다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
본 발명은 디아민과 산 이무수물이 중합된 폴리아믹산을 이미드화하여 얻어지는 폴리이미드에 있어서, 상기 산 이무수물은 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 폴리이미드 및 상기 폴리이미드를 포함하는 폴리이미드 필름에 관한 것이다.The present invention provides a polyimide obtained by imidizing a polyamic acid polymerized with diamine and an acid dianhydride, wherein the acid dianhydride includes a compound represented by the following Chemical Formula 1, and the polyimide comprises the polyimide. It relates to a polyimide film.
<화학식 1><Formula 1>
일반적으로, 지방족 폴리이미드는 방향족 폴리이미드에 비해 분자내 낮은 밀도와 양극성 그리고 분자간 또는 분자내 낮은 전하이동특성을 띄기 때문에 유기 용매에 대한 용해성이 우수하고, 높은 투명성과 낮은 유전율을 가지고 있으며, 이로 인해 광전자 공학 및 층간 절연막 물질로 많은 주목을 받고 있다.In general, aliphatic polyimides have low molecular weight, bipolarity, and intermolecular or intramolecular charge transfer properties in comparison to aromatic polyimides, so they have high solubility in organic solvents, high transparency, and low dielectric constant. It is attracting much attention as an optoelectronic and interlayer insulating material.
이에, 본 발명에서는 높은 투명성과 낮은 유전율을 가지고 있는 지방족 폴리이미드를 제조하기 위해 질소를 함유하는 피페라진-이숙신산 무수물(piperazine-disuccinic anhydride: 화학식 1로 표시되는 산 이무수물)을 산 이무수물로 사용하였다.Accordingly, in the present invention, piperazine-disuccinic anhydride (acid dianhydride represented by Chemical Formula 1) containing nitrogen is used as an acid dianhydride to prepare aliphatic polyimide having high transparency and low dielectric constant. Used.
본 발명에 따른 화학식 1로 표시되는 산 이무수물은 분자 내부에 하나 이상의 질소 원자를 함유함으로써, 질소 원자의 고립 전자쌍으로 인해 분자 내부 또는 분자간 사슬의 상호작용이 생기게 되고, 이를 이용해 폴리이미드가 가지는 고유의 우수한 특성을 유지하면서 폴리이미드의 가용성과 전기적 특성을 크게 개선시킬 수 있다. Acid dianhydride represented by the formula (1) according to the present invention contains one or more nitrogen atoms in the molecule, thereby causing the interaction of the intramolecular or intermolecular chain due to the isolated electron pair of the nitrogen atom, thereby using the intrinsic polyimide It can greatly improve the solubility and electrical properties of the polyimide while maintaining the excellent properties of.
본 발명에 따른 산 이무수물은 마이클 첨가반응과 가수분해 반응 등과 같은 매우 간단한 유기합성 방법으로 제조할 수 있다. Acid dianhydride according to the present invention can be prepared by a very simple organic synthesis method such as Michael addition reaction and hydrolysis reaction.
구체적으로, 본 발명에 따른 산 이무수물의 제조방법은 화학식 2로 표시되는 화합물과 피페라진을 반응시켜 화학식 3으로 표시되는 화합물을 생성하고, 생성된 화학식 3으로 표시되는 화합물을 염기촉매 존재하에서 가수분해시켜 화학식 4로 표시되는 화합물을 생성한 다음, 탈수제를 투입하여 하기 화학식 1로 표시되는 산 이무수물을 제조한다.Specifically, the method for preparing an acid dianhydride according to the present invention reacts the compound represented by the formula (2) with piperazine to produce the compound represented by the formula (3), and hydrolyzes the compound represented by the formula (3) in the presence of a base catalyst To produce a compound represented by Formula 4, and then a dehydrating agent was added to prepare an acid dianhydride represented by Formula 1 below.
전술된 본 발명에 따른 산 이무수물의 제조방법을 요약하면, 반응식 1과 같다.Summarizing the preparation method of the acid dianhydride according to the present invention described above, it is shown in Scheme 1.
[반응식 1]Scheme 1
먼저, 반응식 1에 나타난 바와 같이, 화학식 3으로 표시되는 화합물은 화학식 2로 표시되는 화합물(디메틸푸말레이트)과 피페라진의 마이클 첨가반응에 의해 생성된다. 이때, 상기 마이클 첨가반응에서 화학식 2로 표시되는 화합물(디메틸푸말레이트)은 마이클 받게(acceptor)가 되고, 피페라진은 마이클 주게(donor)가 된다. First, as shown in Scheme 1, the compound represented by the formula (3) is produced by the Michael addition reaction of the compound represented by the formula (2) (dimethyl fumalate) and piperazine. At this time, the compound represented by the formula (2) in the Michael addition reaction (dimethyl fumarate) is Michael acceptor (acceptor), piperazine is Michael donor (donor).
상기 마이클 첨가반응은 반응효율 측면에서 20 ~ 140℃에서 4 ~ 16시간 동안 수행하는 것이 바람직하다.The Michael addition reaction is preferably performed for 4 to 16 hours at 20 ~ 140 ℃ in terms of reaction efficiency.
상기 화학식 3으로 표시되는 화합물의 제조시, 화학식 2로 표시되는 화합물과 피페라진은 1:0.45 내지 1:0.55 몰비로 사용하는 것이 수율 측면에서 바람직할 수 있다. In preparing the compound represented by Chemical Formula 3, the compound represented by Chemical Formula 2 and piperazine may be preferably used in a yield ratio of 1: 0.45 to 1: 0.55.
이때, 상기 화학식 2로 표시되는 화합물은 공지된 다양한 방법으로 제조할 수 있고, 바람직하게는 메탄올에 푸말릭산을 투입한 후, 황산 등과 같은 산촉매를 첨가하여 환류시키고, 탄산나트륨과 같은 중화제로 중화시켜 제조할 수 있다.In this case, the compound represented by Chemical Formula 2 may be prepared by various known methods. Preferably, fumaric acid is added to methanol, refluxed by adding an acid catalyst such as sulfuric acid, and neutralized with a neutralizing agent such as sodium carbonate. It can manufacture.
한편, 본 발명에 있어서는 반응태양으로서 반응기질 자체를 용매로 하는 것이 바람직하지만, 다른 반응용매를 사용하는 것도 가능하다. 이때, 반응용매로는 반응을 저해하지 않는 것이면 특별히 제한되지 않고, 그 일 예로 1,4-다이옥산, 톨루엔, NMP(N-Methyl-2-pyrrolidone), DMAc(dimethylacetamide) 등일 수 있다.On the other hand, in the present invention, it is preferable to use the reaction material itself as a solvent as the reaction mode, but other reaction solvents may be used. In this case, the reaction solvent is not particularly limited as long as it does not inhibit the reaction, and examples thereof may include 1,4-dioxane, toluene, N-Methyl-2-pyrrolidone (NMP), and dimethylacetamide (DMAc).
이와 같이 생성된 화학식 3으로 표시되는 화합물은 염기촉매 존재하에서 가수분해반응으로 화학식 4로 표시되는 화합물을 생성한다. 이때, 상기 가수분해 반응은 40 ~ 120℃에서 1 ~ 6시간 동안 수행하는 것이, 충분한 반응이 일어나 미반응물을 줄일 수 있고, 용매 및 촉매의 증발을 방지할 수 있으며 비용 및 효율면에서 바람직할 수 있다. The compound represented by Formula 3 thus produced generates a compound represented by Formula 4 by hydrolysis in the presence of a base catalyst. In this case, the hydrolysis reaction may be performed at 40 to 120 ° C. for 1 to 6 hours, sufficient reaction may occur to reduce unreacted materials, prevent evaporation of the solvent and catalyst, and may be preferable in terms of cost and efficiency. have.
상기 가수분해 반응에 사용되는 염기촉매는 수산화칼륨, 수산화나트륨, 수산화바륨, 수산화칼슘, 수산화알루미늄 및 수산화마그네슘으로 구성된 군에서 선택되는 1종 이상일 수 있고, 바람직하게는 가격 및 취급 용이성 측면에서 수산화칼륨, 수산화나트륨 등일 수 있다.The base catalyst used in the hydrolysis reaction may be at least one selected from the group consisting of potassium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, aluminum hydroxide and magnesium hydroxide, preferably potassium hydroxide in terms of price and ease of handling, Sodium hydroxide and the like.
상기 염기촉매의 함량은 화학식 3으로 표시되는 화합물 1몰에 대하여, 5 내지 10 몰로 사용할 수 있는데, 이러한 범위내에서 가수분해 반응의 진행 효율과 적정량의 염기촉매 사용으로 석출되는 염산의 양도 적정해져 반응효율 및 생산성 측면에서 유리할 수 있다. The base catalyst may be used in an amount of 5 to 10 moles with respect to 1 mole of the compound represented by Chemical Formula 3, and the amount of hydrochloric acid precipitated by using an appropriate amount of base catalyst in the progress of the hydrolysis reaction may be appropriately adjusted within this range. It may be advantageous in terms of efficiency and productivity.
이와 같이 생성된 화학식 4로 표시되는 화합물은 상기 화학식 4로 표시되는 화합물에 탈수제(dehydrating agent)가 투입됨으로써, 탈수 폐환반응으로 화학식 1로 표시되는 지방족 산 이무수물이 제조된다. 이때, 상기 탈수 폐환반응은 40 ~ 100℃에서 4 ~ 28시간 동안 수행하는 것이, 촉매 및 용매의 증발을 방지하여 수율을 향상시키고 반응시간이 적정하면서도 충분한 반응을 유도하여 수율을 향상시킬 수 있는 측면에서 바람직할 수 있다. Thus produced compound represented by the formula (4) is a dehydrating agent (dehydrating agent) is added to the compound represented by the formula (4), the aliphatic acid dianhydride represented by the formula (1) by the dehydration ring closure reaction. At this time, the dehydration ring-closure reaction is performed for 4 to 28 hours at 40 ~ 100 ℃, to prevent the evaporation of the catalyst and the solvent to improve the yield and the reaction time is appropriate while inducing a sufficient reaction time to improve the yield May be preferred.
상기 탈수제는 무수 아세트산, 피리딘, 이소퀴놀린 및 트리에틸아민 등과 같은 3차 아민으로 구성된 군에서 선택되는 1종 이상일 수 있고, 효율면에서 무수 아세트산 및/또는 피리딘을 사용하는 것이 바람직하다.The dehydrating agent may be at least one selected from the group consisting of tertiary amines such as acetic anhydride, pyridine, isoquinoline, triethylamine and the like, and in terms of efficiency, it is preferable to use acetic anhydride and / or pyridine.
또한, 상기 탈수제의 함량은 화학식 4로 표시되는 화합물 1몰에 대하여, 2몰 이상일 수 있으며, 바람직하기로는 2 내지 10몰로 사용할 수 있다. 이러한 사용범위는 충분한 반응을 유도하여 수율을 향상시키고, 비용적 측면에서 유리할 수 있다. In addition, the content of the dehydrating agent may be 2 or more moles, preferably 2 to 10 moles with respect to 1 mole of the compound represented by the formula (4). This range of use may lead to sufficient reaction to improve the yield and may be advantageous in terms of cost.
전술된 반응 후, 생성된 화합물을 통상적인 방법으로 여과한 다음, 건조시켜 화학식 1로 표시되는 산 이무수물을 제조한다.After the reaction described above, the resultant compound is filtered by a conventional method and then dried to prepare an acid dianhydride represented by the formula (1).
이상 설명한 본 발명의 화학식 1로 표시되는 산 이무수물은 디아민과 중축합 반응에 의해 폴리아믹산을 제조한 다음, 열 또는 촉매를 사용한 탈수 폐환반응에 의해 폴리이미드로 제조할 수 있다. 이때, 상기 디아민: 산이무수물의 당량비는 1 : 1인 것이 바람직하다.The acid dianhydride represented by the general formula (1) of the present invention described above may be prepared into a polyimide by preparing a polyamic acid by diamine and a polycondensation reaction, followed by dehydration ring closure using heat or a catalyst. At this time, the equivalent ratio of the diamine: acid dianhydride is preferably 1: 1.
상기 디아민은 특별히 한정되는 것은 아니며, 종래 폴리이미드 합성에 사용되고 있는 각종 디아민을 사용할 수 있다. 그 구체적인 예로는 p-페닐렌디아민, m-페닐렌디아민, 2,5-디아미노톨루엔, 2,6-디아미노톨루엔, 1,3-비스(4,4'-아미노페녹시)벤젠, 4,4'-디아미노-1,5-페녹시펜탄, 4,4'-디아미노비페닐, 3,3'-디메틸-4,4'-디아미노비페닐, 3,3'-디메톡시-4,4'-디아미노비페닐, 4,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메탄, 2,2'-디아미노디페닐프로판, 비스(3,5-디에틸-4-아미노페닐)메탄, 디아미노디페닐술폰, 디아미노벤조페논, 디아미노나프탈렌, 1,4-비스(4-아미노페녹시)벤젠, 1,4-비스(4-아미노페닐)벤젠, 9,10-비스(4-아미노페닐)안트라센, 1,3-비스(4-아미노페녹시)벤젠, 4,4'-비스(4-아미노페녹시)디페닐술폰, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2'-트리플루오로메틸-4,4'-디아미노비페닐 등의 방향족 디아민; 1,4-디아미노시클로헥산, 1,4-시클로헥산비스(메틸아민), 4,4'-디아미노디시클로헥실메탄(MCA), 4,4'-메틸렌 비스(2-메틸 사이클로헥실아민)(MMCA) 등의 지환식 디아민; 에틸렌디아민(EN), 1,3-디아미노프로판(13DAP), 테트라메틸렌디아민, 1,6-헥사메틸렌디아민(16DAH), 1,12-디아미노도데칸(112DAD) 등의 지방족 디아민 등을 들 수 있다. 또한 이들 디아민은 단독으로, 또는 2종류 이상을 혼합하여 사용할 수도 있다.The said diamine is not specifically limited, Various diamines conventionally used for polyimide synthesis can be used. Specific examples thereof include p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 1,3-bis (4,4'-aminophenoxy) benzene, 4 , 4'-diamino-1,5-phenoxypentane, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy- 4,4'-diaminobiphenyl, 4,4'-diaminodiphenylether, 4,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylpropane, bis (3,5-di Ethyl-4-aminophenyl) methane, diaminodiphenylsulfone, diaminobenzophenone, diaminonaphthalene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene , 9,10-bis (4-aminophenyl) anthracene, 1,3-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) diphenylsulfone, 2,2-bis Aromatic diamines such as [4- (4-aminophenoxy) phenyl] propane and 2,2'-trifluoromethyl-4,4'-diaminobiphenyl; 1,4-diaminocyclohexane, 1,4-cyclohexanebis (methylamine), 4,4'-diaminodicyclohexylmethane (MCA), 4,4'-methylene bis (2-methyl cyclohexylamine Alicyclic diamines such as) (MMCA); Aliphatic diamines such as ethylenediamine (EN), 1,3-diaminopropane (13DAP), tetramethylenediamine, 1,6-hexamethylenediamine (16DAH), 1,12-diaminododecane (112DAD), and the like. Can be. Moreover, these diamine can also be used individually or in mixture of 2 or more types.
특히, 광학특성 및 전기적 특성 측면에서, 본 발명의 디아민은 1,6-헥사메틸렌디아민(1,6-diaminohexane으로도 지칭함, 16DAH), 1,12-디아미노도데칸(1,12-diaminododecane, 112DAD), 4,4'-디아미노디시클로헥실메탄(4,4'-methylene bis(cyclohexylamine)으로도 지칭함, MCA) 및 4,4'-메틸렌 비스(2-메틸 사이클로헥실아민)(4,4'-methylene bis(2-methyl cyclohexylamine), MMCA)으로 구성된 군에서 선택되는 1종 이상일 수 있다.In particular, in terms of optical and electrical properties, the diamine of the present invention may be 1,6-hexamethylenediamine (also referred to as 1,6-diaminohexane, 16DAH), 1,12-diaminododecane (1,12-diaminododecane, 112DAD), 4,4'-diaminodicyclohexylmethane (also referred to as 4,4'-methylene bis (cyclohexylamine), MCA) and 4,4'-methylene bis (2-methyl cyclohexylamine) (4, It may be one or more selected from the group consisting of 4'-methylene bis (2-methyl cyclohexylamine, MMCA).
본 발명은 또한, 상기 화학식 1로 표시되는 산 이무수물 이외에, 폴리이미드 물성을 저해하지 않는 범위 내에서 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭 디안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(BDSDA), 술포닐 디프탈릭안하이드라이드(SO2DPA), 사이클로부탄 테트라카르복실릭 디안하이드라이드(CBDA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드 (6HBDA), 비사이클로[2.2.2]-7-옥텐-2,3,5,6-테트라카르복실산 디안하이드라이드(BTA), 사이클로펜탄 테트라카르복실릭 디안하이드라이드(CPDA), 사이클로헥산 테트라카르복실릭 디안하이드라이드(CHDA) 및 비사이클로헥산 테트라카르복실릭 디안하이드라이드(HBPDA)로 구성된 군에서 선택되는 1종 이상의 산 이무수물을 더 포함할 수 있다.The present invention also provides a 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) within a range that does not inhibit polyimide physical properties other than the acid dianhydride represented by the formula (1). , 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA), pyromellitic dian Hydrides (1,2,4,5-benzene tetracarboxylic dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), oxy Diphthalic dianhydride (ODPA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), bis dicarboxyphenoxy diphenyl sulfide dianhydride (BDSDA), sulfonyl diphthalic hydride (SO 2 DPA), cyclo Butane tetracarboxylic dianhydride (CBDA), isof Filidenephenoxy bis phthalic anhydride (6HBDA), bicyclo [2.2.2] -7-octene-2,3,5,6-tetracarboxylic dianhydride (BTA), cyclopentane tetracarbide It further comprises at least one acid dianhydride selected from the group consisting of cyclic dianhydride (CPDA), cyclohexane tetracarboxylic dianhydride (CHDA) and bicyclohexane tetracarboxylic dianhydride (HBPDA). can do.
특히 본 발명은 광학적 물성과 유전율을 향상시키는 측면에서 바람직하게는 자유체적을 증가시킬 수 있는 불소가 함유된 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 분자내의 분극율 이방성을 낮출 수 있는 aliphatic 혹은 cycloaliphatic계열의 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭 디안하이드라이드(TDA), 사이클로부탄 테트라카르복실릭 디안하이드라이드 (CBDA), 사이클로펜탄 테트라카르복실릭 디안하이드라이드(CPDA), 비사이클로[2.2.2]-7-옥텐-2,3,5,6-테트라카르복실산 디안하이드라이드(BTA), 사이클로헥산 테트라카르복실릭 디안하이드라이드(CHDA), 비사이클로헥산 테트라카르복실릭 디안하이드라이드(HBPDA)와 같은 산 이무수물을 포함할 수 있으며, 상술한 바와 같이 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA)과 같은 방향족 산 이무수물도 목표로 하는 광학 물성을 저해하지 않는 범위 내에서 첨가하여 사용할 수 있다.In particular, the present invention, in terms of improving optical properties and dielectric constant, preferably 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) containing fluorine which can increase free volume. ), 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2- of aliphatic or cycloaliphatic family which can lower the polarization anisotropy in the molecule Dicarboxylic dianhydride (TDA), cyclobutane tetracarboxylic dianhydride (CBDA), cyclopentane tetracarboxylic dianhydride (CPDA), bicyclo [2.2.2] -7-octen-2 Acid dianhydrides such as, 3,5,6-tetracarboxylic dianhydride (BTA), cyclohexane tetracarboxylic dianhydride (CHDA), bicyclohexane tetracarboxylic dianhydride (HBPDA) And may include pyromellitic as described above Acid dianhydrides (1,2,4,5-benzene tetracarboxylic dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA) Aromatic acid dianhydrides such as these can also be added and used within the range of not impairing the target optical properties.
이때, 추가로 포함되는 산 이무수물의 함량은 산 이무수물 총 몰에 대하여, 80mol% 이하, 바람직하게는 10 ~ 50mol%로 투입하는 것이 광학특성과 유전율을 저해하지 않는 범위에서 내열성 향상을 기대할 수 있다. At this time, the content of the acid dianhydride additionally included may be expected to improve the heat resistance in a range of 80 mol% or less, preferably 10 to 50 mol% relative to the total moles of acid dianhydride does not inhibit the optical properties and dielectric constant. .
본 발명의 폴리아믹산을 얻는 방법은 특별히 한정되는 것은 아니며, 상기 화학식 1로 표시되는 산 이무수물과 디아민을 공지의 제조방법에 의해 반응, 중합시키면 되는데, 유기 용매중에서 화학식 1로 표시되는 산 이무수물과 디아민을 혼합하고, 반응시키는 방법이 간편하다.The method for obtaining the polyamic acid of the present invention is not particularly limited, and the acid dianhydride represented by the general formula (1) and the diamine may be reacted and polymerized by a known production method, but the acid dianhydride represented by the general formula (1) in an organic solvent. The method of mixing and reacting with diamine is simple.
이때, 사용되는 유기용매의 구체예로서는, m-크레졸, N-메틸-2-피롤리돈(NMP), N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드(DMAc), N-메틸카프로락탐, 디메틸술폭사이드(DMSO), 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸포스포르아미드, γ-부티로락톤 등을 들 수 있다. 이들의 용매는, 단독으로 사용해도 되고, 2종 이상 혼합하여 사용해도 된다. 또한, 폴리아믹산을 용해하지 않는 용매여도, 균일한 용액이 얻어지는 범위내에서 상기 용매에 가하여 사용해도 된다.At this time, specific examples of the organic solvent used include m-cresol, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and N. -Methyl caprolactam, dimethyl sulfoxide (DMSO), tetramethyl urea, pyridine, dimethyl sulfone, hexamethylphosphoramide, gamma -butyrolactone, etc. are mentioned. These solvents may be used alone or in combination of two or more thereof. Moreover, even if it is a solvent which does not melt a polyamic acid, you may add to and use the said solvent within the range from which a uniform solution is obtained.
용액 중합의 반응 온도는 -20 ~ 150℃, 바람직하게는 -5 ~ 100℃의 임의의 온도를 선택할 수 있다. 또, 폴리아믹산의 분자량은 반응에 사용하는 화학식 1로 표시되는 산 이무수물과 디아민과의 몰비를 바꿈으로써 제어할 수 있고, 통상의 중축합 반응과 마찬가지로, 이 몰비가 1에 가까울수록 생성하는 폴리아믹산의 분자량은 커진다.The reaction temperature of solution polymerization can select arbitrary temperature of -20-150 degreeC, Preferably -5-100 degreeC. Moreover, the molecular weight of a polyamic acid can be controlled by changing the molar ratio of the acid dianhydride represented by General formula (1) used for reaction, and diamine, and similar to a normal polycondensation reaction, the polya produced as this molar ratio approaches 1, The molecular weight of the acid is increased.
한편, 폴리아믹산으로부터 폴리이미드를 얻기 위해 폴리아믹산을 탈수 폐환시키는 방법은 특별히 한정되지 않지만, 통상의 폴리아믹산과 마찬가지로, 가열에 의한 폐환이나 공지의 탈수 폐환 촉매를 사용하여 화학적으로 폐환시키는 방법을 채용할 수 있다. 상기 가열에 의한 방법은 80℃에서 300℃까지 단계적으로 승온시킬 수 있다.On the other hand, the method of dehydrating and ringing a polyamic acid in order to obtain a polyimide from a polyamic acid is not specifically limited, but similarly to the conventional polyamic acid, the method of ring closure by heating or chemically ringing using a well-known dehydration ring closure catalyst is employ | adopted. can do. The heating method can be stepped up step by step from 80 ℃ to 300 ℃.
화학적으로 폐환하는 방법은, 예를 들면, 피리딘이나 트리에틸아민 등의 유기염기와, 무수 아세트산 등의 존재하에서 행할 수 있고, 이때의 온도는 -20 ~ 200℃의 임의의 온도를 선택할 수 있다. 이 반응에서는 폴리아믹산의 중합 용액을 그대로, 또는 희석하여 사용할 수 있다. 또, 폴리아믹산의 중합 용액으로부터 폴리아믹산을 회수하고, 이것을 적당한 유기용매에 용해시킨 상태에서 행해도 된다. 이때의 유기용매로서는, 상기 서술한 폴리아믹산의 중합 용매를 들 수 있다.The method of chemically ring closing can be performed in presence of organic bases, such as a pyridine and a triethylamine, and acetic anhydride, etc., and the temperature at this time can select arbitrary temperature of -20-200 degreeC. In this reaction, the polymerization solution of polyamic acid can be used as it is or diluted. Moreover, you may perform polyamic acid collect | recovered from the polymerization solution of polyamic acid, and this is melt | dissolved in the suitable organic solvent. As an organic solvent at this time, the polymerization solvent of the polyamic acid mentioned above is mentioned.
이렇게 하여 얻어진 폴리이미드(를 포함하는) 용액은, 그대로 사용할 수도 있고, 또, 메탄올, 에탄올 등의 용매를 가하여 폴리머를 침전시키고, 이것을 단리하여 분말로서, 또는 그 분말을 적당한 용매에 재용해시켜 사용할 수 있다. 재용해용 용매는 얻어진 폴리머를 용해시키는 것이면 특별히 한정되는 것은 아니며, 예를 들면, m-크레졸, 2-피롤리돈, NMP, N-에틸-2-피롤리돈, N-비닐-2-피롤리돈, DMAc, DMF(dimethylformamide), γ-부티로락톤 등을 들 수 있다.The polyimide (containing) solution thus obtained may be used as it is, or a solvent such as methanol or ethanol may be added to precipitate the polymer, which is isolated and re-dissolved as a powder or in a suitable solvent for use. Can be. The solvent for re-dissolution is not particularly limited as long as it dissolves the obtained polymer. For example, m-cresol, 2-pyrrolidone, NMP, N-ethyl-2-pyrrolidone, and N-vinyl-2-pyrroli DON, DMAc, DMF (dimethylformamide), (gamma) -butyrolactone, etc. are mentioned.
또한, 본 발명의 폴리이미드 필름은 폴리아믹산을 지지체에 캐스팅하고 상술한 것과 같은 방법으로 탈수 폐환시켜서 얻어질 수 있다. 여기서, 폴리아믹산으로부터 폴리이미드로의 변화율(탈수 폐환율)을 이미드화율로 정의하는데, 본 발명의 폴리이미드의 이미드화율은 100%에 한정되는 것은 아니며, 필요에 따라서 1 ~ 100%의 임의의 값을 선택할 수 있다.In addition, the polyimide film of the present invention can be obtained by casting polyamic acid on a support and dehydrating and closing the ring in the same manner as described above. Here, the rate of change (dehydration closure rate) from polyamic acid to polyimide is defined as the imidization rate, but the imidation rate of the polyimide of the present invention is not limited to 100%, and optionally 1 to 100%. You can select the value of.
본 발명에서는 상기와 같이 탈수 폐환되어 제막된 폴리이미드 필름에 한번 더 열처리 공정에 적용하여 필름 내에 남아 있는 열 이력 및 잔류 응력을 해소함으로써, 안정적인 열안정성을 얻어 우수한 열팽창계수를 갖도록 할 수 있다. 열처리를 마친 필름의 잔류 휘발성분은 5%이하이며, 바람직하게는 3%이하이다.In the present invention, by applying the heat treatment step once more to the polyimide film dehydrated and closed as described above, the thermal hysteresis and residual stress remaining in the film can be solved to obtain stable thermal stability and to have an excellent coefficient of thermal expansion. The residual volatile content of the film after heat treatment is 5% or less, and preferably 3% or less.
이와 같이 제조된 폴리이미드 필름의 두께는 특별히 한정되는 것은 아니지만, 10 ~ 250㎛의 범위인 것이 바람직하고, 보다 바람직하게는 10 ~ 100㎛인 것이 좋다.Although the thickness of the polyimide film manufactured in this way is not specifically limited, It is preferable that it is the range of 10-250 micrometers, More preferably, it is 10-100 micrometers.
이상에서 설명한 바와 같은 방법으로서, 디아민 및 산 이무수물로 반응시켜 얻어지는 폴리아믹산을 이미드화하여 폴리이미드 및 폴리이미드 필름을 제조할 수 있으며, 이와 같이 제조된 상기 폴리이미드 필름은 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 디메틸아세트아미드(dimethylacetamide, DMAc), 디메틸 프탈레이트(dimethyl phthalate, DMP), 디메틸술폭사이드(dimethylsulfoxide, DMSO) 등의 유기 용매에 대한 높은 용해성을 보이면서, 필름 두께 10 ~ 100㎛를 기준으로 550㎚에서의 투과도가 80% 이상이고, 1GHz의 유전상수가 3.3 이하인 물성을 나타낸다.As described above, a polyimide and a polyimide film can be prepared by imidating a polyamic acid obtained by reacting with a diamine and an acid dianhydride, and the polyimide film thus prepared is N-methyl-2- High solubility in organic solvents such as pyrrolidone (N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethyl phthalate (DMP) and dimethylsulfoxide (DMSO) As seen, the transmittance at 550 nm based on the film thickness of 10 to 100 μm is 80% or more, and the dielectric constant of 1 GHz is 3.3 or less.
전술된 바와 같이 본 발명에 따른 폴리이미드 필름은 낮은 유전율을 나타내는 동시에 무색투명하여 액정 표시 소자나 반도체에 있어서의 보호재료, 절연재료 등의 전자재료, 광도파로 등의 광통신용 재료로서의 용도로 유용하다.As described above, the polyimide film according to the present invention exhibits a low dielectric constant and is colorless and transparent, which is useful for use as an optical communication material such as an optical material such as an electronic material such as a protective material or an insulating material in a liquid crystal display device or a semiconductor. .
이하 본 발명의 바람직한 실시예 및 비교예를 설명한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.
<제조예 1><Manufacture example 1>
1-1: 화학식 2로 표시되는 화합물 합성1-1: Synthesis of Compound Represented by Chemical Formula 2
메탄올 200ml에 푸말릭산 14.5g(125mmol)을 혼합하고, 여기에 진한 황산 5ml를 첨가한 다음, 100℃에서 1시간 동안 환류시켰다. 상기 환류물을 냉각조에서 냉각하고 10%의 탄산나트륨 200g으로 중화시켜 흰 침전물을 생성시켰다. 상기 생성된 침전물을 여과하고 물로 세척한 후에 진공 오븐에서 50℃에서 12시간 동안 건조시켜 화학식 2로 표시되는 화합물 16.6g을 수득하였다(수율 92%). 상기 화학식 2로 표시되는 화합물의 제조방법은 Carr G. 등이 보고한 방법(Carr G., Williams D. E., Dı´az-Marrero A. R., Patrick B. O., Bottriell H., Balgi A. D., Donohue E., Roberge M., and Andersen R. J., J. Nat. Prod. 2010, 73, 422)을 토대로 수행한 것이다.Mix 14.5 g (125 mmol) of fumaric acid with 200 ml of methanol, add 5 ml of concentrated sulfuric acid, It was refluxed at 100 ° C. for 1 hour. The reflux was cooled in a cooling bath and neutralized with 200 g of 10% sodium carbonate to produce a white precipitate. The resulting precipitate was filtered, washed with water and dried in a vacuum oven at 50 ° C. for 12 hours to obtain 16.6 g of the compound represented by Formula 2 (yield 92%). The method for preparing the compound represented by Formula 2 is reported by Carr G. et al. , and Andersen RJ, J. Nat. Prod . 2010, 73, 422).
상기 수득된 화학식 2로 표시되는 화합물의 녹는점(Buchi, M-560)을 측정한 결과, 녹는점(Mp)은 102℃로 Carr G. 등이 보고한 방법에 의해 제조된 화합물의 녹는점과 동일함을 확인하였다.As a result of measuring the melting point (Buchi, M-560) of the compound represented by Chemical Formula 2, the melting point (Mp) of the compound prepared by the method reported by Carr G. et al. Confirm the same.
1-2: 화학식 3으로 표시되는 화합물 합성1-2: Synthesis of Compound Represented by Chemical Formula 3
실시예 1-1에서 수득된 화학식 2로 표시되는 화합물 14.4g(0.1mol)과 피페라진 4.3g(0.05mol)을 1,4-다이옥산 100ml에 첨가한 다음, 16시간 동안 환류시키고, 상기 환류물을 냉각하여 침전물을 생성하였다. 상기 생성된 침전물을 여과하고 농축시키는 과정을 반복수행한 후에 진공오븐에서 12시간 동안 건조시켜 무색 고체의 화학식 3으로 표시되는 화합물 15.3g을 수득하였다(수율 82%). 14.4 g (0.1 mol) of the compound represented by Formula 2 obtained in Example 1-1 and 4.3 g (0.05 mol) of piperazine were added to 100 ml of 1,4-dioxane, followed by reflux for 16 hours, and the reflux. Cooling produced a precipitate. After filtering and concentrating the resulting precipitate was repeated for 12 hours in a vacuum oven to give 15.3g of a compound represented by the formula (3) of a colorless solid (yield 82%).
상기 수득된 화학식 3으로 표시되는 화합물은 녹는점(Buchi, M-560)을 측정하였고, 또한 NMR(1H와 13C)(JEOL, JNM-LA400)과 IR(AVATAR, 360 FT-IR)을 사용하여 분석하였다.The obtained compound represented by the formula (3) measured the melting point (Buchi, M-560), and also NMR ( 1 H and 13 C) (JEOL, JNM-LA400) and IR (AVATAR, 360 FT-IR) Analyzed using.
녹는점 : 158℃(EtOAc)Melting Point: 158 ℃ (EtOAc)
1H NMR (400 MHz, CDCl3): δ 2.38-2.50 (m, 4H, Het-CH2CH2), 2.54-2.70 (m, 6H, β-CH2, Het-CH2CH2), 2.81 (dd, J= 16.0 and 9.2 Hz, 2H, β-CH2), 3.64 (s, 6H, 2OCH3), 3.68 (dd, 2H, overlapped signals, α-CH), 3.70 (s, 6H, 2OCH3) (FIG. 4); 1 H NMR (400 MHz, CDCl 3 ): δ 2.38-2.50 (m, 4H, Het-CH 2 CH 2 ), 2.54-2.70 (m, 6H, β-CH 2 , Het-CH 2 CH 2 ), 2.81 (dd, J = 16.0 and 9.2 Hz, 2H, β-CH 2 ), 3.64 (s, 6H, 2CH 3 ), 3.68 (dd, 2H, overlapped signals, α-CH), 3.70 (s, 6H, 2OCH 3 ) (FIG. 4);
13C NMR (100 MHz, CDCl3): δ 171.7 and 170.9 (ester C), 63.4 (α-CH), 51.8 (OCH3), 51.5 (OCH3), 49.9 (Het-CH2
CH2), 34.0 (β-CH2); Anal. Calcd. for C16H26N2O8; C: 51.33, H: 7.00, N: 7.48%. Found: C: 51.19, H: 7.09, N: 7.53% ; 13 C NMR (100 MHz, CDCl 3 ): δ 171.7 and 170.9 (ester C), 63.4 (α- C H), 51.8 (O C H 3 ), 51.5 (O C H 3 ), 49.9 (Het- C H 2 C H 2 ), 34.0 (β- C H 2 ); Anal. Calcd. for C 16 H 26 N 2 O 8 ; C: 51.33, H: 7.00, N: 7.48%. Found: C: 51.19, H: 7.09, N: 7.53%;
IR (KBr, cm-1): 1734 for νC=OIR (KBr, cm -1 ): 1734 for νC = O
1-3: 화학식 4로 표시되는 화합물 합성1-3: Synthesis of Compound Represented by Chemical Formula 4
실시예 1-2에서 수득된 화학식 3으로 표시되는 화합물 11.2g(0.03mol)을 500ml의 둥근 바닥 플라스크에 투입한 다음, 2노르말 수산화칼륨 120ml(0.24mol)과 메탄올 120ml을 혼합하였다. 상기 혼합물을 60℃로 가열하여 용해한 후, 동일한 온도에서 3시간 동안 더 가열하였다. 상기 혼합물에 진한 염산을 가하여 pH 3.8로 조정한 후에 30분간 상온에서 교반하여 침전물을 생성시키고. 상기 생성된 침전물을 여과한 다음, 물로 세척하였다. 상기 세척된 침전물을 24시간 동안 진공오븐에서 건조시키고, 1:1 비율로 물과 메탄올이 혼합된 혼합물 2,000ml에 재결정시킨 다음, 화학식 4로 표시되는 화합물 8.7g을 수득하였다(수율 92%). 상기 수득된 화학식 4로 표시되는 화합물은 일반적인 유기용매와 물에 용해되지 않아 NMR 샘플을 만들기 위해 고체 수산화칼륨이 용해되어 있는 중수(D2O)에 화학식 4로 표시되는 화합물을 혼합하여 NMR 분석에 사용하였다.11.2 g (0.03 mol) of the compound represented by Chemical Formula 3 obtained in Example 1-2 were added to a 500 ml round bottom flask, and then 120 ml (0.24 mol) of 2-normal potassium hydroxide and 120 ml of methanol were mixed. The mixture was dissolved by heating to 60 ° C. and then further heated at the same temperature for 3 hours. Concentrated hydrochloric acid was added to the mixture to adjust the pH to 3.8, followed by stirring at room temperature for 30 minutes to form a precipitate. The resulting precipitate was filtered off and washed with water. The washed precipitate was dried in a vacuum oven for 24 hours, and recrystallized in 2,000 ml of a mixture of water and methanol in a 1: 1 ratio to obtain 8.7 g of a compound represented by Formula 4 (yield 92%). The obtained compound represented by the formula (4) is not soluble in a general organic solvent and water mixed with the compound represented by the formula (4) in heavy water (D 2 O) in which solid potassium hydroxide is dissolved in order to make an NMR sample for NMR analysis Used.
상기 수득된 화학식 3으로 표시되는 화합물에 대하여, 녹는점(Buchi, M-560), NMR(1H와 13C)(JEOL, JNM-LA400) 및 IR(AVATAR, 360 FT-IR)을 사용하여 분석하였다.For the compound represented by Formula 3, the melting point (Buchi, M-560), NMR ( 1 H and 13 C) (JEOL, JNM-LA400) and IR (AVATAR, 360 FT-IR) using Analyzed.
녹는점 : 218-219℃ (H2O+MeOH)Melting Point: 218-219 ℃ (H 2 O + MeOH)
1H NMR (400 MHz, D2O/KOH): δ 2.46-2.54 (bd, 4H, Het-CH2CH2), 2.56-3.40 (bm, 6H, β-CH2, Het-CH2CH2), 3.44-3.54 (bm, 2H, β-CH2), 4.80 (dd, 2H, overlapped signals, α-CH); 1 H NMR (400 MHz, D 2 O / KOH): δ 2.46-2.54 (bd, 4H, Het-CH 2 CH 2 ), 2.56-3.40 (bm, 6H, β-CH 2 , Het-CH 2 CH 2 ), 3.44-3.54 (bm, 2H, β-CH 2 ), 4.80 (dd, 2H, overlapped signals, α-CH);
13C NMR (100 MHz, D2O/KOH): δ 178.8 (COOH), 67.7 (α-CH), 49.1 (Het-CH2
CH2), 37.4 (β-CH2); Anal. Calcd. for C12H18N2O8; C: 45.28, H: 5.70, N: 8.80%. Found: C: 45.16, H: 5.79, N: 8.83%; 13 C NMR (100 MHz, D 2 O / KOH): δ 178.8 ( C OOH), 67.7 (α- C H), 49.1 (Het- C H 2 C H 2 ), 37.4 (β- C H 2 ); Anal. Calcd. for C 12 H 18 N 2 O 8 ; C: 45.28, H: 5.70, N: 8.80%. Found: C: 45.16, H: 5.79, N: 8.83%;
IR (KBr, cm-1): 1723 for νC=O.IR (KBr, cm −1 ): 1723 for νC═O.
1-4: 화학식 1로 표시되는 지방족 안하이드라이드 화합물 합성1-4: Synthesis of Aliphatic Anhydride Compound of Formula 1
실시예 1-3에서 수득된 화학식 4로 표시되는 화합물 5.4g(17mmol), 피리딘 3.18g(35.7mmol) 및 아세틱 안하이드라이드 3.6g(35.7mmol)을 응축기와 자석 교반기가 설치된 50ml 플라스크에 투입하여 60℃에서 24시간 동안 반응을 수행하였다. 반응 완료 후, 반응물을 냉각하고, 여과하였다. 상기 여과된 여과물을 아세틱 안하이드라이드 200ml와 정제된 다이에틸에테르 200ml로 세척하여 진공상태의 오븐에서 40℃에서 건조시킨 후에 아세틱 안하이드라이드 100ml로 재결정을 수행하여 화학식 1로 표시되는 화합물 2.9g을 수득하였다(수율 60%).5.4 g (17 mmol) of a compound represented by Formula 4, 3.18 g (35.7 mmol) of pyridine and 3.6 g (35.7 mmol) of acetic anhydride obtained in Examples 1-3 were added to a 50 ml flask equipped with a condenser and a magnetic stirrer. The reaction was carried out at 60 ℃ for 24 hours. After the reaction was completed, the reaction was cooled and filtered. The filtered filtrate was washed with 200 ml of acetic anhydride and 200 ml of purified diethyl ether, dried at 40 ° C. in an oven in a vacuum, and then recrystallized from 100 ml of acetic anhydride. 2.9 g were obtained (yield 60%).
상기 수득된 화학식 1로 표시되는 화합물에 대하여, 녹는점(Buchi, M-560)을 측정하였고, NMR(1H와 13C)(JEOL, JNM-LA400)과 IR(AVATAR, 360 FT-IR)을 사용하여 분석하였다.For the compound represented by Formula 1, the melting point (Buchi, M-560) was measured, NMR ( 1 H and 13 C) (JEOL, JNM-LA400) and IR (AVATAR, 360 FT-IR) It was analyzed using.
녹는점 : 156℃(decompose)Melting Point: 156 ℃ (decompose)
1H NMR (400 MHz, d6-DMSO): δ 2.39(bd, J=6.8 Hz, 4H, Het-CH2CH2), 2.76 (bd, J=6.8 Hz, 4H, Het-CH2CH2), 3.04 (d, J= 8.4 Hz, 4H, β-CH2), 4.21 (t, J=16.4 Hz, 2H, α-CH); 1 H NMR (400 MHz, d6-DMSO): δ 2.39 (bd, J = 6.8 Hz, 4H, Het-CH 2 CH 2 ), 2.76 (bd, J = 6.8 Hz, 4H, Het-CH 2 CH 2 ) , 3.04 (d, J = 8.4 Hz, 4H, β-CH 2 ), 4.21 (t, J = 16.4 Hz, 2H, α-CH);
13C NMR (100 MHz, d6-DMSO): δ 171.6 (COOCO), 170.6 (COOCO), 63.6 (α-CH), 48.9 (Het-CH2CH2), 31.9 (β-CH2); Anal. Calcd. for C12H14N2O6; C: 51.06, H: 5.00, N: 9.93%. Found: C: 49.93, H: 5.10, N: 9.96%; 13 C NMR (100 MHz, d6-DMSO): δ 171.6 (COOCO), 170.6 (COOCO), 63.6 (α-CH), 48.9 (Het-CH 2 CH 2 ), 31.9 (β-CH 2 ); Anal. Calcd. for C 12 H 14 N 2 O 6 ; C: 51.06, H: 5.00, N: 9.93%. Found: C: 49.93, H: 5.10, N: 9.96%;
IR (KBr, cm-1): 1860, 1781 (νC=O), 1210, 1127 (C-O-C).IR (KBr, cm −1 ): 1860, 1781 (νC═O), 1210, 1127 (COC).
<실시예 1 내지 4> <Examples 1 to 4>
기계식 교반기가 설치된 30ml 3구 플라스크안에 제조예 1에서 수득된 산 이무수물(2.0 mmol)과 m-cresol 4mL를 투입하고, 질소 가스를 서서히 흘려주면서 산 이무수물이 완전히 녹을 때까지 혼합물을 교반하였다. 여기에 표 1에 기재된 각각의 디아민(2.0 mmol)과 m-cresol 2ml을 추가적으로 투입한 다음, 플라스크를 60℃까지 가열해주고 2일 동안 교반하였다. 폴리아믹산을 포함하는 중축합 용액의 일부분을 유리판 위에 캐스팅하고, 진공 하에서 유리판을 80℃에서 3시간, 200℃에서 1시간 그리고 250℃에서 1시간 열을 가해서 폴리이미드 필름을 얻었다. 경화 후, 유연하고 지지체 없는 폴리이미드 필름을 제거하기 위해 유리판을 뜨거운 물에 담궈서 유리판으로부터 필름을 제거하여 두께가 15㎛인 폴리이미드 필름을 제조하였다.In a 30 ml three-necked flask equipped with a mechanical stirrer, acid dianhydride (2.0 mmol) obtained in Preparation Example 1 and 4 mL of m-cresol were added thereto, and the mixture was stirred until the acid dianhydride was completely dissolved while slowly flowing nitrogen gas. Each diamine (2.0 mmol) and 2 ml of m-cresol described in Table 1 were further added thereto, and the flask was heated to 60 ° C. and stirred for 2 days. A portion of the polycondensation solution containing polyamic acid was cast on a glass plate, and the glass plate was heated under vacuum for 3 hours at 80 ° C., 1 hour at 200 ° C. and 1 hour at 250 ° C. to obtain a polyimide film. After curing, the film was removed from the glass plate by immersing the glass plate in hot water to remove the flexible and support-free polyimide film to prepare a polyimide film having a thickness of 15 μm.
이때 수득된 폴리이미드 필름들은 FTIR(AVATAR 360 FT-IR)을 통해 이미드에서 나타나는 특징적인 1771-1775cm-1 흡수밴드를 확인할 수 있었다(도 1). 이것은 카보닐기의 비대칭적인 신축진동에 의한 것이고, 1691-1697cm-1의 것은 카보닐기의 대칭적인 신축진동에 의한 것으로, 방향족 고리의 부재로 인해 이미드 카보닐 그룹의 비공액 구조는 지방족 폴리이미드의 흡수 변화의 원인이 됨을 확인할 수 있다. The obtained polyimide films were able to identify characteristic 1771-1775 cm -1 absorption bands appearing in the imide through FTIR (AVATAR 360 FT-IR) (FIG. 1). This is due to the asymmetric stretching of the carbonyl group, and 1691-1697 cm -1 is due to the symmetric stretching of the carbonyl group. Due to the absence of the aromatic ring, the nonconjugated structure of the imide carbonyl group is the It can be confirmed that it causes the change of absorption.
표 1 | 실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 |
디아민 종류 | 1,6-헥사메틸렌 디아민(16DAH) | 1,12-디아미노도데칸(112DAD) | 4,4'-디아미노디시클로헥실메탄(MCA) | 4,4'-메틸렌 비스(2-메틸사이클로헥실아민)(MMCA) |
Table 1 | Example 1 | Example 2 | Example 3 | Example 4 |
Diamine Type | 1,6-hexamethylene diamine (16DAH) | 1,12-diaminododecane (112DAD) | 4,4'-diaminodicyclohexylmethane (MCA) | 4,4'-methylene bis (2-methylcyclohexylamine) (MMCA) |
<실시예 5 내지 21> <Examples 5 to 21>
기계식 교반기가 설치된 30ml 3구 플라스크안에 제조예 1에서 수득된 제1 산 이무수물과 m-cresol 4mL를 투입하고, 질소 가스를 서서히 흘려주면서 제1 산 이무수물이 완전히 녹을 때까지 혼합물을 교반하였다. 여기에 표 2에 기재된 제2 산 이무수물을 추가 투입하고 완전히 용해시켰다. 이후, 디아민으로 4,4'-메틸렌 비스(사이클로헥실아민)(MCA)(100mmol)와 m-cresol 2ml을 투입한 다음, 플라스크를 60℃까지 가열해주고 2일 동안 교반하였다. 폴리아믹산을 포함하는 중축합 용액의 일부분을 유리판 위에 캐스팅하고, 진공 하에서 유리판을 80℃에서 3시간, 200℃에서 1시간 그리고 250℃에서 1시간 열을 가해서 폴리이미드 필름을 얻었다. 경화 후, 유연하고 지지체 없는 폴리이미드 필름을 제거하기 위해 유리판을 뜨거운 물에 담궈서 유리판으로부터 필름을 제거하여 두께가 15㎛인 폴리이미드 필름을 제조하였다.In a 30 ml three-necked flask equipped with a mechanical stirrer, the first acid dianhydride and m-cresol 4 mL obtained in Preparation Example 1 were added, and the mixture was stirred until the first acid dianhydride was completely dissolved while slowly flowing nitrogen gas. The second acid dianhydride shown in Table 2 was further added thereto and dissolved completely. Thereafter, 4,4'-methylene bis (cyclohexylamine) (MCA) (100 mmol) and 2 ml of m-cresol were added as diamine, and the flask was heated to 60 ° C and stirred for 2 days. A portion of the polycondensation solution containing polyamic acid was cast on a glass plate, and the glass plate was heated under vacuum for 3 hours at 80 ° C., 1 hour at 200 ° C. and 1 hour at 250 ° C. to obtain a polyimide film. After curing, the film was removed from the glass plate by immersing the glass plate in hot water to remove the flexible and support-free polyimide film to prepare a polyimide film having a thickness of 15 μm.
표 2 | 제1 산 이무수물 함량(mmol) | 제2 산 이무수물 종류 | 제2 산 이무수물 함량(mmol) |
실시예 5 | 90 | 6FDA | 10 |
실시예 6 | 70 | 6FDA | 30 |
실시예 7 | 50 | 6FDA | 50 |
실시예 8 | 90 | CBDA | 10 |
실시예 9 | 70 | CBDA | 30 |
실시예 10 | 50 | CBDA | 50 |
실시예 11 | 90 | CHDA | 10 |
실시예 12 | 70 | CHDA | 30 |
실시예 13 | 50 | CHDA | 50 |
실시예 14 | 90 | BTA | 10 |
실시예 15 | 70 | BTA | 30 |
실시예 16 | 50 | BTA | 50 |
실시예 17 | 90 | HBPDA | 10 |
실시예 18 | 70 | HBPDA | 30 |
실시예 19 | 50 | HBPDA | 50 |
실시예 20 | 90 | PMDA | 10 |
실시예 21 | 90 | BPDA | 10 |
TABLE 2 | Primary acid dianhydride content (mmol) | Second kind of dianhydride | Second acid dianhydride content (mmol) |
Example 5 | 90 | 6FDA | 10 |
Example 6 | 70 | 6FDA | 30 |
Example 7 | 50 | 6FDA | 50 |
Example 8 | 90 | CBDA | 10 |
Example 9 | 70 | CBDA | 30 |
Example 10 | 50 | CBDA | 50 |
Example 11 | 90 | CHDA | 10 |
Example 12 | 70 | CHDA | 30 |
Example 13 | 50 | CHDA | 50 |
Example 14 | 90 | BTA | 10 |
Example 15 | 70 | BTA | 30 |
Example 16 | 50 | BTA | 50 |
Example 17 | 90 | HBPDA | 10 |
Example 18 | 70 | HBPDA | 30 |
Example 19 | 50 | HBPDA | 50 |
Example 20 | 90 | PMDA | 10 |
Example 21 | 90 | BPDA | 10 |
<비교예 1>Comparative Example 1
실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하되, 산 이무수물로 피로멜리틱 디안하이드라이드(pyromellitic dianhydride, PMDA)를 사용하여 폴리이미드 필름(두께 15㎛)을 제조하였다.A polyimide film was prepared in the same manner as in Example 1, but a polyimide film (thickness 15 μm) was prepared using pyromellitic dianhydride (PMDA) as an acid dianhydride.
<비교예 2>Comparative Example 2
실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하되, 산 이무수물로 피로멜리틱 디안하이드라이드(pyromellitic dianhydride, PMDA)와 디아민으로 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA)을 사용하고, 용매로는 N,N-Dimethyl acetamide로 사용하여 폴리이미드 필름(두께 15㎛)을 제조하였다.A polyimide film was prepared in the same manner as in Example 1, except that pyromellitic dianhydride (PMDA) and diamine were used as an acid dianhydride (4,4'-oxydianiline, ODA). ) And N, N-dimethyl acetamide as a solvent to prepare a polyimide film (thickness 15㎛).
<물성평가><Property Evaluation>
실시예 및 비교예에서 제조된 폴리이미드 필름을 이용하여, 아래와 같은 방법으로 분자량, 광학특성, 전기적 특성 및 열적 특성을 측정하고, 그 결과를 표 3 에 기재하였다.Using the polyimide films prepared in Examples and Comparative Examples, the molecular weight, optical properties, electrical properties and thermal properties were measured by the following method, and the results are shown in Table 3.
(1) 분자량 및 분자량 분포도 측정(1) Measurement of molecular weight and molecular weight distribution
겔 투과 크로마토그래피(GPC)(Waters: Waters707)에 의해 폴리스티렌 환산 중량평균분자량(Mw) 및 수평균분자량(Mn)을 구하였다. 측정하는 중합체는 4000ppm의 농도가 되도록 테트라히드로푸란에 용해시켜 GPC에 100㎕를 주입하였다. GPC의 이동상은 테트라히드로푸란을 사용하고, 1.0mL/분의 유속으로 유입하였으며, 분석은 35℃에서 수행하였다. 컬럼은 Waters HR-05,1,2,4E 4개를 직렬로 연결하였다. 검출기로는 RI and PAD Detecter를 이용하여 35℃에서 측정하였다. 또한, 분자량 분포도(PDI)는 측정된 중량평균분자량(Mw)을 수평균분자량(Mn)으로 나누어 산출하였다. Polystyrene reduced weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC) (Waters: Waters707). The polymer to be measured was dissolved in tetrahydrofuran to a concentration of 4000 ppm, and 100 µl was injected into GPC. The mobile phase of GPC used tetrahydrofuran and was introduced at a flow rate of 1.0 mL / min, and the analysis was performed at 35 ° C. The column connected four Waters HR-05,1,2,4E in series. The detector was measured at 35 ° C using RI and PAD Detecter. In addition, molecular weight distribution (PDI) was calculated by dividing the measured weight average molecular weight (Mw) by the number average molecular weight (Mn).
(2) 광투과율 측정(2) Light transmittance measurement
UV분광계 (Konita Minolta, CM-3700d)를 이용하여 550nm에서의 투과도를 측정하였다.The transmittance at 550 nm was measured using a UV spectrometer (Konita Minolta, CM-3700d).
(3) 유전율 측정(3) permittivity measurement
Agilent사 E4980A precision LCR meter 기기를 이용하여 측정하였으며 2probe방식으로 상판 골드스퍼터링을 하였다. 1Mhz 주파수, A는 2mm x 2mm 이고, 필름 두께는 각 지점마다 달라서 알파 스탭을 통하여서 각 포인트의 두께를 재어서 계산하였으며, 하판은 ITO 코팅면을 통해서 가운데 필름의 capacitance를 측정하였다. 측정된 값과 정전용량을 이용하여 하기 식 1을 통해서 유전율을 산출하였다.It was measured using Agilent's E4980A precision LCR meter and gold plated sputtered with 2 probe method. The frequency of 1Mhz, A is 2mm x 2mm, the film thickness is different for each point and calculated by measuring the thickness of each point through the alpha step, the bottom plate was measured the capacitance of the middle film through the ITO coating surface. Using the measured value and the capacitance, the dielectric constant was calculated through Equation 1 below.
[식 1][Equation 1]
K = (C×d) /( A×εo)K = (C × d) / (A × ε o )
상기 1에서, K는 유전 상수이고, C는 정전용량이며, d는 필름두께이고, A는 시편(필름) 면적(2×2mm)이고, εo는 진공상태의 유전 상수 (8.85×10-12 Fm-1)임.In 1, K is the dielectric constant, C is the capacitance, d is the film thickness, A is the specimen (film) area (2 × 2 mm), and ε o is the dielectric constant of vacuum (8.85 × 10 −12) Fm -1 ).
(4) 유리전이온도(Tg)측정(4) Glass transition temperature (Tg) measurement
Perkin Elmer사의 DSC7 장비를 이용하여 승온 속도 10℃/min으로 50 ~ 300℃까지 2nd Run을 실시하여 2번째 값을 유리전이온도(Tg)로 산출하였다. The second value was calculated as glass transition temperature (Tg) by performing a 2nd run from 50 ° C to 300 ° C at a heating rate of 10 ° C / min using a Perkin Elmer DSC7 device.
표 3 | 수평균분자량(×104 g/mol, Mn) | PDI | 유전상수 (ε) | 광 투과율(%, 550nm) | Tg(℃) |
실시예 1 | 2.19 | 1.6 | 2.67 | 83 | 186 |
실시예 2 | 2.23 | 1.8 | 2.14 | 86 | 192 |
실시예 3 | 3.2 | 2.3 | 3.30 | 84 | 220 |
실시예 4 | 2.9 | 2.3 | 2.87 | 85 | 225 |
실시예 5 | 3.3 | 2.1 | 2.98 | 84 | 230 |
실시예 6 | 6.2 | 2.4 | 3.05 | 84 | 235 |
실시예 7 | 10.3 | 2.3 | 3.13 | 85 | 247 |
실시예 8 | 4.9 | 2.4 | 2.94 | 84 | 231 |
실시예 9 | 9.3 | 2.0 | 3.02 | 84 | 238 |
실시예 10 | 12.8 | 1.9 | 3.08 | 84 | 255 |
실시예 11 | 4.1 | 2.7 | 2.90 | 84 | 235 |
실시예 12 | 8.6 | 2.4 | 2.94 | 85 | 241 |
실시예 13 | 11.4 | 2.6 | 2.98 | 85 | 262 |
실시예 14 | 3.0 | 2.5 | 3.02 | 84 | 225 |
실시예 15 | 2.8 | 2.4 | 3.16 | 83 | 239 |
실시예 16 | 3.1 | 2.2 | 3.30 | 83 | 246 |
실시예 17 | 4.2 | 2.0 | 2.91 | 84 | 223 |
실시예 18 | 10.1 | 2.3 | 2.99 | 84 | 239 |
실시예 19 | 13.6 | 2.1 | 3.07 | 84 | 245 |
실시예 20 | 5.6 | 2.5 | 3.29 | 82 | 250 |
실시예 21 | 4.9 | 2.4 | 3.26 | 82 | 247 |
비교예 1 | 4.2 | 2.2 | 3.8 | 74 | 287 |
비교예 2 | 25.7 | 1.9 | 4.0 | 68 | 측정불가 |
TABLE 3 | Number average molecular weight (× 10 4 g / mol, Mn) | PDI | Dielectric constant (ε) | Light transmittance (%, 550nm) | Tg (℃) |
Example 1 | 2.19 | 1.6 | 2.67 | 83 | 186 |
Example 2 | 2.23 | 1.8 | 2.14 | 86 | 192 |
Example 3 | 3.2 | 2.3 | 3.30 | 84 | 220 |
Example 4 | 2.9 | 2.3 | 2.87 | 85 | 225 |
Example 5 | 3.3 | 2.1 | 2.98 | 84 | 230 |
Example 6 | 6.2 | 2.4 | 3.05 | 84 | 235 |
Example 7 | 10.3 | 2.3 | 3.13 | 85 | 247 |
Example 8 | 4.9 | 2.4 | 2.94 | 84 | 231 |
Example 9 | 9.3 | 2.0 | 3.02 | 84 | 238 |
Example 10 | 12.8 | 1.9 | 3.08 | 84 | 255 |
Example 11 | 4.1 | 2.7 | 2.90 | 84 | 235 |
Example 12 | 8.6 | 2.4 | 2.94 | 85 | 241 |
Example 13 | 11.4 | 2.6 | 2.98 | 85 | 262 |
Example 14 | 3.0 | 2.5 | 3.02 | 84 | 225 |
Example 15 | 2.8 | 2.4 | 3.16 | 83 | 239 |
Example 16 | 3.1 | 2.2 | 3.30 | 83 | 246 |
Example 17 | 4.2 | 2.0 | 2.91 | 84 | 223 |
Example 18 | 10.1 | 2.3 | 2.99 | 84 | 239 |
Example 19 | 13.6 | 2.1 | 3.07 | 84 | 245 |
Example 20 | 5.6 | 2.5 | 3.29 | 82 | 250 |
Example 21 | 4.9 | 2.4 | 3.26 | 82 | 247 |
Comparative Example 1 | 4.2 | 2.2 | 3.8 | 74 | 287 |
Comparative Example 2 | 25.7 | 1.9 | 4.0 | 68 | Not measurable |
표 3에 나타난 바와 같이, 실시예 1 내지 21의 필름은 비교예 1 및 2의 필름에 비해 낮은 유전상수와 높은 투과율을 나타냄을 확인할 수 있었다. As shown in Table 3, it was confirmed that the films of Examples 1 to 21 exhibited a low dielectric constant and a high transmittance compared with the films of Comparative Examples 1 and 2.
한편, 실시예 5 내지 21과 같이 제조예 1의 산 이무수물(제1 산 이무수물)에 일정 몰비의 산 이무수물(제2 산 이무수물)을 추가하여 제조된 필름의 경우에는 실시예 1 및 4와 대비할 때 동등한 정도의 투과율과 유전율을 유지하면서도 유리전이온도가 일정 수준 상승하는 것을 확인할 수 있었다. On the other hand, in the case of the film prepared by adding a certain molar ratio of acid dianhydride (second acid dianhydride) to the acid dianhydride (first acid dianhydride) of Preparation Example 1, as in Examples 5 to 21. Compared with 4, the glass transition temperature was increased to a certain level while maintaining the same transmittance and permittivity.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.