WO2015115037A1 - 端末及びハンドオーバ判定方法 - Google Patents

端末及びハンドオーバ判定方法 Download PDF

Info

Publication number
WO2015115037A1
WO2015115037A1 PCT/JP2015/000145 JP2015000145W WO2015115037A1 WO 2015115037 A1 WO2015115037 A1 WO 2015115037A1 JP 2015000145 W JP2015000145 W JP 2015000145W WO 2015115037 A1 WO2015115037 A1 WO 2015115037A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
reception quality
rsrq
quality value
rsrp
Prior art date
Application number
PCT/JP2015/000145
Other languages
English (en)
French (fr)
Inventor
鈴木 秀俊
綾子 堀内
星野 正幸
鈴木 正朗
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2015559795A priority Critical patent/JP6411383B2/ja
Publication of WO2015115037A1 publication Critical patent/WO2015115037A1/ja
Priority to US15/160,561 priority patent/US10433231B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This disclosure relates to a terminal and a handover determination method.
  • a terminal In LTE-Advanced, which is an extended system of 3GPP-LTE (3rd Generation Partnership Project Radio Access Network Long Term Evolution), a terminal (sometimes called User Equiqment (UE)) performs the following operation. That is, the terminal receives cell-specific reference signals (CRS) transmitted by a handover candidate destination base station when switching a connected base station (sometimes referred to as a cell or an eNB) (handover). Measure quality (Reference Signal Received Quality: RSRQ) or received power (Reference Signal Received Power: RSRP).
  • CRS cell-specific reference signals
  • RSRQ Reference Signal Received Quality
  • RSRP Reference Signal Received Power
  • the terminal determines success or failure of a measurement event including the following threshold event and comparison event. For example, the terminal determines whether the RSRQ / RSRP of the handover candidate base station exceeds a threshold (threshold event). Alternatively, the RSRQ / RSRP of the handover candidate destination base station adds an offset value to the RSRQ / RSRP of the cell to which the terminal is connected (that is, the destination base station, sometimes called ServingServCell). Judgment is made when the obtained value is exceeded (comparison event).
  • the terminal reports the establishment of the measurement event (handover trigger) to the connected base station.
  • the base station initiates handover to the terminal (see, for example, Non-Patent Document 1).
  • Measurement event type threshold value used in the measurement event, parameters such as offset value, and measurement value (RSRP or RSRQ) used in the measurement event are individually set from the base station to the terminal.
  • Cell detection reference signal for small cells In LTE-Advanced, a small cell, which is a base station with relatively low transmission power, is placed within the coverage area of a macro cell, which is a base station with relatively high transmission power, to accommodate increasing traffic. ing.
  • On / Off control switching control between the small cell On state and the Off state. It is being considered.
  • the small cell When the small cell is in the Off state, the small cell enters a “pause state” in which no data is allocated to the terminal. However, if transmission of all signals from the small cell is stopped, the terminal cannot detect the small cell. Therefore, it is considered that the small cell transmits a cell detection reference signal (discovery signal) so that the terminal can detect the small cell even in the off state.
  • discovery signal In handover control, the purpose of discovery signal is to measure RSRQ / RSRP as in CRS. However, in order to reduce power consumption, in discovery ⁇ ⁇ signal, it is considered to reduce the transmission frequency (increase the transmission cycle) compared to CRS. Also, as a design of discoverydissignal, it is considered that the period, band, etc. of a signal already existing in the LTE-Advanced system is changed and used.
  • Signal candidates used for discovery signal include PRS (Positioning Reference Signal), CSI-RS (Channel-State Information Reference Signal), and the like (for example, see Non-Patent Documents 2 and 3).
  • cells in the Off state transmit only discovery signal, and do not send other signals, so terminals that support RSRQ / RSRP measurement using discovery signal (for example, support LTE standard Rel.12). Only the terminal) can detect cells in the Off state.
  • discovery signal for example, support LTE standard Rel.12
  • cells in the On state transmit discovery signal and CRS, even terminals that do not support RSRQ / RSRP measurement by discovery signal (for example, terminals that support LTE Rel.11 or earlier standards) are in the On state. The cell can be detected.
  • the terminal needs to re-measure RSRQ / RSRP, or a new threshold needs to be set. Arise.
  • one aspect of the present disclosure provides a terminal and a handover determination method that can perform handover control without delay using an existing measurement event even when a discovery signal is introduced.
  • a terminal is a terminal that determines whether to start handover from a connection destination cell to another cell, and a first reception quality value using a cell-specific reference signal transmitted from another cell, or A measuring unit for measuring a second reception quality value using a cell detection reference signal transmitted from another cell, and adding an offset value to the second reception quality value to obtain a third reception quality
  • An adder that calculates a value, and a determination unit that determines whether the first reception quality value or the third reception quality value of another cell satisfies a handover activation condition based on the previous unique reference signal.
  • ⁇ / RTI> According to the present disclosure, even when a discovery signal is introduced, handover control can be performed without delay using an existing measurement event.
  • the figure which shows a mode that the base station which transmits CRS and the base station which transmits discoverydissignal are mixed The block diagram which shows the principal part structure of the terminal which concerns on Embodiment 1 of this indication.
  • a block diagram showing a configuration of a terminal according to Embodiment 1 of the present disclosure A block diagram showing a configuration of a base station according to Embodiment 1 of the present disclosure Diagram showing the configuration example of Dual Connectivity
  • a block diagram showing a configuration of a terminal according to Embodiment 2 of the present disclosure A block diagram showing a configuration of a base station according to Embodiment 2 of the present disclosure
  • a resource for transmitting an existing signal (such as PRS or CSI-RS) is used as a resource for transmitting a discovery signal. That is, the resource for transmitting CRS, which has been used for RSRQ / RSRP measurement conventionally, is different from the resource for transmitting discovery signal used for measurement of RSRQ / RSRP for cell detection in the Off state. Therefore, in the comparison event, it is not possible to compare RSRQ / RSRP measured using the CRS transmitted from the connection destination cell and RSRQ / RSRP measured using the discovery signal transmitted from the neighboring cell. Therefore, the terminal needs to remeasure RSRQ / RSRP using discoverydissignal as RSRQ / RSRP of the connection destination cell.
  • an existing signal such as PRS or CSI-RS
  • FIG. 1 shows that a terminal is located in an area where cells that transmit CRS (cells in an On state or cells that do not use On / Off control) and cells that transmit a discovery signal (cells in an Off state) are mixed. It shows how it is located.
  • a terminal detects an off-state cell while measuring CRS RSRQ / RSRP for a comparison event, the terminal performs the measurement of the RSRQ / RSRP measurement using CRS. It becomes necessary to perform RSRQ / RSRP measurement again using discovery signal.
  • ⁇ Re-measurement of RSRQ / RSRP at such a terminal causes a delay in measurement event determination, resulting in a delay in handover activation.
  • a terminal that is located (connected) to a base station that does not use On / Off control (a base station that does not transmit discovery signal) can only obtain RSRQ / RSRP using CRS for the connected base station Even if the discovery signal transmitted from the cell in the Off state is detected, the comparison event determination by RSRQ / RSRP using the discovery signal cannot be performed. Therefore, the base station cannot start handover for the terminal.
  • threshold event determination which is one of the measurement event determinations, it may be necessary to set a new threshold value.
  • a threshold corresponding to RSRQ / RSRP measured using CRS is set.
  • RSRQ / RSRP measured using discovery signal is used for threshold event determination for cells in the Off state. Therefore, as described above, due to the difference between CRS and discovery signal, the existing threshold (threshold based on CRS) cannot be used as the threshold for RSRQ / RSRP measured using discovery signal. , A new threshold with a different value needs to be set for discovery signal.
  • the applicants have configured the terminal as follows, and even if discovery signal is introduced, handover control can be performed without delay using existing measurement events. Found that can be done. That is, the terminal measures a first reception quality value using a cell-specific reference signal (CRS) transmitted from a cell other than the connection destination cell, or for cell detection transmitted from the other cell. A second reception quality value using a reference signal (Discovery Signal) is measured, an offset value is added to the second reception quality value, a third reception quality value is calculated, It is determined whether the 1 reception quality value or the 3rd reception quality value satisfies a handover activation condition based on the cell-specific reference signal.
  • CRS cell-specific reference signal
  • Discovery Signal Discovery Signal
  • the communication system includes terminal 100 and base station 200.
  • This communication system is, for example, an LTE-Advanced system.
  • the terminal 100 is, for example, a terminal that supports the LTE-Advanced system
  • the base station 200 is, for example, a base station that supports the LTE-Advanced system.
  • terminal 100 can receive at least CRS from an on-state cell (connected cell and neighboring cell 1 in FIG. 1) or a cell not performing on / off control (not shown). Further, the terminal 100 can receive a discovery signal from a cell in the off state (the neighboring cell 2 in FIG. 1).
  • the base station 200 is a connected cell of the terminal 100, for example, and performs layer 3 control on the terminal 100.
  • the layer 3 control is to control the wireless connection between the base station 200 and the terminal 100. For example, the measurement event type and the threshold value are set for the terminal 100, and the event establishment report is used as a trigger to the terminal 100. In contrast, a handover is started.
  • the terminal 100 determines whether or not a handover from the connected cell to another cell is possible.
  • the “other cells” may be cells that perform the above-described On / Off control.
  • “another cell” is a small cell located around the terminal 100.
  • FIG. 2 is a block diagram showing a main configuration of terminal 100 according to the present embodiment.
  • the terminal 100 determines whether or not handover from the connection destination cell to another cell is possible.
  • RSRQ / RSRP measurement section 107 is transmitted from a first reception quality value (RSRQ / RSRP) using a cell-specific reference signal (CRS) transmitted from another cell, or from another cell.
  • the second reception quality value (RSRQ / RSRP) using the cell detection reference signal (discovery signal) is measured.
  • the offset adding unit 108 adds the offset value to the second reception quality value (RSRQ / RSRP) measured using the discovery signal, and then adds a third reception quality value (RSRQ measured using the CRS). / RSRP).
  • the determination unit 109 determines whether the first reception quality value or the third reception quality value satisfies a handover activation condition (measurement event) based on the CRS.
  • FIG. 3 is a block diagram showing a configuration of terminal 100 according to the present embodiment.
  • a terminal 100 includes a reception antenna 101-1, a transmission antenna 101-2, a reception processing unit 102, a media access control unit 103, a radio link control unit 104, a layer 3 message reception unit 105, and an RSRQ / RSRP selection unit 106.
  • the reception processing unit 102 performs reception processing on the signal received via the reception antenna 101-1.
  • the received signal includes a layer 3 message signal for transmitting control information for layer 3 control, a user data signal, or a reference signal (CRS or discovery signal) transmitted from each cell.
  • the layer 3 message signal includes settings of parameters (to be described later) used at the time of measurement event determination, RSRQ / RSRP measurement target settings indicating which of RSRQ and RSRP is measured, and the like.
  • Reception processing section 102 outputs a signal including a layer 3 message signal and a user data signal to media access control section 103, and outputs a reference signal to RSRQ / RSRP measurement section 107.
  • the media access control unit 103 performs separation processing of the layer 3 message signal and user data signal from the signal received from the reception processing unit 102, and HARQ (HybridyAutmatic Repeat request) reception processing.
  • the media access control unit 103 outputs the layer 3 message signal after the above processing to the radio link control unit 104.
  • the radio link control unit 104 assembles a layer 3 message signal (layer 3 message data) received from the media access control unit 103 and confirms reception of the cell (eNB). Radio link control section 104 outputs the assembled layer 3 message signal to layer 3 message reception section 105.
  • the layer 3 message reception unit 105 analyzes (decodes) the layer 3 message signal, sets a measurement event for the determination unit 109, and sets an RSRQ / RSRP measurement target for the RSRQ / RSRP selection unit 106. .
  • the RSRQ / RSRP selection unit 106 instructs the RSRQ / RSRP measurement unit 107 to measure RSRQ or RSRP according to the setting of the RSRQ / RSRP measurement target received from the layer 3 message reception unit 105.
  • the RSRQ / RSRP measurement unit 107 measures RSRQ or RSRP (hereinafter simply referred to as RSRQ / RSRP) in accordance with an instruction from the RSRQ / RSRP selection unit 106. Note that the RSRQ / RSRP measurement unit 107 measures RSRQ / RSRP (reception quality value) using CRS transmitted from the connection destination cell or another cell or discovery signal transmitted from another cell. Specifically, RSRQ / RSRP measurement section 107 measures RSRQ / RSRP using CRS transmitted from the connection destination cell.
  • the RSRQ / RSRP measurement unit 107 measures RSRQ / RSRP using CRS transmitted from another cell, or RSRQ / RSRP using discovery signal transmitted from another cell.
  • the RSRQ / RSRP measurement unit 107 outputs RSRQ / RSRP (CRS-based RSRQ / RSRP) measured using CRS to the determination unit 109, and RSRQ / RSRP (discovery signal-based RSRQ / measured using discovery signal).
  • RSRP is output to the offset adding unit 108.
  • the RSRQ / RSRP measurement unit 107 may determine whether another cell is transmitting CRS or transmitting discovery signal on the terminal 100 side, and the layer from the connected cell may be determined. You may judge based on 3 messages.
  • Offset addition section 108 adds an offset value to RSRQ / RSRP (discovery signal-based RSRQ / RSRP) received from RSRQ / RSRP measurement section 107, and outputs the RSRQ / RSRP after the offset addition to determination section 109. .
  • the offset addition unit 108 converts the discovery signal-based RSRQ / RSRP into a value corresponding to the CRS-based RSRQ / RSRP.
  • the offset value is uniquely determined by the frequency band used by each cell.
  • the terminal 100 may have a table indicating the correspondence relationship between the frequency band and the offset value, and may specify the offset value B to be used. May be set.
  • the determination unit 109 uses the CRS-based RSRQ / RSRP received from the RSRQ / RSRP measurement unit 107 or the value obtained by adding the offset value to the discovery signal-based RSRQ / RSRP received from the offset addition unit 108, It is determined whether the RSRQ / RSRP of the cell (determination target cell) satisfies a measurement event (comparison event or threshold event).
  • the determination unit 109 determines that the measurement event is established (the comparison event is determined) when the RSRQ / RSRP of the determination target cell is larger than the RSRQ / RSRP of the connected cell measured using the CRS. It is determined that the condition is satisfied.
  • threshold event determination the determination unit 109 determines that a measurement event is established (the threshold event condition is satisfied) when the RSRQ / RSRP of the determination target cell is greater than the threshold.
  • the RSRQ / RSRP used in the comparison event and the threshold event is a CRS-based RSRQ / RSRP when the RSRQ / RSRP measurement unit 107 measures the RSRQ / RSRP using the CRS.
  • RSRP is measured using discovery signal, this is a value obtained by adding an offset value to RSRQ / RSRP based on discovery signal (RSRQ / RSRP).
  • the comparison event and the threshold event are existing measurement events defined in LTE-Advanced.
  • CRS-based RSRQ / RSRP of connected cells is used in comparison events, and thresholds based on CRS are set for thresholds used in threshold events, so these measurement events are based on CRS. It can be said that this is a condition for starting handover.
  • the determination unit 109 instructs the layer 3 message transmission unit 110 to report the measurement event establishment for the determination target cell when the measurement event is established as a result of the measurement event determination.
  • the layer 3 message transmission unit 110 When there is a measurement event establishment report instruction from the determination unit 109, the layer 3 message transmission unit 110 includes a measurement event establishment and a layer 3 message signal including a report of the identification number of the determination target cell (Physical ⁇ Cell ID) And a layer 3 message signal is output to the radio link control unit 111.
  • the radio link control unit 111 performs division of the layer 3 message signal (layer 3 message data) received from the layer 3 message transmission unit 110 and transmission confirmation for the cell (eNB).
  • the radio link control unit 111 outputs the divided layer 3 message signal to the media access control unit 112.
  • the media access control unit 112 performs multiplexing processing of user data signals (not shown) and layer 3 message signals received from the radio link control unit 111, and HARQ transmission processing.
  • the media access control unit 112 outputs the processed signal to the transmission processing unit 113.
  • the transmission processing unit 113 performs transmission processing on the signal received from the media access control unit 112, and transmits the signal after transmission processing via the transmission antenna 101-2.
  • FIG. 4 is a block diagram showing a configuration of base station 200 according to the present embodiment.
  • the base station 200 includes an event setting unit 201, an RSRQ / RSRP setting unit 202, a layer 3 message transmission unit 203, a radio link control unit 204, a media access control unit 205, a transmission processing unit 206, and a transmission antenna 207-1.
  • the event setting unit 201 sets parameters (described later) to be used when determining a measurement event in the terminal 100, and outputs the set parameters to the layer 3 message transmission unit 203.
  • RSRQ / RSRP setting section 202 sets which of RSRQ and RSRP is to be measured by terminal 100, and outputs the setting result to layer 3 message transmission section 203.
  • the layer 3 message transmission unit 203 generates a layer 3 message signal including a setting received from the event setting unit 201 and the RSRQ / RSRP setting unit 202 or a handover message received from the handover determination unit 212, and the generated layer 3 message signal
  • the data is output to the radio link control unit 204.
  • the radio link control unit 204 divides the layer 3 message signal (layer 3 message data) received from the layer 3 message transmission unit 203 and confirms transmission to the cell (eNB).
  • the radio link control unit 204 outputs the divided layer 3 message signal to the media access control unit 205.
  • the media access control unit 205 performs multiplexing processing of a user data signal (not shown) and a layer 3 message signal received from the radio link control unit 204, and HARQ transmission processing.
  • the media access control unit 205 outputs the processed signal to the transmission processing unit 206.
  • the transmission processing unit 206 performs transmission processing on the signal received from the media access control unit 205, and transmits the signal after transmission processing via the transmission antenna 207-1.
  • the reception processing unit 208 performs reception processing on the signal received via the reception antenna 207-2, and outputs the signal after reception processing to the media access control unit 209.
  • the received signal includes a layer 3 message signal or user data signal generated by the terminal 100.
  • the media access control unit 209 performs separation processing of the layer 3 message signal and user data signal from the signal received from the reception processing unit 208, and HARQ reception processing.
  • the media access control unit 209 outputs the layer 3 message signal after the above processing to the radio link control unit 210.
  • the radio link control unit 210 assembles a layer 3 message signal (layer 3 message data) received from the media access control unit 209 and confirms reception of the cell (eNB). Radio link control section 210 outputs the assembled layer 3 message signal to layer 3 message reception section 211.
  • the layer 3 message receiving unit 211 analyzes (decodes) the layer 3 message signal and outputs the analysis result to the handover determining unit 212.
  • the handover determination unit 212 generates a handover message instructing the terminal 100 to start handover when the measurement result establishment of the terminal 100 is reported in the analysis result received from the layer 3 message reception unit 212.
  • the handover determining unit 212 outputs the generated handover message to the layer 3 message transmitting unit 203.
  • conditional expression of Event A3 held by the determination unit 109 of the terminal 100 is expressed by the following expression.
  • Mcrs indicates the RSRQ / RSRP measurement value of the determination target cell
  • Ofn indicates the frequency-specific offset for the determination target cell
  • Ocn indicates the cell-specific offset for the determination target cell
  • Hys indicates this event. The hysteresis with respect to is shown.
  • Ms indicates the RSRQ / RSRP measurement value of the connected cell (PCell shown in FIG. 1)
  • Ofs indicates the frequency-specific offset for the connected cell
  • Ocs indicates the cell-specific offset for the connected cell
  • These measurement event determination parameters (Ofn, Ocn, Hys, Ofs, Ocs, Off) are set in the event setting unit 201 of the base station 200, and are transmitted from the base station 200 to each terminal 100 by a layer 3 message. Set individually.
  • RSRQ / RSRP measurement section 107 of terminal 100 transmits CRS transmitted from the connected cell (on-state cell) and CRS transmitted from another cell (in FIG. 1, CRS from cell 1 in on-state) or RSRQ / RSRP for each cell is periodically measured using discovery signal (discovery signal from cell 2 in the off state in FIG. 1).
  • RSRQ / RSRP measured using CRS transmitted from the connected cell corresponds to Ms shown in Equation (1).
  • the offset addition unit 108 of the terminal 100 adds an offset value to the measurement value measured using the discovery signal among the RSRQ / RSRP measured by the RSRQ / RSRP measurement unit 107.
  • the offset addition unit 108 adds an offset value according to the following equation.
  • Mdis indicates a measured value of RSRQ / RSRP measured using the discovery signal
  • B indicates an offset value [dB] added by the offset adding unit 108. That is, the offset value B is a parameter for converting a discovery signal-based RSRQ / RSRP (Mdis) into a value (Mcrs) equivalent to RSRQ / RSRP measured using CRS.
  • the determination unit 109 sets the offset value (B) to RSRQ / RSRP (Mdis) measured using the discovery signal transmitted from the cell.
  • the added value (Mcrs shown in Formula (2)) is used as Mcrs shown in Formula (1).
  • the RSRQ / RSRP measurement unit 107 calculates the RSRQ / RSRP measured using the CRS transmitted from the determination target cell. Used as Mcrs shown in (1).
  • the determination unit 109 determines whether or not the RSRQ / RSRP of the determination target cell satisfies the conditional expression shown in Expression (1), that is, whether or not a measurement event is established. The determination unit 109 determines that a measurement event has been established when the conditional expression shown in Expression (1) is satisfied. In this case, the determination unit 109 reports the establishment of the event and the identification number (Physical ⁇ ⁇ Cell ID) of the determination target cell to the base station 200 using the layer 3 message.
  • the base station 200 When the base station 200 receives the measurement event establishment report via the layer 3 message, the base station 200 starts handover to the cell specified by the Physical Cell ID.
  • terminal 100 measures RSRQ / RSRP using discovery ⁇ signal transmitted from another cell, and offset value relative to discoveryRSsignal based RSRQ / RSRP of other cell. Is added to calculate the reception quality value corresponding to CRS-based RSRQ / RSRP, and determine whether the calculated reception quality value satisfies the measurement event (condition for handover activation based on CRS) .
  • the terminal 100 uses the existing conditional expressions to measure the RSRQ / RSRP of the cell and the RSRQ / RSRP of the connected cell even if the cell in the Off state is a handover determination target. Event determination can be performed. Therefore, even if the terminal 100 detects a cell in the Off state while measuring RSRQ / RSRP of CRS, the terminal 100 detects a cell for which RSRQ / RSRP measurement using CRS has been performed. There is no need to repeat RSRQ / RSRP measurements using signal. For this reason, there is no delay in measurement event determination at the terminal 100, and the base station 200 can start handover without delay.
  • the terminal 100 even when the terminal 100 is connected to a base station that does not use On / Off control (a base station that does not transmit discovery signal), even if the terminal 100 detects a discovery signal transmitted from a cell in the Off state, the terminal 100 By converting discovery signal-based RSRQ / RSRP, measurement event determination can be performed using existing conditional expressions (conditional expressions based on CRS). For this reason, even if the terminal 100 is connected to a base station that does not use On / Off control (a base station that does not transmit discovery signal), the terminal 100 and the base station 200 are measured using the discovery signal. Based on the comparison event determination for RSRQ / RSRP, handover control can be performed.
  • On / Off control a base station that does not transmit discovery signal
  • base station 200 since terminal 100 triggers a handover according to an existing measurement event determination (here, Event A3), base station 200 that receives the handover trigger changes the configuration related to handover activation from the existing configuration. There is no need to change. Therefore, the base station 200 can start handover in the existing configuration after receiving the measurement event establishment report from the terminal 100.
  • an existing measurement event determination here, Event A3
  • handover control can be performed by an existing measurement event without delay even when a discovery signal is introduced.
  • Event A4 (Neighbour becomes better than threshold) described in Non-Patent Document 1 will be described.
  • conditional expression of Event A4 held by the determination unit 109 of the terminal 100 is expressed by the following expression.
  • Thresh indicates a threshold value. Thresh is set with a value based on CRS-based RSRQ / RSRP (that is, a value based on CRS). Other parameters are the same as those in Equation (1).
  • the offset addition unit 108 of the terminal 100 adds an offset value to the discovery signal-based RSRQ / RSRP according to Equation (2), as in the above embodiment. To do.
  • the determination unit 109 measures RSRQ / RSRP (Mdis) measured using the discovery signal transmitted from the cell.
  • a value obtained by adding an offset value (B) to (Mcrs shown in Formula (2)) is used as Mcrs shown in Formula (3).
  • the RSRQ / RSRP measurement unit 107 calculates the RSRQ / RSRP measured using the CRS transmitted from the determination target cell. Used as Mcrs shown in (3).
  • the determination unit 109 determines whether or not the RSRQ / RSRP of the determination target cell satisfies the conditional expression shown in Expression (3), that is, whether or not a measurement event is established. The determination unit 109 determines that the measurement event has been established when the conditional expression shown in Expression (3) is satisfied.
  • threshold event judgment using existing thresholds based on CRS is performed for discovery signal-based RSRQ / RSRP itself I can't.
  • the terminal 100 calculates a value corresponding to RSRQ / RSRP measured using CRS by adding an offset value to RSRQ / RSRP measured using discoverydissignal.
  • the terminal 100 uses an existing conditional expression (that is, a conditional expression based on CRS). That is, even when using the threshold event, the terminal 100 uses the existing measurement event determination (existing threshold) for the cell in the Off state that transmits discovery signal.
  • the terminal 100 can perform the existing threshold event determination using the discovery signal-based RSRQ / RSRP. That is, the base station 200 does not need to newly set a threshold for discoverydissignal even when the terminal 100 performs measurement event determination using discovery signal based RSRQ / RSRP.
  • the base station 200 that receives the handover trigger does not need to change the configuration related to the handover activation from the existing configuration. Therefore, the base station 200 can start handover in the existing configuration after receiving the measurement event establishment report from the terminal 100.
  • Event A3 and Event ⁇ A4 described in Non-Patent Document 1 have been described as examples of measurement events. However, measurement events are not limited to these, and at least the determination target cell. Any measurement event using RSRQ / RSRP may be used.
  • FIG. 5 shows a configuration example of Dual Connectivity.
  • a cell group (Master Cell Group: MCG) configured by a plurality of base stations (Master eNB: MeNB) having a layer 3 control function for the terminal, and a plurality of base stations (Secondary eNB: SeNB) other than MeNB are classified into cell groups (Secondary Cell Group: SCG). That is, at the time of applying Dual Connectivity, the terminal is connected to MCG and SCG and is in a state where carrier aggregation is applied to each of MCG and SCG.
  • the SCG cell includes a cell that only allocates additional resources to the terminal for accommodating traffic, and a layer 1/2 layer in which the terminal transmits a retransmission request or channel quality information in addition to the additional resource allocation.
  • Classification into cells having a control function is under study (for example, see Non-Patent Document 5).
  • a cell having an SCG layer 1/2 control function is called an SCG-Primary frequency cell (SCG-PCell). Note that the control function of SCG-PCell is currently under discussion in 3GPP and is not limited to the layer 1/2 control function.
  • SCG-PCell is a cell that is first added when the terminal transitions to the Dual Connectivity state.
  • Dual Connectivity a mode in which a control signal and a user data signal are separated, a control signal is transmitted by MCG, and a user data signal is transmitted by SCG is also assumed.
  • MCG MCG
  • SCG-PCell connection is unstable, user data transmission may stop.
  • SCG-PCell is an important cell in Dual Connectivity.
  • SCG-PCell is classified as SCell in the existing definition of carrier aggregation.
  • a comparison event for PCell (macro) and a cell of a frequency different from the frequency of PCell, or a comparison event for a cell of SCell (small cell) and the same frequency as SCell is performed.
  • it can be set, it is a specification that cannot set a comparison event for a SCell (small cell) and a cell having a frequency different from that of the SCell.
  • the terminal can determine whether or not the comparison event has succeeded.
  • the terminal cannot determine whether the comparison event is successful.
  • a handover determination method that allows a terminal to perform a comparison event determination even when the SCG-PCell and other cells use different frequencies is described for the above problem. .
  • FIG. 6 is a block diagram showing a configuration of terminal 300 according to the present embodiment.
  • the offset addition unit 108 and the determination unit 109 are replaced with the offset addition unit 108a and the determination unit 109a, respectively, and a measurement signal selection unit 301 is newly added.
  • the selection signal selection unit 301 instructs the reception processing unit 102 to use a signal (CRS or discovery signal) used for RSRQ / RSRP measurement according to the measurement signal setting received from the layer 3 message reception unit 105. In this way, the reception processing unit 102 extracts a signal according to the setting of the measurement signal and outputs it to the RSRQ / RSRP measurement unit 107.
  • a signal CRS or discovery signal
  • the offset addition unit 108a adds an offset value corresponding to the setting received from the layer 3 message reception unit 105 to the discovery signal-based RSRQ / RSRP received from the RSRQ / RSRP measurement unit 107, and RSRQ / RSRP is output to determination section 109a.
  • the offset addition unit 108a adds the offset value to RSRQ / RSRP according to the same equation (2) as in the first embodiment.
  • the determination unit 109a compares the RSRQ / RSRP of the SCG-PCell that is the connection destination cell of the terminal 300 with the RSRQ / RSRP of the measurement event determination target cell, and determines whether or not the measurement event is established. judge. For example, the determination unit 109a performs measurement event determination according to the following equation.
  • Mscg represents RSRQ / RSRP measured using CRS transmitted from SCG-PCell.
  • Other parameters (Ofn, Ocn, Hys, Ofs, Ocs, Off) are the same as those in Equation (1).
  • the parameter in the conditional expression of the comparison event shown in Formula (4) takes a value corresponding to SCG-PCell, unlike the parameter for PCell that is a connected cell shown in Formula (1).
  • the determination unit 109a satisfies the condition of the comparison event. judge.
  • the determination unit 109a uses an offset value to RSRQ / RSRP (Mdis) measured using the discovery signal transmitted from the cell.
  • a value obtained by adding (B) (Mcrs shown in Formula (2)) is used as Mcrs shown in Formula (4).
  • the RSRQ / RSRP measurement unit 107 calculates the RSRQ / RSRP measured using the CRS transmitted from the determination target cell. Used as Mcrs shown in (4).
  • FIG. 7 is a block diagram showing a configuration of terminal 400 according to the present embodiment.
  • the Event setting unit 201 is replaced with an Event setting unit 201a, and a measurement signal setting unit 401 and an offset value setting unit 402 are newly added.
  • the Event setting unit 201a sets parameters of conditional expressions (Ofn, Ocn, Hys, Ofs, Ocs, Off, etc. shown in Expression (4)) used in the measurement event determination in the terminal 300.
  • the measurement signal setting unit 401 sets a signal (CRS or discovery signal) used in the RSRQ / RSRP measurement of the determination target cell in the terminal 300.
  • the offset value setting unit 402 sets an offset value (B shown in Equation (2)) added to the RSRQ / RSRP measured using the discovery signal in the terminal 300.
  • a measurement event having a number and a conditional expression of the comparison event shown in Expression (4) is defined.
  • the terminal 300 can perform the comparison event determination between the SCG-PCell and the other cells having different frequencies, which could not be performed in the existing measurement event. Therefore, according to the present embodiment, it is possible to activate a handover to a cell having a different use frequency for SCG-PCell. Therefore, the continuity of Dual Connectivity can be stably maintained.
  • the RSRQ / RSRP of the determination target cell is measured using the discovery signal
  • the RSRQ / RSRP based on the discovery signal the RSRQ / RSRP based on the discovery signal
  • a value obtained by adding an offset value a value corresponding to CRS-based RSRQ / RSRP
  • terminal 300 may make these settings.
  • the measurement signal selection unit 301 is unnecessary in the terminal 300, and the measurement signal setting unit 401 and the offset value setting unit 402 are unnecessary in the base station 400.
  • the terminal 300 may have a table indicating a correspondence relationship between the frequency band and the offset value, and uniquely specify the offset value B to be used according to the frequency band. Further, terminal 300 may identify a signal used for measurement of RSRQ / RSRP of the determination target cell by detecting a signal transmitted by the determination target cell.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the terminal of the present disclosure is a terminal that determines handover activation from a connection destination cell to another cell, and the first reception quality value using the cell-specific reference signal transmitted from the other cell, or A measurement unit that measures a second reception quality value using a cell detection reference signal transmitted from another cell, and a third reception quality value by adding an offset value to the second reception quality value An addition unit that calculates the first reception quality value or the third reception quality value of another cell, and a determination unit that determines whether or not a handover activation condition based on the cell-specific reference signal is satisfied
  • the structure which comprises is taken.
  • the determination unit determines that the first reception quality value or the third reception quality value is larger than the reception quality value of the connection destination cell measured using the cell-specific reference signal.
  • the determination unit determines that the above condition is satisfied when the first reception quality value or the third reception quality value is larger than a threshold based on the cell-specific reference signal.
  • the connection destination cell is the second group
  • the determination unit is configured to determine whether the first reception quality value or the third reception quality value is based on the reception quality value of the specific cell measured using the cell-specific reference signal. If it is too large, it is determined that the above condition is satisfied.
  • the handover determination method of the present disclosure is a handover determination method for determining handover activation from a connection destination cell to another cell, wherein the first reception quality value using a cell-specific reference signal transmitted from another cell, Alternatively, the second reception quality value using the cell detection reference signal transmitted from another cell is measured, the offset value is added to the second reception quality value, and the third reception quality value is obtained. It is calculated, and it is determined whether or not the first reception quality value or the third reception quality value of another cell satisfies the conditions for handover activation based on the cell-specific reference signal.
  • This disclosure is useful for mobile communication systems.

Abstract

接続先セルから他のへのハンドオーバ起動を判定する端末(100)において、RSRQ/RSRP測定部(107)は、他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定し、オフセット加算部(108)は、第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出し、判定部(109)は、第1の受信品質値又は第3の受信品質値が、セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する。

Description

端末及びハンドオーバ判定方法
 本開示は、端末及びハンドオーバ判定方法に関する。
 [メジャーメントイベント(measurement events)]
 3GPP-LTE(3rd Generation Partnership Project Radio Access Network Long Term Evolution)の拡張システムであるLTE-Advancedでは、端末(User Equiqment(UE)と呼ばれることもある)は、下記の動作を行う。すなわち、端末は、接続する基地局(セル又はeNBと呼ばれることもある)を切り替える(ハンドオーバ)際、ハンドオーバ候補先の基地局が送信するセル固有参照信号(Cell-specific Reference Signals: CRS)の受信品質(Reference Signal Received Quality:RSRQ)又は受信電力(Reference Signal Received Power: RSRP)の測定を行う。
 そして、端末は、以下のような閾値イベント、比較イベントを含むメジャーメントイベントの成否を判定する。例えば、端末は、ハンドオーバ候補先の基地局のRSRQ/RSRPが閾値を越える場合(閾値イベント)を判定する。又は、ハンドオーバ候補先の基地局のRSRQ/RSRPが、端末が接続中のセル(つまり、接続先の基地局。Serving Cellと呼ぶこともある)のRSRQ/RSRPに対してオフセット値を加算して得られる値を越える場合(比較イベント)判定する。端末は、メジャーメントイベントが成立した場合、当該メジャーメントイベントの成立(ハンドオーバのトリガ)を接続先の基地局へ報告する。基地局は、メジャーメントイベント成立の報告を受信すると、端末に対するハンドオーバの起動を行う(例えば、非特許文献1を参照)。
 メジャーメントイベントの種別、メジャーメントイベントにおいて使用する閾値、オフセット値等のパラメータ、及び、メジャーメントイベントに使用する測定値(RSRP又はRSRQ)は、基地局から端末に対して個別に設定される。
 [スモールセル向けセル検出用参照信号]
 また、LTE-Advancedでは、送信電力の比較的高い基地局であるマクロセルのカバーエリア内に、送信電力の比較的低い基地局であるスモールセルを配置し、増大するトラフィックを収容することが検討されている。
 スモールセルの導入に際して、スモールセルから与える干渉の抑制及びスモールセルの消費電力削減のため、スモールセルのOn状態とOff状態との切替制御(以下、On/Off制御と呼ぶ)を導入することが検討されている。スモールセルのOff状態では、スモールセルは、端末に対してデータを割り当てない「休止状態」となる。ただし、スモールセルからの全ての信号の送信を止めると、端末がスモールセルを検出できなくなる。そこで、Off stateでも端末がスモールセルを検出できるように、スモールセルがセル検出用参照信号(discovery signal)を送信することが検討されている。
 ハンドオーバ制御において、discovery signalの用途は、CRSと同様、RSRQ/RSRPの測定を行うことである。ただし、消費電力を抑えるため、discovery signalでは、CRSと比較して送信頻度を少なくすること(送信周期を長くすること)が検討されている。また、discovery signalのデザインとして、LTE-Advancedシステムに既に存在する信号の周期、帯域等を変更して使用することが考えられている。discovery signalに使用される信号の候補として、PRS(Positioning Reference Signal)、CSI-RS(Channel-State Information Reference Signal)等が挙げられている(例えば、非特許文献2、3を参照)。
 Off状態のセルは消費電力を抑えるためにdiscovery signalのみを送信し、他の信号を送信しないため、discovery signalによるRSRQ/RSRP測定に対応した端末(例えば、LTEの標準規格Rel.12をサポートする端末)のみがOff状態のセルを検出できる。一方、On状態のセルはdiscovery signal及びCRSを送信するため、discovery signalによるRSRQ/RSRP測定に対応していない端末(例えば、LTEのRel.11以前の標準規格をサポートする端末)でもOn状態のセルを検出できる。
3GPP TS36.331v11.6(2013-09), "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control Protocol (Release 11)", September 2013 3GPP TS36.211v11.4.0(2013-09), "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 11)", September 2013 3GPP TSG RAN WG1 meeting, R1-133457, NTT DOCOMO, "Small Cell Discovery for Efficient Small Cell On/Off Operation", August 2013 3GPP TR 36.842 V1.0.0 (2013-11) Study on Small Cell Enhancements for E-UTRA and E-UTRAN Higher layer aspect 3GPP TSG RAN WG2 meeting, R2-134188, On the need of PCell functionality in SeNB
 しかし、discovery signalが導入されることにより、端末がRSRQ/RSRPを再測定する必要が生じたり、新たな閾値の設定が必要になったりする等のため、従来の技術では、ハンドオーバ制御の遅延が生じる。
 そこで、本開示の一態様は、discovery signalが導入された場合でも、既存のメジャーメントイベントを用いて、遅延させることなくハンドオーバ制御を行うことができる端末及びハンドオーバ判定方法を提供する。
 本開示の一態様の端末は、接続先セルから他のセルへのハンドオーバ起動を判定する端末であって、他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定する測定部と、第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出する加算部と、他のセルの第1の受信品質値又は第3の受信品質値が、前ル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する判定部と、を具備する構成を採る。なお、これらの包括的または具体的な側面は、システム、方法、および、コンピュータプログラムで実現されてもよく、システム、装置、方法、およびコンピュータプログラムの任意な組み合わせで実現されてもよい。
 本開示によれば、discovery signalが導入された場合でも、既存のメジャーメントイベントを用いて、遅延させることなくハンドオーバ制御を行うことができる。
CRSを送信する基地局とdiscovery signalを送信する基地局とが混在する様子を示す図 本開示の実施の形態1に係る端末の要部構成を示すブロック図 本開示の実施の形態1に係る端末の構成を示すブロック図 本開示の実施の形態1に係る基地局の構成を示すブロック図 Dual Connectivityの構成例を示す図 本開示の実施の形態2に係る端末の構成を示すブロック図 本開示の実施の形態2に係る基地局の構成を示すブロック図
 (本開示の基礎となった知見)
 メジャーメントイベントの1つである比較イベントにおいて、端末がRSRQ/RSRPを再測定する必要が発生する場合、又は、端末による比較イベントの判定自体ができなくなる場合がある。以下、上記2つの場合について具体的に説明する。
 discovery signalを送信するためのリソースとして、既存の信号(PRS又はCSI-RS等)を送信するためのリソースが用いられる。すなわち、従来からRSRQ/RSRPの測定に用いられているCRSを送信するためのリソースは、Off状態のセル検出用のRSRQ/RSRPの測定に用いられるdiscovery signalを送信するためのリソースとは異なる。よって、比較イベントにおいて、接続先セルから送信されたCRSを用いて測定されたRSRQ/RSRPと、周辺セルから送信されたdiscovery signalを用いて測定されたRSRQ/RSRPとを比較することはできない。よって、端末は、接続先セルのRSRQ/RSRPとして、discovery signalを用いてRSRQ/RSRPを再測定する必要がある。
 例えば、図1は、CRSを送信するセル(On状態のセル又はOn/Off制御を用いないセル)と、discovery signalを送信するセル(Off状態のセル)とが混在しているエリアに端末が位置する様子を示す。図1において、端末は、比較イベント用にCRSのRSRQ/RSRPを測定している状態でOff状態のセルを検出した場合、CRSを用いたRSRQ/RSRPの測定が行われたセルに対して、discovery signalを用いてRSRQ/RSRP測定を再度行う必要が生じる。
 このような端末でのRSRQ/RSRPの再測定によって、メジャーメントイベント判定の遅れが生じ、結果としてハンドオーバ起動の遅延が生じてしまう。
 また、On/Off制御を用いない基地局(discovery signalを送信しない基地局)に在圏(接続)中の端末は、接続中の基地局についてはCRSを用いたRSRQ/RSRPしか得られないので、Off状態のセルから送信されるdiscovery signalを検出したとしても、discovery signalを用いたRSRQ/RSRPによる比較イベント判定は不可能となる。よって、基地局は、当該端末に対してハンドオーバを起動することが不可能となる。
 さらに、メジャーメントイベント判定の1つである閾値イベント判定において、新たな閾値の設定が必要となる場合がある。具体的には、既存の閾値イベントでは、CRSを用いて測定されたRSRQ/RSRPに対応する閾値(CRSを基準とする閾値)が設定されている。これに対して、Off状態のセルに対する閾値イベント判定には、discovery signalを用いて測定されたRSRQ/RSRPが用いられる。よって、前述したようにCRSとdiscovery signalとの差異に起因して、discovery signalを用いて測定されたRSRQ/RSRPに対する閾値として、既存の閾値(CRSを基準とする閾値)を用いることはできず、discovery signal用に異なる値の新たな閾値が設定される必要が生じる。
 出願人らは、上記の知見にもとづき鋭意研究した結果、端末において下記のように構成すれば、discovery signalが導入された場合でも、既存のメジャーメントイベントを用いて、遅延させることなくハンドオーバ制御を行うことができることを見出した。すなわち、端末は、接続先セル以外の他のセルから送信されるセル固有参照信号(CRS)を用いた第1の受信品質値を測定し、又は、上記他のセルから送信されるセル検出用参照信号(Discovery Signal)を用いた第2の受信品質値を測定し、第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出し、他のセルの第1の受信品質値又は第3の受信品質値が、上記セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 (実施の形態1)
 [通信システムの概要]
 本実施の形態に係る通信システムは、端末100と基地局200とを有する。この通信システムは、例えば、LTE-Advancedシステムである。そして、端末100は、例えば、LTE-Advancedシステムに対応する端末であり、基地局200は、例えば、LTE-Advancedシステムに対応する基地局である。
 また、本実施の形態では、On/Off制御が導入される。すなわち、端末100は、On状態のセル(図1では、接続中セル及び周辺セル1)又はOn/Off制御を行わないセル(図示せず)から、少なくともCRSを受信可能である。さらに端末100は、Off状態のセル(図1では周辺セル2)からdiscovery signalを受信可能である。また、基地局200は、例えば、端末100の接続中セルであり、端末100に対してレイヤ3制御を行う。レイヤ3制御とは、基地局200と端末100の無線接続を制御することであり、例えば端末100に対してメジャーメントイベントの種別とその閾値を設定し、イベント成立の報告をトリガとして端末100に対してハンドオーバを起動することである。
 また、端末100は、接続中セルから他のセルへのハンドオーバの可否を判定する。ここで、「他のセル」は、上述したOn/Off制御を行うセルであればよい。例えば、「他のセル」は端末100の周辺に位置するスモールセルである。
 図2は、本実施の形態に係る端末100の要部構成を示すブロック図である。
 端末100は、接続先セルから他のセルへのハンドオーバの可否を判定する。端末100において、RSRQ/RSRP測定部107は、他のセルから送信されるセル固有参照信号(CRS)を用いた第1の受信品質値(RSRQ/RSRP)、又は、他のセルから送信されるセル検出用参照信号(discovery signal)を用いた第2の受信品質値(RSRQ/RSRP)を測定する。オフセット加算部108は、discovery signalを用いて測定された第2の受信品質値(RSRQ/RSRP)に対してオフセット値を加算して、第3の受信品質値(CRSを用いて測定されるRSRQ/RSRPに相当する値)を出する。判定部109は、上記第1の受信品質値又は上記第3の受信品質値が、CRSを基準とするハンドオーバ起動の条件(メジャーメントイベント)を満たすか否かを判定する。
 [端末100の構成]
 図3は、本実施の形態に係る端末100の構成を示すブロック図である。図3において、端末100は、受信アンテナ101-1、送信アンテナ101-2、受信処理部102、メディアアクセス制御部103、無線リンク制御部104、レイヤ3メッセージ受信部105、RSRQ/RSRP選択部106、RSRQ/RSRP測定部107、オフセット加算部108、判定部109、レイヤ3メッセージ送信部110、無線リンク制御部111、メディアアクセス制御部112、及び、送信処理部113を有する。
 受信処理部102は、受信アンテナ101-1を介して受信した信号に対して受信処理を施す。受信信号には、レイヤ3制御のための制御情報を伝達するレイヤ3メッセージ信号、ユーザデータ信号、又は、各セルから送信される参照信号(CRS又はdiscovery signal)が含まれる。また、レイヤ3メッセージ信号には、メジャーメントイベント判定時に用いるパラメータ(後述する)の設定、及び、RSRQ及びRSRPのうち何れを測定するかを示すRSRQ/RSRP測定対象の設定などが含まれる。受信処理部102は、レイヤ3メッセージ信号及びユーザデータ信号を含む信号をメディアアクセス制御部103へ出力し、参照信号をRSRQ/RSRP測定部107へ出力する。
 メディアアクセス制御部103は、受信処理部102から受け取る信号からのレイヤ3メッセージ信号とユーザデータ信号との分離処理、及び、HARQ(Hybrid Autmatic Repeat request)受信処理を行う。メディアアクセス制御部103は、上記処理後のレイヤ3メッセージ信号を無線リンク制御部104へ出力する。
 無線リンク制御部104は、メディアアクセス制御部103から受け取るレイヤ3メッセージ信号(レイヤ3メッセージデータ)の組み立て、及び、セル(eNB)に対する受信確認を行う。無線リンク制御部104は、組み立てたレイヤ3メッセージ信号をレイヤ3メッセージ受信部105へ出力する。
 レイヤ3メッセージ受信部105は、レイヤ3メッセージ信号を解析して(デコードして)、判定部109に対するメジャーメントイベントの設定、及び、RSRQ/RSRP選択部106に対するRSRQ/RSRP測定対象の設定を行う。
 RSRQ/RSRP選択部106は、レイヤ3メッセージ受信部105から受け取るRSRQ/RSRP測定対象の設定に従って、RSRQ/RSRP測定部107に対して、RSRQを測定するか、RSRPを測定するかを指示する。
 RSRQ/RSRP測定部107は、RSRQ/RSRP選択部106からの指示に従って、RSRQ又はRSRP(以下、単にRSRQ/RSRPと示す)を測定する。なお、RSRQ/RSRP測定部107は、接続先セル又は他のセルから送信されるCRS、又は、他のセルから送信されるdiscovery signalを用いて、RSRQ/RSRP(受信品質値)を測定する。具体的には、RSRQ/RSRP測定部107は、接続先セルから送信されるCRSを用いてRSRQ/RSRPを測定する。また、RSRQ/RSRP測定部107は、他のセルから送信されるCRSを用いたRSRQ/RSRP、又は、他のセルから送信されるdiscovery signalを用いたRSRQ/RSRPを測定する。RSRQ/RSRP測定部107は、CRSを用いて測定したRSRQ/RSRP(CRSベースのRSRQ/RSRP)を判定部109へ出力し、discovery signalを用いて測定したRSRQ/RSRP(discovery signalベースのRSRQ/RSRP)をオフセット加算部108へ出力する。なお、RSRQ/RSRP測定部107は、他のセルがCRSを送信しているか、discovery signalを送信しているかを、端末100側で検出することにより判断してもよく、接続中セルからのレイヤ3メッセージに基づいて判断してもよい。
 オフセット加算部108は、RSRQ/RSRP測定部107から受け取るRSRQ/RSRP(discovery signalベースのRSRQ/RSRP)に対してオフセット値を加算して、オフセット加算後のRSRQ/RSRPを判定部109へ出力する。換言すると、オフセット加算部108は、discovery signalベースのRSRQ/RSRPを、CRSベースのRSRQ/RSRPに相当する値に変換する。なお、オフセット値は、各セルが使用する周波数帯域によって一意に定まる。端末100は、周波数帯域とオフセット値との対応関係を示すテーブルを有して、使用するオフセット値Bを特定してもよく、接続中セル(基地局100)からのレイヤ3メッセージによってオフセット値Bを設定してもよい。
 判定部109は、RSRQ/RSRP測定部107から受け取るCRSベースのRSRQ/RSRP、又は、オフセット加算部108から受け取る、discovery signalベースのRSRQ/RSRPにオフセット値が加えられた値を用いて、他のセル(判定対象セル)のRSRQ/RSRPが、メジャーメントイベント(比較イベント又は閾値イベント)を満たすか否かを判定する。
 例えば、比較イベント判定を行う場合、判定部109は、判定対象セルのRSRQ/RSRPが、CRSを用いて測定された接続中セルのRSRQ/RSRPよりも大きい場合、メジャーメントイベント成立(比較イベントの条件を満たす)と判定する。また、閾値イベント判定を行う場合、判定部109は、判定対象セルのRSRQ/RSRPが、閾値よりも大きい場合、メジャーメントイベント成立(閾値イベントの条件を満たす)と判定する。なお、上記比較イベント及び閾値イベントにおいて使用されるRSRQ/RSRPは、RSRQ/RSRP測定部107において、RSRQ/RSRPがCRSを用いて測定された場合にはCRSベースのRSRQ/RSRPであり、RSRQ/RSRPがdiscovery signalを用いて測定された場合には、discovery signalベースのRSRQ/RSRPにオフセット値が加えられた値(RSRQ/RSRP)である。
 また、比較イベント及び閾値イベントは、LTE-Advancedにおいて定義されている既存のメジャーメントイベントである。すなわち、比較イベントでは接続中セルのCRSベースのRSRQ/RSRPが用いられ、閾値イベントで用いられる閾値にはCRSを基準とした閾値が設定されるので、これらのメジャーメントイベントは、CRSを基準とするハンドオーバ起動の条件であると言える。
 判定部109は、メジャーメントイベント判定の結果、メジャーメントイベントが成立する場合、判定対象セルに対するメジャーメントイベント成立の報告をレイヤ3メッセージ送信部110に対して指示する。
 レイヤ3メッセージ送信部110は、判定部109からメジャーメントイベント成立の報告の指示がある場合、メジャーメントイベント成立、及び、判定対象セルの識別番号(Physical Cell ID)の報告を含むレイヤ3メッセージ信号を生成し、レイヤ3メッセージ信号を無線リンク制御部111へ出力する。
 無線リンク制御部111は、レイヤ3メッセージ送信部110から受け取るレイヤ3メッセージ信号(レイヤ3メッセージデータ)の分割、及び、セル(eNB)に対する送信確認を行う。無線リンク制御部111は、分割したレイヤ3メッセージ信号をメディアアクセス制御部112へ出力する。
 メディアアクセス制御部112は、ユーザデータ信号(図示せず)と、無線リンク制御部111から受け取るレイヤ3メッセージ信号との多重処理、及び、HARQ送信処理を行う。メディアアクセス制御部112は、上記処理後の信号を送信処理部113へ出力する。
 送信処理部113は、メディアアクセス制御部112から受け取る信号に対して送信処理を施し、送信処理後の信号を、送信アンテナ101-2を介して送信する。
 [基地局200の構成]
 図4は、本実施の形態に係る基地局200の構成を示すブロック図である。図4において、基地局200は、Event設定部201、RSRQ/RSRP設定部202、レイヤ3メッセージ送信部203、無線リンク制御部204、メディアアクセス制御部205、送信処理部206、送信アンテナ207-1、受信アンテナ207-2、受信処理部208、メディアアクセス制御部209、無線リンク制御部210、レイヤ3メッセージ受信部211、及び、ハンドオーバ判定部212を有する。
 Event設定部201は、端末100においてメジャーメントイベント判定時に用いるパラメータ(後述する)を設定し、設定したパラメータをレイヤ3メッセージ送信部203へ出力する。
 RSRQ/RSRP設定部202は、RSRQ及びRSRPのうち何れを端末100に測定させるかを設定し、設定結果をレイヤ3メッセージ送信部203へ出力する。
 レイヤ3メッセージ送信部203は、Event設定部201及びRSRQ/RSRP設定部202から受け取る設定、又は、ハンドオーバ判定部212から受け取るハンドオーバメッセージを含むレイヤ3メッセージ信号を生成し、生成したレイヤ3メッセージ信号を無線リンク制御部204へ出力する。
 無線リンク制御部204は、レイヤ3メッセージ送信部203から受け取るレイヤ3メッセージ信号(レイヤ3メッセージデータ)の分割、及び、セル(eNB)に対する送信確認を行う。無線リンク制御部204は、分割したレイヤ3メッセージ信号をメディアアクセス制御部205へ出力する。
 メディアアクセス制御部205は、ユーザデータ信号(図示せず)と、無線リンク制御部204から受け取るレイヤ3メッセージ信号との多重処理、及び、HARQ送信処理を行う。メディアアクセス制御部205は、上記処理後の信号を送信処理部206へ出力する。
 送信処理部206は、メディアアクセス制御部205から受け取る信号に対して送信処理を施し、送信処理後の信号を、送信アンテナ207-1を介して送信する。
 受信処理部208は、受信アンテナ207-2を介して受信した信号に対して受信処理を施し、受信処理後の信号をメディアアクセス制御部209へ出力する。受信信号には、端末100が生成したレイヤ3メッセージ信号又はユーザデータ信号が含まれる。
 メディアアクセス制御部209は、受信処理部208から受け取る信号からのレイヤ3メッセージ信号とユーザデータ信号との分離処理、及び、HARQ受信処理を行う。メディアアクセス制御部209は、上記処理後のレイヤ3メッセージ信号を無線リンク制御部210へ出力する。
 無線リンク制御部210は、メディアアクセス制御部209から受け取るレイヤ3メッセージ信号(レイヤ3メッセージデータ)の組み立て、及び、セル(eNB)に対する受信確認を行う。無線リンク制御部210は、組み立てたレイヤ3メッセージ信号をレイヤ3メッセージ受信部211へ出力する。
 レイヤ3メッセージ受信部211は、レイヤ3メッセージ信号を解析(デコード)し、解析結果をハンドオーバ判定部212に出力する。
 ハンドオーバ判定部212は、レイヤ3メッセージ受信部212から受け取る解析結果において、端末100のメジャーメントイベント成立が報告されている場合、端末100に対してハンドオーバの起動を指示するハンドオーバメッセージを生成する。ハンドオーバ判定部212は、生成したハンドオーバメッセージをレイヤ3メッセージ送信部203へ出力する。
 [端末100及び基地局200の動作]
 以上の構成を有する端末100及び基地局200のハンドオーバ制御に関する動作について説明する。
 以下では、一例として、端末100におけるメジャーメントイベント判定として、比較イベントが設定される場合について説明する。また、比較イベントの一例として、非特許文献1に記載されたEvent A3(Neighbour becomes offset better than PCell)について説明する。
 具体的には、端末100の判定部109が保持するEvent A3の条件式は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、Mcrsは判定対象セルのRSRQ/RSRP測定値を示し、Ofnは判定対象セルに対する周波数個別のオフセットを示し、Ocnは判定対象セルに対するセル個別のオフセットを示し、Hysはこのイベントに対するヒステリシスを示す。また、Msは接続中セル(図1に示すPCell)のRSRQ/RSRP測定値を示し、Ofsは接続中セルに対する周波数個別のオフセットを示し、Ocsは接続中セルに対するセル個別のオフセットを示し、Offはこのイベントに対するオフセットを示す。
 これらのメジャーメントイベント判定に関するパラメータ(Ofn、Ocn、Hys、Ofs、Ocs、Off)は、基地局200のEvent設定部201において設定され、基地局200から各端末100に対して、レイヤ3メッセージによって個別に設定される。
 端末100のRSRQ/RSRP測定部107は、接続中セル(On状態のセル)から送信されるCRS、及び、他のセルから送信されるCRS(図1ではOn状態のセル1からのCRS)又はdiscovery signal(図1ではOff状態のセル2からのdiscovery signal)を用いて、各セルに対するRSRQ/RSRPを定期的に測定する。ここで、接続中セルから送信されるCRSを用いて測定されたRSRQ/RSRPは、数式(1)に示すMsに相当する。
 端末100のオフセット加算部108は、RSRQ/RSRP測定部107において測定されたRSRQ/RSRPのうち、discovery signalを用いて測定された測定値に対してオフセット値を加算する。例えば、オフセット加算部108は、次式に従ってオフセット値を加算する。
Figure JPOXMLDOC01-appb-M000002
 数式(2)において、Mdisはdiscovery signalを用いて測定されたRSRQ/RSRPの測定値を示し、Bはオフセット加算部108において加算されるオフセット値[dB]を示す。すなわち、オフセット値Bは、discovery signalベースのRSRQ/RSRP(Mdis)を、CRSを用いて測定されるRSRQ/RSRP相当の値(Mcrs)へ変換するためのパラメータである。
 すなわち、判定部109は、Off状態のセルをメジャーメントイベント判定対象とする場合には、当該セルから送信されるdiscovery signalを用いて測定されるRSRQ/RSRP(Mdis)にオフセット値(B)を加えた値(数式(2)に示すMcrs)を、数式(1)に示すMcrsとして用いる。一方、判定部109は、On状態のセルをメジャーメントイベント判定対象とする場合には、RSRQ/RSRP測定部107において判定対象セルから送信されるCRSを用いて測定されるRSRQ/RSRPを、数式(1)に示すMcrsとして用いる。
 判定部109は、判定対象セルのRSRQ/RSRPが、数式(1)に示す条件式を満たすか否か、つまり、メジャーメントイベント成立か否かを判定する。判定部109は、数式(1)に示す条件式を満たす場合、メジャーメントイベントが成立したと判定する。この場合、判定部109は、当該イベントの成立、及び、判定対象セルの識別番号(Physical Cell ID)を、レイヤ3メッセージを用いて基地局200へ報告する。
 基地局200は、レイヤ3メッセージを介して、メジャーメントイベント成立の報告を受け取ると、Physical Cell IDによって特定されるセルへのハンドオーバを起動する。
 このようにして、本実施の形態では、端末100は、他のセルから送信されるdiscovery signalを用いてRSRQ/RSRPを測定し、他のセルのdiscovery signalベースのRSRQ/RSRPに対してオフセット値を加算して、CRSベースのRSRQ/RSRPに相当する受信品質値を算出し、算出した受信品質値が、メジャーメントイベント(CRSを基準とするハンドオーバ起動の条件)を満たすか否かを判定する。
 こうすることで、端末100は、Off状態のセルがハンドオーバ判定対象であっても、当該セルのRSRQ/RSRPと接続中セルのRSRQ/RSRPとに対して、既存の条件式を用いてメジャーメントイベント判定を行うことができる。よって、端末100は、CRSのRSRQ/RSRPを測定している状態でOff状態のセルを検出した場合であっても、CRSを用いたRSRQ/RSRPの測定が行われたセルに対して、discovery signalを用いてRSRQ/RSRP測定を再度行う必要はない。このため、端末100でのメジャーメントイベント判定の遅れは生じず、基地局200では遅延なくハンドオーバを起動することができる。
 また、端末100がOn/Off制御を用いない基地局(discovery signalを送信しない基地局)に接続されている場合に、Off状態のセルから送信されるdiscovery signalを検出したとしても、端末100は、discovery signalベースのRSRQ/RSRPを変換することにより、既存の条件式(CRSを基準とする条件式)を用いてメジャーメントイベント判定を行うことができる。このため、端末100がOn/Off制御を用いない基地局(discovery signalを送信しない基地局)に接続されている場合であっても、端末100及び基地局200は、discovery signalを用いて測定されたRSRQ/RSRPに対する比較イベント判定に基づいて、ハンドオーバ制御を行うことが可能となる。
 また、本実施の形態では、端末100が既存のメジャーメントイベント判定(ここではEvent A3)に従ってハンドオーバのトリガをかけるので、ハンドオーバのトリガを受け取る基地局200は、ハンドオーバ起動に関する構成を既存の構成から変更する必要が無い。よって、基地局200は、端末100からのメジャーメントイベント成立の報告を受信後、既存の構成においてハンドオーバを起動することができる。
 以上のように、本実施の形態によれば、discovery signalが導入された場合でも、遅延させることなく既存のメジャーメントイベントによってハンドオーバ制御を行うことができる。
 [実施の形態1のバリエーション]
 上記実施の形態では、一例として、比較イベント(Event A3)を適用する場合について説明した。しかし、上記実施の形態において、メジャーメントイベントは、比較イベントに限定されず、閾値イベントが設定されてもよい。
 以下では、閾値イベントの一例として、非特許文献1に記載されたEvent A4(Neighbour becomes better than threshold)について説明する。
 具体的には、端末100の判定部109が保持するEvent A4の条件式は、次式で表される。
Figure JPOXMLDOC01-appb-M000003
 数式(3)において、Threshは閾値を示す。なお、ThreshにはCRSベースのRSRQ/RSRPを比較対象とした値(つまり、CRSを基準とした値)が設定される。他のパラメータは数式(1)と同様である。
 メジャーメントイベント判定の対象セルがOff状態である場合、端末100のオフセット加算部108は、上記実施の形態と同様、数式(2)に従って、discovery signalベースのRSRQ/RSRPに対してオフセット値を加算する。
 すなわち、上記実施の形態と同様、判定部109は、Off状態のセルをメジャーメントイベント判定対象とする場合には、当該セルから送信されるdiscovery signalを用いて測定されるRSRQ/RSRP(Mdis)にオフセット値(B)を加えた値(数式(2)に示すMcrs)を、数式(3)に示すMcrsとして用いる。一方、判定部109は、On状態のセルをメジャーメントイベント判定対象とする場合には、RSRQ/RSRP測定部107において判定対象セルから送信されるCRSを用いて測定されるRSRQ/RSRPを、数式(3)に示すMcrsとして用いる。
 そして、判定部109は、判定対象セルのRSRQ/RSRPが、数式(3)に示す条件式を満たすか否か、つまり、メジャーメントイベント成立か否かを判定する。判定部109は、数式(3)に示す条件式を満たす場合、メジャーメントイベントが成立したと判定する。
 前述したようにCRSとdiscovery signalとでは送信リソースが異なること等に起因して、discovery signalベースのRSRQ/RSRPそのものに対して、CRSを基準とした既存の閾値を用いた閾値イベント判定を行うことができない。
 これに対して、端末100は、discovery signalを用いて測定されたRSRQ/RSRPに対してオフセット値を加えることにより、CRSを用いて測定されるRSRQ/RSRPに相当する値を算出する。そして、端末100は、既存の条件式(つまり、CRSを基準とする条件式)を用いる。すなわち、端末100は、閾値イベントを用いる場合でも、discovery signalを送信するOff状態のセルに対して、既存のメジャーメントイベント判定(既存の閾値)を用いる。
 これにより、端末100は、discovery signalベースのRSRQ/RSRPを用いて、既存の閾値イベント判定を行うことが可能となる。すなわち、基地局200は、端末100がdiscovery signalベースのRSRQ/RSRPを用いてメジャーメントイベント判定を行う場合でも、discovery signal用の閾値を新たに設定する必要が無い。
 また、端末100が既存のメジャーメントイベント判定(ここではEvent A4)に従ってハンドオーバのトリガをかけるので、ハンドオーバのトリガを受け取る基地局200は、ハンドオーバ起動に関する構成を既存の構成から変更する必要が無い。よって、基地局200は、端末100からのメジャーメントイベント成立の報告を受信後、既存の構成においてハンドオーバを起動することができる。
 以上、実施の形態1のバリエーションについて説明した。
 なお、本実施の形態及びバリエーションでは、メジャーメントイベントの一例として、非特許文献1に記載されたEvent A3及びEvent A4について説明したが、メジャーメントイベントはこれらに限定されず、少なくとも判定対象セルのRSRQ/RSRPを用いたメジャーメントイベントであればよい。
 (実施の形態2)
 本実施の形態では、Dual Connectivityが適用される場合について説明する。
 Dual Connectivityでは、スモールセルの導入の際、端末がキャリアアグリゲーションを適用してマクロセルとスモールセルの両方に接続する。例えば、図5は、Dual Connectivityの構成例を示す。Dual Connectivityでは、端末に対するレイヤ3の制御機能を有する複数の基地局(Master eNB:MeNB)が構成するセルグループ(Master Cell Group:MCG)と、MeNB以外の複数の基地局(Secondary eNB:SeNB)が構成するセルグループ(Secondary Cell Group:SCG)とに分類される。すなわち、Dual Connectivity適用時には、端末は、MCGとSCGとに接続し、MCG及びSCGそれぞれに対してキャリアアグリゲーションを適用している状態となる。
 また、図5に示すように、MCGをマクロセルによって構成し、SCGをスモールセルによって構成することが検討されている(例えば、非特許文献4を参照)。
 また、SCGのセルは、トラフィック収容のために端末に対して追加リソースの割り当てのみを行なうセルと、追加リソース割当に加えて、端末が再送要求又はチャネル品質情報等を送信するレイヤ1/2の制御機能を有するセルとに分類することが検討されている(例えば、非特許文献5を参照)。SCGのレイヤ1/2制御機能を有するセルは、SCG-Primary frequencyCell(SCG-PCell)と呼ばれる。なお、SCG-PCellが有する制御機能は3GPPにおいて現在議論中であり、レイヤ1/2制御機能のみに限定されるものではない。
 SCG-PCellは、端末のDual Connectivity状態への移行時に最初に追加されるセルである。例えば、Dual Connectivityでは、制御信号とユーザデータ信号とが分離され、制御信号がMCGによって送信され、ユーザデータ信号がSCGによって送信されるという形態も想定される。この場合、SCG-PCellの接続が不安定であると、ユーザデータ送信が停止してしまう恐れがある。このように、Dual Connectivityの継続のためには、SeNB及びSCG-PCellの接続を維持する必要があり、SCG-PCellはDual Connectivityにおいて重要なセルである。
 よって、Dual ConnectivityにおいてSeNB及びSCG-PCellの接続を維持するためには、SCG-PCellと、他のセルとに対してハンドオーバのトリガをかける必要がある。つまり、Dual Connectivityにおいては、端末は、SCG-PCellに対してもメジャーメントイベント判定を行う必要がある。
 しかしながら、既存のシステムでは、SCG-PCellに対するハンドオーバにおいて比較イベントを用いたメジャーメントイベント判定の定義が一部存在していない。具体的には、既存のキャリアアグリゲーションの定義では、SCG-PCellはSCellに分類される。また、既存のメジャーメントイベントの機能では、PCell(マクロ)と、PCellの周波数と異なる周波数のセルとに対する比較イベント、又は、SCell(スモールセル)と、SCellと同一周波数のセルとに対する比較イベントを設定することができるのに対して、SCell(スモールセル)と、SCellと異なる周波数のセルとに対する比較イベントを設定することができない仕様となっている。例えば、図5において、SCG-PCellと他のセルとが同じ周波数を使用している場合には、端末は比較イベントの成否を判定できる。一方、SCG-PCellと他のセルとが、それぞれ異なる周波数を使用している場合には、端末は比較イベントの成否を判定できない。
 そこで、本実施の形態では、上記課題に対して、SCG-PCellと他のセルとがそれぞれ異なる周波数を使用している場合でも、端末が比較イベント判定を行うことができるハンドオーバ判定方法について説明する。
 図6は、本実施の形態に係る端末300の構成を示すブロック図である。図6において、実施の形態1(図3)と比較すると、オフセット加算部108、判定部109がオフセット加算部108a、判定部109aにそれぞれ置き換わり、測定信号選択部301が新に追加されている。
 端末300において、レイヤ3メッセージ受信部105が受信するレイヤ3メッセージには、実施の形態1と同様の情報に加え、RSRQ/RSRPの測定に用いる信号(CRS又はdiscovery signal)の設定、及び、オフセット加算部108aにおいて使用されるオフセット値(数式(2)に示すB)の設定が含まれる。
 選択信号選択部301は、レイヤ3メッセージ受信部105から受け取る測定信号の設定に従って、受信処理部102に対して、RSRQ/RSRPの測定に用いる信号(CRS又はdiscovery signal)を指示する。こうすることで、受信処理部102では、測定信号の設定に従った信号が抽出され、RSRQ/RSRP測定部107へ出力される。
 オフセット加算部108aは、RSRQ/RSRP測定部107から受け取るdiscovery signalベースのRSRQ/RSRPに対して、レイヤ3メッセージ受信部105から受け取る設定に対応するオフセット値を加算して、オフセット加算後のRSRQ/RSRPを判定部109aへ出力する。例えば、オフセット加算部108aは、実施の形態1と同様の数式(2)に従って、オフセット値をRSRQ/RSRPに加算する。
 判定部109aは、端末300の接続先セルであるSCG-PCellのRSRQ/RSRPと、メジャーメントイベント判定対象のセルのRSRQ/RSRPとを比較して、メジャーメントイベントが成立しているか否かを判定する。例えば、判定部109aは、次式に従って、メジャーメントイベント判定を行う。
Figure JPOXMLDOC01-appb-M000004
 数式(4)において、Mscgは、SCG-PCellから送信されるCRSを用いて測定されたRSRQ/RSRPを示す。その他のパラメータ(Ofn、Ocn、Hys、Ofs、Ocs、Off)は、数式(1)と同様である。ただし、数式(4)に示す比較イベントの条件式におけるパラメータは、数式(1)に示す接続中セルであるPCellに対するパラメータとは異なり、SCG-PCellに応じた値を採ることが想定される。
 つまり、判定部109aは、他のセルのRSRQ/RSRPが、CRSを用いて測定されたSCG-PCell(判定対象の特定のセル)のRSRQ/RSRPよりも大きい場合、比較イベントの条件を満たすと判定する。
 また、端末300において、判定部109aは、Off状態のセルをメジャーメントイベント判定対象とする場合には、当該セルから送信されるdiscovery signalを用いて測定されるRSRQ/RSRP(Mdis)にオフセット値(B)を加えた値(数式(2)に示すMcrs)を、数式(4)に示すMcrsとして用いる。一方、判定部109は、On状態のセルをメジャーメントイベント判定対象とする場合には、RSRQ/RSRP測定部107において判定対象セルから送信されるCRSを用いて測定されるRSRQ/RSRPを、数式(4)に示すMcrsとして用いる。
 図7は、本実施の形態に係る端末400の構成を示すブロック図である。図7において、実施の形態1(図4)と比較すると、Event設定部201がEvent設定部201aに置き換わり、測定信号設定部401及びオフセット値設定部402が新たに追加されている。
 端末400において、Event設定部201aは、端末300においてメジャーメントイベント判定に用いる条件式のパラメータ(数式(4)に示すOfn、Ocn、Hys、Ofs、Ocs、Off等)を設定する。
 測定信号設定部401は、端末300において判定対象セルのRSRQ/RSRPの測定に用いる信号(CRS又はdiscovery signal)を設定する。
 オフセット値設定部402は、端末300においてdiscovery signalを用いて測定されたRSRQ/RSRPに対して加算されるオフセット値(数式(2)に示すB)を設定する。
 以上のように、本実施の形態では、既存のメジャーメントイベントに加え数、式(4)に示す比較イベントの条件式を有するメジャーメントイベントが定義される。これにより、端末300は、既存のメジャーメントイベントでは実施不可能であった、互いに周波数が異なるSCG-PCellと他のセルとの間でも、比較イベント判定を行うことができる。よって、本実施の形態によれば、SCG-PCellに対して使用周波数の異なるセルへのハンドオーバの起動が可能となる。よって、Dual Connectivityの継続を安定して維持することができる。
 更に、本実施の形態では、実施の形態1と同様、判定対象セルのRSRQ/RSRPがdiscovery signalを用いて測定される場合には、メジャーメントイベントにおいて、当該discovery signalベースのRSRQ/RSRPに対してオフセット値が加算された値(CRSベースのRSRQ/RSRPに相当する値)が使用される。これにより、本実施の形態によれば、実施の形態1と同様、discovery signalが導入される場合でも、遅延させることなく、CRSを基準としたメジャーメントイベントを適用することができる。
 なお、本実施の形態では、判定対象セルのRSRQ/RSRPの測定に用いる信号の設定、及び、オフセット値Bの設定が基地局400から端末300へ設定される場合について説明した。しかし、本実施の形態において、端末300がこれらの設定を行ってもよい。この場合、端末300では、測定信号選択部301が不要となり、基地局400では、測定信号設定部401及びオフセット値設定部402が不要となる。例えば、オフセット値Bについては、端末300は、周波数帯域とオフセット値との対応関係を示すテーブルを有し、使用するオフセット値Bを周波数帯域に応じて一意に特定してもよい。また、端末300は、判定対象セルが送信している信号を検出することにより、判定対象セルのRSRQ/RSRPの測定に用いる信号を特定してもよい。
 以上、本開示の各実施の形態について説明した。
 なお、上記各実施の形態では、本開示をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)又は、LSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 以上、本開示の端末は、接続先セルから他のセルへのハンドオーバ起動を判定する端末であって、他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定する測定部と、第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出する加算部と、他のセルの第1の受信品質値又は第3の受信品質値が、前記セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する判定部と、を具備する構成を採る。
 本開示の端末において、上記判定部は、第1の受信品質値又は第3の受信品質値が、セル固有参照信号を用いて測定された接続先セルの受信品質値よりも大きい場合、上記条件を満たすと判定する。
 本開示の端末において、上記判定部は、第1の受信品質値又は第3の受信品質値が、セル固有参照信号を基準とする閾値よりも大きい場合、上記条件を満たすと判定する。
 本開示の端末において、端末が複数のマクロセルから構成される第1グループと、が複数のスモールセルから構成される第2グループとに接続するDual Connectivityにおいて、接続先セルは、第2グループのうち、制御機能を有する特定のセルであって、上記判定部は、第1の受信品質値又は第3の受信品質値が、セル固有参照信号を用いて測定された特定のセルの受信品質値よりも大きい場合、上記条件を満たすと判定する。
 本開示のハンドオーバ判定方法は、接続先セルから他のセルへのハンドオーバ起動を判定するハンドオーバ判定方法であって、他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定し、第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出し、他のセルの第1の受信品質値又は第3の受信品質値が、セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する。
 本開示は、移動体通信システムに有用である。
 100,300 端末
 200,400 基地局
 101-1,207-2 受信アンテナ
 101-2,207-1 送信アンテナ
 102,208 受信処理部
 103,112,205,209 メディアアクセス制御部
 104,111,204,210 無線リンク制御部
 105,211 レイヤ3メッセージ受信部
 106 RSRQ/RSRP選択部
 107 RSRQ/RSRP測定部
 108 オフセット加算部
 109 判定部
 110,203 レイヤ3メッセージ送信部
 113,206 送信処理部
 201 Event設定部
 202 RSRQ/RSRP設定部
 212 ハンドオーバ判定部

Claims (5)

  1.  接続先セルから他のセルへのハンドオーバ起動を判定する端末であって、
     前記他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、前記他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定する測定部と、
     前記第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出する加算部と、
     前記他のセルの前記第1の受信品質値又は前記第3の受信品質値が、前記セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する判定部と、
     を具備する端末。
  2.  前記判定部は、前記第1の受信品質値又は前記第3の受信品質値が、前記セル固有参照信号を用いて測定された前記接続先セルの受信品質値よりも大きい場合、前記条件を満たすと判定する、
     請求項1に記載の端末。
  3.  前記判定部は、前記第1の受信品質値又は前記第3の受信品質値が、前記セル固有参照信号を基準とする閾値よりも大きい場合、前記条件を満たすと判定する、
     請求項1に記載の端末。
  4.  前記端末が、複数のマクロセルから構成される第1グループと、複数のスモールセルから構成される第2グループとに接続するDual Connectivityにおいて、前記接続先セルは、前記第2グループのうち、制御機能を有する特定のセルであって、
     前記判定部は、前記第1の受信品質値又は前記第3の受信品質値が、前記セル固有参照信号を用いて測定された前記特定のセルの受信品質値よりも大きい場合、前記条件を満たすと判定する、
     請求項1に記載の端末。
  5.  接続先セルから他のセルへのハンドオーバ起動を判定するハンドオーバ判定方法であって、
     前記他のセルから送信されるセル固有参照信号を用いた第1の受信品質値、又は、前記他のセルから送信されるセル検出用参照信号を用いた第2の受信品質値を測定し、
     前記第2の受信品質値に対してオフセット値を加算して、第3の受信品質値を算出し、
     前記他のセルの前記第1の受信品質値又は前記第3の受信品質値が、前記セル固有参照信号を基準とするハンドオーバ起動の条件を満たすか否かを判定する、
     ハンドオーバ判定方法。
PCT/JP2015/000145 2014-01-31 2015-01-15 端末及びハンドオーバ判定方法 WO2015115037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015559795A JP6411383B2 (ja) 2014-01-31 2015-01-15 端末及びハンドオーバ判定方法
US15/160,561 US10433231B2 (en) 2014-01-31 2016-05-20 Terminal and handover judgement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-017127 2014-01-31
JP2014017127 2014-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/160,561 Continuation US10433231B2 (en) 2014-01-31 2016-05-20 Terminal and handover judgement method

Publications (1)

Publication Number Publication Date
WO2015115037A1 true WO2015115037A1 (ja) 2015-08-06

Family

ID=53756624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000145 WO2015115037A1 (ja) 2014-01-31 2015-01-15 端末及びハンドオーバ判定方法

Country Status (3)

Country Link
US (1) US10433231B2 (ja)
JP (1) JP6411383B2 (ja)
WO (1) WO2015115037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782283B1 (ko) * 2015-12-14 2017-09-26 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 네트워크 조건들에 기반한 계획된 운동의 조정
CN109302729A (zh) * 2017-07-24 2019-02-01 中国联合网络通信集团有限公司 一种网络切换方法及接入设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9913181B1 (en) * 2015-08-26 2018-03-06 Sprint Spectrum L.P. Reference signal power variation to indicate load information
US9955295B1 (en) 2017-04-19 2018-04-24 Sprint Spectrum L.P. Use of positioning reference signal configuration as indication of operational state of a cell
US10868588B2 (en) * 2017-06-01 2020-12-15 Qualcomm Incorporated Conditional reference signal transmission and measurement
KR102470011B1 (ko) * 2017-10-28 2022-11-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터를 전송하는 방법, 네트워크 장치와 단말 장치
JP2021525038A (ja) * 2018-06-15 2021-09-16 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 測定情報の報告方法、端末装置の構成方法及び装置
CN111343680B (zh) * 2020-03-02 2022-04-01 东南大学 一种基于参考信号接收功率预测的切换时延减少方法
CN117769854A (zh) * 2022-07-25 2024-03-26 北京小米移动软件有限公司 一种信息传输方法、装置、通信设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024574A1 (ja) * 2011-08-12 2013-02-21 パナソニック株式会社 ハンドオーバ制御方法、無線通信端末及び無線通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059062B2 (ja) * 2009-07-08 2012-10-24 シャープ株式会社 通信システム、移動局装置および基地局装置
US20120028286A1 (en) * 2010-07-30 2012-02-02 Saller Charles F Method for evaluating the breakdown of proteins, polypeptides and peptides
US8880076B2 (en) * 2011-01-31 2014-11-04 Panasonic Intellectual Property Corporation Of America Terminal and quality transmission method
US9451515B2 (en) * 2011-05-06 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for neighbor cell range extension
EP4142173A1 (en) * 2011-08-05 2023-03-01 Panasonic Intellectual Property Corporation of America Csi-rs reporting for base stations having multiple transmission points
US8843139B2 (en) * 2011-09-26 2014-09-23 Blackberry Limited Method and system for small cell discovery in heterogeneous cellular networks
EP2804524B1 (en) * 2012-01-19 2019-04-24 Technion Research & Development Foundation Ltd. Vessel imaging system and method
US9301161B2 (en) * 2012-07-27 2016-03-29 Qualcomm Incorporated Method and apparatus for available bandwidth estimation by a user equipment in idle and/or connected mode
EP3668181A1 (en) * 2012-08-02 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) A node and method for handing over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
US9271205B2 (en) * 2013-10-31 2016-02-23 Google Technology Holdings LLC Measurement management in small-cell systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024574A1 (ja) * 2011-08-12 2013-02-21 パナソニック株式会社 ハンドオーバ制御方法、無線通信端末及び無線通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BROADCOM CORPORATION: "RSRQ calculation for small cell On/Off", 3GPP TSG-RAN WG1#77 R1- 142279, 10 May 2014 (2014-05-10), XP050789396 *
ETRI: "Small cell discovery and cell state transition", 3GPP TSG-RAN WG1#75 RL-135276, 2 November 2013 (2013-11-02), XP050734970 *
HIROKI HARADA: "A Study on Discovery Signal for Efficient Macro-assisted Small Cell Discovery Mechanism in LTE SCE", IEICE TECHNICAL REPORT, vol. 113, no. 361, 18 December 2013 (2013-12-18), pages 53 - 58 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782283B1 (ko) * 2015-12-14 2017-09-26 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 네트워크 조건들에 기반한 계획된 운동의 조정
US9927808B2 (en) 2015-12-14 2018-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Adjustment of planned movement based on radio network conditions
US10866595B2 (en) 2015-12-14 2020-12-15 Telefonaktiebolaget Lm Ericsson (Publ) Adjustment of planned movement based on radio network conditions
CN109302729A (zh) * 2017-07-24 2019-02-01 中国联合网络通信集团有限公司 一种网络切换方法及接入设备
CN109302729B (zh) * 2017-07-24 2022-03-15 中国联合网络通信集团有限公司 一种网络切换方法及接入设备

Also Published As

Publication number Publication date
US10433231B2 (en) 2019-10-01
JP6411383B2 (ja) 2018-10-24
US20160269967A1 (en) 2016-09-15
JPWO2015115037A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6411383B2 (ja) 端末及びハンドオーバ判定方法
US20210391970A1 (en) Ue, network node and methods of assisting measurements in mixed signal configuration
JP6718493B2 (ja) 基地局、受信品質取得方法及び集積回路
US11864008B2 (en) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
EP3193548B1 (en) Wireless terminal and method thereof
US9872194B2 (en) Wireless communication terminal, wireless communication base station, wireless communication system, and reporting method
US10959104B2 (en) Measurement control method and base station
CN107079318B (zh) 非必要rat间切换的优化检测
JP6303000B2 (ja) ユーザ端末、基地局および無線通信方法
US20220104300A1 (en) Reporting From User Equipment to the Network for Radio Link Monitoring, Beam Failure Detection, and Beam Failure Recovery
KR20130036510A (ko) 무선 통신 시스템에서 무선 링크 모니터링 장치 및 방법
US10645661B2 (en) Configuring discovery signals
CN108882264B (zh) 双连接下异频邻区的测量方法及系统
US20220272590A1 (en) Terminal, base station, and radio communication method
KR102483791B1 (ko) 유저장치
EP3903521A1 (en) Anr configuration, measurements and reporting for power limited devices
TWI770884B (zh) 支援5g新無線電未授權頻譜中基於參考訊號的測量的ue能力信令
JP2020017976A (ja) 端末装置、無線通信システム、制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743193

Country of ref document: EP

Kind code of ref document: A1