WO2015113250A1 - 燃气轮机中导叶密封件磨损程度的监控方法 - Google Patents

燃气轮机中导叶密封件磨损程度的监控方法 Download PDF

Info

Publication number
WO2015113250A1
WO2015113250A1 PCT/CN2014/071762 CN2014071762W WO2015113250A1 WO 2015113250 A1 WO2015113250 A1 WO 2015113250A1 CN 2014071762 W CN2014071762 W CN 2014071762W WO 2015113250 A1 WO2015113250 A1 WO 2015113250A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
seal
vane
assembly
gas turbine
Prior art date
Application number
PCT/CN2014/071762
Other languages
English (en)
French (fr)
Inventor
任超
诺伊恩汉⋅托马斯
Original Assignee
西门子公司
任超
诺伊恩汉⋅托马斯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子公司, 任超, 诺伊恩汉⋅托马斯 filed Critical 西门子公司
Priority to PCT/CN2014/071762 priority Critical patent/WO2015113250A1/zh
Publication of WO2015113250A1 publication Critical patent/WO2015113250A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines

Definitions

  • the present invention relates to a method for monitoring the degree of wear of a component, and more particularly to a method for monitoring the degree of wear of a seal used in conjunction with a vane in a gas turbine. Background technique
  • FIG. 1 is a schematic view showing the structure of a guide vane driving mechanism in a conventional gas turbine, in which only a part of vanes 80 are schematically illustrated.
  • the vane drive mechanism includes a drive ring 81, a push rod 82, a plurality of links 83 corresponding to the vanes 80, and a plurality of adjustment rods 84 corresponding to the vanes 80.
  • the push rod 82 is coupled to the drive ring 81, and the push rod 82 urges the drive ring 81 to rotate relative to the cylinder block 85.
  • the vane drive mechanism is further provided with a plurality of elastic bases 86 through which the drive rings 81 are coupled to the cylinder block 85.
  • the guide vane drive mechanism needs to monitor the degree of wear of the moving parts during operation. Summary of the invention
  • the invention provides a monitoring method for the degree of wear of a vane seal in a gas turbine.
  • the gas turbine comprises a cylinder, a plurality of vanes and a vane driving mechanism for driving the vane to rotate.
  • the vane driving mechanism comprises a driving coil a push rod that pushes the drive ring relative to the cylinder, a plurality of bearings that are sleeved to the neck of the vane, a plurality of seals that are sleeved to the vane, and a plurality of elastics that connect the cylinder and the drive ring Support base.
  • the monitoring method includes a second obtaining step, a first state determining step, and a second state determining step.
  • the dynamic driving torque for driving the driving of the push rod is obtained.
  • the first state determining step it is determined whether the dynamic driving torque is less than the first threshold. If the determination result is YES, it is determined that the lubrication of the sealing member is normal, and returns to the second obtaining step. If the determination result is no, Then enter the second state determination step.
  • the second state judging step it is judged whether the dynamic driving torque is less than the second threshold. If the judgment result is YES, it is determined that the sealing member is normally worn, and returns to the second obtaining step. If the judgment result is NO, it is determined that the sealing member needs to be replaced.
  • the monitoring method further includes a first obtaining step and an assembly determining step.
  • the assembly torque which is introduced by the guide vane driving mechanism due to mechanical interference during the assembly process and which hinders the rotation of the driving ring is obtained.
  • the assembly judging step it is judged whether the assembly torque is greater than a preset threshold. If the judgment result is yes, it is judged that the assembly failure of the vane drive mechanism needs to be reassembled, and the first acquisition step is returned. If the judgment result is no, the guide vane is judged. The assembly of the drive mechanism is qualified, and the second acquisition step is entered.
  • M_sup is the bearing friction torque, which represents the torque that hinders the rotation of the drive ring caused by the friction of the elastic support seat relative to the drive ring.
  • M_seal is the seal.
  • Piece friction torque which represents the torque that prevents the rotation of the vane caused by the friction of the seal relative to the cylinder or vane.
  • M_air is the airflow torque, which represents the obstacle vane rotation caused by the airflow acting on the vane when the gas turbine is working. Torque.
  • the seal friction torque M_seal can be calculated from the dynamic drive torque M_dyna, and the guide vane seal can be monitored by comparing the seal friction torque M_seal with the threshold by presetting two threshold values corresponding to the seal friction torque M_seal.
  • the degree of wear of the piece is therefore equivalent to the method of monitoring the degree of wear of the vanes of the vanes in the gas turbine described above, and the claims of the present invention should be able to cover or protect this manner.
  • other methods for obtaining the degree of wear of the seal based on the above formula should also be equivalent to the method of monitoring the degree of wear of the guide vanes in the gas turbine, and will not be further described herein.
  • Figure 1 is a schematic view showing the structure of a guide vane driving mechanism in a conventional gas turbine.
  • Figure 2 shows a schematic exploded view of the vane drive mechanism in a gas turbine.
  • Fig. 3 is a schematic view showing the structure of the guide vane driving mechanism of Fig. 2 after assembly.
  • Figure 4 shows the enlarged structure of the VI portion of Figure 2.
  • Fig. 5 is a cross-sectional view taken along line IV-IV of Fig. 4.
  • Figure 6 is a flow chart for explaining a method of monitoring the degree of wear of the vanes of the vanes in the gas turbine.
  • Figure 2 shows a schematic exploded view of the vane drive mechanism in a gas turbine.
  • Fig. 3 is a schematic view showing the assembled structure of the vane driving mechanism of Fig. 2.
  • the vane drive mechanism includes a push rod 10, a drive ring 20, a cylinder block 30, eight resilient support seats 40, six adjustment rods 50 and six tie rods 60.
  • the push rod 10 is connected to the driving ring 20.
  • the thrust applied by the push rod 10 can urge the drive ring 20 to rotate relative to the cylinder block 30, i.e., the push rod 10 can output a torque that urges the drive ring 20 to rotate.
  • the torque at which the push rod pushes the drive ring is independent of the working condition of the gas turbine, and is only related to the mechanical connection between the vane drive mechanism and the frictional resistance between the components.
  • the torque output by the push rod for pushing the rotation of the driving ring 20 is the static driving torque M_sta, and its value can be calculated by the push rod thrust combined with the geometry of the vane drive mechanism.
  • the torque for pushing the driving ring is related to the mechanical connection between the vane drive mechanism and the frictional resistance between the components, and also related to the working condition of the gas turbine.
  • the torque output by the push rod for pushing the rotation of the drive ring 20 is the dynamic drive torque M_dyna, and its value can be calculated from the push rod thrust combined with the geometry of the vane drive mechanism.
  • the elastic support bases 40 can provide elastic support for the drive ring 20, and when the drive ring 20 rotates relative to the cylinder block 30, a frictional force between the drive ring 20 and the elastic support base 40 that hinders the rotation of the drive ring 20 is generated, and the friction
  • the torque generated by the force that hinders the rotation of the drive ring is the bearing friction torque M_sup.
  • the bearing friction torque M_sup can be measured by the torque wrench when the guide vane drive mechanism is assembled, and the bearing friction torque M_sup changes little during the operation of the gas turbine.
  • Fig. 4 shows an enlarged structure of the portion IV of Fig. 2.
  • Fig. 5 is a cross-sectional view taken along line IV-IV of Fig. 4.
  • one end of the adjustment rod 50 is coupled to the drive ring 20, and the other end of the adjustment rod 50 is coupled to the connecting rod 60.
  • One end of the connecting rod 60 that is not connected to the adjusting rod 50 is connected to the neck shaft 72 of the vane 70.
  • the seal 76 rubs against the cylinder 30 and the vane 70, thereby generating a frictional force that hinders the rotation of the vane, and the torque generated by the frictional force that hinders the rotation of the vane is the seal friction torque M_seal.
  • the initial value of the seal friction torque M_seal can be measured by a torque wrench.
  • a lubricant is usually applied between them.
  • the seal friction torque M_seal changes due to the loss of the lubricant and the wear of the seal 76.
  • the bearing 78 is a sliding bearing that is sleeved to the neck shaft 72.
  • the bearing 78 When the vane rotates, the bearing 78 generates a frictional force that hinders the rotation of the vane, and the torque generated by the frictional force that hinders the rotation of the vane is the bearing friction torque M_b ear .
  • the bearing friction torque M_bear changes little.
  • the airflow guided by the vanes acts on the vanes, hindering the rotation of the vanes, and the torque generated by the airflow that hinders the rotation of the vanes is the airflow torque M_air.
  • the airflow torque M_air changes little.
  • FIG. 6 is a flow chart for explaining a method of monitoring the degree of wear of the vanes of the vanes in the gas turbine.
  • the monitoring method includes a second obtaining step S30, a first state determining step S40, and a second state determining step S50.
  • the monitoring method may further include a first obtaining step S10 and an assembly determining step S20.
  • step S10 the assembly torque M_a SS em introduced by the vane drive mechanism during assembly is obtained.
  • the assembly torque M_aSS em is a torque introduced by the guide vane driving mechanism that hinders the rotation of the driving ring due to mechanical structure interference during the assembly process.
  • the assembly torque M_assem changes little and the change of M_assem can be ignored.
  • step S20 it is determined whether the assembly torque M_aSSem is greater than a preset threshold set in a gas turbine. If the judgment result is YES, it is judged that the assembly of the guide vane drive mechanism is unsatisfactory, and the assembly torque M_ aSSe m is too large, so that the rotation of the drive ring is difficult, and the assembly of the guide vane drive mechanism needs to be adjusted to reduce the assembly torque M_a SS em, return Step S10. If the result of the determination is negative, it is judged that the assembly of the vane drive mechanism is qualified, and the process proceeds to step S30.
  • the preset threshold is a calibration value obtained by an experimental test or set by an expert based on experience.
  • step S30 when the gas turbine is working, the output of the push rod for driving the driving ring is required.
  • the dynamic driving torque M_dyna proceeds to step S40.
  • step S40 it is judged whether or not the dynamic driving torque M_dyna is smaller than a first threshold. If the result of the determination is YES, the lubrication of the seal is normal, and the process returns to step S30. If the result of the determination is negative, the process proceeds to step S50.
  • Method of Monitoring the Degree of Seal Wear of Guide Vanes in a Gas Turbine In an illustrative embodiment, the first threshold is a nominal value that is obtained by experimental testing or is artificially specified.
  • step S50 it is determined whether the dynamic driving torque M_dyna is less than a second threshold. If the determination result is yes, the sealing member is normally worn and can be used continuously, and the process returns to step S30; if the determination result is no, the sealing member needs to be replaced and ends.
  • the second threshold is a calibration value obtained by an experimental test or artificially specified.
  • the bearing friction torque M_sup, the bearing friction torque M_bear and the airflow torque M_air change little and approximately constant during the operation of the gas turbine, and the change of the dynamic driving torque M_dyna mainly depends on the change of the frictional torque M_seal of the seal, and The change in the frictional torque M_seal of the seal reflects the lubrication and wear of the seal, so the lubrication and wear of the seal can be reflected by the dynamic drive torque M_dyna.

Abstract

 燃气轮机中导叶密封件磨损程度的监控方法,所述方法包括:第二获取步骤:获取所述推杆输出的推动所述驱动圈转动的动态驱动扭矩(M_dyna);第一状态判断步骤:判断所述动态驱动扭矩(M_dyna)是否小于第一阈值,如果判断结果为是,则确定所述密封件的润滑正常,并返回所述第二获取步骤,如果判断结果为否,则进入下一个步骤;第二状态判断步骤:判断所述动态驱动扭矩(M_dyna)是否小于第二阈值,如果判断结果为是,则确定所述密封件为正常磨损,并返回所述第二获取步骤,如果判断结果为否,则确定所述密封件需要更换。

Description

燃气轮机中导叶密封件磨损程度的监控方法
技术领域
本发明涉及一种零部件磨损程度的监控方法, 尤其涉及一种燃气轮机中, 与导叶配合 使用的密封件磨损程度的监控方法。 背景技术
为了使得压缩机适应燃气轮机的不同操作状态, 需要在压缩机中设置导叶。 通过导叶 迎角的变化而改变进入到压缩机中空气的流动状态。 图 1显示了现有燃气轮机中导叶驱动 机构的结构示意图, 图中只示意性的绘出部分导叶 80。 如图所示, 导叶驱动机构包括一个 驱动圈 81、 一个推杆 82、 多个与导叶 80相对应的连杆 83、 和多个与导叶 80相对应的调 整杆 84。 推杆 82连接于驱动圈 81, 且推杆 82可推动驱动圈 81相对于缸体 85转动。 连 杆 83的一端连接于导叶 80, 其另一端连接于调整杆 84的一端。 调整杆 84的另一端连接 于驱动圈 81。 当驱动圈 81相对于缸体 85转动时, 它可带动调整杆 84和连杆 83运动, 从 而使得导叶 80转动而变化其转角。 另外, 导叶驱动机构还设有若干弹性基座 86, 驱动圈 81通过这些弹性基座 86连接于缸体 85。
导叶驱动机构在工作过程中, 需要监控运动部件的磨损程度。 发明内容
本发明的目的是提供一种燃气轮机中导叶的密封件磨损程度的监控方法, 以监控密封 件在使用中的磨损程度。
本发明提供了一种燃气轮机中导叶密封件磨损程度的监控方法, 上述燃气轮机包括一 个缸体、 复数个导叶及一个可带动导叶转动的导叶驱动机构, 导叶驱动机构包括一个驱动 圈、 一个可推动驱动圈相对于缸体转动的推杆、 复数个套接于导叶的颈轴的轴承、 复数个 套接于导叶的密封件、 以及连接缸体和驱动圈的复数个弹性支撑座。 监控方法包括第二获 取步骤、 第一状态判断步骤和第二状态判断步骤。 第二获取步骤中获取推杆输出的推动驱 动圈转动的动态驱动扭矩。 第一状态判断步骤中判断动态驱动扭矩是否小于第一阈值, 如 果判断结果为是, 则确定密封件的润滑正常, 并返回第二获取步骤, 如果判断结果为否, 则进入第二状态判断步骤。 第二状态判断步骤中判断动态驱动扭矩是否小于第二阈值, 如 果判断结果为是, 则确定密封件正常磨损, 并返回第二获取步骤, 如果判断结果为否, 则 确定密封件需要更换。
在燃气轮机中导叶的密封件磨损程度的监控方法的再一种示意性的实施方式中, 监控 方法还包括第一获取步骤和装配判断步骤。 第一获取步骤中获取导叶驱动机构在装配过程 中由于机械干涉引入的阻碍驱动圈转动的装配扭矩。 装配判断步骤中判断装配扭矩是否大 于一个预设阈值, 如果判断结果为是, 则判断导叶驱动机构的装配不合格需要重新装配, 返回第一获取步骤, 如果判断结果为否, 则判断导叶驱动机构的装配合格, 进入所述第二 获取步骤。
在燃气轮机中导叶的密封件磨损程度的监控方法的再一种示意性的实施方式中, 装配 扭矩可下式计算: M_assem=M_sta—M_sup—M_seal, 其中, M_sta为静态驱动扭矩, 它代 表导叶驱动机构装配完成时推杆推动驱动圈转动所需的扭矩, M_sup为支座摩擦扭矩, 它 代表弹性支撑座相对于驱动圈转动时摩擦力所产生的阻碍驱动圈转动的扭矩, M_seal为密 封件摩擦扭矩, 它代表密封件相对于缸体或导叶转动时摩擦力所产生的阻碍导叶转动的扭 矩。
在燃气轮机中导叶的密封件磨损程度的监控方法的又一种示意性的实施方式中, 动态 驱动扭矩、 支座摩擦扭矩和密封件摩擦扭矩满足关系式 M_seal + M_bear+M_air+ M_assem + M_sup = M_dyna, 其中, M_bear为轴承摩擦扭矩, 它代表轴承转动时摩擦力所产生的阻 碍轴承转动的扭矩, M_air 为气流扭矩, 它代表燃气轮机工作时, 作用于导叶的气流所产 生的阻碍导叶转动的扭矩。
由上述公式可知, 可由动态驱动扭矩 M_dyna计算得到密封件摩擦扭矩 M_seal, 且通 过预设两个与密封件摩擦扭矩 M_seal对应的阈值, 通过对比密封件摩擦扭矩 M_seal与阈 值, 同样可以监控导叶密封件的磨损程度。 因此这种方式等同于上面所述的燃气轮机中导 叶的密封件磨损程度的监控方法,本发明的权利要求应当能够覆盖或保护这种方式。另外, 本领域技术人员可以理解, 其他基于上述公式而获取密封件磨损程度的其它方法, 同样应 当等同于燃气轮机中导叶的密封件磨损程度的监控方法, 这里不再一一赘述。 附图说明
以下附图仅对本发明做示意性说明和解释, 并不限定本发明的范围。
图 1显示了现有燃气轮机中导叶驱动机构的结构示意图 图 2显示了燃气轮机中导叶驱动机构的分解结构示意图。
图 3显示了图 2中导叶驱动机构的装配后的结构示意图。
图 4显示了图 2中 VI部分的放大结构。
图 5显示了沿图 4中 IV-IV线的剖视示意图。
图 6用于说明燃气轮机中导叶的密封件磨损程度的监控方法的流程图。
标号说明
10 推杆
20 驱动圈
30 缸体
40 弹性支撑座
50 调整杆
60 连接杆
70 导叶
72 颈轴
76 密封件
78 轴承
80 导叶
81 驱动圈
82 推杆
83 连杆
84 调整杆
85 缸体
86 弹性基座。 具体实施方式
为了对发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图说明本发明的具 体实施方式, 在各图中相同的标号表示相同的部分。
在本文中, "示意性"表示 "充当实例、 例子或说明", 不应将在本文中被描述为 "示 意性" 的任何图示、 实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁, 各图中的只示意性地表示出了与本发明相关的部分, 它们并不代表其 作为产品的实际结构。 另外, 以使图面简洁便于理解, 在有些图中具有相同结构或功能的 部件, 仅示意性地绘示了其中的一个, 或仅标出了其中的一个。
在本文中, "一个"不仅表示 "仅此一个", 也可以表示 "多于一个" 的情形。 在本文 中, "第一"、 "第二"等仅用于彼此的区分, 而非表示它们的重要程度及顺序等。 在本文 中, 角度的数值并非严格的数学和 /或几何学意义上的限制, 还包含本领域技术人员可以理 解的且测量或计算等允许的误差。
图 2显示了燃气轮机中导叶驱动机构的分解结构示意图。 图 3显示了图 2中导叶驱动 机构的装配后的结构示意图。 为了清楚地显示导叶驱动机构的结构, 图 2和图 3中只示意 性的绘出部分导叶。 参见图 2和图 3, 导叶驱动机构包括一个推杆 10、 一个驱动圈 20、 一 个缸体 30、 八个弹性支撑座 40、 六个调整杆 50和六个连接杆 60。
其中, 推杆 10连接于驱动圈 20。 推杆 10施加的推力可推动驱动圈 20相对于缸体 30 转动, 即推杆 10可输出一个推动驱动圈 20转动的扭矩。 当导叶驱动机构完成装配且没有 应用于燃气轮机的具体工况时, 推杆推动驱动圈转动的扭矩与燃气轮机的工况无关, 且仅 与导叶驱动机构机械连接及部件之间的摩擦阻力相关,此时推杆输出的用于推动驱动圈 20 转动的扭矩为静态驱动扭矩 M_sta, 它的数值可由推杆推力结合导叶驱动机构的几何尺寸 计算得到。
当燃气轮机工作时, 由于导叶与燃气轮机中的气流作用, 使得推动驱动圈转动的扭矩 除了与导叶驱动机构机械连接及部件之间的摩擦阻力相关外, 还与燃气轮机的工况相关, 此时推杆输出的用于推动驱动圈 20转动的扭矩为动态驱动扭矩 M_dyna, 它的数值可由推 杆推力结合导叶驱动机构的几何尺寸计算得到。
缸体 30与驱动圈 20之间设有八个弹性支撑座 40。 这些弹性支撑座 40可为驱动圈 20 提供弹性支持, 且当驱动圈 20相对于缸体 30转动时, 驱动圈 20与弹性支持座 40之间产 生阻碍驱动圈 20转动的摩擦力, 且该摩擦力所产生的阻碍驱动圈转动的扭矩即为支座摩 擦扭矩 M_sup。支座摩擦扭矩 M_sup可以在导叶驱动机构装配完成时, 通过扭矩扳手测量 得到, 且支座摩擦扭矩 M_sup在燃气轮机工作的过程中变化很小。
图 4显示了图 2中 IV部分的放大结构。 图 5显示了沿图 4中 IV-IV线的剖视示意图。 参见图 2、 图 3、 图 4和图 5, 调整杆 50的一端连接于驱动圈 20, 调整杆 50的另一端连 接于连接杆 60。 连接杆 60未与调整杆 50连接的一端连接于导叶 70的颈轴 72。 当驱动圈 20相对于缸体 30转动时, 驱动圈 20藉由调整杆 50和连接杆 60带动导叶 70转动, 从而 改变其转角。 密封件 76套接于导叶 70。 当导叶 70转动时, 密封件 76与缸体 30和导叶 70摩擦, 从而产生阻碍导叶转动的摩擦力, 该摩擦力所产生的阻碍导叶转动的扭矩即为密封件摩擦 扭矩 M_seal。 当导叶驱动机构完成装配时, 密封件摩擦扭矩 M_seal的初始值可通过扭矩 扳手测量得到。 为了减小密封件 76缸体 30间的摩擦, 在它们之间通常涂覆有润滑剂。 在 燃气轮机的工作过程中, 由于润滑剂的损耗, 以及密封件 76 的磨损, 使得密封件摩擦扭 矩M_seal发生变化。
轴承 78为滑动轴承, 它套接于颈轴 72。 当导叶转动时, 轴承 78产生阻碍导叶转动的 摩擦力, 该摩擦力所产生的阻碍导叶转动的扭矩即为轴承摩擦扭矩M_bear。在燃气轮机的 工作过程中, 轴承摩擦扭矩 M_bear变化很小。 另外, 当燃气轮机工作时, 由导叶引导的 气流会作用于导叶, 阻碍导叶转动, 由气流所产生的阻碍导叶转动的扭矩即为气流扭矩 M_air。 当工况相同或相近时, 气流扭矩M_air变化很小。
图 6用于说明燃气轮机中导叶的密封件磨损程度的监控方法的流程图。 该监控方法包 括第二获取步骤 S30、 第一状态判断步骤 S40和第二状态判断步骤 S50。 如图 6所示, 该 监控方法还可以包括第一获取步骤 S10和装配判断步骤 S20。
在步骤 S10中, 获取导叶驱动机构在装配过程中引入的装配扭矩 M_aSSem。 其中, 装 配扭矩 M_aSSem是由于导叶驱动机构在装配过程中,由于机械结构干涉而引入的阻碍驱动 圈转动的扭矩。在燃气轮机的工作过程中,装配扭矩 M_assem变化很小,可以忽略 M_assem 的变化。 完成步骤 S10后进入步骤 S20。
在燃气轮机中导叶密封件磨损程度的监控方法一种示意性实施方式中, 装配扭矩 M_assem可由公式 M_assem=M_sta—M_sup—M_seal计算得到,其中, M_sta为静态扭矩。 M sup 为支座摩擦扭矩。 M_seal 为密封件摩擦扭矩, 且此时用于计算装配扭矩 M_assem 所使用的密封件摩擦扭矩 M_seal为导叶驱动机构装配完成时, 密封件摩擦扭矩 M_seal的 初始数值。
在步骤 S20中,判断装配扭矩 M_aSSem是否大于一个燃气轮机中预先设定的预设阈值。 如果判断结果为是, 则判断导叶驱动机构的装配不合格, 装配扭矩M_aSSem过大使得驱动 圈的转动困难, 需要调整导叶驱动机构的装配, 以减小装配扭矩 M_aSSem, 返回步骤 S10。 如果判断结果为否, 则判断导叶驱动机构的装配合格, 进入步骤 S30。 在燃气轮机中导叶 密封件磨损程度的监控方法一种示意性实施方式中, 预设阈值为一个标定值, 它由实验测 试获得, 或者由技术人员根据经验设定。
在步骤 S30中, 测量得到燃气轮机工作时, 推杆输出的用于推动驱动圈转动所需要的 动态驱动扭矩 M_dyna, 进入步骤 S40。
在步骤 S40中, 判断动态驱动扭矩 M_dyna是否小于一个第一阈值, 如果判断结果为 是, 则密封件的润滑正常, 返回步骤 S30; 如果判断结果为否, 则进入步骤 S50。 在燃气 轮机中导叶的密封件磨损程度的监控方法一种示意性实施方式中, 第一阈值为一个标定 值, 它由实验测试获得, 或者人为规定。
在步骤 S50中, 判断动态驱动扭矩 M_dyna是否小于一个第二阈值, 如果判断结果为 是, 则密封件正常磨损, 可继续使用, 返回步骤 S30; 如果判断结果为否, 则密封件需要 更换, 结束燃气轮机中导叶的密封件磨损程度的监控方法的流程。 在燃气轮机中导叶的密 封件磨损程度的监控方法一种示意性实施方式中, 第二阈值为一个标定值, 它由实验测试 获得, 或者由人为规定。
燃气轮机中导叶的密封件磨损程度的监控方法中,动态驱动扭矩 M_dyna、支座摩擦扭 矩M_sup和密封件摩擦扭矩 M_seal满足关系式 M_seal + M_bear+M_air+ M_assem + M sup = M_dyna。 由于上述关系式中, 支座摩擦扭矩 M_sup、 轴承摩擦扭矩 M_bear和气流扭矩 M_air在燃气轮机工作的过程中变化很小近似恒定, 动态驱动扭矩 M_dyna的变化主要取 决于密封件摩擦扭矩 M_seal的变化, 且密封件摩擦扭矩 M_seal的变化可反映出密封件的 润滑和磨损情况, 因此可以通过动态驱动扭矩 M_dyna反映出密封件的润滑和磨损情况。
当理解, 在本文中所引证的文件仅供参考之用, 且不包含任何其可能与本文的相冲突 的内容。
应当理解, 虽然本说明书是按照各个实施例描述的, 但并非每个实施例仅包含一个独 立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书 作为一个整体, 各实施例中的技术方案也可以经适当组合, 形成本领域技术人员可以理解 的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明, 它们 并非用以限制本发明的保护范围, 凡未脱离本发明技艺精神所作的等效实施方案或变更, 如特征的组合、 分割或重复, 均应包含在本发明的保护范围之内。

Claims

1. 燃气轮机中导叶密封件磨损程度的监控方法, 其中所述燃气轮机包括一个缸体、 复数个导 叶及一个可带动导叶转动的导叶驱动机构, 所述导叶驱动机构包括一个驱动圈、 一个可推动 驱动圈相对于所述缸体转动的推杆、 复数个套接于所述导叶的颈轴的轴承、 复数个套接于所 述导叶的密封件、 以及连接所述缸体和所述驱动圈的复数个弹性支撑座,
所述方法包括:
第二获取步骤: 获取所述推杆输出的推动所述驱动圈转动的动态驱动扭矩 (M_dymi);
第一状态判断步骤: 判断所述动态驱动扭矩 (M_dyna)是否小于第一阈值, 如果判断结果为 是, 则确定所述密封件的润滑正常, 并返回所述第二获取步骤, 如果判断结果为否, 则进入 下一个步骤;
第二状态判断步骤: 判断所述动态驱动扭矩 (M_dyna)是否小于第二阈值, 如果判断结果为 是, 则确定所述密封件为正常磨损, 并返回所述第二获取步骤, 如果判断结果为否, 则确定 所述密封件需要更换。
2. 如权利要求 1所述的方法, 其中所述方法还包括:
第一获取步骤: 获取所述导叶驱动机构在装配过程中由于机械干涉引入的阻碍所述驱动圈转 动的装配扭矩 (M_assem); 禾口
装配判断步骤: 判断所述装配扭矩 (M_aSSem) 是否大于预设阈值, 如果判断结果为是, 则 判断所述导叶驱动机构的装配不合格, 且调整所述导叶驱动机构装配, 返回所述第一获取步 骤, 如果判断结果为否, 则判断所述导叶驱动机构的装配合格, 进入所述第二获取步骤。
3. 如权利要求 1所述的方法, 其中所述装配扭矩 (M_aSSem) 可下式计算:
M_assem=M_sta— M_sup― M_seal,
其中, M_sta为静态驱动扭矩, 它代表所述导叶驱动机构装配完成时所述推杆推动所述驱动 圈转动所需的扭矩,
M_sup为支座摩擦扭矩, 它代表所述弹性支撑座相对于所述驱动圈转动时摩擦力所产生的阻 碍驱动圈转动的扭矩,
M_seal为密封件摩擦扭矩, 它代表所述密封件相对于所述缸体或导叶转动时摩擦力所产生的 阻碍导叶转动的扭矩。
4. 如权利要求 3所述的方法,其中所述动态驱动扭矩(M_dyna)、所述支座摩擦扭矩(M_sup) 和所述密封件摩擦扭矩 (M_seal) 满足关系式 M_dyna = M_seal + M_bear+M_air+ M_assem + M sup,
其中, M_bear为轴承摩擦扭矩, 它代表所述轴承转动时摩擦力所产生的阻碍所述轴承转动的 扭矩,
M_air 为气流扭矩, 它代表所述燃气轮机工作时, 作用于所述导叶的气流所产生的阻碍所述 导叶转动的扭矩。
PCT/CN2014/071762 2014-01-29 2014-01-29 燃气轮机中导叶密封件磨损程度的监控方法 WO2015113250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071762 WO2015113250A1 (zh) 2014-01-29 2014-01-29 燃气轮机中导叶密封件磨损程度的监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071762 WO2015113250A1 (zh) 2014-01-29 2014-01-29 燃气轮机中导叶密封件磨损程度的监控方法

Publications (1)

Publication Number Publication Date
WO2015113250A1 true WO2015113250A1 (zh) 2015-08-06

Family

ID=53756144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071762 WO2015113250A1 (zh) 2014-01-29 2014-01-29 燃气轮机中导叶密封件磨损程度的监控方法

Country Status (1)

Country Link
WO (1) WO2015113250A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252749A (zh) * 1997-04-23 2000-05-10 赫尔穆特·贝彻 用以监控运送塑化材料的密封螺杆的磨损度的方法及装置
US20070017280A1 (en) * 2005-07-20 2007-01-25 Scull Stephen R Wear monitoring
CN1940523A (zh) * 2006-09-26 2007-04-04 武汉理工大学 内燃机主要运动部件摩擦磨损与振动模拟试验机
CN101158619A (zh) * 2007-11-13 2008-04-09 昆明理工大学 往复式活塞环-缸套摩擦磨损试验机
EP2417333A1 (de) * 2009-04-06 2012-02-15 Wärtsilä Schweiz AG Überwachungsvorrichtung, sowie überwachungsverfahren zur überwachung eines verschleisszustands einer komponente einer hubkolbenbrennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252749A (zh) * 1997-04-23 2000-05-10 赫尔穆特·贝彻 用以监控运送塑化材料的密封螺杆的磨损度的方法及装置
US20070017280A1 (en) * 2005-07-20 2007-01-25 Scull Stephen R Wear monitoring
CN1940523A (zh) * 2006-09-26 2007-04-04 武汉理工大学 内燃机主要运动部件摩擦磨损与振动模拟试验机
CN101158619A (zh) * 2007-11-13 2008-04-09 昆明理工大学 往复式活塞环-缸套摩擦磨损试验机
EP2417333A1 (de) * 2009-04-06 2012-02-15 Wärtsilä Schweiz AG Überwachungsvorrichtung, sowie überwachungsverfahren zur überwachung eines verschleisszustands einer komponente einer hubkolbenbrennkraftmaschine

Similar Documents

Publication Publication Date Title
JP6499314B2 (ja) 案内羽根調整装置及びターボ機械
CA2823224C (en) Variable vane for gas turbine engine
US8123472B2 (en) Unison ring assembly for an axial compressor casing
JP6470954B2 (ja) ターボ機械
JP5126505B2 (ja) 可変ピッチブレードの制御
JP2004225692A (ja) タービン動翼寿命評価方法、タービン動翼クリープ伸び歪測定装置、及びタービン動翼
EP2998720A2 (en) Shaft stiffness
EP3287674B1 (en) Floating, non-contact seal with offset building clearance for load imbalance
JP6332740B2 (ja) 角度計測方法、測定治具
US10294811B2 (en) Rotor tip clearance
JP5844068B2 (ja) 軸流式ターボ機械の環状流路のための、径方向間隙を調整可能な流路壁
US10047765B2 (en) Bushing for a variable stator vane and method of making same
JP2017089408A (ja) 可変静翼操作装置
US9181814B2 (en) Turbine engine compressor stator
RU2711150C2 (ru) Способ и устройство для измерения нагрузки в соединении
US20160258310A1 (en) Seal arrangement
KR20150084592A (ko) 블레이드 팁 간극 조절 수단을 구비한 가스 터빈 및 그 제어방법
WO2015113250A1 (zh) 燃气轮机中导叶密封件磨损程度的监控方法
WO2020241782A1 (ja) 蒸気タービンのシールクリアランス調整方法、及び蒸気タービン
CN115247661A (zh) 压气机静叶调节机构和压气机
EP3006729A1 (en) Rotating machine and installation for converting energy comprising such a machine
JP6595926B2 (ja) 回転機械
WO2015078014A1 (zh) 燃气轮机中导叶转动的测量方法
JP5855768B2 (ja) 軸流ターボ機械のための翼リングと当該翼リングの最大流量を調整するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880794

Country of ref document: EP

Kind code of ref document: A1