WO2015111998A1 - Method for producing and checking a turbine housing - Google Patents
Method for producing and checking a turbine housing Download PDFInfo
- Publication number
- WO2015111998A1 WO2015111998A1 PCT/MX2014/000024 MX2014000024W WO2015111998A1 WO 2015111998 A1 WO2015111998 A1 WO 2015111998A1 MX 2014000024 W MX2014000024 W MX 2014000024W WO 2015111998 A1 WO2015111998 A1 WO 2015111998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbine
- hull
- analysis
- dimensional
- design
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 238000013461 design Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 5
- 238000010200 validation analysis Methods 0.000 claims abstract description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000001314 profilometry Methods 0.000 claims 2
- 238000001931 thermography Methods 0.000 claims 1
- 230000001681 protective effect Effects 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 210000003660 reticulum Anatomy 0.000 description 2
- 239000004744 fabric Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/04—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
- F01D21/045—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0088—Radiation pyrometry, e.g. infrared or optical thermometry in turbines
Definitions
- the present invention is applied in the formation of turbine hulls due to their high dimensional accuracy but the manufacturing process.
- the present invention relates generally to a high precision manufacturing method and tooling and dimensional control of the containment hull of a turbine used in aircraft.
- the turbines used in these devices have a fan and multiple fan blades arranged to rotate around a central axis. Catastrophic damage can occur to the aircraft and its occupants in case a broken fan blade is driven radially outward from the axis of rotation by force and impacts on the centrifuge of fuselage aircraft. To avoid these damages, it is common to include a generally cylindrical hull on the periphery to contain the fan blades. For engines of smaller diameter, adequate containment capability can be achieved with a simple metallic hull, thick enough to resist torque ⁇ penetration blade fragments. However, for larger diameter motors, a metal case thick enough to resist penetration is virtually impossible because of the weight that this implies. Moreover, these helmets have complicated geometries that demand very high precision and dimensional control.
- the soft wall helmets use lightweight, high-strength, multi-layered structures around the structure.
- a fragment of the turbine blade or blade will penetrate the support structure locally and strike but will not cut the fabric.
- the tissue layers capture and contain the fragment.
- Conventional support structures can be made of aluminum for weight considerations.
- the support structure may include aluminum honeycomb structures.
- US Pat. No. 0 6,053,696 proposes a composite material hull for the turbine.
- the shell or composite shell includes two support rings structurally attached to a central portion that has an open lattice structure.
- Other examples of fiber reinforced composite structures and manufacturing methods are provided in the following US patents.
- UU. USA Pat. No. 0 4,086,378 to Kam et al.
- Figure 1 Array of ultrasound sensors on the surface of the helmet and infrared cameras
- the present invention describes a novel tool and method of manufacture of turbine hull for aircraft characterized by the following steps: Receive the specifications and dimensional tolerances corresponding to the characteristics required for a turbine hull of an aircraft: the selection of a wind capture of the design of the turbine case profile in accordance with the characteristics data received; the design, manufacture and validation of a structural support piece (1) whose external contact profile with said helmet (2) coincides with its internal surface with tolerance less than 1 thousandth of an inch; placing said mold (1) inside the structure of the hull of the turbine to be molded; placement of at least 6 vibration actuators (3) on the outer surface of the turbine hull; Capture video images per camera with at least three infrared sensor arrays (4) separated 120 degrees from each other; temperature uniformity analysis of thermal images per computer unit (5); evolution analysis of mechanical stress points;
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
The invention relates to a method for producing a protective housing for the turbine of an aircraft engine, and checking same for internal impacts. Said method has the following steps: receiving specifications and tolerances; design, production and validation of a structural support part as a mould; arrangement of said mould inside the structure of the housing; arrangement of vibration actuators on the outside of the housing; capturing video images by means of infrared cameras; analysis of uniformity of temperature of the thermal images; and analysis of the evolution of mechanical stress.
Description
Método de fabricación y verificación de una carcasa para turbinas CAMPO TÉCNICO Manufacturing method and verification of a housing for turbines TECHNICAL FIELD
La presente invención se aplica en la formación de cascos de turbina por su alta precisión dimensional pero iento proceso de manufactura. The present invention is applied in the formation of turbine hulls due to their high dimensional accuracy but the manufacturing process.
ANTECEDENTES BACKGROUND
La presente invención se refiere en general a un método y herramental de manufactura de alta precisión y control dimensional del casco de contención de una turbina utilizada en aeronaves. Las turbinas utilizadas en estos aparatos disponen de un ventilador y múltiples aspas del ventilador dispuestas para girar alrededor de un eje central. Daño catastrófico puede ocurrir a la aeronave y sus ocupantes en caso de un aspa del ventilador roto es impulsado radialmente hacia fuera desde el eje de rotación por la fuerza y los impactos en la centrífuga de aviones de fuselaje. Para evitar estos daños, es común incluir un casco generalmente cilindrico sobre la periferia para contener las aspas del ventilador. Para los motores de menor diámetro, capacidad de contención adecuada se puede lograr con un casco metálico simple, lo suficientemente grueso par^a resistir la penetración de fragmentos de cuchilla. Sin embargo, para los motores de mayor diámetro, un caso metálico suficientemente gruesa como para resistir la penetración es virtualmente imposible por el peso que ello implica. Más aún, estos cascos cuentan con geometrías complicadas y que demandan muy alta precisión y control dimensional. The present invention relates generally to a high precision manufacturing method and tooling and dimensional control of the containment hull of a turbine used in aircraft. The turbines used in these devices have a fan and multiple fan blades arranged to rotate around a central axis. Catastrophic damage can occur to the aircraft and its occupants in case a broken fan blade is driven radially outward from the axis of rotation by force and impacts on the centrifuge of fuselage aircraft. To avoid these damages, it is common to include a generally cylindrical hull on the periphery to contain the fan blades. For engines of smaller diameter, adequate containment capability can be achieved with a simple metallic hull, thick enough to resist torque ^ penetration blade fragments. However, for larger diameter motors, a metal case thick enough to resist penetration is virtually impossible because of the weight that this implies. Moreover, these helmets have complicated geometries that demand very high precision and dimensional control.
Los cascos de pared suave, utilizan estructuras ligeras de alta resistencia, de varias capas alrededor de la estructura. Así, una vez en operación, un fragmento de la hoja o cuchilla de la turbina penetrará localmente la estructura de soporte y golpeará pero no cortará la tela. Las capas de tejido capturan y contienen el fragmento. Estructuras de soporte convencionales pueden ser fabricados de aluminio por consideraciones de peso. La estructura de soporte puede incluir estructuras de panal de abeja de aluminio.
Patente de EE.UU.. N 0 6.053.696 propone un casco de material composito para la turbina. El cascarón o casco de composito incluye dos aros de apoyo estructuralmente unidos a una porción central que tiene una estructura de celosía abierta. Otros ejemplos de fibras reforzadas estructuras de materiales compuestos y métodos de fabricación se proporcionan en las siguientes patentes de EE. UU. : EE.UU. Pat. N 0 4.086.378 a Kam et al muestra cilindrica estructura compuesta con helicoidal, axial y nervios circunferenciales de refuerzo que forman una retícula interior; Pat EE. UU.. N 0 4.012.549 a Slysh describe una estructura de material compuesto de alta resistencia con una celosía isorreticular de triángulos equiláteros, y ia patente de EE. UU.. N ° 4, 137,354 a Mayes, Jr. y otros describe un material compuesto acanalado cilindrica estructura y proceso de fabricación. The soft wall helmets use lightweight, high-strength, multi-layered structures around the structure. Thus, once in operation, a fragment of the turbine blade or blade will penetrate the support structure locally and strike but will not cut the fabric. The tissue layers capture and contain the fragment. Conventional support structures can be made of aluminum for weight considerations. The support structure may include aluminum honeycomb structures. US Pat. No. 0 6,053,696 proposes a composite material hull for the turbine. The shell or composite shell includes two support rings structurally attached to a central portion that has an open lattice structure. Other examples of fiber reinforced composite structures and manufacturing methods are provided in the following US patents. UU. : USA Pat. No. 0 4,086,378 to Kam et al. Shows cylindrical composite structure with helical, axial and circumferential reinforcing ribs that form an inner reticulum; Pat USA No. 0 4,012,549 to Slysh describes a structure of high strength composite material with an isoreticular lattice of equilateral triangles, and the US Pat. UU. No. 4, 137,354 to Mayes, Jr. et al. Describes a cylindrical corrugated composite structure and manufacturing process.
Por consiguiente, sería deseable disponer de un proceso de manufactura que garantice alta precisión dimensional para mantener una alta resistencia mecánica del caso de la turbina sin recurrir a gruesas láminas para el formado del casco. Therefore, it would be desirable to have a manufacturing process that guarantees high dimensional accuracy to maintain a high mechanical strength of the turbine case without resorting to thick sheets for the formation of the hull.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Descripción Breve de las Figuras Brief Description of the Figures
Figura 1 . Arreglo de sensores de ultrasonido sobre la superficie del casco y cámaras de infrarrojo Figure 1 . Array of ultrasound sensors on the surface of the helmet and infrared cameras
Descripción Description
La presente invención describe una novedosa herramienta y método de manufactura de casco de turbina para aeronaves caracterizado por las siguientes etapas: Recibir las especificaciones y tolerancias dimensionales correspondientes a las características requeridas para un casco de turbina de una aeronave: la selección de un viento captura del diseño del perfil del caso de la turbina en conformidad con los datos de características recibida; el diseño, fabricación y validación de un pieza de soporte estructural (1 ) cuyo perfil exterior de contacto con dicho casco (2) coincide con la superficie interna del mismo con
tolerancia menor a 1 milésima de pulgada; colocación de dicho molde (1 ) dentro de la estructura del casco de la turbina a moldear; colocación de al menos 6 actuadores (3) de vibración sobre la superficie exterior del casco de la turbina; captura de imágenes de video por cámara con al menos tres arreglos de sensores de infrarrojo (4) separados 120 grados uno del otro; análisis de uniformidad de temperatura de las imágenes térmicas por unidad de computo (5); análisis de evolución de puntos de estrés mecánico;
The present invention describes a novel tool and method of manufacture of turbine hull for aircraft characterized by the following steps: Receive the specifications and dimensional tolerances corresponding to the characteristics required for a turbine hull of an aircraft: the selection of a wind capture of the design of the turbine case profile in accordance with the characteristics data received; the design, manufacture and validation of a structural support piece (1) whose external contact profile with said helmet (2) coincides with its internal surface with tolerance less than 1 thousandth of an inch; placing said mold (1) inside the structure of the hull of the turbine to be molded; placement of at least 6 vibration actuators (3) on the outer surface of the turbine hull; Capture video images per camera with at least three infrared sensor arrays (4) separated 120 degrees from each other; temperature uniformity analysis of thermal images per computer unit (5); evolution analysis of mechanical stress points;
Claims
1. Recibir las especificaciones y tolerancias dimensionales correspondientes a las características requeridas para un casco de turbina de una aeronave: la selección de un viento captura del diseño del perfil del caso de la turbina en conformidad con los datos de características recibida; el diseño, fabricación y validación de un pieza de soporte estructural cuyo perfil exterior de contacto con dicho casco coincide con la superficie interna del mismo con tolerancia menor a 1 milésima de pulgada; colocación de dicho molde dentro de la estructura del casco de la turbina a moldear; colocación de al menos 6 actuadores de vibración sobre la superficie exterior del casco de la turbina; captura de imágenes de video por cámara con al menos tres arreglos de sensores de infrarrojo separados 120 grados uno del otro; análisis de uniformidad de temperatura de las imágenes térmicas por unidad de computo; análisis de evolución de puntos de estrés mecánico; 1. Receive the specifications and dimensional tolerances corresponding to the characteristics required for a turbine hull of an aircraft: the selection of a wind captures the design of the turbine case profile in accordance with the characteristics data received; the design, manufacture and validation of a structural support piece whose external contact profile with said hull coincides with its internal surface with a tolerance of less than 1 thousandth of an inch; placing said mold inside the hull structure of the turbine to be molded; placement of at least 6 vibration actuators on the outer surface of the turbine hull; Capture video images per camera with at least three infrared sensor arrays separated 120 degrees from each other; temperature uniformity analysis of thermal images per unit of computation; evolution analysis of mechanical stress points;
2. Un método como el descrito en reivindicación número 1 donde la conformidad dimensional de los objetos es verificada por medio de perfilometría tridimensional aplicada a la superficie exterior del molde, superficie interior y exterior del casco de la turbina; 2. A method as described in claim number 1 wherein the dimensional conformity of the objects is verified by means of three-dimensional profilometry applied to the outer surface of the mold, inner and outer surface of the turbine hull;
3. Un método como el descrito en reivindicación número 2 donde las no conformidades identificadas por perfilometría es contrastada por las observaciones de las cámaras de termografía; 3. A method as described in claim number 2 wherein the nonconformities identified by profilometry are contrasted by the observations of the thermography cameras;
4. Un método como el descrito en reivindicación número 3 donde se genera un modelo mecánico de las partes para su posterior análisis teórico de las mismas;
4. A method as described in claim number 3 where a mechanical model of the parts is generated for subsequent theoretical analysis thereof;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2014/000024 WO2015111998A1 (en) | 2014-01-27 | 2014-01-27 | Method for producing and checking a turbine housing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2014/000024 WO2015111998A1 (en) | 2014-01-27 | 2014-01-27 | Method for producing and checking a turbine housing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111998A1 true WO2015111998A1 (en) | 2015-07-30 |
Family
ID=53681715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2014/000024 WO2015111998A1 (en) | 2014-01-27 | 2014-01-27 | Method for producing and checking a turbine housing |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015111998A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089812A1 (en) * | 2002-08-28 | 2004-05-13 | Wayne State University | System and method for multiple mode flexible excitation and acoustic chaos in sonic infrared imaging |
US20080107147A1 (en) * | 2006-11-06 | 2008-05-08 | The Boeing Company | Infrared ndi for shallow defect detection |
US20090155044A1 (en) * | 2007-12-12 | 2009-06-18 | Ming Xie | Composite containment casings having an integral fragment catcher |
US20120034076A1 (en) * | 2010-08-04 | 2012-02-09 | General Electric Company | Fan case containment system and method of fabrication |
-
2014
- 2014-01-27 WO PCT/MX2014/000024 patent/WO2015111998A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089812A1 (en) * | 2002-08-28 | 2004-05-13 | Wayne State University | System and method for multiple mode flexible excitation and acoustic chaos in sonic infrared imaging |
US20080107147A1 (en) * | 2006-11-06 | 2008-05-08 | The Boeing Company | Infrared ndi for shallow defect detection |
US20090155044A1 (en) * | 2007-12-12 | 2009-06-18 | Ming Xie | Composite containment casings having an integral fragment catcher |
US20120034076A1 (en) * | 2010-08-04 | 2012-02-09 | General Electric Company | Fan case containment system and method of fabrication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2913179B1 (en) | Cylindrical case and process for producing cylindrical case | |
JP6106587B2 (en) | Fan case storage system and manufacturing method | |
ES2681876T3 (en) | Rotor blade root assembly for a wind turbine | |
US8403624B2 (en) | Composite containment casings having an integral fragment catcher | |
JP5823087B2 (en) | Composite housing casing | |
US9266603B2 (en) | Single-piece propeller and method of making | |
CA2645377C (en) | Methods for making composite containment casings | |
US20180264749A1 (en) | Shear Webs for Wind Turbine Rotor Blades and Methods for Manufacturing Same | |
CA2645379C (en) | Methods for repairing composite containment casings | |
EP3476561A1 (en) | Modular mould and method for manufacturing a panel of fibre reinforced material | |
CN109113810B (en) | Engine with honeycomb type negative poisson's ratio structure contains ring and manufacturing method | |
ES2432567T3 (en) | Composite structure for aircraft fuselage and its manufacturing procedure | |
BR112017003515B1 (en) | COMPOSITE MATERIAL GAS TURBINE CASING, GAS TURBINE AIRCRAFT ENGINE, AIRCRAFT, AND MANUFACTURING METHOD OF A COMPOSITE MATERIAL CASING | |
ES2224807A1 (en) | Noise reduction conduit for static components in aircraft engines | |
US20070031246A1 (en) | Containment casing | |
WO2015111998A1 (en) | Method for producing and checking a turbine housing | |
US10024301B2 (en) | Textile composite wind turbine blade | |
US10648340B2 (en) | High modulus hybrid material rotor blade spar | |
EP2851509B1 (en) | Manufacture of hollow aerofoil | |
US12006874B2 (en) | 3D printed acoustic panel with lattice structure support layer | |
ES2425026B1 (en) | Method of manufacturing a component of a split blade of a wind turbine | |
US20090151162A1 (en) | Methods for making composite containment casings having an integral fragment catcher | |
RU2595354C1 (en) | Hypersonic aircraft body and method of making same | |
CN112055682B (en) | Wave lift fan rotor | |
US12136408B2 (en) | Acoustic panel with 3D printed cell structure support layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14879622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14879622 Country of ref document: EP Kind code of ref document: A1 |