WO2015113269A1 - 一种网络构架方法、一种业务分配方法及相关装置 - Google Patents

一种网络构架方法、一种业务分配方法及相关装置 Download PDF

Info

Publication number
WO2015113269A1
WO2015113269A1 PCT/CN2014/071793 CN2014071793W WO2015113269A1 WO 2015113269 A1 WO2015113269 A1 WO 2015113269A1 CN 2014071793 W CN2014071793 W CN 2014071793W WO 2015113269 A1 WO2015113269 A1 WO 2015113269A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
snc
load
access request
fns
Prior art date
Application number
PCT/CN2014/071793
Other languages
English (en)
French (fr)
Inventor
谭巍
张伟
彭程晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/071793 priority Critical patent/WO2015113269A1/zh
Priority to CN201480056215.3A priority patent/CN105637906B/zh
Publication of WO2015113269A1 publication Critical patent/WO2015113269A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1004Server selection for load balancing
    • H04L67/1008Server selection for load balancing based on parameters of servers, e.g. available memory or workload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a network architecture method, a service distribution method, and related devices.
  • SDN Software Defined Network
  • Network OS Network operating system
  • the research and practical application of SDN mainly focus on the wired network field, and the SDN research and application in the field of wireless network is very limited.
  • the SDN in the wireless network field the mobility management entity in the wireless network (Mobility Management) Entity, ⁇ ), Public Data Gateway (PDN Gateway, PGW) and Serving Gateway (SGW) basically exist as independent physical entities, and many data plane functions are integrated in MME, PGW and SGW.
  • MME Mobility Management Entity
  • PGW Public Data Gateway
  • SGW Serving Gateway
  • the technical problem to be solved by the present invention is to provide a network architecture method, a service distribution method and related devices, and perform a reasonable SDN network architecture on the wireless network, thereby dynamically allocating resources in the network.
  • the technical solution adopted by the present invention is:
  • the present invention provides a network architecture method, which is applied to a wireless network, and the method includes:
  • the split function is deployed in the centralized control network element SNC, the data rule matching entity Entry, the distribution entity Distributo network address translation NAT, the function node network FNN, and the broadcast node Radio Node according to the service type of the function;
  • the SNC is configured to have a control plane function of the SGW, the PGW, and the MME, where the entry is used to receive a service access request sent by the SNC;
  • the distributor configured to distribute the service access request sent by the SNC received by the Entry to a corresponding function node FN in the FNN;
  • the NAT is used to interface with other domain networks
  • the FNN includes a plurality of FNs for processing a service category
  • the radio node is configured to forward a service access request to the SNC, so that the SNC allocates a corresponding FN to the service access request according to the service type requested in the service access request.
  • the present invention provides a network architecture device, which is applied to a wireless network, and the device includes:
  • a function splitting unit configured to split a function implemented by a serving gateway SGW, a public data gateway PGW, and a mobility management entity MME in a wireless network;
  • a deployment unit configured to deploy the split function according to the service type of the function in a centralized control network element SNC, a data rule matching entity Entry, a distribution entity Distributo network address translation NAT, a function node network FNN, and a broadcast node Radio Node ;
  • the SNC is configured to have a control plane function of the SGW, the PGW, and the MME, where the entry is used to receive a service access request sent by the SNC;
  • the distributor the service access request sent by the SNC received by the Entry Distributed to the corresponding function node FN in the FNN;
  • the NAT is used to interface with other domain networks
  • the FNN includes a plurality of FNs for processing a service category
  • the radio node is configured to forward a service access request to the SNC, so that the SNC allocates a corresponding FN to the service access request according to the service type requested in the service access request.
  • the present invention provides a service allocation method, which is applied to a wireless network of a software-defined network SDN, where the wireless network of the SDN includes at least a broadcast node, a radio node, a centralized control network element SNC, and a function node network FNN.
  • the method specifically includes:
  • the SNC acquires a status parameter reported by the function node FN in the FNN, where the FN is used to process a service type, where the status parameter includes the FN remaining service processing capability, the quantity of the service to be processed, and the processing service consumption.
  • Business processing capability
  • the SNC determines, according to the service load quantity, a working state in which the corresponding FN is located; and the SNC performs a corresponding service allocation operation on the FN according to the working state of the FN.
  • the SNC determines, according to the service load, the working state of the corresponding FN, including:
  • the SNC determines the corresponding
  • the SNC when the FN is in a normal working state, if the SNC receives a service access request corresponding to the processing service type of the FN from the radio node, the SNC allocates the service access request to The FN, such that the FN responds to the service access request.
  • the SNC determines, according to the service load, the working state of the corresponding FN, including:
  • Said SNC determines that the corresponding FN is in a critical working state
  • the SNC when the FN is in a critical working state, if the SNC receives a service access request corresponding to the processing service type of the FN from the radio node, the SNC does not allocate the service access request. Giving the FN;
  • the SNC determines, according to the saved traffic load quantity, another FN that is in a normal working state and has the same processing service type as the FN;
  • the SNC allocates the service access request to the other FNs, so that the other FNs respond to the service access request.
  • the SNC determines, according to the service load, the working state of the corresponding FN, including:
  • the SNC determines that the corresponding FN is in an overload working state
  • the SNC determines a handover service from a service currently processed by the FN;
  • the SNC determines, from the stored traffic load, another FN that is in a normal working state and has the same processing service type as the FN;
  • the SNC determines a handover service from the service currently processed by the FN, including:
  • the SNC randomly or specifies a service from the currently processed service of the FN as a handover service.
  • the state parameter is reported by the FN period.
  • the SNC is calculated according to the acquired state parameter
  • the traffic load corresponding to the FN is specifically as follows: 6 _ Ravg _ Savg Pavg
  • Ravg is the average of the current remaining service processing capabilities of all FNs in the FNN
  • Savg is the average of the processing capabilities of the FNs in the FNN that handle the same type of service
  • P is the business processing capability consumed to process a service type of business
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • & is the FN service processing capability numbered i;
  • the present invention provides a service distribution apparatus, which is applied to a wireless network of a software-defined network SDN, where the wireless network of the SDN includes at least a broadcast node, a radio node, a centralized control network element SNC, and a function node network FNN.
  • the device specifically includes:
  • a state parameter obtaining unit configured to acquire a state parameter reported by the function node FN in the FNN, where the FN is used to process a service type, where the state parameter includes the FN remaining service processing capability, the quantity of the service to be processed, and Handling the business processing capabilities consumed by the business;
  • a calculating unit configured to calculate a service load corresponding to the FN according to the obtained state parameter, and update the service load amount to a save location corresponding to the FN;
  • the working status determining unit is configured to determine, according to the service load quantity, a working state in which the corresponding FN is located; a service allocation operation.
  • the working state determining unit is specifically configured to:
  • the service allocation unit is further configured to: when the FN is in a normal working state, if a service access request corresponding to the processing service type of the FN is received from the radio node, The service access request is allocated to the FN, such that the FN responds to the service access request.
  • the working state determining unit is specifically configured to:
  • the service allocation unit further includes a non-allocation subunit, a first FN determination subunit, and an allocation subunit;
  • the non-allocation sub-unit is configured to: when the FN is in a critical working state, if the service access request corresponding to the processing service type of the FN is received from the radio node, the service access request is not allocated. Giving the FN;
  • the first FN determining subunit is configured to determine, according to the saved traffic load quantity, another FN that is in a normal working state and has the same processing service type as the FN;
  • the allocating subunit is configured to allocate the service access request to the other FN, so that the other FNs respond to the service access request.
  • the working state determining unit is specifically configured to:
  • the service allocation unit further includes a handover service determination subunit, a second FN determination subunit, and a handover subunit;
  • the switching service determining subunit is configured to determine, when the FN is in an overload working state, a handover service from a service currently processed by the FN;
  • the second FN determining subunit configured to determine, from the stored traffic load, another FN that is in a normal working state and has the same processing service type as the FN;
  • the switching subunit configured to send a handover instruction to the FN, to control the FN to send the context and data of the handover service to the other FN, so that the other FNs are based on the context of the handover service.
  • the data continues to correspond to the service switching service.
  • the switching service determining subunit is specifically configured to:
  • a service is randomly or specified from the service currently processed by the FN as a handover service.
  • the state parameter is reported by the FN period.
  • the calculating unit is specifically configured to:
  • Ravg is the average of the current remaining service processing capabilities of all FNs in the FNN
  • Savg is the average value of the service processing capability of the FN that processes the same service type in the FNN;
  • P is the service processing capability consumed by the service of processing a service type;
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • & is the FN service processing capability numbered i;
  • the functions in the MME, the PGW, and the SGW in the wireless network are decoupled and split from the original physical entity, and the functions are deployed to the functional nodes FN in the functional node network FNN.
  • the SDN architecture of the wireless network is realized, and the separation of the control layer and the data plane function in the wireless network is achieved.
  • the SNC determines the working state of the FN by monitoring the traffic load of each FN in the FNN, and performs corresponding service allocation according to different working states.
  • the service allocation can be dynamically adjusted and adjusted according to the working state of the FN, thereby greatly improving the processing capability of the SDN wireless network architecture.
  • 1 is a flow chart of a method for a network architecture method according to the present invention
  • 2 is a structural diagram of a device of a network architecture device according to the present invention
  • FIG. 3 is a network architecture diagram of a wireless network under SDN according to the present invention.
  • FIG. 4 is a flowchart of a method for a service allocation method according to the present invention.
  • FIG. 5 is a schematic diagram of a signaling diagram of a service allocation method according to the present invention.
  • FIG. 6 is a second signaling diagram of a service allocation method according to the present invention.
  • FIG. 7 is a third signaling diagram of a service allocation method according to the present invention.
  • FIG. 8 is a structural diagram of a device of a service distribution device according to the present invention.
  • FIG. 9 is a second structural diagram of a device of a service distribution device according to the present invention.
  • FIG. 10 is a third structural diagram of a device of a service distribution device according to the present invention. Detailed ways
  • the embodiment of the invention provides a network architecture method, a service allocation method and related devices.
  • the requirements for processing and compatibility of wireless networks are becoming higher and higher, and the network innovation architecture using SDN can realize flexible control of network traffic, providing a good platform for network and application innovation.
  • the only work is mainly concentrated on the centralized control of the physical layer of the wireless network, and the opening of the wireless base station, lacking basic problems for the wireless network (access network and core network) and in practical applications.
  • the data plane and the control plane in the MME, the PGW, and the SGW are coupled together and mutually restricted, and it is difficult to expand according to service characteristics and performance requirements, so that the control layer in the actual sense cannot be achieved.
  • the SDN architecture of the wireless network separated from the data plane.
  • the functions in the MME, the PGW, and the SGW in the wireless network are decoupled and split from the original physical entity, and the functions are deployed in the functional node network FNN.
  • the SDN architecture for the wireless network is realized, and the separation of the control layer and the data plane function in the wireless network is achieved.
  • each FN can only process services of the same service type. Moreover, the processing capability of each FN is also limited. How to allocate services to these FNs reasonably and effectively is also a problem that needs to be solved.
  • the SNC passes each of the FNNs.
  • the monitoring of the service load of the FN determines the working status of the FN, and performs corresponding service allocation according to different working states, so that the service allocation can be dynamically adjusted with the change of the working state of the FN, thereby greatly improving the implementation of the SDN.
  • a network architecture of a wireless network is described by using an SDN.
  • a flowchart of a method for a network architecture method is applied to a wireless network, where the method includes:
  • S101 splitting functions implemented by the serving gateway SGW, the public data gateway PGW, and the mobility management entity MME in the wireless network;
  • the function mainly refers to the data plane function that can be completed by the above physical device.
  • the PGW integrates many data plane functions, such as mobile IP, packet filtering, and general data transmission platform (General Data Transfer Platform, GTP) Tunnel management, security and billing, etc. There are so many different kinds of places here that they are no longer exhaustive.
  • GTP General Data Transfer Platform
  • S102 deploy the split function in a centralized control network element (SNC), a data rule matching entity Entry, and a distribution entity according to the service type of the function.
  • SNC centralized control network element
  • NAT Network Address Translation
  • FNN Function Nodes Network
  • the SNC is configured to have a control plane function of the SGW, the PGW, and the MME, where the entry is used to receive a service access request sent by the SNC;
  • the distributor configured to distribute the service access request sent by the SNC received by the Entry to a corresponding function node FN in the FNN;
  • the NAT is used to interface with other domain networks
  • the FNN includes a plurality of FNs for processing a service category
  • the radio node is configured to forward a service access request to the SNC, so that the SNC allocates a corresponding FN to the service access request according to the service type requested in the service access request.
  • the functions in the MME, the PGW and the SGW in the wireless network are decoupled and split from the original physical entities, and the functions are deployed to the functional nodes FN in the functional node network FNN.
  • the SDN architecture of the wireless network is realized, and the separation of the control layer and the data plane function in the wireless network is achieved.
  • This embodiment is a device embodiment corresponding to the first embodiment, and further describes the structure and connection relationship between the devices.
  • FIG. 2 it is a device structure diagram of a network architecture device according to the present invention.
  • the device includes a function splitting unit and a deployment unit:
  • the function splitting unit 201 is configured to split the functions that can be implemented by the serving gateway SGW, the public data gateway PGW, and the mobility management entity MME in the wireless network;
  • the deployment unit 202 is configured to deploy the split function according to the service type of the function in the centralized control network element SNC, the data rule matching entity Entry ⁇ the distribution entity distributor ⁇ network address translation NAT, the function node network FNN, and the broadcast node Radio Node
  • the SNC is configured to have a control plane function of the SGW, the PGW, and the MME, where the entry is used to receive a service access request sent by the SNC;
  • the distributor configured to distribute the service access request sent by the SNC received by the Entry to a corresponding function node FN in the FNN;
  • the NAT is used to interface with other domain networks
  • the FNN includes a plurality of FNs for processing a service category
  • the radio node is configured to forward a service access request to the SNC, so that the SNC allocates a corresponding FN to the service access request according to the service type requested in the service access request.
  • FIG. 3 it is a network architecture diagram of a wireless network under the SDN according to the present invention, including SNC301, Entry 302, Distributor303, NAT 304, FNN 305, and Radio Node 306: the SNC 301 has a control plane function of the SGW, the PGW, and the MME;
  • the entry 302 is configured to receive a service access request sent by the SNC;
  • the distributor 303 configured to distribute the service access request sent by the SNC received by the Entry to a corresponding function node FN in the FNN;
  • the NAT 304 is configured to interface with other domain networks
  • the FNN 305 includes a plurality of FNs, where the FN is used to process a service category, and the radio node 306 is configured to forward a service access request to the SNC, so that the SNC can access the service according to the service.
  • the corresponding FN is allocated to respond to the service access request.
  • a method flowchart of a service allocation method according to the present invention is applied to a wireless network of a software defined network SDN, and the wireless network of the SDN includes at least a broadcast node Radio Node, a centralized control network element SNC, and a function node network FNN.
  • the application of the technical solution of the present embodiment is based on the WLAN wireless network architecture of the control layer and the data plane separated by the implementation of the technical solution of the SDN, and may be implemented specifically on the basis of the first embodiment. of.
  • the method specifically includes the following steps:
  • the SNC acquires a state parameter reported by the function node FN in the FNN, where the FN is used to process a service type, where the state parameter includes the FN remaining service processing capability, the quantity of the to-be-processed service, and the processing service.
  • the number of FNs in the FNN is at least the number of service functions split from the functions that can be implemented by the SGW, the PGW, and the MME, where each FN is given a service function, so each An FN can and can only perform the corresponding type of service.
  • the state parameter received by the SNC may be reported in a specified period, or may be reported after being triggered by some commands or working conditions, and the invention is not limited.
  • a preferred reporting method proposed by the technical solution of the present invention is that the status parameter is reported in the FN period.
  • the SNC calculates a service load amount corresponding to the FN according to the obtained state parameter, and updates the service load amount to a save location corresponding to the FN.
  • the SNC monitors the current state of all FNs in the FNN by the reported status parameter, and the accuracy of the monitoring is related to the reported frequency.
  • the traffic load is calculated, the saved location of the FN corresponding to the status parameter is saved, and if the traffic load has been saved in the save location, the current traffic load is updated to the original traffic load. Amount to ensure that the most up-to-date data is kept for subsequent operations related to the business load.
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • the second type of representation or the method of calculating the traffic load through the state parameters is the ratio of the remaining power ratio of the number of service packets in the FN to the network mean:
  • E is the remaining service processing capability of the FN numbered i;
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • Eavg is the average of the remaining business processing capabilities of all FNs in the FNN
  • both of the above methods can be applied to the technical solution of the present invention, but it is not difficult to find by comparison that the first type of calculation method only considers the number of service packets in the FN, and thus is very simple; the second type of calculation method is relative to the first For a class of methods, it is more comprehensive because of the energy problem of FN.
  • these two calculation methods do not fully describe the software-defined network of resource decoupling. This is because the software-defined network is decoupled into different FNs, and the remaining capabilities need to be considered when selecting the FN.
  • the FN consumes different processing powers due to the different types of processing services that are assigned. .
  • the technical solution of the present invention further provides a preferred method for calculating a traffic load by using a state parameter, and adopting a ratio of an average value of current remaining service processing capabilities of all FNs in the FNN to a current remaining service processing capability of a single FN.
  • a state parameter 6 _ Ravg _ Savg Pavg
  • Ravg is the average of the current remaining service processing capabilities of all FNs in the FNN
  • Savg is the average of the processing capabilities of the FNs in the FNN that handle the same type of service
  • P is the business processing capability consumed to process a service type of business
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • & is the FN service processing capability numbered i;
  • Pi is the number of services that have not been processed by the FN assigned to number i;
  • the SNC determines, according to the service load quantity, a working state in which the corresponding FN is located; and an allocation operation.
  • step S403 and S404 first, the first load amount and the second load amount of the two service load amounts are set according to the network working environment, wherein the first load quantity is smaller than the second load quantity, that is, Said that the business load is divided into three intervals or three different situations, the first is the interval smaller than the first load, the second is greater than the first load is less than the second load, the third It is an interval larger than the second load amount, and the following will be explained separately for the three cases.
  • the SNC determines the working state of the corresponding FN according to the service load, and when the service load is less than the preset first load, the SNC determines The corresponding FN is in a normal working state;
  • the SNC when the FN is in a normal working state, if the SNC receives a service access request corresponding to the processing service type of the FN from the radio node, the SNC allocates the service access request to The FN, such that the FN responds to the service access request.
  • FIG. 5 is a letter of a service allocation method according to the present invention.
  • S501 The SNC receives a status parameter reported by the FN.
  • the SNC calculates a service load quantity by using the status parameter, and further determines that the FN that reports the status parameter is in a normal working state;
  • the SNC receives, from the radio node, a service access request corresponding to a processing service type of the FN.
  • the service type requested by the service access request is the same as the service type that the FN can provide.
  • step S504 According to the judgment result of step S502, the SNC allocates the request of the access request to the FN;
  • the FN in this step starts to provide a downlink data service to the radio node.
  • the SNC determines, according to the service load, the working state of the corresponding FN, when the service load is greater than the first load and less than the preset second load.
  • the SNC determines that the corresponding FN is in a critical working state
  • the SNC When the FN is in a critical working state, if the SNC receives a service access request corresponding to the processing service type of the FN from the Radio Node, the SNC does not allocate the service access request to the FN;
  • the SNC determines, according to the saved traffic load quantity, another FN that is in a normal working state and has the same processing service type as the FN;
  • the SNC allocates the service access request to the other FNs, so that the other FNs respond to the service access request.
  • FIG. 6 is a second diagram of the service allocation method of the present invention, including the first FN and the second FN in the Radio Node, the SNC, and the FNN:
  • S601 The SNC receives a status parameter reported by the first FN.
  • S602 The SNC receives a status parameter reported by the second FN.
  • the first FN and the second FN are specifically two FNs that can be processed, and the first FN and the second FN are on the top.
  • the time of the status parameter can be consistent or inconsistent. If the status is inconsistent, the reporting relationship is not limited. It only represents the relatively latest status parameter reporting operation.
  • the SNC calculates a service load quantity by using the state parameter, and further determines that the first FN that reports the status parameter is in a critical working state, and the second FN is in a normal working state;
  • the SNC receives, from the radio Node, a service access request corresponding to a processing service type of the FN.
  • the service type requested by the service access request is the same as the service type that the first FN and the second FN can provide.
  • step S605 According to the judgment result of step S603, the SNC does not allocate the service access request to the first FN; the SNC allocates the service access request to give a normal working state and has The second FN of the same type of processing service as the first FN;
  • S606 The second FN responds to the service access request of the radio node.
  • the second FN in this step starts to provide a downlink data service to the radio node.
  • the SNC calculates the traffic load amount through the state parameter and further determines that the working state of the first FN changes to a normal working state
  • the SNC receives the corresponding first The service access request of the FN may be allocated to the first FN.
  • the third case that is, the SNC determines the working state of the corresponding FN according to the service load, and when the service load is greater than the second load, the SNC determines the corresponding The FN is in an overload working state;
  • the SNC determines a handover service from a service currently processed by the FN;
  • the SNC determines that it is in a normal working state from the stored traffic load and has the same
  • the other FNs of the FN processing service type are the same;
  • the technical solution of the present invention provides a preferred method for determining a handover service from the service currently being processed by the FN, and the SNC randomly or designates a service from the FN currently processed as a handover service.
  • the FN that is generally in an overloaded working state provides multiple service services.
  • either one of the multiple service services can be randomly selected as the switching service, or it can be set as The service service that occupies the largest service processing capability is determined as the handover service, and the present invention does not limit the manner in which the handover service is specified.
  • FIG. 7 is a third diagram of the signal distribution method of the present invention, including the first FN and the second FN in the SNC and the FNN:
  • the SNC receives a status parameter reported by the first FN.
  • the SNC receives a status parameter reported by the second FN.
  • the first FN and the second FN are specifically two FNs that can be processed in the same service type, wherein the first FN and the second FN are on the top.
  • the time of the status parameter can be consistent or inconsistent. If the status is inconsistent, the reporting relationship is not limited. It only represents the relatively latest status parameter reporting operation.
  • the SNC calculates a service load quantity by using the state parameter, and further determines that the first FN that reports the status parameter is in an overload working state, and the second FN is in a normal working state;
  • the SNC determines, according to a service currently processed by the FN, a handover service.
  • S705 The SNC sends a handover instruction to the FN.
  • the first FN sends the context and data of the handover service to the second FN. It is to be noted that, after the second FN receives the context and data of the handover service, the The second FN will continue to provide service services to the Radio Node corresponding to the handover service.
  • the switching service is to provide a downlink data service, and the original first FN corresponds to the switching service.
  • the radio node provides a downlink data service, and after the handover, the second FN continues to provide downlink data services to the radio node.
  • the SNC calculates the traffic load amount through the state parameter and further determines that the working state of the first FN changes to a normal working state, if the SNC receives the corresponding first The service access request of the FN may be allocated to the first FN.
  • the SNC determines the working state of the FN by monitoring the service load of each FN in the FNN, and according to the working state.
  • the corresponding service allocation is performed differently, so that the service allocation can be dynamically adjusted with the change of the working state of the FN, and the processing capability of the service in the wireless network architecture of the SDN is greatly improved.
  • This embodiment is an embodiment of the device corresponding to the third embodiment.
  • FIG. 8 it is a device structure diagram of a service distribution device according to the present invention.
  • the wireless network of the software defined network SDN is applied to the wireless network of the SDN.
  • the device includes at least a broadcast node, a radio node, a centralized control network element SNC, and a function node network FNN.
  • the device specifically includes:
  • the state parameter obtaining unit 801 is configured to acquire a state parameter reported by the function node FN in the FNN, where the FN is used to process a service type, where the state parameter includes the FN remaining service processing capability and the number of services to be processed. And the business processing capabilities consumed by the business;
  • the state parameter received by the state parameter obtaining unit 801 may be reported in a specified period, or may be reported after being triggered by some commands or working conditions, which is not limited by the present invention.
  • a preferred reporting method proposed by the technical solution of the present invention is that the status parameter is reported in the FN period.
  • the calculating unit 802 is configured to calculate a service load amount corresponding to the FN according to the obtained state parameter, and update the service load amount to a save location corresponding to the FN;
  • the representation method is described in the technical solution of the present invention by using the traffic load degree uniformly.
  • the first type of representation method or the method of calculating the traffic load by the state parameter is the ratio of the number of services that have not been processed in the FN to the network mean:
  • is the number of services that have not been processed by the FN assigned to number i;
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • the second type of representation or the method of calculating the traffic load through the state parameters is the ratio of the remaining power ratio of the number of service packets in the FN to the network mean:
  • is the number of services that have not been processed by the FN assigned to number i;
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • Eavg is the average of the remaining business processing capabilities of all FNs in the FNN
  • both of the above methods can be applied to the technical solution of the present invention, but it is not difficult to find by comparison that the first type of calculation method only considers the number of service packets in the FN, and thus is very simple; the second type of calculation method is relative to the first For a class of methods, it is more comprehensive because of the energy problem of FN.
  • these two calculation methods do not fully describe the software-defined network of resource decoupling. This is because the software-defined network is decoupled into different FNs, and the remaining capabilities need to be considered when selecting the FN.
  • the FN consumes different processing powers due to the different types of processing services that are assigned. .
  • the technical solution of the present invention further provides a preferred method for calculating a traffic load by using a state parameter, and adopting a ratio of an average value of current remaining service processing capabilities of all FNs in the FNN to a current remaining service processing capability of a single FN.
  • Ravg is the average of the current remaining service processing capabilities of all FNs in the FNN
  • Savg is the average value of the service processing capability of the FN that processes the same service type in the FNN;
  • p is the service processing capability consumed by the service of a service type;
  • Pavg is the average of the number of services that have not been processed by all FNs in the FNN;
  • & is the FN service processing capability numbered i;
  • Pi is the number of services that have not been processed by the FN assigned to number i;
  • the working status determining unit 803 is configured to determine, according to the service load quantity, a working state of the corresponding FN;
  • the business assignment operation should be.
  • the working state determining unit 803 and the service allocating unit 804 it is required to first set a threshold value of the two service load amounts, a first load amount and a second load amount according to the network working environment, where the first load
  • the quantity is smaller than the second load quantity, that is to say, the service load quantity is divided into three sections or three different cases, the first one is the interval smaller than the first load amount, and the second one is larger than the first load amount is smaller than The interval of the second load amount, the third is the interval larger than the second load amount, and the expansion of the three cases will be separately described below.
  • the first case is a first case:
  • the working status determining unit 803 is specifically configured to: when the service load quantity is less than a preset first load quantity, determine that the corresponding FN is in a normal working state;
  • the service allocation unit 804 is further configured to: if the FN is in a normal working state, if the service access request corresponding to the processing service type of the FN is received from the radio node, the service is connected. An incoming request is allocated to the FN such that the FN responds to the service access request.
  • the second case is a first case
  • the working state determining unit 803 is specifically configured to: when the traffic load is greater than the first negative When the load is less than the preset second load, it is determined that the corresponding FN is in a critical working state; correspondingly, on the basis of FIG. 8, the service allocating unit 804 further includes a sub-unit 8041
  • the first FN determining subunit 8042 and the assigning subunit 8043 are as shown in FIG. 9:
  • the non-allocation sub-unit 8041 is configured to: when the FN is in a critical working state, if the service access request corresponding to the processing service type of the FN is received from the radio node, the service access request is not Assigned to the FN;
  • the first FN determining subunit 8042 is configured to determine, according to the saved traffic load quantity, another FN that is in a normal working state and has the same processing service type as the FN;
  • the allocating subunit 8043 is configured to allocate the service access request to the other FNs, so that the other FNs respond to the service access request.
  • the third case is a first case.
  • the working state determining unit 803 is specifically configured to: when the service load amount is greater than the second load amount, determine that the corresponding FN is in an overload working state;
  • the service allocation unit 804 further includes a handover service determining sub-unit 8044, a second FN determining sub-unit 8045, and a switching sub-unit 8046, as shown in FIG.
  • the switching service determining sub-unit 8044 is configured to determine, when the FN is in an overload working state, a handover service from a service currently processed by the FN;
  • the FN that is generally in an overloaded working state provides multiple service services.
  • either one of the multiple service services can be randomly selected as the switching service, or it can be set as The service service that occupies the largest service processing capability is determined as the handover service, and the present invention does not limit the manner in which the handover service is specified.
  • the second FN determining subunit 8045 is configured to determine, from the stored traffic load, another FN that is in a normal working state and has the same processing service type as the FN;
  • the switching subunit 8046 is configured to send a handover instruction to the FN, and control the FN to send the context and data of the handover service to the other FN, so that the other FNs are based on the context of the handover service. And the data continues to correspond to the service switching service.
  • an optical disk etc., comprising instructions for causing a computer device (which may be a personal computer, a server, or a network communication device such as a media gateway, etc.) to perform the various embodiments of the present invention or portions of the embodiments described herein. method.
  • a computer device which may be a personal computer, a server, or a network communication device such as a media gateway, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种网络构架方法、一种业务分配方法及相关装置,包括:将无线网络中的SGW、PGW和MME所实现的功能拆分出来;按照所述功能的业务种类将拆分出来的功能部署在集中控制网元、数据规则匹配实体、分发实体、网络地址转换、功能节点网络和广播节点中,可以看出,通过将无线网络中的MME、PGW和SGW中功能解耦并从原有的物理实体中拆分出来,并将功能部署到功能节点网络FNN中的各个功能节点FN中,由此实现了对无线网络的SDN构架。SNC通过对FNN中各个FN的业务负载量的监控,确定出FN的工作状态,并根据工作状态的不同进行相应的业务分配,使得业务分配可以动态的、随着FN的工作状态的变化进行调整。

Description

一种网络构架方法、 一种业务分配方法及相关装置
技术领域
本发明涉及通信技术领域, 尤其是涉及一种网络构架方法、 一种业务 分配方法及相关装置。
背景技术
软件定义网络 (Software Defined Network, SDN ) 是由美国斯坦福大 学 clean slate研究组提出的一种新型网络创新架构, SDN的主要思想是控 制层和数据面分离, 开放控制面和数据面的接口, 将网络中所有的网络设 备视为被管理的资源, 那么参考操作系统的原理, 可以抽象出网络操作系 统 (Network OS) 的概念。 网络操作系统一方面抽象了底层网络设备的具 体细节, 同时还为上层应用提供了统一的管理视图和编程接口。 这样, 基 于网络操作系统这个平台, 用户可以开发各种应用程序, 通过软件来定义 逻辑上的网络拓朴, 以满足对网络资源的不同需求, 而无需关心底层网络 的物理拓朴结构。
目前对于 SDN的研究和实际应用主要集中在有线网络领域,对于无线 网络领域的 SDN研究和应用则非常有限,现有技术中对于无线网络领域的 SDN中,无线网络中的移动管理实体( Mobility Management Entity , ΜΜΕ )、 公用数据网关(PDN Gateway , PGW)和服务网关(Serving Gateway , SGW) 基本上都作为独立的物理实体存在, 在 MME、 PGW和 SGW 中集成了很 多数据面功能。
然而这些数据面功能都是以紧耦合的方式集成在 MME、 PGW和 SGW 中, 并没有实现 SDN要求的控制层和数据面的分离。 发明内容
本发明解决的技术问题在于提供一种网络构架方法、 一种业务分配方 法及相关装置, 对无线网络进行了合理的 SDN网络构架, 以此对网络中的 资源进行动态分配。 为了解决以上技术问题, 本发明采取的技术方案是:
第一方面, 本发明提供了一种网络架构方法, 应用于无线网络, 所述方法 包括:
将无线网络中的服务网关 SGW、 公用数据网关 PGW 和移动管理实体 MME所实现的功能拆分出来;
按照所述功能的业务种类将拆分出来的功能部署在集中控制网元 SNC、 数据规则匹配实体 Entry、 分发实体 Distributo 网络地址转换 NAT、 功能节 点网络 FNN和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT , 用于与其他域网络进行接口;
所述 FNN包括多个 FN, 所述 FN, 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
第二方面, 本发明提供了一种网络架构装置, 应用于无线网络, 所述装置 包括:
功能拆分单元,用于将无线网络中的服务网关 SGW、公用数据网关 PGW 和移动管理实体 MME所实现的功能拆分出来;
部署单元,用于按照所述功能的业务种类将拆分出来的功能部署在集中控 制网元 SNC、 数据规则匹配实体 Entry、 分发实体 Distributo 网络地址转换 NAT, 功能节点网络 FNN和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT , 用于与其他域网络进行接口;
所述 FNN包括多个 FN, 所述 FN , 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
第三方面, 本发明提供了一种业务分配方法, 应用于软件定义网络 SDN 的无线网络, 所述 SDN的无线网络至少包括广播节点 Radio Node、 集中控制 网元 SNC和功能节点网络 FNN, 所述方法具体包括:
所述 SNC获取所述 FNN中功能节点 FN上报的状态参数, 所述 FN用于 处理一项业务种类, 所述状态参数包括所述 FN剩余业务处理能力、 待处理业 务的数量和处理业务所消耗的业务处理能力;
所述 SNC才艮据获取的所述状态参数计算出对应所述 FN的业务负载量, 并将所述业务负载量更新到对应所述 FN的保存位置;
所述 SNC根据所述业务负载量确定对应的所述 FN所处的工作状态; 所述 SNC根据所述 FN所处的工作状态对所述 FN进行相应的业务分配操 作。
在第三方面的第一种可能的实现方式中, 所述 SNC才艮据所述业务负载量 确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量小于预设的第一负载量时, 所述 SNC确定对应的所述
FN处于正常工作状态;
相应的, 当所述 FN 处于正常工作状态时, 如果所述 SNC 从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC将所述 业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。
在第三方面的第二种可能的实现方式中, 所述 SNC才艮据所述业务负载量 确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量大于所述第一负载量, 且小于预设的第二负载量时, 所 述 SNC确定对应的所述 FN处于临界工作状态;
相应的, 当所述 FN处于临界工作状态时, 如果所述 SNC从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC不将所 述业务接入请求分配给所述 FN;
所述 SNC根据保存的业务负载量确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC将所述业务接入请求分配给所述其他 FN, 以使得所述其他 FN 响应所述业务接入请求。
在第三方面的第三种可能的实现方式中, 所述 SNC才艮据所述业务负载量 确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量大于所述第二负载量时,所述 SNC确定对应的所述 FN 处于过载工作状态;
相应的, 当所述 FN处于过载工作状态时, 所述 SNC从所述 FN当前所处理 的业务中确定出切换业务;
所述 SNC从存储的业务负载量中确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC向所述 FN发送切换指令,控制所述 FN将所述切换业务的上下 文和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切换业务的上下 文和数据继续相应所述业务切换业务。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述 SNC从所述 FN当前所处理的业务中确定出切换业务, 包括:
所述 SNC从所述 FN 当前所处理的业务中随机或者指定一个业务为切换 业务。
结合第三方面或者第三方面的第一种或第二种或第三种或第四种可能的 实现方式, 在第五种可能的实现方式中, 所述状态参数是 FN周期上报的。
结合第三方面或者第三方面的第一种或第二种或第三种或第四种可能的 实现方式,在第六种可能的实现方式中, 所述 SNC根据获取的所述状态参数计 算出对应所述 FN的业务负载量, 具体为: 6 _ Ravg _ Savg Pavg
― R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
R;为编号为 i的 FN的当前剩余业务处理能力;
Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值;
P为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Λ·为分配到编号为 i的 FN还没有处理的业务数量。
第四方面, 本发明提供了一种业务分配装置, 应用于软件定义网络 SDN 的无线网络, 所述 SDN的无线网络至少包括广播节点 Radio Node、 集中控制 网元 SNC和功能节点网络 FNN, 所述装置具体包括:
状态参数获取单元, 用于获取所述 FNN中功能节点 FN上报的状态参数, 所述 FN用于处理一项业务种类, 所述状态参数包括所述 FN剩余业务处理能 力、 待处理业务的数量和处理业务所消耗的业务处理能力;
计算单元, 用于才艮据获取的所述状态参数计算出对应所述 FN的业务负载 量, 并将所述业务负载量更新到对应所述 FN的保存位置;
工作状态确定单元, 用于根据所述业务负载量确定对应的所述 FN所处的 工作状态; 业务分配操作。
在第四方面的第一种可能的实现方式中, 所述工作状态确定单元, 具体用 于:
当所述业务负载量小于预设的第一负载量时, 确定对应的所述 FN处于正 常工作状态;
相应的, 所述业务分配单元, 还用于当所述 FN处于正常工作状态时, 如 果从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求,将 所述业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。 在第四方面的第二种可能的实现方式中, 所述工作状态确定单元, 具体用 于:
当所述业务负载量大于所述第一负载量,且小于预设的第二负载量时,确 定对应的所述 FN处于临界工作状态;
相应的, 所述业务分配单元, 还包括不分配子单元、 第一 FN确定子单元 和分配子单元;
所述不分配子单元, 用于当所述 FN 处于临界工作状态时, 如果从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 不将所述业 务接入请求分配给所述 FN;
所述第一 FN确定子单元, 用于才艮据保存的业务负载量确定出处于正常工 作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述分配子单元, 用于将所述业务接入请求分配给所述其他 FN , 以使得 所述其他 FN响应所述业务接入请求。
在第四方面的第三种可能的实现方式中, 所述工作状态确定单元, 具体用 于:
当所述业务负载量大于所述第二负载量时,确定对应的所述 FN处于过载 工作状态;
相应的, 所述业务分配单元, 还包括切换业务确定子单元、 第二 FN确定 子单元和切换子单元;
所述切换业务确定子单元, 用于当所述 FN处于过载工作状态时, 从所述 FN当前所处理的业务中确定出切换业务;
所述第二 FN确定子单元, 用于从存储的业务负载量中确定出处于正常工 作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述切换子单元, 用于向所述 FN发送切换指令, 控制所述 FN将所述切换 业务的上下文和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切换业 务的上下文和数据继续相应所述业务切换业务。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述切换业务确定子单元, 具体用于:
从所述 FN当前所处理的业务中随机或者指定一个业务为切换业务。
结合第四方面或者第四方面的第一种或第二种或第三种或第四种可能的 实现方式, 在第五种可能的实现方式中, 所述状态参数是 FN周期上报的。
结合第四方面或者第四方面的第一种或第二种或第三种或第四种可能的 实现方式, 在第六种可能的实现方式中, 所述计算单元, 具体用于:
6 _ Ravg _ Savg Pavg
― R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
为编号为 i的 FN的当前剩余业务处理能力;
Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值; P为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Λ·为分配到编号为 i的 FN还没有处理的业务数量。
由上述技术方案可以看出, 通过将无线网络中的 MME、 PGW和 SGW 中功能解耦并从原有的物理实体中拆分出来, 并将功能部署到功能节点网 络 FNN中的各个功能节点 FN中, 由此实现了对无线网络的 SDN构架, 达 成了无线网络中控制层和数据面功能的分离。
并且在实现的控制层和数据面分离的 SDN的无线网络构架中, SNC通 过对 FNN中各个 FN的业务负载量的监控, 确定出 FN的工作状态, 并根 据工作状态的不同进行相应的业务分配, 使得业务分配可以动态的、 随着 FN的工作状态的变化进行调整, 大大提高了实现 SDN的无线网络构架中 对业务的处理能力。
附图说明
图 1为本发明一种网络架构方法的方法流程图; 图 2为本发明一种网络架构装置的装置结构图;
图 3为本发明一种 SDN下的无线网络的网络架构图;
图 4为本发明一种业务分配方法的方法流程图;
图 5为本发明一种业务分配方法的信令图之一;
图 6为本发明一种业务分配方法的信令图之二;
图 7为本发明一种业务分配方法的信令图之三;
图 8为本发明一种业务分配装置的装置结构图之一;
图 9为本发明一种业务分配装置的装置结构图之二;
图 10为本发明一种业务分配装置的装置结构图之三。 具体实施方式
本发明实施例提供了一种网络构架方法、 一种业务分配方法及相关装 置。 而随着科技的进步, 对无线网络的处理能力和兼容能力的要求也越来 越高, 而使用 SDN的网络创新构架能够实现网络流量的灵活控制, 为网络 及应用的创新提供了良好的平台, 然而目前对于无线网络领域, 仅有的工 作主要集中在无线网络物理层的集中控制, 以及无线基站的开放, 缺乏对 无线网络(接入网和核心网) 的基本问题以及在实际应用中的研究, 比如, 无线网络的体系架构, 如何在该网络中动态高效的协调分配业务等。 现有 技术中还没有将无线网络中作为独立的物理实体的 MME、PGW和 SGW中 集成的很多数据面功能解耦, 独立出来。 所以目前实现的无线网络的 SDN 构架中, MME、 PGW和 SGW中的数据面和控制面耦合在一起,相互制约, 很难根据业务特点和性能需求进行扩展, 使得无法达成实际意义上的控制 层和数据面分离的无线网络的 S D N构架。在本发明提供的一种网络构架方 法中, 通过将无线网络中的 MME、 PGW和 SGW 中功能解耦并从原有的 物理实体中拆分出来, 并将功能部署到功能节点网络 FNN中的各个功能节 点 FN中, 由此实现了对无线网络的 SDN构架, 达成了无线网络中控制层 和数据面功能的分离。
在实现了控制层和数据面分离的 SDN的无线网络构架中, 或者说在本 发明提供的一种网络构架方法中, 虽然将网元 MME、 PGW和 SGW 中的 功能解耦出来, 并赋予到 FNN中的各个 FN中, 但是每个 FN只能处理同 一种业务类型的业务, 而且每个 FN 的处理能力也是有限的, 如何合理的 有效的将业务分配给这些 FN 也是一个随之而来需要解决问题, 在本发明 提供的一种业务分配方法中, SNC通过对 FNN中各个 FN的业务负载量的 监控, 确定出 FN 的工作状态, 并根据工作状态的不同进行相应的业务分 配, 使得业务分配可以动态的、 随着 FN 的工作状态的变化进行调整, 大 大提高了实现 S D N的无线网络构架中对业务的处理能力。
为使本申请的目的、 技术方案和优点更加清楚明白, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组 合。 在附图的流程图示出的步驟可以在诸如一组计算机可执行指令的计算 机系统中执行。 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况 下, 可以以不同于此处的顺序执行所示出或描述的步驟。
实施例一
本实施例将对如何使用 SDN来对无线网络进行网络架构进行描述,请 参阅图 1, 其为本发明一种网络架构方法的方法流程图, 应用于无线网络, 所述方法包括:
S101 : 将无线网络中的服务网关 SGW、 公用数据网关 PGW和移动管理 实体 MME所实现的功能拆分出来;
这里需要说的是,所述功能主要是指可以通过上述实体设备完成的数据面 功能, 以 PGW为例, PGW内部集成很多的数据面功能, 比如移动 IP、 数据 包过滤、 通用数据传输平台 (General Data Transfer Platform, GTP) 隧道管理、 安全和计费等等。 种类繁多, 这里不再一一穷举。
S 102: 按照所述功能的业务种类将拆分出来的功能部署在集中控制网元 (Single Network Controller , SNC)、 数据规则匹配实体 Entry、 分发实体 Distributor、 网络地址转换 (Network Address Translation , NAT)、 功能节点网 络 (Function Nodes Network, FNN) 和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT , 用于与其他域网络进行接口;
所述 FNN包括多个 FN, 所述 FN, 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
这里需要说明的是,以上划分出的网络构架组成部分只是最基本的也可以 才艮据网路技术的发展进一步的增加组成部分, 本发明对此不进行限定。
需要明确的是, 在完成对无线网络的 SDN构架后, 需要进一步的才艮据对 部署了具体业务功能的 FN进行业务分配, 本实施例的技术方案也可以作为本 发明提供的一种业务分配方法的实施基础,也就是说本发明的一种业务分配方 法也可以应用于本发明的一种网络架构方法上。
从本发明可以看出, 通过将无线网络中的 MME、 PGW和 SGW中功能 解耦并从原有的物理实体中拆分出来, 并将功能部署到功能节点网络 FNN 中的各个功能节点 FN中, 由此实现了对无线网络的 SDN构架, 达成了无 线网络中控制层和数据面功能的分离。
实施例二
本实施例为实施例一对应的装置实施例,将从装置之间的结构和连接关系 上进行进一步的描述, 请参阅图 2, 其为本发明一种网络架构装置的装置结构 图, 应用于无线网络, 所述装置包括功能拆分单元和部署单元: 功能拆分单元 201, 用于将无线网络中的服务网关 SGW、 公用数据网关 PGW和移动管理实体 MME所能实现的功能拆分出来;
部署单元 202, 用于按照所述功能的业务种类将拆分出来的功能部署在集 中控制网元 SNC、 数据规则匹配实体 Entry ^ 分发实体 Distributor^ 网络地址 转换 NAT、 功能节点网络 FNN和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT, 用于与其他域网络进行接口;
所述 FNN包括多个 FN, 所述 FN, 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
接下来将通过基于本发明的 SDN下的无线网络的网络构架结构来进行说 明, 请参阅图 3, 其为本发明一种 SDN 下的无线网络的网络架构图, 包括 SNC301、 Entry 302, Distributor303、 NAT304、 FNN305和 Radio Node306 : 所述 SNC301具备所述 SGW、 PGW和 MME的控制面功能;
所述 Entry302, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor303 , 用于将所述 Entry接收的所述 SNC下发的业务接入 请求分发到所述 FNN中对应的功能节点 FN;
所述 NAT304 , 用于与其他域网络进行接口;
所述 FNN305包括多个 FN, 所述 FN, 用于处理一项业务种类; 所述 Radio Node 306, 用于向所述 SNC转发业务接入请求, 以使得所述 SNC才艮据所述业务接入请求中请求的业务种类,分配对应的 FN响应所述业务 接入请求。 实施例三
本实施例将对在实现的控制层和数据面分离的 SDN 的无线网络构架 后, 如何合理的有效的将业务分配给这些被赋予了业务功能的 FN 进行进 一步的描述, 请参阅图 4, 其为本发明一种业务分配方法的方法流程图, 应 用于软件定义网络 SDN的无线网络,所述 SDN的无线网络至少包括广播节点 Radio Node、 集中控制网元 SNC和功能节点网络 FNN。
这里需要对应用于的场景进行说明, 本实施例技术方案的应用基础是 广泛的能够实现的控制层和数据面分离的 SDN的无线网络构架, 当然也可 以是特定在实施例一的基础上实施的。
所述方法具体包括如下步驟:
S401:所述 SNC获取所述 FNN中功能节点 FN上报的状态参数,所述 FN 用于处理一项业务种类, 所述状态参数包括所述 FN剩余业务处理能力、 待处 理业务的数量和处理业务所消耗的业务处理能力;
这里需要说明的是, 所述 FNN中的 FN的个数至少为从 SGW、 PGW和 MME所能实现的功能拆分出来业务功能的个数, 其中每一个 FN被赋予了一 个业务功能, 所以每一个 FN能且只能执行对应类型的业务。
所述 SNC接收的状态参数可以是指定周期进行上报的, 也可以是通过某 些命令或工作情况触发后上报的, 本发明不做限定。不过本发明技术方案提出 的一种优选的上报方式是所述状态参数是 FN周期上报的。
S402 : 所述 SNC根据获取的所述状态参数计算出对应所述 FN的业务负 载量, 并将所述业务负载量更新到对应所述 FN的保存位置;
也就是说, 所述 SNC通过上报的状态参数监控所述 FNN中的所有 FN的 当前状态, 监控的精度和上报的频率相关。 当计算出业务负载量时, 保存到对 应上报所述状态参数的所述 FN的保存位置,如果所述保存位置上已经保存了 业务负载量的话, 则将当前的业务负载量更新原来的业务负载量, 以确保一直 保存有最新的数据用于后续的业务负载量的相关操作。
现有的研究和实际工程中对网络中资源的衡量有着不同的描述方法,比如 业务饱和度、 压力度、 拥塞度以及负载度等, 但本质上都可以归纳为以下两类 表示方法, 本发明的技术方案中将统一采用业务负载度来对其描述。
其中第一类表示方法或者说通过状态参数计算业务负载量的方法为 FN中 还没有处理的业务数量与网络均值之比: θ = 1 Pavg 其中:
为分配到编号为 i的 FN还没有处理的业务数量;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
第二类表示方法或者说通过状态参数计算业务负载量的方法为 FN中的业 务分组数量剩余功率比值与网络均值之比:
Pavg I Eavg 其中:
为分配到编号为 i的 FN还没有处理的业务数量;
E为编号为 i的 FN的剩余业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
Eavg为 FNN中所有 FN的剩余业务处理能力的平均值;
以上这两种方法均可以应用于本发明的技术方案中,但是通过对比不难发 现, 第一类计算方法只考虑了 FN中的业务分组数量, 因而十分简单; 第二类 计算方法相对于第一类方法而言,由于考虑了 FN的能量问题而显得更加全面。 但是, 这两种计算方法并不能完全准确的描述资源解耦的软件定义网络。 这是 因为, 软件定义网络解耦成不同的 FN , —方面选择 FN 时需要考虑剩余的能 力, 另一方面 FN由于被赋予的处理业务类型的不同导致处理业务的所消耗的 业务处理能力也不同。 因此, 本发明的技术方案还提供了一种优选的通过状态 参数计算业务负载量的方法, 采用所述 FNN 中所有 FN的当前剩余业务处理 能力的平均值与单个 FN当前剩余业务处理能力之比来表示业务负载度: 6 _ Ravg _ Savg Pavg
― R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
为编号为 i的 FN的当前剩余业务处理能力;
Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值;
P为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Pi为分配到编号为 i的 FN还没有处理的业务数量;
S403 : 所述 SNC根据所述业务负载量确定对应的所述 FN所处的工作状 态; 分配操作。
针对步驟 S403和 S404需要说明的是, 首先根据网络工作环境设定两 个业务负载量的门限值第一负载量和第二负载量, 其中第一负载量小于第 二负载量, 那也就是说将业务负载量分为了三个区间或者说三种不同的情 况, 第一个是小于第一负载量的区间, 第二个是大于第一负载量小于第二 负载量的区间, 第三个是大于第二负载量的区间, 下面将分别针对这三种 情况进行展开说明。
第一种情况, 也就是所述 SNC才艮据所述业务负载量确定对应的所述 FN 所处的工作状态, 当所述业务负载量小于预设的第一负载量时, 所述 SNC确 定对应的所述 FN处于正常工作状态;
相应的, 当所述 FN 处于正常工作状态时, 如果所述 SNC 从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC将所述 业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。
针对这第一种情况, 请参阅图 5, 其为本发明一种业务分配方法的信 令图之一, 包括 Radio Node、 SNC和 FNN中的 FN:
S501 : 所述 SNC接收所述 FN上报的状态参数;
S502 : 所述 SNC通过所述状态参数计算出业务负载量并进一步判断出上 报所述状态参数的所述 FN处于正常工作状态;
S503: 所述 SNC从所述 Radio Node接收到对应所述 FN的处理业务种类 的业务接入请求;
也就是说所述业务接入请求所请求的业务种类与所述 FN所能提供的业务 种类相同。
S504 : ^艮据步驟 S502的判断结果,所述 SNC将所述接入请求所请求分配 给所述 FN;
S505: 所述 FN响应所述 Radio Node的所述业务接入请求。
也就是说, 比如所述业务接入请求是要求提供下行数据服务, 则此步驟中 所述 FN对所述 Radio Node开始提供下行数据服务。
第二种情况, 也就是所述 SNC根据所述业务负载量确定对应的所述 FN 所处的工作状态, 当所述业务负载量大于所述第一负载量,且小于预设的第二 负载量时, 所述 SNC确定对应的所述 FN处于临界工作状态;
当所述 FN处于临界工作状态时, 如果所述 SNC从所述 Radio Node接收 到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC不将所述业务接 入请求分配给所述 FN;
所述 SNC根据保存的业务负载量确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC将所述业务接入请求分配给所述其他 FN, 以使得所述其他 FN 响应所述业务接入请求。
针对这第二种情况, 请参阅图 6, 其为本发明一种业务分配方法的信 令图之二, 包括 Radio Node、 SNC和 FNN中的第一 FN和第二 FN :
S601: 所述 SNC接收所述第一 FN上报的状态参数; S602 : 所述 SNC接收所述第二 FN上报的状态参数;
对步驟 S601和 S602需要说明的是, 这里所述第一 FN和第二 FN是特指 的所能处理的业务类型是一样的两个 FN,其中,所述第一 FN和第二 FN上艮 状态参数的时间可以一致也可以不一致, 不一致的话,上报的先后关系也不限 定, 只是代表相对最新的状态参数上报操作。
S603 : 所述 SNC通过所述状态参数计算出业务负载量并进一步判断出上 报所述状态参数的所述第一 FN处于临界工作状态, 第二 FN处于正常工作状 态;
S604: 所述 SNC从所述 Radio Node接收到对应所述 FN的处理业务种类 的业务接入请求;
也就是说所述业务接入请求所请求的业务种类与所述第一 FN和第二 FN 所能提供的业务种类相同。
S605 :才艮据步驟 S603的判断结果,所述 SNC不将所述业务接入请求分配 给所述第一 FN;所述 SNC将所述业务接入请求分配给出处于正常工作状态的 且具有与所述第一 FN的处理业务类型相同的所述第二 FN;
S606: 所述第二 FN响应所述 Radio Node的所述业务接入请求。
也就是说, 比如所述业务接入请求是要求提供下行数据服务, 则此步驟中 所述第二 FN对所述 Radio Node开始提供下行数据服务。
还需要说明的是, 如果之后所述 SNC通过所述状态参数计算出业务负载 量并进一步判断处所述第一 FN的工作状态变为了正常工作状态时, 则如果所 述 SNC接收到对应第一 FN的业务接入请求时, 可以分配给所述第一 FN。 第三种情况, 也就是所述 SNC才艮据所述业务负载量确定对应的所述 FN 所处的工作状态, 当所述业务负载量大于所述第二负载量时, 所述 SNC确定 对应的所述 FN处于过载工作状态;
当所述 FN处于过载工作状态时, 所述 SNC从所述 FN当前所处理的业务中 确定出切换业务;
所述 SNC从存储的业务负载量中确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC向所述 FN发送切换指令, 控制所述 FN将所述切换业务的上下文 和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切换业务的上下文和 数据继续相应所述业务切换业务。
本发明的技术方案提供了一种优选的从所述 FN当前所处理的业务中确定 切换业务的方式, 所述 SNC从所述 FN当前所处理的业务中随机或者指定一个 业务为切换业务。
这里需要说明的是, 一般处于过载工作状态的 FN都会提供多个业务服务, 需要对其进行切换时,既可以是从这多个业务服务中随机挑选一个作为切换业 务, 或者也可以设定为将占用业务处理能力最大的业务服务确定为切换业务 等, 本发明不限定指定切换业务的方式。
针对这第三种情况, 请参阅图 7, 其为本发明一种业务分配方法的信 令图之三, 包括 SNC和 FNN中的第一 FN和第二 FN:
S701: 所述 SNC接收所述第一 FN上报的状态参数;
S702 : 所述 SNC接收所述第二 FN上报的状态参数;
对步驟 S701和 S702需要说明的是, 这里所述第一 FN和第二 FN是特指 的所能处理的业务类型是一样的两个 FN,其中,所述第一 FN和第二 FN上艮 状态参数的时间可以一致也可以不一致, 不一致的话,上报的先后关系也不限 定, 只是代表相对最新的状态参数上报操作。
S703 : 所述 SNC通过所述状态参数计算出业务负载量并进一步判断出上 报所述状态参数的所述第一 FN处于过载工作状态, 第二 FN处于正常工作状 态;
S704 : 所述 SNC从所述 FN当前所处理的业务中确定出切换业务;
S705: 所述 SNC向所述 FN发送切换指令;
S706 :所述第一 FN将所述切换业务的上下文和数据发送给所述第二 FN; 这里需要说明的是, 当所述第二 FN接收到所述切换业务的上下文和数据 后,所述第二 FN将向所述切换业务对应的 Radio Node继续提供业务服务。比 如所述切换业务为提供下行数据服务, 原本第一 FN 对所述切换业务对应的 Radio Node提供下行数据服务,则切换后,所述第二 FN继续对所述 Radio Node 提供下行数据服务。
还需要说明的是, 如果之后所述 SNC通过所述状态参数计算出业务负载 量并进一步判断处所述第一 FN的工作状态变为了正常工作状态时, 则如果所 述 SNC接收到对应第一 FN的业务接入请求时, 可以分配给所述第一 FN。
由本实施例可以看出,在实现的控制层和数据面分离的 SDN的无线网 络构架中, SNC通过对 FNN中各个 FN的业务负载量的监控, 确定出 FN 的工作状态, 并根据工作状态的不同进行相应的业务分配, 使得业务分配 可以动态的、 随着 FN的工作状态的变化进行调整, 大大提高了实现 SDN 的无线网络构架中对业务的处理能力。
实施例四
本实施例为实施例三对应的装置实施例, 请参阅图 8, 其为本发明一 种业务分配装置的装置结构图之一, 应用于软件定义网络 SDN的无线网络, 所述 SDN的无线网络至少包括广播节点 Radio Node,集中控制网元 SNC和功 能节点网络 FNN, 所述装置具体包括:
状态参数获取单元 801,用于获取所述 FNN中功能节点 FN上报的状态参 数, 所述 FN用于处理一项业务种类, 所述状态参数包括所述 FN剩余业务处 理能力、 待处理业务的数量和处理业务所消耗的业务处理能力;
这里需要说明的是,所述状态参数获取单元 801接收的状态参数可以是指 定周期进行上报的,也可以是通过某些命令或工作情况触发后上报的, 本发明 不做限定。不过本发明技术方案提出的一种优选的上报方式是所述状态参数是 FN周期上报的。
计算单元 802, 用于才艮据获取的所述状态参数计算出对应所述 FN的业务 负载量, 并将所述业务负载量更新到对应所述 FN的保存位置;
现有的研究和实际工程中对网络中资源的衡量有着不同的描述方法,比如 业务饱和度、 压力度、 拥塞度以及负载度等, 但本质上都可以归纳为以下两类 表示方法, 本发明的技术方案中将统一采用业务负载度来对其描述。 其中第一类表示方法或者说通过状态参数计算业务负载量的方法为 FN中 还没有处理的业务数量与网络均值之比:
Pavg 其中:
Λ·为分配到编号为 i的 FN还没有处理的业务数量;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
第二类表示方法或者说通过状态参数计算业务负载量的方法为 FN中的业 务分组数量剩余功率比值与网络均值之比:
Pavg I Eavg 其中:
Λ·为分配到编号为 i的 FN还没有处理的业务数量;
为编号为 i的 FN的剩余业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
Eavg为 FNN中所有 FN的剩余业务处理能力的平均值;
以上这两种方法均可以应用于本发明的技术方案中,但是通过对比不难发 现, 第一类计算方法只考虑了 FN中的业务分组数量, 因而十分简单; 第二类 计算方法相对于第一类方法而言,由于考虑了 FN的能量问题而显得更加全面。 但是, 这两种计算方法并不能完全准确的描述资源解耦的软件定义网络。 这是 因为, 软件定义网络解耦成不同的 FN , —方面选择 FN 时需要考虑剩余的能 力, 另一方面 FN由于被赋予的处理业务类型的不同导致处理业务的所消耗的 业务处理能力也不同。 因此, 本发明的技术方案还提供了一种优选的通过状态 参数计算业务负载量的方法, 采用所述 FNN 中所有 FN的当前剩余业务处理 能力的平均值与单个 FN当前剩余业务处理能力之比来表示业务负载度:
6 _ Ravg _ Savg Pavg
― R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
为编号为 i的 FN的当前剩余业务处理能力;
Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值; p为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Pi为分配到编号为 i的 FN还没有处理的业务数量;
工作状态确定单元 803, 用于才艮据所述业务负载量确定对应的所述 FN所 处的工作状态;
应的业务分配操作。
针对所述工作状态确定单元 803 和所述业务分配单元 804 需要说明的 是, 首先根据网络工作环境设定两个业务负载量的门限值第一负载量和第 二负载量, 其中第一负载量小于第二负载量, 那也就是说将业务负载量分 为了三个区间或者说三种不同的情况, 第一个是小于第一负载量的区间, 第二个是大于第一负载量小于第二负载量的区间, 第三个是大于第二负载 量的区间, 下面将分别针对这三种情况进行展开说明。
第一种情况:
所述工作状态确定单元 803 , 具体用于当所述业务负载量小于预设的第一 负载量时, 确定对应的所述 FN处于正常工作状态;
相应的, 所述业务分配单元 804, 还用于当所述 FN处于正常工作状态时, 如果从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 将所述业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。
第二种情况:
所述工作状态确定单元 803 , 具体用于当所述业务负载量大于所述第一负 载量, 且小于预设的第二负载量时, 确定对应的所述 FN处于临界工作状态; 相应的, 在图 8的基础上, 所述业务分配单元 804, 还包括不分配子单元 8041、 第一 FN确定子单元 8042和分配子单元 8043 , 如图 9所示:
所述不分配子单元 8041 , 用于当所述 FN处于临界工作状态时,如果从所 述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求,不将所述 业务接入请求分配给所述 FN;
所述第一 FN确定子单元 8042,用于根据保存的业务负载量确定出处于正 常工作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述分配子单元 8043 , 用于将所述业务接入请求分配给所述其他 FN , 以 使得所述其他 FN响应所述业务接入请求。
第三种情况:
所述工作状态确定单元 803 , 具体用于当所述业务负载量大于所述第二负 载量时, 确定对应的所述 FN处于过载工作状态;
相应的, 在图 8的基础上, 所述业务分配单元 804, 还包括切换业务确定子 单元 8044、 第二 FN确定子单元 8045和切换子单元 8046 , 如图 10所示:
所述切换业务确定子单元 8044 , 用于当所述 FN处于过载工作状态时, 从 所述 FN当前所处理的业务中确定出切换业务;
这里需要说明的是, 一般处于过载工作状态的 FN都会提供多个业务服务, 需要对其进行切换时,既可以是从这多个业务服务中随机挑选一个作为切换业 务, 或者也可以设定为将占用业务处理能力最大的业务服务确定为切换业务 等, 本发明不限定指定切换业务的方式。 所述第二 FN确定子单元 8045 , 用于从存储的业务负载量中确定出处于正 常工作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述切换子单元 8046 , 用于向所述 FN发送切换指令, 控制所述 FN将所述 切换业务的上下文和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切 换业务的上下文和数据继续相应所述业务切换业务。 通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到上 述实施例方法中的全部或部分步驟可借助软件加必需的通用硬件平台的方式 来实现。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡 献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储 介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设 备 (可以是个人计算机, 服务器, 或者诸如媒体网关等网络通信设备, 等等) 执行本发明各个实施例或者实施例的某些部分所述的方法。
需要说明的是, 本说明书中的各个实施例均采用递进的方式描述, 各个实 施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实 施例的不同之处。 尤其, 对于设备及系统实施例而言, 由于其基本相似于方法 实施例, 所以描述得比较简单, 相关之处参见方法实施例的部分说明即可。 以 上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元 可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以 不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可 以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。 本领域普通技术人员在不付出创造性劳动的情况下, 即可以理解并实施。
以上所述仅是本发明的优选实施方式, 并非用于限定本发明的保护范 围。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原 理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发 明的保护范围。

Claims

权 利 要 求
1、 一种网络架构方法, 其特征在于, 应用于无线网络, 所述方法包括: 将无线网络中的服务网关 SGW、 公用数据网关 PGW 和移动管理实体 MME所实现的功能拆分出来;
按照所述功能的业务种类将拆分出来的功能部署在集中控制网元 SNC、 数据规则匹配实体 Entry、 分发实体 Distributo 网络地址转换 NAT、 功能节 点网络 FNN和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT , 用于与其他域网络进行接口;
所述 FNN包括多个 FN, 所述 FN, 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
2、 一种网络架构装置, 其特征在于, 应用于无线网络, 所述装置包括: 功能拆分单元,用于将无线网络中的服务网关 SGW、公用数据网关 PGW 和移动管理实体 MME所实现的功能拆分出来;
部署单元,用于按照所述功能的业务种类将拆分出来的功能部署在集中控 制网元 SNC、 数据规则匹配实体 Entry、 分发实体 Distributo 网络地址转换 NAT, 功能节点网络 FNN和广播节点 Radio Node中;
其中, 所述 SNC具备所述 SGW、 PGW和 MME的控制面功能; 所述 Entry, 用于接收所述 SNC下发的业务接入请求;
所述 Distributor, 用于将所述 Entry接收的所述 SNC下发的业务接入请求 分发到所述 FNN中对应的功能节点 FN;
所述 NAT , 用于与其他域网络进行接口; 所述 FNN包括多个 FN, 所述 FN , 用于处理一项业务种类;
所述 Radio Node , 用于向所述 SNC转发业务接入请求, 以使得所述 SNC 根据所述业务接入请求中请求的业务种类, 分配对应的 FN响应所述业务接入 请求。
3、 一种业务分配方法, 其特征在于, 应用于软件定义网络 SDN的无线网 络, 所述 SDN的无线网络至少包括广播节点 Radio Node、 集中控制网元 SNC 和功能节点网络 FNN, 所述方法具体包括:
所述 SNC获取所述 FNN中功能节点 FN上报的状态参数, 所述 FN用于 处理一项业务种类, 所述状态参数包括所述 FN剩余业务处理能力、 待处理业 务的数量和处理业务所消耗的业务处理能力;
所述 SNC才艮据获取的所述状态参数计算出对应所述 FN的业务负载量, 并将所述业务负载量更新到对应所述 FN的保存位置;
所述 SNC根据所述业务负载量确定对应的所述 FN所处的工作状态; 所述 SNC根据所述 FN所处的工作状态对所述 FN进行相应的业务分配操 作。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 SNC根据所述业务负 载量确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量小于预设的第一负载量时, 所述 SNC确定对应的所述 FN处于正常工作状态;
相应的, 当所述 FN处于正常工作状态时, 如果所述 SNC从所述 Radio
Node接收到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC将所述 业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。
5、 根据权利要求 3所述的方法, 其特征在于, 所述 SNC根据所述业务负 载量确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量大于所述第一负载量,且小于预设的第二负载量时, 所 述 SNC确定对应的所述 FN处于临界工作状态;
相应的, 当所述 FN处于临界工作状态时, 如果所述 SNC从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 所述 SNC不将所 述业务接入请求分配给所述 FN;
所述 SNC才艮据保存的业务负载量确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC将所述业务接入请求分配给所述其他 FN, 以使得所述其他 FN 响应所述业务接入请求。
6、 根据权利要求 3所述的方法, 其特征在于, 所述 SNC根据所述业务负 载量确定对应的所述 FN所处的工作状态, 包括:
当所述业务负载量大于所述第二负载量时,所述 SNC确定对应的所述 FN 处于过载工作状态;
相应的, 当所述 FN处于过载工作状态时, 所述 SNC从所述 FN当前所处理 的业务中确定出切换业务;
所述 SNC从存储的业务负载量中确定出处于正常工作状态的且具有与所 述 FN的处理业务类型相同的其他 FN;
所述 SNC向所述 FN发送切换指令, 控制所述 FN将所述切换业务的上下文 和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切换业务的上下文和 数据继续相应所述业务切换业务。
7、 根据权利要求 6所述的方法, 其特征在于, 所述 SNC从所述 FN当前所 处理的业务中确定出切换业务, 包括:
所述 SNC从所述 FN当前所处理的业务中随机或者指定一个业务为切换业
8、 根据权利要求 3至 7任意一项所述的方法, 其特征在于,
所述状态参数是 FN周期上报的。
9、 根据权利要求 3至 7任意一项所述的方法, 其特征在于, 所述 SNC根据 取的所述状态参数计算出对应所述 FN的业务负载量, 具体为:
Ravg _ Savg Pavg
R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
为编号为 i的 FN的当前剩余业务处理能力; Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值; p为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Pi为分配到编号为 i的 FN还没有处理的业务数量。
10、 一种业务分配装置, 其特征在于, 应用于软件定义网络 SDN的无线 网络,所述 SDN的无线网络至少包括广播节点 Radio Node、集中控制网元 SNC 和功能节点网络 FNN, 所述装置具体包括:
状态参数获取单元, 用于获取所述 FNN中功能节点 FN上报的状态参数, 所述 FN用于处理一项业务种类, 所述状态参数包括所述 FN剩余业务处理能 力、 待处理业务的数量和处理业务所消耗的业务处理能力;
计算单元, 用于才艮据获取的所述状态参数计算出对应所述 FN的业务负载 量, 并将所述业务负载量更新到对应所述 FN的保存位置;
工作状态确定单元, 用于根据所述业务负载量确定对应的所述 FN所处的 工作状态;
业务分配操作。
11、 根据权利要求 10所述的装置, 其特征在于, 所述工作状态确定单元, 具体用于:
当所述业务负载量小于预设的第一负载量时,确定对应的所述 FN处于正 常工作状态;
相应的, 所述业务分配单元, 还用于当所述 FN处于正常工作状态时, 如 果从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求,将 所述业务接入请求分配给所述 FN, 以使得所述 FN响应所述业务接入请求。
12、 才艮据权利要求 10所述的装置, 其特征在于, 所述工作状态确定单元, 具体用于:
当所述业务负载量大于所述第一负载量,且小于预设的第二负载量时,确 定对应的所述 FN处于临界工作状态; 相应的, 所述业务分配单元, 还包括不分配子单元、 第一 FN确定子单元 和分配子单元;
所述不分配子单元, 用于当所述 FN 处于临界工作状态时, 如果从所述 Radio Node接收到对应所述 FN的处理业务种类的业务接入请求, 不将所述业 务接入请求分配给所述 FN;
所述第一 FN确定子单元, 用于才艮据保存的业务负载量确定出处于正常工 作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述分配子单元, 用于将所述业务接入请求分配给所述其他 FN , 以使得 所述其他 FN响应所述业务接入请求。
13、 才艮据权利要求 10所述的装置, 其特征在于, 所述工作状态确定单元, 具体用于:
当所述业务负载量大于所述第二负载量时,确定对应的所述 FN处于过载 工作状态;
相应的, 所述业务分配单元, 还包括切换业务确定子单元、 第二 FN确定 子单元和切换子单元;
所述切换业务确定子单元, 用于当所述 FN处于过载工作状态时, 从所述 FN当前所处理的业务中确定出切换业务;
所述第二 FN确定子单元, 用于从存储的业务负载量中确定出处于正常工 作状态的且具有与所述 FN的处理业务类型相同的其他 FN;
所述切换子单元, 用于向所述 FN发送切换指令, 控制所述 FN将所述切换 业务的上下文和数据发送给所述其他 FN, 以使得所述其他 FN根据所述切换业 务的上下文和数据继续相应所述业务切换业务。
14、根据权利要求 13所述的装置,其特征在于,所述切换业务确定子单元, 具体用于:
从所述 FN当前所处理的业务中随机或者指定一个业务为切换业务。
15、 根据权利要求 10至 14任意一项所述的装置, 其特征在于,
所述状态参数是 FN周期上报的。
16、 根据权利要求 10至 14任意一项所述的装置, 其特征在于, 所述计算单 元, 具体用于: 6 _ Ravg _ Savg Pavg
― R. ― δί - ρ ^ Ρί 其中:
Ravg为所述 FNN中所有 FN的当前剩余业务处理能力的平均值;
为编号为 i的 FN的当前剩余业务处理能力;
Savg为所述 FNN中处理同一种业务类型的 FN的业务处理能力的平均值;
P为处理一种业务类型的业务所消耗的业务处理能力;
Pavg为 FNN中所有 FN还没有处理的业务数量的平均值;
&为编号为 i的 FN业务处理能力;
Pi为分配到编号为 i的 FN还没有处理的业务数量。
PCT/CN2014/071793 2014-01-29 2014-01-29 一种网络构架方法、一种业务分配方法及相关装置 WO2015113269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/071793 WO2015113269A1 (zh) 2014-01-29 2014-01-29 一种网络构架方法、一种业务分配方法及相关装置
CN201480056215.3A CN105637906B (zh) 2014-01-29 2014-01-29 一种网络构架方法、一种业务分配方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071793 WO2015113269A1 (zh) 2014-01-29 2014-01-29 一种网络构架方法、一种业务分配方法及相关装置

Publications (1)

Publication Number Publication Date
WO2015113269A1 true WO2015113269A1 (zh) 2015-08-06

Family

ID=53756162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071793 WO2015113269A1 (zh) 2014-01-29 2014-01-29 一种网络构架方法、一种业务分配方法及相关装置

Country Status (2)

Country Link
CN (1) CN105637906B (zh)
WO (1) WO2015113269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472014A (zh) * 2015-12-23 2016-04-06 浪潮(北京)电子信息产业有限公司 一种基于OSGi的存储管理软件性能扩展方法与系统
CN107959982A (zh) * 2017-12-31 2018-04-24 西安科技大学 一种软件定义蜂窝网络epc架构及d2d通信配对方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104706B (zh) * 2020-08-24 2022-12-20 中国银联股份有限公司 分布式系统中模型发布方法、装置、设备、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123549A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 控制与承载分离的接入网系统及其实现通信的方法
CN102932281A (zh) * 2012-10-31 2013-02-13 华为技术有限公司 一种资源的动态分配方法及设备
CN103327529A (zh) * 2013-05-27 2013-09-25 北京邮电大学 针对移动通信网络的OpenFlow协议架构及业务分片处理方法
WO2013144747A1 (en) * 2012-03-29 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) Implementing epc in a cloud computer with openflow data plane
CN103354525A (zh) * 2013-06-08 2013-10-16 中国科学院计算机网络信息中心 基于OpenFlow实现广域网任播负载均衡的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873398B2 (en) * 2011-05-23 2014-10-28 Telefonaktiebolaget L M Ericsson (Publ) Implementing EPC in a cloud computer with openflow data plane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123549A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 控制与承载分离的接入网系统及其实现通信的方法
WO2013144747A1 (en) * 2012-03-29 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) Implementing epc in a cloud computer with openflow data plane
CN102932281A (zh) * 2012-10-31 2013-02-13 华为技术有限公司 一种资源的动态分配方法及设备
CN103327529A (zh) * 2013-05-27 2013-09-25 北京邮电大学 针对移动通信网络的OpenFlow协议架构及业务分片处理方法
CN103354525A (zh) * 2013-06-08 2013-10-16 中国科学院计算机网络信息中心 基于OpenFlow实现广域网任播负载均衡的系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472014A (zh) * 2015-12-23 2016-04-06 浪潮(北京)电子信息产业有限公司 一种基于OSGi的存储管理软件性能扩展方法与系统
CN107959982A (zh) * 2017-12-31 2018-04-24 西安科技大学 一种软件定义蜂窝网络epc架构及d2d通信配对方法
CN107959982B (zh) * 2017-12-31 2021-07-20 西安科技大学 一种软件定义蜂窝网络epc架构及d2d通信配对方法

Also Published As

Publication number Publication date
CN105637906A (zh) 2016-06-01
CN105637906B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN112136294B (zh) 应用功能影响业务路由的消息和系统
CN109792651B (zh) 一种通信方法及设备
US10390348B2 (en) System and method for an agile wireless access network
WO2020001171A1 (zh) 一种网络切片的资源分配方法及装置
US9461729B2 (en) Software-defined network infrastructure having virtual range extenders
CN106664597B (zh) 通信系统
JP5537600B2 (ja) 制御ノード及び通信制御方法
CN107347198B (zh) 一种限速方法、限速控制节点和限速设备
WO2016127926A1 (en) Systems and methods for evolved packet core cluster and session handling
JP2019518398A (ja) セッション管理機能エンティティ選択方法、機器、及びシステム
RU2678648C1 (ru) Способ поисковых вызовов абонентских устройств и мме
JP7521005B2 (ja) ユーザプレーン機能の決定方法、情報提供方法、機器及び媒体
CN104427476B (zh) 位置信息上报方法、集群服务处理方法及系统
EP3002908B1 (en) Mobile application specific networks
US10588045B2 (en) Method and apparatus for handling data flow in wireless communication networks
EP3107249B1 (en) Information processing device, communication method, and computer program
WO2015120685A1 (zh) 一种选择分流网关的方法和控制器
WO2015133125A1 (ja) サーバ、制御装置、管理装置、通信システム、通信方法、制御方法、管理方法およびプログラム
WO2015113269A1 (zh) 一种网络构架方法、一种业务分配方法及相关装置
WO2015113281A1 (zh) 用户数据处理方法、装置及网络系统
JP2017502593A (ja) アクセスノード、移動性管理ネットワーク要素、およびページングメッセージ処理方法
JP2016046669A (ja) パケット処理装置、プログラム及び方法
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置
JP2004228820A (ja) ゲートウェイ装置及びそれに用いる負荷分散方法並びにそのプログラム
KR101627805B1 (ko) 제어와 데이터 처리 기능이 분리된 epc 게이트웨이 시스템에서의 eps 베어러 자원 할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881370

Country of ref document: EP

Kind code of ref document: A1