WO2015111855A1 - Impeller assembly and impeller assembly manufacturing method - Google Patents

Impeller assembly and impeller assembly manufacturing method Download PDF

Info

Publication number
WO2015111855A1
WO2015111855A1 PCT/KR2015/000087 KR2015000087W WO2015111855A1 WO 2015111855 A1 WO2015111855 A1 WO 2015111855A1 KR 2015000087 W KR2015000087 W KR 2015000087W WO 2015111855 A1 WO2015111855 A1 WO 2015111855A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
blade
protrusion
impeller assembly
friction stir
Prior art date
Application number
PCT/KR2015/000087
Other languages
French (fr)
Korean (ko)
Inventor
김종국
Original Assignee
삼성테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성테크윈 주식회사 filed Critical 삼성테크윈 주식회사
Publication of WO2015111855A1 publication Critical patent/WO2015111855A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/239Inertia or friction welding

Definitions

  • the present invention relates to an assembly and a manufacturing method, and more particularly to an impeller assembly and an impeller assembly manufacturing method.
  • the impeller delivers rotational kinetic energy to the fluid to increase the pressure of the fluid.
  • a plurality of blades are provided on one surface of the base part to assist the movement of the fluid and to transfer the rotational kinetic energy to the fluid.
  • a shroud is disposed outside the impeller. The shroud together with the blade forms a moving passage of the fluid.
  • the narrower the gap between the blade and the shroud has the characteristic of increasing the efficiency of the compressor, and recently, by combining the shroud with the impeller to manufacture integrally, a technique for maximizing the efficiency of the compressor has been proposed.
  • a process of joining the blade and the shroud of the impeller is required.
  • a riveting process or a welding process is used.
  • Japanese Patent Laid-Open Publication No. 2004-353608 or US Patent Publication No. 2010-0037458 discloses a technique for reinforcing by welding a shroud to an impeller. And shroud are fixed to each other. When the impeller and the shroud are joined by such a welding process, an excessive amount of heat input of the welding may occur, and thus the shape of the impeller and the shroud may be severely deformed.
  • the joining using the rivet may be complicated in the shape of the blade, it is difficult to transfer the rotational kinetic energy due to the impeller rotation to the fluid.
  • Embodiments of the present invention are to provide an impeller assembly manufactured using friction stir welding (FSW) and an impeller assembly manufacturing method using friction stir welding.
  • FSW friction stir welding
  • An aspect of the present invention includes a base portion, a blade installed on the base portion, and a shroud disposed to be spaced apart from the base portion to insert and couple a portion of the blade, wherein the blade is the shira And a protrusion formed to be inserted into the wood, wherein the shroud has a groove into which the protrusion is inserted and joined by friction stir welding.
  • Embodiments of the present invention can produce an impeller assembly by minimizing thermal deformation that may occur when using friction stir welding.
  • embodiments of the present invention can increase the bonding strength by widening the bonding area of the shroud and the blade.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view showing an impeller assembly according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1.
  • FIG 3 is a cross-sectional view showing a method of manufacturing an impeller assembly according to an embodiment of the present invention.
  • An aspect of the present invention includes a base portion, a blade installed on the base portion, and a shroud disposed to be spaced apart from the base portion to insert and couple a portion of the blade, wherein the blade is the shira And a protrusion formed to be inserted into the wood, wherein the shroud has a groove into which the protrusion is inserted and joined by friction stir welding.
  • the protrusion may be formed in a polygonal shape at the end of the blade, the groove may be formed in a shape corresponding to the protrusion.
  • the impeller assembly manufacturing method having a blade having a protrusion formed in a polygonal shape at the end and a shroud having a groove corresponding to the shape of the protrusion, inserting the protrusion into the groove and the blade Coupling the shroud, joining the protrusion and the groove by friction stir welding, and cutting the outer circumferential surface of the shroud to correspond to the outer circumferential surface of the base to remove the holes generated during the friction stir welding. It provides a method for producing an impeller assembly comprising.
  • FIG. 1 is a perspective view showing an impeller assembly 100 according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view showing a method of manufacturing an impeller assembly according to an embodiment of the present invention.
  • the impeller assembly 100 may include a rotating shaft 110, a base 120, a blade 130, and a shroud 140.
  • the base portion 120 is formed outside the rotation shaft 110.
  • the outer diameter increases radially along the vertical direction about the rotation shaft 110 and extends in the circumferential direction.
  • the surface of the base portion 120 is formed to form an inclined curved surface to smooth the fluid flow and minimize the energy loss due to the flow of the fluid.
  • the blade 130 is formed on the surface of the base 120 to perform the function of guiding the movement of the fluid and to transmit the rotational kinetic energy of the impeller assembly 100 to the fluid.
  • the blade 130 and the base 120 may be manufactured, respectively, so that the blade 130 may be coupled to the base 120.
  • the blade 130 may be manufactured integrally with the base portion 120.
  • the blade 130 may be integrally formed with the base part 120 by various methods such as casting, injection, and cutting through a mold.
  • in order to strengthen the coupling strength of the blade 130 and the base portion 120 may be formed to round the coupling portion of the blade 130 and the base portion 120.
  • the blade 130 and the base unit 120 will be described in detail with reference to a case where the blade unit 130 and the base unit 120 are integrally formed.
  • Blades 130 may be spaced apart from each other at a predetermined interval around the rotation axis may be arranged in plurality.
  • the blades 130 may be arranged in a substantially radial shape on the base portion 120.
  • the shape of the blade 130 may be formed in a curved shape along the direction of rotation to transfer the maximum rotational kinetic energy generated by the impeller assembly 100 to the fluid.
  • the shroud 140 extends circumferentially about the rotation shaft 110 and is disposed to cover the upper side of the blade 130. Therefore, the shroud 140 may form a fluid passage together with the base 120 and the blade 130.
  • Fluid introduced in the axial direction of the rotation shaft 110 through the inlet of the fluid passage flows along the fluid passage.
  • the fluid is discharged in the radial direction of the rotating shaft through the outlet of the fluid passage after receiving the rotational kinetic energy of the impeller assembly 100.
  • the blade 130 and the shroud 140 may be bonded by friction stir welding (FSW).
  • the blade 130 has a protrusion 131 formed to be inserted into the shroud 140, and the shroud 140 has a groove 141 into which the protrusion 131 is inserted and joined by friction stir welding.
  • the groove 141 is formed along the blade 130 with a groove smaller than the thickness of the shroud 140 on the surface of the shroud 140, and the height of the protrusion 130 is inserted into the groove 141. It can be formed smaller than the thickness.
  • the protrusion 131 may be formed in a polygonal shape at the end of the shroud 140, and the groove 141 may be formed in a polygonal shape corresponding to the protrusion 131.
  • the shape of the protrusion 131 is not limited to a specific polygon, but for convenience of description, the protrusion 131 will be described based on the triangular protrusion 131.
  • the protrusion 131 may form two slopes to widen the contact area between the protrusion 131 and the groove 141.
  • the contact area between the protrusion 131 and the groove 141 is wide, the material of the protrusion 131 and the material of the groove 141 are agitated and welded in a large area, thereby joining the blade 130 and the shroud 140. Strength can be improved.
  • the tip of the protrusion 131 is fixed to the groove 141. Therefore, during the friction stir welding, separation and separation of the protrusion 131 and the groove 141 may be prevented to facilitate welding.
  • a plurality of welding lines may be formed on the surface of the shroud 140 after finishing the process.
  • the friction stir welding tool (not shown) can be joined by one friction stir welding process along the tip of the protrusion 131. Time can be reduced.
  • the manufacturing method of the impeller assembly 100 is a manufacturing method for the impeller assembly 100 described above, and the portions overlapping with the above description will be omitted and outlined.
  • a step of coupling the blade 130 and the shroud 140 is performed.
  • the blade 130 has a protrusion formed on the top and has a polygonal shape
  • the shroud 140 has a groove 141 corresponding to the shape of the protrusion 131.
  • the protrusion 131 may be inserted into the groove 141 to be coupled to the blade 130 and the shroud 140.
  • a tag welding process may be further added to temporarily fix the inserted blade 130 and the shroud 140.
  • the protrusion 131 and the groove 141 are bonded to each other by friction stir welding.
  • friction stir welding tools (not shown) perform friction stir welding along the tip of the protrusion 131, the material around the protrusion 131 and the material around the groove 141 are melted and agitated by friction to be joined. . Since the method of the friction stir welding process and the friction stir welding tool used can be commonly used as well as the conventional friction stir welding process and the friction cross welding tool used in the impeller fabrication process, a detailed description of the operation principle and structure is described here. Omit.
  • the outer circumferential surface of the shroud 140 is cut to correspond to the outer circumferential surface of the base part 120 to remove the hole generated during the friction stir welding.
  • the friction stir welding is agitated and joined by frictional heat issued by the rotation of the friction stir welding tool. Therefore, when the friction stir welding tool is removed after the friction stir welding is completed, a hole 210 in which the friction stir welding tool is removed is formed in the shroud 140. Therefore, in order to remove the hole 210 generated in the shroud 140, the outer peripheral surface of the shroud 140 is cut in the direction A to correspond to the outer peripheral surface of the base portion 120. (See Figure 3)
  • the outer diameter of the shroud 140 may be formed larger than the outer diameter of the base 120 to secure the cut portion 142 of the shroud 140.
  • the hole 210 may be formed in the cutout 142, and the cutout 142 may be removed.
  • the impeller assembly 100 and the method of manufacturing the impeller assembly 100 are fixed to the groove 141 at the time of friction stir welding, and easily recognize the position at which the welding is performed, so that the friction stir welding can be easily performed. Can be.
  • the impeller assembly 100 and the method of manufacturing the impeller assembly 100 may increase the bonding strength by widening the contact area between the blade 130 and the shroud 140.
  • the impeller assembly 100 and the method of manufacturing the impeller assembly 100 may join the blade 130 and the shroud 140 through a single welding process along the protrusion 131 during friction stir welding. It can reduce and minimize the heat deformation occurring during the welding process.
  • the method of manufacturing the impeller assembly 100 may reduce the manufacturing time of the impeller assembly 100 by easily removing the hole 210 in which the friction stir mechanism generated after the friction stir welding is omitted.
  • the embodiments of the present invention it is possible to minimize the heat deformation generated when using friction stir welding, and the embodiments of the present invention can be applied to all power generation systems, gas turbine systems and the like having an impeller assembly for industrial use. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention provides an impeller assembly and an impeller assembly manufacturing method. The present invention comprises: a base portion; a blade installed on the base portion; and a shroud arranged to be spaced from the base portion, a part of the blade being inserted into and coupled to the shroud, wherein the blade has a protrusion formed to be inserted into the shroud, and the shroud has a groove into which the protrusion is inserted and bonded thereto through friction stir welding.

Description

임펠러 어셈블리 및 임펠러 어셈블리 제작방법 Impeller Assembly and Impeller Assembly Method
본 발명은 어셈블리 및 제작방법에 관한 것으로서, 더 상세하게는 임펠러 어셈블리 및 임펠러 어셈블리 제작방법에 관한 것이다.The present invention relates to an assembly and a manufacturing method, and more particularly to an impeller assembly and an impeller assembly manufacturing method.
임펠러는 유체에 회전 운동에너지를 전달하여 유체의 압력을 상승시키는 기능을 수행한다. 이를 위해 베이스부의 일면에 유체의 이동을 돕고 상기 회전 운동 에너지를 유체에 전달하기 위한 다수개의 블레이드(blade)가 마련되어 있다. 또한 임펠러의 외부에는 쉬라우드(shroud)가 배치된다. 상기 쉬라우드는 상기 블레이드와 함께 유체의 이동통로를 형성한다.The impeller delivers rotational kinetic energy to the fluid to increase the pressure of the fluid. To this end, a plurality of blades are provided on one surface of the base part to assist the movement of the fluid and to transfer the rotational kinetic energy to the fluid. In addition, a shroud is disposed outside the impeller. The shroud together with the blade forms a moving passage of the fluid.
통상적으로 블레이드와 쉬라우드 사이의 간격이 좁을수록 압축기의 효율이 상승하는 특성을 가지고 있으며, 최근에는 임펠러에 쉬라우드를 결합하여 일체형으로 제조함으로써, 압축기의 효율을 극대화하는 기술이 제안되고 있다.In general, the narrower the gap between the blade and the shroud has the characteristic of increasing the efficiency of the compressor, and recently, by combining the shroud with the impeller to manufacture integrally, a technique for maximizing the efficiency of the compressor has been proposed.
임펠러에 쉬라우드를 결합하여 제조하는 기술의 경우에는, 임펠러의 블레이드와 쉬라우드를 상호 접합하는 공정이 요구된다. 이를 위해, 리벳공정이나 용접공정 등이 사용된다.In the case of manufacturing a shroud by coupling the impeller, a process of joining the blade and the shroud of the impeller is required. For this purpose, a riveting process or a welding process is used.
일본 공개특허공보 제2004-353608호 또는 미국 공개특허공보 제2010-0037458호에는 임펠러에 쉬라우드를 용접하여 보강하는 기술이 개시되는데, 임펠러와 쉬라우드를 서로 접촉하여 단순히 용접하는 방법을 이용함으로써 임펠러와 쉬라우드가 서로 고정된다. 이러한 용접공정에 의하여 임펠러와 쉬라우드가 접합할 때에는 용접 입열량의 과도하게 발생하므로 임펠러와 쉬라우드의 형상이 심하게 변형될 수 있다.Japanese Patent Laid-Open Publication No. 2004-353608 or US Patent Publication No. 2010-0037458 discloses a technique for reinforcing by welding a shroud to an impeller. And shroud are fixed to each other. When the impeller and the shroud are joined by such a welding process, an excessive amount of heat input of the welding may occur, and thus the shape of the impeller and the shroud may be severely deformed.
또한, 리벳을 이용한 접합은 블레이드의 형상이 복잡해지고, 임펠러 회전에 의한 회전 운동에너지가 유체로 전달되는 것이 어려워질 수 있다.In addition, the joining using the rivet may be complicated in the shape of the blade, it is difficult to transfer the rotational kinetic energy due to the impeller rotation to the fluid.
따라서, 이러한 단점을 해소할 수 있는 새로운 임펠러 어셈블리의 제조방식이 요구되고 있다. Therefore, there is a need for a new method of manufacturing an impeller assembly that can overcome these disadvantages.
본 발명의 실시예들은 마찰 교반 용접(Friction Stir Welding, FSW)을 이용하여 제작된 임펠러 어셈블리 및 마찰 교반 용접을 이용한 임펠러 어셈블리 제작방법을 제공하고자 한다.Embodiments of the present invention are to provide an impeller assembly manufactured using friction stir welding (FSW) and an impeller assembly manufacturing method using friction stir welding.
본 발명의 일 측면은, 베이스부와, 상기 베이스부 상에 설치되는 블레이드와, 상기 베이스부로부터 이격되어 배치되며, 상기 블레이드의 일부가 삽입되어 결합하는 쉬라우드를 포함하고, 상기 블레이드는 상기 쉬라우드에 삽입되도록 형성되는 돌출부를 구비하며, 상기 쉬라우드는 상기 돌출부가 삽입되어 마찰 교반 용접으로 접합하는 그루브를 구비하는, 임펠러 어셈블리를 제공한다.An aspect of the present invention includes a base portion, a blade installed on the base portion, and a shroud disposed to be spaced apart from the base portion to insert and couple a portion of the blade, wherein the blade is the shira And a protrusion formed to be inserted into the wood, wherein the shroud has a groove into which the protrusion is inserted and joined by friction stir welding.
본 발명의 실시예들은 마찰 교반 용접을 이용시에 발생할 수 있는 열변형을 최소화하여 임펠러 어셈블리를 제작할 수 있다. 또한, 본 발명의 실시예들은 쉬라우드와 블레이드의 접합면적을 넓게 하여 접합강도를 증가시킬 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Embodiments of the present invention can produce an impeller assembly by minimizing thermal deformation that may occur when using friction stir welding. In addition, embodiments of the present invention can increase the bonding strength by widening the bonding area of the shroud and the blade. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 임펠러 어셈블리를 보여주는 사시도이다. 1 is a perspective view showing an impeller assembly according to an embodiment of the present invention.
도 2는 도 1에 Ⅱ-Ⅱ선을 따라 취한 단면도이다.FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1.
도 3은 본 발명의 일 실시예에 따른 임펠러 어셈블리의 제조방법을 나타내는 단면도이다.3 is a cross-sectional view showing a method of manufacturing an impeller assembly according to an embodiment of the present invention.
본 발명의 일 측면은, 베이스부와, 상기 베이스부 상에 설치되는 블레이드와, 상기 베이스부로부터 이격되어 배치되며, 상기 블레이드의 일부가 삽입되어 결합하는 쉬라우드를 포함하고, 상기 블레이드는 상기 쉬라우드에 삽입되도록 형성되는 돌출부를 구비하며, 상기 쉬라우드는 상기 돌출부가 삽입되어 마찰 교반 용접으로 접합하는 그루브를 구비하는, 임펠러 어셈블리를 제공한다.An aspect of the present invention includes a base portion, a blade installed on the base portion, and a shroud disposed to be spaced apart from the base portion to insert and couple a portion of the blade, wherein the blade is the shira And a protrusion formed to be inserted into the wood, wherein the shroud has a groove into which the protrusion is inserted and joined by friction stir welding.
또한, 상기 돌출부는 상기 블레이드의 끝단에 다각 형상으로 형성되고, 상기 그루브는 상기 돌출부와 대응하는 형상으로 형성될 수 있다.In addition, the protrusion may be formed in a polygonal shape at the end of the blade, the groove may be formed in a shape corresponding to the protrusion.
본 발명의 다른 측면은, 끝단에 다각 형상으로 형성되는 돌출부를 가지는 블레이드와 상기 돌출부의 형상에 대응하는 그루브를 가지는 쉬라우드을 가지는 임펠러 어셈블리 제조방법에 있어서, 상기 돌출부를 상기 그루브에 삽입하여 상기 블레이드와 상기 쉬라우드를 결합하는 단계와, 상기 돌출부와 상기 그루브를 마찰 교반 용접으로 접합하는 단계 및 상기 쉬라우드의 외주면을 상기 베이스부의 외주면과 대응하도록 절단하여 마찰 교반 용접시에 발생한 홀을 제거하는 단계를 포함하는 임펠러 어셈블리 제조방법을 제공한다.Another aspect of the invention, the impeller assembly manufacturing method having a blade having a protrusion formed in a polygonal shape at the end and a shroud having a groove corresponding to the shape of the protrusion, inserting the protrusion into the groove and the blade Coupling the shroud, joining the protrusion and the groove by friction stir welding, and cutting the outer circumferential surface of the shroud to correspond to the outer circumferential surface of the base to remove the holes generated during the friction stir welding. It provides a method for producing an impeller assembly comprising.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The invention will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
도 1은 본 발명의 일 실시예에 따른 임펠러 어셈블리(100)를 보여주는 사시도이고, 도 2은 도 1에 Ⅱ-Ⅱ선을 따라 취한 단면도이다. 도 3는 본 발명의 일 실시예에 따른 임펠러 어셈블리의 제조방법을 나타내는 단면도이다.1 is a perspective view showing an impeller assembly 100 according to an embodiment of the present invention, Figure 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view showing a method of manufacturing an impeller assembly according to an embodiment of the present invention.
도 1 내지 도3을 참고하면, 임펠러 어셈블리(100)는 회전축(110), 베이스부(120), 블레이드(130) 및 쉬라우드(140)를 포함 할 수 있다.1 to 3, the impeller assembly 100 may include a rotating shaft 110, a base 120, a blade 130, and a shroud 140.
베이스부(120)는 회전축(110)의 외측에 형성된다. 상세하게 회전축(110)을 중심으로 상하방향을 따라 방사형으로 외경이 증가하며 원주방향으로 연장되는 형태이다. 베이스부(120)의 표면은 경사진 곡면을 이루도록 형성되어 유체 유동을 부드럽게 함과 아울러 유체의 유동에 따른 에너지 손실을 최소화 시킬 수 있다.The base portion 120 is formed outside the rotation shaft 110. In detail, the outer diameter increases radially along the vertical direction about the rotation shaft 110 and extends in the circumferential direction. The surface of the base portion 120 is formed to form an inclined curved surface to smooth the fluid flow and minimize the energy loss due to the flow of the fluid.
블레이드(130)는 베이스부(120) 표면에 형성되어, 유체의 이동을 안내하는 기능을 수행하며 임펠러 어셈블리(100)의 회전 운동 에너지를 유체에 전달하는 기능을 수행한다. The blade 130 is formed on the surface of the base 120 to perform the function of guiding the movement of the fluid and to transmit the rotational kinetic energy of the impeller assembly 100 to the fluid.
블레이드(130)와 베이스부(120)는 각각 제작되어 블레이드(130)가 베이스부(120)에 결합할 수 있다. 또한, 블레이드(130)는 베이스부(120)와 일체로 제작될 수 있다. 예를 들어 금형을 통한 주조, 사출, 절삭가공 등의 다양한 방법에 의하여 블레이드(130)는 베이스부(120)와 일체로 형성될 수 있다. 또한, 블레이드(130)와 베이스부(120)의 결합강도를 강하게 하기 위해서 블레이드(130)와 베이스부(120)의 결합부분을 라운드지도록 형성할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 블레이드(130)와 베이스부(120)가 일체로 형성되는 경우를 중심으로 상세히 설명하기로 한다.The blade 130 and the base 120 may be manufactured, respectively, so that the blade 130 may be coupled to the base 120. In addition, the blade 130 may be manufactured integrally with the base portion 120. For example, the blade 130 may be integrally formed with the base part 120 by various methods such as casting, injection, and cutting through a mold. In addition, in order to strengthen the coupling strength of the blade 130 and the base portion 120 may be formed to round the coupling portion of the blade 130 and the base portion 120. However, hereinafter, the blade 130 and the base unit 120 will be described in detail with reference to a case where the blade unit 130 and the base unit 120 are integrally formed.
블레이드(130)는 회전축을 중심으로 소정의 간격을 두고 서로 이격되어 복수개가 배치될 수 있다. 또한, 블레이드(130)는 베이스부(120)상에서 대략 방사상 형태로 배열될 수 있다. 블레이드(130)의 형상은 임펠러 어셈블리(100)에 의해 발생된 최대 회전 운동 에너지를 유체에 전달하기 위해서 회전방향에 따라 굴곡진 형태로 형성될 수 있다. Blades 130 may be spaced apart from each other at a predetermined interval around the rotation axis may be arranged in plurality. In addition, the blades 130 may be arranged in a substantially radial shape on the base portion 120. The shape of the blade 130 may be formed in a curved shape along the direction of rotation to transfer the maximum rotational kinetic energy generated by the impeller assembly 100 to the fluid.
쉬라우드(140)는 회전축(110)을 중심으로 원주 방향으로 연장하며 블레이드(130) 상측을 덮도록 배치된다. 따라서 쉬라우드(140)는 베이스부(120)와 블레이드(130)와 함께 유체통로를 형성할 수 있다. The shroud 140 extends circumferentially about the rotation shaft 110 and is disposed to cover the upper side of the blade 130. Therefore, the shroud 140 may form a fluid passage together with the base 120 and the blade 130.
상기 유체통로의 입구부를 통해 회전축(110)의 축방향으로 유입된 유체는 상기 유체통로를 따라 흐른다. 이때 상기 유체는 임펠러 어셈블리(100)의 회전 운동 에너지를 전달받은 후 상기 유체통로의 출구부를 통해 회전축의 반경방향으로 유출된다.Fluid introduced in the axial direction of the rotation shaft 110 through the inlet of the fluid passage flows along the fluid passage. In this case, the fluid is discharged in the radial direction of the rotating shaft through the outlet of the fluid passage after receiving the rotational kinetic energy of the impeller assembly 100.
블레이드(130)와 쉬라우드(140)는 마찰 교반 용접(Friction Stir Welding, FSW)으로 접합 할 수 있다. 블레이드(130)는 쉬라우드(140)에 삽입되도록 형성되는 돌출부(131)를 구비하고, 쉬라우드(140)는 돌출부(131)가 삽입되어 마찰 교반 용접으로 접합하는 그루브(141)를 구비한다. 그루브(141)은 쉬라우드(140) 표면에 쉬라우드(140)의 두께보다 작은 홈으로 블레이드(130)를 따라 형성되고, 돌출부(130)의 높이는 그루브(141)에 삽입되도록 쉬라우드(140) 두께보다 작게 형성될 수 있다.The blade 130 and the shroud 140 may be bonded by friction stir welding (FSW). The blade 130 has a protrusion 131 formed to be inserted into the shroud 140, and the shroud 140 has a groove 141 into which the protrusion 131 is inserted and joined by friction stir welding. The groove 141 is formed along the blade 130 with a groove smaller than the thickness of the shroud 140 on the surface of the shroud 140, and the height of the protrusion 130 is inserted into the groove 141. It can be formed smaller than the thickness.
돌출부(131)는 쉬라우드(140) 끝단에 다각 형상으로 형성되고, 그루브(141)는 돌출부(131)에 대응하는 다각 형상으로 형성될 수 있다. 돌출부(131)의 형상은 특정한 다각형에 국한되지 않으나, 이하 설명의 편의를 위해서 삼각 형상의 돌출부(131)를 중심으로 설명하기로 한다.The protrusion 131 may be formed in a polygonal shape at the end of the shroud 140, and the groove 141 may be formed in a polygonal shape corresponding to the protrusion 131. The shape of the protrusion 131 is not limited to a specific polygon, but for convenience of description, the protrusion 131 will be described based on the triangular protrusion 131.
돌출부(131)는 2개의 슬로프(Slope)를 형성하여 돌출부(131)와 그루브(141)의 접촉 면적을 넓게 할 수 있다. 돌출부(131)와 그루브(141)의 접촉 면적이 넓게 형성되면, 돌출부(131)의 재료와 그루브(141)의 재료가 넓은 영역에서 교반되고 용접되므로 블레이드(130)와 쉬라우드(140)의 접합강도를 향상시킬 수 있다.The protrusion 131 may form two slopes to widen the contact area between the protrusion 131 and the groove 141. When the contact area between the protrusion 131 and the groove 141 is wide, the material of the protrusion 131 and the material of the groove 141 are agitated and welded in a large area, thereby joining the blade 130 and the shroud 140. Strength can be improved.
또한, 돌출부(131)가 그루브(141)에 삽입되면 돌출부(131)의 첨단이 그루브(141)에 고정된다. 따라서 마찰 교반 용접시에 돌출부(131) 및 그루브(141)의 이격과 이탈을 방지하여 용접을 용이하게 할 수 있다.In addition, when the protrusion 131 is inserted into the groove 141, the tip of the protrusion 131 is fixed to the groove 141. Therefore, during the friction stir welding, separation and separation of the protrusion 131 and the groove 141 may be prevented to facilitate welding.
블레이드(130)를 쉬라우드에 관통하여 마찰 교반 용접시에는, 공정을 마친 후에 쉬라우드(140) 표면에 복수의 용접선이 형성될 수 있다. 또한, 블레이드(130)와 쉬라우드(140)가 접촉하는 2개의 면에 각각 용접을 실시해야 하는바, 마찰 교반 용접을 수행해야 하는 영역이 넓어져서 용접공정이 길어질 수 있다. 이에 반해, 상기 서술함 바에 따른 마찰 교반 용접시, 마찰 교반 용접 공구(미도시)는 돌출부(131)의 첨단을 따라 1회의 마찰 교반 용접 공정을 통해 접합 할 수 있는바 형성되는 용접선이 적어서 용접공정 시간이 줄어들 수 있다.When friction stir welding the blade 130 through the shroud, a plurality of welding lines may be formed on the surface of the shroud 140 after finishing the process. In addition, it is necessary to perform welding on two surfaces of the blade 130 and the shroud 140 in contact with each other, and thus, an area to which friction stir welding is to be widened may increase the welding process. On the contrary, in the friction stir welding according to the above description, the friction stir welding tool (not shown) can be joined by one friction stir welding process along the tip of the protrusion 131. Time can be reduced.
본 발명의 일 실시예에 따른 임펠러 어셈블리(100)의 제작방법을 설명하면 다음과 같다. 다만, 임펠러 어셈블리(100) 제작방법은 상기 서술한 임펠러 어셈블리(100)에 대한 제작 방법인바, 상기 설명과 중복된 부분은 생략 및 약술 하기로 한다. Referring to the manufacturing method of the impeller assembly 100 according to an embodiment of the present invention. However, the manufacturing method of the impeller assembly 100 is a manufacturing method for the impeller assembly 100 described above, and the portions overlapping with the above description will be omitted and outlined.
우선, 블레이드(130)와 쉬라우드(140)를 결합하는 단계를 수행한다. 블레이드(130)는 상단에 형성되며 다각 형상을 구비하는 돌출부를 구비하고, 쉬라우드(140)는 돌출부(131)의 형상에 대응하는 그루브(141)를 구비한다. 돌출부(131)를 그루브(141)에 삽입 끼움 결합하여 블레이드(130)와 쉬라우드(140)를 결합할 수 있다. 이때, 삽입된 블레이드(130)와 쉬라우드(140)를 일시적으로 고정시키기 위해 태크용접(Tack welding)과정을 더 추가할 수 있다.First, a step of coupling the blade 130 and the shroud 140 is performed. The blade 130 has a protrusion formed on the top and has a polygonal shape, and the shroud 140 has a groove 141 corresponding to the shape of the protrusion 131. The protrusion 131 may be inserted into the groove 141 to be coupled to the blade 130 and the shroud 140. In this case, a tag welding process may be further added to temporarily fix the inserted blade 130 and the shroud 140.
이후 돌출부(131)와 그루브(141)를 마찰 교반 용접으로 접합하는 단계를 수행한다. 돌출부(131)의 첨단을 따라 마찰 교반 용접 공구(미도시)가 마찰 교반 용접을 수행시에 돌출부(131)의 주변의 재료와 그루브(141) 주변의 재료가 마찰에 의해 용융 및 교반되어 접합된다. 마찰 교반 용접 공정의 방법 및 사용되는 마찰 교반 용접 공구는 임펠러 제작 공정에 사용되는 주지/ 관용의 마찰 교반 용접 공정 및 마찰 교방 용접 공구가 상용될 수 있으므로, 그 상세한 작동원리 및 구조에 대한 설명은 여기서 생략한다.Thereafter, the protrusion 131 and the groove 141 are bonded to each other by friction stir welding. When friction stir welding tools (not shown) perform friction stir welding along the tip of the protrusion 131, the material around the protrusion 131 and the material around the groove 141 are melted and agitated by friction to be joined. . Since the method of the friction stir welding process and the friction stir welding tool used can be commonly used as well as the conventional friction stir welding process and the friction cross welding tool used in the impeller fabrication process, a detailed description of the operation principle and structure is described here. Omit.
이후, 쉬라우드(140)의 외주면을 베이스부(120)의 외주면과 대응하도록 절단하여 마찰 교반 용접시에 발생한 홀을 제거하는 단계를 수행한다. Thereafter, the outer circumferential surface of the shroud 140 is cut to correspond to the outer circumferential surface of the base part 120 to remove the hole generated during the friction stir welding.
마찰 교반 용접은 마찰 교반 용접 공구의 회전에 의해 발행하는 마찰열에 의해서 교반 및 접합된다. 따라서 마찰 교반 용접을 완료한 후, 상기 마찰 교반 용접 공구를 제거하면, 상기 마찰 교반 용접 공구가 빠진 홀(210)이 쉬라우드(140)에 생성된다. 따라서 쉬라우드(140)에 생성된 홀(210)을 제거하기 위해서, 쉬라우드(140)의 외주면을 베이스부(120)의 외주면과 대응하도록 A방향으로 절단한다. (도3 참고)The friction stir welding is agitated and joined by frictional heat issued by the rotation of the friction stir welding tool. Therefore, when the friction stir welding tool is removed after the friction stir welding is completed, a hole 210 in which the friction stir welding tool is removed is formed in the shroud 140. Therefore, in order to remove the hole 210 generated in the shroud 140, the outer peripheral surface of the shroud 140 is cut in the direction A to correspond to the outer peripheral surface of the base portion 120. (See Figure 3)
이를 위해, 쉬라우드(140)의 외경이 베이스부(120)의 외경보다 크게 형성하여 쉬라우드(140)의 절단부(142)를 확보할 수 있다. 마찰 교반 용접이 완료되면, 홀(210)은 절단부(142)에 형성되고, 절단부(142)를 제거할 수 있다. To this end, the outer diameter of the shroud 140 may be formed larger than the outer diameter of the base 120 to secure the cut portion 142 of the shroud 140. When the friction stir welding is completed, the hole 210 may be formed in the cutout 142, and the cutout 142 may be removed.
임펠러 어셈블리(100) 및 임펠러 어셈블리(100) 제작방법은 마찰 교반 용접시에 돌출부(131)가 그루브(141)에 고정되고, 용접을 수행하는 위치를 쉽게 인지하여, 마찰 교반 용접을 용이하게 실시할 수 있다.The impeller assembly 100 and the method of manufacturing the impeller assembly 100 are fixed to the groove 141 at the time of friction stir welding, and easily recognize the position at which the welding is performed, so that the friction stir welding can be easily performed. Can be.
임펠러 어셈블리(100) 및 임펠러 어셈블리(100) 제작방법은 블레이드(130)와 쉬라우드(140)이 접합하는 접촉면적을 넓게 하여 접합강도를 증가시킬 수 있다.The impeller assembly 100 and the method of manufacturing the impeller assembly 100 may increase the bonding strength by widening the contact area between the blade 130 and the shroud 140.
임펠러 어셈블리(100) 및 임펠러 어셈블리(100) 제작방법은 마찰 교반 용접시에 돌출부(131)를 따라 1회의 용접 공정을 통해 블레이드(130)와 쉬라우드(140)를 접합 할 수 있는바 용접공정 시간을 줄일 수 있으며, 용접공정시 발생하는 열변형을 최소화할 수 있다.The impeller assembly 100 and the method of manufacturing the impeller assembly 100 may join the blade 130 and the shroud 140 through a single welding process along the protrusion 131 during friction stir welding. It can reduce and minimize the heat deformation occurring during the welding process.
임펠러 어셈블리(100) 제작방법은 마찰 교반 용접후 발생하는 마찰 교반 기구가 빠진 홀(210)을 용이하게 제거하여 임펠러 어셈블리(100) 제작 시간을 단축 할 수 있다.The method of manufacturing the impeller assembly 100 may reduce the manufacturing time of the impeller assembly 100 by easily removing the hole 210 in which the friction stir mechanism generated after the friction stir welding is omitted.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will include such modifications and variations as long as they fall within the spirit of the invention.
본 발명의 일 실시예에 의하면, 마찰 교반 용접을 이용시에 발생하는 열변형을 최화 할 수 있으며, 산업상 이용하는 임펠러 어셈블리를 구비하는 모든 발전 시스템, 가스터빈 시스템 등에 본 발명의 실시예들을 적용할 수 있다. According to one embodiment of the present invention, it is possible to minimize the heat deformation generated when using friction stir welding, and the embodiments of the present invention can be applied to all power generation systems, gas turbine systems and the like having an impeller assembly for industrial use. have.

Claims (3)

  1. 베이스부;A base portion;
    상기 베이스부 상에 설치되는 블레이드; A blade installed on the base portion;
    상기 베이스부로부터 이격되어 배치되며, 상기 블레이드의 일부가 삽입되어 결합하는 쉬라우드;를 포함하고,It is disposed spaced apart from the base portion, a portion of the blade is inserted into and coupled to the shroud;
    상기 블레이드는 상기 쉬라우드에 삽입되도록 형성되는 돌출부를 구비하며,The blade has a protrusion formed to be inserted into the shroud,
    상기 쉬라우드는 상기 돌출부가 삽입되어 마찰 교반 용접으로 접합하는 그루브를 구비하는, 임펠러 어셈블리.Said shroud having a groove into which said protrusion is inserted and joined by friction stir welding.
  2. 제1 항에 있어서,According to claim 1,
    상기 돌출부는 상기 블레이드의 끝단에 다각 형상으로 형성되고, 상기 그루브는 상기 돌출부와 대응하는 형상으로 형성되는, 임펠러 어셈블리.The protrusion is formed in a polygonal shape at the end of the blade, the groove is formed in the shape corresponding to the protrusion, impeller assembly.
  3. 끝단에 다각 형상으로 형성되는 돌출부를 가지는 블레이드와 상기 돌출부의 형상에 대응하는 그루브를 가지는 쉬라우드을 가지는 임펠러 어셈블리 제조 방법에 있어서,In the impeller assembly manufacturing method having a blade having a protrusion formed in a polygonal shape at the end and a shroud having a groove corresponding to the shape of the protrusion,
    상기 돌출부를 상기 그루브에 삽입하여 상기 블레이드와 상기 쉬라우드를 결합하는 단계;Inserting the protrusion into the groove to join the blade and the shroud;
    상기 돌출부와 상기 그루브를 마찰 교반 용접으로 접합하는 단계; 및Joining the protrusion and the groove by friction stir welding; And
    상기 쉬라우드의 외주면을 상기 베이스부의 외주면과 대응하도록 절단하여 마찰 교반 용접시에 발생한 홀을 제거하는 단계;를 포함하는 임펠러 어셈블리 제조방법.Cutting the outer circumferential surface of the shroud to correspond to the outer circumferential surface of the base part to remove a hole generated during friction stir welding.
PCT/KR2015/000087 2014-01-24 2015-01-06 Impeller assembly and impeller assembly manufacturing method WO2015111855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0009172 2014-01-24
KR1020140009172A KR20150088641A (en) 2014-01-24 2014-01-24 Impeller and manufacturing method the same

Publications (1)

Publication Number Publication Date
WO2015111855A1 true WO2015111855A1 (en) 2015-07-30

Family

ID=53681620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000087 WO2015111855A1 (en) 2014-01-24 2015-01-06 Impeller assembly and impeller assembly manufacturing method

Country Status (2)

Country Link
KR (1) KR20150088641A (en)
WO (1) WO2015111855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574221A (en) * 2018-05-30 2019-12-04 Cnc Subcon Services Ltd Impeller and method of manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419450B1 (en) * 2001-05-21 2002-07-16 Grundfos Pumps Manufacturing Corporation Variable width pump impeller
US6524072B1 (en) * 1997-06-25 2003-02-25 Rolls Royce Plc Disk for a blisk rotary stage of a gas turbine engine
JP2009275513A (en) * 2008-05-12 2009-11-26 Hitachi Plant Technologies Ltd Impeller, compressor using impeller and method for manufacturing impeller
KR20110080889A (en) * 2010-01-07 2011-07-13 삼성테크윈 주식회사 Method of manufacturing rotation part of rotary machine
US20110286855A1 (en) * 2010-05-18 2011-11-24 Cappuccini Filippo Jacket impeller with functional graded material and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524072B1 (en) * 1997-06-25 2003-02-25 Rolls Royce Plc Disk for a blisk rotary stage of a gas turbine engine
US6419450B1 (en) * 2001-05-21 2002-07-16 Grundfos Pumps Manufacturing Corporation Variable width pump impeller
JP2009275513A (en) * 2008-05-12 2009-11-26 Hitachi Plant Technologies Ltd Impeller, compressor using impeller and method for manufacturing impeller
KR20110080889A (en) * 2010-01-07 2011-07-13 삼성테크윈 주식회사 Method of manufacturing rotation part of rotary machine
US20110286855A1 (en) * 2010-05-18 2011-11-24 Cappuccini Filippo Jacket impeller with functional graded material and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574221A (en) * 2018-05-30 2019-12-04 Cnc Subcon Services Ltd Impeller and method of manufacture
WO2019229434A1 (en) * 2018-05-30 2019-12-05 CNC Subcon Services Limited Impeller and method of manufacture

Also Published As

Publication number Publication date
KR20150088641A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US8899931B2 (en) Impeller, compressor, and method for producing impeller
EP3056678B1 (en) Turbine wheel with clamped blade attachment
EP3184739B1 (en) Multi-wall blade with cooling circuit
CN107035419B (en) Platform core feed cooling system for multiwall blade
EP3163023B1 (en) Turbine bucket with cooling passage in the shroud
CN107989657B (en) Turbine blade with trailing edge cooling circuit
EP2395246A1 (en) Impeller, compressor, and impeller fabrication method
EP1914384A3 (en) Part span shrouded fan blisk
EP3163025B1 (en) Turbine bucket having outlet path in shroud
EP1182329B1 (en) Blade attachment using hollow pins
WO2015111855A1 (en) Impeller assembly and impeller assembly manufacturing method
KR102126867B1 (en) Impeller and manufacturing method the same
CN104279237B (en) Casing with internal spline broaching system
WO2015076217A1 (en) Impeller, rotary machine, and impeller manufacturing method
US20150128418A1 (en) Method for manufacturing fluid power transmission
TWI598502B (en) Cylinder of combustor, method of manufacturing of cylinder of combustor, and pressure vessel
WO2014098417A1 (en) Impeller assembly of fluid rotary machine
JP2004036444A (en) Method of manufacturing impeller with shroud
KR20170124029A (en) Impeller assembly
EP2146051B1 (en) Rotor assembly for a gas turbine, gas turbine including said rotor assembly and method for cooling said rotor assembly
EP2378084A2 (en) Seal member for hot gas path component
CN104271893A (en) Retaining clip, turbine frame, and method of limiting radial movement
US10197142B2 (en) Method of forming a torque converter impeller including machining a weld root
US8944769B2 (en) Blade assembly with improved joint strength
JP5171706B2 (en) Hydraulic machine staying and hydraulic machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740086

Country of ref document: EP

Kind code of ref document: A1