WO2015111803A1 - Zinc-air secondary battery and preparation method therefor - Google Patents

Zinc-air secondary battery and preparation method therefor Download PDF

Info

Publication number
WO2015111803A1
WO2015111803A1 PCT/KR2014/004457 KR2014004457W WO2015111803A1 WO 2015111803 A1 WO2015111803 A1 WO 2015111803A1 KR 2014004457 W KR2014004457 W KR 2014004457W WO 2015111803 A1 WO2015111803 A1 WO 2015111803A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electrolyte
secondary battery
battery
air secondary
Prior art date
Application number
PCT/KR2014/004457
Other languages
French (fr)
Korean (ko)
Inventor
류광선
양원근
홍정의
오지우
오례경
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Publication of WO2015111803A1 publication Critical patent/WO2015111803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a zinc air secondary battery and a method of manufacturing the same.
  • the present invention relates to a zinc-air secondary battery and a method for manufacturing the same, which further include an electrolyte storage part and an electrolyte supply part supplying a lost electrolyte during charging and discharging, in a battery cell.
  • Metal air batteries are widely used in low power electronic products such as hearing aids in the form of primary batteries.
  • zinc air batteries provide a relatively high voltage of 1.4 V and have the advantage of high energy density and high discharge capacity.
  • it is thought that it is a battery which can replace the mercury battery which exhibits substantially constant discharge characteristic until the discharge of a battery is completed, and use is suppressed by containing heavy metal.
  • Korean Patent Publication No. 10-2011-0056803 and Korean Patent Publication No. 10-2007-0100595 are related to the catalyst of the catalytically active layer included in the air anode membrane in the anode field
  • the negative electrode field has been disclosed a technology related to the negative electrode active material.
  • An object of the present invention is to provide a zinc-air secondary battery with improved battery life.
  • Another object of the present invention is to provide a method for manufacturing a zinc-air secondary battery with improved lifespan of the battery.
  • an air electrode comprising an air anode membrane
  • a negative electrode consisting of a negative electrode active material containing zinc (Zn) and a zinc negative electrode gel containing a caustic aqueous solution, and
  • a battery unit including a separator between the cathode and the cathode;
  • An electrolyte storage unit for storing a caustic aqueous solution as an electrolyte
  • It provides a zinc air secondary battery including an electrolyte supply unit for supplying a caustic aqueous solution to the cathode and the cathode gel from the electrolyte storage unit.
  • the present invention includes the steps of introducing the battery unit such that the air cathode film of the battery unit is bonded to the region where the opening of the battery cell container is formed;
  • It provides a method for producing the zinc-air secondary battery comprising the step of sealing with a battery cell container.
  • the zinc air secondary battery according to the present invention since the charge and discharge cycle of the zinc air secondary battery is significantly increased by including an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution required for charging and discharging, the zinc air secondary battery The effect of improving the service life is excellent.
  • Figure 2 is a graph showing the charge and discharge voltage measurement results of the zinc air secondary battery unit cell prepared in Preparation Example 1 according to the present invention.
  • FIG. 3 is a graph showing a charge and discharge voltage measurement results of the zinc air secondary battery unit cell prepared in Preparation Example 2 according to the present invention.
  • Example 5 is a graph showing the results of measuring charge and discharge voltage of the zinc air secondary battery unit cell manufactured in Example 1 according to the present invention.
  • FIG. 10 is an image illustrating one form applicable to a zinc air secondary battery according to the present invention.
  • the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • parts by weight means a content ratio between individual components.
  • the "charge / discharge cycle” means the number of charge / discharge cycles until the discharge voltage becomes less than 1V by performing charge / discharge on one zinc air secondary battery.
  • one charge and discharge cycle that is, one charge and discharge cycle, means that the battery is charged and discharged once.
  • the present invention provides a zinc-air secondary battery and a manufacturing method thereof with improved battery life.
  • zinc air batteries have problems such as very low efficiency of discharge and charging reaction, structural unevenness and shape change of zinc metal electrode due to corrosion of zinc, and electrolyte H 2 O due to carbonate formation and moisture evaporation in electrolyte. Due to the loss of the charge or discharge is not made, or the charge and discharge cycle is not long, the battery life is short, it is difficult to commercialize the situation.
  • the present invention proposes a zinc-air secondary battery and its manufacturing method with improved battery life.
  • the zinc air secondary battery according to the present invention includes an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution required for charging and discharging in a battery cell, thereby increasing the charge / discharge cycle of the zinc air secondary battery, thereby increasing the life of the zinc air secondary battery. This effect is improved.
  • an air electrode comprising an air anode membrane
  • a negative electrode consisting of a negative electrode active material containing zinc (Zn) and a zinc negative electrode gel containing a caustic aqueous solution, and
  • a battery unit including a separator between the cathode and the cathode;
  • An electrolyte storage unit for storing a caustic aqueous solution as an electrolyte
  • It provides a zinc air secondary battery including an electrolyte supply unit for supplying a caustic aqueous solution to the cathode and the cathode gel from the electrolyte storage unit.
  • the zinc-air secondary battery according to the present invention includes a battery unit including an air electrode, a cathode, and a separator, an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution to an air anode membrane and a zinc cathode gel of the battery unit, Since charging and discharging increases the charge and discharge cycle by improving the zinc regeneration rate in the zinc negative electrode gel, there is an effect of significantly increasing the life of the battery.
  • the weight part of the zinc powder and the electrolyte solution is 19.8: 79.2
  • the unit cell in which the zinc negative electrode gel including the sufficient amount of the electrolyte solution required for charging and discharging is used has four charge and discharge cycles after the first discharge. As far as possible was confirmed.
  • the electrolyte is supplied to the negative electrode surface of the unit cell which is not charged and discharged, and the charge and discharge voltage is measured three times. As a result, it is confirmed that the unit cell to which the electrolyte is supplied can be charged and discharged three or more times. .
  • the zinc-air secondary battery according to the present invention includes an electrolyte storage part and an electrolyte supply part for supplying an electrolyte solution to an air anode film and a zinc anode gel of a battery part in a battery cell, thereby improving zinc regeneration rate during charging and discharging. Since the discharge cycle is increased, the effect of increasing the life of the battery is excellent.
  • the charge / discharge cycle (N) of the zinc air secondary battery may satisfy the following Equation 1:
  • the zinc air secondary battery unit cell is left for 1 minute first, and after constant current discharge to 0.7 V at a current of 10 mA, 3 Constant voltage charge was performed at 2.1 V for an hour.
  • the above process was set to one charge / discharge cycle, and the charge and discharge voltage according to charge and discharge of the unit cell was measured while repeating this ten times.
  • the zinc-air secondary battery according to the present invention has more than 10 charge / discharge cycles. Therefore, the number of charge / discharge cycles (N) for the zinc air secondary battery according to the present invention may satisfy Equation 1 under the charge and discharge conditions.
  • the battery unit according to the present invention includes a cathode, a cathode, and a separator, and serves to substantially generate and store electricity in the zinc air secondary battery.
  • the cathode uses oxygen existing in the air as an electrode, a diffusion layer, a current collecting layer, and a catalytically active layer are sequentially formed for this purpose. It may include an air anode film having a laminated structure.
  • the current aggregation layer serves as a substrate existing between the diffusion layer and the catalyst active layer. Corrosion by oxygen does not generate
  • Ni mesh or Ni-coated Cu mesh may be used.
  • the diffusion layer serves to uniformly disperse oxygen moved from the outside as a place where the movement of oxygen is made.
  • the diffusion layer material may include a hydrophobic binder such as carbon material and polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), and the like, since the diffusion layer material should prevent moisture from moving.
  • the catalytically active layer is a site where the reduction reaction of oxygen is performed and directly affects the reaction for generating electricity of the battery.
  • the catalyst applicable to the catalytically active layer for example, one or more catalysts selected from the group consisting of a catalyst containing Co, a catalyst containing MnO 2 , or a catalyst containing Pt may be used. It is not.
  • the negative electrode is not particularly limited as long as it is a material containing zinc. Specifically, for example, zinc (Zn), zinc oxide (ZnO), and zinc hydroxide (Zn (OH) 2 ). ), Zinc acetate (Zn (CH 3 CO 2 ) 2 ), or a mixture thereof may be used as the negative electrode active material.
  • the zinc air secondary battery according to the present invention can be seen that the charge and discharge cycle increases regardless of the type of the negative electrode active material.
  • a unit cell including zinc oxide (ZnO), which is an insulator and a discharge product, as a negative electrode active material, can be charged and discharged up to nine times.
  • a unit cell including zinc hydroxide (Zn (OH) 2 ), which is a discharge byproduct of a zinc air secondary battery, as a negative electrode active material may be charged and discharged up to seven times.
  • the negative electrode may be used as a negative electrode directly using a negative electrode active material in the form of a substrate as a negative electrode, or a zinc negative electrode gel prepared from a mixture of a negative electrode active material, an electrolyte solution and a gelling agent in powder form.
  • the zinc negative electrode gel may be prepared by using a gelling agent such as polyacrylic acid, methylene, disacrylamide, ethylene, 1-dinil, 2-tyrrolidiol, and the like. Can be.
  • a caustic aqueous solution may be used as the electrolyte solution, but is not limited thereto.
  • the concentration of the caustic aqueous solution is not particularly limited, but a high concentration caustic aqueous solution of 6 M or more can be used.
  • Zinc hydroxide (Zn (OH) 2 ) formed during charging and discharging of a zinc air secondary battery does not dissolve well in a low concentration of alkaline aqueous solution, which may adversely affect the discharge capacity and the charge / discharge cycle. Using has the advantage of preventing this.
  • the zinc negative electrode gel is super-P, acetylene black, acetylene black, denka black, ketjen black and vapor-grown carbon fiber (VGCF). It may further comprise at least one carbon conductive material selected from the group consisting of vapor grown carbon fiber).
  • the carbon conductive material uses zinc oxide as a negative electrode active material, the conductivity of zinc oxide, which is an insulator, may be improved, thereby increasing the charge and discharge cycle of the zinc air secondary battery.
  • the unit cell including zinc oxide (ZnO) as a negative electrode active material was found to have nine charge and discharge cycles.
  • the unit cell further includes a carbon conductive material of 2.7% of the total amount of the negative electrode gel, it was confirmed that up to 10 charge and discharge cycles. This means that when zinc oxide is used as the negative electrode active material, the carbon conductive material added to the zinc negative electrode gel improves the conductivity of the zinc oxide to increase the charge and discharge cycle of the zinc air secondary battery.
  • the separator serves to prevent the passage of other materials than hydroxide ions (OH ⁇ ).
  • the separator may include a material having excellent ion conductivity and hydrophilicity, an electrically insulator, and excellent stability with respect to the aqueous caustic solution.
  • it may include a polymer such as polypropylene (PP, polypropylene), polyethylene (PE, Polyethylene), nylon (Nylon), or a mixture thereof modified to be suitable for the aqueous electrolyte solution, but is not limited thereto. no.
  • the electrolyte supply unit serves to supply the electrolyte solution required for charging and discharging the zinc air secondary battery to the cathode and the cathode of the battery unit.
  • the electrolyte supply unit may continuously supply a predetermined amount of the electrolyte stored in the cathode and the cathode of the battery unit by using a capillary phenomenon. That is, the electrolyte may be supplied to the battery part by a capillary phenomenon caused in the electrolyte supply part.
  • the electrolyte supply unit applicable to the present invention is not particularly limited, but specifically, for example, at least one porous line selected from the group consisting of nonwoven fabric, paper, and pulp having excellent ion conductivity and causing capillary action; Or 0.1 mm to 2 mm of insulating plastic capillary. In this case, since the thickness of the porous line is not limited, the porous line may be included as a wide film.
  • the center line at the top and bottom of the electrolyte storage portion is at least 1/3 of the height of the battery portion
  • the electrolyte supply part may be introduced between the lowermost end and the center line of the electrolyte storage part to connect the battery part and the electrolyte storage part.
  • the zinc-air secondary battery according to the present invention has a structure as described above, it can induce a potential energy difference between the battery unit and the electrolyte storage unit.
  • the potential energy may be used as an energy source for supplying the electrolyte stored in the electrolyte storage part to the battery part.
  • the structure does not exclude that the electrolyte supply portion is installed at a position lower than the top end of the battery portion. In this case, all of the electrolyte stored in the electrolyte storage part may be supplied to the battery part by a capillary phenomenon of the electrolyte supply part.
  • the electrolyte storage unit is disposed in the battery cell, and serves to store the electrolyte used when charging and discharging the zinc air secondary battery.
  • the electrolyte stored in the electrolyte storage unit is an electrolyte contained in the zinc anode gel, and specifically, for example, 6M or more caustic aqueous solution.
  • the zinc-air secondary battery according to the present invention includes one or more openings in a region where the cathode of the battery unit is bonded, and may be accommodated in a conductive container containing nickel or stainless steel.
  • the cathode of the zinc air secondary battery uses oxygen as an electrode, at least one opening must be included in the region where the cathode is located to allow the movement of oxygen from the outside.
  • a container containing nickel or stainless steel having conductivity to facilitate movement of electrons generated in the battery unit may be used as the battery cell container, but is not limited thereto.
  • the form of the zinc air secondary battery may be modified according to the use of the zinc air secondary battery. More specifically, as shown in Figure 10, it may have a coin-shaped structure, or a cylindrical structure, but is not limited thereto.
  • the electrolyte storage unit accommodated in the battery cell container may be a container having a material and a structure having corrosion resistance to a high concentration of electrolyte solution without being affected by the electron transfer made on the surface of the battery cell container.
  • the electrolyte storage unit More specifically, the electrolyte storage unit,
  • a plastic intermediate layer forming an outer wall of the inner layer containing nickel to impart insulation to the inner layer
  • a container having a triple structure may be included that forms an outer wall of the plastic intermediate layer and includes an outer layer that is conductive.
  • the inner layer is a layer in direct contact with the electrolyte, it may include a material having corrosion resistance to a strong base, specifically, a high concentration of caustic aqueous solution.
  • the material applicable to the inner layer is not particularly limited as long as it is a material having corrosion resistance to a high concentration of caustic aqueous solution, but a material containing nickel may be used.
  • the intermediate layer may include an insulating material that is not influenced by electron movement made on the surface of the battery cell container and thus does not induce a reaction caused by electron movement.
  • the material applicable to the intermediate layer is not particularly limited as long as it is an insulating material. Specifically, an insulating plastic or the like can be used.
  • the outer layer may include a conductive material. Specifically, it may include nickel, stainless, nickel-stainless alloys or nickel-stainless mixtures.
  • the triple structure container is an example of an electrolyte storage unit applicable to a coin cell, and the electrolyte storage unit according to the present invention may be modified in various forms according to the use and shape of the battery cell to be manufactured.
  • An electrolyte injection hole for injecting an aqueous caustic solution supplied from the outside of the battery into the electrolyte storage unit
  • the electrolyte injection hole according to the present invention may serve as an inlet for replenishing electrolyte from the outside of the battery when it is difficult to further charge and discharge using all of the electrolyte stored in the electrolyte storage unit.
  • the form of the electrolyte injection hole is not particularly limited as long as it is a structure capable of maintaining the sealed state of the electrolyte storage portion. Specifically, for example, having a structure including an opening formed in a form protruding outward in the electrolyte storage container and a screw-shaped cover for sealing it, or a circular void formed in the electrolyte storage container, and a rubber material capable of sealing it It may have a structure including a stopper.
  • the electrolyte flow rate regulator according to the present invention may be included in the electrolyte supply portion may serve to adjust the amount of the electrolyte supplied to the cathode and the cathode.
  • the electrolyte flow regulator does not limit its form or control method, but may be used in the form of, for example, a sensor that can set the supply amount of the electrolyte, or a valve that adjusts the supply amount of the electrolyte depending on the opening degree or strength. .
  • the present invention includes the steps of introducing the battery unit such that the air cathode film of the battery unit is bonded to the region where the opening of the battery cell container is formed;
  • It provides a method for producing the zinc-air secondary battery comprising the step of sealing with a battery cell container.
  • a zinc anode gel is prepared from a mixture of an anode active material, an electrolyte solution and a gelling agent, and the air cathode membrane, the separator and the zinc anode gel prepared above are sequentially stacked.
  • the battery part is manufactured. Thereafter, the battery part is introduced into the battery cell container so that the air anode film is in contact with the region where the opening for oxygen movement of the battery cell container is formed, and the battery part is connected to the electrolyte supply part. Thereafter, the electrolyte supply unit and the electrolyte storage unit may be connected, and then sealed with a battery cell container to manufacture a zinc air secondary battery.
  • the first surface of the porous line may be introduced into the air cathode membrane of the battery unit, and the second surface is bonded to the separator.
  • connection method may be modified according to the use or form of the zinc air secondary battery.
  • the step is performed by directly connecting an insulating plastic capillary to an air anode membrane and a zinc cathode gel using hydroxide ions (OH ⁇ ) derived from the electrolyte, or when manufacturing the battery unit, the porous line is air
  • the first surface may be performed by connecting the air cathode membrane or the zinc cathode gel and the second surface of the battery unit to be bonded to the separator.
  • the porous line may use a wide film form.
  • a cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass) and 6 M aqueous solution of caustic solution (59.8 parts by mass) were mixed to prepare a zinc anode gel, and the polypropylene membrane (Celgard 3501) was used as a separator.
  • a zinc air secondary battery unit cell as shown in FIG. 1 was prepared.
  • a zinc air secondary battery unit cell was prepared in the same manner as in Preparation Example 1, except that zinc oxide powder was used instead of zinc powder.
  • a zinc air secondary battery unit cell was prepared in the same manner as in Preparation Example 1, except that zinc hydroxide powder was used instead of zinc powder.
  • a cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc oxide powder (53.8 parts by mass), polyacrylic acid (0.5 parts by mass), 6M aqueous solution of caustic solution (43 parts by mass), and super-P (2.7 parts by mass) as a conductive material were mixed to form a zinc negative electrode.
  • a gel was prepared, and a zinc air secondary battery unit cell was prepared using a polypropylene membrane (Cellgard 3501).
  • a cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass), and 6M caustic aqueous solution (59.8 parts by mass) were mixed to prepare a zinc negative electrode gel.
  • the battery part into which the electrolyte supply part was introduced was laminated by laminating a tissue having excellent hygroscopicity and a polypropylene film (Celgard 3501) between the positive electrode and the zinc negative electrode gel.
  • An electrolyte supply unit connected to the prepared battery unit was connected to an electrolyte storage unit in which a 6M caustic aqueous solution was stored, and then accommodated in a nickel container to prepare a zinc air secondary battery unit cell.
  • a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
  • a zinc air secondary battery unit cell was manufactured in the same manner as in Example 1, except that a nonwoven fabric was used instead of a tissue having excellent hygroscopicity as an electrolyte supply part in Example 1.
  • a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
  • Example 1 When preparing the zinc negative electrode gel in Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Example 1 except for using zinc oxide powder instead of zinc powder. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
  • Example 1 In preparing the zinc negative electrode gel in Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Example 1, except that zinc hydroxide powder was used instead of zinc powder. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
  • Example 1 When preparing the zinc negative electrode gel in Example 1, zinc powder (53.8 parts by mass) instead of mixing zinc oxide powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass) and 6M caustic aqueous solution (59.8 parts by mass) , Polyacrylic acid (0.5 parts by mass), 6M caustic aqueous solution (43 parts by mass) and the conductive material super-p (super-p, 2.7 parts by mass) was mixed in the same manner as in Example 1 The zinc air secondary battery unit cell was prepared. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
  • a zinc air secondary battery was carried out in the same manner as in Example 1 except that the electrolyte supply unit was connected to the electrolyte storage unit in which distilled water was stored instead of the electrolyte storage unit in which 6M caustic aqueous solution was stored. A unit cell was prepared.
  • Charge and discharge experiments were performed on the unit cells of zinc air secondary batteries manufactured in Preparation Examples 1 and 2 according to the present invention.
  • the charge and discharge experiment is as follows. First, the zinc air secondary battery unit cell was left for 1 minute for the first time, and then constant current discharged to 0.7 V at a current of 10 mA. Then, it was charged with 2.1 V for 3 hours. This process was set to one charge and discharge cycle, and this was repeated 10 times. The charge and discharge cycle of the unit cell measured the charge and discharge voltage according to the charge and discharge of the unit cell.
  • 6M caustic aqueous solution (1.5 ml) was supplied to the negative electrode surface of the unit cell prepared in Preparation Example 1, which does not charge and discharge, and then charge and discharge of the battery three times in the same manner as described above to charge the unit cell.
  • the discharge voltage was measured. The measurement results are shown in FIGS. 2 to 4, and the charge and discharge cycles were derived from the measured results.
  • the charge / discharge cycle increases when the electrolyte solution required for charging and discharging the battery is supplied to the battery unit of the zinc air secondary battery, that is, the air cathode membrane and the zinc anode gel. .
  • the electrolyte is supplied to the negative electrode surface of the unit cell of Preparation Example 1, which is not charged and discharged, and the charge and discharge voltage is measured three times. It was found to be possible.
  • Zinc air secondary battery has a problem that the life cycle of the battery is short because the charge and discharge cycle is not long due to the loss of the electrolyte H 2 O due to the formation of carbonate in the electrolyte and the evaporation of moisture. Accordingly, the following experiments are performed to evaluate the charge and discharge cycles when the electrolyte itself is supplied to the air cathode membrane and the zinc anode gel of the zinc air secondary battery and when the distilled water (H 2 O) lost from the electrolyte is supplied. It was.
  • the zinc air secondary battery according to the present invention can be seen that the charge and discharge cycle of the battery increases by supplying the electrolyte to the battery unit.
  • the unit cell of Example 1 in which a sufficient amount of electrolyte is supplied to the air cathode membrane and the zinc anode gel of the zinc air secondary battery unit cell during charge and discharge, has a charge and discharge cycle of 10 or more times. appear.
  • the battery when the water lost to the battery part of the zinc air secondary battery is supplied, the battery can be charged and discharged, but the charge and discharge cycle is short, and when the electrolyte is directly supplied, the battery can be charged and discharged. It can be seen that the period increases significantly more than 10 times.
  • the negative electrode of the zinc-air secondary battery may have a reduced charge / discharge cycle due to zinc oxide or zinc hydroxide, which is an insulator formed on the surface of the zinc air secondary battery.
  • a unit cell of Preparation Example 3 including zinc oxide (ZnO) formed as a discharge of a zinc air secondary battery as a negative electrode active material was charged and discharged up to nine times.
  • the unit cell of Preparation Example 4 containing zinc hydroxide (Zn (OH) 2 ) formed as a discharge of a zinc air secondary battery as a negative electrode active material was found to be capable of charging and discharging up to seven times. .
  • the unit cell of Preparation Example 5 including zinc oxide (ZnO) as a negative electrode active material and including a super-p as a conductive material in the air cathode film is a cathode active material by a conductive material. Due to the conductive implementation of the material, it was confirmed that charging and discharging was possible up to 10 times.
  • ZnO zinc oxide
  • zinc oxide and zinc hydroxide are regenerated into zinc by a sufficient amount of electrolyte contained in the zinc anode gel. That is, when zinc oxide and zinc hydroxide, which are insulators, are used as the negative electrode active material, it can be seen that a sufficient amount of electrolyte is required for zinc regeneration through oxidation or reduction. Similarly, in the case of the unit cell further including a conductive material to realize the conductivity of zinc oxide, which is an insulator, a sufficient amount of electrolyte is required for charging and discharging the battery.
  • the zinc-air secondary battery according to the present invention is supplied with a sufficient amount of an electrolyte solution to the air cathode film and the zinc cathode gel, even though it contains zinc oxide or zinc hydroxide as an insulator as an anode active material.
  • zinc regeneration reaction of zinc hydroxide is performed, it can be seen that the charge and discharge cycle is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a zinc-air secondary battery having an increased charge-discharge cycle and to a preparation method therefor. The zinc-air secondary battery according to the present invention comprises, in a battery cell, an electrolyte storage unit and an electrolyte supply unit for supplying a sufficient amount of electrolyte required during charge/discharge, thereby remarkably increasing the charge-discharge cycle thereof, and thus has a great effect of improving the life thereof.

Description

아연공기 이차전지 및 이의 제조방법Zinc air secondary battery and manufacturing method thereof
본 발명은 아연공기 이차전지 및 이의 제조방법에 관한 것이다. 상세하게는, 충방전 시, 손실된 전해액을 공급하는 전해액 저장부 및 전해액 공급부를 전지셀 내에 더 포함함으로써 전지의 수명이 향상된 아연공기 이차전지 및 이의 제조방법에 관한 것이다.The present invention relates to a zinc air secondary battery and a method of manufacturing the same. In detail, the present invention relates to a zinc-air secondary battery and a method for manufacturing the same, which further include an electrolyte storage part and an electrolyte supply part supplying a lost electrolyte during charging and discharging, in a battery cell.
금속공기 전지는 일차전지의 형태로 시중에서 보청기 등의 저전력 전자 제품에 널리 사용되고 있다. 특히, 아연공기 전지는 1.4 V의 상대적으로 높은 전압을 제공하며, 에너지 밀도가 높고 방전 용량이 크다는 장점을 갖는다. 또한, 전지의 방전이 완료될 때까지 거의 일정한 방전 특성을 나타내어, 중금속의 함유로 사용이 억제되고 있는 수은 전지를 대체할 수 있는 건전지로 생각되고 있다.Metal air batteries are widely used in low power electronic products such as hearing aids in the form of primary batteries. In particular, zinc air batteries provide a relatively high voltage of 1.4 V and have the advantage of high energy density and high discharge capacity. Moreover, it is thought that it is a battery which can replace the mercury battery which exhibits substantially constant discharge characteristic until the discharge of a battery is completed, and use is suppressed by containing heavy metal.
이러한 아연공기 전지를 대상으로 하여 재충전이 가능한 아연공기 이차전지를 개발하고자 하는 노력이 이어지고 있다. 그러나, 아연공기 전지는 방전 및 충전 반응의 매우 낮은 효율성, 아연의 부식으로 인한 아연금속 전극의 구조 불균일 및 형태 변화 등의 문제와 함께, 열린 셀 구조로 인하여, 전해질 내 카보네이트 생성 및 수분 증발에 따른 전해질 H2O의 손실로 인하여 충방전이 이뤄지지 않거나, 충방전 주기가 길지 않아 전지의 수명이 짧으므로, 상용화가 어려운 실정이다.Efforts have been made to develop rechargeable zinc air secondary batteries for such zinc air batteries. However, zinc air batteries have very low efficiency of discharge and charge reaction, structural irregularity and shape change of zinc metal electrode due to corrosion of zinc, and due to open cell structure, carbonate formation in electrolyte and evaporation of water Due to the loss of electrolyte H 2 O, charging or discharging is not performed or the charging and discharging cycle is not long, and thus the battery life is short.
상기의 문제점들을 해결하기 위하여, 대한민국 공개특허 제10-2011-0056803호 및 대한민국 공개특허 제10-2007-0100595호는 양극 분야에서 공기 양극막에 포함되는 촉매 활성층(catalytically active layer)의 촉매와 관련된 기술 및 음극분야에서 음극활성물질과 관련된 기술을 개시한 바 있다.In order to solve the above problems, Korean Patent Publication No. 10-2011-0056803 and Korean Patent Publication No. 10-2007-0100595 are related to the catalyst of the catalytically active layer included in the air anode membrane in the anode field In the art and the negative electrode field has been disclosed a technology related to the negative electrode active material.
그러나, 상기 기술들은 금속공기 전지의 충방전에 관여하는 산소환원반응(oxygen reduction reaction, ORR)과 수소생성반응(hydrogen evolution reaction, HER)이 개선되는 효과가 있으나, 아연공기 전지의 전해질과 관련되는 이차전지의 충방전 주기 증가시키는 데는 그 한계가 있다. 따라서, 아연공기 이차전지의 전해질과 관련된 이차전지의 충방전 주기 개선 및 이를 통한 전지의 수명 향상을 위한 기술개발이 절실히 요구되고 있다.However, the above technologies have an effect of improving oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), which are involved in charging and discharging of metal air batteries, but are related to electrolytes of zinc air batteries. There is a limit to increasing the charge and discharge cycle of the secondary battery. Therefore, there is an urgent need for technology development for improving the charge / discharge cycle of the secondary battery related to the electrolyte of the zinc air secondary battery and thereby improving the life of the battery.
본 발명의 목적은 전지의 수명이 향상된 아연공기 이차전지를 제공하는데 있다.An object of the present invention is to provide a zinc-air secondary battery with improved battery life.
본 발명의 다른 목적은 상기 전지의 수명이 향상된 아연공기 이차전지의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing a zinc-air secondary battery with improved lifespan of the battery.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 하나의 실시예에서, 공기 양극막을 포함하는 공기극,The present invention in one embodiment, an air electrode comprising an air anode membrane,
아연(Zn)을 포함하는 음극활성물질 및 가성칼리 수용액을 포함하는 아연 음극겔로 구성되는 음극, 및A negative electrode consisting of a negative electrode active material containing zinc (Zn) and a zinc negative electrode gel containing a caustic aqueous solution, and
상기 공기극과 음극 사이에 존재하는 분리막을 포함하는 전지부;A battery unit including a separator between the cathode and the cathode;
전해액인 가성칼리 수용액을 저장하는 전해액 저장부; 및An electrolyte storage unit for storing a caustic aqueous solution as an electrolyte; And
상기 전해액 저장부로부터 공기극 및 음극겔에 가성칼리 수용액을 공급하는 전해액 공급부를 포함하는 아연공기 이차전지를 제공한다.It provides a zinc air secondary battery including an electrolyte supply unit for supplying a caustic aqueous solution to the cathode and the cathode gel from the electrolyte storage unit.
또한, 본 발명은 하나의 실시예에서, 전지셀 용기의 개구가 형성된 영역에 전지부의 공기 양극막이 접합되도록 전지부를 도입하는 단계;In addition, in one embodiment, the present invention includes the steps of introducing the battery unit such that the air cathode film of the battery unit is bonded to the region where the opening of the battery cell container is formed;
전지부와 전해액 공급부를 연결하는 단계;Connecting the battery unit and the electrolyte supply unit;
전해액 공급부와 전해액 저장부를 연결하는 단계; 및Connecting an electrolyte supply unit and an electrolyte storage unit; And
전지셀 용기로 밀봉하는 단계를 포함하는 상기 아연공기 이차전지의 제조방법을 제공한다.It provides a method for producing the zinc-air secondary battery comprising the step of sealing with a battery cell container.
본 발명에 따른 아연공기 이차전지는 충방전 시 요구되는 전해액을 공급하기 위한 전해액 저장부 및 전해액 공급부를 전지셀 내에 포함함으로써, 아연공기 이차전지의 충방전 주기가 현저히 증가하므로, 아연공기 이차전지의 수명이 향상되는 효과가 우수하다.In the zinc air secondary battery according to the present invention, since the charge and discharge cycle of the zinc air secondary battery is significantly increased by including an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution required for charging and discharging, the zinc air secondary battery The effect of improving the service life is excellent.
도 1은 본 발명에 따른 제조예 1에서 제조된 아연공기 이차전지 단위셀을 촬영한 이미지이다;1 is an image of a zinc air secondary battery unit cell manufactured in Preparation Example 1 according to the present invention;
도 2는 본 발명에 따른 제조예 1에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;Figure 2 is a graph showing the charge and discharge voltage measurement results of the zinc air secondary battery unit cell prepared in Preparation Example 1 according to the present invention;
도 3은 본 발명에 따른 제조예 2에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;3 is a graph showing a charge and discharge voltage measurement results of the zinc air secondary battery unit cell prepared in Preparation Example 2 according to the present invention;
도 4는 충방전이 되지 않는 제조예 1에 따른 아연공기 이차전지 단위셀의 음극표면에 전해액을 공급한 경우의 충방전 전압 측정 결과를 도시한 그래프이다;4 is a graph showing charge and discharge voltage measurement results when an electrolyte solution is supplied to a negative electrode surface of a zinc air secondary battery unit cell according to Preparation Example 1 in which charging and discharging are not performed;
도 5는 본 발명에 따른 실시예 1에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;5 is a graph showing the results of measuring charge and discharge voltage of the zinc air secondary battery unit cell manufactured in Example 1 according to the present invention;
도 6은 본 발명에 따른 비교예 1에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;6 is a graph showing the results of measuring charge and discharge voltage of the zinc air secondary battery unit cell manufactured in Comparative Example 1 according to the present invention;
도 7은 본 발명에 따른 제조예 3에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;7 is a graph showing the results of measuring charge and discharge voltage of the zinc air secondary battery unit cell manufactured in Preparation Example 3 according to the present invention;
도 8은 본 발명에 따른 제조예 4에서 제조된 아연공기 이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;8 is a graph showing a charge and discharge voltage measurement results of the zinc air secondary battery unit cell prepared in Preparation Example 4 according to the present invention;
도 9는 본 발명에 따른 제조예 5에서 제조된 아연공기이차전지 단위셀의 충방전 전압 측정 결과를 도시한 그래프이다;9 is a graph showing the results of measuring charge and discharge voltage of the zinc air secondary battery unit cell manufactured in Preparation Example 5 according to the present invention;
도 10은 본 발명에 따른 아연공기 이차전지에 적용 가능한 하나의 형태를 예시하는 이미지이다.10 is an image illustrating one form applicable to a zinc air secondary battery according to the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.In addition, it is to be understood that the accompanying drawings in the present invention are shown enlarged or reduced for convenience of description.
이하, 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
본 발명에서, "중량부"란 개별 성분간의 함량 비율을 의미한다.In the present invention, "parts by weight" means a content ratio between individual components.
또한, 본 발명에서, "충방전 주기"란 1개의 아연공기 이차전지에 대한 충방전을 수행하여 방전 전압이 1 V 미만이 되기까지의 충방전 횟수를 의미한다. 이때, 충방전 1회 즉, 충방전 1주기는 전지의 충전 및 방전이 각 1회씩 수행되는 것을 의미한다.In addition, in the present invention, the "charge / discharge cycle" means the number of charge / discharge cycles until the discharge voltage becomes less than 1V by performing charge / discharge on one zinc air secondary battery. In this case, one charge and discharge cycle, that is, one charge and discharge cycle, means that the battery is charged and discharged once.
본 발명은 전지의 수명이 향상된 아연공기 이차전지 및 이의 제조방법을 제공한다.The present invention provides a zinc-air secondary battery and a manufacturing method thereof with improved battery life.
최근 아연공기 전지를 대상으로 하여 재충전이 가능한 아연공기 이차전지를 개발하고자 하는 노력이 이어지고 있다. 그러나, 아연공기 전지는 방전 및 충전 반응의 매우 낮은 효율성, 아연의 부식으로 인한 아연금속 전극의 구조 불균일 및 형태 변화 등의 문제가 있을 뿐만 아니라, 전해질 내 카보네이트 생성 및 수분 증발에 따른 전해질 H2O의 손실로 인하여 충방전이 이뤄지지 않거나, 충방전 주기가 길지 않아 전지의 수명이 짧으므로, 상용화가 어려운 실정이다.Recently, efforts have been made to develop rechargeable zinc air secondary batteries for zinc air batteries. However, zinc air batteries have problems such as very low efficiency of discharge and charging reaction, structural unevenness and shape change of zinc metal electrode due to corrosion of zinc, and electrolyte H 2 O due to carbonate formation and moisture evaporation in electrolyte. Due to the loss of the charge or discharge is not made, or the charge and discharge cycle is not long, the battery life is short, it is difficult to commercialize the situation.
이러한 문제점을 극복하기 위해서, 본 발명은 전지의 수명이 향상된 아연공기 이차전지 및 이의 제조방법을 제안한다.In order to overcome this problem, the present invention proposes a zinc-air secondary battery and its manufacturing method with improved battery life.
본 발명에 따른 아연공기 이차전지는 충방전 시 요구되는 전해액을 공급하기 위한 전해액 저장부 및 전해액 공급부를 전지셀 내에 포함함으로써, 아연공기 이차전지의 충방전 주기가 증가하므로, 아연공기 이차전지의 수명이 향상되는 효과가 우수하다.The zinc air secondary battery according to the present invention includes an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution required for charging and discharging in a battery cell, thereby increasing the charge / discharge cycle of the zinc air secondary battery, thereby increasing the life of the zinc air secondary battery. This effect is improved.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 하나의 실시예에서, 공기 양극막을 포함하는 공기극,The present invention in one embodiment, an air electrode comprising an air anode membrane,
아연(Zn)을 포함하는 음극활성물질 및 가성칼리 수용액을 포함하는 아연 음극겔로 구성되는 음극, 및A negative electrode consisting of a negative electrode active material containing zinc (Zn) and a zinc negative electrode gel containing a caustic aqueous solution, and
상기 공기극과 음극 사이에 존재하는 분리막을 포함하는 전지부;A battery unit including a separator between the cathode and the cathode;
전해액인 가성칼리 수용액을 저장하는 전해액 저장부; 및An electrolyte storage unit for storing a caustic aqueous solution as an electrolyte; And
상기 전해액 저장부로부터 공기극 및 음극겔에 가성칼리 수용액을 공급하는 전해액 공급부를 포함하는 아연공기 이차전지를 제공한다.It provides a zinc air secondary battery including an electrolyte supply unit for supplying a caustic aqueous solution to the cathode and the cathode gel from the electrolyte storage unit.
본 발명에 따른 아연공기 이차전지는 공기극, 음극 및 분리막을 포함하는 전지부와, 전지부의 공기 양극막과 아연 음극겔에 전해액을 공급하기 위한 전해액 저장부 및 전해액 공급부를 전지셀 내에 포함함으로써, 충방전 시 아연 음극겔 내에서의 아연 재생률을 개선하여 충방전 주기를 증가시키므로, 이를 통하여 전지의 수명을 현저히 증가시키는 효과가 있다.The zinc-air secondary battery according to the present invention includes a battery unit including an air electrode, a cathode, and a separator, an electrolyte storage unit and an electrolyte supply unit for supplying an electrolyte solution to an air anode membrane and a zinc cathode gel of the battery unit, Since charging and discharging increases the charge and discharge cycle by improving the zinc regeneration rate in the zinc negative electrode gel, there is an effect of significantly increasing the life of the battery.
보다 구체적으로, 도 2를 참고하면 전해액 저장부 및 전해액 공급부가 구비되지 않은 아연공기 전지에 대한 충방전에 따른 전압을 측정결과, 상기 아연공기 전지는 충방전이 되지 않는 것으로 확인되었다.More specifically, referring to FIG. 2, it was confirmed that the zinc air battery was not charged and discharged as a result of measuring the voltage according to the charge and discharge of the zinc air battery which is not provided with the electrolyte storage unit and the electrolyte supply unit.
또한, 도 3을 참고하면 아연 분말 및 전해액의 중량부가 19.8:79.2로서, 충방전에 요구되는 충분한 양의 전해액을 포함하는 아연 음극겔이 사용된 단위셀은 1차 방전 이후, 충방전이 4회까지 가능한 것으로 확인되었다.In addition, referring to FIG. 3, the weight part of the zinc powder and the electrolyte solution is 19.8: 79.2, and the unit cell in which the zinc negative electrode gel including the sufficient amount of the electrolyte solution required for charging and discharging is used has four charge and discharge cycles after the first discharge. As far as possible was confirmed.
나아가, 도 4를 참고하면 충방전이 되지 않는 단위셀의 음극 표면에 전해액을 공급하고, 충방전 전압을 3회 측정한 결과, 전해액이 공급된 단위셀은 3회 이상 충방전이 가능한 것으로 확인되었다.Furthermore, referring to FIG. 4, the electrolyte is supplied to the negative electrode surface of the unit cell which is not charged and discharged, and the charge and discharge voltage is measured three times. As a result, it is confirmed that the unit cell to which the electrolyte is supplied can be charged and discharged three or more times. .
이로부터, 충방전 주기를 증가시키기 위해서는 산화된 아연을 환원하기 위한 충분한 양의 전해액이 충방전 시 아연 음극겔에 공급되어야 하는 것을 알 수 있다. 따라서, 본 발명에 따른 아연공기 2차 전지는 전지부의 공기 양극막과 아연 음극겔에 전해액을 공급하기 위한 전해액 저장부 및 전해액 공급부를 전지셀 내에 포함함으로써, 충방전 시 아연 재생률을 개선하여 충방전 주기를 증가시키므로, 전지의 수명을 증가시키는 효과가 우수하다.From this, it can be seen that in order to increase the charge and discharge cycle, a sufficient amount of electrolyte solution for reducing the oxidized zinc should be supplied to the zinc anode gel during charge and discharge. Accordingly, the zinc-air secondary battery according to the present invention includes an electrolyte storage part and an electrolyte supply part for supplying an electrolyte solution to an air anode film and a zinc anode gel of a battery part in a battery cell, thereby improving zinc regeneration rate during charging and discharging. Since the discharge cycle is increased, the effect of increasing the life of the battery is excellent.
이때, 본 발명에 따른 상기 아연공기 이차전지에 대하여,At this time, for the zinc air secondary battery according to the present invention,
이차전지의 충방전 전압 측정 시,When measuring the charge and discharge voltage of the secondary battery,
아연공기 이차전지의 충방전 주기(N)는 하기 수학식 1을 만족할 수 있다:The charge / discharge cycle (N) of the zinc air secondary battery may satisfy the following Equation 1:
[수학식 1][Equation 1]
N≥10.N≥10.
도 5를 참조하면, 본 발명에 따른 아연공기 이차전지의 충방전 주기를 평가한 결과, 충방전 주기가 우수한 것을 알 수 있다.Referring to Figure 5, as a result of evaluating the charge-discharge cycle of the zinc-air secondary battery according to the present invention, it can be seen that the charge-discharge cycle is excellent.
보다 구체적으로, 본 발명에 따른 아연공기 이차전지 단위셀의 충방전 주기를 평가하기 위하여, 아연공기 이차전지 단위셀을 처음 1분간 방치하고, 10 mA의 전류로 0.7 V까지 정전류 방전한 후, 3시간 동안 2.1 V로 정전압 충전하였다. 이러한 상기 과정을 충방전 1회로 설정하고, 이를 10회 반복수행하면서, 단위셀의 충방전에 따른 충방전 전압을 측정하였다. 측정된 충방전 전압으로부터 단위셀의 충방전 주기를 도출한 결과, 본 발명에 따른 아연공기 이차전지는 10회 이상의 충방전 주기를 갖는 것으로 나타났다. 따라서, 상기 본 발명에 따른 아연공기 이차전지에 대한 충방전 횟수(N)는 상기 충방전 조건에서, 수학식 1을 만족할 수 있다.More specifically, in order to evaluate the charge and discharge cycle of the zinc air secondary battery unit cell according to the present invention, the zinc air secondary battery unit cell is left for 1 minute first, and after constant current discharge to 0.7 V at a current of 10 mA, 3 Constant voltage charge was performed at 2.1 V for an hour. The above process was set to one charge / discharge cycle, and the charge and discharge voltage according to charge and discharge of the unit cell was measured while repeating this ten times. As a result of deriving the charge / discharge cycle of the unit cell from the measured charge / discharge voltage, it was found that the zinc-air secondary battery according to the present invention has more than 10 charge / discharge cycles. Therefore, the number of charge / discharge cycles (N) for the zinc air secondary battery according to the present invention may satisfy Equation 1 under the charge and discharge conditions.
이하, 본 발명에 따른 아연공기 이차전지의 각 구성요소를 상세히 설명한다.Hereinafter, each component of the zinc air secondary battery according to the present invention will be described in detail.
먼저, 본 발명에 따른 전지부는 공기극, 음극 및 분리막을 포함하며, 아연공기 이차전지에서 실질적으로 전기의 생성 및 저장하는 역할을 수행한다.First, the battery unit according to the present invention includes a cathode, a cathode, and a separator, and serves to substantially generate and store electricity in the zinc air secondary battery.
본 발명에 따른 전지부에 있어서, 상기 공기극은 공기 중에 존재하는 산소를 전극으로 이용하므로, 이를 위하여 확산층(diffusion layer), 전류 응집층(current collecting layer) 및 촉매 활성층(catalytically active layer)이 순차적으로 적층된 구조를 가진 공기 양극막을 포함할 수 있다.In the battery unit according to the present invention, since the cathode uses oxygen existing in the air as an electrode, a diffusion layer, a current collecting layer, and a catalytically active layer are sequentially formed for this purpose. It may include an air anode film having a laminated structure.
이때, 상기 전류 응집층은 확산층과 촉매 활성층 사이에 존재하는 기판과 같은 역할을 수행한다. 전류 응집층 소재로는 산소에 의한 부식이 발생되지 않고, 높은 도전성을 갖는 금속 격자라면, 특별히 제한하지 않고 사용할 수 있다. 구체적으로 예를 들면, Ni 메쉬(mesh) 또는 Ni가 코팅된 Cu 메쉬를 사용할 수 있다.In this case, the current aggregation layer serves as a substrate existing between the diffusion layer and the catalyst active layer. Corrosion by oxygen does not generate | occur | produce as a current aggregation layer material, and if it is a metal lattice which has high electroconductivity, it can use without a restriction | limiting in particular. Specifically, for example, Ni mesh or Ni-coated Cu mesh may be used.
또한, 상기 확산층은 산소의 이동이 이루어지는 곳으로서 외부로부터 이동된 산소를 균일하게 분산하는 역할을 수행한다. 확산층 소재는 수분의 이동을 방지해야 하므로 탄소 물질 및 폴리테트라플르오로에틸렌(PTFE), 불소화된 에틸렌 프로필렌(FEP) 등의 소수성 바인더를 포함할 수 있다. In addition, the diffusion layer serves to uniformly disperse oxygen moved from the outside as a place where the movement of oxygen is made. The diffusion layer material may include a hydrophobic binder such as carbon material and polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), and the like, since the diffusion layer material should prevent moisture from moving.
나아가, 상기 촉매 활성층은 산소의 환원 반응이 수행되는 곳으로서, 전지의 전기를 발생시키는 반응에 직접적으로 영향을 주는 부위이다. 이때, 촉매 활성층에 적용 가능한 촉매로는 예를 들면, Co를 함유하는 촉매, MnO2를 함유하는 촉매 또는 Pt를 함유하는 촉매로 이루어진 군으로부터 선택되는 1종 이상의 촉매를 사용할 수 있으나, 이에 제한되는 것은 아니다.In addition, the catalytically active layer is a site where the reduction reaction of oxygen is performed and directly affects the reaction for generating electricity of the battery. In this case, as the catalyst applicable to the catalytically active layer, for example, one or more catalysts selected from the group consisting of a catalyst containing Co, a catalyst containing MnO 2 , or a catalyst containing Pt may be used. It is not.
또한, 본 발명에 따른 전지부에 있어서, 상기 음극은 아연을 포함하는 물질이라면 특별히 제한되는 것은 아니나, 구체적으로 예를 들면 아연(Zn), 산화아연(ZnO), 수산화아연(Zn(OH)2), 아세트산 아연(Zn(CH3CO2)2) 또는 이들의 혼합물 등을 음극활성물질로서 사용할 수 있다.In addition, in the battery unit according to the present invention, the negative electrode is not particularly limited as long as it is a material containing zinc. Specifically, for example, zinc (Zn), zinc oxide (ZnO), and zinc hydroxide (Zn (OH) 2 ). ), Zinc acetate (Zn (CH 3 CO 2 ) 2 ), or a mixture thereof may be used as the negative electrode active material.
도 7 및 도 8에 나타난 바와 같이, 본 발명에 따른 아연공기 이차전지는 음극활성물질의 종류에 상관없이 충방전 주기가 증가하는 것을 알 수 있다.As shown in Figure 7 and 8, the zinc air secondary battery according to the present invention can be seen that the charge and discharge cycle increases regardless of the type of the negative electrode active material.
보다 구체적으로, 도 7을 참고하면 음극활성물질로서 절연체이자 방전생성물인 산화아연(ZnO)을 포함하는 단위셀은 9회까지 충방전이 가능한 것으로 나타났다.More specifically, referring to FIG. 7, a unit cell including zinc oxide (ZnO), which is an insulator and a discharge product, as a negative electrode active material, can be charged and discharged up to nine times.
또한, 도 8을 참고하면 아연공기 이차전지의 방전 부생성물인 수산화아연(Zn(OH)2)을 음극활성물질로서 포함하는 단위셀은 7회까지 충방전이 가능한 것으로 확인되었다.In addition, referring to FIG. 8, a unit cell including zinc hydroxide (Zn (OH) 2 ), which is a discharge byproduct of a zinc air secondary battery, as a negative electrode active material may be charged and discharged up to seven times.
이러한 결과는 하기 반응식 1 내지 반응식 3에 나타낸 바와 같이, 산화아연 또는 수산화아연이 전해액의 수산화 이온(OH-)과 반응하여 징케이트 이온(zincate ion, Zn(OH)4 2-)을 생성하고, 생성된 징케이트 이온이 충전 시, 아연으로 재생됨에 따른 것이다. 즉, 본 발명에 따른 아연공기 이차전지는 공기 양극막 및 아연 음극겔에 충분한 양의 전해액을 공급함으로써 절연체인 산화아연 및 수산화아연을 음극활성물질로서 사용할 경우에도, 아연 재생을 통하여 충방전 주기를 증가시키는 것을 알 수 있다.These results indicate that zinc oxide or zinc hydroxide reacts with hydroxide ions (OH ) of the electrolyte solution to generate zincate ions (Zn (OH) 4 2− ), as shown in Schemes 1 to 3 below. The resulting zincate ions are regenerated with zinc upon charging. That is, the zinc-air secondary battery according to the present invention supplies a sufficient amount of electrolyte to the air cathode film and the zinc anode gel, so that even when zinc oxide and zinc hydroxide, which are insulators, are used as the anode active material, charge and discharge cycles are performed through zinc regeneration. It can be seen that increasing.
[반응식 1] Scheme 1
2 ZnO + 4 OH- + 2 H2O → 2 Zn(OH)4 2- 2 ZnO + 4 OH - + 2 H 2 O → 2 Zn (OH) 4 2-
[반응식 2] Scheme 2
2 Zn(OH)4 2- + 4e- → 2 Zn + 8 OH- 2 Zn (OH) 4 2- + 4e - → 2 Zn + 8 OH -
[반응식 3] Scheme 3
2 Zn(OH)2 → 2 Zn + O2 + 2 H2O2 Zn (OH) 2 → 2 Zn + O 2 + 2 H 2 O
아울러, 하기 반응식 4 내지 반응식 6에 나타낸 바와 같이, 아세트산아연을 사용하여 아연 음극겔을 제조한 경우, 아세트산아연은 전해액에 포화되어 아연 이온을 형성하고, 형성된 아연 이온은 수산화 이온과 반응하여 징케이트 이온(Zn(OH)4 2-)을 형성함에 따라 충방전이 수행될 수 있다. 여기서, 아연공기 이차전지의 충방전은 상술된 바와 같이 충전 시 징케이트 이온이 아연으로 재생되고, 재생된 아연이 다시 수산화 이온과 반응하여 방전되는 원리로 수행될 수 있다. 나아가, 아연과 수산화 이온의 반응에 의한 징케이트 이온 생성 시, 발생되는 전압대는 약 1.2 V로서, 이는 아연공기 이차전지의 평탄전압과 동일할 수 있다.In addition, as shown in the following Reaction Schemes 4 to 6, when the zinc negative electrode gel was prepared using zinc acetate, zinc acetate is saturated in the electrolyte to form zinc ions, and the formed zinc ions react with the hydroxide ions to generate zinc. Charging and discharging may be performed by forming ions (Zn (OH) 4 2− ). Here, charging and discharging of the zinc air secondary battery may be performed on the principle that the zinc ions are regenerated into zinc during charging and the regenerated zinc is discharged by reacting with hydroxide ions again. Furthermore, when the zinc ions are generated by the reaction of zinc and hydroxide ions, the voltage generated is about 1.2 V, which may be the same as the flat voltage of the zinc air secondary battery.
[반응식 4] Scheme 4
Zn(CH3CO2)2 → Zn2+ + 2 (CH3COO-) Zn (CH 3 CO 2) 2 Zn 2+ + 2 (CH 3 COO -)
[반응식 5] Scheme 5
Zn2+ + OH- → Zn(OH)4 2- Zn 2+ + OH - → Zn ( OH) 4 2-
[반응식 6] Scheme 6
Zn(OH)4 2- → ZnO + H2O + 2 OH- Zn (OH) 4 2- → ZnO + H 2 O + 2 OH -
상기 음극은 기판 형태의 음극활성물질을 음극 전극으로 직접 사용하거나, 또는 분말 형태의 음극활성물질, 전해액 및 겔화제의 혼합물로부터 제조되는 아연 음극겔을 음극 전극으로 사용할 수 있다. 이때, 상기 아연 음극겔은 폴리아크릴산, 메틸렌(methylene), 디스아크릴아마이드(acrylamide), 에틸렌(ethylene), 1-디닐(1-dinil), 2-티롤리디올 등의 겔화제를 사용하여 제조될 수 있다. 또한, 상기 전해액으로는 예를 들면, 가성칼리 수용액을 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 가성칼리 수용액의 농도는 특별히 제한하는 것은 아니나, 6M 이상의 고농도 가성칼리 수용액을 사용할 수 있다. 아연공기 이차전지의 충방전 시 형성되는 수산화아연(Zn(OH)2)은 낮은 농도의 알칼리성 수용액에서 잘 용해되지 않아 방전 용량 및 충방전 주기에 악영향을 미칠 수 있으므로, 6M 이상의 고농도 가성칼리 수용액을 사용하는 것은 이를 방지할 수 있는 이점이 있다.The negative electrode may be used as a negative electrode directly using a negative electrode active material in the form of a substrate as a negative electrode, or a zinc negative electrode gel prepared from a mixture of a negative electrode active material, an electrolyte solution and a gelling agent in powder form. In this case, the zinc negative electrode gel may be prepared by using a gelling agent such as polyacrylic acid, methylene, disacrylamide, ethylene, 1-dinil, 2-tyrrolidiol, and the like. Can be. In addition, for example, a caustic aqueous solution may be used as the electrolyte solution, but is not limited thereto. The concentration of the caustic aqueous solution is not particularly limited, but a high concentration caustic aqueous solution of 6 M or more can be used. Zinc hydroxide (Zn (OH) 2 ) formed during charging and discharging of a zinc air secondary battery does not dissolve well in a low concentration of alkaline aqueous solution, which may adversely affect the discharge capacity and the charge / discharge cycle. Using has the advantage of preventing this.
본 발명에 따른 전지부에 있어서, 상기 아연 음극겔은 슈퍼-피(super-P), 아세틸렌 블랙(acetylene Black), 덴카 블랙(denka Black), 케첸 블랙(ketjen Black) 및 기상성장탄소섬유(VGCF, vapor grown carbon fiber)로 이루어진 군으로부터 선택되는 1종 이상의 탄소 도전재를 더 포함할 수 있다. 상기 탄소 도전재는 음극활성물질로서 산화아연을 사용하는 경우, 절연체인 산화아연의 전도성을 개선하므로 아연공기 이차전지의 충방전 주기를 증가시킬 수 있다.In the battery unit according to the present invention, the zinc negative electrode gel is super-P, acetylene black, acetylene black, denka black, ketjen black and vapor-grown carbon fiber (VGCF). It may further comprise at least one carbon conductive material selected from the group consisting of vapor grown carbon fiber). When the carbon conductive material uses zinc oxide as a negative electrode active material, the conductivity of zinc oxide, which is an insulator, may be improved, thereby increasing the charge and discharge cycle of the zinc air secondary battery.
보다 구체적으로, 도 7을 참고하면, 음극활성물질로서 산화아연(ZnO)을 포함하는 단위셀은 충방전 주기가 9회인 것으로 나타났다. 반면, 도 9를 참고하면 아연 음극겔 전체 함량에 대하여 2.7%의 탄소 도전재를 더 포함하는 단위셀의 경우, 충방전 주기가 10회까지 가능한 것으로 확인되었다. 이는 음극활성물질로서 산화아연을 사용하는 경우, 아연 음극겔에 첨가된 탄소 도전재가 산화아연의 전도성을 개선하여 아연공기 이차전지의 충방전 주기를 증가시키는 것을 의미한다.More specifically, referring to FIG. 7, the unit cell including zinc oxide (ZnO) as a negative electrode active material was found to have nine charge and discharge cycles. On the other hand, referring to Figure 9, the unit cell further includes a carbon conductive material of 2.7% of the total amount of the negative electrode gel, it was confirmed that up to 10 charge and discharge cycles. This means that when zinc oxide is used as the negative electrode active material, the carbon conductive material added to the zinc negative electrode gel improves the conductivity of the zinc oxide to increase the charge and discharge cycle of the zinc air secondary battery.
나아가, 본 발명에 따른 전지부에 있어서, 상기 분리막은 수산화 이온(OH-) 이외의 다른 물질이 통과하지 못하도록 막는 역할을 수행한다. 이때, 상기 분리막은 이온 전도성 및 친수성이 우수하고, 전기적으로 부도체이며, 가성칼리 수용액에 대하여 안정성이 우수한 소재를 포함할 수 있다. 구체적으로 예를 들면, 수계 전해액에 적합하도록 개량된 폴리프로필렌(PP, polypropylene), 폴리에틸렌(PE, Polyethylene), 나일론(Nylon) 등의 중합체, 또는 이들의 혼합물을 포함할 수 있으나, 이에 제한되는 것은 아니다.Furthermore, in the battery unit according to the present invention, the separator serves to prevent the passage of other materials than hydroxide ions (OH ). In this case, the separator may include a material having excellent ion conductivity and hydrophilicity, an electrically insulator, and excellent stability with respect to the aqueous caustic solution. Specifically, for example, it may include a polymer such as polypropylene (PP, polypropylene), polyethylene (PE, Polyethylene), nylon (Nylon), or a mixture thereof modified to be suitable for the aqueous electrolyte solution, but is not limited thereto. no.
다음으로, 본 발명에 따른 전해액 공급부는 아연공기 이차전지의 충방전 시에 요구되는 전해액을 전지부의 공기극 및 음극으로 공급하는 역할을 수행한다.Next, the electrolyte supply unit according to the present invention serves to supply the electrolyte solution required for charging and discharging the zinc air secondary battery to the cathode and the cathode of the battery unit.
상기 전해액 공급부는 모세관 현상을 이용하여 전지부의 공기극 및 음극에 저장된 전해액의 일정량을 지속적으로 공급할 수 있다. 즉, 전해액은 전해액 공급부 내에서 유발되는 모세관 현상에 의해서 전지부로 공급될 수 있다. 따라서, 본 발명에 적용 가능한 전해액 공급부는 특별히 제한하는 것은 아니나, 구체적으로 예를 들면, 이온 전도성이 우수하고, 모세관 현상이 유발되는 부직포, 종이 및 펄프로 이루어지는 군으로부터 선택되는 1종 이상의 다공성 라인; 또는 0.1 mm 내지 2 mm의 절연성 플라스틱 모세관을 포함할 수 있다. 이때, 상기 다공성 라인은 그 두께가 제한하지 않으므로, 면적이 넓은 필름과 같은 형태로서 포함될 수도 있다.The electrolyte supply unit may continuously supply a predetermined amount of the electrolyte stored in the cathode and the cathode of the battery unit by using a capillary phenomenon. That is, the electrolyte may be supplied to the battery part by a capillary phenomenon caused in the electrolyte supply part. Accordingly, the electrolyte supply unit applicable to the present invention is not particularly limited, but specifically, for example, at least one porous line selected from the group consisting of nonwoven fabric, paper, and pulp having excellent ion conductivity and causing capillary action; Or 0.1 mm to 2 mm of insulating plastic capillary. In this case, since the thickness of the porous line is not limited, the porous line may be included as a wide film.
본 발명에 따른 아연공기 이차전지는,Zinc air secondary battery according to the present invention,
전해액 저장부의 최상단 및 최하단의 중심선이 전지부 높이의 1/3 이상에 존재하고,The center line at the top and bottom of the electrolyte storage portion is at least 1/3 of the height of the battery portion,
전해액 공급부가 전해액 저장부의 최하단 내지 중심선 사이에 도입되어 전지부와 전해액 저장부를 연결하는 구조를 가질 수 있다.The electrolyte supply part may be introduced between the lowermost end and the center line of the electrolyte storage part to connect the battery part and the electrolyte storage part.
보다 구체적으로, 본 발명에 따른 아연공기 이차전지는 상기와 같은 구조를 가짐으로써, 전지부와 전해액 저장부 간의 위치 에너지 차를 유도할 수 있다. 이때, 상기 위치 에너지는 전해액 저장부에 저장된 전해액이 전지부로 공급되게 하는 에너지원으로 사용될 수 있다. 상기 구조는 전해액 공급부가 전지부의 최상단보다 낮은 위치에 설치되는 것을 배제하는 것은 아니다. 이 경우, 전해액 저장부에 저장된 전해액은 전해액 공급부의 모세관 현상에 의해 모두 전지부에 공급될 수 있다.More specifically, the zinc-air secondary battery according to the present invention has a structure as described above, it can induce a potential energy difference between the battery unit and the electrolyte storage unit. In this case, the potential energy may be used as an energy source for supplying the electrolyte stored in the electrolyte storage part to the battery part. The structure does not exclude that the electrolyte supply portion is installed at a position lower than the top end of the battery portion. In this case, all of the electrolyte stored in the electrolyte storage part may be supplied to the battery part by a capillary phenomenon of the electrolyte supply part.
다음으로, 본 발명에 따른 전해액 저장부는 전지셀 내에 배치되어, 아연공기 이차전지의 충방전 시 사용되는 전해액을 저장하는 역할을 수행한다. 상기 전해액 저장부에 저장되는 전해액은 아연 음극겔에 포함되는 전해액으로서, 구체적으로 예를 들면, 6M 이상의 가성칼리 수용액일 수 있다.Next, the electrolyte storage unit according to the present invention is disposed in the battery cell, and serves to store the electrolyte used when charging and discharging the zinc air secondary battery. The electrolyte stored in the electrolyte storage unit is an electrolyte contained in the zinc anode gel, and specifically, for example, 6M or more caustic aqueous solution.
본 발명에 따른 아연공기 이차전지는 전지부의 공기극이 접합되는 영역에 하나 이상의 개구를 포함하고, 니켈 또는 스테인레스 스틸을 함유하는 전도성 용기에 수용될 수 있다.The zinc-air secondary battery according to the present invention includes one or more openings in a region where the cathode of the battery unit is bonded, and may be accommodated in a conductive container containing nickel or stainless steel.
상기 아연공기 이차전지의 공기극은 산소를 전극으로 사용하므로, 공기극이 위치하는 영역에는 외부로부터 산소의 이동이 가능하도록 하나 이상의 개구가 포함되어야 한다. 또한, 전지부에서 생성된 전자들의 이동이 용이하도록 전도성을 갖는 니켈 또는 스테인레스 스틸을 함유하는 용기를 전지셀 용기로 사용할 수 있으나, 이에 제한되는 것은 아니다.Since the cathode of the zinc air secondary battery uses oxygen as an electrode, at least one opening must be included in the region where the cathode is located to allow the movement of oxygen from the outside. In addition, a container containing nickel or stainless steel having conductivity to facilitate movement of electrons generated in the battery unit may be used as the battery cell container, but is not limited thereto.
또한, 상기 아연공기 이차전지의 형태는 아연공기 이차전지의 용도에 따라 변형이 가능하다. 보다 구체적으로, 도 10에 나타낸 바와 같이, 코인 형태의 구조를 가지거나, 원기둥 형태의 구조를 가질 수 있으나, 이에 제한되는 것은 아니다.In addition, the form of the zinc air secondary battery may be modified according to the use of the zinc air secondary battery. More specifically, as shown in Figure 10, it may have a coin-shaped structure, or a cylindrical structure, but is not limited thereto.
아울러, 상기 전지셀 용기 내에 수용되는 전해액 저장부는 전지셀 용기 표면에서 이뤄지는 전자이동에 영향을 받지 않고, 고농도 전해액에 대한 내부식성을 갖는 소재 및 구조의 용기를 사용할 수 있다.In addition, the electrolyte storage unit accommodated in the battery cell container may be a container having a material and a structure having corrosion resistance to a high concentration of electrolyte solution without being affected by the electron transfer made on the surface of the battery cell container.
보다 구체적으로, 상기 전해액 저장부는,More specifically, the electrolyte storage unit,
강염기에 대하여 내부식성을 갖는 니켈을 함유하는 내층;An inner layer containing nickel having corrosion resistance to strong bases;
니켈을 함유하는 내층의 외벽을 형성하여 내층에 절연성을 부여하는 플라스틱 중간층; 및A plastic intermediate layer forming an outer wall of the inner layer containing nickel to impart insulation to the inner layer; And
플라스틱 중간층의 외벽을 형성하고, 전도성을 갖는 외층을 포함하는 3중 구조의 용기를 포함할 수 있다.A container having a triple structure may be included that forms an outer wall of the plastic intermediate layer and includes an outer layer that is conductive.
상기 내층은 전해액과 직접 접촉하는 층이므로 강염기, 구체적으로는 고농도의 가성칼리 수용액에 대한 내부식성을 갖는 소재를 포함할 수 있다. 내층에 적용 가능한 소재로서는 고농도의 가성칼리 수용액에 대한 내부식성이 있는 소재이라면, 특별히 제한되지는 않으나, 구체적으로 니켈을 함유하는 소재 등을 사용할 수 있다. 또한, 상기 중간층은 전지셀 용기 표면에서 이뤄지는 전자이동에 영향을 받지 않아, 전자이동에 의한 반응이 유도되지 않는 절연성 소재를 포함할 수 있다. 중간층에 적용 가능한 소재로는 절연성을 갖는 소재하면, 특별히 제한되지는 않으나, 구체적으로는 절연성 플라스틱 등을 사용할 수 있다. 나아가, 상기 외층은 전도성을 갖는 소재를 포함할 수 있다. 구체적으로, 니켈, 스테인레스, 니켈-스테인레스 합금 또는 니켈-스테인레스 혼합물을 포함할 수 있다.Since the inner layer is a layer in direct contact with the electrolyte, it may include a material having corrosion resistance to a strong base, specifically, a high concentration of caustic aqueous solution. The material applicable to the inner layer is not particularly limited as long as it is a material having corrosion resistance to a high concentration of caustic aqueous solution, but a material containing nickel may be used. In addition, the intermediate layer may include an insulating material that is not influenced by electron movement made on the surface of the battery cell container and thus does not induce a reaction caused by electron movement. The material applicable to the intermediate layer is not particularly limited as long as it is an insulating material. Specifically, an insulating plastic or the like can be used. Furthermore, the outer layer may include a conductive material. Specifically, it may include nickel, stainless, nickel-stainless alloys or nickel-stainless mixtures.
상기 3중 구조의 용기는 코인형 셀에 적용 가능한 전해액 저장부의 한 예로서, 본 발명에 따른 전해액 저장부는 제조되는 전지셀의 용도 및 형태에 따라 다양한 형태로 변형 가능하다.The triple structure container is an example of an electrolyte storage unit applicable to a coin cell, and the electrolyte storage unit according to the present invention may be modified in various forms according to the use and shape of the battery cell to be manufactured.
본 발명에 따른 아연공기 이차전지는,Zinc air secondary battery according to the present invention,
전지의 외부로부터 공급되는 가성칼리 수용액을 전해액 저장부에 주입하는 전해액 주입구; 및An electrolyte injection hole for injecting an aqueous caustic solution supplied from the outside of the battery into the electrolyte storage unit; And
전해액 공급부를 통하여 공급되는 가성칼리 수용액의 양을 조절하는 전해액 유량 조절기 중 어느 하나 이상을 더 포함할 수 있다.It may further include any one or more of the electrolyte flow rate controller for adjusting the amount of caustic aqueous solution supplied through the electrolyte supply.
본 발명에 따른 상기 전해액 주입구는 전해액 저장부에 저장된 전해액을 모두 사용하여 더 이상의 충방전이 어려운 경우, 전지의 외부로부터 전해액을 보충할 수 있는 입구의 역할을 수행할 수 있다. 전해액 주입구의 형태는 전해액 저장부의 밀봉 상태를 유지할 수 있는 구조라면, 특별히 제한되는 것은 아니다. 구체적으로 예를 들면, 전해액 저장용기에 외향으로 돌출된 형태로 형성된 개구 및 이를 밀봉하는 나사 형태의 덮개를 포함하는 구조를 가지거나, 전해액 저장부 용기에 형성된 원형 공극 및 이를 밀폐할 수 있는 고무 소재의 마개를 포함하는 구조를 가질 수 있다.The electrolyte injection hole according to the present invention may serve as an inlet for replenishing electrolyte from the outside of the battery when it is difficult to further charge and discharge using all of the electrolyte stored in the electrolyte storage unit. The form of the electrolyte injection hole is not particularly limited as long as it is a structure capable of maintaining the sealed state of the electrolyte storage portion. Specifically, for example, having a structure including an opening formed in a form protruding outward in the electrolyte storage container and a screw-shaped cover for sealing it, or a circular void formed in the electrolyte storage container, and a rubber material capable of sealing it It may have a structure including a stopper.
본 발명에 따른 상기 전해액 유량 조절기는 전해액 공급부에 포함되어 공기극 및 음극으로 공급되는 전해액의 양을 조절하는 역할을 수행할 수 있다. 전해액 유량 조절기는 그 형태나 조절방식을 제한하는 것은 아니나, 구체적으로 예를 들면, 전해액의 공급량 등이 설정 가능한 센서, 여는 정도 또는 세기에 따라 전해액의 공급량을 조절하는 밸브 등의 형태로 사용할 수 있다. The electrolyte flow rate regulator according to the present invention may be included in the electrolyte supply portion may serve to adjust the amount of the electrolyte supplied to the cathode and the cathode. The electrolyte flow regulator does not limit its form or control method, but may be used in the form of, for example, a sensor that can set the supply amount of the electrolyte, or a valve that adjusts the supply amount of the electrolyte depending on the opening degree or strength. .
또한, 본 발명은 하나의 실시예에서, 전지셀 용기의 개구가 형성된 영역에 전지부의 공기 양극막이 접합되도록 전지부를 도입하는 단계;In addition, in one embodiment, the present invention includes the steps of introducing the battery unit such that the air cathode film of the battery unit is bonded to the region where the opening of the battery cell container is formed;
전지부와 전해액 공급부를 연결하는 단계;Connecting the battery unit and the electrolyte supply unit;
전해액 공급부와 전해액 저장부를 연결하는 단계; 및Connecting an electrolyte supply unit and an electrolyte storage unit; And
전지셀 용기로 밀봉하는 단계를 포함하는 상기 아연공기 이차전지의 제조방법을 제공한다.It provides a method for producing the zinc-air secondary battery comprising the step of sealing with a battery cell container.
본 발명에 따른 아연공기 이차전지의 제조방법은 먼저, 음극활성물질, 전해액 및 겔화제의 혼합물로부터 아연 음극겔을 제조하고, 공기 양극막, 분리막 및 상기에서 제조된 아연 음극겔을 순차적으로 적층하여 전지부를 제조한다. 그 후, 전지셀 용기의 산소 이동을 위한 개구가 형성된 영역에 공기 양극막이 접하도록 전지부를 전지셀 용기에 도입하고, 전지부와 전해액 공급부를 연결한다. 이후, 상기 전해액 공급부와 전해액 저장부를 연결한 다음, 전지셀 용기로 밀봉하여 아연공기 이차전지를 제조할 수 있다.In the method of manufacturing a zinc air secondary battery according to the present invention, first, a zinc anode gel is prepared from a mixture of an anode active material, an electrolyte solution and a gelling agent, and the air cathode membrane, the separator and the zinc anode gel prepared above are sequentially stacked. The battery part is manufactured. Thereafter, the battery part is introduced into the battery cell container so that the air anode film is in contact with the region where the opening for oxygen movement of the battery cell container is formed, and the battery part is connected to the electrolyte supply part. Thereafter, the electrolyte supply unit and the electrolyte storage unit may be connected, and then sealed with a battery cell container to manufacture a zinc air secondary battery.
이때, 본 발명에 따른 상기 아연공기 이차전지의 제조방법에 있어서, 전지부에 전해액 공급부를 연결하는 단계는,At this time, in the manufacturing method of the zinc-air secondary battery according to the present invention, the step of connecting the electrolyte supply unit to the battery unit,
전지부의 공기 양극막 및 아연 음극겔에 절연성 플라스틱 모세관을 연결하거나; 또는Connecting an insulating plastic capillary to the air cathode membrane and the zinc anode gel of the battery unit; or
다공성 라인의 제 1면이 전지부의 공기 양극막에, 제 2면이 분리막에 접합되도록 도입하여 수행될 수 있다.The first surface of the porous line may be introduced into the air cathode membrane of the battery unit, and the second surface is bonded to the separator.
상기 전지부와 전해액 공급부를 연결하는 단계는 아연공기 이차전지의 용도나 형태에 따라 연결방식이 변형될 수 있다.In the connecting of the battery unit and the electrolyte supply unit, the connection method may be modified according to the use or form of the zinc air secondary battery.
보다 구체적으로, 상기 단계는 전해액으로부터 유래되는 수산화이온(OH-)가 사용되는 공기 양극막 및 아연 음극겔에 전해액이 절연성 플라스틱 모세관을 직접 연결하여 수행하거나, 또는 전지부 제조 시, 다공성 라인이 공기 양극막과 아연 음극겔의 사이에 존재하는 분리막과 함께, 제 1면은 전지부의 공기 양극막 또는 아연 음극겔과 제 2면은 분리막에 접합되도록 연결하여 수행할 수 있다. 이 경우, 상기 다공성 라인은 두께가 넓은 필름 형태를 사용할 수 있다.More specifically, the step is performed by directly connecting an insulating plastic capillary to an air anode membrane and a zinc cathode gel using hydroxide ions (OH ) derived from the electrolyte, or when manufacturing the battery unit, the porous line is air Along with the separator existing between the anode membrane and the zinc anode gel, the first surface may be performed by connecting the air cathode membrane or the zinc cathode gel and the second surface of the battery unit to be bonded to the separator. In this case, the porous line may use a wide film form.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited to the following Examples and Experimental Examples.
제조예 1Preparation Example 1
Co 계열 촉매가 함유된 양극(ADE75, (주)미트)을 가로 2.5 cm 및 세로 7.0 cm의 크기로 재단하였다. 그 후, 아연 분말(39.8 질량부), 폴리아크릴산(0.4 질량부) 및 6M의 가성칼리 수용액(59.8 질량부)을 혼합하여 아연 음극겔을 제조하고, 폴리프로필렌 막(셀가드3501)을 분리막으로 사용하여 도 1과 같은 아연공기 이차전지 단위셀을 제조하였다.A cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass) and 6 M aqueous solution of caustic solution (59.8 parts by mass) were mixed to prepare a zinc anode gel, and the polypropylene membrane (Celgard 3501) was used as a separator. A zinc air secondary battery unit cell as shown in FIG. 1 was prepared.
제조예 2Preparation Example 2
상기 제조예 1에서 아연 음극겔 제조 시, 아연 분말, 폴리아크릴산 및 6M의 가성칼리 수용액을 39.8 질량부/0.4 질량부/59.8 질량부로 혼합하는 대신에, 19.8질량부/1 질량부/79.2 질량부로 혼합하는 것을 제외하고는 상기 제조예 1과 동일한 방법으로 수행하여 단위셀 내의 전해액의 비율이 높은 아연공기 이차전지 단위셀을 제조하였다.When preparing the zinc negative electrode gel in Preparation Example 1, instead of mixing the zinc powder, polyacrylic acid and 6M caustic aqueous solution to 39.8 parts by mass / 0.4 parts by mass / 59.8 parts by mass, to 19.8 parts by mass / 1 part by mass / 79.2 parts by mass A zinc air secondary battery unit cell having a high proportion of the electrolyte solution in the unit cell was prepared in the same manner as in Preparation Example 1, except for mixing.
제조예 3Preparation Example 3
상기 제조예 1에서 아연 음극겔 제조 시, 아연 분말을 사용하는 대신에 산화아연 분말을 사용하는 것을 제외하고는 상기 제조예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다.In preparing the zinc negative electrode gel in Preparation Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Preparation Example 1, except that zinc oxide powder was used instead of zinc powder.
제조예 4Preparation Example 4
상기 제조예 1에서 아연 음극겔 제조 시, 아연 분말을 사용하는 대신에 수산화아연 분말을 사용하는 것을 제외하고는 상기 제조예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다.In preparing the zinc negative electrode gel in Preparation Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Preparation Example 1, except that zinc hydroxide powder was used instead of zinc powder.
제조예 5Preparation Example 5
Co 계열 촉매가 함유된 양극(ADE75, (주)미트)을 가로 2.5 cm 및 세로 7.0 cm의 크기로 재단하였다. 그 후, 산화아연 분말(53.8 질량부), 폴리아크릴산(0.5 질량부), 6M의 가성칼리 수용액(43 질량부) 및 도전재인 수퍼-피(super-P, 2.7 질량부)를 혼합하여 아연 음극겔을 제조하고, 폴리프로필렌 막(셀가드3501)을 사용하여 아연공기 이차전지 단위셀을 제조하였다.A cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc oxide powder (53.8 parts by mass), polyacrylic acid (0.5 parts by mass), 6M aqueous solution of caustic solution (43 parts by mass), and super-P (2.7 parts by mass) as a conductive material were mixed to form a zinc negative electrode. A gel was prepared, and a zinc air secondary battery unit cell was prepared using a polypropylene membrane (Cellgard 3501).
실시예 1Example 1
Co 계열 촉매가 함유된 양극(ADE75, (주)미트)을 가로 2.5 cm 및 세로 7.0 cm의 크기로 재단하였다. 그 후, 아연 분말(39.8 질량부), 폴리아크릴산(0.4 질량부) 및 6M의 가성칼리 수용액(59.8 질량부)을 혼합하여 아연 음극겔을 제조하였다. 양극과 아연 음극겔 사이에 흡습성이 우수한 휴지 및 폴리프로필렌 막(셀가드3501)이 접합되도록 적층하여 전해액 공급부가 도입된 전지부를 제조하였다. 제조된 전지부와 연결된 전해액 공급부를 6M의 가성칼리 수용액이 저장된 전해액 저장부와 연결한 다음, 니켈 용기에 수용하여 아연공기 이차전지 단위셀을 제조하였다. 또한, 제조된 아연공기 이차전지 단위셀의 충방전 실험을 수행하여, 단위셀의 충방전 주기가 10회 이상인 것을 확인하였다.A cathode (ADE75, Co., Ltd.) containing a Co-based catalyst was cut to a size of 2.5 cm in width and 7.0 cm in length. Thereafter, zinc powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass), and 6M caustic aqueous solution (59.8 parts by mass) were mixed to prepare a zinc negative electrode gel. The battery part into which the electrolyte supply part was introduced was laminated by laminating a tissue having excellent hygroscopicity and a polypropylene film (Celgard 3501) between the positive electrode and the zinc negative electrode gel. An electrolyte supply unit connected to the prepared battery unit was connected to an electrolyte storage unit in which a 6M caustic aqueous solution was stored, and then accommodated in a nickel container to prepare a zinc air secondary battery unit cell. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
실시예 2Example 2
상기 실시예 1에서 전해액 공급부로서 흡습성이 우수한 휴지를 사용하는 대신에 부직포를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다. 또한, 제조된 아연공기 이차전지 단위셀의 충방전 실험을 수행하여, 단위셀의 충방전 주기가 10회 이상인 것을 확인하였다.A zinc air secondary battery unit cell was manufactured in the same manner as in Example 1, except that a nonwoven fabric was used instead of a tissue having excellent hygroscopicity as an electrolyte supply part in Example 1. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
실시예 3Example 3
상기 실시예 1에서 아연 음극겔 제조 시, 아연 분말을 사용하는 대신에 산화아연 분말을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다. 또한, 제조된 아연공기 이차전지 단위셀의 충방전 실험을 수행하여, 단위셀의 충방전 주기가 10회 이상인 것을 확인하였다.When preparing the zinc negative electrode gel in Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Example 1 except for using zinc oxide powder instead of zinc powder. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
실시예 4Example 4
상기 실시예 1에서 아연 음극겔 제조 시, 아연 분말을 사용하는 대신에 수산화아연 분말을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다. 또한, 제조된 아연공기 이차전지 단위셀의 충방전 실험을 수행하여, 단위셀의 충방전 주기가 10회 이상인 것을 확인하였다.In preparing the zinc negative electrode gel in Example 1, a zinc air secondary battery unit cell was prepared in the same manner as in Example 1, except that zinc hydroxide powder was used instead of zinc powder. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
실시예 5Example 5
상기 실시예 1에서 아연 음극겔 제조 시, 산화아연 분말(39.8 질량부), 폴리아크릴산(0.4 질량부) 및 6M의 가성칼리 수용액(59.8 질량부)을 혼합하는 대신에 아연 분말(53.8 질량부), 폴리아크릴산(0.5 질량부), 6M의 가성칼리 수용액(43 질량부) 및 도전재인 수퍼-피(super-p, 2.7 질량부)를 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다. 또한, 제조된 아연공기 이차전지 단위셀의 충방전 실험을 수행하여, 단위셀의 충방전 주기가 10회 이상인 것을 확인하였다.When preparing the zinc negative electrode gel in Example 1, zinc powder (53.8 parts by mass) instead of mixing zinc oxide powder (39.8 parts by mass), polyacrylic acid (0.4 parts by mass) and 6M caustic aqueous solution (59.8 parts by mass) , Polyacrylic acid (0.5 parts by mass), 6M caustic aqueous solution (43 parts by mass) and the conductive material super-p (super-p, 2.7 parts by mass) was mixed in the same manner as in Example 1 The zinc air secondary battery unit cell was prepared. In addition, a charge / discharge test of the manufactured zinc air secondary battery unit cell was performed to confirm that the charge / discharge cycle of the unit cell was 10 or more times.
비교예 1Comparative Example 1
상기 실시예 1에서 전해액 공급부를 6M의 가성칼리 수용액이 저장된 전해액 저장부에 연결하는 대신에 증류수가 저장된 전해액 저장부에 연결하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 아연공기 이차전지 단위셀을 제조하였다.A zinc air secondary battery was carried out in the same manner as in Example 1 except that the electrolyte supply unit was connected to the electrolyte storage unit in which distilled water was stored instead of the electrolyte storage unit in which 6M caustic aqueous solution was stored. A unit cell was prepared.
실험예 1. 전해액 공급 여부에 따른 아연공기 이차전지의 충방전 평가 1Experimental Example 1. Evaluation of charge and discharge of zinc air secondary battery according to the supply of electrolyte solution 1
전해액 공급 여부에 따른 아연공기 이차전지의 충방전에 미치는 영향을 평가하기 위하여 하기와 같은 실험을 수행하였다.In order to evaluate the effect of charging and discharging of the zinc air secondary battery according to the supply of the electrolyte solution, the following experiment was performed.
본 발명에 따른 제조예 1 및 제조예 2에서 제조된 아연공기 이차전지 단위셀을 대상으로 하여 단위셀의 충방전 실험을 수행하였다. 이때, 충방전 실험은 다음과 같다. 먼저, 아연공기 이차전지 단위셀을 처음 1분간 방치한 후, 10 mA의 전류로 0.7 V까지 정전류 방전하였다. 그런 다음, 3시간 동안 2.1 V로 정전압 충전하였다. 이러한 상기 과정을 충방전 1회로 설정하고, 이를 10회 반복수행하였다. 단위셀의 충방전 주기는 단위셀의 충방전에 따른 충방전 전압을 측정하였다. 또한, 충방전이 되지 않는 제조예 1에서 제조된 단위셀의 음극표면에 6M 가성칼리 수용액(1.5 ml)을 공급한 다음, 상기와 동일한 방법으로 전지의 충방전을 3회 수행하여 단위셀의 충방전 전압을 측정하였다. 측정결과를 도 2 내지 도 4에 나타내었으며, 측정된 결과로부터 충방전 주기를 도출하였다.Charge and discharge experiments were performed on the unit cells of zinc air secondary batteries manufactured in Preparation Examples 1 and 2 according to the present invention. At this time, the charge and discharge experiment is as follows. First, the zinc air secondary battery unit cell was left for 1 minute for the first time, and then constant current discharged to 0.7 V at a current of 10 mA. Then, it was charged with 2.1 V for 3 hours. This process was set to one charge and discharge cycle, and this was repeated 10 times. The charge and discharge cycle of the unit cell measured the charge and discharge voltage according to the charge and discharge of the unit cell. In addition, 6M caustic aqueous solution (1.5 ml) was supplied to the negative electrode surface of the unit cell prepared in Preparation Example 1, which does not charge and discharge, and then charge and discharge of the battery three times in the same manner as described above to charge the unit cell. The discharge voltage was measured. The measurement results are shown in FIGS. 2 to 4, and the charge and discharge cycles were derived from the measured results.
도 2 내지 도 4에 나타낸 바와 같이, 아연공기 이차전지의 전지부 즉, 공기 양극막 및 아연 음극겔에 전지의 충방전에 요구되는 전해액을 공급하는 경우, 충방전 주기가 증가하는 것을 알 수 있다.2 to 4, it can be seen that the charge / discharge cycle increases when the electrolyte solution required for charging and discharging the battery is supplied to the battery unit of the zinc air secondary battery, that is, the air cathode membrane and the zinc anode gel. .
보다 구체적으로, 도 2를 참고하면 전지부의 아연 음극겔에 포함되는 아연 분말 및 전해액의 중량부가 39.8:59.8인 제조예 1의 단위셀은 1차 방전 이후, 실질적인 전지의 충방전이 이뤄지지 않는 것으로 나타났다.More specifically, referring to FIG. 2, the unit cell of Preparation Example 1 in which the weight part of the zinc powder and the electrolyte solution included in the zinc negative electrode gel of the battery part is 39.8: 59.8 is not substantially charged or discharged after the first discharge. appear.
반면, 도 3을 참고하면 단위셀의 방전 이후, 아연 분말 및 전해액의 중량부가 19.8:79.2로서, 충방전에 요구되는 충분한 양의 전해액을 포함하는 아연 음극겔이 사용된 제조예 2의 단위셀은 1차 방전 이후, 충방전이 4회까지 가능한 것으로 확인되었다.On the other hand, referring to Figure 3, after the discharge of the unit cell, the weight of the zinc powder and the electrolyte solution is 19.8: 79.2, the unit cell of Preparation Example 2 in which a zinc negative electrode gel containing a sufficient amount of the electrolyte required for charging and discharging was used After the primary discharge, it was confirmed that up to four charge and discharge cycles were possible.
또한, 도 4를 참고하면 충방전이 되지 않는 제조예 1의 단위셀의 음극 표면에 전해액을 공급하고, 충방전 전압을 3회 측정한 결과, 전해액이 공급된 단위셀은 3회 이상 충방전이 가능한 것으로 확인되었다.In addition, referring to FIG. 4, the electrolyte is supplied to the negative electrode surface of the unit cell of Preparation Example 1, which is not charged and discharged, and the charge and discharge voltage is measured three times. It was found to be possible.
이로부터, 충방전 주기를 증가시키기 위해서는 산화된 아연을 환원하기 위한 충분한 양의 전해액이 충방전 시 아연 음극겔에 공급되어야 하는 것을 알 수 있다.From this, it can be seen that in order to increase the charge and discharge cycle, a sufficient amount of electrolyte solution for reducing the oxidized zinc should be supplied to the zinc anode gel during charge and discharge.
실험예 2. 전해액 공급 여부에 따른 아연공기 이차전지의 충방전 평가 2Experimental Example 2 Evaluation of Charge / Discharge of Zinc-Air Secondary Battery According to Supply of Electrolyte
아연공기 이차전지는 전해액 내 카보네이트 생성 및 수분 증발에 따른 전해액 H2O의 손실로 인하여 충방전 주기가 길지 않아 전지의 수명이 짧은 문제가 있다. 이에, 아연공기 이차전지의 공기 양극막 및 아연 음극겔에 전해액 자체를 공급하는 경우와 전해액에서 손실되는 증류수(H2O)를 공급하는 경우의 충방전 주기를 평가하기 위하여 하기와 같은 실험을 수행하였다.Zinc air secondary battery has a problem that the life cycle of the battery is short because the charge and discharge cycle is not long due to the loss of the electrolyte H 2 O due to the formation of carbonate in the electrolyte and the evaporation of moisture. Accordingly, the following experiments are performed to evaluate the charge and discharge cycles when the electrolyte itself is supplied to the air cathode membrane and the zinc anode gel of the zinc air secondary battery and when the distilled water (H 2 O) lost from the electrolyte is supplied. It was.
본 발명에 따른 실시예 1 및 비교예 1의 아연공기 이차전지 단위셀을 대상으로 하여, 단위셀의 충방전 실험을 수행하였다. 충방전 실험은 상기 실험예 1과 동일한 조건으로 수행하였으며, 그 결과를 도 5 및 도 6에 나타내었다.The charging / discharging experiment of the unit cell was performed for the zinc air secondary battery unit cells of Example 1 and Comparative Example 1 according to the present invention. Charge and discharge experiments were carried out under the same conditions as in Experimental Example 1, the results are shown in Figures 5 and 6.
도 5 및 도 6에 나타낸 바와 같이, 본 발명에 따른 아연공기 이차전지는 전지부에 전해액을 공급함으로써 전지의 충방전 주기가 증가하는 것을 알 수 있다.5 and 6, the zinc air secondary battery according to the present invention can be seen that the charge and discharge cycle of the battery increases by supplying the electrolyte to the battery unit.
보다 구체적으로, 도 5를 참고하면 충방전 시, 아연공기 이차전지 단위셀의 공기 양극막 및 아연 음극겔에 충분한 양의 전해액이 공급되는 실시예 1의 단위셀은 충방전 주기가 10회 이상인 것으로 나타났다.More specifically, referring to FIG. 5, the unit cell of Example 1, in which a sufficient amount of electrolyte is supplied to the air cathode membrane and the zinc anode gel of the zinc air secondary battery unit cell during charge and discharge, has a charge and discharge cycle of 10 or more times. appear.
반면, 도 6을 참고하면 공기 양극막 및 아연 음극겔에 증류수가 공급되는 비교예 1의 단위셀은 충방전이 2회까지 가능한 것으로 확인되었다.On the other hand, referring to Figure 6 it was confirmed that the unit cell of Comparative Example 1 in which distilled water is supplied to the air cathode film and the zinc cathode gel can be charged and discharged up to two times.
이로부터, 아연공기 이차전지의 전지부에 손실되는 수분을 공급하는 경우, 전지의 충방전은 가능해지기는 하나, 충방전 주기가 짧고, 전해액을 직접 공급하는 경우, 전지의 충방전이 가능할 뿐만 아니라, 그 주기가 10회 이상으로 현저히 증가하는 것을 알 수 있다.From this, when the water lost to the battery part of the zinc air secondary battery is supplied, the battery can be charged and discharged, but the charge and discharge cycle is short, and when the electrolyte is directly supplied, the battery can be charged and discharged. It can be seen that the period increases significantly more than 10 times.
실험예 3. 음극활성물질의 종류에 따른 아연공기 이차전지의 충방전 평가Experimental Example 3 Evaluation of Charge and Discharge of Zinc-Air Secondary Batteries According to Kinds of Cathode Active Materials
아연공기 이차전지의 음극 전극은 표면에 방전 시 형성되는 절연체인 산화아연 또는 수산화아연으로 인하여 충방전 주기가 감소될 수 있다. 이에, 충방전 시, 음극활성물질의 종류에 따른 충방전 주기를 평가하기 위하여 하기와 같은 실험을 수행하였다.The negative electrode of the zinc-air secondary battery may have a reduced charge / discharge cycle due to zinc oxide or zinc hydroxide, which is an insulator formed on the surface of the zinc air secondary battery. Thus, the following experiment was performed to evaluate the charge and discharge cycle according to the type of the negative electrode active material during charge and discharge.
본 발명에 따른 제조예 3 내지 제조예 5에서 제조된 아연공기 이차전지 단위셀을 대상으로 하여, 단위셀의 충방전 실험을 수행하였다. 충방전 조건은 실험예 1의 충방전 조건과 동일하게 수행하였으며, 그 결과를 도 7 내지 도 9에 나타내었다.The charging / discharging experiment of the unit cells was performed for the zinc air secondary battery unit cells manufactured in Preparation Examples 3 to 5 according to the present invention. Charge and discharge conditions were carried out in the same manner as the charge and discharge conditions of Experimental Example 1, the results are shown in Figures 7 to 9.
도 7 내지 도 9에 나타낸 바와 같이, 아연공기 이차전지의 아연 음극겔에 포함되는 음극활성물질의 종류에 상관없이 충방전 주기가 증가하는 것을 알 수 있다.As shown in Figures 7 to 9, it can be seen that the charge and discharge cycle increases regardless of the type of the negative electrode active material included in the zinc negative electrode gel of the zinc air secondary battery.
보다 구체적으로, 도 7을 참고하면 아연공기 이차전지의 방전으로 인하여 형성되는 산화아연(ZnO)을 음극활성물질로서 포함하는 제조예 3의 단위셀은 9회까지 충방전이 가능한 것으로 나타났다.More specifically, referring to FIG. 7, a unit cell of Preparation Example 3 including zinc oxide (ZnO) formed as a discharge of a zinc air secondary battery as a negative electrode active material was charged and discharged up to nine times.
또한, 도 8을 참고하면 아연공기 이차전지의 방전으로 인하여 형성되는 수산화아연(Zn(OH)2)을 음극활성물질로서 포함하는 제조예 4의 단위셀은 7회까지 충방전이 가능한 것으로 확인되었다.In addition, referring to FIG. 8, the unit cell of Preparation Example 4 containing zinc hydroxide (Zn (OH) 2 ) formed as a discharge of a zinc air secondary battery as a negative electrode active material was found to be capable of charging and discharging up to seven times. .
나아가, 도 9를 참고하면 음극활성물질로서 산화아연(ZnO)을 포함하고, 도전재인 슈퍼-피(super-p)를 공기 양극막에 포함하는 제조예 5의 단위셀은 도전재에 의한 음극활성물질의 전도성 구현으로 인하여 10회까지 충방전이 가능한 것으로 확인되었다.Furthermore, referring to FIG. 9, the unit cell of Preparation Example 5 including zinc oxide (ZnO) as a negative electrode active material and including a super-p as a conductive material in the air cathode film is a cathode active material by a conductive material. Due to the conductive implementation of the material, it was confirmed that charging and discharging was possible up to 10 times.
이는 아연 음극겔에 포함된 충분한 양의 전해액에 의해 산화아연과 수산화아연이 아연으로 재생되는 것을 의미한다. 즉, 절연체인 산화아연 및 수산화아연을 음극활성물질로서 사용할 경우, 이들을 산화 또는 환원 반응을 통한 아연 재생을 위하여 충분한 양의 전해액이 요구되는 것을 알 수 있다. 이와 마찬가지로, 절연체인 산화아연의 전도성을 구현하기 위하여 도전재를 더 포함하는 단위셀의 경우에도, 전지의 충방전을 위해서는 충분한 양의 전해액이 요구됨을 알 수 있다.This means that zinc oxide and zinc hydroxide are regenerated into zinc by a sufficient amount of electrolyte contained in the zinc anode gel. That is, when zinc oxide and zinc hydroxide, which are insulators, are used as the negative electrode active material, it can be seen that a sufficient amount of electrolyte is required for zinc regeneration through oxidation or reduction. Similarly, in the case of the unit cell further including a conductive material to realize the conductivity of zinc oxide, which is an insulator, a sufficient amount of electrolyte is required for charging and discharging the battery.
이로부터, 본 발명에 따른 아연공기 이차전지는 음극활성물질로서 절연체인 산화아연 또는 수산화아연을 포함하여도, 공기 양극막 및 아연 음극겔에 충분한 양의 전해액이 공급되어 아연 음극겔 내에서 산화아연 또는 수산화아연의 아연 재생 반응이 수행되므로, 충방전 주기가 증가하는 것을 알 수 있다.From this, the zinc-air secondary battery according to the present invention is supplied with a sufficient amount of an electrolyte solution to the air cathode film and the zinc cathode gel, even though it contains zinc oxide or zinc hydroxide as an insulator as an anode active material. Alternatively, since zinc regeneration reaction of zinc hydroxide is performed, it can be seen that the charge and discharge cycle is increased.
[부호의 설명][Description of the code]
1: 양극1: anode
2: 공기 양극막2: air anode membrane
3: 분리막3: separator
4: 아연 음극겔4: zinc cathode gel
5: 음극5: cathode
6: 전해액 공급부6: electrolyte supply
7: 전해액 저장부7: electrolyte storage unit
8: 3중 구조의 전해액 저장부 용기8: Triple electrolyte storage container
9: 전지셀 용기9: battery cell container
10: 개구10: opening
11: 개스킷11: gasket
12: 전해액 주입구12: electrolyte inlet

Claims (13)

  1. 공기 양극막을 포함하는 공기극,An air electrode comprising an air anode membrane,
    아연(Zn)을 포함하는 음극활성물질 및 가성칼리 수용액을 포함하는 아연 음극겔로 구성되는 음극, 및A negative electrode consisting of a negative electrode active material containing zinc (Zn) and a zinc negative electrode gel containing a caustic aqueous solution, and
    상기 공기극과 음극 사이에 존재하는 분리막을 포함하는 전지부;A battery unit including a separator between the cathode and the cathode;
    전해액인 가성칼리 수용액을 저장하는 전해액 저장부; 및An electrolyte storage unit for storing a caustic aqueous solution as an electrolyte; And
    상기 전해액 저장부로부터 공기극 및 음극겔에 가성칼리 수용액을 공급하는 전해액 공급부를 포함하는 아연공기 이차전지.A zinc air secondary battery comprising an electrolyte supply unit for supplying a caustic aqueous solution to the cathode and the cathode gel from the electrolyte storage unit.
  2. 제 1 항에 있어서,The method of claim 1,
    공기 양극막은 Co를 함유하는 촉매, MnO2를 함유하는 촉매 또는 Pt를 함유하는 촉매로 이루어진 군으로부터 선택되는 1종 이상의 촉매를 포함하는 아연공기 이차전지.The air cathode membrane is a zinc air secondary battery comprising at least one catalyst selected from the group consisting of a catalyst containing Co, a catalyst containing MnO 2 , or a catalyst containing Pt.
  3. 제 1 항에 있어서,The method of claim 1,
    아연을 포함하는 음극활성물질은 아연(Zn), 산화아연(ZnO), 수산화아연(Zn(OH)2) 및 아세트산아연(Zn(CH3CO2)2)으로 이루어진 군으로부터 선택되는 1종 이상인 아연공기 이차전지.The negative electrode active material containing zinc is at least one member selected from the group consisting of zinc (Zn), zinc oxide (ZnO), zinc hydroxide (Zn (OH) 2 ), and zinc acetate (Zn (CH 3 CO 2 ) 2 ). Zinc air secondary battery.
  4. 제 1 항에 있어서,The method of claim 1,
    아연 음극겔은 슈퍼-피(super-p), 아세틸렌 블랙(acetylene Black), 덴카 블랙(denka Black), 케첸 블랙(ketjen Black) 및 기상성장탄소섬유(VGCF, vapor grown carbon fiber)로 이루어진 군으로부터 선택되는 1종 이상의 탄소 도전재를 더 포함하는 아연공기 이차전지.Zinc anode gels are from the group consisting of super-p, acetylene black, denka black, ketjen black and vapor grown carbon fiber (VGCF). Zinc air secondary battery further comprises at least one carbon conductive material selected.
  5. 제 1 항에 있어서,The method of claim 1,
    분리막은 수계 전해액에 적합하도록 개량된 폴리프로필렌(PP, polypropylene), 폴리에틸렌(PE, Polyethylene) 및 나일론(Nylon)으로 이루어진 군으로부터 선택되는 1종 이상의 중합체를 포함하는 필름인 아연공기 이차전지.Separation membrane is a zinc-air secondary battery is a film containing at least one polymer selected from the group consisting of polypropylene (PP, polypropylene), polyethylene (PE, Polyethylene) and nylon (Nylon) improved to suit the aqueous electrolyte.
  6. 제 1 항에 있어서,The method of claim 1,
    전해액 공급부는 부직포, 종이 및 펄프로 이루어지는 군으로부터 선택되는 1종 이상의 다공성 라인; 또는 0.1 mm 내지 2 mm의 절연성 플라스틱 모세관을 포함하는 아연공기 이차전지.The electrolyte supply portion may include at least one porous line selected from the group consisting of nonwoven fabric, paper, and pulp; Or 0.1 mm to 2 mm zinc air secondary battery comprising an insulating plastic capillary.
  7. 제 1 항에 있어서,The method of claim 1,
    전지셀 내에 존재하는 전지부, 전해액 공급부 및 전해액 저장부에 대하여, Regarding the battery unit, the electrolyte supply unit and the electrolyte storage unit existing in the battery cell,
    전해액 저장부의 최상단 및 최하단의 중심선은 전지부 높이의 1/3 이상에 존재하고,The center line at the top and bottom of the electrolyte reservoir is at least 1/3 of the height of the battery compartment,
    전해액 공급부는 전해액 저장부의 최하단 내지 중심선 사이에 도입되어 전지부와 전해액 저장부를 연결하는 구조를 갖는 아연공기 이차전지.The electrolyte supply unit is introduced between the lowermost and the center line of the electrolyte storage unit has a structure for connecting the battery unit and the electrolyte storage unit zinc air secondary battery.
  8. 제 1 항에 있어서,The method of claim 1,
    아연공기 이차전지는 전지부의 공기극이 접합되는 영역에 하나 이상의 개구를 포함하고, 니켈 또는 스테인레스 스틸을 함유하는 전도성 용기에 수용되는 아연공기 이차전지.The zinc air secondary battery includes one or more openings in a region where the air electrode of the battery unit is joined, and is contained in a conductive container containing nickel or stainless steel.
  9. 제 1 항에 있어서,The method of claim 1,
    전해액 저장부는,The electrolyte storage unit,
    강염기에 대하여 내부식성을 갖는 니켈을 함유하는 내층;An inner layer containing nickel having corrosion resistance to strong bases;
    니켈을 함유하는 내층의 외벽을 형성하여 내층에 절연성을 부여하는 플라스틱 중간층; 및A plastic intermediate layer forming an outer wall of the inner layer containing nickel to impart insulation to the inner layer; And
    플라스틱 중간층의 외벽을 형성하고, 전도성을 갖는 외층을 포함하는 3중 구조의 용기를 포함하는 아연공기 이차전지.A zinc air secondary battery comprising a container having a triple structure which forms an outer wall of a plastic intermediate layer and includes an outer layer having conductivity.
  10. 제 9 항에 있어서,The method of claim 9,
    외층은 니켈, 스테인레스 스틸, 니켈-스테인레스 스틸 합금 또는 니켈-스테인레스 스틸 혼합물을 포함하는 아연공기 이차전지.The outer layer is a zinc air secondary battery containing nickel, stainless steel, nickel-stainless steel alloy or nickel-stainless steel mixture.
  11. 제 1 항에 있어서,The method of claim 1,
    전지의 외부로부터 공급되는 가성칼리 수용액을 전해액 저장부에 주입하는 전해액 주입구; 및An electrolyte injection hole for injecting an aqueous caustic solution supplied from the outside of the battery into the electrolyte storage unit; And
    전해액 공급부를 통하여 공급되는 가성칼리 수용액의 양을 조절하는 전해액 유량 조절기 중 어느 하나 이상을 더 포함하는 아연공기 이차전지.The zinc air secondary battery further comprises any one or more of an electrolyte flow rate controller for controlling the amount of caustic aqueous solution supplied through the electrolyte supply unit.
  12. 전지셀 용기의 개구가 형성된 영역에 전지부의 공기 양극막이 접합되도록 전지부를 도입하는 단계;Introducing a battery unit such that an air anode film of the battery unit is bonded to a region where an opening of the battery cell container is formed;
    전지부와 전해액 공급부를 연결하는 단계;Connecting the battery unit and the electrolyte supply unit;
    전해액 공급부와 전해액 저장부를 연결하는 단계; 및Connecting an electrolyte supply unit and an electrolyte storage unit; And
    전지셀 용기로 밀봉하는 단계를 포함하는 제1항에 따른 아연공기 이차전지의 제조방법.A method of manufacturing a zinc air secondary battery according to claim 1 comprising sealing with a battery cell container.
  13. 제 12 항에 있어서,The method of claim 12,
    전지부에 전해액 공급부를 연결하는 단계는,Connecting the electrolyte supply unit to the battery unit,
    전지부의 공기 양극막 및 아연 음극겔에 절연성 플라스틱 모세관을 연결하거나; 또는Connecting an insulating plastic capillary to the air cathode membrane and the zinc anode gel of the battery unit; or
    다공성 막의 제1 면이 전지부의 공기 양극막에, 제2 면이 분리막에 접합되도록 도입하여 수행되는 아연공기 이차전지의 제조방법.A method of manufacturing a zinc air secondary battery, which is performed by introducing a first surface of a porous membrane into an air anode membrane of a battery unit and a second surface bonded to a separator.
PCT/KR2014/004457 2014-01-27 2014-05-19 Zinc-air secondary battery and preparation method therefor WO2015111803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0009403 2014-01-27
KR1020140009403A KR101574004B1 (en) 2014-01-27 2014-01-27 Zinc-air secondary cell battery and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2015111803A1 true WO2015111803A1 (en) 2015-07-30

Family

ID=53681582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004457 WO2015111803A1 (en) 2014-01-27 2014-05-19 Zinc-air secondary battery and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101574004B1 (en)
WO (1) WO2015111803A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400701B2 (en) 2014-01-23 2019-09-03 Mahindra And Mahindra Limited Multiple mode control system for a vehicle
CN114156572A (en) * 2021-10-20 2022-03-08 清华大学深圳国际研究生院 Zinc-free cathode zinc-air battery
CN115036518A (en) * 2022-06-29 2022-09-09 河北工业大学 Miniature all-solid-state zinc-air battery and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778059B1 (en) 2015-11-11 2017-09-14 주식회사 이엠따블유에너지 Zinc-air cell
KR101943469B1 (en) 2016-06-20 2019-04-18 김동환 Air injectable zinc air secondary battery
KR102576174B1 (en) 2021-07-12 2023-09-07 원광대학교산학협력단 Electrolyte preservation type zinc air battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127061A (en) * 1999-01-26 2000-10-03 High-Density Energy, Inc. Catalytic air cathode for air-metal batteries
KR20080079754A (en) * 2007-02-28 2008-09-02 주식회사 미트 Metal/air battery with electrolyte isolated from the cell compartment
JP2012028017A (en) * 2010-07-20 2012-02-09 Aisin Seiki Co Ltd Metal-air battery system
KR20120087420A (en) * 2011-01-28 2012-08-07 주식회사 이엠따블유에너지 Metal Air Secondary Cell Unit and Moudle for Metal Air Secondary Cell Comprising the Same
KR20140004640A (en) * 2010-12-03 2014-01-13 아이엠알에이 아메리카, 인코포레이티드. A rechargeable electrochemical energy storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127061A (en) * 1999-01-26 2000-10-03 High-Density Energy, Inc. Catalytic air cathode for air-metal batteries
KR20080079754A (en) * 2007-02-28 2008-09-02 주식회사 미트 Metal/air battery with electrolyte isolated from the cell compartment
JP2012028017A (en) * 2010-07-20 2012-02-09 Aisin Seiki Co Ltd Metal-air battery system
KR20140004640A (en) * 2010-12-03 2014-01-13 아이엠알에이 아메리카, 인코포레이티드. A rechargeable electrochemical energy storage device
KR20120087420A (en) * 2011-01-28 2012-08-07 주식회사 이엠따블유에너지 Metal Air Secondary Cell Unit and Moudle for Metal Air Secondary Cell Comprising the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400701B2 (en) 2014-01-23 2019-09-03 Mahindra And Mahindra Limited Multiple mode control system for a vehicle
CN114156572A (en) * 2021-10-20 2022-03-08 清华大学深圳国际研究生院 Zinc-free cathode zinc-air battery
CN114156572B (en) * 2021-10-20 2024-01-02 清华大学深圳国际研究生院 Zinc-free negative electrode zinc air battery
CN115036518A (en) * 2022-06-29 2022-09-09 河北工业大学 Miniature all-solid-state zinc-air battery and preparation method thereof
CN115036518B (en) * 2022-06-29 2023-11-03 河北工业大学 Miniature all-solid-state zinc-air battery and preparation method thereof

Also Published As

Publication number Publication date
KR101574004B1 (en) 2015-12-02
KR20150089150A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2015111803A1 (en) Zinc-air secondary battery and preparation method therefor
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2017196012A1 (en) Composition for polymer electrolyte and lithium secondary battery comprising same
WO2019190127A1 (en) Lithium metal battery
WO2018169369A1 (en) Electrolyte additive and lithium secondary battery electrolyte comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2022220360A1 (en) Electrode having improved safety and method for manufacturing same
WO2020067717A1 (en) Negative electrode for all-solid-state battery and method for manufacturing same
WO2019004699A1 (en) Lithium secondary battery
WO2019045399A2 (en) Lithium secondary battery
WO2021235818A1 (en) Method for manufacturing secondary battery
WO2022086247A1 (en) Electrode powder for manufacturing dry electrode for secondary battery, preparation method therefor, method for manufacturing dry electrode using same, dry electrode, secondary battery comprising same, energy storage apparatus, and apparatus for manufacturing dry electrode
WO2020162659A1 (en) Organic electrolyte, and secondary battery comprising same
WO2018236200A1 (en) Positive electrode for lithium secondary battery and lithium secondary battery including same
WO2020235909A1 (en) Cathode active material for calcium-doped sodium secondary battery, and sodium secondary battery including same
WO2015170786A1 (en) Organic electrolyte and lithium battery employing said electrolyte
WO2022154309A1 (en) Method for charging and discharging secondary battery
WO2021172857A1 (en) Method for manufacturing secondary battery
WO2015064987A1 (en) Lithium secondary battery
WO2021194205A1 (en) Method for manufacturing negative electrode
WO2022092831A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2022010225A1 (en) Anode, and secondary battery comprising anode
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2019107838A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880192

Country of ref document: EP

Kind code of ref document: A1