延伸速度380,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で3秒間予熱後、150℃で9.0倍に、延伸速度3,300%/分で幅方向に延伸した。
The obtained polypropylene composition (I) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 μm cut sintered filter, and the surface temperature is adjusted to 116 ° C. with a T-die. A cast film was obtained by discharging onto a controlled cast drum. Next, preheating was performed using a ceramic roll heated to 122 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching temperature of 122 ° C. and a stretching speed of 380,000% / min. Next, the end portion was introduced into a tenter type stretching machine with a clip, preheated at 150 ° C. for 3 seconds, then stretched 9.0 times at 150 ° C., and stretched in the width direction at a stretching rate of 3,300% / min.
続く熱処理工程で、延伸後のクリップ間距離(フィルム幅方向におけるクリップ間距離)に保ったまま150℃で3秒間熱処理し、更に164℃で弛緩率10%で弛緩処理を行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。続いて、155℃に加熱したセラミックロールを用いて予熱を行い、フィルム長手方向に1.2倍に、再延伸温度155℃で再延伸を行った後、150℃に加熱したセラミックロールを用いて5秒間熱処理を行い、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。
In the subsequent heat treatment process, heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching (distance between the clips in the film width direction), and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 10%. Heat treatment was performed at 164 ° C. for 5 seconds while keeping the distance. Subsequently, preheating is performed using a ceramic roll heated to 155 ° C., the film is re-stretched 1.2 times in the longitudinal direction of the film at a re-stretching temperature of 155 ° C., and then the ceramic roll heated to 150 ° C. is used. Heat treatment was performed for 5 seconds, and the porous film was wound around the core with a winder to a thickness of 500 m to obtain a porous film having a thickness of 20 μm.
(実施例2)
実施例1の延伸工程において125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸温度125℃、延伸速度390,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で3秒間予熱後、150℃で9.0倍に、延伸速度4,000%/分で延伸した以外は実施例1と同じ条件で厚み20μmの多孔性フィルムを得た。 (Example 2)
In the stretching process of Example 1, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching temperature of 125 ° C. and a stretching speed of 390,000% / min. Next, it was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 150 ° C. for 3 seconds, then stretched 9.0 times at 150 ° C., and stretched at a stretching speed of 4,000% / min. A porous film having a thickness of 20 μm was obtained under the same conditions as in 1.
実施例1の延伸工程において125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸温度125℃、延伸速度390,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で3秒間予熱後、150℃で9.0倍に、延伸速度4,000%/分で延伸した以外は実施例1と同じ条件で厚み20μmの多孔性フィルムを得た。 (Example 2)
In the stretching process of Example 1, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching temperature of 125 ° C. and a stretching speed of 390,000% / min. Next, it was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 150 ° C. for 3 seconds, then stretched 9.0 times at 150 ° C., and stretched at a stretching speed of 4,000% / min. A porous film having a thickness of 20 μm was obtained under the same conditions as in 1.
(実施例3)
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を94.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASFジャパン製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(II)を得た。 Example 3
As polypropylene resin, 94.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., MFR = 7.5 g / 10 min, 5 parts by mass of Homopolypropylene S10CL manufactured by Prime Polymer Co., Ltd., MFR 1,000 g / 10 min, 0.3 parts by mass of N, N'-dicyclohexyl-2,6-naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), which is a β crystal nucleating agent, and BASF Japan, which is an antioxidant IRGANOX 1010 and IRGAFOS 168 are each fed with raw materials from a weighing hopper to a twin screw extruder so that 0.1 parts by mass are mixed at this ratio, melt kneaded at 302 ° C., discharged from a die in a strand shape, and 25 It was solidified by cooling in a water bath at 0 ° C. and cut into chips to obtain a polypropylene composition (II).
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を94.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASFジャパン製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(II)を得た。 Example 3
As polypropylene resin, 94.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., MFR = 7.5 g / 10 min, 5 parts by mass of Homopolypropylene S10CL manufactured by Prime Polymer Co., Ltd., MFR 1,000 g / 10 min, 0.3 parts by mass of N, N'-dicyclohexyl-2,6-naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), which is a β crystal nucleating agent, and BASF Japan, which is an antioxidant IRGANOX 1010 and IRGAFOS 168 are each fed with raw materials from a weighing hopper to a twin screw extruder so that 0.1 parts by mass are mixed at this ratio, melt kneaded at 302 ° C., discharged from a die in a strand shape, and 25 It was solidified by cooling in a water bath at 0 ° C. and cut into chips to obtain a polypropylene composition (II).
得られたポリプロピレン組成物(II)を実施例1と同じ条件で厚み20μmの多孔性フィルムを得た。
A porous film having a thickness of 20 μm was obtained from the obtained polypropylene composition (II) under the same conditions as in Example 1.
(実施例4)
実施例1で得た多孔性フィルムをテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で幅方向に1.2倍延伸し、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み19μmの多孔性フィルムを得た。 Example 4
The porous film obtained in Example 1 was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and porous with a winder The porous film was wound around the core by 500 m to obtain a porous film having a thickness of 19 μm.
実施例1で得た多孔性フィルムをテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で幅方向に1.2倍延伸し、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み19μmの多孔性フィルムを得た。 Example 4
The porous film obtained in Example 1 was introduced into a tenter type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and porous with a winder The porous film was wound around the core by 500 m to obtain a porous film having a thickness of 19 μm.
(実施例5)
実施例1で得た多孔性フィルムをテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で幅方向に1.2倍延伸し、続いて、延伸後のクリップ間距離に保ったまま165℃で3秒間熱処理を行い、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み18μmの多孔性フィルムを得た。 (Example 5)
The porous film obtained in Example 1 was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and then While maintaining the distance between the clips after stretching, heat treatment was performed at 165 ° C. for 3 seconds, and the porous film was wound around the core with a winder by 500 m to obtain a porous film having a thickness of 18 μm.
実施例1で得た多孔性フィルムをテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で幅方向に1.2倍延伸し、続いて、延伸後のクリップ間距離に保ったまま165℃で3秒間熱処理を行い、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み18μmの多孔性フィルムを得た。 (Example 5)
The porous film obtained in Example 1 was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 160 ° C. for 3 seconds, stretched 1.2 times in the width direction at 160 ° C., and then While maintaining the distance between the clips after stretching, heat treatment was performed at 165 ° C. for 3 seconds, and the porous film was wound around the core with a winder by 500 m to obtain a porous film having a thickness of 18 μm.
(実施例6)
実施例1に記載の樹脂原料(ポリプロピレン組成物(I)を用い、実施例1に記載のキャスト条件にてキャストフィルムを得た。ついで、130℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に延伸温度130℃にて、4.5倍に、延伸速度360,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で3秒間予熱後、150℃で5.0倍に、延伸速度3,600%/分で延伸した。 (Example 6)
A cast film was obtained using the resin raw material (polypropylene composition (I) described in Example 1 under the casting conditions described in Example 1. The film was then preheated using a ceramic roll heated to 130 ° C. In the longitudinal direction, the film was stretched 4.5 times at a stretching temperature of 130 ° C. at a stretching speed of 360,000% / min. After preheating at 3 ° C. for 3 seconds, the film was stretched 5.0 times at 150 ° C. at a stretching speed of 3,600% / min.
実施例1に記載の樹脂原料(ポリプロピレン組成物(I)を用い、実施例1に記載のキャスト条件にてキャストフィルムを得た。ついで、130℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に延伸温度130℃にて、4.5倍に、延伸速度360,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で3秒間予熱後、150℃で5.0倍に、延伸速度3,600%/分で延伸した。 (Example 6)
A cast film was obtained using the resin raw material (polypropylene composition (I) described in Example 1 under the casting conditions described in Example 1. The film was then preheated using a ceramic roll heated to 130 ° C. In the longitudinal direction, the film was stretched 4.5 times at a stretching temperature of 130 ° C. at a stretching speed of 360,000% / min. After preheating at 3 ° C. for 3 seconds, the film was stretched 5.0 times at 150 ° C. at a stretching speed of 3,600% / min.
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、更に164℃で弛緩率15%で弛緩処理を行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。続いて、155℃に加熱したセラミックロールを用いて予熱を行い、フィルム長手方向に1.1倍に、再延伸温度155℃で再延伸を行った後、150℃に加熱したセラミックロールを用いて5秒間熱処理を行い、テンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で1.1倍に延伸し、続いて、延伸後のクリップ間距離に保ったまま165℃で3秒間熱処理を行い、厚み20μmの多孔性フィルムを得た。
In the subsequent heat treatment step, heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 15%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds. Subsequently, preheating is performed using a ceramic roll heated to 155 ° C., and the film is re-stretched 1.1 times in the longitudinal direction of the film at a re-stretching temperature of 155 ° C., and then the ceramic roll heated to 150 ° C. is used. Heat treated for 5 seconds, introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 160 ° C for 3 seconds, stretched 1.1 times at 160 ° C, and then the distance between the clips after stretching While being maintained at 165 ° C., heat treatment was performed at 165 ° C. for 3 seconds to obtain a porous film having a thickness of 20 μm.
(比較例1)
高密度ポリエチレン粉末(“ハイゼックス”340M、三井化学(株)製、)40質量部と、ポリエチレンワックス(“ハイワックス”110P、三井化学(株)製)30質量部と、炭酸カルシウム(商品名:“スターピゴット”15A、白石カルシウム(株)製、平均粒子径0.15μm)30質量部を混合した組成物を二軸押出機に供給して200℃で溶融混合した後、Tダイ口金内を通してシート状に押出成形し、表面温度30℃のキャストドラム上に密着させ、非ドラム面側より20℃の冷風を吹き付けてキャストフィルムを作製した。次に、該キャストフィルムを125℃に加熱保持されたオーブンに導いて予熱後、方向に延伸速度30,000%/分で3倍延伸し20℃のロールで冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、120℃に加熱した雰囲気中で幅方向に延伸速度500%/分で5倍延伸して、厚さ20μmの多孔性ポリエチレンフィルムを得た。 (Comparative Example 1)
40 parts by mass of high-density polyethylene powder (“Hi-Zex” 340M, manufactured by Mitsui Chemicals, Inc.), 30 parts by mass of polyethylene wax (“High Wax” 110P, manufactured by Mitsui Chemicals, Inc.), and calcium carbonate (trade name: A composition in which 30 parts by weight of “Star Piggot” 15A, manufactured by Shiraishi Calcium Co., Ltd., average particle size of 0.15 μm) was supplied to a twin-screw extruder, melted and mixed at 200 ° C., and then passed through the T die die. The film was extruded into a sheet shape, closely contacted on a cast drum having a surface temperature of 30 ° C., and 20 ° C. cold air was blown from the non-drum surface side to prepare a cast film. Next, the cast film was introduced into an oven heated and held at 125 ° C., preheated, stretched 3 times in the direction at a stretching rate of 30,000% / min, and cooled with a roll at 20 ° C. Subsequently, both ends of the film stretched in the longitudinal direction are guided to a tenter while being gripped by clips, and stretched 5 times in the width direction at a stretching rate of 500% / min in an atmosphere heated to 120 ° C. to obtain a porous film having a thickness of 20 μm. A polyethylene film was obtained.
高密度ポリエチレン粉末(“ハイゼックス”340M、三井化学(株)製、)40質量部と、ポリエチレンワックス(“ハイワックス”110P、三井化学(株)製)30質量部と、炭酸カルシウム(商品名:“スターピゴット”15A、白石カルシウム(株)製、平均粒子径0.15μm)30質量部を混合した組成物を二軸押出機に供給して200℃で溶融混合した後、Tダイ口金内を通してシート状に押出成形し、表面温度30℃のキャストドラム上に密着させ、非ドラム面側より20℃の冷風を吹き付けてキャストフィルムを作製した。次に、該キャストフィルムを125℃に加熱保持されたオーブンに導いて予熱後、方向に延伸速度30,000%/分で3倍延伸し20℃のロールで冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、120℃に加熱した雰囲気中で幅方向に延伸速度500%/分で5倍延伸して、厚さ20μmの多孔性ポリエチレンフィルムを得た。 (Comparative Example 1)
40 parts by mass of high-density polyethylene powder (“Hi-Zex” 340M, manufactured by Mitsui Chemicals, Inc.), 30 parts by mass of polyethylene wax (“High Wax” 110P, manufactured by Mitsui Chemicals, Inc.), and calcium carbonate (trade name: A composition in which 30 parts by weight of “Star Piggot” 15A, manufactured by Shiraishi Calcium Co., Ltd., average particle size of 0.15 μm) was supplied to a twin-screw extruder, melted and mixed at 200 ° C., and then passed through the T die die. The film was extruded into a sheet shape, closely contacted on a cast drum having a surface temperature of 30 ° C., and 20 ° C. cold air was blown from the non-drum surface side to prepare a cast film. Next, the cast film was introduced into an oven heated and held at 125 ° C., preheated, stretched 3 times in the direction at a stretching rate of 30,000% / min, and cooled with a roll at 20 ° C. Subsequently, both ends of the film stretched in the longitudinal direction are guided to a tenter while being gripped by clips, and stretched 5 times in the width direction at a stretching rate of 500% / min in an atmosphere heated to 120 ° C. to obtain a porous film having a thickness of 20 μm. A polyethylene film was obtained.
(比較例2)
特開2006-28495号公報の実施例1記載の条件に準じて作製した。ポリプロピレンフィルムの樹脂組成として、融解温度が165℃のポリプロピレン(住友化学(株)製、WF836 DG-3、MFR:7g/10分)50重量%と、β晶核剤含有ポリプロピレンのSUNOCO社製“Bepol”(タイプ:B022-SP)50重量%を添加混合し、二軸押出機に供給して300℃で溶融混合した後、ガット状に押出し、10℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加ポリプロピレンのβ晶比率は72%であった。次に、該β晶核剤添加ポリプロピレンを300℃に加熱された押出機に供給して溶融し、Tダイ口金内を通してシート状に押出成形し、表面温度125℃に加熱されたキャストドラム上に密着させ、非ドラム面側より120℃の熱風を吹き付けてキャストフィルムを作製した。次に、該キャストフィルムを125℃に加熱保持されたオーブンに導いて予熱後、長手方向に5倍に、延伸速度100,000%/分で延伸し、120℃のロールで冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、130℃に加熱した雰囲気中で幅方向に延伸速度1,000%/分で10倍延伸後(長手方向の延伸倍率×幅方向の延伸倍率=50倍)、引き続き微多孔ポリプロピレンフィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて155℃で幅方向3%の弛緩処理を行い、均一に徐冷後、室温まで冷却した。その後、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。 (Comparative Example 2)
It was produced according to the conditions described in Example 1 of JP-A-2006-28495. As a resin composition of the polypropylene film, a polypropylene having a melting temperature of 165 ° C. (manufactured by Sumitomo Chemical Co., Ltd., WF836 DG-3, MFR: 7 g / 10 min) and 50 wt% of a polypropylene containing a β crystal nucleating agent manufactured by SUNOCO Bepol ”(type: B022-SP) 50% by weight is added and mixed, fed to a twin screw extruder, melted and mixed at 300 ° C., extruded into a gut shape, cooled through a 10 ° C. water bath, and chip cutter After cutting to 3 mm length, it was dried at 100 ° C. for 2 hours. The β crystal ratio of the β crystal nucleating agent-added polypropylene was 72%. Next, the β crystal nucleating agent-added polypropylene is supplied to an extruder heated to 300 ° C., melted, extruded into a sheet through a T die die, and placed on a cast drum heated to a surface temperature of 125 ° C. The cast film was produced by intimately adhering and blowing hot air at 120 ° C. from the non-drum surface side. Next, the cast film was introduced into an oven heated and maintained at 125 ° C., preheated, stretched 5 times in the longitudinal direction at a stretching rate of 100,000% / min, and cooled with a roll at 120 ° C. Subsequently, the film stretched in the longitudinal direction is guided to a tenter while gripping both ends with a clip, and stretched 10 times in the width direction at a stretching rate of 1,000% / min in an atmosphere heated to 130 ° C. (stretching in the longitudinal direction) (Magnification × stretch ratio in the width direction = 50 times), followed by a relaxation treatment of 3% in the width direction at 155 ° C. in a tenter to complete the crystal orientation of the microporous polypropylene film and to impart flatness and dimensional stability. And uniformly cooled and then cooled to room temperature. Thereafter, the porous film was wound around the core by 500 m with a winder to obtain a porous film having a thickness of 20 μm.
特開2006-28495号公報の実施例1記載の条件に準じて作製した。ポリプロピレンフィルムの樹脂組成として、融解温度が165℃のポリプロピレン(住友化学(株)製、WF836 DG-3、MFR:7g/10分)50重量%と、β晶核剤含有ポリプロピレンのSUNOCO社製“Bepol”(タイプ:B022-SP)50重量%を添加混合し、二軸押出機に供給して300℃で溶融混合した後、ガット状に押出し、10℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加ポリプロピレンのβ晶比率は72%であった。次に、該β晶核剤添加ポリプロピレンを300℃に加熱された押出機に供給して溶融し、Tダイ口金内を通してシート状に押出成形し、表面温度125℃に加熱されたキャストドラム上に密着させ、非ドラム面側より120℃の熱風を吹き付けてキャストフィルムを作製した。次に、該キャストフィルムを125℃に加熱保持されたオーブンに導いて予熱後、長手方向に5倍に、延伸速度100,000%/分で延伸し、120℃のロールで冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、130℃に加熱した雰囲気中で幅方向に延伸速度1,000%/分で10倍延伸後(長手方向の延伸倍率×幅方向の延伸倍率=50倍)、引き続き微多孔ポリプロピレンフィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて155℃で幅方向3%の弛緩処理を行い、均一に徐冷後、室温まで冷却した。その後、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。 (Comparative Example 2)
It was produced according to the conditions described in Example 1 of JP-A-2006-28495. As a resin composition of the polypropylene film, a polypropylene having a melting temperature of 165 ° C. (manufactured by Sumitomo Chemical Co., Ltd., WF836 DG-3, MFR: 7 g / 10 min) and 50 wt% of a polypropylene containing a β crystal nucleating agent manufactured by SUNOCO Bepol ”(type: B022-SP) 50% by weight is added and mixed, fed to a twin screw extruder, melted and mixed at 300 ° C., extruded into a gut shape, cooled through a 10 ° C. water bath, and chip cutter After cutting to 3 mm length, it was dried at 100 ° C. for 2 hours. The β crystal ratio of the β crystal nucleating agent-added polypropylene was 72%. Next, the β crystal nucleating agent-added polypropylene is supplied to an extruder heated to 300 ° C., melted, extruded into a sheet through a T die die, and placed on a cast drum heated to a surface temperature of 125 ° C. The cast film was produced by intimately adhering and blowing hot air at 120 ° C. from the non-drum surface side. Next, the cast film was introduced into an oven heated and maintained at 125 ° C., preheated, stretched 5 times in the longitudinal direction at a stretching rate of 100,000% / min, and cooled with a roll at 120 ° C. Subsequently, the film stretched in the longitudinal direction is guided to a tenter while gripping both ends with a clip, and stretched 10 times in the width direction at a stretching rate of 1,000% / min in an atmosphere heated to 130 ° C. (stretching in the longitudinal direction) (Magnification × stretch ratio in the width direction = 50 times), followed by a relaxation treatment of 3% in the width direction at 155 ° C. in a tenter to complete the crystal orientation of the microporous polypropylene film and to impart flatness and dimensional stability. And uniformly cooled and then cooled to room temperature. Thereafter, the porous film was wound around the core by 500 m with a winder to obtain a porous film having a thickness of 20 μm.
(比較例3)
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(III)を得た。 (Comparative Example 3)
As the polypropylene resin, 99.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide as a β crystal nucleating agent (Nippon Rika Co., Ltd., NU-100) 0.3 parts by mass, and BASF IRGANOX 1010 and IRGAFOS 168, which are antioxidants, are mixed at a ratio of 0.1 parts by mass. The raw material is fed to the twin screw extruder, melt kneaded at 302 ° C., discharged from the die into strands, cooled and solidified in a 25 ° C. water bath, cut into chips, and the polypropylene composition (III) is obtained. Obtained.
ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、302℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(III)を得た。 (Comparative Example 3)
As the polypropylene resin, 99.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide as a β crystal nucleating agent (Nippon Rika Co., Ltd., NU-100) 0.3 parts by mass, and BASF IRGANOX 1010 and IRGAFOS 168, which are antioxidants, are mixed at a ratio of 0.1 parts by mass. The raw material is fed to the twin screw extruder, melt kneaded at 302 ° C., discharged from the die into strands, cooled and solidified in a 25 ° C. water bath, cut into chips, and the polypropylene composition (III) is obtained. Obtained.
得られたポリプロピレン組成物(III)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、122℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸速度150,000%/分で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、150℃で9.0倍に、延伸速度3,300%/分で延伸した。
The obtained polypropylene composition (III) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 μm cut sintered filter, and the surface temperature is adjusted to 116 ° C. with a T-die. A cast film was obtained by discharging onto a controlled cast drum. Next, preheating was performed using a ceramic roll heated to 122 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching speed of 150,000% / min. Next, the end portion was introduced into a tenter type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 150 ° C., and stretched at a stretching rate of 3,300% / min.
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、更に164℃で弛緩率15%で弛緩処理を行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
In the subsequent heat treatment step, heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 15%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
その後、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。
Thereafter, the porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 μm.
(比較例4)
ポリプロピレン組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、135℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に4倍に、延伸速度450,000%/分延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、155℃で9.0倍に、延伸速度3,300%/分で延伸した。 (Comparative Example 4)
The polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 μm cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die. The film was discharged onto a drum to obtain a cast film. Next, preheating was performed using a ceramic roll heated to 135 ° C., and the film was stretched 4 times in the longitudinal direction of the film at a stretching speed of 450,000% / min. Next, the end portion was introduced into a tenter type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching rate of 3,300% / min.
ポリプロピレン組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、135℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に4倍に、延伸速度450,000%/分延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、155℃で9.0倍に、延伸速度3,300%/分で延伸した。 (Comparative Example 4)
The polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 μm cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die. The film was discharged onto a drum to obtain a cast film. Next, preheating was performed using a ceramic roll heated to 135 ° C., and the film was stretched 4 times in the longitudinal direction of the film at a stretching speed of 450,000% / min. Next, the end portion was introduced into a tenter type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching rate of 3,300% / min.
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、更に164℃で弛緩率20%で弛緩処理を行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
In the subsequent heat treatment step, heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 20%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
その後、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。
Thereafter, the porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 μm.
(比較例5)
ポリプロピレン組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行い、フィルムの長手方向に5倍に、延伸温度125℃、延伸速度400,000%/分の条件にて、延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、155℃で9.0倍に、延伸速度8,500%/分で延伸した。 (Comparative Example 5)
The polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 μm cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die. The film was discharged onto a drum to obtain a cast film. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film under conditions of a stretching temperature of 125 ° C. and a stretching speed of 400,000% / min. Next, the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching speed of 8,500% / min.
ポリプロピレン組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて116℃に表面温度を制御したキャストドラムに吐出してキャストフィルムを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行い、フィルムの長手方向に5倍に、延伸温度125℃、延伸速度400,000%/分の条件にて、延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、155℃で9.0倍に、延伸速度8,500%/分で延伸した。 (Comparative Example 5)
The polypropylene composition (I) was supplied to a single screw melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 μm cut sintered filter, and the surface temperature was controlled to 116 ° C. with a T-die. The film was discharged onto a drum to obtain a cast film. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film under conditions of a stretching temperature of 125 ° C. and a stretching speed of 400,000% / min. Next, the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, stretched 9.0 times at 155 ° C., and stretched at a stretching speed of 8,500% / min.
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、更に164℃で弛緩率10%で弛緩処理を行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
In the subsequent heat treatment step, heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation treatment was performed at 164 ° C. with a relaxation rate of 10%, and the distance between the clips after relaxation was maintained at 164 ° C. Heat treatment was performed for 5 seconds.
その後、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。
Thereafter, the porous film was wound around the core by a winder for 500 m to obtain a porous film having a thickness of 20 μm.
本発明の要件を満足する実施例の多孔性フィルムは透湿度、耐水圧、伸度に優れた。また、実施例の多孔性フィルムは、着用した際の服内の蒸れを軽減し着衣快適性に優れ、焼却後の灰分の少ない透湿防水シートおよび防護服として好適に用いることが可能であった。一方、比較例の多孔性フィルムは、透湿性、伸度、耐水圧、焼却後の灰分の両立が不十分であった。そのため、透湿防水シートおよび防護服として不十分であった。
The porous films of Examples satisfying the requirements of the present invention were excellent in moisture permeability, water pressure resistance, and elongation. In addition, the porous films of the examples were able to be suitably used as moisture permeable waterproof sheets and protective clothing with reduced ash content after incineration by reducing the stuffiness in the clothes when worn. . On the other hand, the porous film of the comparative example had insufficient moisture permeability, elongation, water pressure resistance, and ash content after incineration. Therefore, it was insufficient as a moisture-permeable waterproof sheet and protective clothing.
(参考例101)
表面をフッ素樹脂にてコーティングした柄癖が見えないように調整した網目柄の熱プレスロールと受けロールを用い、目付20g/m2のポリプロピレン製不織布(スパンボンド1)、と実施例1の多孔性フィルムとを以下の順に接着加工した。 (Reference Example 101)
A nonwoven fabric made of polypropylene (spunbond 1) having a basis weight of 20 g / m 2 , and a porous material of Example 1, using a mesh-patterned hot press roll and a receiving roll adjusted so that the handle having a surface coated with a fluororesin cannot be seen. The adhesive film was bonded in the following order.
表面をフッ素樹脂にてコーティングした柄癖が見えないように調整した網目柄の熱プレスロールと受けロールを用い、目付20g/m2のポリプロピレン製不織布(スパンボンド1)、と実施例1の多孔性フィルムとを以下の順に接着加工した。 (Reference Example 101)
A nonwoven fabric made of polypropylene (spunbond 1) having a basis weight of 20 g / m 2 , and a porous material of Example 1, using a mesh-patterned hot press roll and a receiving roll adjusted so that the handle having a surface coated with a fluororesin cannot be seen. The adhesive film was bonded in the following order.
スパンボンド1/実施例1の多孔性フィルム/スパンボンド1の3層構成で、網目柄の熱プレスロール温度:(多孔性フィルムの融点-20)℃、受けロール温度:(多孔性フィルムの融点-20)℃、ロール圧2MPaで、接着加工を行い、接着面積が10%の複合体を得た。
Spunbond 1 / porous film of Example 1 / spunbond 1 in a three-layer structure, networked hot press roll temperature: (melting point of porous film−20) ° C., receiving roll temperature: (melting point of porous film -20) Bonding was performed at a temperature of 2 ° C. and a roll pressure of 2 MPa to obtain a composite having a bonding area of 10%.
なお、網目柄の熱プレスロールは、接着加工後も透湿性を発現するように接着部分以外はロール面が複合体を構成する多孔性フィルムおよびスパンボンドに触れない網目柄の凹凸高さ3mmのロールを用いた。
The network pattern hot press roll has a mesh pattern height of 3 mm that does not touch the porous film and the spunbond of which the roll surface other than the bonded part forms a composite so as to exhibit moisture permeability even after the bonding process. A roll was used.
(参考例201)
多孔性フィルムとして、比較例1にて得られた多孔性フィルムを用いた以外は、参考例101と同様の方法にて、接着面積が10%の複合体を得た。 (Reference Example 201)
A composite having an adhesion area of 10% was obtained in the same manner as in Reference Example 101 except that the porous film obtained in Comparative Example 1 was used as the porous film.
多孔性フィルムとして、比較例1にて得られた多孔性フィルムを用いた以外は、参考例101と同様の方法にて、接着面積が10%の複合体を得た。 (Reference Example 201)
A composite having an adhesion area of 10% was obtained in the same manner as in Reference Example 101 except that the porous film obtained in Comparative Example 1 was used as the porous film.
本発明の要件を満足する実施例1の多孔性フィルムを用いた参考例101の複合体は透湿度、耐水圧に優れた。また、参考例101は、重くなく、焼却後の灰分が少なかった。一方、比較例1の多孔性フィルムを用いた参考例201の複合体は、透湿性、耐水圧が不十分であった。また、参考例201は、重く、焼却後の灰分が多く残った。
The composite of Reference Example 101 using the porous film of Example 1 that satisfies the requirements of the present invention was excellent in moisture permeability and water pressure resistance. Further, Reference Example 101 was not heavy and had little ash after incineration. On the other hand, the composite of Reference Example 201 using the porous film of Comparative Example 1 was insufficient in moisture permeability and water pressure resistance. In addition, Reference Example 201 was heavy and a large amount of ash remained after incineration.
Claims (8)
- 透湿度が250g/m2・h以上であり、フィルムの長手方向と幅方向の引張伸度の和が100~500%であり、耐水圧が4,500mmH2O以上であり、かつ温度850℃で焼却後の灰分(JIS L 1013)が0.5質量%以下である多孔性フィルム。 The moisture permeability is 250 g / m 2 · h or more, the sum of the tensile elongation in the longitudinal direction and the width direction of the film is 100 to 500%, the water pressure resistance is 4,500 mmH 2 O or more, and the temperature is 850 ° C. A porous film having an ash content (JIS L 1013) after incineration of 0.5% by mass or less.
- フィルムの(長手方向/幅方向)の引張伸度比が0.6~1.5である、請求項1に記載の多孔性フィルム。 2. The porous film according to claim 1, wherein a tensile elongation ratio of the film (longitudinal direction / width direction) is 0.6 to 1.5.
- ポリオレフィン樹脂を含む、請求項1または2に記載の多孔性フィルム。 The porous film according to claim 1 or 2, comprising a polyolefin resin.
- ポリオレフィン樹脂がポリプロピレンである、請求項3に記載の多孔性フィルム。 The porous film according to claim 3, wherein the polyolefin resin is polypropylene.
- 請求項1~4のいずれかに記載の多孔性フィルムを用いた透湿防水シート。 A moisture-permeable waterproof sheet using the porous film according to any one of claims 1 to 4.
- 請求項5に記載の透湿防水シートと不織布との複合体。 A composite of the moisture-permeable waterproof sheet according to claim 5 and a nonwoven fabric.
- 目付が50g/m2以下である、請求項6に記載の複合体。 The composite according to claim 6, wherein the basis weight is 50 g / m 2 or less.
- 請求項6または7に記載の複合体を用いた防護服。
Protective clothing using the composite according to claim 6 or 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015523732A JPWO2015115289A1 (en) | 2014-01-28 | 2015-01-22 | Porous film, moisture permeable tarpaulin, composite and protective clothing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014013050 | 2014-01-28 | ||
JP2014-013050 | 2014-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115289A1 true WO2015115289A1 (en) | 2015-08-06 |
Family
ID=53756865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051619 WO2015115289A1 (en) | 2014-01-28 | 2015-01-22 | Porous film, moisture-permeable waterproof sheet, complex, and protective clothing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015115289A1 (en) |
WO (1) | WO2015115289A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016102202A (en) * | 2014-11-12 | 2016-06-02 | 東レ株式会社 | Porous film, moisture-permeable waterproof sheet, complex and protective clothing |
JP2018144490A (en) * | 2017-03-02 | 2018-09-20 | 三菱ケミカル株式会社 | Laminated film, laminate for image display apparatus, and image display apparatus |
JP2019506318A (en) * | 2015-12-21 | 2019-03-07 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing a laminate having a stretched thermoplastic layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093226A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JPH093224A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JPH093225A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JP2000169608A (en) * | 1998-12-04 | 2000-06-20 | New Japan Chem Co Ltd | Absorbent article |
JP2006028495A (en) * | 2004-06-18 | 2006-02-02 | Toray Ind Inc | Microporous polypropylene film and moisture permeable waterproof cloth thereof |
-
2015
- 2015-01-22 WO PCT/JP2015/051619 patent/WO2015115289A1/en active Application Filing
- 2015-01-22 JP JP2015523732A patent/JPWO2015115289A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093226A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JPH093224A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JPH093225A (en) * | 1995-06-19 | 1997-01-07 | Kao Corp | Porous sheet and absorbing material using the same |
JP2000169608A (en) * | 1998-12-04 | 2000-06-20 | New Japan Chem Co Ltd | Absorbent article |
JP2006028495A (en) * | 2004-06-18 | 2006-02-02 | Toray Ind Inc | Microporous polypropylene film and moisture permeable waterproof cloth thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016102202A (en) * | 2014-11-12 | 2016-06-02 | 東レ株式会社 | Porous film, moisture-permeable waterproof sheet, complex and protective clothing |
JP2019506318A (en) * | 2015-12-21 | 2019-03-07 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing a laminate having a stretched thermoplastic layer |
US11020949B2 (en) | 2015-12-21 | 2021-06-01 | 3M Innovative Properties Company | Method of making a laminate with a stretched thermoplastic layer |
JP2018144490A (en) * | 2017-03-02 | 2018-09-20 | 三菱ケミカル株式会社 | Laminated film, laminate for image display apparatus, and image display apparatus |
JP7283033B2 (en) | 2017-03-02 | 2023-05-30 | 三菱ケミカル株式会社 | LAMINATED FILM, LAMINATED BODY FOR IMAGE DISPLAY DEVICE, AND IMAGE DISPLAY DEVICE |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015115289A1 (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2674199C1 (en) | Porous film, waterproof and moisture-permeable material, and medical clothing and protective clothing using same | |
JP6497082B2 (en) | Porous laminate | |
KR101249180B1 (en) | Porous polypropylene film | |
JP6170181B2 (en) | Method for producing porous article derived from ultra-high molecular weight polyethylene | |
JP5087906B2 (en) | Microporous polypropylene film and method for producing the same | |
JP2002522610A (en) | Breakage resistant polyolefin membrane | |
JP6641953B2 (en) | Moisture permeable laminate | |
KR20080064163A (en) | Process for producing multilayered microporous polyolefin film | |
US10790492B2 (en) | Microporous polyolefin membrane, separator for battery, and production processes therefor | |
JPWO2017175878A1 (en) | Stretched porous film and method for producing the same | |
WO2015115289A1 (en) | Porous film, moisture-permeable waterproof sheet, complex, and protective clothing | |
WO2014103713A1 (en) | Porous polyolefin film and method for producing same, and storage device separator formed using same | |
KR20220034247A (en) | Copolymer membranes, fibers, products and methods | |
JP6337422B2 (en) | Composite film | |
JP2003217554A (en) | Polyolefin micro porous membrane for battery separator | |
JP2022532673A (en) | Multi-layer structure | |
JP5705605B2 (en) | Polypropylene resin porous sheet and method for producing polypropylene resin porous sheet | |
TWI730999B (en) | Laminated polyolefin microporous membrane, battery separator and method for producing the same, and method for producing laminated polyolefin microporous membrane wound body | |
JP2016102203A (en) | Porous film, and moisture-permeable waterproof sheet | |
JP2016102201A (en) | Porous film | |
JP2016102202A (en) | Porous film, moisture-permeable waterproof sheet, complex and protective clothing | |
JP2015163464A (en) | Moisture-permeable waterproof sheet | |
JP2006037095A (en) | Oil-absorbable fine porous polypropylene sheet | |
KR20140048147A (en) | Porous polypropylene film and process for manufacturing same | |
JP6413671B2 (en) | Moisture permeable waterproof film and moisture permeable waterproof sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015523732 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15743641 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15743641 Country of ref document: EP Kind code of ref document: A1 |