WO2015111583A1 - Curable resin composition, and layered body and image display device using curable resin composition - Google Patents

Curable resin composition, and layered body and image display device using curable resin composition Download PDF

Info

Publication number
WO2015111583A1
WO2015111583A1 PCT/JP2015/051412 JP2015051412W WO2015111583A1 WO 2015111583 A1 WO2015111583 A1 WO 2015111583A1 JP 2015051412 W JP2015051412 W JP 2015051412W WO 2015111583 A1 WO2015111583 A1 WO 2015111583A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligomer
resin composition
curable
curable resin
mass
Prior art date
Application number
PCT/JP2015/051412
Other languages
French (fr)
Japanese (ja)
Inventor
仁 下間
牧人 中村
明暢 中原
薫 小黒
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015111583A1 publication Critical patent/WO2015111583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate

Definitions

  • the present invention relates to a curable resin composition, and a laminate and an image display device using the curable resin composition.
  • an image display device an image display device in which a protective plate is laminated on a display device via a transparent resin layer is known. Also known are transparent panels, laminated glass, and the like in which a transparent resin layer is sandwiched between a pair of transparent substrates.
  • the transparent resin layer is formed, for example, by a method of curing a curable resin composition containing a curable polymer having a polyisoprene unit as a skeleton, a curable monomer, and a photopolymerization initiator (see Patent Document 1). ).
  • a curable resin composition containing a curable polymer having a polyisoprene unit as a skeleton is used, the refractive index of the formed transparent resin layer is increased.
  • Patent Document 2 A method using a curable resin composition containing a diene oligomer is also known for forming a transparent resin layer (see Patent Document 2).
  • Patent Document 3 describes a curable resin composition containing a (meth) acrylate oligomer having polyisoprene, polybutadiene, or polyurethane as a skeleton, and a softening component.
  • JP 2008-282000 A International Publication No. 2012/005169 International Publication No. 2010/027041
  • the curable resin compositions described in Patent Documents 1 to 3 do not necessarily have a high curing rate. Therefore, productivity at the time of forming a transparent resin layer is low.
  • the present invention provides a curable resin composition capable of forming a cured product having a high curing rate, a cured product with high productivity, and a flexible product having an appropriate elastic modulus to form a laminate. It aims at providing the laminated body and image display apparatus which use curable resin composition.
  • the present invention provides a curable resin composition having the following configurations [1] to [13], and a laminate and an image display device using the curable resin composition.
  • the curable oligomer (A), the curable oligomer (B) and the curable monomer (D) each have one or more (meth) acryloyl groups as a curable group in one molecule, [1] or [2] The curable resin composition.
  • the curable oligomer (A) is A hydroxyl group is added to an isocyanate group-terminated prepolymer obtained by reacting a compound (a1) having at least one of a polybutadiene chain and a polyisoprene chain and a hydroxyl group with a polyisocyanate (a2) at a ratio of an index exceeding 100.
  • the curable resin composition according to any one of [1] to [10].
  • a display device [12] a display device; A transparent substrate disposed opposite to the viewing surface side of the display device; A cured resin layer sandwiched between the display device and the transparent substrate; A laminate having The cured resin layer is a laminate in which the curable resin composition according to any one of [1] to [11] is cured.
  • An image display device having a cured resin layer obtained by curing the curable resin composition of any one of [1] to [11].
  • a curable resin composition capable of forming a cured product having a high curing rate, a cured product with high productivity, and a flexible product having an appropriate elastic modulus to form a laminate, And the laminated body and image display apparatus which use this curable resin composition can be provided.
  • FIG. 1 It is sectional drawing which shows 1 process in the manufacturing method of the laminated body of this invention. It is sectional drawing which shows an example of the laminated body manufactured by the method of FIG. It is the graph which plotted the storage shear elastic modulus (G ') with respect to ultraviolet light irradiation time about the curable resin composition of Example 1 and Comparative Example 1. It is the graph which plotted the storage shear elastic modulus (G ') with respect to ultraviolet light irradiation time about the curable resin composition of Example 2 and Comparative Example 2. It is the graph which plotted the degree of hardening with respect to ultraviolet light irradiation time about the curable resin composition of Example 1 and Comparative Example 1. FIG. It is the graph which plotted the degree of hardening with respect to ultraviolet light irradiation time about the curable resin composition of Example 2 and Comparative Example 2.
  • FIG. 1 It is the graph which plotted the degree of hardening with respect to ultraviolet light irradiation time about the curable resin composition of Example 2 and Comparative Example
  • CH 2 C (R 10 ) C (O) - group represented by (wherein, R 10 represents a hydrogen atom or a methyl group.)
  • R 10 represents a hydrogen atom or a methyl group.
  • the (meth) acryloyl group is a general term for an acryloyl group and a methacryloyl group.
  • a group represented by CH 2 ⁇ C (R 10 ) C (O) O— is referred to as a (meth) acryloyloxy group.
  • a compound represented by CH 2 ⁇ C (R 10 ) C (O) OH is referred to as (meth) acrylic acid.
  • an ester of (meth) acrylic acid is referred to as (meth) acrylate.
  • the unit represented by the formula (I) is referred to as a unit (I), and the same applies to units represented by other formulas.
  • the “curability” in the oligomer or monomer in the present invention means a compound having a (meth) acryloyl group unless otherwise specified.
  • the index when the polyol and the polyisocyanate are reacted is a value obtained by multiplying the ratio obtained by dividing the number of equivalents of the isocyanate group of the polyisocyanate by the number of equivalents of the hydroxyl group of the polyol by 100.
  • the “urethane bond” is a divalent group (molecular weight: 59) represented by —NHC ( ⁇ O) O—, and is usually formed by a reaction between an isocyanate group and a hydroxyl group.
  • “transparent” means a state in which the other surface side can be visually recognized from one surface side in the whole or a part of the substrate or the laminate. Even if the visible light transmittance is low due to absorption, reflection, or optical phase change of a part of the light incident on the substrate or laminate, the state where the other surface side can be seen from one surface side is “transparent” include.
  • the curable resin composition of the present invention contains a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond (hereinafter also referred to as “oligomer (A)”).
  • the oligomer (A) and the monomer (D) each have one or more (meth) acryloyl groups in one molecule as a curable group, and have curability based thereon.
  • the oligomer (E) does not have a (meth) acryloyl group and therefore does not have curability.
  • the polybutadiene chain in the oligomer (A) and the oligomer (E) has a unit derived from butadiene (hereinafter also referred to as “butadiene unit”), and the polyisoprene chain is a unit derived from isoprene (hereinafter referred to as “isoprene unit”). ").)
  • the butadiene unit constituting the polybutadiene chain may be a hydrogenated double bond
  • the isoprene unit constituting the polyisoprene chain may be a hydrogenated double bond.
  • the curable resin composition of the present invention can be suitably used for forming a cured resin layer in a laminate having a pair of substrates and a cured resin layer sandwiched between the pair of substrates.
  • the laminated body is a display device and a transparent substrate made of a glass plate, a transparent resin plate, or the like disposed to face the viewing surface side of the display device.
  • the laminated body made is mentioned.
  • the transparent laminated body which has a pair of transparent substrate which consists of a glass plate, a transparent resin board, etc. is mentioned.
  • the curable resin composition of the present invention further includes a cured resin layer in an image display device in which a transparent substrate such as a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device via a cured resin layer. It can be used suitably for formation.
  • the oligomer (A) is a curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond.
  • the oligomer (A) preferably has at least one (meth) acryloyl group in one molecule and has an average value of 1 to 4.
  • the curable resin composition is sufficiently cured.
  • it is not more than the upper limit of the above range it is easy to obtain a cured product having an appropriate elastic modulus and flexibility.
  • the oligomer (A) may be a mixture of oligomers having different numbers of (meth) acryloyl groups.
  • the oligomer (A) has one or more (meth) acryloyl groups in one molecule, and the average number of (meth) acryloyl groups in the oligomer (A) is 1.8 to 3 in one molecule. Preferably.
  • the cured product of the curable resin composition containing the oligomer (A) has a high refractive index due to the oligomer (A) having at least one of a hydrophobic polybutadiene chain and a polyisoprene chain.
  • the oligomer (A) may have a unit (u1) described later derived from a monomer (m1) other than butadiene and isoprene.
  • the curable resin composition containing the oligomer (A) has a high curing rate due to the oligomer (A) having a urethane bond.
  • the reason for this is not clear, but it is thought that hydrogen bonding by urethane bonds accelerates intramolecular chain transfer and accelerates the curing rate.
  • the curing rate of the curable resin composition is high, the productivity when producing a cured product of the curable resin composition or an article provided with the cured product is excellent.
  • strength of the light irradiated to curable resin composition at the time of hardening can be made small, the damage by the light irradiation to the board
  • the curable resin composition containing the oligomer (A) can produce a cured product having a high refractive index with excellent productivity. Can be formed.
  • the content of the oligomer (A) in the curable oligomer component is preferably 25 to 100 parts by mass, more preferably 35 to 100 parts by mass, with respect to 100 parts by mass of the curable oligomer component, and 45 to 100 The part by mass is particularly preferred.
  • the components other than the oligomer (A) in the curable oligomer component include the curable oligomer (B) and the curable oligomer (C) described later.
  • the curable oligomer (B) described later is particularly preferable.
  • the oligomer (A) is preferably contained in a range where the concentration of urethane bonds in 100% by mass of the curable resin composition is more than 0 and 3% by mass or less, more preferably 0.2 to 2.0% by mass. preferable. As the concentration of urethane bonds in the curable resin composition increases, the curing rate of the curable resin composition increases. If the concentration of the urethane bond of the oligomer (A) in the curable resin composition is within the above range, the curing rate of the curable resin composition is sufficiently high, and the elastic modulus of the resulting cured product is appropriate. .
  • Such a cured product of the curable resin composition is preferably used for applications in which the substrates are bonded to each other, for applications in which the display device is bonded to a transparent substrate that is disposed to face the viewing surface of the display device. it can.
  • a component having a urethane bond other than the oligomer (A) may be contained in the curable resin composition.
  • examples of such components include a non-curable oligomer (E) having a urethane bond and a curable oligomer (C) having a urethane bond described below. Therefore, when a component having a urethane bond other than the oligomer (A) is contained in the curable resin composition, the urethane bond is also adjusted to the concentration of all the urethane bonds in the curable resin composition. Contribute. In that case, the density
  • the concentration of the urethane bond of the oligomer (A) in the curable resin composition is a mass ratio of the urethane bond of the oligomer (A) when the mass of the curable resin composition is 100% by mass.
  • the concentration of all urethane bonds in the curable resin composition is preferably in the range of more than 0 and 4% by mass or less, more preferably 0.2 to 3.5% by mass.
  • the curable resin composition of the present invention preferably contains substantially no components having a urethane bond other than the oligomer (A). In this case, the urethane bond concentration of the curable resin composition of the present invention is calculated by the urethane bond content of the oligomer (A) and the content of the oligomer (A) in the curable resin composition.
  • the concentration of the urethane bond in the oligomer (A) is preferably 0.1 to 10% by mass, and more preferably 0.3 to 9% by mass. If the concentration of the urethane bond is not less than the lower limit of the above range, the curing rate can be increased. If it is not more than the upper limit of the above range, an appropriate elastic modulus can be obtained for the cured product of the curable resin composition.
  • the display device is disposed opposite to the viewing surface side of the display device. Adhesion with the transparent substrate can be improved. Moreover, it is excellent also in stress absorption.
  • the concentration of the urethane bond of the oligomer (A) can be adjusted by a method of controlling the ratio of each compound used when the oligomer (A) is produced.
  • a method for controlling the index of a compound (a1) having at least one of a polybutadiene chain and polyisoprene chain described later and a hydroxyl group and a polyisocyanate (a2) described later; having an isocyanate group-terminated prepolymer and a hydroxyl group described later It can adjust by the method of controlling the index with a curable monomer (a3), or the index with the hydroxyl-terminated prepolymer mentioned later and the curable monomer (a4) which has an isocyanate group.
  • the concentration of the urethane bond of the oligomer (A) is a mass ratio of the urethane bond to the mass of the oligomer (A), and is calculated from the amount of each component used for the production of the oligomer (A).
  • the number average molecular weight in terms of polystyrene by GPC of the oligomer (A) is preferably 2,000 to 500,000, more preferably 2,400 to 100,000.
  • the number average molecular weight of the oligomer (A) is not less than the lower limit of the above range, the cured product of the curable resin composition tends to have an appropriate elastic modulus, and when it is not more than the upper limit, the curing rate can be increased.
  • the skeleton has a unit composed of at least one of the unit represented by the following formula (I) and the unit represented by the following formula (II).
  • an oligomer (A1) having a group represented by the following formula (III) (a monovalent group having a (meth) acryloyloxy group) at at least one terminal of the molecule is exemplified.
  • Unit (I) is a unit with 1,4 bonds
  • unit (II) is a unit with 1,2 bonds.
  • the other end of the molecule of the oligomer (A1) may be a group represented by the above formula (III), another monovalent group such as a hydroxyl group, or a hydrogen atom. From the viewpoint of excellent curability of the curable resin composition, the other end of the oligomer (A1) is preferably a group represented by the above formula (III).
  • R 1 to R 3 each independently has a linear or branched alkylene group having 1 to 10 carbon atoms or an alkyl group having 1 to 6 carbon atoms as a substituent. Any one of a cycloalkylene group having 3 to 8 carbon atoms and a combination of the above-described alkylene group and cycloalkylene group.
  • R 4 represents a hydrogen atom or a methyl group.
  • R 1 represents a group obtained by removing the hydroxyl group from the hydroxyl group end group of the polybutadiene chain end.
  • R 2 represents a divalent group obtained by removing an isocyanate group from diisocyanate.
  • R 2 is a hexamethylene group, a methylene-1,3,3-trimethylcyclohexylene group, a methylenebis (cyclohexane-4,1-diyl) group in terms of non-yellowing of the cured product of the curable resin composition.
  • m-phenylene bismethylene group is preferred.
  • R 3 and R 4 are groups derived from the curable monomer (a3) described later, and among the above, R 3 is preferably an alkylene group having 1 to 6 carbon atoms from the viewpoint of imparting flexibility.
  • the oligomer having a polyisoprene chain for example, a unit composed of at least one of a unit represented by the following formula (IV) and a unit represented by the following formula (V) is used as a skeleton: And an oligomer (A2) having a group represented by the above formula (III) at least at one end of the molecule.
  • the unit (IV) is a unit with 1,4 bonds
  • the unit (V) is a unit with 1,2 bonds.
  • the other end of the molecule of the oligomer (A2) may be a group represented by the above formula (III), another monovalent group such as a hydroxyl group, or a hydrogen atom. From the viewpoint of excellent curability of the curable resin composition, the other end of the oligomer (A2) is preferably a group represented by the above formula (III).
  • the double line part of a solid line and a dotted line shows a single bond or a double bond.
  • the single bond is a hydrogenated double bond.
  • the ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (A1) is not limited, and the skeleton composed only of the unit (I) or the skeleton composed only of the unit (II) It may be a skeleton composed of the unit (II).
  • the ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (A2) is not limited, and the skeleton consisting only of the unit (IV) or the skeleton consisting only of the unit (V) It may be a skeleton consisting of the unit (V).
  • the oligomer (A) can be produced by reacting a curable monomer having a hydroxyl group (a3) or a curable monomer having an isocyanate group (a4) with an isocyanate group-terminated prepolymer or a hydroxyl group-terminated prepolymer. Specifically, it can be produced by the following method.
  • a compound (a1) having at least one of a polybutadiene chain and a polyisoprene chain and a hydroxyl group and a polyisocyanate (a2) having a plurality of isocyanate groups have an index of more than 100
  • a ratio (isocyanate group is excessive with respect to the hydroxyl group) reacting the isocyanate group-terminated prepolymer with a curable monomer (a3) having a hydroxyl group.
  • the oligomer (A1) or (A2) having a group represented by the above formula (III) at the terminal can be produced.
  • the above compound (a1) and the above polyisocyanate (a2) are reacted at a ratio that the index is 100 or less (the hydroxyl group is the same mole or excess with respect to the isocyanate group).
  • the curable monomer (a4) having an isocyanate group with the hydroxyl group-terminated prepolymer.
  • the oligomer (A1) or (A2) having a group represented by the following formula (VI) at the terminal can be produced.
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and an alkyl group having 1 to 6 carbon atoms as a substituent. It represents any of a cycloalkylene group having 3 to 8 carbon atoms which may have, a composite group of the above-described alkylene group and cycloalkylene group.
  • R 7 and R 8 are groups derived from the curable monomer (a4) described later.
  • R 8 is preferably an alkylene group having 2 to 4 carbon atoms.
  • R 9 is a group obtained by removing the hydroxyl group from the terminal group of the hydroxyl group-terminated prepolymer.
  • the oligomer (A) is an oligomer reacted with a curable monomer (a3) having a hydroxyl group when the prepolymer end is an isocyanate group, and has an isocyanate group when the prepolymer end is a hydroxyl group. It is an oligomer reacted with the curable monomer (a4).
  • the oligomer (A) can also be produced by the following method. (3) A method of reacting the compound (a1) after reacting the curable monomer (a3) having a hydroxyl group with the polyisocyanate (a2) in the presence or absence of a catalyst.
  • the method of (1) and (2) is preferable at the point which makes it easy to make the molecular weight of the oligomer (A) obtained.
  • the molecular weight is constant, the reactivity of the oligomer (A) can be made uniform, and the elastic modulus of the resulting cured product can be easily controlled.
  • the compound (a1) preferably has one or more hydroxyl groups in one molecule and has an average value of 1 to 4. If the number of hydroxyl groups is not less than the lower limit of the above range, a cured product having an appropriate elastic modulus can be obtained. If the number of hydroxyl groups is not more than the upper limit of the above range, excessive thickening and gelation during the production of the oligomer (A) can be achieved. Can be prevented.
  • the hydroxyl value (OHV) of the compound (a1) is preferably 225 to 11 mgKOH / g, more preferably 113 to 14 mgKOH / g, from the viewpoint of reactivity.
  • the hydroxyl value can be measured by determining the number of mg of potassium hydroxide required to acetylate the hydroxyl group contained in 1 g of the sample.
  • the number average molecular weight in terms of polystyrene by GPC of the compound (a1) is preferably from 500 to 10,000, more preferably from 1,000 to 8,000, from the viewpoint of reactivity.
  • the compound having a polybutadiene chain is a compound having a unit consisting of at least one of the unit (I) and the unit (II) and having a hydroxyl group at at least one terminal of the molecule ( a11).
  • the number of hydroxyl groups in the compound (a11) is preferably 1 to 2 on average.
  • the compound having a polyisoprene chain a compound having a unit consisting of at least one of the unit (IV) and the unit (V) and having a hydroxyl group at at least one terminal of the molecule (A12).
  • the number of hydroxyl groups in the compound (a12) is preferably 1 to 2 on average.
  • Compound (a11) can be produced, for example, by polymerizing butadiene to obtain a polymer, hydrogenating as required, and then introducing a hydroxyl group into the terminal of the polymer molecule.
  • a method of polymerizing butadiene ( ⁇ ) A method of polymerizing butadiene in a solution with a Ziegler catalyst, a lithium catalyst or a radical polymerization initiator; and ( ⁇ ) a method of polymerizing butadiene in a solution in the presence of a sodium catalyst.
  • a polymer in which butadiene is mainly polymerized with 1,4-bonds can be obtained.
  • butadiene is mainly composed of 1,2-bonds.
  • a polymer polymerized with can be obtained.
  • Compound (a12) can be produced, for example, by polymerizing isoprene to obtain a polymer, hydrogenating as required, and then introducing a hydroxyl group into the terminal of the polymer molecule.
  • isoprene may be used in place of butadiene in the methods ( ⁇ ) and ( ⁇ ).
  • Examples of the method for introducing a hydroxyl group into the polymer molecule end include a method of adding an epoxy compound to a reaction solution containing a polymer obtained by polymerizing butadiene or isoprene.
  • Examples of the epoxy compound include ethylene oxide and propylene oxide.
  • a compound (a1) may be used individually by 1 type, or may use 2 or more types together.
  • the compound (a1) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
  • the monomer (m1) include ⁇ -olefins such as ethylene, propylene, butene-1, pentene-1,2-methylpentene-1, hexene-1,3-methylhexene-1, cyclohexene; styrene, 4 -Styrene monomers such as methylstyrene and ⁇ -methylstyrene; Ethylenically unsaturated carboxylic acids such as acrylic acid and methacrylic acid; Methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, acrylic acid Ethylenically unsaturated carboxylic acid esters such as 2-ethylhexyl, dimethylaminoethyl acrylate, methyl methacrylate, ethy
  • the amount of the monomer (m1) used is 100 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene. Preferably, it is more preferably 50 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • non-yellowing polyisocyanate is preferable, and non-yellowing diisocyanate having two isocyanate groups is more preferable.
  • the non-yellowing type polyisocyanate means a polyisocyanate compound having no isocyanate group directly bonded to the carbon atom constituting the aromatic nucleus.
  • examples of the non-yellowing polyisocyanate include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates that do not have an isocyanate group directly bonded to a carbon atom constituting an aromatic nucleus, and the like.
  • aliphatic diisocyanates such as hexamethylene diisocyanate, 1,2-cyclopropanediyl diisocyanate, 1,3-cyclobutanediyl diisocyanate, 1,4-cyclohexanediyl diisocyanate, 1,3-cyclohexanediyl diisocyanate, isophorone
  • alicyclic diisocyanates such as diisocyanate, 4-methyl-cyclohexane-1,3-diyl-diisocyanate, and dicyclohexylmethane diisocyanate
  • non-yellowing aromatic diisocyanates such as xylene diisocyanate.
  • the prepolymer modified body of these diisocyanates a nurate modified body, a urea modified body, a carbodiimide modified body, etc. are mentioned.
  • hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylene diisocyanate, norbornane diisocyanate, trimethylhexamethylene diisocyanate, and prepolymer modified products thereof, nurate modified products, urea modified products, carbodiimide modified products, and the like are preferable.
  • isophorone diisocyanate and hexamethylene diisocyanate are particularly preferable.
  • Polyisocyanate (a2) may be used individually by 1 type, or may use 2 or more types together.
  • hydroxyalkyl (meth) acrylate is preferable.
  • hydroxyalkyl group a linear or branched hydroxyalkyl group having 1 to 10 carbon atoms is preferable, and a hydroxyalkyl group having 1 to 6 carbon atoms is particularly preferable.
  • examples of the curable monomer (a3) include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxy-n-propyl (meth) acrylate, and 2-hydroxy-n-propyl (meth) acrylate.
  • curable monomer (a3) hydroxymethyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate are preferable in terms of reactivity.
  • a curable monomer (a3) may be used individually by 1 type, or may use 2 or more types together.
  • the curable monomer (a4) is a compound having an isocyanate group and a (meth) acryloyl group in the molecule, and is preferably an isocyanate alkyl (meth) acrylate.
  • the alkyl part of the isocyanate alkyl preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • 2-isocyanate ethyl methacrylate (“Karenz MOI (registered trademark)” manufactured by Showa Denko KK)
  • 2-isocyanate ethyl acrylate (“Karenz AOI (registered trademark)” manufactured by Showa Denko KK), etc. Is mentioned.
  • a curable monomer (a4) may be used individually by 1 type, or may use 2 or more types together.
  • the index when the compound (a1) and the polyisocyanate (a2) are reacted is preferably more than 100 and 200 or less, more preferably 110 to 190. 120 to 185 is preferred, and particularly preferred.
  • the curable resin composition containing the obtained oligomer (A) is excellent in the curing rate.
  • the amount of the curable monomer (a3) used is 100 times the value obtained by dividing the equivalent number of isocyanate groups of the polyisocyanate (a2) by the total number of equivalents of hydroxyl groups of the compound (a1) and the curable monomer (a3). The amount is preferably 90-100.
  • the index when the compound (a1) and the polyisocyanate (a2) are reacted is preferably 50 or more and less than 100, more preferably 51 to 95. 52 to 91 are particularly preferred.
  • the curable resin composition containing the obtained oligomer (A) is excellent in the curing rate.
  • the amount of the curable monomer (a4) used is such that the isocyanate group index of the curable monomer (a4) with respect to the hydroxyl group of the prepolymer obtained by reacting the compound (a1) with the polyisocyanate (a2) is 90 to 100 is preferable.
  • Catalysts include monoamines such as triethylamine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropanediamine, N, N , N ′, N′-tetramethylhexanediamine and the like, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentamethyldipropylene Triamines such as triamine and tetramethylguanidine, triethylenediamine, N, N-dimethylpiperazine, N-methyl-N ′-(2-dimethylamino) -ethylpiperazine, N-methylmorpholine, N- (N ′, N ′ -Dimethylaminoethyl) morpholine, cyclic amines
  • a catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the catalyst used is preferably in the range of 0.01 to 3.0 parts by weight for tertiary amine catalysts and 100 parts by weight for metal catalysts based on 100 parts by weight of polydiene polyol (a1).
  • the range of 0.001 to 0.1 parts by mass is preferable.
  • the reaction of compound (a1), polyisocyanate (a2) and curable monomer (a3) or (a4) is carried out without solvent or in a suitable inert solvent. Usually, it is carried out in the absence of a solvent.
  • the inert solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; ester solvents such as methyl acetate, ethyl acetate, and n-propyl acetate; methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, Monomers such as styrene and propylene; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane and 1,4-dioxane Examples thereof include ether solvents; nitrile solvent
  • the oligomer (E) is a non-curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and having no curability.
  • the oligomer (E) does not have a (meth) acryloyl group.
  • the oligomer (E) may have a urethane bond, it is preferable that it is a compound which does not have a urethane bond.
  • Examples of the oligomer (E) having a urethane bond include a hydroxyl group-terminated prepolymer used for the production of the curable oligomer (A) before reacting with the curable monomer (a4).
  • the viscosity of a curable resin composition falls and the handleability of a curable resin composition is excellent.
  • flexibility can be formed by containing an oligomer (E).
  • flexibility is suitable for the cured resin layer formed between a display device and the transparent substrate opposingly arranged by the visual recognition surface side of this display device, for example. Since the oligomer (E) has at least one of a polybutadiene chain and a polyisoprene chain, it has excellent compatibility with the oligomer (A). Since the compatibility is excellent, the above-described effects can be sufficiently obtained by blending the oligomer (E).
  • the number average molecular weight in terms of polystyrene by GPC of the oligomer (E) is preferably 500 to 50,000, more preferably 1,000 to 30,000. If the number average molecular weight of the oligomer (E) is not less than the lower limit of the above range, the oligomer (E) is difficult to bleed out in the cured product, and if it is not more than the upper limit, a viscosity reducing effect is easily obtained.
  • examples of the oligomer having a polybutadiene chain include an oligomer (E1) having a unit composed of at least one of the unit (I) and the unit (II).
  • the oligomer having a polybutadiene chain can be produced by, for example, ( ⁇ ) and ( ⁇ ) of the method for polymerizing butadiene described above.
  • examples of the oligomer having a polyisoprene chain include an oligomer (E2) having a unit composed of at least one of the unit (IV) and the unit (V).
  • the oligomer having a polyisoprene chain can be produced, for example, by using isoprene instead of butadiene in ( ⁇ ) and ( ⁇ ) of the method for polymerizing butadiene.
  • the ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (E1) is not limited, and the skeleton consisting only of the unit (I) or the skeleton consisting only of the unit (II) It may be a skeleton composed of the unit (II).
  • the ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (E2) is not limited, and the skeleton consisting only of the unit (IV) or the skeleton consisting only of the unit (V) It may be a skeleton consisting of the unit (V).
  • the oligomer (E) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
  • the amount of the monomer (m1) used is 400 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene. preferable.
  • the oligomer (E) is preferably contained in the curable resin composition in an amount of 100 to 500 parts by mass with respect to a total of 100 parts by mass of the curable oligomer component composed of the oligomer (A) and the oligomer (B) described later. More preferably, it is contained in an amount of 150 to 400 parts by mass, particularly preferably 200 to 350 parts by mass. If content of an oligomer (E) is more than the lower limit of the said range, the viscosity of curable resin composition will fully fall and the handleability of curable resin composition will be excellent. Moreover, the hardened
  • the curable oligomer component includes an oligomer (B) described later as needed in addition to the oligomer (A).
  • Examples of commercially available oligomers (E) include “Ricon 156 (trade name)” (number average molecular weight: 2500) manufactured by Clay Valley, “Polyoil 110 (trade name)” (number average molecular weight: 1600) manufactured by Nippon Zeon. Is mentioned.
  • the monomer (D) is a curable monomer.
  • a monomer (D) By containing a monomer (D), the viscosity of a curable resin composition falls and the handleability of a curable resin composition is excellent.
  • the number of curable functional groups can be adjusted so that the elastic modulus of the obtained cured product falls within an appropriate range.
  • Monomer (D) has at least one (meth) acryloyl group in one molecule, and preferably has one.
  • the molecular weight of the monomer (D) is preferably 100 to 1000. If the molecular weight is not less than the lower limit of the above range, flexibility is easily obtained, and if it is not more than the upper limit of the above range, the viscosity is likely to be lowered.
  • the monomer (D) at least one of a monomer (D1) having a hydroxyl group and a monomer (D2) having no hydroxyl group can be used.
  • a monomer (D1) having a hydroxyl group By using the monomer (D1) having a hydroxyl group, the adhesion of the cured product to the substrate or the like is improved.
  • the monomer (D2) having no hydroxyl group By using the monomer (D2) having no hydroxyl group, a cured product having a higher refractive index can be formed.
  • the monomer (D1) having a hydroxyl group include the monomers exemplified above as the curable monomer (a3), polyalkylene glycol mono (meth) acrylate, and the like.
  • 2-hydroxy-n-propyl (meth) acrylate is preferable because it is an inexpensive general-purpose product.
  • the monomer (D1) having a hydroxyl group one type may be used alone, or two or more types may be used in combination.
  • Monomers (D2) having no hydroxyl group include acryloylmorpholine, methyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic.
  • the monomer (D2) having no hydroxyl group may be used alone or in combination of two or more.
  • the monomer (D) is preferably contained in an amount of 10 to 500 parts by weight, more preferably 30 to 300 parts by weight, more preferably 50 to 150 parts by weight based on 100 parts by weight of the oligomer (A) in the curable resin composition. It is particularly preferable that a part by mass is included. If content of a monomer (D) is more than the lower limit of the said range, the viscosity of curable resin composition will fully fall and the handleability of curable resin composition will be excellent. Moreover, the hardened
  • the curable resin composition of the present invention contains a curable oligomer (B) other than the curable oligomer (A) (hereinafter also referred to as “oligomer (B)”) for the purpose of improving the compatibility of the composition. May be.
  • the oligomer (B) preferably has at least one (meth) acryloyl group in one molecule and has an average value of 2 to 3.
  • the oligomer (B) is a curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and having no urethane bond.
  • the oligomer (B) is particularly preferable as a curable oligomer component other than the oligomer (A) from the viewpoint of excellent compatibility with the oligomer (A) and the oligomer (E).
  • the oligomer (B) include a curable oligomer having a polybutadiene chain (hereinafter also referred to as “oligomer (Bb)”) and a curable oligomer having a polyisoprene chain (hereinafter also referred to as “(Bi)”). It is done.
  • the content of the oligomer (B) in the curable oligomer component is preferably 0 to 75 parts by mass, more preferably 0 to 65 parts by mass, and more preferably 0 to 55 parts by mass with respect to 100 parts by mass of the curable oligomer component.
  • the part by mass is particularly preferred.
  • the total content of the oligomer (A) and the oligomer (B) in the curable oligomer component is preferably 75 to 100 parts by mass, and 85 to 100 parts by mass with respect to 100 parts by mass of the curable oligomer component. More preferably, it is 95 to 100 parts by mass.
  • the number average molecular weight in terms of polystyrene by GPC of the oligomer (B) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and most preferably 2,000 to 30,000.
  • the number average molecular weight of the oligomer (B) is not less than the lower limit of the above range, flexibility is easily obtained, and when it is not more than the upper limit, an increase in viscosity is easily suppressed.
  • oligomers (B) for example, carboxylic anhydride such as maleic anhydride is added to polybutadiene having a unit consisting of at least one of unit (I) and unit (II).
  • carboxylic anhydride such as maleic anhydride
  • Examples of the method include obtaining an adduct, esterifying the adduct with the curable monomer (a3) exemplified above, and introducing a (meth) acryloyloxy group.
  • Polybutadiene is obtained by the methods ( ⁇ ) and ( ⁇ ) for polymerizing butadiene in the method for producing the oligomer (a11) described above.
  • oligomers (B) for example, a carboxylic anhydride such as maleic anhydride is added to polyisoprene having a unit consisting of at least one of the unit (IV) and the unit (V).
  • a carboxylic anhydride such as maleic anhydride
  • polyisoprene having a unit consisting of at least one of the unit (IV) and the unit (V).
  • an adduct is obtained, and the adduct is reacted with the curable monomer (a3) exemplified above to introduce a (meth) acryloyloxy group.
  • Polyisoprene may be used in place of butadiene in the methods ( ⁇ ) and ( ⁇ ) for polymerizing butadiene in the method for producing oligomer (a11) described above.
  • the ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (Bb) is not limited, and the skeleton composed only of the unit (I) or the skeleton composed only of the unit (II) It may be a skeleton composed of the unit (II).
  • the ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (Bi) is not limited, and the skeleton composed only of the unit (IV) or the skeleton composed only of the unit (V) It may be a skeleton consisting of the unit (V).
  • the oligomer (B) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
  • the amount of the monomer (m1) used is 100 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene.
  • it is more preferably 50 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • a commercially available oligomer (B) is a curable oligomer having a polybutadiene chain, “Kuraprene (registered trademark) UC203” manufactured by Kuraray (number average molecular weight: 35,000, number of (meth) acryloyl groups: 3). “BAC45 (trade name)” (number average molecular weight: 3,000, number of (meth) acryloyl groups: 2) manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • the curable oligomer (C) (hereinafter also referred to as “oligomer C”) is a curable oligomer having neither a polybutadiene chain nor a polyisoprene chain.
  • the oligomer (C) preferably has one or more (meth) acryloyl groups in one molecule and has an average value of 2 to 3.
  • the oligomer (C) includes those having a urethane bond and those having no urethane bond.
  • Examples of the oligomer (C) include a urethane oligomer having a urethane bond and having neither a polybutadiene chain nor a polyisoprene chain; a poly (meth) acrylate of a polyoxyalkylene polyol; a poly (meth) acrylate of a polyester polyol. It is done.
  • the urethane oligomer which has a urethane bond and does not have a polybutadiene chain and a polyisoprene chain it is preferable to use it so that the concentration of the urethane bond in the curable resin composition is within the above range.
  • an isocyanate-terminated urethane prepolymer is produced from polyoxyalkylene polyol or polyester polyol and polyisocyanate, and a (meth) acrylate having a functional group capable of reacting with an isocyanate group such as a hydroxyl group is prepared.
  • the urethane oligomer obtained by making it react is mentioned.
  • a urethane oligomer obtained by producing a hydroxyl group-terminated urethane prepolymer and reacting it with a (meth) acrylate having an isocyanate group can also be used.
  • the number average molecular weight in terms of polystyrene by GPC of the oligomer (C) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and most preferably 2,000 to 30,000.
  • the oligomer (C) is preferably contained in a range of 100 parts by mass or less, more preferably in a range of 50 parts by mass or less, with respect to 100 parts by mass of the oligomer (A) as necessary.
  • the curable resin composition of the present invention preferably contains a photopolymerization initiator. That is, the curable resin composition of the present invention is preferably a photocurable resin composition in which a curing reaction proceeds by light irradiation. In addition, you may mix
  • the photopolymerization initiator one that is excited by irradiation with visible light or ultraviolet light (wavelength 300 to 400 nm) and activated to accelerate the curing reaction is preferable. Specific examples include benzoin ether photopolymerization initiators, ⁇ -hydroxyalkylphenone photopolymerization initiators, and acylphosphine oxide photopolymerization initiators.
  • the photopolymerization initiator examples include benzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, acetophenone, 3-methylacetophenone, benzoyl, benzoin isobutyl ether, benzoin isopropyl ether, Benzoin ethyl ether, anthraquinone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2 -Methyl-1-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like.
  • 1-hydroxycyclohexyl phenyl ketone 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (2,4,6-trimethyl) Acylphosphine oxide photopolymerization initiators such as benzoyl) -phenylphosphine oxide are preferred.
  • 1-hydroxycyclohexyl phenyl ketone and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide are particularly preferred from the viewpoint that the curable resin composition can be sufficiently cured with a small amount of addition.
  • a photoinitiator may be used individually by 1 type, or may use 2 or more types together.
  • the content of the photopolymerization initiator in the curable resin composition is 0.01 to 10 masses per 100 mass parts in total of the oligomer (A), oligomer (B), oligomer (C) and monomer (D). Part is preferable, and 0.1 to 2.5 parts by mass is more preferable.
  • the curable resin composition of the present invention may contain various additives depending on applications.
  • Additives include UV absorbers (benzotriazoles, hydroxyphenyltriazines, etc.), light stabilizers (hindered amines, etc.), polymerization inhibitors (hydroquinones (2,5-di-tert-butylhydroquinone (hereinafter referred to as “hindered amines”)) , Etc.), catechol (p-tert-butylcatechol, etc.), anthraquinone, phenothiazine, hydroxytoluene, etc.), antioxidant, tackifier (rosin ester, etc.). ), Pigments, dyes, metal oxide fine particles, fillers, and the like.
  • the curable resin composition of the present invention preferably contains no solvent.
  • volatile components such as a solvent.
  • the curable resin composition of the present invention is applied to a substrate or the like to form a coating film of the curable resin composition, the coating property is insufficient due to the high viscosity of the curable resin composition. It may be.
  • a coating property can be improved by adding a solvent to the curable resin composition of the present invention. In this case, the solvent is volatilized and removed from the curable resin composition before the curable resin composition is cured.
  • the temporary use of such a solvent does not mean that the solvent is a component of the curable resin composition of the present invention.
  • the solvent may be accompanied by the curable oligomer (A) and mixed in a small amount in the curable resin composition.
  • a small amount of low boiling point compounds may be mixed with the components of the curable resin composition. In such a case, it is preferable to remove the low boiling point solvent or the like before curing the curable resin composition, if necessary. Note that a very small amount of solvent or the like may remain in the curable resin composition as long as the curing of the curable resin composition is not adversely affected.
  • the content of other components in 100% by mass of the curable resin composition is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • the curable resin composition When using a curable resin composition of the present invention to produce a laminate by a production method using a reduced pressure lamination method described later, the area exposed to a reduced pressure atmosphere in the curable resin composition is relatively large. It is preferable that the curable resin composition does not contain a low boiling point compound. Thereby, it is suppressed that the low boiling-point compound in curable resin composition volatilizes, and a composition changes a lot. Moreover, it becomes easy to maintain a desired reduced pressure atmosphere.
  • the curable resin composition preferably does not contain a component (such as a monomer) having a boiling point of 150 ° C. or less under an atmospheric pressure atmosphere. More preferably, the lower boiling point does not contain a component having a temperature of 200 ° C. or lower.
  • the viscosity V 40 at 40 ° C. of the curable resin composition of the present invention is preferably 50 Pa ⁇ s or less, and more preferably 5 Pa ⁇ s or less. If the viscosity V 40 is more than the upper limit, sufficient fluidity can not be obtained, it bubbles hardly occurs in the curable resin composition.
  • the viscosity V 25 at 25 ° C. of the curable resin composition of the present invention is preferably 0.05 Pa ⁇ s or more, and more preferably 0.20 Pa ⁇ s or more.
  • the viscosity V 25 is preferably 4.5 Pa ⁇ s or less.
  • the viscosity V 25 is equal to or higher than the lower limit value, it is not necessary to use a large amount of low molecular weight monomer or the like in order to lower the viscosity, and thus the physical properties of the cured product are hardly lowered.
  • the viscosity is a value measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., RE-85U). However, when the viscosity of the curable resin composition is 100 Pa ⁇ s or less, 1 ° 34 ′ ⁇ R24 is used as the rotor, and when the viscosity exceeds 100 Pa ⁇ s, 3 ° ⁇ R9.7 is used as the rotor. And
  • the curable resin composition of the present invention described above is non-curable having at least one of a polybutadiene chain and a polyisoprene chain together with a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond.
  • An oligomer (E) and a curable monomer (D) are contained. Therefore, the curable resin composition of the present invention has a high curing rate, can form a cured product with high productivity, and can form a cured product having an appropriate elastic modulus and flexibility.
  • the curable resin composition of the present invention can be used for applications such as an adhesive and a coating agent in addition to the use for forming a cured resin layer in a laminate and an image display device described later.
  • the curable resin composition of the present invention can be formed into a cured product by, for example, irradiating a curable resin composition containing the above-described amount of the above-described photopolymerization initiator with 500 mJ or more of visible light or ultraviolet rays. it can.
  • a cured product can be obtained by heating at a temperature corresponding to the half-life of the curing agent.
  • the storage shear modulus of the cured product is preferably 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa.
  • An adhesive film can be obtained by sandwiching both sides of the cured product with a first protective film and a second protective film.
  • the first protective film and the second protective film preferably have different adhesion to the cured product.
  • the protective film include a PET (Polyethylene Terephthalate) film in which a release agent such as a silicone resin is applied to the surface in contact with the cured product, and a resin material having relatively low adhesion such as polyethylene, polypropylene, and a fluorine resin.
  • a film is preferred.
  • cured material is good also as a transparent surface material with hardened
  • the transparent surface material with a cured product preferably has a protective film on a surface different from the transparent surface material of the cured product.
  • the transparent substrate with an adhesive layer is, for example, a protective plate with an adhesive layer that is bonded to a display panel of a display device.
  • the transparent substrate include a glass plate, a chemically strengthened glass plate, a transparent resin plate (polycarbonate plate), and the like.
  • the substrate may be a multilayer structure or a single layer structure.
  • the thickness of the protective plate is 0.5 mm to 25 mm in the case of a glass plate from the viewpoint of mechanical strength and transparency. In applications such as a television receiver and a PC display used indoors, 0.5 mm to 6 mm is preferable from the viewpoint of reducing the weight of the display device, and in public display applications installed outdoors, 3 mm to 20 mm is preferable.
  • the glass thickness is preferably 0.3 mm to 1.5 mm in terms of strength.
  • a transparent resin plate is used as the protective plate, it is preferably 2 mm to 10 mm.
  • the curable resin composition of the present invention can be suitably used for forming a cured resin layer in a laminate having a pair of substrates and a cured resin layer sandwiched between the pair of substrates.
  • a laminate in which a display device and a transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates, and the pair of substrates are both transparent substrates.
  • a certain transparent laminated body etc. are mentioned.
  • substrate which comprises a laminated body both a transparent substrate and an opaque board
  • substrate can be used as a board
  • substrate can be used as a board
  • substrate can be used as a board
  • the substrate may be a multilayer structure or a single layer structure.
  • the curable resin composition of the present invention is an image display device in which a transparent substrate such as a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device via a cured resin layer. It can be used suitably for formation.
  • Examples of the display device include a liquid crystal display device, an organic EL display device, a plasma display device, and an electronic ink display device. These display devices are usually multilayer structures and are opaque as a whole. Therefore, a stacked body in which a display device and a transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates is an opaque stacked body.
  • the display device is usually a multilayer structure, and the display layer (liquid crystal layer, organic EL layer, etc.) and the layer closer to the non-viewing surface than the display layer are opaque, but more visible than the display layer.
  • the surface side layer is usually transparent.
  • the surface layer on the viewing surface side of the display device (for example, the outermost layer such as a layer made of a polarizing plate or a layer made of an optical film such as a retardation plate in a liquid crystal display device) is protected transparently through a cured resin layer.
  • the surface layer on the viewing surface side of the display device is regarded as one substrate and the protective plate is regarded as the other substrate, the surface layer / cured resin layer / protective plate
  • the resulting laminate can be considered a transparent laminate.
  • a cured resin layer can be formed by irradiating the curable resin composition sandwiched between the substrates through the transparent substrate.
  • the cured resin layer can be formed by heating and curing the curable resin composition.
  • the image display device of the present invention is an image display device having one or more cured resin layers obtained by curing the curable resin composition of the present invention.
  • the cured resin layer acts as an adhesive layer such as between the display device and the touch panel and an adhesive layer such as between the touch panel and a transparent substrate such as a protective plate.
  • the cured resin layer obtained by curing the curable resin composition of the present invention can be provided between any plate-like or film-like members constituting the image display device. it can.
  • the cured resin layer is a layer made of a cured product of the curable resin composition of the present invention.
  • the thickness of the cured resin layer is preferably 0.01 to 0.5 mm, more preferably 0.05 to 0.3 mm. If the thickness of a cured resin layer is more than a lower limit, the mechanical strength of a laminated body will become favorable. If the thickness of a cured resin layer is below an upper limit, a laminated body will become lightweight.
  • substrate consists of hardened
  • the above laminate is preferably produced by a production method using a reduced pressure lamination method.
  • the reduced pressure lamination method is disclosed in International Publication No. 2008/081838 and International Publication No. 2009/016943.
  • the laminate of the present invention that is, the laminate in which the display device and the transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates, for example, includes the following first step and second step. It can manufacture by the method which has these processes.
  • First step In a reduced pressure atmosphere, the curable resin composition of the present invention is sandwiched between a pair of substrates, and the periphery of the curable resin composition between the pair of substrates is sealed with a sealing material. To form a hermetically sealed laminated precursor.
  • 2nd process The said curable resin composition of the said lamination
  • (First step) It is not necessary to perform all the operations in the first step under a reduced-pressure atmosphere as long as the curable resin composition is sealed in a reduced-pressure atmosphere to be a laminated precursor.
  • a sealing material is provided on the entire periphery of one substrate and the other substrate is stacked after the curable resin composition is supplied to the inside of the sealing material on the substrate, the other substrate is stacked.
  • the previous work may be performed under an atmospheric pressure atmosphere.
  • the sealing material include a double-sided adhesive tape and the curable resin composition of the present invention.
  • the pressure atmosphere in the first step is preferably a pressure atmosphere of 1 kPa or less, and more preferably a pressure atmosphere of 100 Pa or less. Moreover, since the low boiling point compound in the curable resin composition may volatilize if the pressure in the reduced pressure atmosphere is too low, the reduced pressure atmosphere is preferably a pressure atmosphere of 1 Pa or more, and more preferably a pressure atmosphere of 10 Pa or more. .
  • the adhesion strength between the pair of substrates and the sealing material is within a range in which gas does not enter from the interface between the substrate and the sealing material when the lamination precursor is placed in an atmosphere having a pressure higher than the reduced-pressure atmosphere in the second step.
  • the adhesion strength between the substrate and the sealing material can be increased by using a pressure sensitive adhesive.
  • substrate and a sealing material can be raised by interposing a curable adhesive in the interface of a board
  • the adhesion strength between the substrate and the sealing material can also be increased by forming the sealing material with a curable resin and curing the sealing material itself after forming the laminated precursor.
  • the curable resin composition in the lamination precursor is cured in an atmosphere at a pressure higher than the reduced pressure atmosphere in the first step.
  • the curable resin composition is thermosetting, it is cured by heating, and when the curable resin composition is photocurable, it is cured by light irradiation.
  • Photocuring can be performed by irradiating light through a transparent substrate from a light source such as an ultraviolet lamp.
  • the cured resin layer is formed by curing the curable resin composition, and a laminate is obtained.
  • a photopolymerization initiator is blended in the curable resin composition and the curable resin composition is cured by light irradiation in the second step.
  • the production method even if bubbles remain in the curable resin composition in the first step, the bubbles are likely to disappear before the curable resin composition is cured in the second step. No cured resin layer is easily formed. This is due to the following factors.
  • the laminated precursor formed in the first step is placed in a pressure atmosphere higher than the reduced pressure atmosphere of the first step in the second step, the pressure outside the transparent substrate becomes larger than the pressure inside, Pressure is applied to the curable resin composition from the substrate.
  • the inside of the bubbles in the curable resin composition is at the pressure of the reduced pressure atmosphere in the first step, the volume of the bubbles is reduced by the pressure applied to the curable resin composition in the second step, or When the gas in the bubbles dissolves in the curable resin composition, the bubbles disappear.
  • the laminated precursor in the second step, before curing the curable resin composition, is held for a while under a pressure atmosphere higher than the reduced-pressure atmosphere. It is preferable to do.
  • the holding time is preferably 5 minutes or more. Note that the holding time may be less than 5 minutes when there are no bubbles or when the bubbles are minute and disappear quickly.
  • the atmosphere having a higher pressure than the reduced-pressure atmosphere in the second step is preferably a pressure atmosphere of 50 kPa or more, more preferably a pressure atmosphere of 100 kPa or more, and an atmospheric pressure atmosphere is particularly preferable from the viewpoint of easy control of the pressure atmosphere.
  • the pressure atmosphere in the first step and the second step is particularly preferably a pressure atmosphere of 100 Pa or less in the first step and an atmospheric pressure atmosphere in the second step.
  • a sealing material 12 is provided over the entire periphery of one substrate 10 (hereinafter simply referred to as “substrate 10”), and a sealing UV curable resin 36 is applied on the sealing material 12.
  • the curable resin composition 14 is supplied to the surface of the substrate 10 surrounded by the sealing material 12.
  • the layer of the curable resin composition 14 is placed horizontally in the decompression chamber 26 with the layer facing up.
  • the other substrate 16 (hereinafter simply referred to as “substrate 16”) is held by the suction pad 32 on the upper surface plate 30 that can be moved up and down by the cylinder 34 in the decompression chamber 26, and in parallel above the substrate 10.
  • the decompression chamber 26 is closed, and the vacuum pump 28 is operated to evacuate, so that the inside of the decompression chamber 26 has a predetermined decompressed atmosphere. Thereafter, the cylinder 34 is operated to lower the substrate 16, the layer of the curable resin composition 14 is sandwiched between the substrate 10 and the substrate 16, and the curable resin composition 14 is sealed by the substrate 10, the substrate 16, and the sealing material 12. A laminated precursor is formed.
  • the reduced pressure chamber 26 is returned to the atmospheric pressure atmosphere, the laminated precursor is taken out from the reduced pressure chamber 26, and the curable resin composition of the laminated precursor is heated or irradiated with light in the atmospheric pressure atmosphere. It hardens
  • symbol 21 is a cured resin layer
  • symbol 31 is a weir-like part which consists of a sealing material and the hardened
  • flexibility can be manufactured with high productivity.
  • ⁇ Measurement method> [Number average molecular weight of oligomer]
  • Mn number average molecular weight of the oligomer was determined from a gel permeation chromatogram using HLC-8220GPC manufactured by TOSOH.
  • the sample was a 1.0 mass% THF solution filtered through a 0.45 ⁇ m PTFE filter, and two TSKgel GMH HR manufactured by TOSOH were used for the column.
  • the reaction was carried out at 80 ° C. for 3 hours in the presence of 0.035 parts by mass of dioctyltin distearate (hereinafter referred to as “DOTDS”) as a catalyst to obtain an isocyanate group-terminated prepolymer.
  • DOTDS dioctyltin distearate
  • the index when the compound (a1) was reacted with the polyisocyanate (a2) was 183.
  • Introducing nitrogen and adding 40.9 parts by mass of 2-hydroxyethyl acrylate (hereinafter referred to as “HEA”) as the curable monomer (a3) was stirred at 80 ° C.
  • DBTDL dibutyltin dilaurate
  • the usage-amount of a curable monomer (a3) is 100 of the value which remove
  • the amount was doubled to 100.
  • the obtained oligomer (A1-1) was colorless and transparent.
  • the average number of acryloyl groups per molecule is 2.0 (the same value as the number of functional groups of isocyanate groups in the isocyanate group-terminated prepolymer), the urethane bond concentration is 8.327% by mass, and the viscosity at 25 ° C. is 800,000 mPa ⁇ s.
  • the urethane bond concentration of the oligomer (A1-1) can be considered that the total amount of isocyanate groups of the IPDI (polyisocyanate (a2)) used for the production of the oligomer (A1-1) forms a urethane bond, It can be calculated from the following formula. (Mole number of isocyanate group of IPDI ⁇ urethane bond molecular weight (59) / mass of oligomer (A1-1)) ⁇ 100 (%) As the mass of the oligomer (A1-1), the total mass of the charged amounts of polybutadiene polyol, IPDI, and HEA is employed.
  • oligomer (A1-2) having a number average molecular weight of 58,000.
  • usage-amount of a curable monomer (a4) is as an index of the isocyanate group which the curable monomer (a4) has with respect to the hydroxyl group of the prepolymer obtained by reacting a compound (a1) and a polyisocyanate (a2). It was 98.
  • the obtained oligomer (A1-2) was colorless and transparent.
  • the average number of acryloyl groups per molecule is 1.9 (the same value as the number of hydroxyl functional groups in the hydroxyl group-terminated prepolymer), the urethane bond concentration is 3.701% by mass, and the viscosity at 25 ° C. is 500. 000 mPa ⁇ s.
  • the urethane bond concentration of the oligomer (A1-2) is the isocyanate group of the HDI (polyisocyanate (a2)) used in the production of the oligomer (A1-2) and the isocyanate group of the Karenz AOI (curable monomer (a4)). Since the total amount of can be regarded as forming a urethane bond, it can be calculated from the following formula.
  • Examples 1 and 2 Comparative Examples 1 to 3
  • Each component was mixed by the mixture ratio (mass basis) shown in Table 1, and the curable resin composition of each example was prepared.
  • the curing rate and the storage shear modulus of the cured product were evaluated by the following methods.
  • Comparative Example 3 only the storage shear modulus was evaluated.
  • the viscosity V 25 at 25 ° C. of the curable resin composition was measured using an E-type viscometer (RE-85U, manufactured by Toki Sangyo Co., Ltd.).
  • Table 2 shows the viscosity V 25 at 25 ° C. of the curable resin composition, the storage shear modulus of the cured product, and the concentration of urethane bonds.
  • the curing rate was evaluated from the ultraviolet light (UV) irradiation time required for curing the curable resin composition and achieving a curing degree of 90%.
  • the degree of cure was determined from the measurement result of the storage shear modulus.
  • the storage shear modulus was measured as follows.
  • the curable resin composition of each example was sandwiched in a 0.4 mm gap between a soda lime glass stage and a measuring spindle (D-PP20 / AL / S07, manufactured by Anton Paar), and in a nitrogen atmosphere, At 35 ° C., light of 100 mW / cm 2 was irradiated for 36 seconds with a mercury xenon lamp (US-9, SP-9) installed at the bottom of the stage.
  • the storage shear modulus value after 180 seconds of ultraviolet light irradiation time is defined as the saturated storage shear modulus (G′max), and the storage shear modulus (G ′) for each ultraviolet light irradiation time is normalized based on G′max.
  • G′max saturated storage shear modulus
  • G ′ storage shear modulus
  • FIG. 5 and 6 show that the degree of cure (G ′ / G′max) with respect to the ultraviolet light irradiation time for the curable resin compositions of Examples 1 and 2 and Comparative Examples 1 and 2 is 100%. This is a graph plotted as follows. 5 and 6, the ultraviolet irradiation time when the curing degree was 90% was read and used as an index of the curing speed.
  • the curable resin composition of each example had a short ultraviolet irradiation time until the degree of cure reached 90%, and the curing rate was fast (see FIGS. 5 and 6). Moreover, the cured
  • the laminated body was manufactured as follows using the curable resin composition of Examples 1 and 2 and Comparative Examples 1 and 2.
  • a liquid crystal display device was taken out from a commercially available liquid crystal display device (7-inch liquid crystal digital photo frame, manufactured by Sony Corporation, product name: DPF-0720).
  • the liquid crystal display device has a display mode of VA (Virtual Alignment) type, a rectangular display, and a vertical (short side) length of 88 mm and a horizontal (long side) length of 156 mm. It was.
  • Polarizers were bonded to both surfaces of the liquid crystal display device, and a printed wiring board was bonded to the end on the long side.
  • the liquid crystal display device was designated as display device A.
  • a seal part having a thickness of 0.2 mm and a width of 2 mm was formed on the peripheral part of the viewing side surface of the display device A using a double-sided adhesive tape, and each region was obtained in a region surrounded by the seal part.
  • the curable resin composition was applied with a thickness of 0.2 mm. This was placed flat on the upper surface of the lower surface plate in the decompression device in which a pair of surface plate lifting devices are installed so that the surface coated with the curable resin composition is on the upper side.
  • a rectangular glass plate B (long side length: 160 mm, short side length 90 mm, thickness: 0.7 mm) is lifted and lowered in the decompression device so as to face the display device A. Installed on the lower surface of the upper surface plate. Moreover, it hold
  • the pressure reducing device was sealed and evacuated until the pressure in the pressure reducing device reached about 10 Pa.
  • the upper and lower surface plates are brought close to each other by the lifting device in the decompression device, and the display device A and the glass plate B are pressure-bonded at a pressure of 2 kPa through an uncured layer made of a curable resin composition and held for 1 minute. .
  • a laminated precursor in which an uncured layer made of the curable resin composition was sandwiched between the display device A and the glass plate B, and the uncured layer was sealed at a peripheral seal portion was formed.
  • the electrostatic chuck was neutralized to separate the glass plate B from the upper surface plate, and the inside of the decompression device was returned to atmospheric pressure in about 15 seconds.
  • the laminated precursor was irradiated with ultraviolet rays (light source: Fusion D-bulb metal halide lamp, illuminance: 100 mW / cm 2 ) for 36 seconds from the glass plate B side, the uncured layer was cured, and display device A A laminated body in which the glass plate B was bonded to the substrate was obtained.
  • the curable resin composition was sufficiently cured, but produced using the curable resin compositions of Comparative Examples 1 and 2.
  • the curable resin composition had an uncured part.
  • the curable resin composition of the present invention has a high curing rate, can form a cured product with high productivity, and can form a cured product having an appropriate elastic modulus and flexibility. Therefore, the curable resin composition of the present invention is formed of a cured resin layer for bonding a display device and a transparent substrate opposed to the viewing surface side of the display device, laminated glass, a cured resin layer in a transparent panel, and the like. Is preferably used. Moreover, the curable resin composition of this invention can be used also for uses, such as an adhesive agent and a coating agent. Further, the curable resin composition of the present invention is an image display device in which a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 To provide: a curable resin composition having a high rate of curing, whereby a cured material can be formed with high productivity, and whereby a flexible cured material provided with suitable elastic modulus can be formed; and a layered body and an image display device which use the curable resin composition. A curable resin composition containing: a curable oligomer component containing a curable oligomer (A) having a polybutadiene chain and/or a polyisoprene chain and a urethane bond; a non-curable oligomer (E) having a polybutadiene chain and/or a polyisoprene chain; and a curable monomer (D). A layered body and an image display device which use the curable resin composition.

Description

硬化性樹脂組成物、ならびに、硬化性樹脂組成物を用いた積層体および画像表示装置Curable resin composition, and laminate and image display device using curable resin composition
 本発明は、硬化性樹脂組成物、ならびに、硬化性樹脂組成物を用いた積層体および画像表示装置に関する。 The present invention relates to a curable resin composition, and a laminate and an image display device using the curable resin composition.
 画像表示装置として、表示デバイス上に透明樹脂層を介して保護板が積層された画像表示装置が知られている。また、一対の透明基板などの間に、透明樹脂層が挟まれた透明パネル、合わせガラス等が知られている。
 透明樹脂層は、たとえば、ポリイソプレン単位を骨格に有する硬化性ポリマーと、硬化性モノマーと、光重合開始剤とを含む硬化性樹脂組成物を硬化させる方法で形成される(特許文献1参照。)。ポリイソプレン単位を骨格に有する硬化性ポリマーを含む硬化性樹脂組成物を用いると、形成される透明樹脂層の屈折率が高くなる。
 また、透明樹脂層の形成には、ジエン系のオリゴマーを含む硬化性樹脂組成物を用いる方法も知られている(特許文献2参照。)。
 また、特許文献3には、ポリイソプレン、ポリブタジエンまたはポリウレタンを骨格に持つ(メタ)アクリレートオリゴマーと、柔軟化成分を含有する硬化性樹脂組成物が記載されている。
As an image display device, an image display device in which a protective plate is laminated on a display device via a transparent resin layer is known. Also known are transparent panels, laminated glass, and the like in which a transparent resin layer is sandwiched between a pair of transparent substrates.
The transparent resin layer is formed, for example, by a method of curing a curable resin composition containing a curable polymer having a polyisoprene unit as a skeleton, a curable monomer, and a photopolymerization initiator (see Patent Document 1). ). When a curable resin composition containing a curable polymer having a polyisoprene unit as a skeleton is used, the refractive index of the formed transparent resin layer is increased.
A method using a curable resin composition containing a diene oligomer is also known for forming a transparent resin layer (see Patent Document 2).
Patent Document 3 describes a curable resin composition containing a (meth) acrylate oligomer having polyisoprene, polybutadiene, or polyurethane as a skeleton, and a softening component.
特開2008-282000号公報JP 2008-282000 A 国際公開第2012/005169号International Publication No. 2012/005169 国際公開第2010/027041号International Publication No. 2010/027041
 しかし、特許文献1~3に記載された硬化性樹脂組成物は、必ずしも硬化速度が速くない。そのため、透明樹脂層を形成する際の生産性が低い。 However, the curable resin compositions described in Patent Documents 1 to 3 do not necessarily have a high curing rate. Therefore, productivity at the time of forming a transparent resin layer is low.
 本発明は、硬化速度が速く、高い生産性で硬化物を形成でき、かつ、積層体とするのに適度な弾性率を備え柔軟性を有する硬化物を形成できる硬化性樹脂組成物と、該硬化性樹脂組成物を使用した積層体および画像表示装置の提供を目的とする。 The present invention provides a curable resin composition capable of forming a cured product having a high curing rate, a cured product with high productivity, and a flexible product having an appropriate elastic modulus to form a laminate. It aims at providing the laminated body and image display apparatus which use curable resin composition.
 本発明は、下記[1]~[13]の構成を有する硬化性樹脂組成物、ならびに、該硬化性樹脂組成物を使用した積層体および画像表示装置を提供する。 The present invention provides a curable resin composition having the following configurations [1] to [13], and a laminate and an image display device using the curable resin composition.
[1]ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを有する硬化性オリゴマー(A)を含有する硬化性オリゴマー成分と、
 ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有する非硬化性オリゴマー(E)と、
 硬化性モノマー(D)とを含有する、硬化性樹脂組成物。
[1] A curable oligomer component containing a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond;
A non-curable oligomer (E) having at least one of a polybutadiene chain and a polyisoprene chain;
A curable resin composition containing a curable monomer (D).
[2]ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有し、ウレタン結合を有しない、硬化性オリゴマー(B)をさらに含む、[1]の硬化性樹脂組成物。
[3]硬化性オリゴマー(A)、硬化性オリゴマー(B)および硬化性モノマー(D)が、硬化性基として(メタ)アクリロイル基を、それぞれ1分子中に1つ以上有する、[1]または[2]の硬化性樹脂組成物。
[4]光重合開始剤をさらに含む、[1]~[3]のいずれかの硬化性樹脂組成物。
[2] The curable resin composition according to [1], further including a curable oligomer (B) having at least one of a polybutadiene chain and a polyisoprene chain and having no urethane bond.
[3] The curable oligomer (A), the curable oligomer (B) and the curable monomer (D) each have one or more (meth) acryloyl groups as a curable group in one molecule, [1] or [2] The curable resin composition.
[4] The curable resin composition according to any one of [1] to [3], further comprising a photopolymerization initiator.
[5]前記硬化性樹脂組成物における硬化性オリゴマー(A)のウレタン結合の濃度が0を超え3質量%以下である、[1]~[4]のいずれかの硬化性樹脂組成物。
[6]前記硬化性オリゴマー(A)のウレタン結合の濃度が0.1~10質量%である、[1]~[5]のいずれかの硬化性樹脂組成物。
[7]前記硬化性オリゴマー成分100質量部中の前記硬化性オリゴマー(A)の含有量が25~100質量部である、[1]~[6]のいずれかの硬化性樹脂組成物。
[8]前記硬化性オリゴマー成分100質量部中の前記硬化性オリゴマー(A)と前記硬化性オリゴマー(B)の合計の含有量が75~100質量部である、[2]の硬化性樹脂組成物。
[9]前記硬化性オリゴマー成分の100質量部に対して、前記非硬化性オリゴマー(E)を100~500質量部含む、[1]~[8]のいずれかの硬化性樹脂組成物。
[10]前記硬化性オリゴマー(A)の100質量部に対して、前記モノマー(D)を10~500質量部含む、[1]~[9]のいずれかの硬化性樹脂組成物。
[5] The curable resin composition according to any one of [1] to [4], wherein the concentration of urethane bonds in the curable oligomer (A) in the curable resin composition is more than 0 and 3% by mass or less.
[6] The curable resin composition according to any one of [1] to [5], wherein the urethane bond concentration of the curable oligomer (A) is 0.1 to 10% by mass.
[7] The curable resin composition according to any one of [1] to [6], wherein the content of the curable oligomer (A) in 100 parts by mass of the curable oligomer component is 25 to 100 parts by mass.
[8] The curable resin composition according to [2], wherein the total content of the curable oligomer (A) and the curable oligomer (B) in 100 parts by mass of the curable oligomer component is 75 to 100 parts by mass. object.
[9] The curable resin composition according to any one of [1] to [8], comprising 100 to 500 parts by mass of the non-curable oligomer (E) with respect to 100 parts by mass of the curable oligomer component.
[10] The curable resin composition according to any one of [1] to [9], comprising 10 to 500 parts by mass of the monomer (D) with respect to 100 parts by mass of the curable oligomer (A).
[11]前記硬化性オリゴマー(A)が、
 ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方と水酸基とを有する化合物(a1)と、ポリイソシアネート(a2)とをインデックスが100超となる比率で反応させて得られたイソシアネート基末端プレポリマーに、水酸基を有する硬化性モノマー(a3)を反応させたオリゴマー;または、
 化合物(a1)とポリイソシアネート(a2)とをインデックスが100以下となる比率で反応させて得られた水酸基末端プレポリマーに、イソシアネート基を有する硬化性モノマー(a4)を反応させたオリゴマーである、[1]~[10]のいずれかの硬化性樹脂組成物。
[11] The curable oligomer (A) is
A hydroxyl group is added to an isocyanate group-terminated prepolymer obtained by reacting a compound (a1) having at least one of a polybutadiene chain and a polyisoprene chain and a hydroxyl group with a polyisocyanate (a2) at a ratio of an index exceeding 100. An oligomer obtained by reacting a curable monomer having (a3); or
It is an oligomer obtained by reacting a curable monomer having an isocyanate group (a4) with a hydroxyl group-terminated prepolymer obtained by reacting the compound (a1) and the polyisocyanate (a2) at a ratio of 100 or less. The curable resin composition according to any one of [1] to [10].
[12]表示デバイスと、
 該表示デバイスの視認面側に対向配置された透明基板と、
 前記表示デバイスと前記透明基板との間に挟まれた硬化樹脂層と、
を有する積層体であって、
 前記硬化樹脂層は、[1]~[11]のいずれかの硬化性樹脂組成物が硬化した硬化樹脂層である、積層体。
[13]前記[1]~[11]のいずれかの硬化性樹脂組成物が硬化されてなる硬化樹脂層を有する画像表示装置。
[12] a display device;
A transparent substrate disposed opposite to the viewing surface side of the display device;
A cured resin layer sandwiched between the display device and the transparent substrate;
A laminate having
The cured resin layer is a laminate in which the curable resin composition according to any one of [1] to [11] is cured.
[13] An image display device having a cured resin layer obtained by curing the curable resin composition of any one of [1] to [11].
 本発明によれば、硬化速度が速く、高い生産性で硬化物を形成でき、かつ、積層体とするのに適度な弾性率を備え柔軟性を有する硬化物を形成できる硬化性樹脂組成物、ならびに、該硬化性樹脂組成物を使用した積層体および画像表示装置を提供できる。 According to the present invention, a curable resin composition capable of forming a cured product having a high curing rate, a cured product with high productivity, and a flexible product having an appropriate elastic modulus to form a laminate, And the laminated body and image display apparatus which use this curable resin composition can be provided.
本発明の積層体の製造方法における一工程を示す断面図である。It is sectional drawing which shows 1 process in the manufacturing method of the laminated body of this invention. 図1の方法で製造された積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body manufactured by the method of FIG. 実施例1および比較例1の硬化性樹脂組成物について、紫外光照射時間に対する貯蔵せん断弾性率(G’)をプロットしたグラフである。It is the graph which plotted the storage shear elastic modulus (G ') with respect to ultraviolet light irradiation time about the curable resin composition of Example 1 and Comparative Example 1. 実施例2および比較例2の硬化性樹脂組成物について、紫外光照射時間に対する貯蔵せん断弾性率(G’)をプロットしたグラフである。It is the graph which plotted the storage shear elastic modulus (G ') with respect to ultraviolet light irradiation time about the curable resin composition of Example 2 and Comparative Example 2. 実施例1および比較例1の硬化性樹脂組成物について、紫外光照射時間に対する硬化度をプロットしたグラフである。It is the graph which plotted the degree of hardening with respect to ultraviolet light irradiation time about the curable resin composition of Example 1 and Comparative Example 1. FIG. 実施例2および比較例2の硬化性樹脂組成物について、紫外光照射時間に対する硬化度をプロットしたグラフである。It is the graph which plotted the degree of hardening with respect to ultraviolet light irradiation time about the curable resin composition of Example 2 and Comparative Example 2. FIG.
 本明細書において、CH=C(R10)C(O)-で表される基(ただし、R10は水素原子またはメチル基を表す。)を(メタ)アクリロイル基と記す。(メタ)アクリロイル基はアクリロイル基とメタクリロイル基の総称である。同様に、CH=C(R10)C(O)O-で表される基を(メタ)アクリロイルオキシ基と記す。
 また、CH=C(R10)C(O)OHで表される化合物を(メタ)アクリル酸と記す。同様に、(メタ)アクリル酸のエステルを(メタ)アクリレートと記す。
 また、式(I)で表される単位を単位(I)と記し、他の式で表される単位についても同様に記す。
 本発明におけるオリゴマーやモノマーにおける「硬化性」とは、特に言及しない限り、(メタ)アクリロイル基を有している化合物であることを表す。
 ポリオールとポリイソシアネートを反応させる場合のインデックスとは、ポリイソシアネートの有するイソシアネート基の当量数をポリオールの有する水酸基の当量数で除して得られた比率に100を乗じた値である。
 「ウレタン結合」は、-NHC(=O)O-で表される2価の基(分子量:59)であり、通常、イソシアネート基と水酸基の反応で生成する。
 また、本発明において「透明」とは、基板や積層体の全体または一部において、一方の面側から他方の面側が視認できる様態を意味する。基板や積層体に入射する光の一部の吸収、反射、または光学的な位相の変化等によって可視線透過率が低い場合も、一方の面側から他方の面側が視認できる様態は「透明」に含まれる。
In this specification, CH 2 = C (R 10 ) C (O) - group represented by (wherein, R 10 represents a hydrogen atom or a methyl group.) Referred to as (meth) acryloyl groups. The (meth) acryloyl group is a general term for an acryloyl group and a methacryloyl group. Similarly, a group represented by CH 2 ═C (R 10 ) C (O) O— is referred to as a (meth) acryloyloxy group.
A compound represented by CH 2 ═C (R 10 ) C (O) OH is referred to as (meth) acrylic acid. Similarly, an ester of (meth) acrylic acid is referred to as (meth) acrylate.
In addition, the unit represented by the formula (I) is referred to as a unit (I), and the same applies to units represented by other formulas.
The “curability” in the oligomer or monomer in the present invention means a compound having a (meth) acryloyl group unless otherwise specified.
The index when the polyol and the polyisocyanate are reacted is a value obtained by multiplying the ratio obtained by dividing the number of equivalents of the isocyanate group of the polyisocyanate by the number of equivalents of the hydroxyl group of the polyol by 100.
The “urethane bond” is a divalent group (molecular weight: 59) represented by —NHC (═O) O—, and is usually formed by a reaction between an isocyanate group and a hydroxyl group.
In the present invention, “transparent” means a state in which the other surface side can be visually recognized from one surface side in the whole or a part of the substrate or the laminate. Even if the visible light transmittance is low due to absorption, reflection, or optical phase change of a part of the light incident on the substrate or laminate, the state where the other surface side can be seen from one surface side is “transparent” include.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを有する硬化性オリゴマー(A)(以下、「オリゴマー(A)」とも記す。)を含有する硬化性オリゴマー成分と、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有する非硬化性オリゴマー(E)(以下、「オリゴマー(E)」とも記す。)と、硬化性モノマー(D)(以下、「モノマー(D)」とも記す。)とを含有する。
 オリゴマー(A)およびモノマー(D)は、硬化性基として、それぞれ1分子中に(メタ)アクリロイル基を1つ以上有し、それに基づく硬化性を有する。
 オリゴマー(E)は、(メタ)アクリロイル基を有さず、そのため、硬化性を有しない。
<Curable resin composition>
The curable resin composition of the present invention contains a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond (hereinafter also referred to as “oligomer (A)”). A component, a non-curable oligomer (E) having at least one of a polybutadiene chain and a polyisoprene chain (hereinafter also referred to as “oligomer (E)”), a curable monomer (D) (hereinafter referred to as “monomer (D)”) ")").
The oligomer (A) and the monomer (D) each have one or more (meth) acryloyl groups in one molecule as a curable group, and have curability based thereon.
The oligomer (E) does not have a (meth) acryloyl group and therefore does not have curability.
 オリゴマー(A)およびオリゴマー(E)におけるポリブタジエン鎖は、ブタジエンに由来する単位(以下、「ブタジエン単位」とも記す。)を有し、ポリイソプレン鎖は、イソプレンに由来する単位(以下、「イソプレン単位」とも記す。)を有する。ポリブタジエン鎖を構成するブタジエン単位は、二重結合が水素添加されたものでもよく、ポリイソプレン鎖を構成するイソプレン単位は、二重結合が水素添加されたものでもよい。 The polybutadiene chain in the oligomer (A) and the oligomer (E) has a unit derived from butadiene (hereinafter also referred to as “butadiene unit”), and the polyisoprene chain is a unit derived from isoprene (hereinafter referred to as “isoprene unit”). ").) The butadiene unit constituting the polybutadiene chain may be a hydrogenated double bond, and the isoprene unit constituting the polyisoprene chain may be a hydrogenated double bond.
 本発明の硬化性樹脂組成物は、一対の基板と、該一対の基板の間に挟まれた硬化樹脂層とを有する積層体において、硬化樹脂層の形成に好適に使用できる。積層体としては、詳しくは後述するように、たとえば、表示デバイスと、該表示デバイスの視認面側に対向配置されたガラス板、透明樹脂板等からなる透明基板とを上述の一対の基板と見なした積層体が挙げられる。また、ガラス板、透明樹脂板等からなる一対の透明基板を有する透明積層体が挙げられる。
 本発明の硬化性樹脂組成物は、さらに、液晶表示デバイス等の表示デバイス上に硬化樹脂層を介して、タッチパネルや、保護板等の透明基板が積層された画像表示装置において、硬化樹脂層の形成に好適に使用できる。
The curable resin composition of the present invention can be suitably used for forming a cured resin layer in a laminate having a pair of substrates and a cured resin layer sandwiched between the pair of substrates. As will be described in detail later, for example, the laminated body is a display device and a transparent substrate made of a glass plate, a transparent resin plate, or the like disposed to face the viewing surface side of the display device. The laminated body made is mentioned. Moreover, the transparent laminated body which has a pair of transparent substrate which consists of a glass plate, a transparent resin board, etc. is mentioned.
The curable resin composition of the present invention further includes a cured resin layer in an image display device in which a transparent substrate such as a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device via a cured resin layer. It can be used suitably for formation.
〔オリゴマー(A)〕
(オリゴマー(A))
 オリゴマー(A)は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを有する硬化性のオリゴマーである。オリゴマー(A)は、(メタ)アクリロイル基を1分子中に1個以上有し、平均値として1~4個有することが好ましい。オリゴマー(A)の有する(メタ)アクリロイル基の数が上記範囲の下限値以上であると、硬化性樹脂組成物が充分に硬化する。上記範囲の上限値以下であると、適度な弾性率を有し、柔軟性のある硬化物が得られやすい。なお、硬化物の貯蔵せん断弾性率が1×10~1×10Paであると、硬化物とたとえば基板とを密着性よく接着できる。また、硬化物は応力吸収性に優れ、得られる積層体の反りを防止できる。また、積層体を表示デバイスに用いたときに色ムラの発生も防止できる。オリゴマー(A)は、(メタ)アクリロイル基の数が異なるオリゴマーの混合物であってもよい。オリゴマー(A)は、1分子中に1個以上の(メタ)アクリロイル基を有し、オリゴマー(A)の有する(メタ)アクリロイル基の個数は、平均値として、1分子中1.8~3個が好ましい。
 オリゴマー(A)を含有する硬化性樹脂組成物の硬化物は、オリゴマー(A)が疎水性のポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有することに起因して、屈折率が高くなる。
[Oligomer (A)]
(Oligomer (A))
The oligomer (A) is a curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond. The oligomer (A) preferably has at least one (meth) acryloyl group in one molecule and has an average value of 1 to 4. When the number of (meth) acryloyl groups possessed by the oligomer (A) is not less than the lower limit of the above range, the curable resin composition is sufficiently cured. When it is not more than the upper limit of the above range, it is easy to obtain a cured product having an appropriate elastic modulus and flexibility. If the storage shear modulus of the cured product is 1 × 10 3 to 1 × 10 5 Pa, the cured product and, for example, the substrate can be bonded with good adhesion. Further, the cured product is excellent in stress absorbability and can prevent warpage of the obtained laminate. In addition, the occurrence of color unevenness can be prevented when the laminate is used in a display device. The oligomer (A) may be a mixture of oligomers having different numbers of (meth) acryloyl groups. The oligomer (A) has one or more (meth) acryloyl groups in one molecule, and the average number of (meth) acryloyl groups in the oligomer (A) is 1.8 to 3 in one molecule. Preferably.
The cured product of the curable resin composition containing the oligomer (A) has a high refractive index due to the oligomer (A) having at least one of a hydrophobic polybutadiene chain and a polyisoprene chain.
 オリゴマー(A)は、ブタジエンおよびイソプレン以外のモノマー(m1)に由来する後述の単位(u1)を有していてもよい。 The oligomer (A) may have a unit (u1) described later derived from a monomer (m1) other than butadiene and isoprene.
 オリゴマー(A)を含有する硬化性樹脂組成物は、オリゴマー(A)がウレタン結合を有することに起因して、硬化速度が速い。この理由は明らかではないが、ウレタン結合による水素結合性が、分子内連鎖移動を速め、硬化速度を速めているものと考えられる。硬化性樹脂組成物の硬化速度が速いと、硬化性樹脂組成物の硬化物や、該硬化物を備えた物品を製造する際の生産性が優れる。また、硬化に際して硬化性樹脂組成物に照射する光の強度を小さくできるため、物品を構成する基板等への光照射によるダメージを低減できる。
 オリゴマー(A)は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを共に有するため、該オリゴマー(A)を含む硬化性樹脂組成物は、屈折率が高い硬化物を優れた生産性で形成できる。
The curable resin composition containing the oligomer (A) has a high curing rate due to the oligomer (A) having a urethane bond. The reason for this is not clear, but it is thought that hydrogen bonding by urethane bonds accelerates intramolecular chain transfer and accelerates the curing rate. When the curing rate of the curable resin composition is high, the productivity when producing a cured product of the curable resin composition or an article provided with the cured product is excellent. Moreover, since the intensity | strength of the light irradiated to curable resin composition at the time of hardening can be made small, the damage by the light irradiation to the board | substrate etc. which comprise articles | goods can be reduced.
Since the oligomer (A) has at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond, the curable resin composition containing the oligomer (A) can produce a cured product having a high refractive index with excellent productivity. Can be formed.
 硬化性オリゴマー成分におけるオリゴマー(A)の含有量は、硬化性オリゴマー成分100質量部に対して25~100質量部であることが好ましく、35~100質量部であることがより好ましく、45~100質量部であることが特に好ましい。
 硬化性オリゴマー成分におけるオリゴマー(A)以外の成分は、後述の硬化性オリゴマー(B)および硬化性オリゴマー(C)が挙げられる。硬化性オリゴマー成分におけるオリゴマー(A)以外の成分としては、後述の硬化性オリゴマー(B)が特に好ましい。
The content of the oligomer (A) in the curable oligomer component is preferably 25 to 100 parts by mass, more preferably 35 to 100 parts by mass, with respect to 100 parts by mass of the curable oligomer component, and 45 to 100 The part by mass is particularly preferred.
Examples of the components other than the oligomer (A) in the curable oligomer component include the curable oligomer (B) and the curable oligomer (C) described later. As components other than the oligomer (A) in the curable oligomer component, the curable oligomer (B) described later is particularly preferable.
 オリゴマー(A)は、硬化性樹脂組成物100質量%中のウレタン結合の濃度が0を超え3質量%以下となる範囲で含有されることが好ましく、0.2~2.0質量%がより好ましい。硬化性樹脂組成物中のウレタン結合の濃度が増加すると、硬化性樹脂組成物の硬化速度が速くなる。硬化性樹脂組成物中のオリゴマー(A)のウレタン結合の濃度が上記範囲内であれば、硬化性樹脂組成物の硬化速度が充分に速く、かつ、得られる硬化物の弾性率が適度となる。このような硬化性樹脂組成物の硬化物は、基板同士を貼り合わせる用途、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板とを貼り合せる用途等に好適に用いることができる。 The oligomer (A) is preferably contained in a range where the concentration of urethane bonds in 100% by mass of the curable resin composition is more than 0 and 3% by mass or less, more preferably 0.2 to 2.0% by mass. preferable. As the concentration of urethane bonds in the curable resin composition increases, the curing rate of the curable resin composition increases. If the concentration of the urethane bond of the oligomer (A) in the curable resin composition is within the above range, the curing rate of the curable resin composition is sufficiently high, and the elastic modulus of the resulting cured product is appropriate. . Such a cured product of the curable resin composition is preferably used for applications in which the substrates are bonded to each other, for applications in which the display device is bonded to a transparent substrate that is disposed to face the viewing surface of the display device. it can.
 硬化性樹脂組成物中にオリゴマー(A)以外のウレタン結合を有する成分が含まれていてもよい。そのような成分としては、たとえば、ウレタン結合を有する非硬化性オリゴマー(E)や後述のウレタン結合を有する硬化性オリゴマー(C)等が挙げられる。したがって、硬化性樹脂組成物中にこのようなオリゴマー(A)以外のウレタン結合を有する成分が含まれている場合には、そのウレタン結合も硬化性樹脂組成物中のすべてのウレタン結合の濃度に寄与する。その場合、硬化性樹脂組成物中のすべてのウレタン結合の濃度は、硬化性樹脂組成物に含まれるウレタン結合を有する成分の配合量に基づいて計算される。  A component having a urethane bond other than the oligomer (A) may be contained in the curable resin composition. Examples of such components include a non-curable oligomer (E) having a urethane bond and a curable oligomer (C) having a urethane bond described below. Therefore, when a component having a urethane bond other than the oligomer (A) is contained in the curable resin composition, the urethane bond is also adjusted to the concentration of all the urethane bonds in the curable resin composition. Contribute. In that case, the density | concentration of all the urethane bonds in curable resin composition is calculated based on the compounding quantity of the component which has a urethane bond contained in curable resin composition. *
 硬化性樹脂組成物中のオリゴマー(A)のウレタン結合の濃度は、硬化性樹脂組成物の質量を100質量%としたときの、オリゴマー(A)のウレタン結合の質量割合である。
 硬化性樹脂組成物中のすべてのウレタン結合の濃度は、0を超え4質量%以下となる範囲であることが好ましく、0.2~3.5質量%がより好ましい。
 本発明の硬化性樹脂組成物としては、オリゴマー(A)以外のウレタン結合を有する成分を実質的に含まないことが好ましい。この場合、本発明の硬化性樹脂組成物のウレタン結合濃度は、オリゴマー(A)のウレタン結合含有量と硬化性樹脂組成物中のオリゴマー(A)の含有量によって計算される。
The concentration of the urethane bond of the oligomer (A) in the curable resin composition is a mass ratio of the urethane bond of the oligomer (A) when the mass of the curable resin composition is 100% by mass.
The concentration of all urethane bonds in the curable resin composition is preferably in the range of more than 0 and 4% by mass or less, more preferably 0.2 to 3.5% by mass.
The curable resin composition of the present invention preferably contains substantially no components having a urethane bond other than the oligomer (A). In this case, the urethane bond concentration of the curable resin composition of the present invention is calculated by the urethane bond content of the oligomer (A) and the content of the oligomer (A) in the curable resin composition.
 オリゴマー(A)のウレタン結合の濃度は、0.1~10質量%が好ましく、0.3~9質量%がより好ましい。ウレタン結合の濃度が上記範囲の下限値以上であれば、硬化速度を速めることができる。上記範囲の上限値以下であれば、硬化性樹脂組成物の硬化物に適度な弾性率を得ることができ、たとえば画像表示装置において、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板との密着性を良好にすることができる。また、応力吸収性にも優れる。 The concentration of the urethane bond in the oligomer (A) is preferably 0.1 to 10% by mass, and more preferably 0.3 to 9% by mass. If the concentration of the urethane bond is not less than the lower limit of the above range, the curing rate can be increased. If it is not more than the upper limit of the above range, an appropriate elastic modulus can be obtained for the cured product of the curable resin composition. For example, in an image display device, the display device is disposed opposite to the viewing surface side of the display device. Adhesion with the transparent substrate can be improved. Moreover, it is excellent also in stress absorption.
 オリゴマー(A)のウレタン結合の濃度は、オリゴマー(A)を製造する際に用いる各化合物の比率をコントロールする方法により調整できる。たとえば、後述するポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方と水酸基とを有する化合物(a1)と、後述するポリイソシアネート(a2)とのインデックスをコントロールする方法;後述するイソシアネート基末端プレポリマーと水酸基を有する硬化性モノマー(a3)とのインデックス、または、後述する水酸基末端プレポリマーとイソシアネート基を有する硬化性モノマー(a4)とのインデックスをコントロールする方法;により調整できる。 The concentration of the urethane bond of the oligomer (A) can be adjusted by a method of controlling the ratio of each compound used when the oligomer (A) is produced. For example, a method for controlling the index of a compound (a1) having at least one of a polybutadiene chain and polyisoprene chain described later and a hydroxyl group and a polyisocyanate (a2) described later; having an isocyanate group-terminated prepolymer and a hydroxyl group described later It can adjust by the method of controlling the index with a curable monomer (a3), or the index with the hydroxyl-terminated prepolymer mentioned later and the curable monomer (a4) which has an isocyanate group.
 オリゴマー(A)のウレタン結合の濃度は、オリゴマー(A)の質量に占めるウレタン結合の質量割合であり、オリゴマー(A)の製造に用いた各成分の仕込み量から計算により求められる。 The concentration of the urethane bond of the oligomer (A) is a mass ratio of the urethane bond to the mass of the oligomer (A), and is calculated from the amount of each component used for the production of the oligomer (A).
 オリゴマー(A)のGPCによるポリスチレン換算の数平均分子量は、2,000~500,000が好ましく、2,400~100,000がより好ましい。オリゴマー(A)の数平均分子量が上記範囲の下限値以上であると、硬化性樹脂組成物の硬化物が適度な弾性率となりやすく、上限値以下であると、硬化速度を速めることができる。 The number average molecular weight in terms of polystyrene by GPC of the oligomer (A) is preferably 2,000 to 500,000, more preferably 2,400 to 100,000. When the number average molecular weight of the oligomer (A) is not less than the lower limit of the above range, the cured product of the curable resin composition tends to have an appropriate elastic modulus, and when it is not more than the upper limit, the curing rate can be increased.
 オリゴマー(A)のうち、ポリブタジエン鎖を有するオリゴマーとしては、たとえば、下式(I)で表される単位および下式(II)で表される単位のうちの少なくとも一方からなる単位を骨格に有し、かつ、分子の少なくとも1つの末端に、下式(III)で表される基((メタ)アクリロイルオキシ基を有する1価の基。)を有するオリゴマー(A1)が挙げられる。単位(I)は1,4結合による単位であり、単位(II)は1,2結合による単位である。
 オリゴマー(A1)の分子の他の末端は、上式(III)で表される基でも、水酸基等の他の1価の基でも、水素原子でもよい。硬化性樹脂組成物の硬化性が優れる点から、オリゴマー(A1)の他の末端は、上式(III)で表される基であることが好ましい。
Among the oligomers (A), as the oligomer having a polybutadiene chain, for example, the skeleton has a unit composed of at least one of the unit represented by the following formula (I) and the unit represented by the following formula (II). In addition, an oligomer (A1) having a group represented by the following formula (III) (a monovalent group having a (meth) acryloyloxy group) at at least one terminal of the molecule is exemplified. Unit (I) is a unit with 1,4 bonds, and unit (II) is a unit with 1,2 bonds.
The other end of the molecule of the oligomer (A1) may be a group represented by the above formula (III), another monovalent group such as a hydroxyl group, or a hydrogen atom. From the viewpoint of excellent curability of the curable resin composition, the other end of the oligomer (A1) is preferably a group represented by the above formula (III).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)および式(II)中、実線と点線の二重線部分は、単結合または二重結合を示す。単結合である場合、該単結合は、二重結合が水素添加されたものである。
 式(III)中、R~Rは、各々独立して、炭素数が1~10の直鎖状または分岐状のアルキレン基、炭素数1~6のアルキル基を置換基として有していてもよい炭素数3~8のシクロアルキレン基、上述のアルキレン基およびシクロアルキレン基の複合した基のいずれかを表す。
 Rは水素原子またはメチル基を表す。
In formula (I) and formula (II), the solid and dotted double line portions indicate single bonds or double bonds. In the case of a single bond, the single bond is a hydrogenated double bond.
In the formula (III), R 1 to R 3 each independently has a linear or branched alkylene group having 1 to 10 carbon atoms or an alkyl group having 1 to 6 carbon atoms as a substituent. Any one of a cycloalkylene group having 3 to 8 carbon atoms and a combination of the above-described alkylene group and cycloalkylene group.
R 4 represents a hydrogen atom or a methyl group.
 式(III)において、Rは、ポリブタジエン鎖末端の水酸基末端基から水酸基を除いた基を表す。
 Rはジイソシアネートからイソシアネート基を除いた2価の基を表す。Rとしては、硬化性樹脂組成物の硬化物の非黄変性の点で、ヘキサメチレン基、メチレン-1,3,3,-トリメチルシクロヘキシレン基、メチレンビス(シクロヘキサン-4,1-ジイル)基、m-フェニレンビスメチレン基、が好ましい。
 RおよびRは、後述の硬化性モノマー(a3)に由来する基であり、上記のうち、柔軟性付与の点から、Rは炭素数1~6のアルキレン基が好ましい。
In the formula (III), R 1 represents a group obtained by removing the hydroxyl group from the hydroxyl group end group of the polybutadiene chain end.
R 2 represents a divalent group obtained by removing an isocyanate group from diisocyanate. R 2 is a hexamethylene group, a methylene-1,3,3-trimethylcyclohexylene group, a methylenebis (cyclohexane-4,1-diyl) group in terms of non-yellowing of the cured product of the curable resin composition. And m-phenylene bismethylene group is preferred.
R 3 and R 4 are groups derived from the curable monomer (a3) described later, and among the above, R 3 is preferably an alkylene group having 1 to 6 carbon atoms from the viewpoint of imparting flexibility.
 オリゴマー(A)のうち、ポリイソプレン鎖を有するオリゴマーとしては、たとえば、下式(IV)で表される単位および下式(V)で表される単位のうちの少なくとも一方からなる単位を骨格に有し、かつ、分子の少なくとも1つの末端に、上式(III)で表される基を有するオリゴマー(A2)が挙げられる。単位(IV)は1,4結合による単位であり、単位(V)は1,2結合による単位である。
 オリゴマー(A2)の分子の他の末端は、上式(III)で表される基でも、水酸基等の他の1価の基でも、水素原子でもよい。硬化性樹脂組成物の硬化性が優れる点から、オリゴマー(A2)の他の末端は、上式(III)で表される基であることが好ましい。
Among the oligomers (A), as the oligomer having a polyisoprene chain, for example, a unit composed of at least one of a unit represented by the following formula (IV) and a unit represented by the following formula (V) is used as a skeleton: And an oligomer (A2) having a group represented by the above formula (III) at least at one end of the molecule. The unit (IV) is a unit with 1,4 bonds, and the unit (V) is a unit with 1,2 bonds.
The other end of the molecule of the oligomer (A2) may be a group represented by the above formula (III), another monovalent group such as a hydroxyl group, or a hydrogen atom. From the viewpoint of excellent curability of the curable resin composition, the other end of the oligomer (A2) is preferably a group represented by the above formula (III).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(IV)および式(V)中、実線と点線の二重線部分は、単結合または二重結合を示す。単結合である場合、該単結合は、二重結合が水素添加されたものである。
 オリゴマー(A1)の骨格における単位(I)と単位(II)との比率には制限はなく、単位(I)のみからなる骨格でも、単位(II)のみからなる骨格でも、単位(I)と単位(II)とからなる骨格でもよい。
 オリゴマー(A2)の骨格における単位(IV)と単位(V)との比率には制限はなく、単位(IV)のみからなる骨格でも、単位(V)のみからなる骨格でも、単位(IV)と単位(V)とからなる骨格でもよい。
In formula (IV) and formula (V), the double line part of a solid line and a dotted line shows a single bond or a double bond. In the case of a single bond, the single bond is a hydrogenated double bond.
The ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (A1) is not limited, and the skeleton composed only of the unit (I) or the skeleton composed only of the unit (II) It may be a skeleton composed of the unit (II).
The ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (A2) is not limited, and the skeleton consisting only of the unit (IV) or the skeleton consisting only of the unit (V) It may be a skeleton consisting of the unit (V).
(オリゴマー(A)の製造方法)
 オリゴマー(A)は、イソシアネート基末端プレポリマーまたは水酸基末端プレポリマーに、水酸基を有する硬化性モノマー(a3)またはイソシアネート基を有する硬化性モノマー(a4)を反応させることで製造できる。
 具体的には、以下の方法で製造できる。
(1)触媒の存在または非存在下で、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方と水酸基とを有する化合物(a1)と、複数のイソシアネート基を有するポリイソシアネート(a2)とをインデックスが100超となる比率(イソシアネート基が水酸基に対して過剰。)で反応させてイソシアネート基末端プレポリマーを得て、該イソシアネート基末端プレポリマーに水酸基を有する硬化性モノマー(a3)を反応させる方法。
 該(1)の方法によれば、末端に上式(III)で表される基を有するオリゴマー(A1)または(A2)を製造できる。
(Method for producing oligomer (A))
The oligomer (A) can be produced by reacting a curable monomer having a hydroxyl group (a3) or a curable monomer having an isocyanate group (a4) with an isocyanate group-terminated prepolymer or a hydroxyl group-terminated prepolymer.
Specifically, it can be produced by the following method.
(1) In the presence or absence of a catalyst, a compound (a1) having at least one of a polybutadiene chain and a polyisoprene chain and a hydroxyl group and a polyisocyanate (a2) having a plurality of isocyanate groups have an index of more than 100 To obtain an isocyanate group-terminated prepolymer by reacting at a ratio (isocyanate group is excessive with respect to the hydroxyl group), and reacting the isocyanate group-terminated prepolymer with a curable monomer (a3) having a hydroxyl group.
According to the method (1), the oligomer (A1) or (A2) having a group represented by the above formula (III) at the terminal can be produced.
(2)触媒の存在または非存在下で、上記化合物(a1)と上記ポリイソシアネート(a2)とをインデックスが100以下となる比率(水酸基がイソシアネート基に対して同モルまたは過剰。)で反応させて水酸基末端プレポリマーを得て、該水酸基末端プレポリマーにイソシアネート基を有する硬化性モノマー(a4)を反応させる方法。
 該(2)の方法によれば、末端に下式(VI)で表される基を有するオリゴマー(A1)または(A2)を製造できる。
(2) In the presence or absence of a catalyst, the above compound (a1) and the above polyisocyanate (a2) are reacted at a ratio that the index is 100 or less (the hydroxyl group is the same mole or excess with respect to the isocyanate group). To obtain a hydroxyl group-terminated prepolymer and react the curable monomer (a4) having an isocyanate group with the hydroxyl group-terminated prepolymer.
According to the method (2), the oligomer (A1) or (A2) having a group represented by the following formula (VI) at the terminal can be produced.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(VI)中、Rは水素原子またはメチル基を表し、Rは、炭素数が1~10の直鎖状または分岐状のアルキレン基、炭素数1~6のアルキル基を置換基として有していてもよい炭素数3~8のシクロアルキレン基、上述のアルキレン基およびシクロアルキレン基の複合した基のいずれかを表す。RおよびRは、後述の硬化性モノマー(a4)に由来する基である。Rとしては炭素数2~4のアルキレン基が好ましい。
 Rは水酸基末端プレポリマーの末端基から水酸基を除いた基である。
In formula (VI), R 7 represents a hydrogen atom or a methyl group, R 8 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and an alkyl group having 1 to 6 carbon atoms as a substituent. It represents any of a cycloalkylene group having 3 to 8 carbon atoms which may have, a composite group of the above-described alkylene group and cycloalkylene group. R 7 and R 8 are groups derived from the curable monomer (a4) described later. R 8 is preferably an alkylene group having 2 to 4 carbon atoms.
R 9 is a group obtained by removing the hydroxyl group from the terminal group of the hydroxyl group-terminated prepolymer.
 すなわち、オリゴマー(A)は、プレポリマーの末端がイソシアネート基の場合は、水酸基を有する硬化性モノマー(a3)と反応させたオリゴマーであり、プレポリマーの末端が水酸基の場合は、イソシアネート基を有する硬化性モノマー(a4)と反応させたオリゴマーである。
 なお、オリゴマー(A)は、下記の方法でも製造できる。
(3)触媒の存在又は非存在下で、水酸基を有する硬化性モノマー(a3)とポリイソシアネート(a2)とを反応させた後、化合物(a1)を反応させる方法。
 得られるオリゴマー(A)の分子量を一定にしやすい点で、(1)および(2)の方法が好ましい。分子量が一定であると、オリゴマー(A)の反応性を均一にすることができ、得られる硬化物の弾性率を制御しやすい。
That is, the oligomer (A) is an oligomer reacted with a curable monomer (a3) having a hydroxyl group when the prepolymer end is an isocyanate group, and has an isocyanate group when the prepolymer end is a hydroxyl group. It is an oligomer reacted with the curable monomer (a4).
The oligomer (A) can also be produced by the following method.
(3) A method of reacting the compound (a1) after reacting the curable monomer (a3) having a hydroxyl group with the polyisocyanate (a2) in the presence or absence of a catalyst.
The method of (1) and (2) is preferable at the point which makes it easy to make the molecular weight of the oligomer (A) obtained. When the molecular weight is constant, the reactivity of the oligomer (A) can be made uniform, and the elastic modulus of the resulting cured product can be easily controlled.
 化合物(a1)は、1分子中に水酸基を1個以上有し、平均値として、1~4個有することが好ましい。水酸基の数が上記範囲の下限値以上であれば、適度な弾性率の硬化物が得られ、上記範囲の上限値以下であれば、オリゴマー(A)製造時の過度な増粘、ゲル化を防ぐことができる。化合物(a1)の水酸基価(OHV)としては、反応性の点から、225~11mgKOH/gが好ましく、113~14mgKOH/gが好ましい。本明細書において水酸基価は、試料1g中に含まれる水酸基をアセチル化するために要する水酸化カリウムのmg数を求めることにより測定できる。化合物(a1)のGPCによるポリスチレン換算の数平均分子量は、反応性の点から、500~10,000が好ましく、1,000~8,000がより好ましい。 The compound (a1) preferably has one or more hydroxyl groups in one molecule and has an average value of 1 to 4. If the number of hydroxyl groups is not less than the lower limit of the above range, a cured product having an appropriate elastic modulus can be obtained. If the number of hydroxyl groups is not more than the upper limit of the above range, excessive thickening and gelation during the production of the oligomer (A) can be achieved. Can be prevented. The hydroxyl value (OHV) of the compound (a1) is preferably 225 to 11 mgKOH / g, more preferably 113 to 14 mgKOH / g, from the viewpoint of reactivity. In this specification, the hydroxyl value can be measured by determining the number of mg of potassium hydroxide required to acetylate the hydroxyl group contained in 1 g of the sample. The number average molecular weight in terms of polystyrene by GPC of the compound (a1) is preferably from 500 to 10,000, more preferably from 1,000 to 8,000, from the viewpoint of reactivity.
 化合物(a1)のうち、ポリブタジエン鎖を有する化合物としては、単位(I)および単位(II)のうちの少なくとも一方からなる単位を有し、かつ、分子の少なくとも1つの末端に水酸基を有する化合物(a11)が挙げられる。化合物(a11)の水酸基の数は、平均値として1~2個が好ましい。
 化合物(a1)のうち、ポリイソプレン鎖を有する化合物としては、単位(IV)および単位(V)のうちの少なくとも一方からなる単位を有し、かつ、分子の少なくとも1つの末端に水酸基を有する化合物(a12)が挙げられる。化合物(a12)の水酸基の数は、平均値として1~2個が好ましい。
Among the compounds (a1), the compound having a polybutadiene chain is a compound having a unit consisting of at least one of the unit (I) and the unit (II) and having a hydroxyl group at at least one terminal of the molecule ( a11). The number of hydroxyl groups in the compound (a11) is preferably 1 to 2 on average.
Among the compounds (a1), as the compound having a polyisoprene chain, a compound having a unit consisting of at least one of the unit (IV) and the unit (V) and having a hydroxyl group at at least one terminal of the molecule (A12). The number of hydroxyl groups in the compound (a12) is preferably 1 to 2 on average.
 化合物(a11)は、たとえば、ブタジエンを重合させて重合体を得て、必要に応じて水素添加した後、重合体の分子の末端に水酸基を導入する方法で製造できる。
 ブタジエンを重合する方法としては、
(α)ブタジエンを溶液中、チーグラー触媒、リチウム触媒やラジカル重合開始剤により重合させる方法;(β)ブタジエンを溶液中でナトリウム触媒の存在下に重合させる方法;が挙げられる。
Compound (a11) can be produced, for example, by polymerizing butadiene to obtain a polymer, hydrogenating as required, and then introducing a hydroxyl group into the terminal of the polymer molecule.
As a method of polymerizing butadiene,
(Α) A method of polymerizing butadiene in a solution with a Ziegler catalyst, a lithium catalyst or a radical polymerization initiator; and (β) a method of polymerizing butadiene in a solution in the presence of a sodium catalyst.
 上記(α)の方法によれば、ブタジエンが主として1,4-結合で重合した重合体を得ることができ、上記(β)のブタジエンの重合方法によれば、ブタジエンが主として1,2-結合で重合した重合体を得ることができる。 According to the method (α), a polymer in which butadiene is mainly polymerized with 1,4-bonds can be obtained. According to the method for polymerizing butadiene in (β), butadiene is mainly composed of 1,2-bonds. A polymer polymerized with can be obtained.
 化合物(a12)は、たとえば、イソプレンを重合させて重合体を得て、必要に応じて水素添加した後、重合体の分子の末端に水酸基を導入する方法で製造できる。
 イソプレンを重合する方法としては、上記(α)および(β)の方法において、ブタジエンの代わりにイソプレンを用いればよい。
Compound (a12) can be produced, for example, by polymerizing isoprene to obtain a polymer, hydrogenating as required, and then introducing a hydroxyl group into the terminal of the polymer molecule.
As a method for polymerizing isoprene, isoprene may be used in place of butadiene in the methods (α) and (β).
 重合体の分子の末端に水酸基を導入する方法としては、たとえば、ブタジエンまたはイソプレンを重合させて得られる、重合体を含む反応液に、エポキシ化合物を添加する方法が挙げられる。エポキシ化合物としては、エチレンオキサイド、プロピレンオキサイド等が挙げられる。化合物(a1)は1種を単独で用いても、2種以上を併用してもよい。 Examples of the method for introducing a hydroxyl group into the polymer molecule end include a method of adding an epoxy compound to a reaction solution containing a polymer obtained by polymerizing butadiene or isoprene. Examples of the epoxy compound include ethylene oxide and propylene oxide. A compound (a1) may be used individually by 1 type, or may use 2 or more types together.
 化合物(a1)は、ブタジエンおよびイソプレン以外のモノマー(m1)に由来する単位(u1)を有していてもよい。
 モノマー(m1)としては、たとえば、エチレン、プロピレン、ブテン-1、ペンテン-1,2-メチルペンテン-1、ヘキセン-1,3-メチルヘキセン-1、シクロヘキセン等のα-オレフィン類;スチレン、4-メチルスチレン、α-メチルスチレン等のスチレン系モノマー;アクリル酸、メタクリル酸等のエチレン性不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ジメチルアミノエチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ジメチルアミノエチル等のエチレン性不飽和カルボン酸エステル;アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリロアミド等のエチレン性不飽和カルボン酸誘導体;エチレン、プロピレン、ブチレン等の不飽和モノオレフィン;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロゲン化ビニルモノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル;ビニルメチルケトン、メチルイソプロペニルケトン等のビニルケトン系モノマー;2-ビニルピリジン、4-ビニルピリジン、N-ビニルピロリドン等の含窒素ビニル系モノマー;等のモノビニル系モノマーを挙げることができる。
 モノマー(m1)は1種を単独で用いても、2種以上を併用してもよい。
The compound (a1) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
Examples of the monomer (m1) include α-olefins such as ethylene, propylene, butene-1, pentene-1,2-methylpentene-1, hexene-1,3-methylhexene-1, cyclohexene; styrene, 4 -Styrene monomers such as methylstyrene and α-methylstyrene; Ethylenically unsaturated carboxylic acids such as acrylic acid and methacrylic acid; Methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, acrylic acid Ethylenically unsaturated carboxylic acid esters such as 2-ethylhexyl, dimethylaminoethyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dimethylaminoethyl methacrylate Acrylonitrile, me Ethylenically unsaturated carboxylic acid derivatives such as acrylonitrile, acrylamide, and methacryloamide; Unsaturated monoolefins such as ethylene, propylene, and butylene; Halogenated vinyl monomers such as vinyl chloride, vinylidene chloride, and vinyl fluoride; Vinyl acetate, Vinyl esters such as vinyl propionate; vinyl ethers such as vinyl methyl ether and vinyl ethyl ether; vinyl ketone monomers such as vinyl methyl ketone and methyl isopropenyl ketone; containing 2-vinyl pyridine, 4-vinyl pyridine, N-vinyl pyrrolidone, etc. Examples thereof include monovinyl monomers such as nitrogen vinyl monomers.
A monomer (m1) may be used individually by 1 type, or may use 2 or more types together.
 化合物(a1)が単位(u1)を有する場合、モノマー(m1)の使用量は、ブタジエンおよびイソプレンの重合反応において使用するブタジエンおよびイソプレンの100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、10質量部以下が特に好ましい。 When the compound (a1) has a unit (u1), the amount of the monomer (m1) used is 100 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene. Preferably, it is more preferably 50 parts by mass or less, and particularly preferably 10 parts by mass or less.
 ポリイソシアネート(a2)としては、非黄変型のポリイソシアネートが好ましく、2個のイソシアネート基を有する非黄変型のジイソシアネートがより好ましい。非黄変型のポリイソシアネートとは、芳香核を構成する炭素原子に直接結合したイソシアネート基を有しないポリイソシアネート化合物をいう。非黄変型のポリイソシアネートとしては、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香核を構成する炭素原子に直接結合したイソシアネート基を有しない芳香族ポリイソシアネート等が挙げられる。
 具体的には、たとえば、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、1,2-シクロプロパンジイルジイソシアネート、1,3-シクロブタンジイルジイソシアネート、1,4-シクロヘキサンジイルジイソシアネート、1,3-シクロヘキサンジイルジイソシアネート、イソホロンジイソシアネート、4-メチル-シクロヘキサン-1,3-ジイル-ジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の脂環式ジイソシアネート、キシレンジイソシアネート等の非黄変型芳香族ジイソシアネートが挙げられる。
 また、これらのジイソシアネートのプレポリマー変性体、ヌレート変性体、ウレア変性体、カルボジイミド変性体等が挙げられる。
 これらのなかでも、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシレンジイソシアネート、ノルボルナンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、およびこれらのプレポリマー変性体、ヌレート変性体、ウレア変性体、カルボジイミド変性体等が好ましく、なかでも、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートが特に好ましい。
 ポリイソシアネート(a2)は1種を単独で用いても、2種以上を併用してもよい。
As the polyisocyanate (a2), non-yellowing polyisocyanate is preferable, and non-yellowing diisocyanate having two isocyanate groups is more preferable. The non-yellowing type polyisocyanate means a polyisocyanate compound having no isocyanate group directly bonded to the carbon atom constituting the aromatic nucleus. Examples of the non-yellowing polyisocyanate include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates that do not have an isocyanate group directly bonded to a carbon atom constituting an aromatic nucleus, and the like.
Specifically, for example, aliphatic diisocyanates such as hexamethylene diisocyanate, 1,2-cyclopropanediyl diisocyanate, 1,3-cyclobutanediyl diisocyanate, 1,4-cyclohexanediyl diisocyanate, 1,3-cyclohexanediyl diisocyanate, isophorone Examples thereof include alicyclic diisocyanates such as diisocyanate, 4-methyl-cyclohexane-1,3-diyl-diisocyanate, and dicyclohexylmethane diisocyanate, and non-yellowing aromatic diisocyanates such as xylene diisocyanate.
Moreover, the prepolymer modified body of these diisocyanates, a nurate modified body, a urea modified body, a carbodiimide modified body, etc. are mentioned.
Among these, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylene diisocyanate, norbornane diisocyanate, trimethylhexamethylene diisocyanate, and prepolymer modified products thereof, nurate modified products, urea modified products, carbodiimide modified products, and the like are preferable. Of these, isophorone diisocyanate and hexamethylene diisocyanate are particularly preferable.
Polyisocyanate (a2) may be used individually by 1 type, or may use 2 or more types together.
 硬化性モノマー(a3)としては、ヒドロキシアルキル(メタ)アクリレートが好ましい。ヒドロキシアルキル基としては、炭素数が1~10の直鎖状または分岐状のヒドロキシアルキル基が好ましく、炭素数1~6のヒドロキシアルキル基が特に好ましい。
 硬化性モノマー(a3)としては、たとえば、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシ-n-プロピル(メタ)アクリレート、2-ヒドロキシ-n-プロピル(メタ)アクリレート、2-ヒドロキシイソプロピル(メタ)アクリレート、4-ヒドロキシ-n-ブチルアクリレート、2-ヒドロキシ-n-ブチルアクリレート、3-ヒドロキシ-n-ブチルアクリレート、5-ヒドロキシ-n-ペンチル(メタ)アクリレート、2-ヒドロキシ-n-ペンチル(メタ)アクリレート、3-ヒドロキシ-n-ペンチル(メタ)アクリレート、4-ヒドロキシ-n-ペンチル(メタ)アクリレート、2-ヒドロキシシクロプロピル(メタ)アクリレート、3-ヒドロキシシクロペンチル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレート等が挙げられる。
 硬化性モノマー(a3)としては、反応性の点でヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートが好ましい。
 硬化性モノマー(a3)は1種を単独で用いても、2種以上を併用してもよい。
As the curable monomer (a3), hydroxyalkyl (meth) acrylate is preferable. As the hydroxyalkyl group, a linear or branched hydroxyalkyl group having 1 to 10 carbon atoms is preferable, and a hydroxyalkyl group having 1 to 6 carbon atoms is particularly preferable.
Examples of the curable monomer (a3) include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxy-n-propyl (meth) acrylate, and 2-hydroxy-n-propyl (meth) acrylate. 2-hydroxyisopropyl (meth) acrylate, 4-hydroxy-n-butyl acrylate, 2-hydroxy-n-butyl acrylate, 3-hydroxy-n-butyl acrylate, 5-hydroxy-n-pentyl (meth) acrylate, 2 -Hydroxy-n-pentyl (meth) acrylate, 3-hydroxy-n-pentyl (meth) acrylate, 4-hydroxy-n-pentyl (meth) acrylate, 2-hydroxycyclopropyl (meth) acrylate, 3-hydroxycyclopenty (Meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate and the like.
As the curable monomer (a3), hydroxymethyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate are preferable in terms of reactivity.
A curable monomer (a3) may be used individually by 1 type, or may use 2 or more types together.
 硬化性モノマー(a4)は、分子内にイソシアネート基と(メタ)アクリロイル基とを有する化合物であり、イソシアネートアルキル(メタ)アクリレートが好ましい。イソシアネートアルキルのアルキル部分の炭素数は1~6が好ましく、1~4がより好ましい。たとえば、2-イソシアネートエチルメタクリレート(「カレンズMOI(登録商標)」、昭和電工(株)製。)や2-イソシアネートエチルアクリレート(「カレンズAOI(登録商標)」、昭和電工(株)製。)等が挙げられる。
 硬化性モノマー(a4)は1種を単独で用いても、2種以上を併用してもよい。
The curable monomer (a4) is a compound having an isocyanate group and a (meth) acryloyl group in the molecule, and is preferably an isocyanate alkyl (meth) acrylate. The alkyl part of the isocyanate alkyl preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. For example, 2-isocyanate ethyl methacrylate (“Karenz MOI (registered trademark)” manufactured by Showa Denko KK), 2-isocyanate ethyl acrylate (“Karenz AOI (registered trademark)” manufactured by Showa Denko KK), etc. Is mentioned.
A curable monomer (a4) may be used individually by 1 type, or may use 2 or more types together.
 上記(1)の方法でオリゴマー(A)を製造する場合、化合物(a1)とポリイソシアネート(a2)とを反応させる際のインデックスは、100超200以下であることが好ましく、110~190がより好ましく、120~185が特に好ましい。インデックスが上記範囲であれば、得られたオリゴマー(A)を含有する硬化性樹脂組成物は、硬化速度に優れる。
 硬化性モノマー(a3)の使用量は、ポリイソシアネート(a2)のイソシアネート基の当量数を、化合物(a1)と硬化性モノマー(a3)の水酸基の当量数の合計で除した値の100倍が90~100となる量であることが好ましい。
When the oligomer (A) is produced by the method (1), the index when the compound (a1) and the polyisocyanate (a2) are reacted is preferably more than 100 and 200 or less, more preferably 110 to 190. 120 to 185 is preferred, and particularly preferred. When the index is in the above range, the curable resin composition containing the obtained oligomer (A) is excellent in the curing rate.
The amount of the curable monomer (a3) used is 100 times the value obtained by dividing the equivalent number of isocyanate groups of the polyisocyanate (a2) by the total number of equivalents of hydroxyl groups of the compound (a1) and the curable monomer (a3). The amount is preferably 90-100.
 上記(2)の方法でオリゴマー(A)を製造する場合、化合物(a1)とポリイソシアネート(a2)とを反応させる際のインデックスは、50以上100未満であることが好ましく、51~95がより好ましく、52~91が特に好ましい。インデックスが上記範囲であれば、得られたオリゴマー(A)を含有する硬化性樹脂組成物は、硬化速度に優れる。
 硬化性モノマー(a4)の使用量は、化合物(a1)とポリイソシアネート(a2)とを反応して得られるプレポリマーの水酸基に対する、硬化性モノマー(a4)の有するイソシアネート基のインデックスが、90~100であることが好ましい。
When the oligomer (A) is produced by the method (2) above, the index when the compound (a1) and the polyisocyanate (a2) are reacted is preferably 50 or more and less than 100, more preferably 51 to 95. 52 to 91 are particularly preferred. When the index is in the above range, the curable resin composition containing the obtained oligomer (A) is excellent in the curing rate.
The amount of the curable monomer (a4) used is such that the isocyanate group index of the curable monomer (a4) with respect to the hydroxyl group of the prepolymer obtained by reacting the compound (a1) with the polyisocyanate (a2) is 90 to 100 is preferable.
 触媒としては、トリエチルアミン、N,N-ジメチルシクロヘキシルアミン等のモノアミン類、N,N、N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロパンジアミン、N,N,N’,N’-テトラメチルヘキサンジアミン等のジアミン類、N,N、N’,N”,N”-ペンタメチルジエチレントリアミン、N,N、N’,N”,N”-ペンタメチルジプロピレントリアミン、テトラメチルグアニジン等のトリアミン類、トリエチレンジアミン、N,N-ジメチルピペラジン、N-メチル-N’-(2-ジメチルアミノ)-エチルピペラジン、N-メチルモルホリン、N-(N’,N’-ジメチルアミノエチル)モルホリン、1,2-ジメチルイミダゾール等の環状アミン類、ジメチルアミノエタノール、ジメチルアミノエトキシエタノール、N,N、N’-トリメチルアミノエチルエタノールアミン、N-メチル-N’-(2-ヒドロキシエチル)ピペラジン、N-(2-ヒドロキシエチル)モルホリン等のアルコールアミン類、ビス(2-ジメチルアミノエチル)エーテル、エチレングリコールビス(3-ジメチル)アミノプロピルエーテル等のエーテルアミン類、また、金属系触媒としては、有機金属化合物であり、スタナスジアセテート、スタナスオクトエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジクロライド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジステアレート、ジオクチル錫ジラウレート、ジブチル錫マーカプチド、ジブチル錫チオカルボキシレート、ジブチル錫ジマレエート、ジオクチル錫メルカプチド、ジオクチル錫チオカルボキシレート、テトラブトキシチタン、テトライソプロポキシチタン、ビスマストリス(2-エチルヘキサノエート)、オクチル酸ビスマス、ネオデカン酸ビスマス、オクタン酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルトやカルボン酸の塩等が挙げられる。
 触媒は、1種を単独で使用しても、2種以上を併用してもよい。
 触媒の使用量は、ポリジエンポリオール(a1)の100質量部に対して、第3級アミン系触媒の場合は0.01~3.0質量部の範囲が好ましく、金属系触媒の場合は0.001~0.1質量部の範囲が好ましい。
Catalysts include monoamines such as triethylamine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropanediamine, N, N , N ′, N′-tetramethylhexanediamine and the like, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyldipropylene Triamines such as triamine and tetramethylguanidine, triethylenediamine, N, N-dimethylpiperazine, N-methyl-N ′-(2-dimethylamino) -ethylpiperazine, N-methylmorpholine, N- (N ′, N ′ -Dimethylaminoethyl) morpholine, cyclic amines such as 1,2-dimethylimidazole, dimethylaminoethanol, dimethylamino Alcohol amines such as ethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N-methyl-N ′-(2-hydroxyethyl) piperazine, N- (2-hydroxyethyl) morpholine, bis (2- Ether amines such as dimethylaminoethyl) ether and ethylene glycol bis (3-dimethyl) aminopropyl ether, and the metal catalyst is an organometallic compound such as stannous diacetate, stannous octoate, stannous dilaurate, Dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin distearate, dioctyltin dilaurate, dibutyltin marker, dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin Captide, dioctyltin thiocarboxylate, tetrabutoxytitanium, tetraisopropoxytitanium, bismuth tris (2-ethylhexanoate), bismuth octylate, bismuth neodecanoate, lead octoate, lead naphthenate, nickel naphthenate, naphthenic acid Examples include cobalt and carboxylic acid salts.
A catalyst may be used individually by 1 type, or may use 2 or more types together.
The amount of the catalyst used is preferably in the range of 0.01 to 3.0 parts by weight for tertiary amine catalysts and 100 parts by weight for metal catalysts based on 100 parts by weight of polydiene polyol (a1). The range of 0.001 to 0.1 parts by mass is preferable.
 化合物(a1)、ポリイソシアネート(a2)および硬化性モノマー(a3)または(a4)の反応は、無溶媒または適当な不活性溶媒中で行う。通常は無溶媒下で行う。不活性溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;酢酸メチル、酢酸エチル、酢酸n-プロピル等のエステル系溶媒;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、スチレン、プロピレン等のモノマー;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン等のエーテル系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ジメチルスルホキシド;ヘキサメチルフォスホラストリアミド(HMPT)、ヘキサメチルフォスホロアミド(HMPA)等のリン酸アミド系溶媒等が挙げられる。
 反応温度は、0℃~100℃が好ましく、40~80℃がより好ましい。反応は、通常、数分間~数時間で終了する。
The reaction of compound (a1), polyisocyanate (a2) and curable monomer (a3) or (a4) is carried out without solvent or in a suitable inert solvent. Usually, it is carried out in the absence of a solvent. Examples of the inert solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; ester solvents such as methyl acetate, ethyl acetate, and n-propyl acetate; methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, Monomers such as styrene and propylene; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane and 1,4-dioxane Examples thereof include ether solvents; nitrile solvents such as acetonitrile and benzonitrile; dimethyl sulfoxide; phosphoric acid amide solvents such as hexamethylphosphorotriamide (HMPT) and hexamethylphosphoroamide (HMPA).
The reaction temperature is preferably 0 ° C to 100 ° C, more preferably 40 to 80 ° C. The reaction is usually completed in several minutes to several hours.
〔オリゴマー(E)〕
 オリゴマー(E)は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有し、かつ、硬化性を有しない非硬化性のオリゴマーである。オリゴマー(E)は(メタ)アクリロイル基を有しない。
 また、オリゴマー(E)はウレタン結合を有していてもよいが、ウレタン結合を有しない化合物であることが好ましい。ウレタン結合を有するオリゴマー(E)としては、たとえば、前記硬化性オリゴマー(A)の製造に使用される、硬化性モノマー(a4)を反応させる前の、水酸基末端プレポリマーが挙げられる。
 オリゴマー(E)を含有することにより、硬化性樹脂組成物の粘度が低下して、硬化性樹脂組成物の取扱性が優れる。また、オリゴマー(E)を含有することにより、適度な弾性率を備え柔軟性を有する硬化物を形成できる。柔軟性を有する硬化物は、たとえば、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板との間に形成される硬化樹脂層に好適である。オリゴマー(E)は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有するため、オリゴマー(A)との相溶性に優れる。相溶性に優れるため、オリゴマー(E)を配合することによる上述の効果が充分に得られる。
[Oligomer (E)]
The oligomer (E) is a non-curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and having no curability. The oligomer (E) does not have a (meth) acryloyl group.
Moreover, although the oligomer (E) may have a urethane bond, it is preferable that it is a compound which does not have a urethane bond. Examples of the oligomer (E) having a urethane bond include a hydroxyl group-terminated prepolymer used for the production of the curable oligomer (A) before reacting with the curable monomer (a4).
By containing an oligomer (E), the viscosity of a curable resin composition falls and the handleability of a curable resin composition is excellent. Moreover, the hardened | cured material which has a moderate elasticity modulus and has a softness | flexibility can be formed by containing an oligomer (E). The hardened | cured material which has a softness | flexibility is suitable for the cured resin layer formed between a display device and the transparent substrate opposingly arranged by the visual recognition surface side of this display device, for example. Since the oligomer (E) has at least one of a polybutadiene chain and a polyisoprene chain, it has excellent compatibility with the oligomer (A). Since the compatibility is excellent, the above-described effects can be sufficiently obtained by blending the oligomer (E).
 オリゴマー(E)のGPCによるポリスチレン換算の数平均分子量は、500~50,000が好ましく、1,000~30,000がより好ましい。オリゴマー(E)の数平均分子量が上記範囲の下限値以上であると、硬化物においてオリゴマー(E)がブリードアウトし難く、上限値以下であると、減粘効果が得られやすい。 The number average molecular weight in terms of polystyrene by GPC of the oligomer (E) is preferably 500 to 50,000, more preferably 1,000 to 30,000. If the number average molecular weight of the oligomer (E) is not less than the lower limit of the above range, the oligomer (E) is difficult to bleed out in the cured product, and if it is not more than the upper limit, a viscosity reducing effect is easily obtained.
 オリゴマー(E)のうち、ポリブタジエン鎖を有するオリゴマーとしては、たとえば、単位(I)および単位(II)のうちの少なくとも一方からなる単位を有するオリゴマー(E1)が挙げられる。ポリブタジエン鎖を有するオリゴマーは、たとえば、先に記載したブタジエンを重合する方法の(α)および(β)により製造できる。
 オリゴマー(E)のうち、ポリイソプレン鎖を有するオリゴマーとしては、たとえば、単位(IV)および単位(V)のうちの少なくとも一方からなる単位を有するオリゴマー(E2)が挙げられる。ポリイソプレン鎖を有するオリゴマーは、たとえば、ブタジエンを重合する方法の(α)および(β)において、ブタジエンの代わりにイソプレンを用いることにより製造できる。
Among the oligomers (E), examples of the oligomer having a polybutadiene chain include an oligomer (E1) having a unit composed of at least one of the unit (I) and the unit (II). The oligomer having a polybutadiene chain can be produced by, for example, (α) and (β) of the method for polymerizing butadiene described above.
Among oligomers (E), examples of the oligomer having a polyisoprene chain include an oligomer (E2) having a unit composed of at least one of the unit (IV) and the unit (V). The oligomer having a polyisoprene chain can be produced, for example, by using isoprene instead of butadiene in (α) and (β) of the method for polymerizing butadiene.
 オリゴマー(E1)の骨格における単位(I)と単位(II)との比率には制限はなく、単位(I)のみからなる骨格でも、単位(II)のみからなる骨格でも、単位(I)と単位(II)とからなる骨格でもよい。
 オリゴマー(E2)の骨格における単位(IV)と単位(V)との比率には制限はなく、単位(IV)のみからなる骨格でも、単位(V)のみからなる骨格でも、単位(IV)と単位(V)とからなる骨格でもよい。
The ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (E1) is not limited, and the skeleton consisting only of the unit (I) or the skeleton consisting only of the unit (II) It may be a skeleton composed of the unit (II).
The ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (E2) is not limited, and the skeleton consisting only of the unit (IV) or the skeleton consisting only of the unit (V) It may be a skeleton consisting of the unit (V).
 オリゴマー(E)は、ブタジエンおよびイソプレン以外のモノマー(m1)に由来する単位(u1)を有していてもよい。
 オリゴマー(E)が単位(u1)を有する場合、モノマー(m1)の使用量は、ブタジエンおよびイソプレンの重合反応において使用するブタジエンおよびイソプレンの100質量部に対して、400質量部以下であることが好ましい。
The oligomer (E) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
When the oligomer (E) has the unit (u1), the amount of the monomer (m1) used is 400 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene. preferable.
 オリゴマー(E)は、硬化性樹脂組成物中、オリゴマー(A)と後述のオリゴマー(B)とからなる硬化性オリゴマー成分の合計100質量部に対して100~500質量部含まれることが好ましく、150~400質量部含まれることがより好ましく、200~350質量部含まれることが特に好ましい。オリゴマー(E)の含有量が上記範囲の下限値以上であれば、硬化性樹脂組成物の粘度が充分に低下して、硬化性樹脂組成物の取扱性が優れる。また、オリゴマー(E)を含有することにより、適度な弾性率を備え柔軟性を有する硬化物を形成できる。上記範囲の上限値以下であれば、硬化物におけるオリゴマー(E)のブリードアウトを防止でき、また、硬化物の弾性率が低くなり過ぎない。
 なお、硬化性オリゴマー成分には、オリゴマー(A)の他、後述のオリゴマー(B)が必要に応じて含まれる。
The oligomer (E) is preferably contained in the curable resin composition in an amount of 100 to 500 parts by mass with respect to a total of 100 parts by mass of the curable oligomer component composed of the oligomer (A) and the oligomer (B) described later. More preferably, it is contained in an amount of 150 to 400 parts by mass, particularly preferably 200 to 350 parts by mass. If content of an oligomer (E) is more than the lower limit of the said range, the viscosity of curable resin composition will fully fall and the handleability of curable resin composition will be excellent. Moreover, the hardened | cured material which has a moderate elasticity modulus and has a softness | flexibility can be formed by containing an oligomer (E). If it is below the upper limit of the said range, the bleed-out of the oligomer (E) in hardened | cured material can be prevented, and the elasticity modulus of hardened | cured material does not become low too much.
The curable oligomer component includes an oligomer (B) described later as needed in addition to the oligomer (A).
 オリゴマー(E)の市販品としては、たとえば、クレイバレー社製「Ricon156(商品名)」(数平均分子量:2500)、日本ゼオン社製「Polyoil110(商品名)」(数平均分子量:1600)等が挙げられる。 Examples of commercially available oligomers (E) include “Ricon 156 (trade name)” (number average molecular weight: 2500) manufactured by Clay Valley, “Polyoil 110 (trade name)” (number average molecular weight: 1600) manufactured by Nippon Zeon. Is mentioned.
〔モノマー(D)〕
 モノマー(D)は硬化性を有するモノマーである。モノマー(D)を含有することにより、硬化性樹脂組成物の粘度が低下して、硬化性樹脂組成物の取扱性が優れる。また、モノマー(D)を含有することにより、得られる硬化物の弾性率が適度な範囲となるように、硬化性官能基数を調整できる。モノマー(D)は、(メタ)アクリロイル基を1分子中に1個以上有し、1個有することが好ましい。
[Monomer (D)]
The monomer (D) is a curable monomer. By containing a monomer (D), the viscosity of a curable resin composition falls and the handleability of a curable resin composition is excellent. Moreover, by containing the monomer (D), the number of curable functional groups can be adjusted so that the elastic modulus of the obtained cured product falls within an appropriate range. Monomer (D) has at least one (meth) acryloyl group in one molecule, and preferably has one.
 モノマー(D)の分子量は100~1000が好ましい。分子量が上記範囲の下限値以上であれば柔軟性が得やすく、上記範囲の上限値以下であれば、粘度を下げやすい。 The molecular weight of the monomer (D) is preferably 100 to 1000. If the molecular weight is not less than the lower limit of the above range, flexibility is easily obtained, and if it is not more than the upper limit of the above range, the viscosity is likely to be lowered.
 モノマー(D)としては、水酸基を有するモノマー(D1)および水酸基を有しないモノマー(D2)の少なくとも一方を使用できる。水酸基を有するモノマー(D1)を用いることにより、硬化物の基板等への密着性が向上する。水酸基を有しないモノマー(D2)を用いることにより、屈折率のより高い硬化物を形成できる。
 水酸基を有するモノマー(D1)としては、先に硬化性モノマー(a3)として例示したモノマーや、ポリアルキレングリコールモノ(メタ)アクリレート等が挙げられる。なかでも、安価な汎用品であることから、2-ヒドロキシ-n-プロピル(メタ)アクリレートが好ましい。
 水酸基を有するモノマー(D1)は1種を単独で使用してもよく、2種以上を併用してもよい。
As the monomer (D), at least one of a monomer (D1) having a hydroxyl group and a monomer (D2) having no hydroxyl group can be used. By using the monomer (D1) having a hydroxyl group, the adhesion of the cured product to the substrate or the like is improved. By using the monomer (D2) having no hydroxyl group, a cured product having a higher refractive index can be formed.
Examples of the monomer (D1) having a hydroxyl group include the monomers exemplified above as the curable monomer (a3), polyalkylene glycol mono (meth) acrylate, and the like. Of these, 2-hydroxy-n-propyl (meth) acrylate is preferable because it is an inexpensive general-purpose product.
As the monomer (D1) having a hydroxyl group, one type may be used alone, or two or more types may be used in combination.
 水酸基を有しないモノマー(D2)としては、アクリロイルモルホリン、(メタ)アクリル酸メチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル、(ポリ)エチレングリコールのモノあるいはジ(メタ)アクリレート、(ポリ)プロピレングリコールのモノあるいはジ(メタ)アクリレート、1,4-ブタンジオールのモノ-あるいはジ-(メタ)アクリレート、トリメチロールプロパンのモノ-、ジ-あるいはトリ-(メタ)アクリレート、グリシジルメタクリレート、ジエチルアミノエチルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートなどの不飽和カルボン酸エステル類が挙げられる。
 水酸基を有しないモノマー(D2)は1種を単独で使用しても、2種以上を併用してもよい。
Monomers (D2) having no hydroxyl group include acryloylmorpholine, methyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic. Cyclohexyl acid, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, mono- or di (meth) acrylate of (poly) ethylene glycol, (poly) Propylene glycol mono- or di (meth) acrylate, 1,4-butanediol mono- or di- (meth) acrylate, trimethylolpropane mono-, di- or tri- (meth) acrylate, glycidyl methacrylate, diethylaminoethyl Acrylate Unsaturated carboxylic acid esters such as dicyclopentenyloxyethyl (meth) acrylate.
The monomer (D2) having no hydroxyl group may be used alone or in combination of two or more.
 モノマー(D)は、硬化性樹脂組成物中、オリゴマー(A)の100質量部に対して10~500質量部含まれることが好ましく、30~300質量部含まれることがより好ましく、50~150質量部含まれることが特に好ましい。モノマー(D)の含有量が上記範囲の下限値以上であれば、硬化性樹脂組成物の粘度が充分に低下して、硬化性樹脂組成物の取扱性が優れる。また、モノマー(D)を含有することにより、適度な弾性率を備え柔軟性を有する硬化物を形成できる。上記範囲の上限値以下であれば、過度の弾性率上昇を防ぐことができる。 The monomer (D) is preferably contained in an amount of 10 to 500 parts by weight, more preferably 30 to 300 parts by weight, more preferably 50 to 150 parts by weight based on 100 parts by weight of the oligomer (A) in the curable resin composition. It is particularly preferable that a part by mass is included. If content of a monomer (D) is more than the lower limit of the said range, the viscosity of curable resin composition will fully fall and the handleability of curable resin composition will be excellent. Moreover, the hardened | cured material which has a moderate elasticity modulus and has a softness | flexibility can be formed by containing a monomer (D). If it is below the upper limit of the said range, an excessive elastic modulus raise can be prevented.
〔硬化性オリゴマー(B)〕
 本発明の硬化性樹脂組成物は、組成物の相溶性を向上させる目的で、硬化性オリゴマー(A)以外の硬化性オリゴマー(B)(以下、「オリゴマー(B)」とも記す。)を含有してもよい。オリゴマー(B)は、(メタ)アクリロイル基を1分子中に1個以上有し、平均値として、2~3個有することが好ましい。
 オリゴマー(B)は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有し、ウレタン結合を有しない硬化性オリゴマーである。オリゴマー(B)は、オリゴマー(A)およびオリゴマー(E)との相溶性に優れる点から、オリゴマー(A)以外の硬化性オリゴマー成分として特に好ましい。
 オリゴマー(B)としては、ポリブタジエン鎖を有する硬化性オリゴマー(以下、「オリゴマー(Bb)」とも記す。)およびポリイソプレン鎖を有する硬化性オリゴマー(以下、「(Bi)」とも記す。)が挙げられる。
[Curable oligomer (B)]
The curable resin composition of the present invention contains a curable oligomer (B) other than the curable oligomer (A) (hereinafter also referred to as “oligomer (B)”) for the purpose of improving the compatibility of the composition. May be. The oligomer (B) preferably has at least one (meth) acryloyl group in one molecule and has an average value of 2 to 3.
The oligomer (B) is a curable oligomer having at least one of a polybutadiene chain and a polyisoprene chain and having no urethane bond. The oligomer (B) is particularly preferable as a curable oligomer component other than the oligomer (A) from the viewpoint of excellent compatibility with the oligomer (A) and the oligomer (E).
Examples of the oligomer (B) include a curable oligomer having a polybutadiene chain (hereinafter also referred to as “oligomer (Bb)”) and a curable oligomer having a polyisoprene chain (hereinafter also referred to as “(Bi)”). It is done.
 硬化性オリゴマー成分におけるオリゴマー(B)の含有量は、硬化性オリゴマー成分100質量部に対して0~75質量部であることが好ましく、0~65質量部であることがより好ましく、0~55質量部であることが特に好ましい。
 また、硬化性オリゴマー成分におけるオリゴマー(A)とオリゴマー(B)の合計の含有量は、硬化性オリゴマー成分100質量部に対して75~100質量部であることが好ましく、85~100質量部であることがより好ましく、95~100質量部であることが特に好ましい。
The content of the oligomer (B) in the curable oligomer component is preferably 0 to 75 parts by mass, more preferably 0 to 65 parts by mass, and more preferably 0 to 55 parts by mass with respect to 100 parts by mass of the curable oligomer component. The part by mass is particularly preferred.
Further, the total content of the oligomer (A) and the oligomer (B) in the curable oligomer component is preferably 75 to 100 parts by mass, and 85 to 100 parts by mass with respect to 100 parts by mass of the curable oligomer component. More preferably, it is 95 to 100 parts by mass.
 オリゴマー(B)のGPCによるポリスチレン換算の数平均分子量は、1,000~50,000が好ましく、2,000~40,000がより好ましく、2,000~30,000が最も好ましい。オリゴマー(B)の数平均分子量が上記範囲の下限値以上であると、柔軟性が得やすく、上限値以下であると、粘度の上昇を抑えやすい。 The number average molecular weight in terms of polystyrene by GPC of the oligomer (B) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and most preferably 2,000 to 30,000. When the number average molecular weight of the oligomer (B) is not less than the lower limit of the above range, flexibility is easily obtained, and when it is not more than the upper limit, an increase in viscosity is easily suppressed.
 オリゴマー(B)のうち、オリゴマー(Bb)としては、たとえば、単位(I)および単位(II)のうちの少なくとも一方からなる単位を有するポリブタジエンに、無水マレイン酸等の無水カルボン酸を付加して付加物を得て、該付加物に対して、先に例示した硬化性モノマー(a3)をエステル反応させ、(メタ)アクリロイルオキシ基を導入する方法等が挙げられる。ポリブタジエンは、先に記載したオリゴマー(a11)の製造方法における、ブタジエンを重合する方法(α)および(β)により得られる。
 オリゴマー(B)のうち、オリゴマー(Bi)としては、たとえば、単位(IV)および単位(V)のうちの少なくとも一方からなる単位を有するポリイソプレンに、無水マレイン酸等の無水カルボン酸を付加して付加物を得て、該付加物に先に例示した硬化性モノマー(a3)をエステル反応させ、(メタ)アクリロイルオキシ基を導入する方法等が挙げられる。ポリイソプレンは、先に記載したオリゴマー(a11)の製造方法における、ブタジエンを重合する方法(α)および(β)において、ブタジエンの代わりにイソプレンを用いればよい。
Among oligomers (B), as oligomer (Bb), for example, carboxylic anhydride such as maleic anhydride is added to polybutadiene having a unit consisting of at least one of unit (I) and unit (II). Examples of the method include obtaining an adduct, esterifying the adduct with the curable monomer (a3) exemplified above, and introducing a (meth) acryloyloxy group. Polybutadiene is obtained by the methods (α) and (β) for polymerizing butadiene in the method for producing the oligomer (a11) described above.
Among the oligomers (B), as the oligomer (Bi), for example, a carboxylic anhydride such as maleic anhydride is added to polyisoprene having a unit consisting of at least one of the unit (IV) and the unit (V). Thus, an adduct is obtained, and the adduct is reacted with the curable monomer (a3) exemplified above to introduce a (meth) acryloyloxy group. Polyisoprene may be used in place of butadiene in the methods (α) and (β) for polymerizing butadiene in the method for producing oligomer (a11) described above.
 オリゴマー(Bb)の骨格における単位(I)と単位(II)との比率には制限はなく、単位(I)のみからなる骨格でも、単位(II)のみからなる骨格でも、単位(I)と単位(II)とからなる骨格でもよい。
 オリゴマー(Bi)の骨格における単位(IV)と単位(V)との比率には制限はなく、単位(IV)のみからなる骨格でも、単位(V)のみからなる骨格でも、単位(IV)と単位(V)とからなる骨格でもよい。
The ratio of the unit (I) to the unit (II) in the skeleton of the oligomer (Bb) is not limited, and the skeleton composed only of the unit (I) or the skeleton composed only of the unit (II) It may be a skeleton composed of the unit (II).
The ratio of the unit (IV) to the unit (V) in the skeleton of the oligomer (Bi) is not limited, and the skeleton composed only of the unit (IV) or the skeleton composed only of the unit (V) It may be a skeleton consisting of the unit (V).
 オリゴマー(B)は、ブタジエンおよびイソプレン以外のモノマー(m1)に由来する単位(u1)を有していてもよい。
 オリゴマー(B)が単位(u1)を有する場合、モノマー(m1)の使用量は、ブタジエンおよびイソプレンの重合反応において使用するブタジエンおよびイソプレンの100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、10質量部以下が特に好ましい。
The oligomer (B) may have a unit (u1) derived from a monomer (m1) other than butadiene and isoprene.
When the oligomer (B) has a unit (u1), the amount of the monomer (m1) used is 100 parts by mass or less with respect to 100 parts by mass of butadiene and isoprene used in the polymerization reaction of butadiene and isoprene. Preferably, it is more preferably 50 parts by mass or less, and particularly preferably 10 parts by mass or less.
 オリゴマー(B)の市販品としては、ポリブタジエン鎖を有する硬化性オリゴマーである、クラレ社製「クラプレン(登録商標)UC203」(数平均分子量:35,000、(メタ)アクリロイル基の数:3)、大阪有機化学工業(株)製「BAC45(商品名)」(数平均分子量:3,000、(メタ)アクリロイル基の数:2)が挙げられる。 A commercially available oligomer (B) is a curable oligomer having a polybutadiene chain, “Kuraprene (registered trademark) UC203” manufactured by Kuraray (number average molecular weight: 35,000, number of (meth) acryloyl groups: 3). “BAC45 (trade name)” (number average molecular weight: 3,000, number of (meth) acryloyl groups: 2) manufactured by Osaka Organic Chemical Industry Co., Ltd.
〔硬化性オリゴマー(C)〕
 硬化性オリゴマー(C)(以下、「オリゴマーC」とも記す。)は、ポリブタジエン鎖およびポリイソプレン鎖のいずれをも有しない硬化性オリゴマーである。オリゴマー(C)は、(メタ)アクリロイル基を1分子中に1個以上有し、平均値として、2~3個有することが好ましい。オリゴマー(C)としては、ウレタン結合を有するものと有しないものとがある。
 オリゴマー(C)としては、ウレタン結合を有し、ポリブタジエン鎖およびポリイソプレン鎖のいずれをも有しないウレタンオリゴマー;ポリオキシアルキレンポリオールのポリ(メタ)アクリレート;ポリエステルポリオールのポリ(メタ)アクリレート等が挙げられる。ウレタン結合を有し、ポリブタジエン鎖およびポリイソプレン鎖を有しないウレタンオリゴマーを使用する場合、硬化性樹脂組成物中のウレタン結合の濃度が上記範囲内となるように使用することが好ましい。
 硬化性のウレタンオリゴマーとしては、たとえば、ポリオキシアルキレンポリオールやポリエステルポリオールとポリイソシアネートからイソシアネート末端ウレタンプレポリマーを製造し、これに水酸基等のイソシアネート基と反応しうる官能基を有する(メタ)アクリレートを反応させて得られるウレタンオリゴマーが挙げられる。同様に、水酸基末端ウレタンプレポリマーを製造し、これにイソシアネート基を有する(メタ)アクリレートを反応させて得られるウレタンオリゴマーも使用できる。
[Curable oligomer (C)]
The curable oligomer (C) (hereinafter also referred to as “oligomer C”) is a curable oligomer having neither a polybutadiene chain nor a polyisoprene chain. The oligomer (C) preferably has one or more (meth) acryloyl groups in one molecule and has an average value of 2 to 3. The oligomer (C) includes those having a urethane bond and those having no urethane bond.
Examples of the oligomer (C) include a urethane oligomer having a urethane bond and having neither a polybutadiene chain nor a polyisoprene chain; a poly (meth) acrylate of a polyoxyalkylene polyol; a poly (meth) acrylate of a polyester polyol. It is done. When using the urethane oligomer which has a urethane bond and does not have a polybutadiene chain and a polyisoprene chain, it is preferable to use it so that the concentration of the urethane bond in the curable resin composition is within the above range.
As the curable urethane oligomer, for example, an isocyanate-terminated urethane prepolymer is produced from polyoxyalkylene polyol or polyester polyol and polyisocyanate, and a (meth) acrylate having a functional group capable of reacting with an isocyanate group such as a hydroxyl group is prepared. The urethane oligomer obtained by making it react is mentioned. Similarly, a urethane oligomer obtained by producing a hydroxyl group-terminated urethane prepolymer and reacting it with a (meth) acrylate having an isocyanate group can also be used.
 オリゴマー(C)のGPCによるポリスチレン換算の数平均分子量は、1,000~50,000が好ましく、2,000~40,000がより好ましく、2,000~30,000が最も好ましい。オリゴマー(C)の数平均分子量が上記範囲の下限値以上であると、柔軟性が得やすく、上限値以下であると、粘度の上昇を抑えやすい。
 オリゴマー(C)は、必要に応じて、オリゴマー(A)の100質量部に対して、100質量部以下の範囲で含まれることが好ましく、50質量部以下の範囲で含まれることがより好ましい。
The number average molecular weight in terms of polystyrene by GPC of the oligomer (C) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and most preferably 2,000 to 30,000. When the number average molecular weight of the oligomer (C) is not less than the lower limit of the above range, flexibility is easily obtained, and when it is not more than the upper limit, an increase in viscosity is easily suppressed.
The oligomer (C) is preferably contained in a range of 100 parts by mass or less, more preferably in a range of 50 parts by mass or less, with respect to 100 parts by mass of the oligomer (A) as necessary.
〔光重合開始剤〕
 本発明の硬化性樹脂組成物は、光重合開始剤を含むことが好ましい。すなわち、本発明の硬化性樹脂組成物は、光照射によって硬化反応が進行する光硬化性樹脂組成物であることが好ましい。なお、硬化性樹脂組成物には、光重合開始剤の代わりに、熱によりラジカルを発生する硬化剤を配合してもよい。
 光重合開始剤としては、可視光線または紫外線(波長300~400nm)の照射により励起され、活性化して硬化反応を促進するものが好ましい。具体的には、ベンゾインエーテル系光重合開始剤、α-ヒドロキシアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等が挙げられる。
(Photopolymerization initiator)
The curable resin composition of the present invention preferably contains a photopolymerization initiator. That is, the curable resin composition of the present invention is preferably a photocurable resin composition in which a curing reaction proceeds by light irradiation. In addition, you may mix | blend the hardening | curing agent which generate | occur | produces a radical with a heat instead of a photoinitiator in curable resin composition.
As the photopolymerization initiator, one that is excited by irradiation with visible light or ultraviolet light (wavelength 300 to 400 nm) and activated to accelerate the curing reaction is preferable. Specific examples include benzoin ether photopolymerization initiators, α-hydroxyalkylphenone photopolymerization initiators, and acylphosphine oxide photopolymerization initiators.
 光重合開始剤の具体例としては、ベンゾフェノン、4-クロロベンゾフェノン、4、4’-ジメトキシベンゾフェノン、4、4’-ジアミノベンゾフェノン、アセトフェノン、3-メチルアセトフェノン、ベンゾイル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインエチルエーテル、アントラキノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。なかでも、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド系光重合開始剤が好ましくい。微量の添加でも充分に硬化性樹脂組成物を硬化できる点から、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが特に好ましい。
 光重合開始剤は、1種を単独で使用しても、2種以上を併用してもよい。
Specific examples of the photopolymerization initiator include benzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, acetophenone, 3-methylacetophenone, benzoyl, benzoin isobutyl ether, benzoin isopropyl ether, Benzoin ethyl ether, anthraquinone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2 -Methyl-1-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like. Among them, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (2,4,6-trimethyl) Acylphosphine oxide photopolymerization initiators such as benzoyl) -phenylphosphine oxide are preferred. 1-hydroxycyclohexyl phenyl ketone and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide are particularly preferred from the viewpoint that the curable resin composition can be sufficiently cured with a small amount of addition.
A photoinitiator may be used individually by 1 type, or may use 2 or more types together.
 硬化性樹脂組成物中の光重合開始剤の含有量は、オリゴマー(A)、オリゴマー(B)、オリゴマー(C)およびモノマー(D)の合計100質量部に対して、0.01~10質量部が好ましく、0.1~2.5質量部がより好ましい。 The content of the photopolymerization initiator in the curable resin composition is 0.01 to 10 masses per 100 mass parts in total of the oligomer (A), oligomer (B), oligomer (C) and monomer (D). Part is preferable, and 0.1 to 2.5 parts by mass is more preferable.
〔その他の成分〕
 本発明の硬化性樹脂組成物は、用途に応じて種々の添加剤を含んでよい。添加剤としては、紫外線吸収剤(ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系等。)、光安定剤(ヒンダードアミン系等。)、重合禁止剤(ハイドロキノン系(2,5-ジ-tert-ブチルハイドロキノン(以下、「DTBHQ」とも記す。)等。)、カテコール系(p-tert-ブチルカテコール等。)、アンスラキノン系、フェノチアジン系、ヒドロキシトルエン系等)、酸化防止剤、粘着付与剤(ロジンエステル等。)、顔料、染料、金属酸化物微粒子、フィラー等が挙げられる。
[Other ingredients]
The curable resin composition of the present invention may contain various additives depending on applications. Additives include UV absorbers (benzotriazoles, hydroxyphenyltriazines, etc.), light stabilizers (hindered amines, etc.), polymerization inhibitors (hydroquinones (2,5-di-tert-butylhydroquinone (hereinafter referred to as “hindered amines”)) , Etc.), catechol (p-tert-butylcatechol, etc.), anthraquinone, phenothiazine, hydroxytoluene, etc.), antioxidant, tackifier (rosin ester, etc.). ), Pigments, dyes, metal oxide fine particles, fillers, and the like.
 本発明の硬化性樹脂組成物は溶媒を含まないことが好ましい。後述の積層体の製造に本発明の硬化性樹脂組成物を使用する場合は、溶媒等の揮発性成分を有することは好ましくない。ただし、本発明の硬化性樹脂組成物を基材等に塗布して硬化性樹脂組成物の塗膜を形成する場合、硬化性樹脂組成物が高粘度であるなどの理由で塗布性が不充分であることがある。その場合は、本発明の硬化性樹脂組成物に溶媒を添加して塗布性を高めることができる。この際の溶媒は、硬化性樹脂組成物を硬化させる前に揮発させて硬化性樹脂組成物から除去する。このような溶媒の一時的使用は、溶媒が本発明の硬化性樹脂組成物の成分であることを意味しない。
 また、硬化性オリゴマー(A)の製造において溶媒を使用した場合には、その溶媒が硬化性オリゴマー(A)に同伴されて、硬化性樹脂組成物中に少量混入することもある。そのほか、硬化性樹脂組成物の成分に同伴されて低沸点の化合物等が少量混入することもある。このような場合、必要により、硬化性樹脂組成物を硬化させる前に低沸点の溶媒等を除去することが好ましい。
 なお、硬化性樹脂組成物の硬化等に悪影響がない限り、ごく少量の溶媒等は硬化性樹脂組成物中に残存していてもよい。
The curable resin composition of the present invention preferably contains no solvent. When using the curable resin composition of this invention for manufacture of the below-mentioned laminated body, it is not preferable to have volatile components, such as a solvent. However, when the curable resin composition of the present invention is applied to a substrate or the like to form a coating film of the curable resin composition, the coating property is insufficient due to the high viscosity of the curable resin composition. It may be. In that case, a coating property can be improved by adding a solvent to the curable resin composition of the present invention. In this case, the solvent is volatilized and removed from the curable resin composition before the curable resin composition is cured. The temporary use of such a solvent does not mean that the solvent is a component of the curable resin composition of the present invention.
Further, when a solvent is used in the production of the curable oligomer (A), the solvent may be accompanied by the curable oligomer (A) and mixed in a small amount in the curable resin composition. In addition, a small amount of low boiling point compounds may be mixed with the components of the curable resin composition. In such a case, it is preferable to remove the low boiling point solvent or the like before curing the curable resin composition, if necessary.
Note that a very small amount of solvent or the like may remain in the curable resin composition as long as the curing of the curable resin composition is not adversely affected.
 硬化性樹脂組成物100質量%中における、その他の成分の含有量は、30質量%以下が好ましく、25質量%以下がより好ましい。 The content of other components in 100% by mass of the curable resin composition is preferably 30% by mass or less, and more preferably 25% by mass or less.
〔硬化性樹脂組成物〕
 本発明の硬化性樹脂組成物を用い、後述の減圧積層方法を用いた製造方法で積層体を製造する場合は、硬化性樹脂組成物における減圧雰囲気に曝される面積が比較的大きいことから、硬化性樹脂組成物は低沸点の化合物を含まないことが好ましい。これにより、硬化性樹脂組成物中の低沸点の化合物が揮発して組成が大きく変化することが抑制される。また、所望の減圧雰囲気を維持することも容易になる。
 減圧積層方法を用いた製造方法で積層体を製造する場合、硬化性樹脂組成物は、大気圧雰囲気下の沸点が150℃以下の成分(モノマー等。)を含まないことが好ましく、大気圧雰囲気下の沸点が200℃以下の成分を含まないことがより好ましい。
[Curable resin composition]
When using a curable resin composition of the present invention to produce a laminate by a production method using a reduced pressure lamination method described later, the area exposed to a reduced pressure atmosphere in the curable resin composition is relatively large. It is preferable that the curable resin composition does not contain a low boiling point compound. Thereby, it is suppressed that the low boiling-point compound in curable resin composition volatilizes, and a composition changes a lot. Moreover, it becomes easy to maintain a desired reduced pressure atmosphere.
In the case of producing a laminate by a production method using a reduced pressure lamination method, the curable resin composition preferably does not contain a component (such as a monomer) having a boiling point of 150 ° C. or less under an atmospheric pressure atmosphere. More preferably, the lower boiling point does not contain a component having a temperature of 200 ° C. or lower.
 本発明の硬化性樹脂組成物の40℃での粘度V40は、50Pa・s以下が好ましく、5Pa・s以下がより好ましい。粘度V40が上限値以下であれば、充分な流動性が得られ、硬化性樹脂組成物中に気泡が発生し難い。
 また、本発明の硬化性樹脂組成物の25℃での粘度V25は、0.05Pa・s以上が好ましく、0.20Pa・s以上がより好ましい。粘度V25は、4.5Pa・s以下が好ましい。粘度V25が下限値以上であれば、粘度を下げるために低分子量のモノマー等を多量に使用しなくてもよいため、硬化物の物性が低下し難い。
 なお、粘度は、E型粘度計(東機産業社製、RE-85U)を用いて測定される値である。
 ただし、硬化性樹脂組成物の粘度が100Pa・s以下の場合は、ロータとして1°34’×R24を用い、100Pa・sを超える粘度の場合は、ロータとして3°×R9.7を用いるものとする。
The viscosity V 40 at 40 ° C. of the curable resin composition of the present invention is preferably 50 Pa · s or less, and more preferably 5 Pa · s or less. If the viscosity V 40 is more than the upper limit, sufficient fluidity can not be obtained, it bubbles hardly occurs in the curable resin composition.
The viscosity V 25 at 25 ° C. of the curable resin composition of the present invention is preferably 0.05 Pa · s or more, and more preferably 0.20 Pa · s or more. The viscosity V 25 is preferably 4.5 Pa · s or less. If the viscosity V 25 is equal to or higher than the lower limit value, it is not necessary to use a large amount of low molecular weight monomer or the like in order to lower the viscosity, and thus the physical properties of the cured product are hardly lowered.
The viscosity is a value measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., RE-85U).
However, when the viscosity of the curable resin composition is 100 Pa · s or less, 1 ° 34 ′ × R24 is used as the rotor, and when the viscosity exceeds 100 Pa · s, 3 ° × R9.7 is used as the rotor. And
 以上説明した本発明の硬化性樹脂組成物は、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを有する硬化性オリゴマー(A)とともに、ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有する非硬化性オリゴマー(E)と、硬化性モノマー(D)とを含有する。そのため、本発明の硬化性樹脂組成物は、硬化速度が速く、高い生産性で硬化物を形成でき、かつ、適度な弾性率を備え柔軟性を有する硬化物を形成できる。
 本発明の硬化性樹脂組成物は、後述する積層体および画像表示装置において、硬化樹脂層を形成する用途以外にも、接着剤、コーティング剤等の用途に使用できる。
The curable resin composition of the present invention described above is non-curable having at least one of a polybutadiene chain and a polyisoprene chain together with a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond. An oligomer (E) and a curable monomer (D) are contained. Therefore, the curable resin composition of the present invention has a high curing rate, can form a cured product with high productivity, and can form a cured product having an appropriate elastic modulus and flexibility.
The curable resin composition of the present invention can be used for applications such as an adhesive and a coating agent in addition to the use for forming a cured resin layer in a laminate and an image display device described later.
<硬化性樹脂組成物の硬化物>
 本発明の硬化性樹脂組成物は、たとえば、前述した量の前述した光重合開始剤を配合した硬化性樹脂組成物に、可視光または紫外線を500mJ以上照射することにより、硬化物とすることができる。熱によりラジカルを発生する硬化剤を用いる場合には、硬化剤の半減期に応じた温度で加熱することにより硬化物を得ることができる。
 硬化物の貯蔵せん断弾性率は1×10~1×10Paが好ましい。
 前記硬化物の両面を第1保護フィルムと第2保護フィルムとで狭持して粘着フィルムとできる。第1保護フィルムと第2保護フィルムとは硬化物に対する密着力が互いに異なることが好ましい。前記保護フィルムとしては、硬化物と接する面にシリコーン樹脂などによる離型剤が塗布されたPET(Polyethylene Terephthalate)フィルム等や、ポリエチレン、ポリプロピレン、フッ素系樹脂等の密着性の比較的低い樹脂材料からなるフィルムが好ましい。
 また、前記硬化物を透明基板に積層して、硬化物付き透明面材としてもよい。硬化物付きの透明面材は、硬化物の透明面材と異なる面に保護フィルムを有することが好ましい。粘着層付き透明基板は、たとえば、表示装置の表示パネル等に貼合される粘着層付きの保護板である。透明基板としては、ガラス板、化学強化ガラス板、透明樹脂板(ポリカーボネート板)等が挙げられる。また、基板は多層構造体であっても単層構造体であってもよい。
 保護板の厚さは、機械的強度、透明性の点から、ガラス板の場合は0.5mm~25mmである。屋内で使用するテレビ受像機、PC用ディスプレイ等の用途では、表示装置の軽量化の点から、0.5mm~6mmが好ましく、屋外に設置する公衆表示用途では、3mm~20mmが好ましい。保護板として化学強化ガラス板を用いる場合は、ガラスの厚さは、強度の点で、0.3mm~1.5mmが好ましい。保護板として、透明樹脂板を用いる場合は、2mm~10mmが好ましい。
<Hardened product of curable resin composition>
The curable resin composition of the present invention can be formed into a cured product by, for example, irradiating a curable resin composition containing the above-described amount of the above-described photopolymerization initiator with 500 mJ or more of visible light or ultraviolet rays. it can. When a curing agent that generates radicals by heat is used, a cured product can be obtained by heating at a temperature corresponding to the half-life of the curing agent.
The storage shear modulus of the cured product is preferably 1 × 10 3 to 1 × 10 5 Pa.
An adhesive film can be obtained by sandwiching both sides of the cured product with a first protective film and a second protective film. The first protective film and the second protective film preferably have different adhesion to the cured product. Examples of the protective film include a PET (Polyethylene Terephthalate) film in which a release agent such as a silicone resin is applied to the surface in contact with the cured product, and a resin material having relatively low adhesion such as polyethylene, polypropylene, and a fluorine resin. A film is preferred.
Moreover, the said hardened | cured material is good also as a transparent surface material with hardened | cured material by laminating | stacking on a transparent substrate. The transparent surface material with a cured product preferably has a protective film on a surface different from the transparent surface material of the cured product. The transparent substrate with an adhesive layer is, for example, a protective plate with an adhesive layer that is bonded to a display panel of a display device. Examples of the transparent substrate include a glass plate, a chemically strengthened glass plate, a transparent resin plate (polycarbonate plate), and the like. The substrate may be a multilayer structure or a single layer structure.
The thickness of the protective plate is 0.5 mm to 25 mm in the case of a glass plate from the viewpoint of mechanical strength and transparency. In applications such as a television receiver and a PC display used indoors, 0.5 mm to 6 mm is preferable from the viewpoint of reducing the weight of the display device, and in public display applications installed outdoors, 3 mm to 20 mm is preferable. When a chemically strengthened glass plate is used as the protective plate, the glass thickness is preferably 0.3 mm to 1.5 mm in terms of strength. When a transparent resin plate is used as the protective plate, it is preferably 2 mm to 10 mm.
<積層体および画像表示装置>
 本発明の硬化性樹脂組成物は、一対の基板と、該一対の基板の間に挟まれた硬化樹脂層とを有する積層体において、硬化樹脂層の形成に好適に使用できる。積層体としては、上述のとおり、たとえば、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板とを一対の基板と見なした積層体、一対の基板がいずれも透明基板である透明積層体等が挙げられる。このように積層体を構成する基板としては、透明な基板および不透明な基板のいずれも使用できる。透明基板としては、ガラス板、透明樹脂板(ポリカーボネート板)等が挙げられる。また、基板は多層構造体であっても単層構造体であってもよい。
 さらに、本発明の硬化性樹脂組成物は、液晶表示デバイス等の表示デバイス上に硬化樹脂層を介して、タッチパネルや、保護板等の透明基板が積層された画像表示装置において、硬化樹脂層の形成に好適に使用できる。
<Laminated body and image display device>
The curable resin composition of the present invention can be suitably used for forming a cured resin layer in a laminate having a pair of substrates and a cured resin layer sandwiched between the pair of substrates. As described above, as described above, for example, a laminate in which a display device and a transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates, and the pair of substrates are both transparent substrates. A certain transparent laminated body etc. are mentioned. Thus, as a board | substrate which comprises a laminated body, both a transparent substrate and an opaque board | substrate can be used. Examples of the transparent substrate include a glass plate and a transparent resin plate (polycarbonate plate). The substrate may be a multilayer structure or a single layer structure.
Furthermore, the curable resin composition of the present invention is an image display device in which a transparent substrate such as a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device via a cured resin layer. It can be used suitably for formation.
 表示デバイスとしては、たとえば液晶表示デバイス、有機EL表示デバイス、プラズマ表示デバイス、電子インク型表示デバイスなどが挙げられる。これらの表示デバイスは、通常、多層構造体であり、全体として不透明である。よって、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板とを一対の基板と見なした積層体は、不透明な積層体である。
 ただし、表示デバイスは、通常、多層構造体であり、表示層(液晶層、有機EL層等。)と、表示層よりも非視認面側の層とは不透明であるが、表示層よりも視認面側の層は、通常、透明である。したがって、表示デバイスの視認面側の表面層(たとえば、液晶表示デバイスにおける偏光板からなる層、位相差板等の光学フィルムからなる層等の最外層。)に硬化樹脂層を介して透明な保護板が積層された画像表示装置において、表示デバイスの視認面側の表面層を一方の基板と見なし、保護板を他方の基板と見なした場合には、表面層/硬化樹脂層/保護板からなる積層体は、透明積層体と見なすことができる。
Examples of the display device include a liquid crystal display device, an organic EL display device, a plasma display device, and an electronic ink display device. These display devices are usually multilayer structures and are opaque as a whole. Therefore, a stacked body in which a display device and a transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates is an opaque stacked body.
However, the display device is usually a multilayer structure, and the display layer (liquid crystal layer, organic EL layer, etc.) and the layer closer to the non-viewing surface than the display layer are opaque, but more visible than the display layer. The surface side layer is usually transparent. Therefore, the surface layer on the viewing surface side of the display device (for example, the outermost layer such as a layer made of a polarizing plate or a layer made of an optical film such as a retardation plate in a liquid crystal display device) is protected transparently through a cured resin layer. In the image display device in which the plates are laminated, when the surface layer on the viewing surface side of the display device is regarded as one substrate and the protective plate is regarded as the other substrate, the surface layer / cured resin layer / protective plate The resulting laminate can be considered a transparent laminate.
 積層体において、一対の基板のうちの少なくとも一方が透明基板であると、該透明基板を通して、基板の間に挟まれた硬化性樹脂組成物に光照射することにより、硬化樹脂層を形成できる。一対の基板の両方が不透明な基板である場合には、硬化性樹脂組成物を加熱して熱硬化させることにより、硬化樹脂層を形成できる。 In the laminate, when at least one of the pair of substrates is a transparent substrate, a cured resin layer can be formed by irradiating the curable resin composition sandwiched between the substrates through the transparent substrate. When both of the pair of substrates are opaque substrates, the cured resin layer can be formed by heating and curing the curable resin composition.
 本発明の画像表示装置は、本発明の硬化性樹脂組成物が硬化した硬化樹脂層を1層以上有する画像表示装置である。硬化樹脂層は、たとえば、タッチパネルを備えた画像表示装置において、表示デバイスとタッチパネルとの間等の接着層、および、タッチパネルと保護板等の透明基板との間等の接着層として作用する。
 このように本発明の画像表示装置において、本発明の硬化性樹脂組成物が硬化した硬化樹脂層は、画像表示装置を構成する板状またはフィルム状の各部材間のいかなる層間にも設けることができる。
The image display device of the present invention is an image display device having one or more cured resin layers obtained by curing the curable resin composition of the present invention. For example, in the image display device provided with the touch panel, the cured resin layer acts as an adhesive layer such as between the display device and the touch panel and an adhesive layer such as between the touch panel and a transparent substrate such as a protective plate.
As described above, in the image display device of the present invention, the cured resin layer obtained by curing the curable resin composition of the present invention can be provided between any plate-like or film-like members constituting the image display device. it can.
 硬化樹脂層は、本発明の硬化性樹脂組成物の硬化物からなる層である。
 硬化樹脂層の厚さは、0.01~0.5mmが好ましく、0.05~0.3mmがより好ましい。硬化樹脂層の厚さが下限値以上であれば、積層体の機械的強度が良好となる。硬化樹脂層の厚さが上限値以下であれば、積層体が軽量となる。
The cured resin layer is a layer made of a cured product of the curable resin composition of the present invention.
The thickness of the cured resin layer is preferably 0.01 to 0.5 mm, more preferably 0.05 to 0.3 mm. If the thickness of a cured resin layer is more than a lower limit, the mechanical strength of a laminated body will become favorable. If the thickness of a cured resin layer is below an upper limit, a laminated body will become lightweight.
 以上説明した積層体にあっては、一対の基板の間に挟まれた硬化樹脂層が本発明の硬化性樹脂組成物の硬化物からなるため、生産性に優れる。また、適度な弾性率を備え柔軟性を有する硬化樹脂層を備えている。 In the laminated body demonstrated above, since the cured resin layer pinched | interposed between a pair of board | substrate consists of hardened | cured material of the curable resin composition of this invention, it is excellent in productivity. Moreover, it has a cured resin layer having an appropriate elastic modulus and flexibility.
〔積層体の製造方法〕
 上述の積層体は、減圧積層方法を用いた製造方法によって製造することが好ましい。減圧積層方法は、国際公開第2008/081838号および国際公開第2009/016943号に開示されている。
 本発明の積層体、すなわち、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板とを一対の基板と見なした積層体は、たとえば、下記の第1の工程および第2の工程を有する方法により製造できる。
 第1の工程:減圧雰囲気下において、一対の基板の間に本発明の硬化性樹脂組成物が挟まれ、かつ前記一対の基板の間の前記硬化性樹脂組成物の周囲がシール材で封じられて密閉された積層前駆体を形成する。
 第2の工程:前記減圧雰囲気よりも圧力が高い雰囲気下で前記積層前駆体の前記硬化性樹脂組成物を硬化させる。
[Method for producing laminate]
The above laminate is preferably produced by a production method using a reduced pressure lamination method. The reduced pressure lamination method is disclosed in International Publication No. 2008/081838 and International Publication No. 2009/016943.
The laminate of the present invention, that is, the laminate in which the display device and the transparent substrate opposed to the viewing surface side of the display device are regarded as a pair of substrates, for example, includes the following first step and second step. It can manufacture by the method which has these processes.
First step: In a reduced pressure atmosphere, the curable resin composition of the present invention is sandwiched between a pair of substrates, and the periphery of the curable resin composition between the pair of substrates is sealed with a sealing material. To form a hermetically sealed laminated precursor.
2nd process: The said curable resin composition of the said lamination | stacking precursor is hardened in the atmosphere whose pressure is higher than the said pressure reduction atmosphere.
(第1の工程)
 減圧雰囲気下で硬化性樹脂組成物が密閉されて積層前駆体とされる範囲であれば、第1の工程における全ての作業を減圧雰囲気下で行う必要はない。たとえば、一方の基板上の周縁部に全周にわたってシール材を設け、該基板上の該シール材の内側に硬化性樹脂組成物を供給した後に他方の基板を重ねる場合は、他方の基板を重ねる前に減圧雰囲気とすれば、それよりも前の作業は大気圧雰囲気下で行ってもよい。また、硬化性樹脂組成物中における気泡の発生を抑制する点から、硬化性樹脂組成物を減圧雰囲気下に充分に曝してから前記他方の基板を重ねることが好ましい。
 シール材としては、たとえば、両面接着テープ等や、本発明の硬化性樹脂組成物が挙げられる。
(First step)
It is not necessary to perform all the operations in the first step under a reduced-pressure atmosphere as long as the curable resin composition is sealed in a reduced-pressure atmosphere to be a laminated precursor. For example, in the case where a sealing material is provided on the entire periphery of one substrate and the other substrate is stacked after the curable resin composition is supplied to the inside of the sealing material on the substrate, the other substrate is stacked. If a reduced-pressure atmosphere is previously used, the previous work may be performed under an atmospheric pressure atmosphere. Further, from the viewpoint of suppressing the generation of bubbles in the curable resin composition, it is preferable to overlap the other substrate after sufficiently exposing the curable resin composition to a reduced pressure atmosphere.
Examples of the sealing material include a double-sided adhesive tape and the curable resin composition of the present invention.
 第1の工程における減圧雰囲気は、1kPa以下の圧力雰囲気が好ましく、100Pa以下の圧力雰囲気がより好ましい。また、減圧雰囲気の圧力が低すぎると硬化性樹脂組成物中の低沸点の化合物が揮発するおそれが生じることから、減圧雰囲気は、1Pa以上の圧力雰囲気が好ましく、10Pa以上の圧力雰囲気がより好ましい。 The pressure atmosphere in the first step is preferably a pressure atmosphere of 1 kPa or less, and more preferably a pressure atmosphere of 100 Pa or less. Moreover, since the low boiling point compound in the curable resin composition may volatilize if the pressure in the reduced pressure atmosphere is too low, the reduced pressure atmosphere is preferably a pressure atmosphere of 1 Pa or more, and more preferably a pressure atmosphere of 10 Pa or more. .
 一対の基板とシール材の密着強度は、第2の工程において積層前駆体を前記減圧雰囲気よりも圧力が高い雰囲気に置いたときに、基板とシール材の界面から気体が進入しない範囲であればよい。
 たとえば、感圧接着剤を使用することで、基板とシール材の密着強度を高めることができる。また、基板とシール材の界面に硬化性の接着剤を介在させ、積層前駆体を形成した後に該接着剤を硬化させることで、基板とシール材の密着強度を高めることができる。また、シール材を硬化性の樹脂で形成し、積層前駆体を形成した後にシール材自体を硬化させることでも、基板とシール材の密着強度を高めることができる。
The adhesion strength between the pair of substrates and the sealing material is within a range in which gas does not enter from the interface between the substrate and the sealing material when the lamination precursor is placed in an atmosphere having a pressure higher than the reduced-pressure atmosphere in the second step. Good.
For example, the adhesion strength between the substrate and the sealing material can be increased by using a pressure sensitive adhesive. Moreover, the adhesive strength of a board | substrate and a sealing material can be raised by interposing a curable adhesive in the interface of a board | substrate and a sealing material, and hardening this adhesive after forming a lamination | stacking precursor. Further, the adhesion strength between the substrate and the sealing material can also be increased by forming the sealing material with a curable resin and curing the sealing material itself after forming the laminated precursor.
(第2の工程)
 第1の工程における減圧雰囲気よりも高い圧力の雰囲気下で、前記積層前駆体における硬化性樹脂組成物を硬化させる。硬化性樹脂組成物が熱硬化性である場合は加熱することで硬化させ、硬化性樹脂組成物が光硬化性である場合は光照射によって硬化させる。光硬化は、紫外線ランプ等の光源から透明基板を通して光を照射することによって実施できる。硬化性樹脂組成物が硬化することで硬化樹脂層が形成され、積層体が得られる。
 該製造方法では、硬化性樹脂組成物に光重合開始剤を配合し、第2の工程において光照射によって硬化性樹脂組成物を硬化させることが好ましい。
(Second step)
The curable resin composition in the lamination precursor is cured in an atmosphere at a pressure higher than the reduced pressure atmosphere in the first step. When the curable resin composition is thermosetting, it is cured by heating, and when the curable resin composition is photocurable, it is cured by light irradiation. Photocuring can be performed by irradiating light through a transparent substrate from a light source such as an ultraviolet lamp. The cured resin layer is formed by curing the curable resin composition, and a laminate is obtained.
In the production method, it is preferable that a photopolymerization initiator is blended in the curable resin composition and the curable resin composition is cured by light irradiation in the second step.
 該製造方法によれば、第1の工程において硬化性樹脂組成物中に気泡が残存しても、第2の工程において硬化性樹脂組成物が硬化する前にその気泡が消失しやすく、気泡のない硬化樹脂層が形成されやすい。これは、以下のことが要因である。
 第1の工程で形成された積層前駆体を、第2の工程において第1の工程の減圧雰囲気よりも高い圧力雰囲気下に置くと、透明基板の外側の圧力が内側の圧力よりも大きくなり、基板から硬化性樹脂組成物に圧力がかかる。また、硬化性樹脂組成物中の気泡の内部は第1の工程における減圧雰囲気の圧力にあることから、第2の工程で硬化性樹脂組成物にかかる圧力によって気泡の体積が縮小するか、または気泡内の気体が硬化性樹脂組成物に溶解することにより、気泡が消失する。
 硬化性樹脂組成物中の気泡を充分に消失させるためには、第2の工程において、硬化性樹脂組成物を硬化させる前に、前記減圧雰囲気よりも高い圧力雰囲気下に積層前駆体をしばらく保持することが好ましい。保持時間は5分以上が好ましい。なお、気泡がない場合および気泡が微小で速やかに消失する場合等は、保持時間は5分未満であってもよい。
According to the production method, even if bubbles remain in the curable resin composition in the first step, the bubbles are likely to disappear before the curable resin composition is cured in the second step. No cured resin layer is easily formed. This is due to the following factors.
When the laminated precursor formed in the first step is placed in a pressure atmosphere higher than the reduced pressure atmosphere of the first step in the second step, the pressure outside the transparent substrate becomes larger than the pressure inside, Pressure is applied to the curable resin composition from the substrate. Further, since the inside of the bubbles in the curable resin composition is at the pressure of the reduced pressure atmosphere in the first step, the volume of the bubbles is reduced by the pressure applied to the curable resin composition in the second step, or When the gas in the bubbles dissolves in the curable resin composition, the bubbles disappear.
In order to sufficiently eliminate bubbles in the curable resin composition, in the second step, before curing the curable resin composition, the laminated precursor is held for a while under a pressure atmosphere higher than the reduced-pressure atmosphere. It is preferable to do. The holding time is preferably 5 minutes or more. Note that the holding time may be less than 5 minutes when there are no bubbles or when the bubbles are minute and disappear quickly.
 第2の工程における、前記減圧雰囲気よりも圧力が高い雰囲気としては、50kPa以上の圧力雰囲気が好ましく、100kPa以上の圧力雰囲気がより好ましく、圧力雰囲気の制御が容易な点から、大気圧雰囲気が特に好ましい。
 第1の工程および第2の工程における圧力雰囲気は、第1の工程で100Pa以下の圧力雰囲気とし、第2の工程で大気圧雰囲気とすることが特に好ましい。
The atmosphere having a higher pressure than the reduced-pressure atmosphere in the second step is preferably a pressure atmosphere of 50 kPa or more, more preferably a pressure atmosphere of 100 kPa or more, and an atmospheric pressure atmosphere is particularly preferable from the viewpoint of easy control of the pressure atmosphere. preferable.
The pressure atmosphere in the first step and the second step is particularly preferably a pressure atmosphere of 100 Pa or less in the first step and an atmospheric pressure atmosphere in the second step.
 以下、図1に基づいて、積層体の製造方法の一例について説明する。
 第1の工程では、一方の基板10(以下、単に「基板10」と記す。)上の周縁部に全周にわたってシール材12を設け、シール材12上にシール用紫外線硬化性樹脂36を塗布し、シール材12に囲まれた基板10の表面に硬化性樹脂組成物14を供給する。硬化性樹脂組成物14の層を上にして減圧チャンバー26内に水平に載置する。
 また、減圧チャンバー26内においてシリンダー34によって上下しうる上定盤30に、他方の基板16(以下、単に「基板16」と記す。)を吸着パッド32によって保持し、基板10の上方で平行に対向させる。
 減圧チャンバー26を閉じ、真空ポンプ28を作動させて排気し、減圧チャンバー26内を所定の減圧雰囲気とする。
 その後、シリンダー34を作動させて基板16を降下させ、基板10と基板16によって硬化性樹脂組成物14の層を挟み、硬化性樹脂組成物14が基板10と基板16とシール材12によって密閉された積層前駆体を形成する。
Hereinafter, an example of a method for manufacturing a laminate will be described with reference to FIG.
In the first step, a sealing material 12 is provided over the entire periphery of one substrate 10 (hereinafter simply referred to as “substrate 10”), and a sealing UV curable resin 36 is applied on the sealing material 12. Then, the curable resin composition 14 is supplied to the surface of the substrate 10 surrounded by the sealing material 12. The layer of the curable resin composition 14 is placed horizontally in the decompression chamber 26 with the layer facing up.
Further, the other substrate 16 (hereinafter simply referred to as “substrate 16”) is held by the suction pad 32 on the upper surface plate 30 that can be moved up and down by the cylinder 34 in the decompression chamber 26, and in parallel above the substrate 10. Make them face each other.
The decompression chamber 26 is closed, and the vacuum pump 28 is operated to evacuate, so that the inside of the decompression chamber 26 has a predetermined decompressed atmosphere.
Thereafter, the cylinder 34 is operated to lower the substrate 16, the layer of the curable resin composition 14 is sandwiched between the substrate 10 and the substrate 16, and the curable resin composition 14 is sealed by the substrate 10, the substrate 16, and the sealing material 12. A laminated precursor is formed.
 第2の工程では、減圧チャンバー26内を大気圧雰囲気に戻し、減圧チャンバー26から前記積層前駆体を取り出し、大気圧雰囲気下において、前記積層前駆体の硬化性樹脂組成物を加熱または光照射によって硬化させ、図2の積層体を得る。図2中、符号21は硬化樹脂層、符号31はシール材とシール用紫外線硬化性樹脂の硬化物とからなる堰状部である。 In the second step, the reduced pressure chamber 26 is returned to the atmospheric pressure atmosphere, the laminated precursor is taken out from the reduced pressure chamber 26, and the curable resin composition of the laminated precursor is heated or irradiated with light in the atmospheric pressure atmosphere. It hardens | cures and the laminated body of FIG. 2 is obtained. In FIG. 2, the code | symbol 21 is a cured resin layer, and the code | symbol 31 is a weir-like part which consists of a sealing material and the hardened | cured material of the ultraviolet curable resin for sealing.
 以上説明した製造方法によれば、適度な弾性率を備え柔軟性を有する硬化樹脂層を備えた積層体を高い生産性で製造できる。
 なお、本発明の積層体は、前記した製造方法以外の公知の製造方法で製造してもよい。
According to the manufacturing method demonstrated above, the laminated body provided with the cured resin layer which has a moderate elasticity modulus and a softness | flexibility can be manufactured with high productivity.
In addition, you may manufacture the laminated body of this invention with well-known manufacturing methods other than an above described manufacturing method.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によって限定されない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited by the following description.
 以下の各製造例中における各種測定は、次のように行った。
<測定方法>
[オリゴマーの数平均分子量]
 オリゴマーの数平均分子量(Mn)の値は、TOSOH社製HLC-8220GPCを用いたゲルパーミエーションクロマトグラムより求めた。試料は、0.45μmのPTFEフィルターでろ過した1.0質量%のTHF溶液とし、カラムはTOSOH社製TSKgel GMHHRを2本用いた。
Various measurements in the following production examples were performed as follows.
<Measurement method>
[Number average molecular weight of oligomer]
The number average molecular weight (Mn) of the oligomer was determined from a gel permeation chromatogram using HLC-8220GPC manufactured by TOSOH. The sample was a 1.0 mass% THF solution filtered through a 0.45 μm PTFE filter, and two TSKgel GMH HR manufactured by TOSOH were used for the column.
<オリゴマー>
[製造例1:オリゴマー(A1-1)の製造]
 撹拌機、窒素導入管、温度計および滴下ロートを備えた4口フラスコに、化合物(a1)として、ポリブタジエンポリオール(日本曹達製、「G-2000(商品名)」、水酸基価(OHV)=52mgKOH/g、水酸基の数:2、数平均分子量=1,974)の379.7質量部、ポリイソシアネート(a2)として、イソホロンジイソシアネート(以下、「IPDI」と記す。)の78.2質量部を加え、触媒であるジオクチル錫ジステアレート(以下、「DOTDS」と記す。)の0.035質量部の存在下、80℃で3時間反応させ、イソシアネート基末端プレポリマーを得た。化合物(a1)にポリイソシアネート(a2)を反応させた際のインデックスは、183であった。
 窒素導入を止め、空気雰囲気下で、該イソシアネート基末端プレポリマーに、硬化性モノマー(a3)として、2-ヒドロキシエチルアクリレート(以下、「HEA」と記す。)の40.9質量部を加え、重合禁止剤であるDTBHQの0.05質量部および触媒であるジブチル錫ジラウレート(以下、「DBTDL」と記す。)の0.05質量部の存在下、80℃で撹拌し、JIS K1603-1に則ったNCO滴定にてイソシアネート基含有率の測定を行いながら、イソシアネート基がなくなるまで反応を行い、数平均分子量が3,000のオリゴマー(A1-1)を得た。
 なお、硬化性モノマー(a3)の使用量は、ポリイソシアネート(a2)のイソシアネート基の当量数を、化合物(a1)と硬化性モノマー(a3)の水酸基の当量数の合計で除した値の100倍が、100となる量であった。
 得られたオリゴマー(A1-1)は、無色透明であった。また、1分子あたりのアクリロイル基の数は平均値で2.0(イソシアネート基末端プレポリマーのイソシアネート基の官能基数と同じ値。)、ウレタン結合濃度は8.327質量%、25℃における粘度は800,000mPa・sであった。
<Oligomer>
[Production Example 1: Production of oligomer (A1-1)]
Into a four-necked flask equipped with a stirrer, a nitrogen inlet tube, a thermometer and a dropping funnel, as compound (a1), polybutadiene polyol (manufactured by Nippon Soda, “G-2000 (trade name)”, hydroxyl value (OHV) = 52 mg KOH / G, 379.7 parts by mass of the number of hydroxyl groups: 2, number average molecular weight = 1,974), and 78.2 parts by mass of isophorone diisocyanate (hereinafter referred to as “IPDI”) as polyisocyanate (a2). In addition, the reaction was carried out at 80 ° C. for 3 hours in the presence of 0.035 parts by mass of dioctyltin distearate (hereinafter referred to as “DOTDS”) as a catalyst to obtain an isocyanate group-terminated prepolymer. The index when the compound (a1) was reacted with the polyisocyanate (a2) was 183.
Introducing nitrogen and adding 40.9 parts by mass of 2-hydroxyethyl acrylate (hereinafter referred to as “HEA”) as the curable monomer (a3) to the isocyanate group-terminated prepolymer under an air atmosphere, The mixture was stirred at 80 ° C. in the presence of 0.05 part by weight of DTBHQ as a polymerization inhibitor and 0.05 part by weight of dibutyltin dilaurate (hereinafter referred to as “DBTDL”) as a catalyst, and was added to JIS K1603-1. While measuring the isocyanate group content by regular NCO titration, the reaction was continued until the isocyanate group disappeared to obtain an oligomer (A1-1) having a number average molecular weight of 3,000.
In addition, the usage-amount of a curable monomer (a3) is 100 of the value which remove | divided the equivalent number of the isocyanate group of polyisocyanate (a2) by the sum total of the equivalent number of the hydroxyl group of a compound (a1) and a curable monomer (a3). The amount was doubled to 100.
The obtained oligomer (A1-1) was colorless and transparent. Moreover, the average number of acryloyl groups per molecule is 2.0 (the same value as the number of functional groups of isocyanate groups in the isocyanate group-terminated prepolymer), the urethane bond concentration is 8.327% by mass, and the viscosity at 25 ° C. is 800,000 mPa · s.
 オリゴマー(A1-1)のウレタン結合濃度は、オリゴマー(A1-1)の製造に用いたIPDI(ポリイソシアネート(a2))の有するイソシアネート基の全量がウレタン結合を形成しているとみなせることから、以下の計算式より算出できる。(IPDIの有するイソシアネート基のモル数×ウレタン結合分子量(59)/オリゴマー(A1-1)の質量)×100(%)
 なお、オリゴマー(A1-1)の質量としては、ポリブタジエンポリオールと、IPDIと、HEAの仕込み量の合計質量を採用する。
Since the urethane bond concentration of the oligomer (A1-1) can be considered that the total amount of isocyanate groups of the IPDI (polyisocyanate (a2)) used for the production of the oligomer (A1-1) forms a urethane bond, It can be calculated from the following formula. (Mole number of isocyanate group of IPDI × urethane bond molecular weight (59) / mass of oligomer (A1-1)) × 100 (%)
As the mass of the oligomer (A1-1), the total mass of the charged amounts of polybutadiene polyol, IPDI, and HEA is employed.
[製造例2:オリゴマー(A1-2)の製造]
 撹拌機、窒素導入管、温度計および滴下ロートを備えた4口フラスコに、化合物(a1)として、ポリブタジエンポリオール(クレイバレー社製、「LBH-P3000(商品名)」、水酸基価(OHV)=35.9mgKOH/g、水酸基の数:1.9、数平均分子量=2,969)の300質量部、ポリイソシアネート(a2)として、ヘキサメチレンジイソシアネート(以下、「HDI」と記す。)の14.96質量部を加え、触媒であるDOTDSの0.03質量部の存在下、80℃で3時間反応させ、水酸基末端プレポリマーを得た。化合物(a1)にポリイソシアネート(a2)を反応させた際のインデックスは、88であった。
 該水酸基末端プレポリマーに、硬化性モノマー(a4)として、2-イソシアナトエチルアクリレート(以下、「カレンズAOI」と記す。)の3.06質量部を加え、重合禁止剤であるDTBHQの0.03質量部および触媒であるDBTDLの0.05質量部の存在下、80℃で撹拌し、JIS K1603-1に則ったNCO滴定にてイソシアネート基含有率の測定を行いながら、イソシアネート基がなくなるまで反応を行い、数平均分子量が58,000のオリゴマー(A1-2)を得た。
 なお、硬化性モノマー(a4)の使用量は、化合物(a1)とポリイソシアネート(a2)とを反応して得られるプレポリマーの水酸基に対する、硬化性モノマー(a4)の有するイソシアネート基のインデックスとして、98であった。
 得られたオリゴマー(A1-2)は、無色透明であった。また、1分子あたりのアクリロイル基の数は平均値で1.9(水酸基末端プレポリマーの水酸基の官能基数と同じ値。)、ウレタン結合濃度は3.701質量%、25℃における粘度は500,000mPa・sであった。
[Production Example 2: Production of oligomer (A1-2)]
Into a four-necked flask equipped with a stirrer, a nitrogen introducing tube, a thermometer and a dropping funnel, as a compound (a1), polybutadiene polyol (manufactured by Clay Valley, “LBH-P3000 (trade name)”, hydroxyl value (OHV) = 35.9 mg KOH / g, number of hydroxyl groups: 1.9, number average molecular weight = 2,969) 300 parts by mass, polyisocyanate (a2) as hexamethylene diisocyanate (hereinafter referred to as “HDI”) 14. 96 parts by mass was added and reacted at 80 ° C. for 3 hours in the presence of 0.03 part by mass of DOTDS as a catalyst to obtain a hydroxyl group-terminated prepolymer. The index when polyisocyanate (a2) was reacted with compound (a1) was 88.
To this hydroxyl group-terminated prepolymer, 3.06 parts by mass of 2-isocyanatoethyl acrylate (hereinafter referred to as “Karenz AOI”) is added as a curable monomer (a4), and 0. Stir at 80 ° C. in the presence of 03 parts by mass and 0.05 part by mass of DBTDL as a catalyst, and measure the isocyanate group content by NCO titration in accordance with JIS K1603-1 until the isocyanate groups disappear. Reaction was performed to obtain an oligomer (A1-2) having a number average molecular weight of 58,000.
In addition, the usage-amount of a curable monomer (a4) is as an index of the isocyanate group which the curable monomer (a4) has with respect to the hydroxyl group of the prepolymer obtained by reacting a compound (a1) and a polyisocyanate (a2). It was 98.
The obtained oligomer (A1-2) was colorless and transparent. In addition, the average number of acryloyl groups per molecule is 1.9 (the same value as the number of hydroxyl functional groups in the hydroxyl group-terminated prepolymer), the urethane bond concentration is 3.701% by mass, and the viscosity at 25 ° C. is 500. 000 mPa · s.
 オリゴマー(A1-2)のウレタン結合濃度は、オリゴマー(A1-2)の製造に用いたHDI(ポリイソシアネート(a2))の有するイソシアネート基とカレンズAOI(硬化性モノマー(a4))の有するイソシアネート基の全量がウレタン結合を形成しているとみなせることから、以下の計算式より算出できる。((HDIの有するイソシアネート基のモル数+カレンズAOIのモル数)×ウレタン結合分子量(59)/オリゴマー(A1-2)の質量)×100(%)
 なお、オリゴマー(A1-2)の質量としては、ポリブタジエンポリオールと、HDIと、カレンズAOIの仕込み量の合計質量を採用する。
The urethane bond concentration of the oligomer (A1-2) is the isocyanate group of the HDI (polyisocyanate (a2)) used in the production of the oligomer (A1-2) and the isocyanate group of the Karenz AOI (curable monomer (a4)). Since the total amount of can be regarded as forming a urethane bond, it can be calculated from the following formula. ((Number of moles of isocyanate group possessed by HDI + number of moles of Karenz AOI) × urethane bond molecular weight (59) / mass of oligomer (A1-2)) × 100 (%)
As the mass of the oligomer (A1-2), the total mass of the charged amounts of polybutadiene polyol, HDI, and Karenz AOI is employed.
[オリゴマー(Bi-1)]
 クラプレン(登録商標)UC203(クラレ(株)製):イソプレン鎖と、メタクリロイル基を有する、ウレタン結合を有しないオリゴマー。
[Oligomer (Bi-1)]
Claprene (registered trademark) UC203 (manufactured by Kuraray Co., Ltd.): an oligomer having an isoprene chain and a methacryloyl group and having no urethane bond.
[オリゴマー(Bb-1)]
 BAC45(大阪有機化学工業(株)製):ウレタン結合を有しない、末端アクリル変性1,4ポリブタジエン。
[Oligomer (Bb-1)]
BAC45 (manufactured by Osaka Organic Chemical Industry Co., Ltd.): Terminal acrylic modified 1,4 polybutadiene having no urethane bond.
[オリゴマー(E1-1)]
 クレイバレー社製「Ricon156(商品名)」(数平均分子量2,500)
[オリゴマー(E1-2)]
 日本ゼオン社製「Polyoil110(商品名)」(数平均分子量1,600)
[Oligomer (E1-1)]
"Ricon 156 (trade name)" manufactured by Clay Valley (number average molecular weight 2,500)
[Oligomer (E1-2)]
“Polyoil110 (trade name)” manufactured by Zeon Corporation (number average molecular weight 1,600)
<オリゴマー以外の成分>
〔水酸基を有するモノマー(D1)〕
・2-ヒドロキシプロピルアクリレート(以下、「D1-1」と記す。分子量:130.1、25℃における粘度:10mPa・s。)
〔水酸基を有しないモノマー(D2)〕
・ラウリルアクリレート(以下、「D2-1」と記す。分子量:240.4、25℃における粘度:4~5mPa・s。)
・アクリロイルモルホリン(以下、「D2-2」と記す。分子量:141.2、25℃における粘度:12mPa・s。)
・ジシクロペンテニルオキシエチルメタクリレート(以下、「D2-3」と記す。分子量:262、25℃における粘度:17mPa・s。)
<Ingredients other than oligomer>
[Monomer having a hydroxyl group (D1)]
2-hydroxypropyl acrylate (hereinafter referred to as “D1-1”, molecular weight: 130.1, viscosity at 25 ° C .: 10 mPa · s)
[Monomer having no hydroxyl group (D2)]
Lauryl acrylate (hereinafter referred to as “D2-1”, molecular weight: 240.4, viscosity at 25 ° C .: 4 to 5 mPa · s)
Acrylylmorpholine (hereinafter referred to as “D2-2”, molecular weight: 141.2, viscosity at 25 ° C .: 12 mPa · s)
Dicyclopentenyloxyethyl methacrylate (hereinafter referred to as “D2-3”, molecular weight: 262, viscosity at 25 ° C .: 17 mPa · s)
〔光重合開始剤〕
・BASF社製、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(以下、「Ir819」と記す。)
・BASF社製、1-ヒドロキシ-シクロヘキシル-フェニルケトン(以下、「Ir184」と記す。)
・BASF社製、2,4,6-トリメチルベンゾイル-フェニルフォスフィンオキサイド(以下、「TPO」と記す。)
〔粘着性付与剤〕
・荒川化学工業社製、ロジンエステル(以下、「KE311」と記す。)
〔重合禁止剤〕
・DTBHQ
〔酸化防止剤〕
・チバ・スペシャルティケミカルズ社製、非アミンのヒンダードフェノール系酸化防止剤(以下、「PUR68」と記す。)
(Photopolymerization initiator)
• Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (hereinafter referred to as “Ir819”) manufactured by BASF
1-hydroxy-cyclohexyl-phenyl ketone (hereinafter referred to as “Ir184”) manufactured by BASF
• 2,4,6-Trimethylbenzoyl-phenylphosphine oxide (hereinafter referred to as “TPO”) manufactured by BASF
(Tackifier)
・ Rosin ester (hereinafter referred to as “KE311”) manufactured by Arakawa Chemical Industries, Ltd.
(Polymerization inhibitor)
・ DTBHQ
〔Antioxidant〕
・ Ciba Specialty Chemicals, non-amine hindered phenol antioxidant (hereinafter referred to as “PUR68”)
〔実施例1および2、比較例1~3〕
 表1に示す配合割合(質量基準)で、各成分を混合し、各例の硬化性樹脂組成物を調製した。
 得られた硬化性樹脂組成物について、以下に示す方法で、硬化速度と、硬化物の貯蔵せん断弾性率を評価した。なお、比較例3については、貯蔵せん断弾性率のみ評価した。
 また、硬化性樹脂組成物の25℃での粘度V25をE型粘度計(東機産業社製、RE-85U)を用いて測定した。
 硬化性樹脂組成物の25℃での粘度V25、硬化物の貯蔵せん断弾性率、ウレタン結合の濃度を表2に示す。
[Examples 1 and 2, Comparative Examples 1 to 3]
Each component was mixed by the mixture ratio (mass basis) shown in Table 1, and the curable resin composition of each example was prepared.
With respect to the obtained curable resin composition, the curing rate and the storage shear modulus of the cured product were evaluated by the following methods. For Comparative Example 3, only the storage shear modulus was evaluated.
Further, the viscosity V 25 at 25 ° C. of the curable resin composition was measured using an E-type viscometer (RE-85U, manufactured by Toki Sangyo Co., Ltd.).
Table 2 shows the viscosity V 25 at 25 ° C. of the curable resin composition, the storage shear modulus of the cured product, and the concentration of urethane bonds.
(硬化速度の評価方法)
 硬化性樹脂組成物を硬化させ、硬化度が90%となるのに要した紫外光(UV)照射時間から、硬化速度を評価した。硬化度は、貯蔵せん断弾性率の測定結果から求めた。
 貯蔵せん断弾性率は以下のように測定した。
 ソーダライムガラス製のステージと測定用スピンドル(アントンパール社製、D-PP20/AL/S07)の間の0.4mmの隙間に、各例の硬化性樹脂組成物を挟持させ、窒素雰囲気下、35℃において、ステージの下部に設置した水銀キセノンランプ(USHIO社製、SP-9)により、100mW/cmの光を36秒間照射した。光照射しながら、1%の動的せん断ひずみを印加し、硬化性樹脂組成物を硬化させた。その際の貯蔵せん断弾性率をレオメーター(アントンパール社製、Physica MCR301)で測定した。なお、硬化性樹脂組成物の硬化時に、スピンドルの法線方向に応力が発生しないように、スピンドルの位置を自動追従調整させた。
 照射強度は、照度計(ウシオ電機社製、紫外線強度計ユニメーターUIT-101)を用いて、硬化性樹脂組成物が設置されるステージ上で測定した。
 紫外光照射時間180秒後の貯蔵せん断弾性率値を飽和貯蔵せん断弾性率(G'max)とし、紫外光照射時間毎の貯蔵せん断弾性率(G')をG'maxを基準に規格化することで各評価用組成物の硬化度を算出した。
 図3および4は、実施例1および2、比較例1および2の硬化性樹脂組成物について、紫外光照射時間に対する貯蔵せん断弾性率(G’)をプロットしたグラフである。
 図5および6は、実施例1および2、比較例1および2の硬化性樹脂組成物についての紫外光照射時間に対する硬化度(G’/G’max)を180秒における硬化度を100%となるようにプロットしたグラフである。
 図5および6から、硬化度90%の時の紫外線照射時間を読み取り、これを硬化速度の指標とした。
(Evaluation method of curing speed)
The curing rate was evaluated from the ultraviolet light (UV) irradiation time required for curing the curable resin composition and achieving a curing degree of 90%. The degree of cure was determined from the measurement result of the storage shear modulus.
The storage shear modulus was measured as follows.
The curable resin composition of each example was sandwiched in a 0.4 mm gap between a soda lime glass stage and a measuring spindle (D-PP20 / AL / S07, manufactured by Anton Paar), and in a nitrogen atmosphere, At 35 ° C., light of 100 mW / cm 2 was irradiated for 36 seconds with a mercury xenon lamp (US-9, SP-9) installed at the bottom of the stage. While irradiating with light, 1% dynamic shear strain was applied to cure the curable resin composition. The storage shear modulus at that time was measured with a rheometer (manufactured by Anton Paar, Physica MCR301). Note that the position of the spindle was automatically adjusted so that no stress was generated in the normal direction of the spindle when the curable resin composition was cured.
The irradiation intensity was measured on a stage on which the curable resin composition was installed using an illuminance meter (Ushio Electric Co., Ltd., UV intensity meter Unimeter UIT-101).
The storage shear modulus value after 180 seconds of ultraviolet light irradiation time is defined as the saturated storage shear modulus (G′max), and the storage shear modulus (G ′) for each ultraviolet light irradiation time is normalized based on G′max. Thus, the degree of curing of each composition for evaluation was calculated.
3 and 4 are graphs plotting the storage shear modulus (G ′) versus the ultraviolet light irradiation time for the curable resin compositions of Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
5 and 6 show that the degree of cure (G ′ / G′max) with respect to the ultraviolet light irradiation time for the curable resin compositions of Examples 1 and 2 and Comparative Examples 1 and 2 is 100%. This is a graph plotted as follows.
5 and 6, the ultraviolet irradiation time when the curing degree was 90% was read and used as an index of the curing speed.
(貯蔵せん断弾性率の評価方法)
 上記「硬化速度の評価方法」に記載の方法と同様にして、光照射しながら、1%の動的せん断ひずみを印加し、硬化性樹脂組成物を硬化させた際の貯蔵せん断弾性率をレオメーター(アントンパール社製、Physica MCR301)で測定した。
 貯蔵せん断弾性率(硬化度90%)が1×10~1×10Paの範囲であれば、弾性率が適度であり、その硬化性樹脂組成物の硬化物をたとえば透明積層体等の硬化樹脂層(接着層)に用いた場合に、柔軟性、密着性に優れ、また、応力吸収性に優れていると判断できる。
 結果を表1に示す。
(Method for evaluating storage shear modulus)
In the same manner as the method described in “Method of evaluating curing rate” above, a 1% dynamic shear strain was applied while irradiating with light, and the storage shear modulus when the curable resin composition was cured was determined to be rheological. It measured with the meter (The Anton Paar company make, Physica MCR301).
If the storage shear modulus (curing degree 90%) is in the range of 1 × 10 3 to 1 × 10 5 Pa, the modulus of elasticity is appropriate, and the cured product of the curable resin composition is, for example, a transparent laminate or the like. When used for a cured resin layer (adhesive layer), it can be judged that the film is excellent in flexibility and adhesion, and is excellent in stress absorption.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各実施例の硬化性樹脂組成物は、硬化度90%に到達するまでの紫外線照射時間が短く、硬化速度が速かった(図5および6参照。)。
 また、各実施例の硬化性樹脂組成物の硬化物は、貯蔵せん断弾性率が適度な範囲にあった(表2参照。)。
The curable resin composition of each example had a short ultraviolet irradiation time until the degree of cure reached 90%, and the curing rate was fast (see FIGS. 5 and 6).
Moreover, the cured | curing material of the curable resin composition of each Example had the storage shear elastic modulus in the moderate range (refer Table 2).
 また、実施例1および2、比較例1および2の硬化性樹脂組成物を用いて、次のようにして、積層体を製造した。
 市販の液晶表示装置(7型液晶デジタルフォトフレーム、ソニー社製、製品名:DPF-0720)から液晶表示デバイスを取り出した。液晶表示デバイスは、表示モードがVA(Virtical Alignment)タイプで、表示部は矩形で、その大きさは、縦(短辺)の長さが88mm、横(長辺)の長さが156mmであった。液晶表示デバイスの両面には偏光板が貼合されており、長辺側の端部にはプリント配線板が接合されていた。該液晶表示デバイスを表示デバイスAとした。
 表示デバイスAの視認側の面の周縁部に、両面接着テープを用いて、厚み0.2mm、幅2mmのシール部を形成し、該シール部で囲まれた領域に、各例で得られた硬化性樹脂組成物を0.2mm厚で塗布した。これを一対の定盤の昇降装置が設置されている減圧装置内の下定盤の上面に、硬化性樹脂組成物を塗布した面が上側になるように平置した。
 これとは別に、矩形のガラス板B(長辺の長さ:160mm、短辺の長さ90mm、厚さ:0.7mm)を、表示デバイスAに対向するように、減圧装置内の昇降装置の上定盤の下面に設置した。また、垂直方向において表示デバイスAとの距離が30mmとなるように保持した。
Moreover, the laminated body was manufactured as follows using the curable resin composition of Examples 1 and 2 and Comparative Examples 1 and 2.
A liquid crystal display device was taken out from a commercially available liquid crystal display device (7-inch liquid crystal digital photo frame, manufactured by Sony Corporation, product name: DPF-0720). The liquid crystal display device has a display mode of VA (Virtual Alignment) type, a rectangular display, and a vertical (short side) length of 88 mm and a horizontal (long side) length of 156 mm. It was. Polarizers were bonded to both surfaces of the liquid crystal display device, and a printed wiring board was bonded to the end on the long side. The liquid crystal display device was designated as display device A.
A seal part having a thickness of 0.2 mm and a width of 2 mm was formed on the peripheral part of the viewing side surface of the display device A using a double-sided adhesive tape, and each region was obtained in a region surrounded by the seal part. The curable resin composition was applied with a thickness of 0.2 mm. This was placed flat on the upper surface of the lower surface plate in the decompression device in which a pair of surface plate lifting devices are installed so that the surface coated with the curable resin composition is on the upper side.
Separately, a rectangular glass plate B (long side length: 160 mm, short side length 90 mm, thickness: 0.7 mm) is lifted and lowered in the decompression device so as to face the display device A. Installed on the lower surface of the upper surface plate. Moreover, it hold | maintained so that the distance with the display device A might be set to 30 mm in the orthogonal | vertical direction.
 次いで、減圧装置を密封状態として減圧装置内の圧力が約10Paとなるまで排気した。減圧装置内の昇降装置にて上下の定盤を接近させ、表示デバイスAとガラス板Bとを、硬化性樹脂組成物からなる未硬化層を介して2kPaの圧力で圧着し、1分間保持した。こうして、硬化性樹脂組成物からなる未硬化層が表示デバイスAおよびガラス板Bの間に挟持され、かつ周囲のシール部で該未硬化層が密封された積層前駆体を形成した。
 この後、静電チャックを除電して上定盤からガラス板Bを離間させ、約15秒で減圧装置内を大気圧に戻した。
Next, the pressure reducing device was sealed and evacuated until the pressure in the pressure reducing device reached about 10 Pa. The upper and lower surface plates are brought close to each other by the lifting device in the decompression device, and the display device A and the glass plate B are pressure-bonded at a pressure of 2 kPa through an uncured layer made of a curable resin composition and held for 1 minute. . In this way, a laminated precursor in which an uncured layer made of the curable resin composition was sandwiched between the display device A and the glass plate B, and the uncured layer was sealed at a peripheral seal portion was formed.
Thereafter, the electrostatic chuck was neutralized to separate the glass plate B from the upper surface plate, and the inside of the decompression device was returned to atmospheric pressure in about 15 seconds.
 続いて、積層前駆体に対して、ガラス板B側から紫外線(光源:Fusion D-bulb メタルハライドランプ、照度:100mW/cm)を36秒間照射し、未硬化層を硬化させて、表示デバイスAにガラス板Bが接合された積層体を得た。
 実施例1および2の硬化性樹脂組成物を用いて製造した積層体においては、硬化性樹脂組成物は充分に硬化していたが、比較例1および2の硬化性樹脂組成物を用いて製造した積層体においては、硬化性樹脂組成物は未硬化部分を有していた。
Subsequently, the laminated precursor was irradiated with ultraviolet rays (light source: Fusion D-bulb metal halide lamp, illuminance: 100 mW / cm 2 ) for 36 seconds from the glass plate B side, the uncured layer was cured, and display device A A laminated body in which the glass plate B was bonded to the substrate was obtained.
In the laminates produced using the curable resin compositions of Examples 1 and 2, the curable resin composition was sufficiently cured, but produced using the curable resin compositions of Comparative Examples 1 and 2. In the laminated body, the curable resin composition had an uncured part.
 本発明の硬化性樹脂組成物は、硬化速度が大きく、高い生産性で硬化物を形成でき、かつ、適度な弾性率を備え柔軟性を有する硬化物を形成できる。
 よって、本発明の硬化性樹脂組成物は、表示デバイスと、該表示デバイスの視認面側に対向配置された透明基板とを貼り合せる硬化樹脂層の形成、合わせガラス、透明パネルにおける硬化樹脂層等に好適に用いられる。
 また、本発明の硬化性樹脂組成物は、接着剤、コーティング剤等の用途にも使用できる。
 また、本発明の硬化性樹脂組成物は、液晶表示デバイス等の表示デバイス上にタッチパネルや保護板が積層された画像表示装置において、表示デバイスとタッチパネルとの間、タッチパネルと保護板等の透明面材との間等に接着層として設けられる硬化性樹脂層の形成にも好適に用いられる。
 なお、2014年1月22日に出願された日本特許出願2014-9654号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The curable resin composition of the present invention has a high curing rate, can form a cured product with high productivity, and can form a cured product having an appropriate elastic modulus and flexibility.
Therefore, the curable resin composition of the present invention is formed of a cured resin layer for bonding a display device and a transparent substrate opposed to the viewing surface side of the display device, laminated glass, a cured resin layer in a transparent panel, and the like. Is preferably used.
Moreover, the curable resin composition of this invention can be used also for uses, such as an adhesive agent and a coating agent.
Further, the curable resin composition of the present invention is an image display device in which a touch panel or a protective plate is laminated on a display device such as a liquid crystal display device. It is also suitably used for forming a curable resin layer provided as an adhesive layer between materials.
It should be noted that the entire content of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-9654 filed on January 22, 2014 is cited herein as the disclosure of the specification of the present invention. Incorporated.
 10,16 基板
 12 シール材
 14 硬化性樹脂組成物
 21 硬化樹脂層
 26 減圧チャンバー
 28 真空ポンプ
 30 上定盤
 31 堰状部
 32 吸着パッド
 34 シリンダー
 36 シール用紫外線硬化性樹脂
DESCRIPTION OF SYMBOLS 10,16 Board | substrate 12 Sealing material 14 Curable resin composition 21 Cured resin layer 26 Depressurization chamber 28 Vacuum pump 30 Upper surface plate 31 Weir-shaped part 32 Adsorption pad 34 Cylinder 36 UV curable resin for sealing

Claims (13)

  1.  ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方とウレタン結合とを有する硬化性オリゴマー(A)を含有する硬化性オリゴマー成分と、
     ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有する非硬化性オリゴマー(E)と、
     硬化性モノマー(D)とを含有する、硬化性樹脂組成物。
    A curable oligomer component containing a curable oligomer (A) having at least one of a polybutadiene chain and a polyisoprene chain and a urethane bond;
    A non-curable oligomer (E) having at least one of a polybutadiene chain and a polyisoprene chain;
    A curable resin composition containing a curable monomer (D).
  2.  ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方を有し、ウレタン結合を有しない、硬化性オリゴマー(B)をさらに含む、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, further comprising a curable oligomer (B) having at least one of a polybutadiene chain and a polyisoprene chain and having no urethane bond.
  3.  硬化性オリゴマー(A)、硬化性オリゴマー(B)および硬化性モノマー(D)が、硬化性基として(メタ)アクリロイル基を、それぞれ1分子中に1つ以上有する、請求項1または2に記載の硬化性樹脂組成物。 The curable oligomer (A), the curable oligomer (B), and the curable monomer (D) each have at least one (meth) acryloyl group as a curable group in one molecule. Curable resin composition.
  4.  光重合開始剤をさらに含む、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, further comprising a photopolymerization initiator.
  5.  前記硬化性樹脂組成物における硬化性オリゴマー(A)のウレタン結合の濃度が0を超え3質量%以下である、請求項1~4のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the concentration of urethane bonds of the curable oligomer (A) in the curable resin composition is more than 0 and 3% by mass or less.
  6.  前記硬化性オリゴマー(A)のウレタン結合の濃度が0.1~10質量%である、請求項1~5のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the concentration of urethane bonds in the curable oligomer (A) is 0.1 to 10% by mass.
  7.  前記硬化性オリゴマー成分100質量部中の前記硬化性オリゴマー(A)の含有量が25~100質量部である、請求項1~6のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, wherein the content of the curable oligomer (A) in 100 parts by mass of the curable oligomer component is 25 to 100 parts by mass.
  8.  前記硬化性オリゴマー成分100質量部中の前記硬化性オリゴマー(A)と前記硬化性オリゴマー(B)の合計の含有量が75~100質量部である、請求項2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 2, wherein the total content of the curable oligomer (A) and the curable oligomer (B) in 100 parts by mass of the curable oligomer component is 75 to 100 parts by mass. .
  9.  前記硬化性オリゴマー成分の100質量部に対して、前記非硬化性オリゴマー(E)を100~500質量部含む、請求項1~8のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 8, comprising 100 to 500 parts by mass of the non-curable oligomer (E) with respect to 100 parts by mass of the curable oligomer component.
  10.  前記硬化性オリゴマー(A)の100質量部に対して、前記モノマー(D)を10~500質量部含む、請求項1~9のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 9, comprising 10 to 500 parts by mass of the monomer (D) with respect to 100 parts by mass of the curable oligomer (A).
  11.  前記硬化性オリゴマー(A)が、
     ポリブタジエン鎖およびポリイソプレン鎖の少なくとも一方と水酸基とを有する化合物(a1)と、ポリイソシアネート(a2)とをインデックスが100超となる比率で反応させて得られたイソシアネート基末端プレポリマーに、水酸基を有する硬化性モノマー(a3)を反応させたオリゴマー;または、
     化合物(a1)とポリイソシアネート(a2)とをインデックスが100以下となる比率で反応させて得られた水酸基末端プレポリマーに、イソシアネート基を有する硬化性モノマー(a4)を反応させたオリゴマーである、請求項1~10のいずれか一項に記載の硬化性樹脂組成物。
    The curable oligomer (A) is
    A hydroxyl group is added to an isocyanate group-terminated prepolymer obtained by reacting a compound (a1) having at least one of a polybutadiene chain and a polyisoprene chain and a hydroxyl group with a polyisocyanate (a2) at a ratio of an index exceeding 100. An oligomer obtained by reacting a curable monomer having (a3); or
    It is an oligomer obtained by reacting a curable monomer having an isocyanate group (a4) with a hydroxyl group-terminated prepolymer obtained by reacting the compound (a1) and the polyisocyanate (a2) at a ratio of 100 or less. The curable resin composition according to any one of claims 1 to 10.
  12.  表示デバイスと、
     該表示デバイスの視認面側に対向配置された透明基板と、
     前記表示デバイスと前記透明基板との間に挟まれた硬化樹脂層と、
    を有する積層体であって、
     前記硬化樹脂層は、請求項1~11のいずれか一項に記載の硬化性樹脂組成物が硬化した硬化樹脂層である、積層体。
    A display device;
    A transparent substrate disposed opposite to the viewing surface side of the display device;
    A cured resin layer sandwiched between the display device and the transparent substrate;
    A laminate having
    The laminate is a cured resin layer obtained by curing the curable resin composition according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか一項に記載の硬化性樹脂組成物が硬化されてなる硬化樹脂層を有する画像表示装置。 An image display device having a cured resin layer formed by curing the curable resin composition according to any one of claims 1 to 11.
PCT/JP2015/051412 2014-01-22 2015-01-20 Curable resin composition, and layered body and image display device using curable resin composition WO2015111583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009654A JP2017048257A (en) 2014-01-22 2014-01-22 Curable resin composition, laminate and image display device using the curable resin composition
JP2014-009654 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111583A1 true WO2015111583A1 (en) 2015-07-30

Family

ID=53681386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051412 WO2015111583A1 (en) 2014-01-22 2015-01-20 Curable resin composition, and layered body and image display device using curable resin composition

Country Status (3)

Country Link
JP (1) JP2017048257A (en)
TW (1) TW201534650A (en)
WO (1) WO2015111583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080084A1 (en) * 2014-11-20 2016-05-26 協立化学産業株式会社 Photocurable resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209486B2 (en) * 2018-07-31 2023-01-20 株式会社Adeka COMPOSITION, CURED PRODUCT THEREOF, AND METHOD FOR PRODUCING CURED PRODUCT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300388A (en) * 2003-04-01 2004-10-28 Mitsubishi Chemicals Corp Urethane-based resin and active energy ray-curable resin composition using the same
WO2006123804A1 (en) * 2005-05-16 2006-11-23 Showa Denko K.K. Carboxyl group-containing polyurethane, heat-curable resin composition and uses thereof
JP2007056252A (en) * 2005-07-27 2007-03-08 Jsr Corp Side chain unsaturated polymer, radiation sensitive resin composition and spacer for liquid crystal display element
WO2010027041A1 (en) * 2008-09-05 2010-03-11 協立化学産業株式会社 Photocurable resin composition for laminating optically functional material
CN103524701A (en) * 2013-10-31 2014-01-22 烟台德邦科技有限公司 Optical resin and method for synthesis of optical resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300388A (en) * 2003-04-01 2004-10-28 Mitsubishi Chemicals Corp Urethane-based resin and active energy ray-curable resin composition using the same
WO2006123804A1 (en) * 2005-05-16 2006-11-23 Showa Denko K.K. Carboxyl group-containing polyurethane, heat-curable resin composition and uses thereof
JP2007056252A (en) * 2005-07-27 2007-03-08 Jsr Corp Side chain unsaturated polymer, radiation sensitive resin composition and spacer for liquid crystal display element
WO2010027041A1 (en) * 2008-09-05 2010-03-11 協立化学産業株式会社 Photocurable resin composition for laminating optically functional material
CN103524701A (en) * 2013-10-31 2014-01-22 烟台德邦科技有限公司 Optical resin and method for synthesis of optical resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080084A1 (en) * 2014-11-20 2016-05-26 協立化学産業株式会社 Photocurable resin composition
JP2016098304A (en) * 2014-11-20 2016-05-30 協立化学産業株式会社 Photocurable resin composition

Also Published As

Publication number Publication date
JP2017048257A (en) 2017-03-09
TW201534650A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6443347B2 (en) Curable resin composition, and laminate and image display device using curable resin composition
JP5811143B2 (en) Display device
JP5273046B2 (en) Curable resin composition, transparent laminate using the same, and method for producing the same
JP5757291B2 (en) Method for producing transparent face material with adhesive layer
JP5867571B2 (en) Resin layer and display device
JP5494865B2 (en) Laminated body
TWI671375B (en) Photohardenable composition
JP2012145751A (en) Ultraviolet curable resin composition for optical use, hardened material, and display device
JP2018090683A (en) Curable composition, adhesive layer, adhesive layer-fitted face material, laminated body and image display device
JPWO2015190560A1 (en) UV curable adhesive composition for touch panel and article
WO2015190558A1 (en) Double-sided adhesive sheet for image display devices, and article
JP2012158688A (en) Method of manufacturing resin cured product, method of manufacturing laminate, and the laminate
JP6098116B2 (en) Gel-like curable resin composition, image display device, and method for manufacturing image display device
WO2015111583A1 (en) Curable resin composition, and layered body and image display device using curable resin composition
WO2014092002A1 (en) Curable resin composition, laminate using same, and manufacturing method therefor
JP2016087813A (en) Laminate and manufacturing method therefor, and adhesive composition kit for forming adhesive layer of laminate
JP2016222861A (en) Double-sided adhesive sheet for picture display unit and article
TW201906971A (en) Photocurable resin composition and method for manufacturing image display
KR102595575B1 (en) Photocurable resin composition and method for producing an image display device
JP6602933B2 (en) Photocurable resin composition and method for manufacturing image display device
JP2014133860A (en) Curable resin composition, transparent laminate using the same and manufacturing method of the same
JP2019210480A (en) Photocurable resin composition and method for manufacturing image display device
JP2013091685A (en) Unsaturated urethane oligomer, curable resin composition, transparent laminate, and method for manufacturing the laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15740264

Country of ref document: EP

Kind code of ref document: A1