WO2015111767A1 - 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들 - Google Patents

통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들 Download PDF

Info

Publication number
WO2015111767A1
WO2015111767A1 PCT/KR2014/000649 KR2014000649W WO2015111767A1 WO 2015111767 A1 WO2015111767 A1 WO 2015111767A1 KR 2014000649 W KR2014000649 W KR 2014000649W WO 2015111767 A1 WO2015111767 A1 WO 2015111767A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamforming
matrix
communication device
channel correlation
statistical channel
Prior art date
Application number
PCT/KR2014/000649
Other languages
English (en)
French (fr)
Inventor
길계태
이주용
조동호
오상민
임한영
최일도
김태환
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2015111767A1 publication Critical patent/WO2015111767A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • Embodiments below relate to a mixed beamforming method for determining an RF beamforming coefficient based on statistical channel information, and apparatuses for performing the same.
  • One of the important design considerations in a wireless communication system is to achieve the theoretical capacity of a given channel between a base station and a terminal. To do this, it is necessary to use a transmission scheme suitable for a given channel.
  • Multi-user Multiple Input Multiple Output (MU-MIMO) transmission schemes accept terminals with small channel correlations at different locations at the same time, using the same radio frequency resources, compared to single-user transmission schemes. High frequency efficiency can be obtained. However, since the channel correlation of terminals is generally greater than zero, multi-user interference occurs and thus, the ideal frequency efficiency is inevitable.
  • MU-MIMO Multi-user Multiple Input Multiple Output
  • Existing methods for obtaining ideal frequency efficiency include ZF-BD (Zero-Forcing Block Diagonalization) and CI (Channel Inversion) as baseband precoding methods.
  • ZF-BD Zero-Forcing Block Diagonalization
  • CI Cho-Inversion
  • the ZF-BD scheme and the CI scheme are preprocessing methods at baseband to prevent interference between multi-user symbol streams transmitted through RF chains.
  • the CI method is a method of preventing interference between all streams
  • the ZF-BD method is a method of preventing interference between terminals, and postprocessing the interference between two or more symbol streams transmitted to the same terminal at a receiving terminal. This is how you do it.
  • RF chain-specific beamforming (hereinafter referred to as 'RF beamforming') is performed with a large number of transmission antennas at the RF stage to obtain high beamforming gain, and baseband precoding is performed to multi-user interference. Remove it.
  • RF beamforming has a meaning to spatially separate the signal transmitted from the base station to the terminals.
  • Embodiments reduce multi-user interference while reducing the overhead involved in collecting channel information by obtaining statistical channel correlation matrices to determine the RF stage beamforming coefficients in a hybrid beamforming base station using an array antenna having a very large antenna number. It can provide a technique to effectively prevent the.
  • an RF beam corresponding to each of the plurality of terminal apparatuses is based on statistical channel correlation matrices for channels between the array antenna of the communication apparatus and a plurality of terminal apparatuses.
  • the method may include determining a forming coefficient and performing RF beamforming on symbol streams to be transmitted to the plurality of terminal apparatuses based on the RF beamforming coefficients.
  • the method may further comprise performing baseband precoding on the symbol streams.
  • the determining of the RF beamforming coefficient may include: a signal quasi-spatial singular vector of an average of effective channel responses of subchannels of the communication apparatus and the plurality of terminal apparatuses using a first channel correlation matrix among the statistical channel correlation matrices; Calculating a first matrix comprising signal subspace singular vetors, and using the second channel correlation matrix of the statistical channel correlation matrices to obtain the noise subspace singular vectors of the mean. Calculating a second matrix including a second matrix; calculating a third matrix using a third channel correlation matrix among the first matrix, the second matrix, and the statistical channel correlation matrix; And determining the RF beamforming coefficients based on the second matrix and the third matrix.
  • the calculating of the third matrix may include calculating the third matrix using the first matrix, the second matrix, and the third channel correlation matrix according to the number of columns of the RF beamforming coefficients. Can be.
  • the third matrix is an eigenvector, and when the number of columns is greater than 1, the third matrix may include eigenvectors of the number of columns as a column vector.
  • the column number may be independent of the subchannel.
  • the second matrix may include the noise quasi-space singular vectors as a column vector.
  • the method may further comprise obtaining the statistical channel correlation matrices.
  • the obtaining of the statistical channel correlation matrices may include calculating the statistical channel correlation matrices using at least one of an arithmetic mean of an expectation operation and an angle of arrival of a signal received from the plurality of terminal devices. It may include.
  • Obtaining the statistical channel correlation matrices may further comprise reconstructing the statistical channel correlation matrix by performing eigenvalue decomposition on the statistical channel correlation matrix.
  • the communication device corresponds to each of the plurality of terminal devices based on an array antenna and statistical channel correlation matrices for a channel between the array antenna and a plurality of terminal devices communicating with the communication device.
  • the apparatus may include a mixed beamforming determiner configured to determine an RF beamforming coefficient and an RF beamformer configured to perform RF beamforming on symbol streams to be transmitted to the plurality of terminal devices based on the RF beamforming coefficients.
  • the apparatus may further include a baseband precoder that performs baseband precoding on the symbol streams.
  • the mixed beamforming determination unit calculates the statistical channel correlation matrices using at least one of an arithmetic mean of an expectation calculation and an arrival angle of signals received from the plurality of terminal devices, and decomposes the eigenvalues into the statistical channel correlation matrix. Can be reconstructed by performing the statistical channel correlation matrix.
  • the apparatus may be a base station.
  • the communication system includes a plurality of terminal devices and an array antenna, and each of the plurality of terminal devices using statistical channel correlation matrices for channels between the array antenna and the plurality of terminal devices. And a communication device for determining an RF beamforming coefficient corresponding to the.
  • the communication device may perform RF beamforming on symbol streams to be transmitted to the plurality of terminal devices based on the RF beamforming coefficients.
  • FIG. 1 illustrates a communication system according to one embodiment.
  • FIG. 2 is a flowchart illustrating a method of calculating an RF beamforming coefficient for a K-th terminal device.
  • FIG. 3 illustrates beam patterns and constellations by multi-user RF beamforming according to an embodiment in a Rayleigh fading channel environment.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The terms are only for the purpose of distinguishing one component from another component, for example, without departing from the scope of the rights according to the inventive concept, the first component may be called a second component, Similarly, the second component may also be referred to as the first component.
  • FIG. 1 illustrates a communication system according to one embodiment.
  • a communication system 10 may include a communication device 100 and a plurality of terminal devices 200-1 to 200 -K, where K is one or more natural numbers.
  • the plurality of terminal devices 200-1 to 200 -K may be K.
  • the communication system 10 may perform communication in a wireless communication environment.
  • communication system 10 may perform communication in the 3GPP (3 rd Generation Partnership Project), LTE (Long-Term Evolution), and WiMAX (World Interoperability for Microwave Access) based.
  • 3GPP 3 rd Generation Partnership Project
  • LTE Long-Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication device 100 and the plurality of terminal devices 200-1 to 200 -K may communicate with each other.
  • the communication device 100 and the plurality of terminal devices 200-1 to 200 -K may exchange signals (or data) with each other.
  • the communication device 100 may be a base station.
  • the communication device 100 may perform RF beamforming coefficients W 1 to W K corresponding to each of the plurality of terminal devices 200-1 to 200 -K based on statistical channel information, for example, statistical channel correlation matrices. Next, RF beamforming may be performed on the symbol streams s 1 to s K to be transmitted to each of the plurality of terminal devices 200-1 to 200 -K.
  • the communication device 100 may perform a statistical channel correlation on an array antenna, for example, a channel between a plurality of antennas ANT-1 to ANT-N and each terminal device 200-1 to 200-K. Matrices can be obtained.
  • the communication device 100 can mitigate the overhead of real-time instantaneous channel estimation for RF beamforming.
  • the communication device 100 may improve sensitivity to a channel estimation error.
  • the communication apparatus 100 may perform multiuser RF beamforming using RF beamforming coefficients W 1 to W K based on statistical channel correlation matrices to remove multiuser interference.
  • the communication device 100 may perform baseband precoding on symbol streams s 1 to s K to be transmitted to each of the plurality of terminal devices 200-1 to 200 -K.
  • the communication device 100 may perform baseband precoding using instantaneous channel information to remove extra multiuser interference components that cannot be removed through RF beamforming.
  • the communication device 100 includes a baseband precoder 130, an RF chain (not shown), an RF beamforming unit 150, and a plurality of antennas ANT-1 to ANT-N, where N is a natural number of 1 or more. It may include.
  • the baseband precoder 130 may receive symbol streams s 1 s s K.
  • each of the symbol streams s 1 to s K may be Can be a dog.
  • the baseband precoder 130 may baseband precode the symbol streams s 1 ⁇ s K to generate output signals d 1 ⁇ d K.
  • baseband precoder 130 may include a plurality of precoders, for example K precoders.
  • Baseband precoder 130 is sent to the respective output signals (d 1 ⁇ d K) of each RF (radio frequency), each output through a chain signals (d 1 ⁇ d K) for RF beam forming section 150 corresponding to the Can be.
  • each RF chain may include an inverse fast fourier transform (IFFT), a parallel to serial converter, a digital-to-analog converter, and the like.
  • RF beam forming unit 150 RF beamforming coefficients (W 1 ⁇ W K) of the symbol streams to transmit to a plurality of terminal devices (200-1 ⁇ 200-K), respectively on the basis of (1 s ⁇ s K) RF beamforming may be performed. For example, RF beamforming unit 150 based on the RF beamforming coefficients (W 1 ⁇ W K) of the output signal of the baseband precoder 130 is transmitted over a respective RF chain (d 1 ⁇ d K ) And a beam may be transmitted to the plurality of terminal devices 200-1 to 200 -K through the plurality of antennas ANT-1 to ANT-N.
  • the RF beamformer 150 may include each RF beamformer 151-1 ⁇ 151 -K and a signal combiner 153 corresponding to each RF chain.
  • Each RF beamformer 151-1 to 151-K separates each of the signals d 1 to d K transmitted through each RF chain into N signals, and RF beamforming the separated N signals.
  • Signals x 1 to x K may be generated by applying the coefficients W 1 to W K.
  • each of the signals x 1 to x K may be N signals.
  • each of the signals x 1 to x K may be signals whose phase is changed according to the RF beamforming coefficients W 1 to W K.
  • Each of the RF beamformers 151-1 through 151 -K may include a frequency converter, a phase shifter, a power amplifier, and the like.
  • the first RF beamformer 151-1 separates the signal d 1 transmitted through the corresponding RF chain into N signals, and the RF beamforming coefficient W 1 is applied to the separated N signals.
  • the K th RF beamformer 151 -K separates the signal d K transmitted through the corresponding RF chain into N signals, and applies the RF beamforming coefficient W K to the separated N signals.
  • N signals x K may be generated.
  • the signal combiner 153 combines the signals x 1 to x K to form a beam, and transmits the N transmitted signals x with the beams formed to the plurality of antennas ANT-1 to ANT-N. Can be. For example, the signal combiner 153 may transmit N transmit signals x to respective antennas ANT-1 to ANT-N.
  • the plurality of antennas ANT-1 to ANT-N may be implemented in a structure such as a uniform linear array (ULA) or a uniform planar array (UPA).
  • ULA uniform linear array
  • UPA uniform planar array
  • the mixed beamforming determiner 170 performs a statistical channel correlation matrix for an array antenna, for example, a channel between a plurality of antennas ANT-1 to ANT-N and respective terminal devices 200-1 to 200-K. Can be obtained.
  • the mixed beamforming determiner 170 may determine RF beamforming coefficients W 1 to W K corresponding to the respective terminal devices 200-1 to 200 -K based on statistical channel correlation matrices. .
  • Effective channels H 1 to H K may be formed between the communication device 100 and the plurality of terminal devices 200-1 to 200 -K. Each of the plurality of terminal devices 200-1 to 200 -K may receive corresponding reception signals y 1 to y K through a corresponding effective channel.
  • Each received signal y 1 to y K may be influenced by a channel by the equalizer 210-1 to 210 -K of each terminal device 200-1 to 200 -K.
  • Equalizer 210-K of the K-th terminal apparatus 200-K is represented by It can be expressed as.
  • the symbol detectors 230-1 to 230 -K of the respective terminal devices 200-1 to 200 -K are connected to the equalizers 210-1 to 210 -K of the terminal devices 200-1 to 200 -K.
  • a desired symbol can be detected from the output signals r 1 to r K.
  • the communication device 100 performs symbol streams on the subchannel f. It is assumed that the transmission to the K terminal devices (200-1 ⁇ 200-K; K is one or more natural numbers) at the same time.
  • the baseband precoder 130 may baseband precode the symbol streams s 1 ⁇ s K to generate the precoded signals d 1 ⁇ d K.
  • the baseband precoder 130 corresponding to the subchannel f is It can be expressed as.
  • the output signals d 1 to d K may be expressed through Equation 1.
  • the transmission signal x of the communication device 100 may be expressed through Equation 2.
  • the received signal y K received through the subchannel f in the K-th terminal device 200 -K may be expressed by Equation 3 below.
  • Equation 5 Each matrix of Equation 4 may be defined as Equation 5.
  • Equation 4 may be expressed as Equation 6 through Equation 5.
  • the mixed beamforming determination unit 170 of the communication device 100 is an RF beamforming matrix for the K-th terminal device 200 -K. It will be described only to determine.
  • RF beamforming matrix for the K-th terminal device 200 -K Must satisfy the following three conditions:
  • RF beamforming matrix I a signal (y K ) transmitted from the K-th terminal device 200 -K to a destination, that is, Should not reach other terminal devices except for the K-th terminal device 200 -K.
  • RF beamforming matrix that satisfies the above three conditions May be a value independent of the subchannel f. Is the effective channel response for subchannel f Instead the RF beamforming matrix based on the mean for all subchannels f Calculate the optimal value of and for each subchannel The extra multiuser interference due to the variance of can be eliminated through the baseband precoding of the baseband precoder 130. At this time, Mean for all subchannels f in Can be defined as
  • the average value of the correlation matrix for each subchannel may be expressed as Equation 8.
  • Equations 3 and 6 may be arranged from Equations 7 to 9 and 10.
  • Equation 9 and Equation 10 ego, to be.
  • RF beamforming matrix May be obtained based on the received signal model and the above-described conditions.
  • Condition 1 i.e., a signal transmitted to a K-th terminal device 200-K to a destination
  • the RF beamforming matrix end It must consist of the column vectors in the null space of the. May be expressed as Singular Value Decomposition as shown in Equation 11.
  • Is It can mean singular vectors of signal subspace. Is It can mean a matrix having the noise subspace singular vectors of the column vector. Therefore, the RF beamforming matrix to satisfy condition 1) May be expressed as in Equation 12.
  • Is It may mean a matrix having the noise subspace eigenvectors as a column vector, and may be expressed as in Equation 11 to Equation 13.
  • the first channel correlation matrix For all subchannels It can represent the average value.
  • Equation 12 Condition 2 can be used to determine the solution to. Substituting Equation 12 into Equation 9, the signal received by the K-th terminal device 200 -K may be represented again as shown in Equation 14.
  • Equation 15 Singular Value Decomposition as shown in Equation 15.
  • Equation 12 may be expressed again as in Equation 16.
  • Is It means a matrix having the signal subspace eigenvectors of the column vector as a column vector, can be expressed as shown in Equation 17.
  • the second channel correlation matrix For all subchannels Represents the average value.
  • Equation 16 a signal received by the K-th terminal device 200 -K may be represented again as in Equation 18.
  • Is It can mean the i th column vector of. Assuming The optimal value of may be expressed as in Equation 20.
  • Optimal value of It can be an eigenvector with the largest eigenvalue of. therefore, Optimal value of Biggest of Having eigenvalues You can have eigenvectors as column vectors.
  • the communication device 100 may use statistical channel correlation matrices for each terminal device required by Equations 13, 17, and 21, namely, Can be collected in advance from each terminal device (200-1 ⁇ 200-K).
  • the mixed beamforming determination unit 170 may perform a channel correlation matrix for each terminal device 200-1 to 200 -K.
  • the arithmetic mean is applied to the calculation of the expectation or the angle of arrival of the signal received by the communication device 100 from each terminal device 200-1 to 200 -K is used. It can be calculated by the method.
  • the mixed beamforming determiner 170 may determine a channel correlation matrix for each terminal device 200-1 to 200 -K. , Then perform eigenvalue decomposition, and then use the dominant component with large eigenvalue Can be reconstructed.
  • Channel correlation matrix Eigenvalue decomposition of When the first L of the eigenvalues is a dominant component, the channel correlation matrix may be reconfigured as shown in Equation 22.
  • Equation 22 Substituting Equation 22 into Equation 13 , , And matrices It can be applied to the process of calculating the.
  • the calculating process may be substantially the same as described above.
  • FIG. 2 is a flowchart illustrating a method of calculating an RF beamforming coefficient for a K-th terminal device.
  • the mixed beamforming determiner 170 performs RF beamforming coefficients for a K-th terminal device 200 -K. Based on the channel correlation matrices collected to yield The null space eigenvectors of a column vector It can be calculated (410). This may be as described above in Equations 12 and 13.
  • the mixed beamforming determiner 170 Matrix with signal subspace eigenvectors as column vectors It can be calculated (420). This may be as described above in Equations 15 and 18.
  • the mixed beamforming determiner 170 In other words The number of columns may be compared with the set value (430).
  • the RF beamforming coefficients for the K-th terminal device 200 -K Is may be the same as (460).
  • the RF beamforming coefficients for the K-th terminal device 200 -K Is It may be the same as (460).
  • FIG. 3 illustrates beam patterns and constellations by multi-user RF beamforming according to an embodiment in a Rayleigh fading channel environment.
  • simulation results of an RF beamforming method according to an embodiment in a Rayleigh channel using an OFDM signal according to the LTE standard It is assumed that the number of transmission antennas of the communication device 100 is 32, and that each of the four terminal devices has one reception antenna. In order to verify the multi-user interference prevention performance, it is assumed that the signal-to-noise ratio (SNR) at the receiver is 30 dB.
  • SNR signal-to-noise ratio
  • the OFDM symbol has 1024 subchannels, and the communication device 100 performs D / A conversion and upconversion of OFDM symbols for each terminal device encoded by 16-QAM, and then transmits through the RF beamformer for each terminal device and transmits them. .
  • the bit error rate (BER) of the multi-user RF beamformer may be 0.0246, which is superior to the conventional method.
  • the apparatus described above may be implemented as a hardware component, a software component, and / or a combination of hardware components and software components.
  • the devices and components described in the embodiments are, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors, microcomputers, field programmable gate arrays (FPGAs).
  • ALUs arithmetic logic units
  • FPGAs field programmable gate arrays
  • PLU programmable logic unit
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • processing device includes a plurality of processing elements and / or a plurality of types of processing elements. It can be seen that it may include.
  • the processing device may include a plurality of processors or one processor and one controller.
  • other processing configurations are possible, such as parallel processors.
  • the software may include a computer program, code, instructions, or a combination of one or more of the above, and configure the processing device to operate as desired, or process it independently or collectively. You can command the device.
  • Software and / or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device in order to be interpreted by or to provide instructions or data to the processing device. Or may be permanently or temporarily embodied in a signal wave to be transmitted.
  • the software may be distributed over networked computer systems so that they may be stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer readable recording media.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

혼합 빔포밍 방법, 및 이를 수행하는 장치들이 개시된다. 일 실시예에 따른 통신 장치의 혼합 빔포밍 방법은 상기 통신 장치의 배열안테나와 각 단말장치 사이의 채널에 대한 통계적 채널 상관 행렬들을 획득하는 단계와, 상기 통계적 채널 상관 행렬들에 기초하여 상기 각 단말장치에 대응하는 RF 빔포밍 계수를 결정하는 단계와, 상기 RF 빔포밍 계수에 기초하여 상기 각 단말장치로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 단계를 포함할 수 있다.

Description

통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들
아래 실시예들은 통계적 채널정보에 기초하여 RF 빔포밍 계수를 결정하는 혼합 빔포밍 방법, 및 이를 수행하는 장치들에 관한 것이다.
무선 통신 시스템에서 중요한 설계 고려사항들 중 하나는 기지국과 단말기 사이에 주어진 채널이 갖는 이론적 용량(Sahnnon Capacity)을 달성하는 것이다. 이를 위해서는 주어진 채널에 적합한 전송방식을 사용하는 것이 필요하다. MU-MIMO(multi-user Multiple Input Multiple Output) 전송방식은 서로 다른 위치에 있어 채널상관도(channel correlation)가 작은 단말기들을 동일한 무선 주파수 자원을 통해 동시에 수용함으로써 단일사용자(single user) 전송방식에 비해 높은 주파수효율을 얻을 수 있게 된다. 하지만, 단말기들의 채널상관도는 일반적으로 영(zero)보다 크기 때문에 다중사용자간섭(multi-user interference)이 발생하여 이상적인 주파수효율을 없을 수 없게 된다.
이상적인 주파수효율을 얻기 위한 기존의 방법들에는 기저대역 프리코딩 방식으로서 ZF-BD(Zero-Forcing Block Diagonalization) 방식과 CI(Channel Inversion) 방식이 포함되며, 규모가 큰 배열안테나를 사용하여 RF단과 기저대역(baseband, 또는 주파수대역)에서 복합적으로 다중사용자간섭을 방지하는 복합 빔포밍(Hybrid beamforming) 방식이 있다. ZF-BD 방식과 CI 방식은 RF chain들을 통해 송신되는 다중사용자 심볼 스트림 간의 간섭을 방지하기 위해 기저대역에서 전처리(preprocessing)하는 방법이다. CI 방식은 모든 스트림들 사이의 간섭을 방지하는 방식이고, ZF-BD 방식은 단말기들 간의 간섭을 방지하는 방법으로서 동일한 단말기로 송신되는 2개 이상의 심볼 스트림 간의 간섭을 수신단말기에서 후처리(postprocessing)하도록 하는 방법이다.
한편, 기지국의 RF chain별로 2 개 이상의 안테나를 사용하여 RF단에서 빔포밍을 함으로써 높은 빔포밍 이득을 얻어 단말기의 수신 신호의 품질을 개선할 수 있다. 이런 기지국을 위해서, 복합 빔포밍 방식이 제시되었다. 이 복합 빔포밍 방식에서는 RF단에서 많은 수의 송신안테나로 RF chain별 빔포밍(이하 'RF 빔포밍'이라 함)을 수행하여 높은 빔포밍 이득을 얻고, 기저대역 프리코딩을 수행하여 다중사용자 간섭을 제거한다. RF빔포밍은 기지국에서 단말기들로 송신되는 신호를 공간적으로 분리되도록 하는 의미를 가진다.
실시예들은 안테나수가 매우 큰 배열안테나를 사용하는 복합빔포밍 기지국에서 RF단 빔포밍 계수를 결정하기 위해 통계적 채널 상관 행렬을 획득함으로써 채널정보를 수집하는 데 수반되는 오버헤드를 감소하면서 동시에 다중사용자 간섭을 효과적으로 방지하는 기술을 제공할 수 있다.
일 실시예에 따른 통신 장치의 혼합 빔포밍 방법은 상기 통신 장치의 배열안테나와 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들에 기초하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 단계와, 상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 단계를 포함할 수 있다.
상기 방법은 상기 심볼 스트림들에 기저대역 프리코딩을 수행하는 단계를 더 포함할 수 있다.
상기 RF 빔포밍 계수를 결정하는 단계는 상기 통계적 채널 상관 행렬들 중에서 제1 채널 상관 행렬을 이용하여 상기 통신 장치와 상기 복수의 단말장치들의 부채널에 대한 유효 채널 응답의 평균치의 신호 준공간 특이 벡터들(signal subspace singular vetors)을 포함하는 제1 행렬을 계산하는 단계와, 상기 통계적 채널 상관 행렬들 중에서 제2 채널 상관 행렬을 이용하여 상기 평균치의 잡음 준공간 특이 벡터들(noise subspace singular vectors)을 포함하는 제2 행렬을 계산하는 단계와, 상기 제1 행렬, 상기 제2 행렬, 및 상기 통계적 채널 상관 행렬들 중에서 제3 채널 상관 행렬을 이용하여 제3 행렬을 계산하는 단계와, 상기 제1 행렬, 상기 제2 행렬, 및 상기 제3 행렬에 기초하여 상기 RF 빔포밍 계수를 결정하는 단계를 포함할 수 있다.
상기 제3 행렬을 계산하는 단계는 상기 RF 빔포밍 계수의 컬럼 수에 따라 상기 제1 행렬, 상기 제2 행렬, 및 상기 제3 채널 상관 행렬을 이용하여 상기 제3 행렬을 계산하는 단계를 포함할 수 있다.
상기 컬럼 수가 1일 때 상기 제3 행렬은 고유 벡터이고, 상기 컬럼 수가 1보다 클 때 상기 제3 행렬은 상기 컬럼 수의 고유 벡터들을 컬럼 벡터로 포함할 수 있다.
상기 컬럼 수는 상기 부채널과 독립적일 수 있다.
상기 제2 행렬은 상기 잡음 준공간 특이 벡터들을 컬럼 벡터로 포함할 수 있다.
상기 방법은 상기 통계적 채널 상관 행렬들을 획득하는 단계를 더 포함할 수 있다.
상기 통계적 채널 상관 행렬들을 획득하는 단계는 기대치 연산의 산술 평균 및 상기 복수의 단말장치들로부터 수신되는 신호의 도달각(angle of arrival) 중에서 적어도 어느 하나를 이용하여 상기 통계적 채널 상관 행렬들을 계산하는 단계를 포함할 수 있다.
상기 통계적 채널 상관 행렬들을 획득하는 단계는 상기 통계적 채널 상관 행렬에 고유값 분해(eigenvalue decomposition)를 수행하여 상기 통계적 채널 상관 행렬을 재구성하는 단계를 더 포함할 수 있다.
일 실시예에 따른 통신 장치는 배열안테나와, 상기 배열안테나와 상기 통신 장치와 통신하는 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들에 기초하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 혼합 빔포밍 결정부와, 상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치들로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 RF 빔포밍부를 포함할 수 있다.
상기 장치는 상기 심볼 스트림들에 기저대역 프리코딩을 수행하는 기저대역 프리코더를 더 포함할 수 있다.
상기 혼합 빔포밍 결정부는 기대치 연산의 산술 평균 및 상기 복수의 단말장치들로부터 수신되는 신호의 도달각 중에서 적어도 어느 하나를 이용하여 상기 통계적 채널 상관 행렬들을 계산하고, 상기 통계적 채널 상관 행렬에 고유값 분해를 수행하여 상기 통계적 채널 상관 행렬을 재구성할 수 있다.
상기 장치는 기지국일 수 있다.
일 실시예에 따른 통신 시스템은 복수의 단말장치들과, 배열안테나를 포함하고, 상기 배열안테나와 상기 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들을 이용하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 통신 장치를 포함할 수 있다.
상기 통신 장치는 상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치들로 송신할 심볼 스트림들에 RF 빔포밍을 수행할 수 있다.
도 1은 일 실시예에 따른 통신 시스템을 나타낸다.
도 2는 제K 단말장치를 위한 RF 빔포밍 계수를 산출하는 방법을 설명하기 위한 순서도이다.
도 3은 Rayleigh fading 채널 환경에서 일 실시예에 따른 다중사용자 RF 빔포밍에 의한 빔 패턴과 성상도를 나타낸다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
본 발명의 개념에 따른 실시예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만, 예를 들어 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 표현들, 예를 들어 "~사이에"와 "바로~사이에" 또는 "~에 이웃하는"과 "~에 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용된 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의도어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 일 실시예에 따른 통신 시스템을 나타낸다.
도 1을 참조하면, 통신 시스템(communication system; 10)은 통신 장치(100)와 복수의 단말 장치들(200-1~200-K, K는 1 이상의 자연수)을 포함할 수 있다. 예를 들어, 복수의 단말 장치들(200-1~200-K)은 K개일 수 있다.
통신 시스템(10)은 무선 통신 환경에서 통신을 수행할 수 있다. 예를 들어, 통신 시스템(10)은 3GPP(3rd Generation Partnership Project), LTE(Long-Term Evolution), 및 WiMAX(World Interoperability for Microwave Access) 기반에서 통신을 수행할 수 있다.
통신 장치(100)와 복수의 단말 장치들(200-1~200-K)는 서로 통신할 수 있다. 예를 들어, 통신 장치(100)와 복수의 단말 장치들(200-1~200-K)는 서로 신호(또는 데이터)를 주고 받을 수 있다. 통신 장치(100)는 기지국(base station)일 수 있다.
통신 장치(100)는 통계적 채널 정보, 예를 들어 통계적 채널 상관 행렬들에 기초하여 복수의 단말 장치들(200-1~200-K) 각각에 대응하는 RF 빔포밍 계수(W1~WK)를 결정하고, 복수의 단말 장치들(200-1~200-K) 각각에 송신할 심볼 스트림들(s1~sK)에 RF 빔포밍을 수행할 수 있다. 예를 들어, 통신 장치(100)는 배열안테나, 예를 들어 복수의 안테나들(ANT-1~ANT-N)과 각 단말장치(200-1~200-K) 사이의 채널에 대한 통계적 채널 상관 행렬들을 획득할 수 있다.
순시 채널 정보를 사용하는 대신 상대적으로 낮은 주기로 수집 가능한 통계적 채널 상관 행렬들을 획득함으로써, 통신 장치(100)는 RF 빔포밍을 위한 실시간 순시 채널 추정의 오버헤드를 완화할 수 있다. 또한, 통신 장치(100)는 채널 추정 오차에 대한 민감도를 개선할 수 있다.
통신 장치(100) 통계적 채널 상관 행렬들에 기초한 RF 빔포밍 계수(W1~WK)를 사용하는 다중사용자 RF빔포밍을 수행하여 다중사용자 간섭을 제거할 수 있다.
통신 장치(100)는 복수의 단말 장치들(200-1~200-K) 각각에 송신할 심볼 스트림들(s1~sK)에 기저대역 프리코딩을 수행할 수 있다. 통신 장치(100)는 순시 채널 정보를 사용하는 기저대역 프리코딩을 수행하여 RF 빔포밍을 통해 제거하기 못한 여분의 다중사용자 간섭 성분을 제거할 수 있다.
통신 장치(100)는 기저대역 프리코더(130), RF 체인들(미도시), RF 빔포밍부(150) 및 복수의 안테나들(ANT-1~ANT-N, N은 1이상의 자연수)을 포함할 수 있다.
기저대역 프리코더(130)는 심볼 스트림들(s1~sK)을 수신할 수 있다. 예를 들어, 심볼 스트림들(s1~sK) 각각은
Figure PCTKR2014000649-appb-I000001
개일 수 있다.
기저대역 프리코더(130)는 심볼 스트림들(s1~sK)을 기저대역 프리코딩하여 출력 신호들(d1~dK)을 생성할 수 있다. 예를 들어, 기저대역 프리코더(130)는 복수의 프리코더들, 예를 들어 K개의 프리코더들을 포함할 수 있다.
기저대역 프리코더(130)는 각 출력 신호(d1~dK)에 대응하는 각 RF(radio frequency) 체인을 통해 각 출력 신호(d1~dK)를 RF 빔포밍부(150)로 전송할 수 있다. 예를 들어, 각 RF 체인은 IFFT(inverse fast fourier transform), 병렬/직렬 변환기(parallel to serial converter), 및 DAC(digital-to-analog converter) 등을 포함할 수 있다.
RF 빔포밍부(150)는 RF 빔포밍 계수(W1~WK)에 기초하여 복수의 단말 장치들(200-1~200-K) 각각에 송신할 심볼 스트림들(s1~sK)에 RF 빔포밍을 수행할 수 있다. 예를 들어, RF 빔포밍부(150)는 RF 빔포밍 계수(W1~WK)에 기초하여 각 RF 체인을 통해 전송된 기저대역 프리코더(130)의 출력 신호들(d1~dK)에 대해 빔을 형성하고, 형성된 빔을 복수의 안테나들(ANT-1~ANT-N)을 통해 복수의 단말장치들(200-1~200-K)로 전송할 수 있다.
RF 빔포밍부(150)는 각 RF 체인에 대응하는 각 RF 빔포머(151-1~151-K), 및 신호 결합부(153)를 포함할 수 있다.
각 RF 빔포머(151-1~151-K)는 각 RF 체인을 통해 전송된 신호들(d1~dK) 각각을 N개의 신호들로 분리하고, 분리된 N개의 신호들에 RF 빔포밍 계수(W1~WK)를 적용하여 신호들(x1~xK)을 생성할 수 있다. 예를 들어, 신호들(x1~xK) 각각은 N개의 신호들일 수 있다. 또한, 신호들(x1~xK) 각각은 RF 빔포밍 계수(W1~WK)에 따라 위상이 변경된 신호들일 수 있다. 각 RF 빔포머(151-1~151-K)는 주파수 변환기(frequency converter), 위상 변환기(phase shifter), 및 전력 증폭기(power amplifier) 등을 포함할 수 있다.
예를 들어, 제1 RF 빔포머(151-1)는 대응 RF 체인을 통해 전송된 신호(d1)를 N개의 신호들로 분리하고, 분리된 N개의 신호들에 RF 빔포밍 계수(W1)를 적용하여 N개의 신호들(x1)을 생성할 수 있다. 제K RF 빔포머(151-K)는 대응 RF 체인을 통해 전송된 신호(dK)를 N개의 신호들로 분리하고, 분리된 N개의 신호들에 RF 빔포밍 계수(WK)를 적용하여 N개의 신호들(xK)을 생성할 수 있다.
신호 결합부(153)는 신호들(x1~xK)을 결합하여 빔을 형성하고, 빔이 형성된 N개의 송신 신호(x)들을 복수의 안테나들(ANT-1~ANT-N)로 전송할 수 있다. 예를 들어, 신호 결합부(153)는 N개의 송신 신호(x)들을 해당 각 안테나(ANT-1~ANT-N)로 전송할 수 있다.
복수의 안테나들(ANT-1~ANT-N)은 ULA(uniform linear array) 또는 UPA(uniform planar array) 등의 구조로 구현될 수 있다.
혼합 빔포밍 결정부(170)는 배열안테나, 예를 들어 복수의 안테나들(ANT-1~ANT-N)과 각 단말장치(200-1~200-K) 사이의 채널에 대한 통계적 채널 상관 행렬들을 획득할 수 있다.
혼합 빔포밍 결정부(170)는 통계적 채널 상관 행렬들에 기초하여 복수의 단말 장치들(200-1~200-K) 각각에 대응하는 RF 빔포밍 계수(W1~WK)를 결정할 수 있다.
통신 장치(100)와 복수의 단말장치들(200-1~200-K) 간에는 유효 채널들(H1~HK)이 형성될 수 있다. 복수의 단말 장치들(200-1~200-K)은 각각은 해당 유효 채널을 통해 해당 수신 신호(y1~yK)를 수신할 수 있다.
각 수신 신호(y1~yK)는 각 단말장치(200-1~200-K)의 등화기(210-1~210-K)에 의해 채널의 영향이 상쇄될 수 있다. 예를 들어, 제1 단말장치(200-1)의 등화기(210-1)는
Figure PCTKR2014000649-appb-I000002
로 표현되고, 제K 단말장치(200-K)의 등화기(210-K)는
Figure PCTKR2014000649-appb-I000003
로 표현될 수 있다.
Figure PCTKR2014000649-appb-I000004
는 vector 또는 matrix의 Hermitan transposition을 나타낼 수 있다.
각 단말 장치(200-1~200-K)의 심볼검파기(230-1~230-K)는 각 단말 장치(200-1~200-K)의 등화기(210-1~210-K)의 출력 신호(r1~rK)로부터 원하는 심볼을 검파할 수 있다.
아래에서는 통신 장치(100)의 혼합 빔포밍 결정부(170)의 RF 빔포밍 계수(W1~WK)를 결정하는 방법에 대해서 자세히 설명한다. 이때, 통신 장치(100)가 부채널 f를 통하여 심볼 스트림들
Figure PCTKR2014000649-appb-I000005
을 동시에 K개의 단말장치들(200-1~200-K; K는 1이상의 자연수)로 송신하는 경우를 가정한다.
기저대역 프리코더(130)는 심볼 스트림들(s1~sK)을 기저대역 프리코딩하여 프리코딩된 신호들(d1~dK)을 생성할 수 있다. 예를 들어, 부채널 f에 대응하는 기저대역 프리코더(130)는
Figure PCTKR2014000649-appb-I000006
로 표현될 수 있다. 이때, 출력 신호들(d1~dK)은 수학식 1을 통해 표현될 수 있다.
Figure PCTKR2014000649-appb-I000007
이때, 통신 장치(100)의 송신 신호(x)는 수학식 2를 통해 표현될 수 있다.
Figure PCTKR2014000649-appb-I000008
제K 단말장치(200-K)에서 부채널 f를 통해 수신된 수신 신호(yK)는 수학식 3을 통해 표현될 수 있다.
Figure PCTKR2014000649-appb-I000009
여기서,
Figure PCTKR2014000649-appb-I000010
는 제K 단말장치(200-K)의 부채널 f에서의 유효 채널 응답을 의미할 수 있다.
Figure PCTKR2014000649-appb-I000011
는 부가 잡음(additive noise)을 의미할 수 있다. 또한,
Figure PCTKR2014000649-appb-I000012
Figure PCTKR2014000649-appb-I000013
로 정의될 수 있다. 이때, 모든 단말기에서 수신된 신호들은 수학식 4와 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000014
수학식 4의 각 행렬은 수학식 5와 같이 정의될 수 있다.
Figure PCTKR2014000649-appb-I000015
수학식 4는 수학식 5를 통해 수학식 6과 같이 정리되어 표현될 수 있다.
Figure PCTKR2014000649-appb-I000016
설명의 편의를 위해, 통신 장치(100)의 혼합 빔포밍 결정부(170)가 제K 단말장치 (200-K)를 위한 RF 빔포밍 행렬인
Figure PCTKR2014000649-appb-I000017
을 결정하는 것에 한하여 설명한다.
제K 단말장치(200-K)를 위한 RF 빔포밍 행렬인
Figure PCTKR2014000649-appb-I000018
는 다음과 같은 3가지 조건을 만족해야 한다.
1) RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000019
는 제K 단말장치(200-K)를 목적지로 송신되는 신호(yK), 즉
Figure PCTKR2014000649-appb-I000020
가 제K 단말장치(200-K)를 제외한 다른 단말장치들에 도달하지 않도록 해야 한다.
2) RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000021
는 제K 단말장치(200-K)를 목적지로 송신되는 신호
Figure PCTKR2014000649-appb-I000022
가 제K 단말장치(200-K)로 도달할 수 있도록 해야 한다.
3) RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000023
는 제K 단말장치(200-K)를 목적지로 송신되는 신호
Figure PCTKR2014000649-appb-I000024
가 제K 단말장치(200-K)로 도달하는 수신 전력이 최대가 되도록 해야 한다.
상술한 3가지 조건을 만족하는 RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000025
은 부채널 f와 독립적인 값일 수 있다. 부채널 f에 대한 유효 채널 응답인
Figure PCTKR2014000649-appb-I000026
대신에 모든 부채널 f에 대한 평균치에 기초하여 RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000027
의 최적치를 계산하고, 부채널별
Figure PCTKR2014000649-appb-I000028
의 분산으로 인한 여분의 다중사용자 간섭은 기저대역 프리코더(130)의 기저대역 프리코딩을 통해 제거될 수 있다. 이때,
Figure PCTKR2014000649-appb-I000029
의 모든 부채널 f에 대한 평균치를
Figure PCTKR2014000649-appb-I000030
로 정의할 수 있다.
부채널 f에 대한 유효 채널 응답
Figure PCTKR2014000649-appb-I000031
은 수학식 7과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000032
부채널별 상관행렬에 대한 평균치는 수학식 8과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000033
수학식 3과 수학식 6은 수학식 7로부터 수학식 9과 수학식 10으로 정리될 수 있다.
Figure PCTKR2014000649-appb-I000034
수학식 9와 수학식 10에서,
Figure PCTKR2014000649-appb-I000035
이고,
Figure PCTKR2014000649-appb-I000036
이다.
RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000037
은 정리된 수신 신호 모델과 상술한 조건에 기초하여 구해질 수 있다.
조건 1), 즉 제K 단말장치(200-K)를 목적지로 송신되는 신호
Figure PCTKR2014000649-appb-I000038
가 다른 단말장치들로 도달하지 않도록 하기 위해서는, 수학식 10으로부터 RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000039
Figure PCTKR2014000649-appb-I000040
의 null space에 존재하는 column vector들로 구성되어야 한다.
Figure PCTKR2014000649-appb-I000041
는 수학식 11과 같이 Singular Value Decomposition으로 표현될 수 있다.
Figure PCTKR2014000649-appb-I000042
여기서,
Figure PCTKR2014000649-appb-I000043
Figure PCTKR2014000649-appb-I000044
의 signal subspace singular vector들을 의미할 수 있다.
Figure PCTKR2014000649-appb-I000045
Figure PCTKR2014000649-appb-I000046
의 noise subspace singular vector들을 column vector로 가지는 행렬을 의미할 수 있다. 따라서, 조건 1)을 만족하기 위한 RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000047
는 수학식 12와 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000048
또한,
Figure PCTKR2014000649-appb-I000049
Figure PCTKR2014000649-appb-I000050
의 noise subspace eigenvector들을 column vector로 가지는 행렬을 의미할 수 있고, 수학식 11로부터 수학식 13과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000051
여기서, 제1 채널 상관 행렬인
Figure PCTKR2014000649-appb-I000052
는 모든 부채널에 대한
Figure PCTKR2014000649-appb-I000053
를 평균한 값을 나타낼 수 있다.
다음으로, 수학식 12의
Figure PCTKR2014000649-appb-I000054
에 대한 해를 결정하기 위해 조건 2)를 이용할 수 있다. 수학식 12를 수학식 9에 대입하면, 제K 단말장치(200-K)가 수신하는 신호는 수학식 14와 같이 다시 표현될 수 있다.
Figure PCTKR2014000649-appb-I000055
이 수학식 14로부터 조건 2), 즉 제K 단말장치(200-K)를 목적지로 송신되는 신호 가 제K 단말장치(200-K)로 도달할 수 있도록 하기 위해서는
Figure PCTKR2014000649-appb-I000057
Figure PCTKR2014000649-appb-I000058
의 signal subspace에 존재하는 column vector들로 구성되어야 한다.
Figure PCTKR2014000649-appb-I000059
는 수학식 15와 같이 Singular Value Decomposition으로 표현될 수 있다.
Figure PCTKR2014000649-appb-I000060
여기서,
Figure PCTKR2014000649-appb-I000061
Figure PCTKR2014000649-appb-I000062
의 signal subspace singular vector들을 column vector로 가지는 행렬을 의미할 수 있다. 따라서, 조건 2)를 만족하기 위한
Figure PCTKR2014000649-appb-I000063
Figure PCTKR2014000649-appb-I000064
일 수 있다. 즉, 수학식 12는 수학식 16과 같이 다시 표현될 수 있다.
Figure PCTKR2014000649-appb-I000065
여기서,
Figure PCTKR2014000649-appb-I000066
Figure PCTKR2014000649-appb-I000067
의 signal subspace eigenvector들을 column vector로 가지는 행렬을 의미하고, 수학식 17과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000068
여기서, 제2 채널 상관 행렬인
Figure PCTKR2014000649-appb-I000069
는 모든 부채널에 대한
Figure PCTKR2014000649-appb-I000070
를 평균한 값을 나타낸다.
마지막으로, 수학식 16의
Figure PCTKR2014000649-appb-I000071
에 대한 해를 결정하기 위해 조건 3)을 이용할 수 있다. 수학식 16을 수학식 9에 대입하면, 제K 단말장치(200-K)가 수신하는 신호는 수학식 18과 같이 다시 표현될 수 있다.
Figure PCTKR2014000649-appb-I000072
여기서, 원하는 신호의 전력
Figure PCTKR2014000649-appb-I000073
은 수학식 19와 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000074
여기서,
Figure PCTKR2014000649-appb-I000075
Figure PCTKR2014000649-appb-I000076
의 i번째 column vector를 의미할 수 있다.
Figure PCTKR2014000649-appb-I000077
로 가정할 때,
Figure PCTKR2014000649-appb-I000078
의 최적치는 수학식 20과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000079
Figure PCTKR2014000649-appb-I000080
의 최적치는
Figure PCTKR2014000649-appb-I000081
의 가장 큰 eigenvalue를 갖는 eigenvector일 수 있다. 따라서,
Figure PCTKR2014000649-appb-I000082
의 최적치는
Figure PCTKR2014000649-appb-I000083
의 가장 큰
Figure PCTKR2014000649-appb-I000084
개의 eigenvalue를 갖는
Figure PCTKR2014000649-appb-I000085
개의 eigenvector들을 column vector로 가질 수 있다. 여기서,
Figure PCTKR2014000649-appb-I000086
는 부채널 f와 독립적인 값으로서 RF 빔포밍 행렬
Figure PCTKR2014000649-appb-I000087
의 column 수에 해당하고,
Figure PCTKR2014000649-appb-I000088
는 수학식 21과 같이 표현될 수 있다.
Figure PCTKR2014000649-appb-I000089
여기서,
Figure PCTKR2014000649-appb-I000090
는 제3 채널 상관 행렬일 수 있다.
통신 장치(100), 예를 들어 혼합 빔포밍 결정부(170)는 수학식 13, 수학식 17 및 수학식 21에서 필요한 단말장치별 통계적 채널 상관 행렬들, 즉
Figure PCTKR2014000649-appb-I000091
를 각 단말장치(200-1~200-K)로부터 미리 수집할 수 있다.
이때,
Figure PCTKR2014000649-appb-I000092
대신에
Figure PCTKR2014000649-appb-I000093
를 적용하거나 다른 방법으로
Figure PCTKR2014000649-appb-I000094
와 유사한 속성을 갖는 값을 적용할 수 있다.
일 실시예에 따라, 혼합 빔포밍 결정부(170)는 각 단말장치(200-1~200-K)에 대한 채널 상관 행렬
Figure PCTKR2014000649-appb-I000095
을 계산함에 있어 기대치(expectation) 연산에 산술 평균을 적용하거나 또는 각 단말장치(200-1~200-K)에서 통신 장치(100)로 수신되는 신호의 도달각(angle of arrival)을 사용하는 다양한 방법으로 계산할 수 있다.
다른 실시예에 따라, 혼합 빔포밍 결정부(170)는 각 단말장치(200-1~200-K)에 대한 채널 상관 행렬
Figure PCTKR2014000649-appb-I000096
을 계산하고, eigenvalue decomposition을 수행한 다음, eigenvalue가 큰 dominant component만으로 채널 상관 행렬
Figure PCTKR2014000649-appb-I000097
을 재구성할 수 있다. 채널 상관 행렬
Figure PCTKR2014000649-appb-I000098
의 eigenvalue decomposition이
Figure PCTKR2014000649-appb-I000099
과 같이 표현되고, eigenvalue들 중 처음 L개가 dominant component 일 때, 수학식 22과 같이 채널 상관 행렬을 재구성할 수 있다.
Figure PCTKR2014000649-appb-I000100
재구성된 채널 상관 행렬
Figure PCTKR2014000649-appb-I000101
이 수학식 13에 대입될 경우,
Figure PCTKR2014000649-appb-I000102
이 Full Rank를 갖거나 Rank가 매우 크게 되거나 그 null space의 dimension이 영(zero) 또는 매우 작게 되는 것을 방지할 수 있다.
수학식 22를 수학식 13에 대입하여
Figure PCTKR2014000649-appb-I000103
,
Figure PCTKR2014000649-appb-I000104
, 및 행렬
Figure PCTKR2014000649-appb-I000105
등을 산출하는 과정에 적용될 수 있다. 산출하는 과정을 상술한 바와 실질적으로 같을 수 있다.
도 2는 제K 단말장치를 위한 RF 빔포밍 계수를 산출하는 방법을 설명하기 위한 순서도이다.
도 1 및 도 2를 참조하면, 우선, 혼합 빔포밍 결정부(170)는 제K 단말장치(200-K)를 위한 RF 빔포밍 계수
Figure PCTKR2014000649-appb-I000106
를 산출하기 위하여 수집된 채널 상관 행렬들에 기초하여
Figure PCTKR2014000649-appb-I000107
의 null space eigenvector들을 column vector로 가지는
Figure PCTKR2014000649-appb-I000108
을 계산할 수 있다(410). 이는, 수학식 12와 수학식 13에서 상술한 바와 같을 수 있다.
다음으로, 혼합 빔포밍 결정부(170)는
Figure PCTKR2014000649-appb-I000109
의 signal subspace eigenvector들을 column vector로 가지는 행렬
Figure PCTKR2014000649-appb-I000110
을 계산할 수 있다(420). 이는, 수학식 15와 수학식 18에서 상술한 바와 같을 수 있다.
혼합 빔포밍 결정부(170)는
Figure PCTKR2014000649-appb-I000111
, 즉
Figure PCTKR2014000649-appb-I000112
의 column 수를 설정값과 비교할 수 있다(430).
Figure PCTKR2014000649-appb-I000113
가 1인 경우, 즉
Figure PCTKR2014000649-appb-I000114
의 column 수가 하나인 경우, 행렬
Figure PCTKR2014000649-appb-I000115
는 1일 수 있다(440). 이때, 제K 단말장치(200-K)를 위한 RF 빔포밍 계수
Figure PCTKR2014000649-appb-I000116
Figure PCTKR2014000649-appb-I000117
와 같을 수 있다(460).
Figure PCTKR2014000649-appb-I000118
가 1보다 큰 경우,
Figure PCTKR2014000649-appb-I000119
의 가장 큰
Figure PCTKR2014000649-appb-I000120
개의 eigenvalue를 갖는
Figure PCTKR2014000649-appb-I000121
개의 eigenvector들을 column vector로 갖는 행렬
Figure PCTKR2014000649-appb-I000122
를 산출할 수 있다(450). 이때, 제K 단말장치(200-K)를 위한 RF 빔포밍 계수
Figure PCTKR2014000649-appb-I000123
Figure PCTKR2014000649-appb-I000124
와 같을 수 있다(460).
상술한 과정은 모든 k=1, 2, , K에 대하여 수행될 수 있다.
도 3은 Rayleigh fading 채널 환경에서 일 실시예에 따른 다중사용자 RF 빔포밍에 의한 빔 패턴과 성상도를 나타낸다.
도 3을 참조하면, LTE 표준에 따른 OFDM신호를 사용하여 Rayleigh채널에서 일 실시예에 따른 RF빔포밍 방식에 대해 시뮬레이션 결과이다. 통신 장치(100)의 송신안테나 수는 32개를 가지고 있고, 4개의 단말장치들 각각이 1개의 수신안테나를 가지고 있는 다중사용자 MIMO채널을 가정한다. 다중사용자 간섭방지성능을 검증하기 위한 실험이므로 수신단에서의 SNR(signal-to-noise ratio)이 30 dB로 가정한다.
OFDM심볼은 1024개의 부채널을 가지며, 통신 장치(100)는 16-QAM으로 encoding한 단말장치별 OFDM심볼들을 각각 D/A변환하고 upconversion한 다음 각 단말장치별 RF 빔포머를 통과시키고 합하여 송신한다.
도 3에 도시된 바와 같이, 일 실시예에 따른 다중사용자 RF 빔포머의 BER(bit error rate)는 기존 방식보다 우수한 0.0246일 수 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (16)

  1. 통신 장치의 혼합 빔포밍 방법에 있어서,
    상기 통신 장치의 배열안테나와 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들에 기초하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 단계; 및
    상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치들로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 단계
    를 포함하는 통신 장치의 혼합 빔포밍 방법.
  2. 제1항에 있어서,
    상기 심볼 스트림들에 기저대역 프리코딩을 수행하는 단계
    를 더 포함하는 통신 장치의 혼합 빔포밍 방법.
  3. 제1항에 있어서,
    상기 RF 빔포밍 계수를 결정하는 단계는,
    상기 통계적 채널 상관 행렬들 중에서 제1 채널 상관 행렬을 이용하여 상기 통신 장치와 상기 복수의 단말장치들의 부채널에 대한 유효 채널 응답의 평균치의 신호 준공간 특이 벡터들(signal subspace singular vetors)을 포함하는 제1 행렬을 계산하는 단계;
    상기 통계적 채널 상관 행렬들 중에서 제2 채널 상관 행렬을 이용하여 상기 평균치의 잡음 준공간 특이 벡터들(noise subspace singular vectors)을 포함하는 제2 행렬을 계산하는 단계;
    상기 제1 행렬, 상기 제2 행렬, 및 상기 통계적 채널 상관 행렬들 중에서 제3 채널 상관 행렬을 이용하여 제3 행렬을 계산하는 단계; 및
    상기 제1 행렬, 상기 제2 행렬, 및 상기 제3 행렬에 기초하여 상기 RF 빔포밍 계수를 결정하는 단계
    를 포함하는 통신 장치의 혼합 빔포밍 방법.
  4. 제3항에 있어서,
    상기 제3 행렬을 계산하는 단계는,
    상기 RF 빔포밍 계수의 컬럼 수에 따라 상기 제1 행렬, 상기 제2 행렬, 및 상기 제3 채널 상관 행렬을 이용하여 상기 제3 행렬을 계산하는 단계
    를 포함하는 통신 장치의 혼합 빔포밍 방법.
  5. 제4항에 있어서,
    상기 컬럼 수가 1일 때 상기 제3 행렬은 고유 벡터이고,
    상기 컬럼 수가 1보다 클 때 상기 제3 행렬은 상기 컬럼 수의 고유 벡터들을 컬럼 벡터로 포함하는 통신 장치의 혼합 빔포밍 방법.
  6. 제4항에 있어서,
    상기 컬럼 수는 상기 부채널과 독립적인 통신 장치의 혼합 빔포밍 방법.
  7. 제3항에 있어서,
    상기 제2 행렬은 상기 잡음 준공간 특이 벡터들을 컬럼 벡터로 포함하는 통신 장치의 혼합 빔포밍 방법.
  8. 제1항에 있어서,
    상기 통계적 채널 상관 행렬들을 획득하는 단계
    를 더 포함하는 통신 장치의 혼합 빔포밍 방법.
  9. 제8항에 있어서,
    상기 통계적 채널 상관 행렬들을 획득하는 단계는,
    기대치 연산의 산술 평균 및 상기 각 단말장치로부터 수신되는 신호의 도달각(angle of arrival) 중에서 적어도 어느 하나를 이용하여 상기 통계적 채널 상관 행렬들을 계산하는 단계
    를 포함하는 통신 장치의 혼합 빔포밍 방법.
  10. 제9항에 있어서,
    상기 통계적 채널 상관 행렬들을 획득하는 단계는,
    상기 통계적 채널 상관 행렬에 고유값 분해(eigenvalue decomposition)를 수행하여 상기 통계적 채널 상관 행렬을 재구성하는 단계
    를 더 포함하는 통신 장치의 혼합 빔포밍 방법.
  11. 통신 장치에 있어서,
    배열안테나;
    상기 배열안테나와 상기 통신 장치와 통신하는 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들에 기초하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 혼합 빔포밍 결정부; 및
    상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치들로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 RF 빔포밍부
    를 포함하는 통신 장치.
  12. 제11항에 있어서,
    상기 심볼 스트림들에 기저대역 프리코딩을 수행하는 기저대역 프리코더
    를 더 포함하는 통신 장치.
  13. 제11항에 있어서,
    상기 혼합 빔포밍 결정부는,
    기대치 연산의 산술 평균 및 상기 복수의 단말장치들로부터 수신되는 신호의 도달각 중에서 적어도 어느 하나를 이용하여 상기 통계적 채널 상관 행렬들을 계산하고, 상기 통계적 채널 상관 행렬에 고유값 분해를 수행하여 상기 통계적 채널 상관 행렬을 재구성하는 통신 장치.
  14. 제11항에 있어서,
    상기 통신 장치는 기지국인 통신 장치.
  15. 복수의 단말장치들; 및
    배열안테나를 포함하고, 상기 배열안테나와 상기 복수의 단말장치들 사이의 채널에 대한 통계적 채널 상관 행렬들을 이용하여 상기 복수의 단말장치들 각각에 대응하는 RF 빔포밍 계수를 결정하는 통신 장치
    를 포함하는 통신 시스템.
  16. 제15항에 있어서,
    상기 통신 장치는,
    상기 RF 빔포밍 계수에 기초하여 상기 복수의 단말장치들로 송신할 심볼 스트림들에 RF 빔포밍을 수행하는 통신 시스템.
PCT/KR2014/000649 2014-01-22 2014-01-23 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들 WO2015111767A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140008007A KR101547421B1 (ko) 2014-01-22 2014-01-22 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들
KR10-2014-0008007 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111767A1 true WO2015111767A1 (ko) 2015-07-30

Family

ID=53681560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000649 WO2015111767A1 (ko) 2014-01-22 2014-01-23 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들

Country Status (2)

Country Link
KR (1) KR101547421B1 (ko)
WO (1) WO2015111767A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039135A1 (ko) * 2015-08-28 2017-03-09 엘지전자 주식회사 무선 통신 시스템에서 하이브리드 빔포밍을 위한 사용자 협력 기반 빔 스캐닝 방법 및 이를 위한 장치
CN110557181A (zh) * 2019-09-04 2019-12-10 大连理工大学 基于毫米波mu-miso系统的符号级混合波束成形结构和设置方法
US11570015B2 (en) 2020-04-22 2023-01-31 Charter Communications Operating, Llc Premises apparatus and methods for aggregated high-capacity data services
US11612009B2 (en) * 2020-07-31 2023-03-21 Charter Communications Operating, Llc Apparatus and methods for operating multi-link devices in wireless networks
US11843474B2 (en) 2020-02-11 2023-12-12 Charter Communications Operating, Llc Apparatus and methods for providing high-capacity data services over a content delivery network
US11985641B2 (en) 2020-04-22 2024-05-14 Charter Communications Operating, Llc Node apparatus and methods for providing high-capacity data services via a content delivery network architecture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756254B (zh) * 2019-01-17 2020-06-02 河南省信息咨询设计研究有限公司 一种混合预编码处理方法及相关设备
KR102376810B1 (ko) * 2019-12-10 2022-03-21 한국과학기술원 인공 잡음을 활용한 보안 성능 향상 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637901A1 (en) * 2003-06-25 2006-03-22 Fujitsu Limited Method and apparatus for estimating wave arrival direction
KR101109383B1 (ko) * 2009-11-25 2012-01-30 서울대학교산학협력단 직교주파수 분할다중 기반 무선통신 시스템에서 전용 파일럿 신호를 이용한 채널추정 방법 및 장치
WO2013169055A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co., Ltd. Communication method and apparatus using analog and digital hybrid beamforming

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767861B2 (en) * 2010-01-27 2014-07-01 Zte Corporation Multiple input multiple output and beam-forming data transmission method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637901A1 (en) * 2003-06-25 2006-03-22 Fujitsu Limited Method and apparatus for estimating wave arrival direction
KR101109383B1 (ko) * 2009-11-25 2012-01-30 서울대학교산학협력단 직교주파수 분할다중 기반 무선통신 시스템에서 전용 파일럿 신호를 이용한 채널추정 방법 및 장치
WO2013169055A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co., Ltd. Communication method and apparatus using analog and digital hybrid beamforming

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039135A1 (ko) * 2015-08-28 2017-03-09 엘지전자 주식회사 무선 통신 시스템에서 하이브리드 빔포밍을 위한 사용자 협력 기반 빔 스캐닝 방법 및 이를 위한 장치
US10447443B2 (en) 2015-08-28 2019-10-15 Lg Electronics Inc. Method for user cooperation-based beam scanning for hybrid beamforming in wireless communication system, and apparatus therefor
CN110557181A (zh) * 2019-09-04 2019-12-10 大连理工大学 基于毫米波mu-miso系统的符号级混合波束成形结构和设置方法
US11843474B2 (en) 2020-02-11 2023-12-12 Charter Communications Operating, Llc Apparatus and methods for providing high-capacity data services over a content delivery network
US11570015B2 (en) 2020-04-22 2023-01-31 Charter Communications Operating, Llc Premises apparatus and methods for aggregated high-capacity data services
US11985641B2 (en) 2020-04-22 2024-05-14 Charter Communications Operating, Llc Node apparatus and methods for providing high-capacity data services via a content delivery network architecture
US11612009B2 (en) * 2020-07-31 2023-03-21 Charter Communications Operating, Llc Apparatus and methods for operating multi-link devices in wireless networks

Also Published As

Publication number Publication date
KR20150087741A (ko) 2015-07-30
KR101547421B1 (ko) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2015111767A1 (ko) 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들
WO2016076614A1 (en) 2d active antenna array operation for wireless communication systems
WO2017026865A1 (en) Method and apparatus for operating beamformed reference signal in communication system
WO2011083945A2 (en) Multiple-input multiple-output (mimo) communication system using a codebook and method of designing the codebook
WO2018074828A1 (ko) 대규모 안테나를 이용하는 무선 통신 시스템에서 프리코딩을 수행하기 위한 장치 및 방법
WO2012093742A1 (en) Terminal and base station, method thereof in wireless communication system
WO2020190089A1 (en) Multi-user precoders based on partial reciprocity
WO2015020464A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2010085092A2 (en) Method and apparatus of transmitting data in coordinated multi-cell wireless communication system
WO2011126243A2 (ko) 채널상태정보 피드백 장치와 그 방법, 기지국
WO2013015664A2 (en) Apparatus and method for combining baseband processing and radio frequency beam steering in a wireless communication system
WO2015115848A1 (en) Method and apparatus for estimating communication channel in mobile communication system
WO2013032294A2 (en) Multiple antenna transmission with per-antenna power constraints
WO2022169287A1 (en) Method and apparatus for antenna selection for distributed mimo system
WO2011087227A2 (en) Communication apparatus and precoding method based on multiple cells and multiple users
WO2016153287A1 (ko) 다중 안테나 무선 통신 시스템에서 채널 상태 정보 피드백 방법 및 이를 위한 장치
WO2015050421A1 (ko) 무선 통신 시스템에서 채널 추정 방법 및 장치
WO2017146533A1 (en) Method and apparatus for channel state information (csi) reporting
WO2014003256A1 (ko) 다중 셀 환경에서 간섭 정렬 기법을 이용한 통신 시스템
EP3365982A1 (en) Precoder codebook for advanced wireless communication systems
WO2023008928A1 (en) Method and apparatus for modular massive mimo
WO2016076657A1 (ko) 다중 안테나 무선 통신 시스템에서 참조 신호 송신 방법 및 이를 위한 장치
WO2017069580A1 (en) Precoder codebook for advanced wireless communication systems
WO2011126160A1 (en) Precoding method, feedback channel information method, mobile terminal and base station in wireless communication system
Zhang et al. Enhanced CSI acquisition for FDD multi-user massive MIMO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880036

Country of ref document: EP

Kind code of ref document: A1