WO2015113274A1 - 基带处理单元、射频拉远单元及通信方法 - Google Patents

基带处理单元、射频拉远单元及通信方法 Download PDF

Info

Publication number
WO2015113274A1
WO2015113274A1 PCT/CN2014/071802 CN2014071802W WO2015113274A1 WO 2015113274 A1 WO2015113274 A1 WO 2015113274A1 CN 2014071802 W CN2014071802 W CN 2014071802W WO 2015113274 A1 WO2015113274 A1 WO 2015113274A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
signal
radio frequency
baseband
processing unit
Prior art date
Application number
PCT/CN2014/071802
Other languages
English (en)
French (fr)
Inventor
王艺
陈学梁
童文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480073597.0A priority Critical patent/CN105917732B/zh
Priority to PCT/CN2014/071802 priority patent/WO2015113274A1/zh
Priority to EP14880569.0A priority patent/EP3086622A4/en
Publication of WO2015113274A1 publication Critical patent/WO2015113274A1/zh
Priority to US15/215,785 priority patent/US10389560B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a baseband processing unit, a radio frequency remote unit, and a communication method. Background technique
  • RAN radio access network
  • C-RAN Centralized Processing, Collaborative Radio, and Real-time Cloud Infrastructure
  • the C-RAN architecture mainly includes three parts: a distributed wireless network composed of a radio remote unit (RRU) and an antenna; a building base band unit (BBU); An optical fiber connecting the radio remote unit and the baseband processing unit.
  • RRU radio remote unit
  • BBU building base band unit
  • Embodiments of the present invention provide a baseband processing unit, a radio frequency remote unit, and a communication method, which are used to implement a C-RAN architecture in a place where optical fiber resources are insufficient.
  • an embodiment of the present invention provides a baseband processing unit, where the baseband processing unit includes:
  • the millimeter wave band transceiver is configured to receive an interface signal sent by the radio remote unit through the millimeter wave band;
  • An interface signal processing module configured to receive the interface of the millimeter wave band transceiver The signal is converted to uplink baseband data;
  • the baseband data processing module is configured to process the uplink baseband data, obtain an uplink baseband signal, and send the uplink baseband signal to the gateway.
  • the millimeter wave band transceiver is further configured to:
  • the baseband data processing module is further configured to:
  • the uplink baseband data is processed to obtain an uplink baseband signal, and the uplink baseband signal is sent to another baseband processing unit, so that another baseband processing unit sends the uplink baseband signal to the gateway.
  • the millimeter wave band transceiver receives the radio remote unit
  • the interface signal transmitted through the millimeter wave band adopts at least one of the following duplex modes:
  • Time division duplex or, frequency division duplex; or, code division duplex; or, full duplex.
  • the millimeter wave band transceiver receives the radio remote unit
  • the signal transmitted through the millimeter wave band adopts at least one of the following multiple access methods:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • an embodiment of the present invention provides a baseband processing unit, where the baseband processing unit includes:
  • a baseband data processing module configured to receive a downlink baseband signal from a gateway, process the downlink baseband signal, obtain downlink baseband data, and send the downlink baseband data to an interface signal processing module;
  • An interface signal processing module configured to receive the downlink from the baseband data processing module Baseband data is converted to an interface signal
  • a millimeter wave band transceiver for transmitting the interface signal to a remote radio unit through a millimeter wave band.
  • the millimeter wave band transceiver is further configured to:
  • Channel information is transmitted to the radio remote unit through the millimeter wave band, and the channel information is used by the radio remote unit to perform beamforming on the interface signal.
  • the baseband data processing module is specifically used to
  • the millimeter wave band transceiver passes the millimeter wave band
  • the radio remote unit transmits the signal by using at least one of the following duplex modes:
  • Time division duplex or, frequency division duplex; or, code division duplex; or, full duplex.
  • the millimeter wave band transceiver passes the millimeter wave band
  • the radio remote unit transmits the signal by using at least one of the following multiple access methods:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • an embodiment of the present invention provides a radio remote unit, where the radio remote unit includes:
  • a radio frequency signal transceiver configured to receive a radio frequency signal sent by a user equipment
  • a radio frequency signal processing module configured to convert the radio frequency signal received by the radio frequency signal transceiver into uplink baseband data
  • the interface signal processing module is configured to convert the uplink baseband data into an interface signal; and the millimeter wave band transceiver is configured to send the interface signal to the communication device by using a millimeter wave band.
  • the communications device includes: Millimeter wave base station; or, wireless access point hub; or, other radio remote unit; or, baseband processing unit.
  • the radio frequency signal transceiver is specifically configured to:
  • the RF signal transmitted by the user equipment is received through the millimeter wave band or the cellular band.
  • an embodiment of the present invention provides a radio remote unit, where the radio remote unit includes:
  • the millimeter wave band transceiver is configured to receive an interface signal sent by the communication device through the millimeter wave band; the interface signal processing module is configured to convert the interface signal into downlink baseband data; and the radio frequency signal processing module is configured to use the downlink baseband The data is converted into a radio frequency signal; the radio frequency signal transceiver is configured to send the radio frequency signal to the user equipment.
  • the communications device includes:
  • Millimeter wave base station or, wireless access point hub; or, other radio remote unit; or, baseband processing unit.
  • the radio frequency signal transceiver is specifically used to:
  • the RF signal is transmitted to the user equipment through the millimeter wave band or the cellular band.
  • an embodiment of the present invention provides a communication method, including:
  • the uplink baseband data is processed to obtain an uplink baseband signal, and the uplink baseband signal is sent to the gateway.
  • the method further includes:
  • the method further includes:
  • the uplink baseband data is processed to obtain an uplink baseband signal, and the uplink baseband signal is sent to another baseband processing unit, so that another baseband processing unit sends the uplink baseband signal to the gateway.
  • the receiving radio remote unit transmits by using a millimeter wave band
  • the interface signal uses at least one of the following duplex modes:
  • Time division duplex or, frequency division duplex; or, code division duplex; or, full duplex.
  • the receiving radio remote unit transmits by using a millimeter wave band
  • the signal uses at least one of the following multiple access methods:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • the present invention provides a communication method, including:
  • the interface signal is transmitted to the remote radio unit through the millimeter wave band.
  • the method further includes:
  • Channel information is transmitted to the radio remote unit through the millimeter wave band, and the channel information is used by the radio remote unit to perform beamforming on the interface signal.
  • the method further includes:
  • the downlink baseband signal is obtained from the gateway by another baseband processing unit, and the downlink baseband signal is processed to obtain downlink baseband data.
  • the millimeter wave frequency band is extended to the radio frequency
  • the unit transmits at least one of the following duplex modes:
  • the millimeter wave frequency band is extended to the radio frequency
  • the unit transmits at least one of the following multiple access methods:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • a seventh aspect of the present invention provides a communication method, including:
  • the interface signal is transmitted to the communication device via the millimeter wave band.
  • the communications device includes:
  • Millimeter wave base station or, wireless access point hub; or, other radio remote unit; or, baseband processing unit.
  • the receiving, by the user equipment, the radio frequency signal includes:
  • the RF signal transmitted by the user equipment is received through the millimeter wave band or the cellular band.
  • the eighth aspect of the present invention provides a communication method, including:
  • the communications device includes:
  • Millimeter wave base station or, wireless access point hub; or, other radio remote unit; or, baseband processing unit.
  • the sending, by the user equipment, the radio frequency signal includes:
  • the RF signal is transmitted to the user equipment through the millimeter wave band or the cellular band.
  • the baseband The processing unit includes a millimeter wave band transceiver, an interface signal processing module, and a baseband data processing module.
  • the millimeter wave band transceiver is configured to receive an interface signal sent by the radio remote unit through the millimeter wave band;
  • the interface signal processing module is configured to convert the interface signal received by the millimeter wave band transceiver into uplink baseband data;
  • the baseband data processing module is configured to process the uplink baseband data, obtain an uplink baseband signal, and send the uplink baseband signal to a gateway.
  • the millimeter wave communication between the baseband processing unit and the radio remote unit is realized, and the optical fiber resource is not needed, so that the C-RAN architecture can be realized where the optical fiber resources are not rich.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of a millimeter wave communication architecture according to the present invention
  • Embodiment 1 of a baseband processing unit according to the present invention is a schematic structural view of Embodiment 1 of a baseband processing unit according to the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a baseband processing unit according to the present invention.
  • Embodiment 1 of a radio remote unit is a schematic structural view of Embodiment 1 of a radio remote unit according to the present invention.
  • Embodiment 2 of a radio remote unit is a schematic structural diagram of Embodiment 2 of a radio remote unit according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a millimeter wave communication architecture according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 3 of a millimeter wave communication architecture according to the present invention.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 1 of a communication method according to the present invention.
  • Embodiment 9 is a schematic flowchart of Embodiment 2 of a communication method according to the present invention.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 3 of a communication method according to the present invention.
  • FIG. 11 is a schematic flowchart of Embodiment 4 of a communication method according to the present invention.
  • FIG. 12 is a schematic diagram of a signaling process of a communication method according to the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a millimeter wave communication architecture according to the present invention.
  • the millimeter wave communication architecture provided in this embodiment includes: a radio remote unit (Radio Remote Unit, RRU) and a baseband processing unit (BBU).
  • RRU Radio Remote Unit
  • BBU baseband processing unit
  • the radio remote unit RRU1-RRU3 and the baseband processing unit BBU are connected by a millimeter wave (mm wave).
  • the BBU can connect only one radio remote unit RRU1.
  • the BBU and RRU1 are connected by millimeter waves.
  • the millimeter wave refers to an electromagnetic wave having a wavelength of 1 to 10 mm.
  • the millimeter wave is a high-frequency wave with respect to a low-frequency wave of a cellular band, and has an extremely wide bandwidth, and is generally considered to have a millimeter wave frequency range of 26.5 to 300 GHz.
  • the low frequency wave of the cellular frequency band is more commonly used, and for the millimeter wave, there is currently no commercial deployment.
  • the specific implementation process of millimeter wave communication between the radio frequency remote unit and the baseband processing unit will be described from the internal structure of the baseband processing unit and the radio remote unit, respectively.
  • the baseband processing unit 20 provided by the embodiment of the present invention includes: a millimeter wave band transceiver 201, an interface signal processing module 202, and a baseband data processing module 203.
  • the millimeter wave band transceiver 201 is configured to receive an interface signal sent by the radio remote unit through the millimeter wave band;
  • the interface signal processing module 202 is configured to convert the interface signal received by the millimeter wave band transceiver into uplink baseband data;
  • the baseband data processing module 203 is configured to process the uplink baseband data to obtain an uplink baseband signal, and send the uplink baseband signal to the gateway.
  • this embodiment firstly communicates with the baseband processing unit through the millimeter wave band and the radio remote unit from the uplink side.
  • the signal when the baseband processing unit and the radio remote unit communicate, the signal needs to conform to a certain interface protocol. Therefore, in order to distinguish the signal from other signals, this embodiment is referred to as an interface signal.
  • the millimeter wave band transceiver 201 receives the interface signal sent by the radio frequency remote unit through the millimeter wave frequency band, and the interface signal can be, for example, a common public radio interface (CPRI) signal.
  • CPRI common public radio interface
  • the millimeter wave band transceiver 201 receives at least one of the following duplex signals when receiving the interface signal transmitted by the radio remote unit through the millimeter wave band.
  • Mode Time division duplex; or, frequency division duplex; or, code division duplex; or, full duplex.
  • the millimeter wave band transceiver 201 receives at least one of the following signals when receiving the signal transmitted by the radio frequency remote unit through the millimeter wave band. Address method:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • the interface signal processing module 202 converts the interface signals received by the millimeter wave band transceiver 201 into uplink baseband data.
  • the baseband data processing module 203 processes the uplink baseband data to obtain an uplink baseband signal, and transmits the uplink baseband signal to the gateway.
  • the uplink baseband signal may specifically be an uplink baseband signal corresponding to the transmission protocol.
  • the transmission protocol is GPRS Turning Protocal (GTP).
  • the baseband data processing module 203 completes the process of transmitting the uplink baseband signal to the gateway, that is, completing an uplink transmission process.
  • the baseband processing unit receives an interface signal sent by the radio frequency remote unit through the millimeter wave frequency band through the millimeter wave band transceiver; the interface signal processing module converts the interface signal received by the millimeter wave band transceiver
  • the uplink baseband data is processed; the baseband data processing module processes the uplink baseband data to obtain an uplink baseband signal, and sends the uplink baseband signal to the gateway, so that the millimeter wave is transmitted between the baseband processing unit and the radio remote unit Communication, without the use of fiber resources, makes the C-RAN architecture possible in places where fiber resources are not abundant.
  • the millimeter wave band transceiver 201 is further configured to: receive channel information that is sent by the radio remote unit through a millimeter wave band;
  • the interface signal processing module 202 is specifically configured to convert the beamformed interface signal into uplink baseband data.
  • beamforming of the interface signal can be performed.
  • the interface signal may be beamformed according to the channel information to obtain a beamformed interface signal.
  • the interface signal processing module 202 converts the beamformed interface signals into uplink baseband data.
  • the baseband data processing module 203 is further configured to: process the uplink baseband data, obtain an uplink baseband signal, and send the uplink baseband signal to another baseband Processing unit, so that another baseband processing unit sends the uplink baseband signal to the gateway.
  • the baseband processing unit 20 when the baseband processing unit 20 is located in the C-RAN architecture, the baseband processing unit 20 is any baseband processing unit in the baseband processing pool, and the baseband data processing module 203 processes the uplink baseband data to obtain an uplink.
  • the uplink baseband signal may also be sent to another baseband processing unit in the baseband processing pool, and the uplink baseband signal is sent by the other baseband processing unit to the gateway.
  • the cooperation of the baseband processing units is achieved by transmitting the uplink baseband signal to another baseband processing unit to cause another baseband processing unit to transmit the uplink baseband signal to the gateway.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of a baseband processing unit according to the present invention.
  • the baseband processing unit 30 provided by the embodiment of the present invention includes: a baseband data processing module 301, an interface signal processing module 302, and a millimeter wave band transceiver 303.
  • the baseband data processing module 301 is configured to receive a downlink baseband signal from the gateway, process the downlink baseband signal, obtain downlink baseband data, and send the downlink baseband data to the interface signal processing module.
  • the interface signal processing module 302 is configured to convert the downlink baseband data received from the baseband data processing module into interface data
  • the millimeter wave band transceiver 303 is configured to send the interface data to the radio remote unit through the millimeter wave band.
  • the baseband processing unit communicates with the radio remote unit through the millimeter wave band from the downlink side.
  • the internal structure of the baseband processing unit is re-divided for convenience of explanation.
  • the millimeter wave band transceiver 303 in this embodiment and the millimeter wave band transceiver 201 in FIG. 2 can be the same millimeter wave band transceiver; the interface signal processing module 302 in this embodiment and the interface signal processing module 302 in FIG.
  • the interface signal processing module 202 can be the same interface signal processing module 202; the baseband data processing module 301 in this embodiment and the baseband data processing module 203 in FIG. 2 can be the same baseband data processing module.
  • the baseband data processing module 301 receives the downlink baseband signal from the gateway, processes the downlink baseband signal, obtains downlink baseband data, and sends the downlink baseband data to the interface signal processing module 302.
  • the downlink baseband signal may be a downlink baseband signal corresponding to the transmission protocol.
  • the transmission protocol is GPRS Turning Protocal (GTP).
  • the interface signal processing module 302 converts the downlink baseband data received from the baseband data processing module into an interface signal, and the interface signal may be, for example, a Common Public Radio Interface (CPRI) signal, in this embodiment.
  • CPRI Common Public Radio Interface
  • the millimeter wave band transceiver 303 transmits an interface signal to the remote radio unit through the millimeter wave band.
  • the interface signal is sent by the radio remote unit to the user equipment or other communication device, thereby completing the downlink transmission.
  • the millimeter wave band transceiver uses at least one of the following pairs when transmitting signals to the radio remote unit through the millimeter wave band Working method:
  • Time division duplex or, frequency division duplex; or, code division duplex; or, full duplex.
  • the millimeter wave band transceiver uses at least one of the following when transmitting a signal to the remote radio unit through the millimeter wave frequency band. Address method:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • the radio remote unit receives the downlink baseband signal from the gateway through the baseband data processing module 301, processes the downlink baseband signal, obtains downlink baseband data, and sends the downlink baseband data to the interface signal processing.
  • the interface signal processing module converts the downlink baseband data received from the baseband data processing module into interface data; millimeter wave frequency
  • the segment transceiver 303 transmits the interface data to the radio remote unit through the millimeter wave frequency band, and realizes millimeter wave communication between the baseband processing unit and the radio remote unit without using optical fiber resources, so that where the optical fiber resources are not rich,
  • the architecture of the C-RAN can also be implemented.
  • the millimeter wave band transceiver 303 is further configured to: send channel information to the radio remote unit through the millimeter wave band, where the channel information is used for the radio remote unit Beamforming the interface data.
  • the millimeter wave band transceiver 303 is also used to: pass millimeter wave
  • the frequency band sends channel information to the remote radio unit, and the channel information is used by the radio remote unit to perform beamforming on the interface data.
  • the baseband data processing module 301 is specifically configured to obtain a downlink baseband signal from a gateway by another baseband processing unit, and process the downlink baseband signal to obtain downlink baseband data. And transmitting the downlink baseband data to the interface signal processing module.
  • the baseband processing unit 30 when the baseband processing unit 30 is located in the C-RAN architecture, the baseband processing unit 30 is any baseband processing unit in the baseband processing pool, and another baseband processing unit in the baseband processing pool may obtain the downlink baseband signal from the gateway. Then, the baseband data processing module 301 communicates with another baseband processing unit to obtain a downlink baseband signal.
  • the downlink baseband signal is obtained from the gateway by another baseband processing unit, the downlink baseband signal is processed, downlink downlink baseband data is obtained, and the downlink baseband data is sent to the interface signal processing module, thereby realizing each Collaboration of baseband processing units.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a radio remote unit according to the present invention.
  • the remote radio unit 40 includes: a radio frequency signal transceiver 401, a radio frequency signal processing module 402, an interface signal processing module 403, and a millimeter wave band transceiver 404.
  • a radio frequency signal transceiver 401 configured to receive a radio frequency signal sent by the user equipment
  • the radio frequency signal processing module 402 is configured to convert the radio frequency signal received by the radio frequency signal transceiver into uplink baseband data
  • the interface signal processing module 403 is configured to convert the uplink baseband data into an interface signal
  • the millimeter wave band transceiver 404 is configured to send the interface signal to the communication device by using a millimeter wave band.
  • the radio frequency signal transceiver 401 receives the radio frequency signal sent by the user equipment, and includes two possible implementation manners in the receiving process, and one implementation manner is: receiving the user equipment through the millimeter wave frequency band.
  • Another possible implementation of the RF signal is: receiving a radio frequency signal transmitted by the user equipment through the cellular frequency band.
  • the RF signal processing module 402 converts the RF signal received by the RF signal transceiver 401 into uplink baseband data
  • the interface signal processing module 403 converts the uplink baseband data into an interface signal, and the interface signal may be, for example, a Common Public Radio Interface (CPRI) signal.
  • CPRI Common Public Radio Interface
  • the millimeter wave band transceiver 404 transmits the interface signal to the communication device via the millimeter wave band.
  • the communication device includes: a millimeter wave base station; or, a wireless access point hub; or, another radio frequency remote unit; or, a baseband processing unit.
  • the radio remote unit of the present invention receives the radio frequency signal sent by the user equipment by using the radio frequency signal transceiver; the radio frequency signal processing module converts the radio frequency signal received by the radio frequency signal transceiver into uplink baseband data; interface signal processing The module 403 converts the uplink baseband data into an interface signal; the millimeter wave band transceiver transmits the interface signal to the communication device through the millimeter wave frequency band, and realizes millimeter wave communication between the baseband processing unit and the radio remote unit without using
  • the fiber resources make it possible to implement the C-RAN architecture where the fiber resources are not abundant.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a radio remote unit according to the present invention. As shown in FIG. 5, the radio remote unit 50 includes:
  • the millimeter wave band transceiver 501 is configured to receive an interface signal sent by the communication device through the millimeter wave band;
  • the interface signal processing module 502 is configured to convert the interface signal into downlink baseband data; the radio frequency signal processing module 503 is configured to convert the downlink baseband data into a radio frequency signal; and the radio frequency signal transceiver 504 is configured to send to the user equipment.
  • the radio frequency signal is configured to convert the interface signal into downlink baseband data; the radio frequency signal processing module 503 is configured to convert the downlink baseband data into a radio frequency signal; and the radio frequency signal transceiver 504 is configured to send to the user equipment.
  • the radio frequency signal is configured to convert the interface signal into downlink baseband data; the radio frequency signal processing module 503 is configured to convert the downlink baseband data into a radio frequency signal; and the radio frequency signal transceiver 504 is configured to send to the user equipment.
  • the radio frequency signal is configured to convert the interface signal into downlink baseband data; the radio frequency signal processing module 503 is configured to convert the downlink baseband data into a radio frequency signal; and the radio frequency signal transceiver 504 is configured
  • the radio remote unit communicates with the baseband processing unit through the millimeter wave frequency band, and is described. It can be understood by those skilled in the art that, in this embodiment, the internal structure of the radio remote unit is re-divided for convenience of explanation.
  • the millimeter wave band transceiver 501 and FIG. 4 in this embodiment are shown in FIG. Medium millimeter wave band transceiver 404
  • the interface signal processing module 502 in this embodiment and the interface signal processing module 403 in FIG. 4 can be the same interface signal processing module; the RF signal processing module 503 in this embodiment is
  • the RF signal processing module 402 in FIG. 4 can be the same RF signal processing module.
  • the RF signal transceiver 504 is the same RF signal transceiver as the RF signal transceiver 401 of FIG.
  • the millimeter wave band transceiver 501 receives the interface signal transmitted by the communication device through the millimeter wave band.
  • the communication device includes: a millimeter wave base station; or, a wireless access point hub; or, another radio remote unit; or a baseband processing unit.
  • the interface signal may be, for example, a common public radio interface (CPRI) signal.
  • CPRI common public radio interface
  • Interface signal processing module 502 converts the interface signals into downlink baseband data.
  • the RF signal processing module 503 converts the downlink baseband data into a radio frequency signal.
  • the radio frequency signal transceiver 504 transmits the radio frequency signal to the user equipment. Specifically, the radio frequency signal transceiver 504 transmits a radio frequency signal to the user equipment through the millimeter wave band or the cellular band.
  • the radio remote unit receives the interface signal sent by the communication device through the millimeter wave band through the millimeter wave band transceiver; the interface signal processing module converts the interface signal into downlink baseband data; the radio frequency signal processing module will The downlink baseband data is converted into a radio frequency signal; the radio frequency signal transceiver transmits the radio frequency signal to the user equipment, and realizes millimeter wave communication between the baseband processing unit and the radio remote unit without using optical fiber resources, so that the optical fiber resources are not rich.
  • Local, C-RAN architecture can also be implemented.
  • the structure of the baseband processing unit and the radio remote unit are described in detail.
  • the specific implementation process when the baseband processing unit and the radio remote unit are located in the C-RAN architecture, a new millimeter can be formed.
  • Wave communication architecture In the above embodiments, the description of the connection between the communication devices is implicitly explained. First, the connection relationship between the communication devices in the millimeter wave communication architecture will be described in detail.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a millimeter wave communication architecture according to the present invention.
  • the millimeter wave communication architecture includes three radio remote units, which are RRU1, RRU2, and RRU3, respectively, and constitute a distributed wireless network.
  • RRU1, RRU2, and RRU3 are respectively connected to the BBU by millimeter waves.
  • the connection between the RRU1 and the RRU2, the RRU2, and the RRU3 may include at least one of a millimeter wave connection, a wired connection, and a cellular band connection.
  • a possible connection is schematically shown, RRU1 and RRU2 are connected by millimeter wave, and RRU2 and RRU3 are connected by a cellular band. For other connections, this embodiment will not be repeated here.
  • RRU1, RRU2, and RRU3 form a distributed wireless network, forming a C-RAN network architecture, which can implement effective multi-cell joint resource allocation and cooperative multi-point transmission technology, thereby improving throughput of cell edge users. , improve system spectral efficiency.
  • the millimeter wave communication architecture further includes: at least one millimeter wave base station, each of the millimeter wave base stations is a base station integrally provided by the baseband processing unit and the radio remote unit; each of the millimeter wave base station and the first user equipment Connected by the millimeter wave, and/or each of the millimeter wave base stations and the second user equipment are connected by a cellular frequency band; when the number of the remote radio unit is at least one, the at least one millimeter wave base station and at least one The radio remote unit forms a first network structure; wherein, the connection manner of any one of the at least one millimeter wave base station and the at least one radio remote unit comprises a millimeter wave connection, a wired connection, At least one of the cellular band connections.
  • the connection between the millimeter wave base station and the video remote unit may be a millimeter wave connection, a wired connection, or a cellular band connection.
  • the millimeter wave base station When the millimeter wave base station is one and the remote radio unit is two, the millimeter wave base station can be respectively connected to two radio remote units, and the connection mode is any one of a millimeter wave connection, a wired connection, and a cellular band connection. .
  • one millimeter wave base station and one of the radio remote units can be connected by any one of a millimeter wave connection, a wired connection, and a cellular frequency connection.
  • One millimeter wave base station is connected to one of the other radio remote units by a millimeter wave connection, a wired connection, or a cellular band connection.
  • FIG. 6 shows only one possible architecture. For other possible architectures, this embodiment will not be repeated here.
  • Fig. 6 three millimeter wave base stations are shown, which are eNB1, eNB2, and eNB3, respectively.
  • eNB1 and RRU1 are connected by millimeter wave
  • eNB1 and UE1 are connected by millimeter wave
  • eNB1 and UE2 are connected by cellular frequency band
  • eNB2 and RRU2 are connected by wire
  • eNB2 is connected with UE2.
  • eNB3 and RRU3 are connected through the cellular frequency band
  • eNB3 and UE3 are connected by millimeter wave.
  • the connection manner between each of the millimeter wave base stations includes at least one of a millimeter wave connection, a wired connection, and a cellular band connection.
  • eNB1, eNB2, and eNB3 In the cooperative multipoint transmission technology, there is a connection between eNB1, eNB2, and eNB3.
  • FIG. 6 a possible implementation manner is shown. For other possible implementation manners, the embodiment is not described herein again.
  • eNB1 and eNB2 are connected by millimeter wave
  • eNB2 and eNB3 are connected by a cellular frequency band.
  • the millimeter wave communication architecture provided in this embodiment implements a hybrid networking of various connection technologies, so that each communication device can be compatible with various versions of communication technologies.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a millimeter wave communication architecture according to the present invention. This embodiment is implemented on the basis of the embodiment of Fig. 6.
  • the millimeter wave communication architecture further includes: at least one wireless access point hub;
  • Each of the wireless access point hubs is connected to the baseband processing unit by millimeter waves; the at least one wireless access point hub and the at least one remote radio unit form a second networking structure;
  • connection manner of any one of the at least one wireless access point hub and the at least one remote radio unit includes at least one of a millimeter wave connection, a wired connection, and a cellular band connection.
  • the connection between the wireless access point hub and the video remote unit may be a millimeter wave connection, a wired connection, a cellular frequency band. Any of the connections.
  • the wireless access point hub When the wireless access point hub is one and the remote radio unit is two, the wireless access point hub can be separately connected to the two remote remote units, and the connection mode is millimeter wave connection, wired connection, and cellular frequency band connection. Any of them.
  • one of the wireless access point hubs and one of the remote radio units can be connected by millimeter wave connection, wired connection, or cellular frequency band connection.
  • Mode connection another wireless access point hub and one of the other remote radio unit through millimeter wave connection, wired connection, cellular band connection Ways to connect.
  • FIG. 7 shows only one possible architecture. For other possible architectures, this embodiment will not be repeated here.
  • two wireless access point hubs Hub1 and Hub2o are shown. Hubl and BBU are connected by millimeter wave, Hubl and RRU1 are connected by millimeter wave, Hubl and Hub2 are connected by wire; Hub2 and BBU are transmitted by millimeter wave. Connected, Hub2 and RRU3 are connected through the cellular band.
  • the at least one wireless access point hub further forms a third networking structure with the at least one millimeter wave base station;
  • connection mode of any one of the at least one wireless access point hubs to the at least one millimeter wave base station includes at least one of a millimeter wave connection, a wired mode connection, and a cellular band connection.
  • the connection between the millimeter wave base station and the wireless access point hub may be a millimeter wave connection, a wired connection, or a cellular band connection. Any of them.
  • the millimeter wave base station When the millimeter wave base station is one and the wireless access point hub is two, the millimeter wave base station can be respectively connected to two wireless access point hubs, and the connection mode is a millimeter wave connection, a wired connection, or a cellular band connection.
  • the connection mode is a millimeter wave connection, a wired connection, or a cellular band connection.
  • the wireless access point hub When the wireless access point hub is one and the millimeter wave base station is two, the wireless access point hub can be respectively connected with two millimeter wave base stations, and the connection mode is millimeter wave connection, wired connection, and cellular band connection. One.
  • one millimeter wave base station and one wireless access point hub can be connected by any one of millimeter wave connection, wired connection, and cellular frequency band connection.
  • Another millimeter wave base station is connected to one of the other wireless access point hubs by any one of a millimeter wave connection, a wired connection, and a cellular band connection.
  • FIG. 7 shows only one possible architecture. For other possible architectures, this embodiment will not be repeated here.
  • the Hub1 and the eNB1 are connected through a cellular frequency band, and the Hub2 and the eNB3 are connected by a millimeter wave.
  • the millimeter wave communication architecture provided in this embodiment implements a hybrid networking of various connection technologies, so that each communication device can be compatible with various versions of communication technologies.
  • the any wireless access point hub is further connected to the third user equipment by millimeter waves; and/or the wireless access point hub is further connected to the fourth user equipment by using a cellular frequency band.
  • FIG. 7 shows only one possible architecture. For other possible architectures, this embodiment will not be repeated here.
  • Hubl and UE3 are connected by millimeter wave
  • Hub2 and UE3 are connected by millimeter wave
  • Hub2 and UE4 are connected by cellular frequency band.
  • each of the radio remote units is further connected to the fifth user equipment by millimeter waves, and
  • each of the radio remote units is further connected to the sixth user equipment through a cellular frequency band.
  • FIG. 7 shows only one possible architecture. For other possible architectures, this embodiment will not be repeated here.
  • RRU1 and UE6 are connected by a millimeter wave
  • RRU2 and UE5 are connected by a cellular band
  • RRU2 and UE6 are connected by a millimeter wave
  • RRU3 and UE5 are connected by a cellular band.
  • the millimeter wave communication architecture provided in this embodiment implements a hybrid networking of various connection technologies, so that each communication device can be compatible with various versions of communication technologies.
  • the baseband processing unit is connected to other radio communication devices by the millimeter wave and the radio remote unit, and the protocol stack of the baseband processing unit and the radio remote unit also changes.
  • the radio remote unit communicates with the user equipment, the user equipment supports all protocols in the radio protocol stack, and the radio remote unit supports a physical layer protocol and a non-cooperative MAC layer protocol, where the non-cooperative MAC layer protocol is used.
  • the baseband processing unit supports a cooperative MAC layer protocol and other protocols in a wireless protocol stack, where the cooperative MAC layer protocol is used to process data of a local cooperative user equipment, where the data is processed by the local non-cooperating user equipment, where The local collaborative user equipment is served by at least two of the radio remote units.
  • the radio remote unit Communicating with the user equipment in the radio remote unit, the user equipment supporting all protocols in the radio protocol stack, the baseband processing unit supporting a cooperative MAC layer protocol and other protocols in the radio protocol stack, the cooperative MAC layer protocol Data for processing the local coordinated user equipment, where the local remote user unit is supported by at least two of the remote radio units, the radio remote unit supports a physical layer protocol and a non-cooperative MAC layer protocol, Non-cooperative MAC layer protocol for use When managing data for local non-cooperative user devices.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 1 of a communication method according to the present invention.
  • the execution subject of this embodiment is the baseband processing unit in the above embodiment.
  • the communication method includes:
  • Step 801 Receive an interface signal sent by the radio remote unit through the millimeter wave frequency band.
  • Step 802 Convert the received interface signal into uplink baseband data.
  • Step 803 Process the uplink baseband data to obtain an uplink baseband signal, and send the uplink baseband signal to the gateway.
  • the method further includes:
  • the method further includes:
  • the uplink baseband data is processed to obtain an uplink baseband signal, and the uplink baseband signal is sent to another baseband processing unit, so that another baseband processing unit sends the uplink baseband signal to the gateway.
  • the receiving radio frequency remote unit adopts at least one of the following duplex modes when transmitting the interface signal sent by the millimeter wave frequency band: time division duplexing; or, frequency division duplexing; or, code division duplexing; or, all Duplex.
  • the receiving the radio remote unit transmits the signal transmitted through the millimeter wave band by using at least one of the following multiple access methods:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • the communication method shown in this embodiment can be performed by the baseband processing unit, and the implementation principle and the technical effect are similar.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 2 of a communication method according to the present invention.
  • the execution subject of this embodiment is the baseband processing unit in the above embodiment.
  • the communication method includes:
  • Step 901 Receive a downlink baseband signal from a gateway, and process the downlink baseband signal to obtain downlink baseband data.
  • Step 902 Convert the downlink baseband data into an interface signal.
  • Step 903 Send the interface signal to the radio remote unit through the millimeter wave frequency band.
  • the method further includes:
  • Channel information is transmitted to the radio remote unit through the millimeter wave band, and the channel information is used by the radio remote unit to perform beamforming on the interface signal.
  • the method further includes:
  • the downlink baseband signal is obtained from the gateway by another baseband processing unit, and the downlink baseband signal is processed to obtain downlink baseband data.
  • the following at least one duplex mode is adopted:
  • Time division duplex or, frequency division duplex; or, code division duplex; or, full duplex.
  • the following at least one multiple access method is adopted:
  • Code division multiple access or, space division multiple access; or, frequency division multiple access; or, orthogonal frequency division multiple access; or, single carrier frequency division multiple access.
  • the communication method shown in this embodiment can be performed by the baseband processing unit, and the implementation principle and the technical effect are similar.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 3 of a communication method according to the present invention.
  • the execution body of this embodiment is the radio remote unit in the above embodiment.
  • the communication method includes:
  • Step 1001 Receive a radio frequency signal sent by a user equipment.
  • Step 1002 Convert the radio frequency signal into uplink baseband data.
  • Step 1003 Convert the uplink baseband data into an interface signal.
  • Step 1004 Send the interface signal to the communication device by using a millimeter wave band.
  • the communication device includes:
  • Millimeter wave base station or, wireless access point hub; or, other radio remote unit; or, baseband processing unit.
  • the receiving the radio frequency signal sent by the user equipment includes:
  • the RF signal transmitted by the user equipment is received through the millimeter wave band or the cellular band.
  • FIG. 11 is a schematic flowchart diagram of Embodiment 4 of a communication method according to the present invention.
  • the execution body of this embodiment is the radio remote unit in the above embodiment.
  • the communication method includes:
  • Step 1101 Receive an interface signal sent by the communication device by using a millimeter wave band
  • Step 1102 Convert the interface signal into downlink baseband data.
  • Step 1103 Convert the downlink baseband data into a radio frequency signal.
  • Step 1104 Send the radio frequency signal to a user equipment.
  • the communication device comprises: a millimeter wave base station; or, a wireless access point hub; or, another radio remote unit; or a baseband processing unit.
  • the sending, by the user equipment, the radio frequency signal includes:
  • the RF signal is transmitted to the user equipment through the millimeter wave band or the cellular band.
  • the communication method shown in this embodiment can be performed by the radio remote unit, and the implementation principle and technical effects are similar.
  • FIG. 12 is a schematic diagram of a signaling process of a communication method according to the present invention.
  • Fig. 12 an embodiment is described to describe the complete communication process of uplink and downlink.
  • the communication method includes:
  • the user equipment sends a radio frequency signal to the RRU.
  • the RRU converts the radio frequency signal into uplink baseband data, and converts the uplink baseband data into an interface signal.
  • the RRU sends an interface signal to the BBU through the millimeter wave band
  • the BBU converts the received interface signal into uplink baseband data, processes the uplink baseband data, obtains an uplink baseband signal, and processes the uplink baseband data to obtain an uplink baseband signal.
  • the BBU sends an uplink baseband signal to the gateway.
  • the gateway sends a downlink baseband signal to the BBU.
  • the BBU processes the downlink baseband signal to obtain downlink baseband data, and converts the downlink baseband data into an interface signal.
  • the BBU sends an interface signal to the RRU through the millimeter wave band
  • the RRU converts the interface signal into downlink baseband data, and converts the downlink baseband data into a radio frequency signal.
  • the RRU sends a radio frequency signal to the user equipment.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例提供一种基带处理单元、射频拉远单元及通信方法。基带处理单元包括:毫米波频段收发机,用于接收射频拉远单元通过毫米波频段发送的接口信号;接口信号处理模块,用于将所述毫米波频段收发机接收到的所述接口信号转换为上行基带数据;基带数据处理模块,用于对所述上行基带数据进行处理,得到上行基带信号,并将所述上行基带信号发送至网关。本发明实施例可以使基带处理单元和射频拉远单元通过毫米波频段通信,节省了光纤资源。

Description

基带处理单元、 射频拉远单元及通信方法
技术领域
本发明实施例涉及通信技术, 尤其涉及一种基带处理单元、 射频拉远单 元及通信方法。 背景技术
无线接入网(radio access network,简称 RAN)基于集中化处理 (Centralized Processing), 协作式无线电 (Collaborative Radio)和实时云计算构架 (Real-time Cloud Infrastructure)实现时, 得到的绿色无线接入网构架称为 C-RAN。
现有技术中, C-RAN架构主要包括 3个部分: 由射频拉远单元 (Radio Remote Unit, 简称 RRU ) 和天线组成的分布式无线网络; 基带处理单元 (Building Base band Unit, 简称 BBU) ; 连接射频拉远单元和基带处理单元 的光纤。通过 C-RAN架构, 运营商可以迅速的部署或升级网络。运营商只需 部署一些新的射频拉远单元, 并通过光纤连接到基带处理单元, 就可以轻易 的实现网络覆盖的扩展或网络容量的增加。 如果网络负载增加, 运营商只需 要在基带处理单元中增加处理器即可。
然而,在 C-RAN架构中,由于将射频拉远单元和基带处理单元分离设置, 在二者的连接过程中, 需要部署大量的光纤链路, 因此, 在光纤资源不丰富 的地方, C-RAN架构将很难实现。 发明内容
本发明实施例提供一种基带处理单元、 射频拉远单元及通信方法, 用 以在光纤资源不足的地方, 实现 C-RAN架构。
第一方面, 本发明实施例提供一种基带处理单元, 所述基带处理单元包 括:
毫米波频段收发机,用于接收射频拉远单元通过毫米波频段发送的接口 信号;
接口信号处理模块, 用于将所述毫米波频段收发机接收到的所述接口 信号转换为上行基带数据;
基带数据处理模块, 用于对所述上行基带数据进行处理, 得到上行基带 信号, 并将所述上行基带信号发送至网关。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述毫米波频 段收发机还用于:
接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
所述接口信号处理模块, 具体用于将所述波束赋形后的接口信号转换为 上行基带数据。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 所述基带数据处理模块还用于:
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
结合第一方面、 第一方面的第一种或第二种任一种可能的实现方式, 在 第一方面的第三种可能的实现方式中, 所述毫米波频段收发机接收射频拉远 单元通过毫米波频段发送的接口信号时采用以下至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
结合第一方面、 第一方面的第一种至第三种任一种可能的实现方式, 在 第一方面的第四种可能的实现方式中, 所述毫米波频段收发机接收射频拉远 单元通过毫米波频段发送的信号时采用以下至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
第二方面, 本发明实施例提供一种基带处理单元, 所述基带处理单元包 括:
基带数据处理模块, 用于从网关接收下行基带信号, 对所述下行基带信 号进行处理, 得到下行基带数据, 并将所述下行基带数据发送至接口信号处 理模块;
接口信号处理模块, 用于将从所述基带数据处理模块接收到的所述下行 基带数据转换为接口信号;
毫米波频段收发机,用于通过毫米波频段向射频拉远单元发送所述接口 信号。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述毫米波频 段收发机还用于:
通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口信号进行波束赋形。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 所述基带数据处理模块具体用于
通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据, 并将所述下行基带数据发送至接口信号处理 模块;
结合第二方面、 第二方面的第一种或第二种任一种可能的实现方式, 在 第二方面的第三种可能的实现方式中, 所述毫米波频段收发机通过毫米波频 段向所述射频拉远单元发送信号时采用以下至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
结合第二方面、 第二方面的第一种至第三种任一种可能的实现方式, 在 第二方面的第四种可能的实现方式中, 所述毫米波频段收发机通过毫米波频 段向所述射频拉远单元发送信号时采用以下至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
第三方面, 本发明实施例提供一种射频拉远单元, 所述射频拉远单元包 括:
射频信号收发机, 用于接收用户设备发送的射频信号;
射频信号处理模块, 用于将所述射频信号收发机接收的所述射频信号转 换为上行基带数据;
接口信号处理模块, 用于将所述上行基带数据转换为接口信号; 毫米波频段收发机,用于通过毫米波频段向通信设备发送所述接口信号。 结合第三方面, 在第三方面的第一种可能的实现方式中, 所述通信设备 包括: 毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基 带处理单元。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第二 种可能的实现方式中, 所述射频信号收发机具体用于:
通过毫米波频段或蜂窝频段接收用户设备发送的射频信号。
第四方面, 本发明实施例提供一种射频拉远单元, 所述射频拉远单元包 括:
毫米波频段收发机,用于通过毫米波频段接收通信设备发送的接口信号; 接口信号处理模块, 用于将所述接口信号转换为下行基带数据; 射频信号处理模块, 用于将所述下行基带数据转换为射频信号; 射频信号收发机, 用于向用户设备发送所述射频信号。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述通信设备 包括:
毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基 带处理单元。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面的第二 种可能的实现方式中, 所述射频信号收发机具体用于:
通过毫米波频段或蜂窝频段向用户设备发送射频信号。
第五方面, 本发明实施例提供一种通信方法, 包括:
接收射频拉远单元通过毫米波频段发送的接口信号;
将接收到的所述接口信号转换为上行基带数据;
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送至网关。
结合第五方面, 在第五方面的第一种可能的实现方式中, 所述方法还包 括:
接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
将所述波束赋形后的接口信号转换为上行基带数据。
结合第五方面或第五方面的第一种可能的实现方式, 在第五方面的第二 种可能的实现方式中, 所述方法还包括:
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
结合第五方面、 第五方面的第一种或第二种任一种可能的实现方式, 在 第五方面的第三种可能的实现方式中, 所述接收射频拉远单元通过毫米波频 段发送的接口信号时采用以下至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
结合第五方面、 第五方面的第一种至第三种任一种可能的实现方式, 在 第五方面的第四种可能的实现方式中, 所述接收射频拉远单元通过毫米波频 段发送的信号时采用以下至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
第六方面, 本发明提供一种通信方法, 包括:
从网关接收下行基带信号, 对所述下行基带信号进行处理, 得到下行基 带数据;
将所述下行基带数据转换为接口信号;
通过毫米波频段向射频拉远单元发送所述接口信号。
结合第六方面, 在第六方面的第一种可能的实现方式中, 所述方法还包 括:
通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口信号进行波束赋形。
结合第六方面或第六方面的第一种可能的实现方式, 在第六方面的第二 种可能的实现方式中, 所述方法还包括:
通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据。
结合第六方面、 第六方面的第一种或第二种任一种可能的实现方式, 在 第六方面的第三种可能的实现方式中, 所述通过毫米波频段向所述射频拉远 单元发送信号时采用以下至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。 结合第六方面、 第六方面的第一种至第三种任一种可能的实现方式, 在 第六方面的第四种可能的实现方式中, 所述通过毫米波频段向所述射频拉远 单元发送信号时采用以下至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
第七方面, 本发明实施例提供一种通信方法, 包括:
接收用户设备发送的射频信号;
将所述射频信号转换为上行基带数据;
将所述上行基带数据转换为接口信号;
通过毫米波频段向通信设备发送所述接口信号。
结合第七方面, 在第七方面的第一种可能的实现方式中, 所述通信设备 包括:
毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基 带处理单元。
结合第七方面或第七方面的第一种可能的实现方式, 在第七方面的第二 种可能的实现方式中, 所述接收用户设备发送的射频信号, 包括:
通过毫米波频段或蜂窝频段接收用户设备发送的射频信号。
第八方面, 本发明实施例提供一种通信方法, 包括:
通过毫米波频段接收通信设备发送的接口信号;
将所述接口信号转换为下行基带数据;
将所述下行基带数据转换为射频信号;
向用户设备发送所述射频信号。
结合第八方面, 在第八方面的第一种可能的实现方式中, 所述通信设备 包括:
毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基 带处理单元。
结合第八方面或第八方面的第一种可能的实现方式, 在第八方面的第二 种可能的实现方式中, 所述向用户设备发送所述射频信号, 包括:
通过毫米波频段或蜂窝频段向用户设备发送射频信号。
本发明实施例提供的基带处理单元、 射频拉远单元及通信方法, 该基带 处理单元包括毫米波频段收发机、接口信号处理模块以及基带数据处理模块。 其中, 毫米波频段收发机用于接收射频拉远单元通过毫米波频段发送的接口 信号; 接口信号处理模块用于将所述毫米波频段收发机接收到的所述接口信 号转换为上行基带数据; 基带数据处理模块用于对所述上行基带数据进行处 理, 得到上行基带信号, 并将所述上行基带信号发送至网关。 实现了基带处 理单元和射频拉远单元之间通过毫米波通信, 无需使用光纤资源, 使得在光 纤资源不丰富的地方, C-RAN的架构也可以实现。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明毫米波通信架构实施例一的结构示意图;
图 2为本发明基带处理单元实施例一的结构示意图;
图 3为本发明基带处理单元实施例二的结构示意图;
图 4为本发明射频拉远单元实施例一的结构示意图;
图 5为本发明射频拉远单元实施例二的结构示意图;
图 6为本发明毫米波通信架构实施例二的结构示意图;
图 7为本发明毫米波通信架构实施例三的结构示意图;
图 8为本发明通信方法实施例一的流程示意图;
图 9为本发明通信方法实施例二的流程示意图;
图 10为本发明通信方法实施例三的流程示意图;
图 11为本发明通信方法实施例四的流程示意图;
图 12为本发明通信方法信令流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、完整地描述, 显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
图 1为本发明毫米波通信架构实施例一的结构示意图。 如图 1所示, 本 实施例提供的毫米波通信架构包括: 射频拉远单元 (Radio Remote Unit, 简 称 RRU) 、 基带处理单元 (Building Base band Unit, 简称 BBU) 。
其中,所述射频拉远单元 RRU1-RRU3与所述基带处理单元 BBU通过 毫米波 (mm wave ) 连接。
在具体实现过程中, BBU可以只连接一个射频拉远单元 RRU1。BBU 与 RRU1通过毫米波连接。 毫米波是指波长为 1至 10毫米的电磁波, 相 对于蜂窝频段的低频波而言, 毫米波为高频波, 具有极宽的带宽, 通常认 为毫米波频率范围为 26.5〜300GHz。 目前, 在通信领域中, 较常用的为 蜂窝频段的低频波, 对于毫米波而言, 目前还没有商用部署。 在本实施例 中, 将分别从基带处理单元和射频拉远单元的内部结构, 说明射频拉远单 元和基带处理单元之间通过毫米波通信的具体实现过程。
图 2为本发明基带处理单元实施例一的结构示意图。 如图 2所示, 本 发明实施例提供的基带处理单元 20包括: 毫米波频段收发机 201、 接口信 号处理模块 202、 基带数据处理模块 203。
其中, 毫米波频段收发机 201, 用于接收射频拉远单元通过毫米波频段 发送的接口信号;
接口信号处理模块 202,用于将所述毫米波频段收发机接收到的所述接 口信号转换为上行基带数据;
基带数据处理模块 203, 用于对所述上行基带数据进行处理, 得到上行 基带信号, 并将所述上行基带信号发送至网关。
结合图 2, 本实施例先从上行方面, 对基带处理单元通过毫米波频段与 射频拉远单元进行通信, 进行说明。
在具体实现过程中, 基带处理单元和射频拉远单元之间进行通信时, 该 信号需要符合一定的接口协议, 因此, 为了将该信号与其它信号区分, 本实 施例中称为接口信号。 毫米波频段收发机 201接收射频拉远单元通过毫米波 频段发送的接口信号, 接口信号例如可以为通用公共无线接口 (Common Public Radio Interface, 简称 CPRI)信号, 在本实施例中, 对于接口信号的具 体实现方式, 本实施例此处不再赘述。
可选地, 由于毫米波是一种高频微波, 符合波的各种特性, 因此, 毫米 波频段收发机 201接收射频拉远单元通过毫米波频段发送的接口信号时采用 以下至少一种双工方式: 时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
可选地, 由于毫米波是一种高频微波, 符合波的各种特性, 因此, 所述 毫米波频段收发机 201接收射频拉远单元通过毫米波频段发送的信号时采用 以下至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
接口信号处理模块 202将毫米波频段收发机 201接收到的接口信号转 换为上行基带数据。
基带数据处理模块 203对上行基带数据进行处理, 得到上行基带信号, 并将上行基带信号发送至网关。 其中, 上行基带信号具体可以为传输协议对 应的上行基带信号。 例如, 该传输协议为 GPRS 隧道协议 (GPRS Turning Protocal, 简称 GTP) 。
基带数据处理模块 203完成上行基带信号发送至网关的过程, 即完成了 一次上行传输过程。
本发明实施例提供的基带处理单元, 通过毫米波频段收发机接收射频拉 远单元通过毫米波频段发送的接口信号; 接口信号处理模块将所述毫米波频 段收发机接收到的所述接口信号转换为上行基带数据; 基带数据处理模块, 对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带信号 发送至网关, 实现了基带处理单元和射频拉远单元之间通过毫米波通信, 无 需使用光纤资源,使得在光纤资源不丰富的地方, C-RAN的架构也可以实现。
可选地, 在图 2实施例的基础上, 所述毫米波频段收发机 201还用于: 接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
所述接口信号处理模块 202, 具体用于将所述波束赋形后的接口信号转 换为上行基带数据。 在具体实现过程中, 为了补偿无线传播过程中由空间损耗、 多径效应等 因素引入的信号衰落与失真, 同时降低同信道用户间的干扰, 可以对接口信 号进行波束赋形。 具体地, 可以根据信道信息对接口信号进行波束赋形, 得 到波束赋形后的接口信号。 然后, 接口信号处理模块 202将波束赋形后的接 口信号转换为上行基带数据。
可选地, 在图 2实施例的基础上, 所述基带数据处理模块 203还用于: 对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
在具体实现过程中, 当基带处理单元 20位于 C-RAN架构中时, 基带处 理单元 20是基带处理池中的任一基带处理单元,基带数据处理模块 203在对 上行基带数据进行处理, 得到上行基带信号之后, 还可以将上行基带信号发 送给基带处理池中的另一基带处理单元, 由另一基带处理单元将所述上行基 带信号发送给网关。
在本实施例中, 通过将将所述上行基带信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号发送给网关, 实现了各基带处理 单元的协作。
图 3为本发明基带处理单元实施例二的结构示意图。 如图 3所示, 本发 明实施例提供的基带处理单元 30包括: 基带数据处理模块 301、 接口信号处 理模块 302和毫米波频段收发机 303。
其中, 基带数据处理模块 301, 用于从网关接收下行基带信号, 对所述 下行基带信号进行处理, 得到下行基带数据, 并将所述下行基带数据发送至 接口信号处理模块;
接口信号处理模块 302, 用于将从所述基带数据处理模块接收到的所述 下行基带数据转换为接口数据;
毫米波频段收发机 303, 用于通过毫米波频段向射频拉远单元发送所述 接口数据。
结合图 3, 本实施例从下行方面, 对基带处理单元通过毫米波频段与射 频拉远单元进行通信, 进行说明。 本领域技术人员可以理解, 在本实施例中, 为了便于说明, 对基带处理单元的内部结构进行了重新划分, 在具体实现过 程中, 本实施例中的毫米波频段收发机 303与图 2中的毫米波频段收发机 201可以为同一个毫米波频段收发机;本实施例中的接口信号处理模块 302 与图 2中的接口信号处理模块 202可以为同一个接口信号处理模块 202; 本 实施例中的基带数据处理模块 301与图 2中的基带数据处理模块 203可以为 同一个基带数据处理模块。
在具体实现过程中, 基带数据处理模块 301从网关接收下行基带信号, 对下行基带信号进行处理, 得到下行基带数据, 并将下行基带数据发送至接 口信号处理模块 302。 其中, 下行基带信号可以为传输协议对应的下行基带 信号。 例如, 该传输协议为 GPRS隧道协议 (GPRS Turning Protocal, 简称 GTP) 。
接口信号处理模块 302将从所述基带数据处理模块接收到的所述下行基 带数据转换为接口信号, 接口信号例如可以为通用公共无线接口 (Common Public Radio Interface, 简称 CPRI)信号, 在本实施例中, 对于接口信号的具 体实现方式, 本实施例此处不再赘述。
毫米波频段收发机 303通过毫米波频段向射频拉远单元发送接口信号。 由射频拉远单元将该接口信号发送给用户设备或其它通信设备, 从而完成下 行传输。
可选地, 由于毫米波是一种高频微波, 符合波的各种特性, 因此, 所述 毫米波频段收发机通过毫米波频段向所述射频拉远单元发送信号时采用以下 至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
可选地, 由于毫米波是一种高频微波, 符合波的各种特性, 因此, 所述 毫米波频段收发机通过毫米波频段向所述射频拉远单元发送信号时采用以下 至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
本发明实施例提供的射频拉远单元, 通过基带数据处理模块 301从网关 接收下行基带信号, 对所述下行基带信号进行处理, 得到下行基带数据, 并 将所述下行基带数据发送至接口信号处理模块; 接口信号处理模块将从所述 基带数据处理模块接收到的所述下行基带数据转换为接口数据; 毫米波频 段收发机 303通过毫米波频段向射频拉远单元发送所述接口数据, 实现了基 带处理单元和射频拉远单元之间通过毫米波通信, 无需使用光纤资源, 使得 在光纤资源不丰富的地方, C-RAN的架构也可以实现。
可选地, 在图 3实施例的基础上, 所述毫米波频段收发机 303还用于: 通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口数据进行波束赋形。
在具体实现过程中, 为了补偿无线传播过程中由空间损耗、 多径效应等 因素引入的信号衰落与失真, 同时降低同信道用户间的干扰, 毫米波频段收 发机 303还用于: 通过毫米波频段向射频拉远单元发送信道信息, 所述信道 信息用于所述射频拉远单元对所述接口数据进行波束赋形。
可选地, 在图 3实施例的基础上, 所述基带数据处理模块 301具体用于 通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据, 并将所述下行基带数据发送至接口信号处理 模块。
具体地, 当基带处理单元 30位于 C-RAN架构中时, 基带处理单元 30 是基带处理池中的任一基带处理单元, 基带处理池中的另一基带处理单元可 以从网关中获取下行基带信号, 然后基带数据处理模块 301与另一基带处理 单元进行通信, 获取下行基带信号。
在本实施例中, 通过另一基带处理单元从网关获取下行基带信号, 对所 述下行基带信号进行处理, 得到下行基带数据, 并将所述下行基带数据发送 至接口信号处理模块, 实现了各基带处理单元的协作。
图 4为本发明射频拉远单元实施例一的结构示意图。 如图 4所示, 所 述射频拉远单元 40包括: 射频信号收发机 401、 射频信号处理模块 402、 接 口信号处理模块 403和毫米波频段收发机 404。
射频信号收发机 401, 用于接收用户设备发送的射频信号;
射频信号处理模块 402, 用于将所述射频信号收发机接收的所述射频信 号转换为上行基带数据;
接口信号处理模块 403, 用于将所述上行基带数据转换为接口信号; 毫米波频段收发机 404, 用于通过毫米波频段向通信设备发送所述接口 信号。 在具体实现过程中, 在上行方面, 射频信号收发机 401接收用户设备发 送的射频信号, 在接收过程中, 包括两种可能的实现方式, 一种实现方式为: 通过毫米波频段接收用户设备发送的射频信号, 另一种可能的实现方式为: 通过蜂窝频段接收用户设备发送的射频信号。
射频信号处理模块 402将所述射频信号收发机 401接收的射频信号转换 为上行基带数据;
接口信号处理模块 403将所述上行基带数据转换为接口信号, 接口信号 例如可以为通用公共无线接口 (Common Public Radio Interface, 简称 CPRI) 信号, 在本实施例中, 对于接口信号的具体实现方式, 本实施例此处不再赘 述。
毫米波频段收发机 404通过毫米波频段向通信设备发送所述接口信号。 具体地, 通信设备包括: 毫米波基站; 或, 无线接入点集线器; 或, 其他射 频拉远单元; 或, 基带处理单元。
本发明实施例提供的射频拉远单元, 通过射频信号收发机接收用户设备 发送的射频信号; 射频信号处理模块将所述射频信号收发机接收的所述射频 信号转换为上行基带数据; 接口信号处理模块 403将所述上行基带数据转换 为接口信号; 毫米波频段收发机通过毫米波频段向通信设备发送所述接口信 号, 实现了基带处理单元和射频拉远单元之间通过毫米波通信, 无需使用光 纤资源, 使得在光纤资源不丰富的地方, C-RAN的架构也可以实现。
图 5为本发明射频拉远单元实施例二的结构示意图。 如图 5所示, 所 述射频拉远单元 50包括:
毫米波频段收发机 501, 用于通过毫米波频段接收通信设备发送的接口 信号;
接口信号处理模块 502, 用于将所述接口信号转换为下行基带数据; 射频信号处理模块 503, 用于将所述下行基带数据转换为射频信号; 射频信号收发机 504, 用于向用户设备发送所述射频信号。
结合图 5, 本实施例从下行方面, 对射频拉远单元通过毫米波频段与基 带处理单元进行通信, 进行说明。 本领域技术人员可以理解, 在本实施例中, 为了便于说明, 对射频拉远单元的内部结构进行了重新划分, 在具体实现过 程中,本实施例中的毫米波频段收发机 501与图 4中的毫米波频段收发机 404 可以为同一个毫米波频段收发机; 本实施例中的接口信号处理模块 502与 图 4中的接口信号处理模块 403可以为同一个接口信号处理模块; 本实施例 中的射频信号处理模块 503与图 4中的射频信号处理模块 402可以为同一个 射频信号处理模块。 射频信号收发机 504与图 4中的射频信号收发机 401为 同一个射频信号收发机。
在具体实现过程中, 毫米波频段收发机 501通过毫米波频段接收通信设 备发送的接口信号。 具体地, 所述通信设备包括: 毫米波基站; 或, 无线接 入点集线器; 或, 其他射频拉远单元; 或, 基带处理单元。 接口信号例如可 以为通用公共无线接口 (Common Public Radio Interface, 简称 CPRI) 信号, 在本实施例中, 对于接口信号的具体实现方式, 本实施例此处不再赘述。
接口信号处理模块 502将所述接口信号转换为下行基带数据。
射频信号处理模块 503将所述下行基带数据转换为射频信号。
射频信号收发机 504向用户设备发送所述射频信号。 具体地, 射频信号 收发机 504通过毫米波频段或蜂窝频段向用户设备发送射频信号。
本实施例提供的射频拉远单元, 通过毫米波频段收发机通过毫米波频段 接收通信设备发送的接口信号; 接口信号处理模块将所述接口信号转换为下 行基带数据; 射频信号处理模块将所述下行基带数据转换为射频信号; 射频 信号收发机向用户设备发送所述射频信号, 实现了基带处理单元和射频拉远 单元之间通过毫米波通信, 无需使用光纤资源, 使得在光纤资源不丰富的地 方, C-RAN的架构也可以实现。
在上述实施例中, 对基带处理单元和射频拉远单元的结构进行了详细 说明, 在具体实现过程中, 当基带处理单元和射频拉远单元位于 C-RAN 架构中时, 可以组成新的毫米波通信架构。 在上述的实施例中, 隐含说明 了各通信设备之间的连接说明, 先对毫米波通信架构中, 各通信设备之间 的连接关系进行详细说明。
图 6为本发明毫米波通信架构实施例二的结构示意图。 如图 6所示, 毫米波通信架构中包括三个射频拉远单元, 分别为 RRU1、 RRU2、 RRU3、 组成了分布式无线网络。 其中, RRU1、 RRU2、 RRU3分别与 BBU通过毫 米波连接。 在具体实现过程中, RRU1与 RRU2、 RRU2与 RRU3之间的 连接, 可以包括毫米波连接、有线方式连接、蜂窝频段连接中的至少一种。 图 6中, 示意性的示出了一种可能的连接方式, RRU1与 RRU2通过毫米 波连接, RRU2与 RRU3通过蜂窝频段连接。 对于其它方式的连接, 本实 施例此处不再赘述。
本实施例由于 RRU1、 RRU2、 RRU3组成了分布式无线网络, 形成了 C-RAN网络架构, 可以实现有效的多小区联合资源分配和协作式的多点传输 技术, 从而提高小区边缘用户的吞吐量, 提高系统频谱效率。
进一步地, 所述毫米波通信架构还包括: 至少一个毫米波基站, 各所 述毫米波基站为基带处理单元和射频拉远单元一体化设置的基站; 各所述 毫米波基站与第一用户设备通过毫米波连接, 和 /或, 各所述毫米波基站与 第二用户设备通过蜂窝频段连接; 当所述射频拉远单元的个数为至少一个 时, 所述至少一个毫米波基站与至少一个所述射频拉远单元形成第一组网 结构; 其中, 所述至少一个毫米波基站中的任一毫米波基站与所述至少一 个射频拉远单元的连接方式包括毫米波连接、 有线方式连接、 蜂窝频段连 接中的至少一种。
在具体实现过程中, 当毫米波基站为一个, 射频拉远单元为一个时, 该毫米波基站与视频拉远单元之间的连接可以为毫米波连接、 有线方式连 接、 蜂窝频段连接中的任一种。
当毫米波基站为一个, 射频拉远单元为两个时, 该毫米波基站可以与 两个射频拉远单元分别连接, 连接方式为毫米波连接、 有线方式连接、 蜂 窝频段连接中的任一种。
当毫米波基站为两个, 射频拉远单元为两个时, 可以一个毫米波基站 与其中一个射频拉远单元通过毫米波连接、 有线方式连接、 蜂窝频段连接 中的任一种方式连接, 另一个毫米波基站与其中另一个射频拉远单元通过 毫米波连接、 有线方式连接、 蜂窝频段连接中的任一种方式连接。
上述的实施例, 仅示意性的列出了几种可能的实现方式, 对于其它可 能的实现方式, 本实施例此处不再赘述。 在图 6中, 图 6仅示意性的示出 了一种可能的架构, 对于其它可能的架构, 本实施例此处不再赘述。 在图 6中, 示出了 3个毫米波基站, 分别为 eNBl、 eNB2、 eNB3。 其中, eNBl 与 RRU1通过毫米波连接, eNBl与 UE1通过毫米波连接, eNBl与 UE2 通过蜂窝频段连接; eNB2与 RRU2通过有线方式连接, eNB2与 UE2通 过蜂窝频段连接; eNB3与 RRU3通过蜂窝频段连接, eNB3与 UE3通过 毫米波连接。
可选地, 当所述毫米波基站的个数为至少两个时, 各所述毫米波基站 之间的连接方式包括毫米波连接、 有线方式连接、 蜂窝频段连接中的至少 一种。
在协作式的多点传输技术中, 存在 eNBl、 eNB2、 eNB3之间的连接。 在图 6中, 示出了一种可能的实现方式, 对于其它可能的实现方式, 本实 施例此处不再赘述。 如图 6所示, eNBl与 eNB2通过毫米波连接, eNB2 与 eNB3通过蜂窝频段连接。
本实施例提供的毫米波通信架构, 实现了各种连接技术的混合组网, 使得各通信设备可以兼容各种版本的通信技术。
图 7为本发明毫米波通信架构实施例三的结构示意图。 本实施例在图 6 实施例的基础上实现。 所述毫米波通信架构还包括: 至少一个无线接入点 集线器;
各所述无线接入点集线器与所述基带处理单元通过毫米波连接; 所述至少一个无线接入点集线器与至少一个所述射频拉远单元形成 第二组网结构;
其中, 所述至少一个无线接入点集线器中的任一无线接入点集线器与 所述至少一个射频拉远单元的连接方式包括毫米波连接、 有线方式连接、 蜂窝频段连接中的至少一种。
在具体实现过程中, 当无线接入点集线器为一个, 射频拉远单元为一 个时, 该无线接入点集线器与视频拉远单元之间的连接可以为毫米波连 接、 有线方式连接、 蜂窝频段连接中的任一种。
当无线接入点集线器为一个, 射频拉远单元为两个时, 该无线接入点 集线器可以与两个射频拉远单元分别连接, 连接方式为毫米波连接、 有线 方式连接、 蜂窝频段连接中的任一种。
当无线接入点集线器为两个, 射频拉远单元为两个时, 可以一个无线 接入点集线器与其中一个射频拉远单元通过毫米波连接、 有线方式连接、 蜂窝频段连接中的任一种方式连接, 另一个无线接入点集线器与其中另一 个射频拉远单元通过毫米波连接、 有线方式连接、 蜂窝频段连接中的任一 种方式连接。
上述的实施例, 仅示意性的列出了几种可能的实现方式, 对于其它可 能的实现方式, 本实施例此处不再赘述。 在图 7中, 图 7仅示意性的示出 了一种可能的架构, 对于其它可能的架构, 本实施例此处不再赘述。 在图 7 中, 示出了两个无线接入点集线器 Hubl、 Hub2o 其中, Hubl 与 BBU 通过毫米波连接, Hubl与 RRU1通过毫米波连接, Hubl与 Hub2通过有 线方式连接; Hub2与 BBU通过毫米波连接, Hub2与 RRU3通过蜂窝频 段连接。
可选地, 所述至少一个无线接入点集线器还与所述至少一个毫米波基 站形成第三组网结构;
其中, 所述至少一个无线接入点集线器中的任一无线接入点集线器与 所述至少一个毫米波基站的连接方式包括毫米波连接、 有线方式连接、 蜂 窝频段连接中的至少一种。
在具体实现过程中, 当毫米波基站为一个, 无线接入点集线器为一个 时, 该毫米波基站与无线接入点集线器之间的连接可以为毫米波连接、 有 线方式连接、 蜂窝频段连接中的任一种。
当毫米波基站为一个, 无线接入点集线器为两个时, 该毫米波基站可 以与两个无线接入点集线器分别连接, 连接方式为毫米波连接、 有线方式 连接、 蜂窝频段连接中的任一种。
当无线接入点集线器为一个, 毫米波基站为两个时, 该无线接入点集 线器可以与两个毫米波基站分别连接, 连接方式为毫米波连接、 有线方式 连接、 蜂窝频段连接中的任一种。
当毫米波基站为两个, 无线接入点集线器为两个时, 可以一个毫米波 基站与其中一个无线接入点集线器通过毫米波连接、 有线方式连接、 蜂窝 频段连接中的任一种方式连接, 另一个毫米波基站与其中另一个无线接入 点集线器通过毫米波连接、 有线方式连接、 蜂窝频段连接中的任一种方式 连接。
上述的实施例, 仅示意性的列出了几种可能的实现方式, 对于其它可 能的实现方式, 本实施例此处不再赘述。 在图 7中, 图 7仅示意性的示出 了一种可能的架构, 对于其它可能的架构, 本实施例此处不再赘述。 在图 7中, Hubl与 eNBl通过蜂窝频段连接, Hub2与 eNB3通过毫米波连接。 本实施例提供的毫米波通信架构, 实现了各种连接技术的混合组网, 使得各通信设备可以兼容各种版本的通信技术。
可选地, 所述任一无线接入点集线器还与第三用户设备通过毫米波连 接; 和 /或, 所述无线接入点集线器还与第四用户设备通过蜂窝频段连接。
在具体实现过程中, 图 7仅示意性的示出了一种可能的架构, 对于其 它可能的架构, 本实施例此处不再赘述。 在图 7中, Hubl与 UE3通过毫 米波连接, Hub2与 UE3通过毫米波连接, Hub2与 UE4通过蜂窝频段连 接。
可选地, 各所述射频拉远单元还与第五用户设备通过毫米波连接, 和
/或, 各所述射频拉远单元还与第六用户设备通过蜂窝频段连接。
在具体实现过程中, 图 7仅示意性的示出了一种可能的架构, 对于其 它可能的架构, 本实施例此处不再赘述。 在图 7中, RRU1与 UE6通过毫 米波连接, RRU2与 UE5通过蜂窝频段连接, RRU2与 UE6通过毫米波连 接, RRU3与 UE5通过蜂窝频段连接。
本实施例提供的毫米波通信架构, 实现了各种连接技术的混合组网, 使得各通信设备可以兼容各种版本的通信技术。
在上述各实施例中, 基带处理单元通过毫米波与射频拉远单元与等其 它通信设备连接, 则基带处理单元和射频拉远单元与的协议栈, 也发生了 变化。 在所述射频拉远单元与用户设备通信, 所述用户设备支持无线协议栈 中的全部协议, 所述射频拉远单元支持物理层协议和非协作 MAC层协议, 所述非协作 MAC层协议用于处理本地非协作用户设备的数据时, 所述基带 处理单元支持无线协议栈中的协作 MAC层协议和其它协议, 所述协作 MAC 层协议用于处理本地协作用户设备的数据, 其中, 所述本地协作用户设备被 至少两个所述射频拉远单元服务。
在所述射频拉远单元与用户设备通信, 所述用户设备支持无线协议栈中 的全部协议, 所述基带处理单元支持无线协议栈中的协作 MAC层协议和其 它协议, 所述协作 MAC层协议用于处理本地协作用户设备的数据, 其中, 所述本地协作用户设备被至少两个所述射频拉远单元服务时, 所述射频拉远 单元支持物理层协议和非协作 MAC层协议,所述非协作 MAC层协议用于处 理本地非协作用户设备的数据时。
下面采用具体的实施例, 对本发明中涉及的通信方法进行详细说明。 图 8为本发明通信方法实施例一的流程示意图。 本实施例的执行主体为 上述实施例中的基带处理单元。 如图 8所示, 通信方法包括:
步骤 801、 接收射频拉远单元通过毫米波频段发送的接口信号; 步骤 802、 将接收到的所述接口信号转换为上行基带数据;
步骤 803、 对所述上行基带数据进行处理, 得到上行基带信号, 并将所 述上行基带信号发送至网关。
可选地, 所述方法还包括:
接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
将所述波束赋形后的接口信号转换为上行基带数据。
可选地, 所述方法还包括:
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
可选地, 所述接收射频拉远单元通过毫米波频段发送的接口信号时采用 以下至少一种双工方式: 时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
可选地, 所述接收射频拉远单元通过毫米波频段发送的信号时采用以下 至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
本实施例所示的通信方法, 可由上述的基带处理单元执行, 其实现原理 和技术效果类似, 本实施例此处不再赘述。
图 9为本发明通信方法实施例二的流程示意图。 本实施例的执行主体为 上述实施例中的基带处理单元。 如图 9所示, 通信方法包括:
步骤 901、 从网关接收下行基带信号, 对所述下行基带信号进行处理, 得到下行基带数据; 步骤 902、 将所述下行基带数据转换为接口信号;
步骤 903、 通过毫米波频段向射频拉远单元发送所述接口信号。
可选地, 所述方法还包括:
通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口信号进行波束赋形。
可选地, 所述方法还包括:
通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据。
可选地, 所述通过毫米波频段向所述射频拉远单元发送信号时采用以下 至少一种双工方式:
时分双工; 或, 频分双工; 或, 码分双工; 或, 全双工。
可选地, 所述通过毫米波频段向所述射频拉远单元发送信号时采用以下 至少一种多址方式:
码分多址; 或, 空分多址; 或, 频分多址; 或, 正交频分多址; 或, 单 载波频分多址。
本实施例所示的通信方法, 可由上述的基带处理单元执行, 其实现原理 和技术效果类似, 本实施例此处不再赘述。
图 10为本发明通信方法实施例三的流程示意图。本实施例的执行主体为 上述实施例中的射频拉远单元。 如图 10所示, 通信方法包括:
步骤 1001、 接收用户设备发送的射频信号;
步骤 1002、 将所述射频信号转换为上行基带数据;
步骤 1003、 将所述上行基带数据转换为接口信号;
步骤 1004、 通过毫米波频段向通信设备发送所述接口信号。
可选地, 所述通信设备包括:
毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基 带处理单元。
可选地, 所述接收用户设备发送的射频信号, 包括:
通过毫米波频段或蜂窝频段接收用户设备发送的射频信号。
本实施例所示的通信方法, 可由上述的射频拉远单元执行, 其实现原理 和技术效果类似, 本实施例此处不再赘述。 图 11为本发明通信方法实施例四的流程示意图。本实施例的执行主体为 上述实施例中的射频拉远单元。 如图 11所示, 通信方法包括:
步骤 1101、 通过毫米波频段接收通信设备发送的接口信号;
步骤 1102、 将所述接口信号转换为下行基带数据;
步骤 1103、 将所述下行基带数据转换为射频信号;
步骤 1104、 向用户设备发送所述射频信号。
可选地, 所述通信设备包括: 毫米波基站; 或, 无线接入点集线器; 或, 其他射频拉远单元; 或, 基带处理单元。
可选地, 所述向用户设备发送所述射频信号, 包括:
通过毫米波频段或蜂窝频段向用户设备发送射频信号。
本实施例所示的通信方法, 可由上述的射频拉远单元执行, 其实现原理 和技术效果类似, 本实施例此处不再赘述。
图 12为本发明通信方法信令流程示意图。 图 12中, 任举一个实施例, 对上行和下行完整的通信过程进行说明。 如图 12所示, 通信方法包括:
1201、 用户设备向 RRU发送射频信号;
1202、 RRU将射频信号转换为上行基带数据, 将上行基带数据转换为接 口信号;
1203、 RRU通过毫米波频段向 BBU发送接口信号;
1204、 BBU将接收到的接口信号转换为上行基带数据, 对上行基带数据 进行处理, 得到上行基带信号, 对上行基带数据进行处理, 得到上行基带信 号;
1205、 BBU向网关发送上行基带信号;
1206、 网关向 BBU发送下行基带信号;
1207、 BBU对下行基带信号进行处理, 得到下行基带数据, 将下行基带 数据转换为接口信号;
1208、 BBU通过毫米波频段向 RRU发送接口信号;
1209、 RRU将接口信号转换为下行基带数据, 将下行基带数据转换为射 频信号;
1210、 RRU向用户设备发送射频信号。
本领域普通技术人员可以理解,其它实施例与本实施例类似,此处不再 赘述。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种基带处理单元, 其特征在于, 所述基带处理单元包括: 毫米波频段收发机,用于接收射频拉远单元通过毫米波频段发送的接口 信号;
接口信号处理模块, 用于将所述毫米波频段收发机接收到的所述接口 信号转换为上行基带数据;
基带数据处理模块, 用于对所述上行基带数据进行处理, 得到上行基带 信号, 并将所述上行基带信号发送至网关。
2、 根据权利要求 1所述的基带处理单元, 其特征在于, 所述毫米波频段 收发机还用于:
接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
所述接口信号处理模块, 具体用于将所述波束赋形后的接口信号转换为 上行基带数据。
3、 根据权利要求 1或 2所述的基带处理单元, 其特征在于, 所述基带数 据处理模块还用于:
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
4、 根据权利要求 1至 3任一项所述的基带处理单元, 其特征在于, 所述 毫米波频段收发机接收射频拉远单元通过毫米波频段发送的接口信号时采用 以下至少一种双工方式: 时分双工; 或,
频分双工; 或,
码分双工; 或,
全双工。
5、 根据权利要求 1至 4任一项所述的基带处理单元, 其特征在于, 所述 毫米波频段收发机接收射频拉远单元通过毫米波频段发送的信号时采用以下 至少一种多址方式: 单载波频分多址。
6、 一种基带处理单元, 其特征在于, 所述基带处理单元包括: 基带数据处理模块, 用于从网关接收下行基带信号, 对所述下行基带信 号进行处理, 得到下行基带数据, 并将所述下行基带数据发送至接口信号处 理模块;
接口信号处理模块, 用于将从所述基带数据处理模块接收到的所述下行 基带数据转换为接口信号;
毫米波频段收发机,用于通过毫米波频段向射频拉远单元发送所述接口 信号。
7、 根据权利要求 6所述的基带处理单元, 其特征在于, 所述毫米波频段 收发机还用于:
通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口信号进行波束赋形。
8、 根据权利要求 6或 7所述的基带处理单元, 其特征在于, 所述基带数 据处理模块具体用于
通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据, 并将所述下行基带数据发送至接口信号处理 模块;
9、 根据权利要求 6至 8任一项所述的基带处理单元, 其特征在于, 所述 毫米波频段收发机通过毫米波频段向所述射频拉远单元发送信号时采用以下 至少一种双工方式:
时分双工; 或,
频分双工; 或,
码分双工; 或,
全双工。
10、 根据权利要求 6至 9任一项所述的基带处理单元, 其特征在于, 所 述毫米波频段收发机通过毫米波频段向所述射频拉远单元发送信号时采用以 下至少一种多址方式:
码分多址; 或,
空分多址; 或,
频分多址; 或,
正交频分多址; 或,
单载波频分多址。
11、 一种射频拉远单元, 其特征在于, 所述射频拉远单元包括: 射频信号收发机, 用于接收用户设备发送的射频信号;
射频信号处理模块, 用于将所述射频信号收发机接收的所述射频信号转 换为上行基带数据;
接口信号处理模块, 用于将所述上行基带数据转换为接口信号; 毫米波频段收发机,用于通过毫米波频段向通信设备发送所述接口信号。
12、 根据权利要求 11所述的射频拉远单元, 其特征在于, 所述通信设备 包括:
毫米波基站; 或,
无线接入点集线器; 或,
其他射频拉远单元; 或,
基带处理单元。
13、 根据权利要求 11或 12所述的射频拉远单元, 其特征在于, 所述射 频信号收发机具体用于:
通过毫米波频段或蜂窝频段接收用户设备发送的射频信号。
14、 一种射频拉远单元, 其特征在于, 所述射频拉远单元包括: 毫米波频段收发机,用于通过毫米波频段接收通信设备发送的接口信号; 接口信号处理模块, 用于将所述接口信号转换为下行基带数据; 射频信号处理模块, 用于将所述下行基带数据转换为射频信号; 射频信号收发机, 用于向用户设备发送所述射频信号。
15、 根据权利要求 14所述的射频拉远单元, 其特征在于, 所述通信设备 包括:
毫米波基站; 或, 无线接入点集线器; 或,
其他射频拉远单元; 或,
基带处理单元。
16、 根据权利要求 14或 15所述的射频拉远单元, 其特征在于, 所述射 频信号收发机具体用于:
通过毫米波频段或蜂窝频段向用户设备发送射频信号。
17、 一种通信方法, 其特征在于, 包括:
接收射频拉远单元通过毫米波频段发送的接口信号;
将接收到的所述接口信号转换为上行基带数据;
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送至网关。
18、 根据权利要求 17所述的通信方法, 其特征在于, 所述方法还包括: 接收所述射频拉远单元通过毫米波频段发送的信道信息;
根据所述信道信息对所述接口信号进行波束赋形得到波束赋形后的接口 信号;
将所述波束赋形后的接口信号转换为上行基带数据。
19、 根据权利要求 17或 18所述的通信方法, 其特征在于, 所述方法还 包括:
对所述上行基带数据进行处理, 得到上行基带信号, 并将所述上行基带 信号发送给另一基带处理单元, 以使另一基带处理单元将所述上行基带信号 发送给网关。
20、 根据权利要求 17至 19所述的通信方法, 其特征在于, 所述接收射 频拉远单元通过毫米波频段发送的接口信号时采用以下至少一种双工方式: 时分双工; 或,
频分双工; 或,
码分双工; 或,
全双工。
21、 根据权利要求 17至 20任一项所述的通信方法, 其特征在于, 所述 接收射频拉远单元通过毫米波频段发送的信号时采用以下至少一种多址方 式: 码分多址; 或,
空分多址; 或,
频分多址; 或,
正交频分多址; 或,
单载波频分多址。
22、 一种通信方法, 其特征在于, 包括:
从网关接收下行基带信号, 对所述下行基带信号进行处理, 得到下行基 带数据;
将所述下行基带数据转换为接口信号;
通过毫米波频段向射频拉远单元发送所述接口信号。
23、 根据权利要求 22所述的通信方法, 其特征在于, 所述方法还包括: 通过毫米波频段向射频拉远单元发送信道信息, 所述信道信息用于所述 射频拉远单元对所述接口信号进行波束赋形。
24、 根据权利要求 22或 23所述的通信方法, 其特征在于, 所述方法还 包括:
通过另一基带处理单元从网关获取下行基带信号, 对所述下行基带信号 进行处理, 得到下行基带数据。
25、 根据权利要求 22至 24任一项所述的通信方法, 其特征在于, 所述 通过毫米波频段向所述射频拉远单元发送信号时采用以下至少一种双工方 式:
时分双工; 或,
频分双工; 或,
码分双工; 或,
全双工。
26、 根据权利要求 22至 25任一项所述的通信方法, 其特征在于, 所述 通过毫米波频段向所述射频拉远单元发送信号时采用以下至少一种多址方 码分 ^址; 或,
空分 ^址; 或,
频分 址; 或, 正交频分多址; 或,
单载波频分多址。
27、 一种通信方法, 其特征在于, 包括:
接收用户设备发送的射频信号;
将所述射频信号转换为上行基带数据;
将所述上行基带数据转换为接口信号;
通过毫米波频段向通信设备发送所述接口信号。
28、根据权利要求 27所述的通信方法,其特征在于,所述通信设备包括: 毫米波基站; 或,
无线接入点集线器; 或,
其他射频拉远单元; 或,
基带处理单元。
29、 根据权利要求 27或 28所述的通信方法, 其特征在于, 所述接收用 户设备发送的射频信号, 包括:
通过毫米波频段或蜂窝频段接收用户设备发送的射频信号。
30、 一种通信方法, 其特征在于, 包括:
通过毫米波频段接收通信设备发送的接口信号;
将所述接口信号转换为下行基带数据;
将所述下行基带数据转换为射频信号;
向用户设备发送所述射频信号。
31、根据权利要求 30所述的通信方法,其特征在于,所述通信设备包括: 毫米波基站; 或,
无线接入点集线器; 或,
其他射频拉远单元; 或,
基带处理单元。
32、 根据权利要求 30或 31所述的通信方法, 其特征在于, 所述向用户 设备发送所述射频信号, 包括:
通过毫米波频段或蜂窝频段向用户设备发送射频信号。
PCT/CN2014/071802 2014-01-29 2014-01-29 基带处理单元、射频拉远单元及通信方法 WO2015113274A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480073597.0A CN105917732B (zh) 2014-01-29 2014-01-29 基带处理单元、射频拉远单元及通信方法
PCT/CN2014/071802 WO2015113274A1 (zh) 2014-01-29 2014-01-29 基带处理单元、射频拉远单元及通信方法
EP14880569.0A EP3086622A4 (en) 2014-01-29 2014-01-29 BASEBAND PROCESSING UNIT, REMOVED FUNCTION UNIT AND COMMUNICATION PROCESS
US15/215,785 US10389560B2 (en) 2014-01-29 2016-07-21 Baseband processing unit, radio remote unit, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071802 WO2015113274A1 (zh) 2014-01-29 2014-01-29 基带处理单元、射频拉远单元及通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/215,785 Continuation US10389560B2 (en) 2014-01-29 2016-07-21 Baseband processing unit, radio remote unit, and communication method

Publications (1)

Publication Number Publication Date
WO2015113274A1 true WO2015113274A1 (zh) 2015-08-06

Family

ID=53756167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071802 WO2015113274A1 (zh) 2014-01-29 2014-01-29 基带处理单元、射频拉远单元及通信方法

Country Status (4)

Country Link
US (1) US10389560B2 (zh)
EP (1) EP3086622A4 (zh)
CN (1) CN105917732B (zh)
WO (1) WO2015113274A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076470A (zh) * 2016-11-16 2018-05-25 广州全界通讯科技有限公司 一种移动通信系统及方法
WO2018223396A1 (zh) * 2017-06-09 2018-12-13 华为技术有限公司 基站的拉远装置、基站和随机接入方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180020451A1 (en) * 2016-07-16 2018-01-18 Phazr, Inc. High Capacity Layered Wireless Communications System
CN109104210B (zh) * 2017-06-20 2020-10-23 大唐移动通信设备有限公司 一种射频拉远方法、装置和系统
WO2019035750A1 (en) * 2017-08-17 2019-02-21 Telefonaktiebolaget Lm Ericsson (Publ) TRANSITION METHOD AND DEVICE FOR ESTABLISHING DATA COMMUNICATION IN A WIRELESS NETWORK
CN115514402A (zh) * 2018-03-07 2022-12-23 中兴通讯股份有限公司 一种信号处理方法、多级分布式天线系统及存储介质
CN110708705A (zh) * 2019-11-22 2020-01-17 广州瀚信通信科技股份有限公司 一种基于新型数字化的移动通信室内覆盖系统
CN111148183B (zh) * 2019-12-31 2021-11-02 京信网络系统股份有限公司 多制式组网方法、系统、设备和存储介质
CN113840298B (zh) * 2021-09-09 2023-10-20 阿里巴巴达摩院(杭州)科技有限公司 基站的组网架构、通信控制方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419792A (zh) * 2000-06-08 2003-05-21 锐美克有限公司 无线通信系统中可缩放扇区的广域网
CN101005450A (zh) * 2006-12-15 2007-07-25 上海华为技术有限公司 通用公共无线接口数据传输方法及其设备和系统
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101394603A (zh) * 2008-10-17 2009-03-25 中国移动通信集团河北有限公司 一种近海域作业平台的通信系统
CN103199975A (zh) * 2013-03-28 2013-07-10 武汉邮电科学研究院 一种分布式载波聚合多室内联合基站系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890055A (en) * 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US8090379B2 (en) * 2001-05-02 2012-01-03 Trex Enterprises Corp Cellular systems with distributed antennas
CN101035323A (zh) 2006-12-29 2007-09-12 芯通科技(成都)有限公司 时分双工移动通信系统微波拉远的方法及装置
US8737454B2 (en) 2007-01-25 2014-05-27 Adc Telecommunications, Inc. Modular wireless communications platform
JP4603062B2 (ja) * 2008-06-26 2010-12-22 京セラ株式会社 信号変換器、無線信号送信システム及び無線信号受信システム
CN101350662B (zh) 2008-09-01 2010-06-23 成都优博创技术有限公司 基于波分复用(xWDM)射频拉远单元的级联组网方法
WO2010083182A2 (en) * 2009-01-13 2010-07-22 Adc Telecommunications, Inc. Systems and methods for improved digital rf transport in distributed antenna systems
US10244579B2 (en) 2010-01-28 2019-03-26 Samsung Electronics Co., Ltd. Techniques for millimeter wave mobile communication
US9806789B2 (en) * 2010-04-06 2017-10-31 Samsung Electronics Co., Ltd. Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system
CN102036134A (zh) 2011-01-18 2011-04-27 北京邮电大学 基于正交频分复用的汇聚式光接入网系统和方法
EP4138310A1 (en) * 2011-06-29 2023-02-22 ADC Telecommunications, Inc. Evolved distributed antenna system
US8837564B2 (en) * 2011-10-14 2014-09-16 Broadcom Corporation Multi gigabit modem for mmWave point to point links
US20130142136A1 (en) * 2011-10-21 2013-06-06 Samsung Electronics Co., Ltd. Methods and apparatus for adaptive wireless backhaul and networks
JP5926398B2 (ja) * 2011-12-08 2016-05-25 インターデイジタル パテント ホールディングス インコーポレイテッド 高速デュアルバンドセルラー通信
US9935699B2 (en) * 2012-06-22 2018-04-03 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming in a wireless communication system
US9191993B2 (en) * 2012-11-20 2015-11-17 Adc Telecommunications, Inc. Distributed antenna system with uplink bandwidth for signal analysis
CN102970260B (zh) 2012-12-24 2016-05-04 京信通信系统(中国)有限公司 噪声抑制方法、装置及lte数字微波射频拉远覆盖系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419792A (zh) * 2000-06-08 2003-05-21 锐美克有限公司 无线通信系统中可缩放扇区的广域网
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101005450A (zh) * 2006-12-15 2007-07-25 上海华为技术有限公司 通用公共无线接口数据传输方法及其设备和系统
CN101394603A (zh) * 2008-10-17 2009-03-25 中国移动通信集团河北有限公司 一种近海域作业平台的通信系统
CN103199975A (zh) * 2013-03-28 2013-07-10 武汉邮电科学研究院 一种分布式载波聚合多室内联合基站系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086622A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076470A (zh) * 2016-11-16 2018-05-25 广州全界通讯科技有限公司 一种移动通信系统及方法
WO2018223396A1 (zh) * 2017-06-09 2018-12-13 华为技术有限公司 基站的拉远装置、基站和随机接入方法
US11330631B2 (en) 2017-06-09 2022-05-10 Huawei Technologies Co., Ltd. Remote apparatus in base station, base station, and random access method

Also Published As

Publication number Publication date
US10389560B2 (en) 2019-08-20
CN105917732B (zh) 2020-11-06
US20160330056A1 (en) 2016-11-10
CN105917732A (zh) 2016-08-31
EP3086622A1 (en) 2016-10-26
EP3086622A4 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
CN110537337B (zh) 在l1分割架构中具有混合波束成形的多站点mimo通信系统
WO2015113274A1 (zh) 基带处理单元、射频拉远单元及通信方法
US10779251B2 (en) Timing advance in new radio
EP3941153B1 (en) Data transmission method and network equipment supporting pdcp duplication function
US8467818B2 (en) Communication system and management method thereof
CN111867094B (zh) 数据接收和发送方法及装置
KR101468834B1 (ko) 무선 액세스 네트워크에서의 부하 밸런싱을 위한 개념
TWI566635B (zh) 以多天線實現的倂發的裝置間與蜂窩式通信方法、使用此方法的使用者設備、使用此方法的基地台和使用此方法的通信系統
WO2014015660A1 (zh) 无线通信系统的基带处理装置和无线通信系统
US10237041B2 (en) Method and apparatus for self-configuration and self-optimization in a wireless communication system
EP3616434B1 (en) Method, central unit and distributed unit supporting pdcp duplication function
US20230224985A1 (en) Method for establishing backhaul network, communication method, and communication apparatus
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
KR101987429B1 (ko) 기지국 장비, 하향링크 협력 전송 방법 및 상향링크 협력 전송 방법
WO2024067244A1 (zh) 数据发送的方法和装置
WO2017088791A1 (zh) 一种波束处理方法和基站
EP3286947B1 (en) Method and apparatus for self-configuration and self-optimization in a wireless communication system
WO2019070746A1 (en) BEAM FORMATION AND LINKAGE ESTABLISHMENT FOR TIME DIVISION DUPLEX NETWORKS
CN104954071B (zh) 一种LTE‑Advanced全数字光纤中继系统及其实现方法
KR20220105110A (ko) 무선 통신 시스템에서 중계 단말을 통한 원격 단말의 연결 설정 방법 및 장치
TW202207647A (zh) 用於多天線的波束形成電路
WO2023087265A1 (en) Super-ue radio resource control (rrc) connection
US20240048999A1 (en) Methods and devices for beam directivity at network-controlled repeaters
WO2023210421A1 (ja) 通信方法及び制御端末
WO2024169430A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880569

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014880569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE