WO2015111316A1 - Imaging optical system, imaging optical device, and digital instrument - Google Patents

Imaging optical system, imaging optical device, and digital instrument Download PDF

Info

Publication number
WO2015111316A1
WO2015111316A1 PCT/JP2014/082692 JP2014082692W WO2015111316A1 WO 2015111316 A1 WO2015111316 A1 WO 2015111316A1 JP 2014082692 W JP2014082692 W JP 2014082692W WO 2015111316 A1 WO2015111316 A1 WO 2015111316A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
absorbing material
imaging optical
optical system
Prior art date
Application number
PCT/JP2014/082692
Other languages
French (fr)
Japanese (ja)
Inventor
英隆 地大
孔二 中村
慶二 松坂
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015558750A priority Critical patent/JP6414083B2/en
Publication of WO2015111316A1 publication Critical patent/WO2015111316A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to an imaging optical system, an imaging optical device, and a digital device. More specifically, an imaging optical system that forms an optical image of a subject on a predetermined surface, an imaging optical system and an imaging device (for example, a CCD (Charge-Coupled Device) -type image sensor, a CMOS (Complementary Metal-Oxide-Semiconductor) type Image pickup optical device that captures the image of the subject with a solid-state image pickup device such as an image sensor and outputs it as an electrical signal, and an image input function such as a digital camera equipped with the image pickup optical device and a smartphone (high-performance mobile phone) And digital devices.
  • a CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • a solid-state image sensor such as a CCD built in a mobile phone camera or the like is a silicon semiconductor device that converts an image (light) into an electric signal, and has sensitivity to the near infrared (IR) region.
  • IR near infrared
  • the IR cut filter using an optical thin film uses light interference, the transmittance characteristic changes greatly with respect to the change in the incident angle of light. As a result, since the IR cut characteristics are different between the screen center and the screen periphery, the screen center of the captured image becomes red. Mobile phones and smartphones are increasingly being made thinner, and accordingly, imaging lenses are also required to have a low profile. Therefore, the phenomenon (color shading) that the center of the screen turns red is a big problem.
  • Patent Document 1 proposes an IR cut filter in which a near-infrared reflective film is provided on a substrate in which an infrared absorbing material is mixed with a resin.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a low-cost imaging optical system having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile, and It is an object to provide an imaging optical device and a digital device provided.
  • an imaging optical system is an imaging optical system having a plurality of lenses and a multilayer film, At least one of the plurality of lenses is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays;
  • the multilayer film is an infrared cut coat that reflects infrared rays,
  • the lens including the infrared absorbing material as a whole satisfies the following conditional expression (1), and in the optical path for the 20% image height, 40% image height, 60% image height, and 80% image height, the following conditions are satisfied. Satisfying the formula (2A),
  • the infrared cut coat satisfies the following conditional expression (3A).
  • the number of lenses including the infrared absorbing material is k, and ⁇ represents the total from the first to the kth from the object side for n
  • DCn thickness of the light beam center of the nth lens from the object side (physical optical path length, mm)
  • Mn weight percent concentration (%) of the infrared absorbing material contained in the nth lens from the object side
  • M_600 nm When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% ⁇ is 600 nm (however, the absorption characteristic of the
  • M_700 nm When M_600 nm cannot be calculated close to 0, M_600 nm is infinite.) M_700 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% ⁇ is 700 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 700 nm). When M_700 nm cannot be calculated close to 0, M_700 nm is set to 0).
  • T1 50% ⁇ : wavelength (nm) at which the total internal transmittance with respect to the central ray of the lens that absorbs infrared rays is 50% in the range of 600 to 700 nm
  • Dn the thickness of the nth lens from the object side (physical optical path length, mm)
  • Y 2 ⁇ ⁇ ( ⁇ _0.9Kpeak ⁇ _0.3Kpeak)
  • ⁇ _0.9 Kpeak The wavelength ( ⁇ m) of the absorption peak of the absorption coefficient of the infrared absorbing material to be added is a wavelength smaller than the wavelength at the absorption peak and 90% of the absorption peak value
  • ⁇ _0.3 Kpeak About the absorption peak of the absorption coefficient of the infrared absorbing material to be added, the wavelength ( ⁇ m) which is smaller than the wavelength at the absorption peak and is 30% of the absorption peak value
  • T2 50% ⁇ : wavelength (nm) at which the transmittance of the infrared cut coat when the incident angle is 30 ° is 50% in the range of 600 to
  • An imaging optical device includes the imaging optical system according to the first aspect of the present invention, and an imaging element that converts an optical image formed on the light receiving surface into an electrical signal.
  • the imaging optical system is provided so that an optical image of a subject is formed on a light receiving surface.
  • the digital device of the third invention is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by including the imaging optical device according to the second invention.
  • the present invention is configured to suppress color shading by having an aspheric lens made of a resin material containing an infrared absorbing material and an infrared cut coat that reflects infrared rays under predetermined conditions. Therefore, it is possible to realize a low-cost imaging optical system and imaging optical apparatus having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile.
  • the high-performance imaging optical system or imaging optical device for a digital device for example, a digital camera
  • the high-performance image input function can be added to the digital device at low cost and in a compact manner.
  • it is possible to make it filterless it is possible to cope with further reduction in height.
  • FIG. 1 is an external view illustrating an embodiment of a digital device with an image input function.
  • FIG. 5 is an optical configuration diagram showing, in section, Examples 1 to 12 and Comparative Examples 1 to 4 of an imaging optical system to which an infrared absorbing material is added.
  • 6 is a graph showing spectral transmittance in the entire imaging optical system of Example 1.
  • 9 is a graph showing spectral transmittance in the entire imaging optical system of Example 2.
  • 7 is a graph showing spectral transmittance in the entire imaging optical system of Example 3.
  • 6 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 1.
  • 6 is a graph showing spectral transmittance in the entire imaging optical system of Example 4.
  • 7 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 2.
  • 10 is a graph showing spectral transmittance in the entire imaging optical system of Example 5.
  • 10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 6.
  • 14 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 3.
  • 10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 7.
  • 10 is a graph showing spectral transmittance in the entire imaging optical system of Example 8.
  • 10 is a graph showing spectral transmittance in the entire imaging optical system of Example 9.
  • 10 is a graph showing spectral transmittance in the entire imaging optical system of Example 10.
  • 10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 11.
  • 22 is a graph showing the spectral transmittance in the entire imaging optical system of Example 12.
  • 10 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 4.
  • a refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line
  • B Abbe number is determined when the refractive indexes for d-line, F-line (wavelength 486.13 nm), C-line (wavelength 656.28 nm) are nd, nF, and nC, respectively, and Abbe number is ⁇ d.
  • An imaging optical system includes a plurality of lenses arranged in order from the object side to the image side, and at least one of the plurality of lenses includes an infrared absorbing material that absorbs infrared rays. It is an aspheric lens made of a resin material, and an infrared cut coat is applied to at least one of the plurality of lenses or a filter between the lens and the sensor. It is said. More specifically, an imaging optical system having a plurality of lenses and at least one multilayer film, wherein at least one of the plurality of lenses is made of an infrared absorbing material that absorbs infrared rays.
  • An aspherical lens made of a resin material, and the multilayer film is an infrared cut coat that reflects infrared rays (a multilayer film formed on any lens, or a substrate provided separately from the lens) It is made of a multilayered film).
  • the lens including the infrared absorbing material and the infrared cut coat satisfy the predetermined condition.
  • the lens including the infrared absorbing material as a whole satisfies the following conditional expression (1), and in the optical path for 20% image height, 40% image height, 60% image height, and 80% image height:
  • Conditional expression (2A) is satisfied, and the infrared cut coat is configured to satisfy the following conditional expression (3A).
  • the number of lenses including the infrared absorbing material is k, and ⁇ represents the total from the first to the kth from the object side for n
  • DCn thickness of the light beam center of the nth lens from the object side (physical optical path length, mm)
  • Mn weight percent concentration (%) of the infrared absorbing material contained in the nth lens from the object side
  • M_600 nm When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% ⁇ is 600 nm (however, the absorption characteristic of the
  • M_700 nm When M_600 nm cannot be calculated close to 0, M_600 nm is infinite.) M_700 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% ⁇ is 700 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 700 nm). When M_700 nm cannot be calculated close to 0, M_700 nm is set to 0).
  • T1 50% ⁇ : wavelength (nm) at which the total internal transmittance with respect to the central ray of the lens that absorbs infrared rays is 50% in the range of 600 to 700 nm
  • Dn the thickness of the nth lens from the object side (physical optical path length, mm)
  • Y 2 ⁇ ⁇ ( ⁇ _0.9Kpeak ⁇ _0.3Kpeak)
  • ⁇ _0.9 Kpeak The wavelength ( ⁇ m) of the absorption peak of the absorption coefficient of the infrared absorbing material to be added is a wavelength smaller than the wavelength at the absorption peak and 90% of the absorption peak value
  • ⁇ _0.3 Kpeak About the absorption peak of the absorption coefficient of the infrared absorbing material to be added, the wavelength ( ⁇ m) which is smaller than the wavelength at the absorption peak and is 30% of the absorption peak value
  • T2 50% ⁇ : wavelength (nm) at which the transmittance of the infrared cut coat when the incident angle is 30 ° is 50% in the range of 600 to
  • the ray incident angle (CRA: Chief Ray Angle) at the periphery of the image plane of the imaging element is usually about 30 degrees.
  • CRA Chief Ray Angle
  • visible light is cut at the periphery of the image plane, or at the center of the image plane In this case, the infrared cut is insufficient, and so-called color unevenness occurs in the image.
  • the imaging optical system according to the present invention uses a lens to which an infrared absorbing material is added as a main countermeasure.
  • the amount of infrared absorption is proportional to the total optical path length of the lens to which the infrared absorbing material is added, but by satisfying conditional expression (1), visible light having a wavelength of less than 600 nm is transmitted to the lens center ray, and the wavelength is 700 nm. It is possible to cut infrared light exceeding.
  • Conditional expression (2A) represents an allowable range of deviation of the transmittance of the peripheral light from the central transmittance of the light beam.
  • the sharper the spectral characteristics of the infrared absorbing material the more the concentration of the infrared absorber with respect to the peripheral light
  • the sum of the product with the optical path length indicates that the allowable range increases. This means that the sharper the wavelength, the smaller the wavelength variation of the spectral characteristics even if the concentration of the infrared absorber varies.
  • the steepness indicates that the wavelength difference between the non-absorption band and the absorption band is small, and Y defined in the conditional expression (2A) becomes small, and the conditional expression (2A) is allowed. The range becomes larger.
  • Conditional expression (3A) shows the relationship between the total absorptance of the lens and the transmittance of the infrared cut coat. As described above, the wavelength range of the transmission band of the coating varies depending on the incident angle. The T2_50% ⁇ of the coating at 30 ° incidence is smaller than that at 0 ° incidence. Therefore, if T2_50% ⁇ by coating is shorter than T1_50% ⁇ by infrared absorbing material added to the lens, the effect on color unevenness will be diminished. Conditional expression (3A) stipulates that T2_50% ⁇ of the coating does not become too short than T1_50% ⁇ of the infrared absorbing material.
  • conditional expressions (2A) and (3A) the optical path length can be made substantially uniform over the entire effective area of the lens, and the difference in reflection performance caused by the angle dependency of the infrared cut coat can be canceled.
  • a substantially uniform infrared absorption amount (transmission characteristic) can be obtained over the entire effective area of the lens, and a good image with reduced color unevenness or no color unevenness can be obtained. That is, when the lower limit value of conditional expression (2A) is exceeded or when the upper limit value is exceeded, the optical path length is not uniform within the effective region of the lens, which is not preferable.
  • the above characteristic configuration it has a configuration that suppresses color shading by having an aspheric lens made of a resin material including an infrared absorbing material and an infrared cut coat that reflects infrared rays under predetermined conditions. Therefore, it is possible to realize a low-cost imaging optical system and imaging optical apparatus having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile.
  • the high-performance imaging optical system or imaging optical device for a digital device for example, a digital camera
  • the high-performance image input function can be added to the digital device at low cost and in a compact manner.
  • an infrared cut coat By forming an infrared cut coat on the lens, it is possible to omit the infrared cut filter (less filter), and thus a further reduction in height can be realized. Further, when an inexpensive infrared cut filter is used, the cost can be reduced.
  • the lens including the infrared absorbing material has the following optical path for 20% image height, 40% image height, 60% image height, and 80% image height. It is preferable that the conditional expression (2B) is satisfied and the infrared cut coat satisfies the following conditional expression (3B).
  • the lens including the infrared absorbing material has a small thickness difference between the central portion and the peripheral portion.
  • the third lens from the object side contains an infrared absorbing material.
  • FIG. 1 is a block diagram illustrating a schematic configuration example of the digital device DU.
  • the digital device DU has an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a control unit 35, and a storage unit 36 for the imaging function.
  • an interface unit (I / F unit) 37 for the imaging function.
  • Examples of the digital device DU include a digital still camera, a video camera, a monitoring camera (monitor camera), a portable terminal such as a mobile phone or a personal digital assistant (PDA), a personal computer, and a mobile computer, and these peripheral devices (for example, , Mouse, scanner, printer, etc.).
  • the imaging optical system OP of the present embodiment is sufficiently compact and low-profile when mounted on a mobile terminal such as a mobile phone or a personal digital assistant (PDA), and is suitably mounted on this mobile terminal.
  • the imaging unit 30 is an example of an imaging optical device LU that optically captures an image of a subject and outputs it as an electrical signal, and is a main component of a camera used for still image shooting and moving image shooting of the subject.
  • the imaging optical device LU for example, in order from the object (that is, the subject) side, an imaging optical system OP (FIG. 3) that forms an optical image of the object, and an optical signal formed by the imaging optical system OP.
  • an imaging element SR for converting to a lens
  • a lens driving device (not shown) for performing focusing by driving a focus lens included in the imaging optical system OP in the optical axis direction, and the like.
  • FIG. 3 shows an example of the imaging optical system OP in terms of lens configuration (lens cross-sectional shape, lens arrangement, etc.), optical path, and the like.
  • the imaging optical system OP includes a lens group LN (ST: aperture, AX: optical axis) composed of a plurality of lenses (first to fifth lenses L1 to L5) in order from the object side, and necessary.
  • IR cut filter FL arranged according to the above.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used.
  • the imaging optical system OP is provided by the imaging optical system OP because the optical image IM of the subject is formed on the light receiving surface (that is, the imaging surface) SS that is a photoelectric conversion unit of the imaging element SR.
  • the optical image IM is converted into an electrical signal by the imaging element SR.
  • the imaging element SR converts the optical image of the subject imaged by the imaging optical system OP into electrical signals (image signals) of R, G, and B color components, and each of the R, G, and B colors. It outputs to the image generation part 31 as an image signal.
  • the image pickup operation such as image pickup of either a still image or a moving image or reading of output signals of each pixel (horizontal synchronization, vertical synchronization, transfer) in the image pickup device SR is controlled by the control unit 35.
  • the imaging element SR may be a so-called back-illuminated solid-state imaging element.
  • This back-illuminated solid-state imaging device is an element in which a light receiving portion (a portion where photoelectric conversion such as a PN junction is performed) is arranged on the imaging lens side with respect to the wiring layer, and therefore substantially reaches the light receiving portion. Therefore, the effect of improving the low-luminance sensitivity and the effect of suppressing the peripheral light amount drop due to the oblique incidence are extremely large.
  • the image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor SR, and determines an appropriate black level, ⁇ correction, and white balance adjustment (WB adjustment) for the entire image.
  • Image data is generated from the image signal by performing known image processing such as contour correction and color unevenness correction.
  • the image data generated by the image generation unit 31 is output to the image data buffer 32.
  • the image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing later-described processing on the image data by the image processing unit 33.
  • the image data buffer 32 is a volatile storage element. It is composed of some RAM (Random Access Memory).
  • the image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32.
  • the image processing unit 33 could not be corrected by the imaging optical system OP, such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the imaging element SR. It may be configured to correct aberrations.
  • the distortion correction an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion.
  • the image processing unit 33 may include a known peripheral illuminance decrease correction process for correcting a peripheral illuminance decrease correction in an optical image of a subject formed on the light receiving surface of the image sensor SR as necessary.
  • the peripheral illuminance drop correction (shading correction) is executed by storing correction data for performing the peripheral illuminance drop correction in advance and multiplying the image (pixel) after photographing by the correction data. Since the decrease in ambient illuminance mainly occurs due to the incident angle dependency of the sensitivity in the image sensor SR, the vignetting of the lens, the cosine fourth law, and the like, the correction data has a predetermined value that corrects the decrease in illuminance caused by these factors.
  • the driving unit 34 operates a lens driving device (not shown) based on a control signal output from the control unit 35 to thereby select a lens for focusing in the imaging optical system OP so as to perform desired focusing. To drive.
  • the control unit 35 includes, for example, a microprocessor and its peripheral circuits, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit.
  • the operation of each part 37 is controlled according to its function.
  • the imaging optical device LU is controlled by the control unit 35 so as to perform at least one of the still image shooting and the moving image shooting of the subject.
  • the storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject.
  • a ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the storage unit 36 has a function as a still image memory and a moving image memory.
  • the I / F unit 37 is an interface that transmits / receives image data to / from an external device.
  • the following describes the imaging operation of the digital device DU having such a configuration.
  • the control unit 35 controls the imaging unit 30 (imaging optical device LU) to shoot a still image, and the lens driving device of the imaging unit 30 via the driving unit 34. Focusing is performed by operating (not shown) and moving all balls. As a result, the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor SR, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. .
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). The photographer can adjust the main subject so as to be within a desired position on the screen by referring to the display.
  • a so-called shutter button (not shown) is pressed in this state, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
  • the control unit 35 controls the imaging unit 30 to perform moving image shooting. After that, as in the case of still image shooting, the photographer refers to the display (not shown) so that the image of the subject obtained through the imaging unit 30 is in a desired position on the screen. Can be adjusted. When a shutter button (not shown) is pressed, moving image shooting is started. At the time of moving image shooting, the control unit 35 controls the imaging unit 30 to shoot a moving image and operates the lens driving device (not shown) of the imaging unit 30 via the driving unit 34 to perform focusing. I do.
  • a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor SR, converted into image signals of R, G, and B color components, and then output to the image generator 31.
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button (not shown) is pressed again, the moving image shooting is completed.
  • the captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
  • Such a digital device DU or imaging optical device LU uses an imaging optical system OP that can easily impart a function of absorbing infrared rays to the lens, and therefore can eliminate an infrared cut filter. Therefore, the height can be further reduced. That is, a thin digital device DU and an imaging optical device LU are provided. For this reason, it is suitable for mobile phones that are becoming thinner, particularly so-called smartphones. As an example, a case where the imaging optical device LU is mounted on a mobile phone will be described below.
  • FIG. 2 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device.
  • FIG. 2A shows an operation surface of the mobile phone
  • FIG. 2B shows a back surface of the operation surface, that is, a back surface.
  • the mobile phone 5 has a display unit 51 for displaying predetermined information, an input operation unit 52 for receiving an input of a predetermined instruction, and a telephone function by performing communication using a mobile phone network.
  • a communication unit (not shown) to be realized, each unit 30 to 37 shown in FIG. 1, and a thin plate-like casing HS for storing these units are provided.
  • a rectangular display surface of the display unit 51 faces one main surface (front surface) of the housing HS, and an input operation unit 52 is disposed on one end side (lower side) of the display surface.
  • the display surface of the display unit 51 is provided with a touch panel that accepts input by touching the display surface with a fingertip or a pen, and an instruction input that cannot be input by the input operation unit 52 is displayed on the touch panel and the display unit 51. It is realized by combining it with information.
  • the display unit 51 displays an image shooting mode start button, an image shooting button for switching between still image shooting and moving image shooting, a shutter button, and the like, and touches the display surface of the displayed button position.
  • the instruction indicated by the button is input to the mobile phone 5.
  • the touch panel may be of a known type such as a so-called capacitance type.
  • the imaging unit 30 (imaging optical device LU) faces the other main surface (back surface) of the housing HS.
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 activates the image capturing function.
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 activates and executes the still image shooting mode and starts and executes the moving image shooting mode.
  • the operation according to the operation content is executed.
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs an operation corresponding to the operation content, such as still image shooting or moving image shooting. .
  • Examples 1 to 12 EX1 to 12
  • Comparative Examples 1 to 4 CX1 to 4
  • the examples (EX1 to 12, CX1 to 4) of the imaging optical system OP mentioned here are numerical examples in which the addition amount of the infrared absorbing material is changed in the imaging optical system OP shown in FIG.
  • the surface number # In the construction data of the numerical examples (EX1 to 12, CX1 to 4) of the imaging optical system OP, the surface number #, the radius of curvature r (mm), the axial upper surface distance d (mm), in order from the left column, as surface data.
  • the refractive index nd for the d line (wavelength 587.56 nm), and the Abbe number vd for the d line are shown.
  • the surface with * in the surface number # is an aspheric surface, and the surface shape is defined by the following equation (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin.
  • AS a local orthogonal coordinate system
  • the focal length (Fl, mm) of the entire system F number (Fno.), Half angle of view ( ⁇ , °), image height (y′max, mm), total lens length (TL, mm), and Indicates the back focus (BF, mm). Furthermore, the focal length (mm) of each lens is shown as single lens data.
  • the construction data of the infrared cut coat corresponding to each numerical example (EX1 to 12, CX1 to 4) is shown.
  • Examples 1 to 5; Examples 7 to 11; 3 of the coat corresponding to Comparative Examples 1 and 2, the coat corresponding to Example 6 and Example 12, and the coat corresponding to Comparative Example 3 and Comparative Example 4 Indicates the type of coat.
  • the infrared cut coat is divided into two (A surface, B surface), but may be one coat or may be divided into three or more.
  • the imaging optical system OP (FIG. 3) includes a lens group LN and an IR cut filter FL in order from the object side.
  • the lens group LN includes an aperture ST, a positive first lens L1, a negative second lens L2, a positive third lens L3, a positive fourth lens L4, and a negative fifth lens in order from the object side. All the lenses are made of a plastic material, and all the lens surfaces are aspherical.
  • the first lens L1 is a positive meniscus lens convex on the object side
  • the second lens L2 is a negative meniscus lens concave on the image side
  • the third lens L3 is The fourth lens L4 is a positive meniscus lens convex on the image side
  • the fifth lens L5 is a biconcave negative lens.
  • Table 1 shows the image heights F1 to F6 (optical axis center, 20% image height, 40% image height, 60% image height, 80% image height, 100% image height) of the imaging optical system OP (FIG. 3).
  • the optical path lengths (physical) in the first to fifth lenses L1 to L5 are shown.
  • Table 2 shows the amount of the infrared absorbing material added in Examples 1 to 12 (EX1 to 12) and Comparative Examples 1 to 4 (CX1 to 4).
  • BASF Lumogen IR765 absorbing material A
  • Exciton ABS670T absorbing material B
  • Table 3 shows numerical values and image confirmation results of Examples 1 to 6 and Comparative Examples 1 to 3 when the absorbent material A is used, and Table 4 shows Examples 7 to 12 when the absorbent material B is used. And each numerical value and image confirmation result of the comparative example 4 are shown.
  • good
  • acceptable range
  • x shading occurs.
  • the graphs of FIGS. 5 to 20 show the spectral characteristics (total characteristics) including the wavelength region of 600 to 700 nm of Examples 1 to 12 (EX1 to 12) and Comparative Examples 1 to 4 (CX1 to 4).
  • FIG. 4 shows the spectral characteristics (absorption coefficient) of the infrared absorbing material added to the lens.
  • Absorbent A Liogen IR765 manufactured by BASF
  • M_600 nm 0.270% and M_700 nm could not be set because the absorption coefficient at 700 nm was almost zero.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with 40% image height is 0.995
  • F4 and F1 with 60% image height is 0.996
  • the ⁇ Dn ⁇ Mn ratio is 0.996
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.998, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a good result.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 1.004
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 1.012
  • F4 and F1 at 60% image height are The ⁇ Dn ⁇ Mn ratio is 1.017
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.004, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a good result.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 1.005
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 1.020
  • F4 and F1 at 60% image height
  • the ⁇ Dn ⁇ Mn ratio is 1.042, and the ⁇ Dn ⁇ Mn ratio of F5 and F1 with 80% image height is 1.069, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image confirmation result is a good result.
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 1.087
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 1.298
  • F4 and F1 at 60% image height are The ⁇ Dn ⁇ Mn ratio is 1.535
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.670
  • conditional expression (2A) is not satisfied at 80% image height.
  • T2_50% ⁇ of IR cut filter wavelength that becomes 50% with 30 ° incident light
  • T1_50% ⁇ wavelength that makes the total internal transmittance 50%
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with a 20% image height is 1.044
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with a 40% image height is 1.148, and between the F4 and F1 with a 60% image height.
  • the ⁇ Dn ⁇ Mn ratio is 1.264, and the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.321, which all satisfy the conditional expression (2A), but the conditional expression (2B) is not satisfied.
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image confirmation result is a result of occurrence of acceptable shading because the conditional expression (2B) is not satisfied.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with 20% image height is 0.935
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with 40% image height is 0.799, and between F4 and F1 with 60% image height.
  • the ⁇ Dn ⁇ Mn ratio is 0.667, and the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.587, and conditional expression (2A) is not satisfied at 80% image height.
  • T2_50% ⁇ of IR cut filter wavelength that becomes 50% with 30 ° incident light
  • T1_50% ⁇ wavelength that makes the total internal transmittance 50%
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with a 20% image height is 0.951
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with a 40% image height is 0.850
  • F4 and F1 with a 60% image height is 0.850.
  • the ⁇ Dn ⁇ Mn ratio is 0.751, and the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.687, which satisfies the conditional expression (2A), but does not satisfy the conditional expression (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image confirmation result is a result of occurrence of acceptable shading because the conditional expression (2B) is not satisfied.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with 40% image height is 0.995
  • F4 and F1 with 60% image height is 0.996
  • the ⁇ Dn ⁇ Mn ratio is 0.996
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.998, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of IR cut filter (wavelength at 50% with 30 ° incident light) is 8 nm shorter than T1_50% ⁇ of lens (wavelength at which total internal transmittance is 50%)
  • conditional expression (3A) is satisfied.
  • the conditional expression (3B) is not satisfied.
  • Table 3 since the conditional expression (3B) is not satisfied as shown in Table 3, the result is that the shading occurs to an acceptable level.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with 40% image height is 0.995
  • F4 and F1 with 60% image height is 0.996
  • the ⁇ Dn ⁇ Mn ratio is 0.996
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.998, and all satisfy the conditional expression (2A).
  • T2_50% ⁇ of IR cut filter (wavelength at 50% with 30 ° incident light) is 12 nm shorter than T1_50% ⁇ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. do not do.
  • the image confirmation result is a result of large shading.
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 0.998
  • F4 and F1 at 60% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio is 1.000
  • the ⁇ Dn ⁇ Mn ratio of F5 and F1 with 80% image height is 1.005, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%)
  • conditional expressions (3A), ( 3B) is satisfied.
  • the image confirmation result is a good result.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 1.004
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 1.012
  • F4 and F1 at 60% image height are The ⁇ Dn ⁇ Mn ratio is 1.017
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.004, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image confirmation result is a good result.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.029, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 1.005
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 1.020
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.029, which satisfies the
  • the ⁇ Dn ⁇ Mn ratio is 1.042, and the ⁇ Dn ⁇ Mn ratio of F5 and F1 with 80% image height is 1.069, which all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image confirmation result is a good result.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with a 20% image height is 1.200
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with a 40% image height is 1.683
  • the F4 and F1 with 60% image height are F4 and F1.
  • the ⁇ Dn ⁇ Mn ratio is 2.236, and the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 2.570, which all satisfy the conditional expression (2A), but does not satisfy the conditional expression (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image check result does not satisfy the conditional expression (2B), and is an acceptable shading.
  • ⁇ DCn ⁇ Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1).
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 with 20% image height is 0.925
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 with 40% image height is 0.767
  • the F4 and F1 with 60% image height are F4 and F1.
  • the ⁇ Dn ⁇ Mn ratio is 0.615, and the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 0.526, which all satisfy the conditional expression (2A), but does not satisfy the conditional expression (2B).
  • T2_50% ⁇ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% ⁇ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied.
  • the image check result does not satisfy the conditional expression (2B), and is an acceptable shading.
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 0.998
  • F4 and F1 at 60% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio is 1.000
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.005
  • T2_50% ⁇ of IR cut filter (wavelength at 50% with 30 ° incident light) is 8 nm shorter than T1_50% ⁇ of lens (wavelength at which total internal transmittance is 50%)
  • conditional expression (3A) is satisfied.
  • the conditional expression (3B) is not satisfied.
  • Table 4 since the image confirmation result does not satisfy the conditional expression (3B), the result is that shading has occurred although it is acceptable.
  • the ⁇ Dn ⁇ Mn ratio between F2 and F1 at 20% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio between F3 and F1 at 40% image height is 0.998
  • F4 and F1 at 60% image height is 0.998
  • the ⁇ Dn ⁇ Mn ratio is 1.000
  • the ⁇ Dn ⁇ Mn ratio between F5 and F1 with 80% image height is 1.005, and all satisfy the conditional expressions (2A) and (2B).
  • T2_50% ⁇ of IR cut filter (wavelength at 50% with 30 ° incident light) is 12 nm shorter than T1_50% ⁇ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. do not do.
  • the image confirmation result is a result of large shading.
  • Construction data unit of the numerical example (EX1 to 12, CX1 to 4) of the imaging optical system OP mm Surface data # r d nd vd object infinity infinity 1 (Aperture) infinity 0.050 2 infinity -0.213 3 * 1.196 0.394 1.54470 56.15 4 * 28.057 0.070 5 * 7.081 0.150 1.63469 23.87 6 * 1.686 0.274 7 * 5.738 0.313 1.54470 56.15 8 * infinity 0.429 9 * -10.948 0.496 1.54470 56.15 10 * -0.775 0.195 11 * -1.939 0.270 1.54470 56.15 12 * 1.056 0.394 13 infinity 0.110 1.51633 64.14 14 infinity 0.320 image infinity
  • Example 6 and Example 12 Side A substrate Unit (nm) SIO2 61.67 TIO2 9.77 SIO2 39.26 TIO2 94.32 SIO2 151.54 TIO2 84.07 SIO2 141.32 TIO2 81.44 SIO2 140.52 TIO2 80.07 SIO2 139.33 TIO2 79.95 SIO2 138.74 TIO2 79.61 SIO2 138.62 TIO2 79.62 SIO2 138.36 TIO2 79.78 SIO2 138.41 TIO2 80.03 SIO2 138.48 TIO2 80.54 SIO2 139.01 TIO2 81.58 SIO2 139.29 TIO2 84.01 SIO2 148.09 TIO2 81.00 SIO2 71.81
  • Example 6 and Example 12 Side B substrate Unit (nm) TIO2 12.77 SIO2 32.85 TIO2 124.37 SIO2 30.05 TIO2 32.60 SIO2 25.14 TIO2 163.58 SIO2 12.24 TIO2 42.28 SIO2 49.39 TIO2 21.84 SIO2 52.48 TIO2 116.62 SIO2 183.67 TIO2 109.85 SIO2 184.16 TIO2 110.12 SIO2 183.96 TIO2 110.16 SIO2 183.76 TIO2 109.71 SIO2 182.91 TIO2 108.15 SIO2 179.77 TIO2 103.09 SIO2 167.58 TIO2 96.93 SIO2 169.13 TIO2 102.16 SIO2 173.28 TIO2 97.98 SIO2 158.51 TIO2 91.41 SIO2 157.00 TIO2 87.50 SIO2 74.62
  • DU Digital equipment LU Imaging optical device OP Imaging optical system LN Lens group L1 to L5 First to fifth lenses ST Aperture FL IR cut filter SR Imaging element SS Light receiving surface (imaging surface) IM image plane (optical image) AX Optical axis 5 Mobile phone 30 Imaging unit 31 Image generation unit 32 Image data buffer 33 Image processing unit 34 Drive unit 35 Control unit 36 Storage unit 37 I / F unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Filters (AREA)

Abstract

An imaging optical system has a lens group formed from a plurality of lenses and an IR cut-off filter. At least one lens of the plurality of lenses is an aspherical lens formed from a resin material that includes infrared absorbing material that absorbs infrared rays. The entire lens that includes the infrared absorbing material satisfies: prescribed conditions for the relationship between thickness (physical optical path length) at the light ray center of the nth lens and the weight percent concentration per unit length of absorbing material included in the nth lens; prescribed conditions for the thickness (physical optical path length) of the nth lens in the light path for 0.2 image height, 0.4 image height, 0.6 image height, and 0.8 image height; and prescribed conditions for an infrared cut-off coating at the transmittivity for an angle of incidence of 30°.

Description

撮像光学系,撮像光学装置及びデジタル機器Imaging optical system, imaging optical device, and digital device
 本発明は、撮像光学系,撮像光学装置及びデジタル機器に関するものである。更に詳しくは、被写体の光学像を所定の面上に形成する撮像光学系と、その撮像光学系及び撮像素子(例えば、CCD(Charge Coupled Device)型イメージセンサ,CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子)で被写体の映像を取り込んで電気的な信号として出力する撮像光学装置と、その撮像光学装置を搭載したデジタルカメラ,スマートフォン(高機能携帯電話)等の画像入力機能付きデジタル機器と、に関するものである。 The present invention relates to an imaging optical system, an imaging optical device, and a digital device. More specifically, an imaging optical system that forms an optical image of a subject on a predetermined surface, an imaging optical system and an imaging device (for example, a CCD (Charge-Coupled Device) -type image sensor, a CMOS (Complementary Metal-Oxide-Semiconductor) type Image pickup optical device that captures the image of the subject with a solid-state image pickup device such as an image sensor and outputs it as an electrical signal, and an image input function such as a digital camera equipped with the image pickup optical device and a smartphone (high-performance mobile phone) And digital devices.
 携帯電話のカメラ等に内蔵されるCCD等の固体撮像素子は、映像(光)を電気信号に変換するシリコン半導体デバイスであり、近赤外線(IR)領域まで感度を持っている。このCCDに光が入射した場合、可視光以外に近赤外線も映像として取り込んでしまい、得られた映像に疑似色が発生する等の不具合が生じてしまう。そこで、従来の画像入力機能付きデジタル機器では、レンズ群とCCDとの間にIRカットフィルターを挿入することでこの不具合を解消している。 A solid-state image sensor such as a CCD built in a mobile phone camera or the like is a silicon semiconductor device that converts an image (light) into an electric signal, and has sensitivity to the near infrared (IR) region. When light is incident on the CCD, near-infrared light is captured as an image in addition to visible light, resulting in problems such as generation of pseudo colors in the obtained image. Therefore, in the conventional digital apparatus with an image input function, this problem is solved by inserting an IR cut filter between the lens group and the CCD.
 光学薄膜を用いたIRカットフィルターでは、光の干渉を利用しているため、光の入射角度変化に対して透過率特性が大きく変化してしまう。その結果、画面中心部と画面周辺部とでIRカット特性が異なるため、撮影画像の画面中心部が赤くなってしまう。携帯電話やスマートフォン等はますます薄型化が追求され、それにあわせて撮像レンズも低背化が要求されている。したがって、この画面中心部が赤くなってしまうという現象(色シェーディング)は大きな問題となっている。 Since the IR cut filter using an optical thin film uses light interference, the transmittance characteristic changes greatly with respect to the change in the incident angle of light. As a result, since the IR cut characteristics are different between the screen center and the screen periphery, the screen center of the captured image becomes red. Mobile phones and smartphones are increasingly being made thinner, and accordingly, imaging lenses are also required to have a low profile. Therefore, the phenomenon (color shading) that the center of the screen turns red is a big problem.
 上記問題を解決するため、視野角の広い撮像素子に対しても高性能を維持することを目的として、さまざまなタイプのIRカットフィルターが提案されている。例えば特許文献1では、赤外線吸収材料を樹脂に混ぜた基板に近赤外線反射膜を設けたIRカットフィルターが提案されている。 In order to solve the above problems, various types of IR cut filters have been proposed for the purpose of maintaining high performance even for an image sensor with a wide viewing angle. For example, Patent Document 1 proposes an IR cut filter in which a near-infrared reflective film is provided on a substrate in which an infrared absorbing material is mixed with a resin.
特開2011-100084号公報JP 2011-100084 A
 しかしながら、特許文献1に記載されているような赤外吸収型樹脂フィルターを用いた撮像光学系よりも、よりコストが低く、低背化の可能な赤外線吸収機能を有する撮像光学系が望まれる。 However, there is a demand for an imaging optical system having an infrared absorption function that is lower in cost and capable of being reduced in height than an imaging optical system using an infrared absorption resin filter as described in Patent Document 1.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、低背化による広い視野角にも対応可能な高性能の赤外線吸収機能を有する低コストの撮像光学系,それを備えた撮像光学装置及びデジタル機器を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a low-cost imaging optical system having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile, and It is an object to provide an imaging optical device and a digital device provided.
 上記目的を達成するために、第1の発明の撮像光学系は、複数のレンズと、多層膜と、を有する撮像光学系であって、
 前記複数のレンズのうちの少なくとも1枚のレンズが、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズであり、
 前記多層膜が、赤外線を反射する赤外カットコートであり、
 前記赤外線吸収材料を含んだレンズが、全体として以下の条件式(1)を満足し、かつ、2割像高、4割像高、6割像高、8割像高に対する光路において以下の条件式(2A)を満足し、
 前記赤外カットコートが以下の条件式(3A)を満足することを特徴とする。
M_700nm≦ΣDCn・Mn≦M_600nm …(1)
Y×ΣDCn・Mn≦ΣDn・Mn≦(1/Y)×ΣDCn・Mn …(2A)
T1_50%λ-10≦T2_50%λ …(3A)
 ただし、赤外線吸収材料を含んだレンズの枚数はk枚であり、Σはnについて物体側から1枚目からk枚目までの総和を表すものとし、
DCn:物体側からn枚目のレンズの光線中心の厚み(物理的光路長,mm)、
Mn:物体側からn枚目のレンズに含まれる赤外線吸収材料の重量パーセント濃度(%)、
M_600nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが600nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で600nmの吸収係数が0に近くM_600nmが計算できない場合にはM_600nmは無限大とする。)、
M_700nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが700nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で700nmの吸収係数が0に近くM_700nmが計算できない場合にはM_700nmは0とする。)、
T1_50%λ:赤外線を吸収するレンズの中心光線に対する合計内部透過率が600~700nmの範囲で50%となる波長(nm)、
Dn:物体側からn枚目のレンズの厚み(物理的光路長,mm)、
Y=2×√(λ_0.9Kpeak-λ_0.3Kpeak)
λ_0.9Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の90%の値となる波長(μm)、
λ_0.3Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の30%の値となる波長(μm)、
T2_50%λ:入射角度30°のときの赤外カットコートの透過率が600~700nmの範囲で50%となる波長(nm)、
である。
In order to achieve the above object, an imaging optical system according to a first invention is an imaging optical system having a plurality of lenses and a multilayer film,
At least one of the plurality of lenses is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays;
The multilayer film is an infrared cut coat that reflects infrared rays,
The lens including the infrared absorbing material as a whole satisfies the following conditional expression (1), and in the optical path for the 20% image height, 40% image height, 60% image height, and 80% image height, the following conditions are satisfied. Satisfying the formula (2A),
The infrared cut coat satisfies the following conditional expression (3A).
M_700 nm ≦ ΣDCn · Mn ≦ M_600 nm (1)
Y × ΣDCn · Mn ≦ ΣDn · Mn ≦ (1 / Y) × ΣDCn · Mn (2A)
T1_50% λ−10 ≦ T2_50% λ (3A)
However, the number of lenses including the infrared absorbing material is k, and Σ represents the total from the first to the kth from the object side for n,
DCn: thickness of the light beam center of the nth lens from the object side (physical optical path length, mm),
Mn: weight percent concentration (%) of the infrared absorbing material contained in the nth lens from the object side,
M_600 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 600 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 600 nm). When M_600 nm cannot be calculated close to 0, M_600 nm is infinite.)
M_700 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 700 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 700 nm). When M_700 nm cannot be calculated close to 0, M_700 nm is set to 0).
T1 — 50% λ: wavelength (nm) at which the total internal transmittance with respect to the central ray of the lens that absorbs infrared rays is 50% in the range of 600 to 700 nm,
Dn: the thickness of the nth lens from the object side (physical optical path length, mm),
Y = 2 × √ (λ_0.9Kpeak−λ_0.3Kpeak)
λ_0.9 Kpeak: The wavelength (μm) of the absorption peak of the absorption coefficient of the infrared absorbing material to be added is a wavelength smaller than the wavelength at the absorption peak and 90% of the absorption peak value,
λ_0.3 Kpeak: About the absorption peak of the absorption coefficient of the infrared absorbing material to be added, the wavelength (μm) which is smaller than the wavelength at the absorption peak and is 30% of the absorption peak value,
T2 — 50% λ: wavelength (nm) at which the transmittance of the infrared cut coat when the incident angle is 30 ° is 50% in the range of 600 to 700 nm,
It is.
 第2の発明の撮像光学装置は、上記第1の発明に係る撮像光学系と、受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の受光面上に被写体の光学像が形成されるように前記撮像光学系が設けられていることを特徴とする。 An imaging optical device according to a second aspect of the present invention includes the imaging optical system according to the first aspect of the present invention, and an imaging element that converts an optical image formed on the light receiving surface into an electrical signal. The imaging optical system is provided so that an optical image of a subject is formed on a light receiving surface.
 第3の発明のデジタル機器は、上記第2の発明に係る撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とする。 The digital device of the third invention is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by including the imaging optical device according to the second invention.
 本発明によれば、赤外線吸収材料を含んだ樹脂材料製の非球面レンズと、赤外線を反射する赤外カットコートと、を所定の条件で有することにより、色シェーディングを抑える構成になっているため、低背化による広い視野角にも対応可能な高性能の赤外線吸収機能を有する低コストの撮像光学系び撮像光学装置を実現することができる。その高性能の撮像光学系又は撮像光学装置をデジタル機器(例えばデジタルカメラ)に用いることによって、デジタル機器に対して上記高性能の画像入力機能を低コストかつコンパクトに付加することが可能となる。また、フィルターレスにすることも可能であるため、更なる低背化にも対応可能である。 According to the present invention, it is configured to suppress color shading by having an aspheric lens made of a resin material containing an infrared absorbing material and an infrared cut coat that reflects infrared rays under predetermined conditions. Therefore, it is possible to realize a low-cost imaging optical system and imaging optical apparatus having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile. By using the high-performance imaging optical system or imaging optical device for a digital device (for example, a digital camera), the high-performance image input function can be added to the digital device at low cost and in a compact manner. In addition, since it is possible to make it filterless, it is possible to cope with further reduction in height.
画像入力機能付きデジタル機器の概略構成例を示すブロック図。The block diagram which shows the schematic structural example of the digital apparatus with an image input function. 画像入力機能付きデジタル機器の一実施の形態を示す外観図。1 is an external view illustrating an embodiment of a digital device with an image input function. 赤外線吸収材料の添加を行った撮像光学系の実施例1~12及び比較例1~4を断面的に示す光学構成図。FIG. 5 is an optical configuration diagram showing, in section, Examples 1 to 12 and Comparative Examples 1 to 4 of an imaging optical system to which an infrared absorbing material is added. レンズに添加する赤外線吸収材料例の分光特性を示すグラフ。The graph which shows the spectral characteristic of the example of the infrared rays absorption material added to a lens. 実施例1の撮像光学系全系における分光透過率を示すグラフ。6 is a graph showing spectral transmittance in the entire imaging optical system of Example 1. 実施例2の撮像光学系全系における分光透過率を示すグラフ。9 is a graph showing spectral transmittance in the entire imaging optical system of Example 2. 実施例3の撮像光学系全系における分光透過率を示すグラフ。7 is a graph showing spectral transmittance in the entire imaging optical system of Example 3. 比較例1の撮像光学系全系における分光透過率を示すグラフ。6 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 1. 実施例4の撮像光学系全系における分光透過率を示すグラフ。6 is a graph showing spectral transmittance in the entire imaging optical system of Example 4. 比較例2の撮像光学系全系における分光透過率を示すグラフ。7 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 2. 実施例5の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing spectral transmittance in the entire imaging optical system of Example 5. 実施例6の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 6. 比較例3の撮像光学系全系における分光透過率を示すグラフ。14 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 3. 実施例7の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 7. 実施例8の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing spectral transmittance in the entire imaging optical system of Example 8. 実施例9の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing spectral transmittance in the entire imaging optical system of Example 9. 実施例10の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing spectral transmittance in the entire imaging optical system of Example 10. 実施例11の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing the spectral transmittance in the entire imaging optical system of Example 11. 実施例12の撮像光学系全系における分光透過率を示すグラフ。22 is a graph showing the spectral transmittance in the entire imaging optical system of Example 12. 比較例4の撮像光学系全系における分光透過率を示すグラフ。10 is a graph showing spectral transmittance in the entire imaging optical system of Comparative Example 4.
 本発明は、前述の技術的課題を解決するために、以下に説明するような構成を有する撮像光学系,撮像光学装置及びデジタル機器等を提供するものである。なお、以下の説明において使用されている用語は、この明細書において、次の通りに定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線,F線(波長486.13nm),C線(波長656.28nm)に対する屈折率を各々nd,nF,nCとし、アッベ数をνdとした場合に、
νd=(nd-1)/(nF-nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)レンズについて、「凹」,「凸」又は「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
The present invention provides an imaging optical system, an imaging optical apparatus, a digital device, and the like having the configuration described below in order to solve the above-described technical problems. In addition, the term used in the following description shall be defined in this specification as follows.
(A) A refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line | wire.
(B) Abbe number is determined when the refractive indexes for d-line, F-line (wavelength 486.13 nm), C-line (wavelength 656.28 nm) are nd, nF, and nC, respectively, and Abbe number is νd.
νd = (nd−1) / (nF−nC)
The Abbe number νd obtained by the definition formula
(C) When the notation “concave”, “convex” or “meniscus” is used for the lens, these represent the lens shape near the optical axis (near the center of the lens).
 本発明の一態様に係る撮像光学系は、物体側から像側へ順に配置される複数のレンズを備え、前記複数のレンズのうちの少なくとも1枚のレンズは、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズであること、また、前記複数のレンズのうちの少なくとも1枚、又はレンズとセンサーとの間にあるフィルターに、赤外カットコートが施されていることを特徴としている。更に具体的には、複数のレンズと、少なくとも1枚の多層膜と、を有する撮像光学系であって、前記複数のレンズのうちの少なくとも1枚のレンズが、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズであり、前記多層膜が、赤外線を反射する赤外カットコート(いずれかのレンズに成膜された多層膜、又はレンズとは別に設けられた基板に成膜された多層膜からなっている。)である。 An imaging optical system according to an aspect of the present invention includes a plurality of lenses arranged in order from the object side to the image side, and at least one of the plurality of lenses includes an infrared absorbing material that absorbs infrared rays. It is an aspheric lens made of a resin material, and an infrared cut coat is applied to at least one of the plurality of lenses or a filter between the lens and the sensor. It is said. More specifically, an imaging optical system having a plurality of lenses and at least one multilayer film, wherein at least one of the plurality of lenses is made of an infrared absorbing material that absorbs infrared rays. An aspherical lens made of a resin material, and the multilayer film is an infrared cut coat that reflects infrared rays (a multilayer film formed on any lens, or a substrate provided separately from the lens) It is made of a multilayered film).
 そして、赤外線吸収材料を含んだレンズと、赤外カットコートとが、所定の条件を満たした構成になっている。つまり、前記赤外線吸収材料を含んだレンズが、全体として以下の条件式(1)を満足し、かつ、2割像高、4割像高、6割像高、8割像高に対する光路において以下の条件式(2A)を満足し、前記赤外カットコートが以下の条件式(3A)を満足する構成になっている。
M_700nm≦ΣDCn・Mn≦M_600nm …(1)
Y×ΣDCn・Mn≦ΣDn・Mn≦(1/Y)×ΣDCn・Mn …(2A)
T1_50%λ-10≦T2_50%λ …(3A)
 ただし、赤外線吸収材料を含んだレンズの枚数はk枚であり、Σはnについて物体側から1枚目からk枚目までの総和を表すものとし、
DCn:物体側からn枚目のレンズの光線中心の厚み(物理的光路長,mm)、
Mn:物体側からn枚目のレンズに含まれる赤外線吸収材料の重量パーセント濃度(%)、
M_600nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが600nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で600nmの吸収係数が0に近くM_600nmが計算できない場合にはM_600nmは無限大とする。)、
M_700nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが700nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で700nmの吸収係数が0に近くM_700nmが計算できない場合にはM_700nmは0とする。)、
T1_50%λ:赤外線を吸収するレンズの中心光線に対する合計内部透過率が600~700nmの範囲で50%となる波長(nm)、
Dn:物体側からn枚目のレンズの厚み(物理的光路長,mm)、
Y=2×√(λ_0.9Kpeak-λ_0.3Kpeak)
λ_0.9Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の90%の値となる波長(μm)、
λ_0.3Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の30%の値となる波長(μm)、
T2_50%λ:入射角度30°のときの赤外カットコートの透過率が600~700nmの範囲で50%となる波長(nm)、
である。
The lens including the infrared absorbing material and the infrared cut coat satisfy the predetermined condition. In other words, the lens including the infrared absorbing material as a whole satisfies the following conditional expression (1), and in the optical path for 20% image height, 40% image height, 60% image height, and 80% image height: Conditional expression (2A) is satisfied, and the infrared cut coat is configured to satisfy the following conditional expression (3A).
M_700 nm ≦ ΣDCn · Mn ≦ M_600 nm (1)
Y × ΣDCn · Mn ≦ ΣDn · Mn ≦ (1 / Y) × ΣDCn · Mn (2A)
T1_50% λ−10 ≦ T2_50% λ (3A)
However, the number of lenses including the infrared absorbing material is k, and Σ represents the total from the first to the kth from the object side for n,
DCn: thickness of the light beam center of the nth lens from the object side (physical optical path length, mm),
Mn: weight percent concentration (%) of the infrared absorbing material contained in the nth lens from the object side,
M_600 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 600 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 600 nm). When M_600 nm cannot be calculated close to 0, M_600 nm is infinite.)
M_700 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 700 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 700 nm). When M_700 nm cannot be calculated close to 0, M_700 nm is set to 0).
T1 — 50% λ: wavelength (nm) at which the total internal transmittance with respect to the central ray of the lens that absorbs infrared rays is 50% in the range of 600 to 700 nm,
Dn: the thickness of the nth lens from the object side (physical optical path length, mm),
Y = 2 × √ (λ_0.9Kpeak−λ_0.3Kpeak)
λ_0.9 Kpeak: The wavelength (μm) of the absorption peak of the absorption coefficient of the infrared absorbing material to be added is a wavelength smaller than the wavelength at the absorption peak and 90% of the absorption peak value,
λ_0.3 Kpeak: About the absorption peak of the absorption coefficient of the infrared absorbing material to be added, the wavelength (μm) which is smaller than the wavelength at the absorption peak and is 30% of the absorption peak value,
T2 — 50% λ: wavelength (nm) at which the transmittance of the infrared cut coat when the incident angle is 30 ° is 50% in the range of 600 to 700 nm,
It is.
 低背の撮像光学系では、撮像素子の像面周縁における光線入射角(CRA:Chief Ray Angle)が通常30度程度となる。このため、透過する赤外線量に入射角依存性を持つ反射型の赤外線カットフィルターが撮像光学装置に用いられる場合には、像面周縁において、可視光をカットすることになる、あるいは像面中心部において赤外線カットが不十分となり、いわゆる色ムラが画像に生じてしまう。本発明に係る撮像光学系では、これの主な対策として、赤外線吸収材料の添加されたレンズを用いている。赤外線吸収量は赤外線吸収材料の添加されたレンズの総光路長に比例するが、条件式(1)を満たすことにより、レンズ中心光線に対して、波長600nmを下回る可視光を透過させ、波長700nmを上回る赤外光をカットすることができる。 In a low-profile imaging optical system, the ray incident angle (CRA: Chief Ray Angle) at the periphery of the image plane of the imaging element is usually about 30 degrees. For this reason, when a reflection type infrared cut filter having an incident angle dependency on the amount of transmitted infrared rays is used in an imaging optical device, visible light is cut at the periphery of the image plane, or at the center of the image plane In this case, the infrared cut is insufficient, and so-called color unevenness occurs in the image. The imaging optical system according to the present invention uses a lens to which an infrared absorbing material is added as a main countermeasure. The amount of infrared absorption is proportional to the total optical path length of the lens to which the infrared absorbing material is added, but by satisfying conditional expression (1), visible light having a wavelength of less than 600 nm is transmitted to the lens center ray, and the wavelength is 700 nm. It is possible to cut infrared light exceeding.
 条件式(2A)は、周辺光線の透過率の光線中心透過率からのズレの許容される範囲を表しており、赤外線吸収材料の分光特性が急峻なほど、周辺光線に対する赤外線吸収剤の濃度と光路長との積の和は許容される範囲が大きくなることを示している。これは、急峻であればあるほど赤外線吸収剤の濃度がバラついても分光特性の波長バラツキが小さくなることを意味する。また、急峻であることは不吸収帯と吸収帯との波長差が小さいことを表しており、条件式(2A)内で定義されているYが小さくなり、条件式(2A)は許容される範囲が大きくなる。 Conditional expression (2A) represents an allowable range of deviation of the transmittance of the peripheral light from the central transmittance of the light beam. The sharper the spectral characteristics of the infrared absorbing material, the more the concentration of the infrared absorber with respect to the peripheral light The sum of the product with the optical path length indicates that the allowable range increases. This means that the sharper the wavelength, the smaller the wavelength variation of the spectral characteristics even if the concentration of the infrared absorber varies. Further, the steepness indicates that the wavelength difference between the non-absorption band and the absorption band is small, and Y defined in the conditional expression (2A) becomes small, and the conditional expression (2A) is allowed. The range becomes larger.
 条件式(3A)は、レンズの総合吸収率と赤外カットコートの透過率との関係を示している。前述したとおり、コーティングは入射角度によって透過帯の波長域が変化する。30°入射時のコーティングのT2_50%λは、0°入射時のそれよりも小さい値となる。したがって、レンズに添加した赤外線吸収材料によるT1_50%λよりもコーティングによるT2_50%λが短波長であれば、色ムラに対する効果は薄れてしまうことになる。条件式(3A)はコーティングのT2_50%λが赤外線吸収材料によるT1_50%λよりも短くなりすぎないことを規定している。つまり、条件式(2A),(3A)を満たすことで、レンズの有効領域全域で光路長を略均一にすることができ、赤外カットコートの角度依存性により生じる反射性能の差をキャンセルでき、レンズの有効領域全域で略均一な赤外線吸収量(透過特性)が得られ、色ムラを低減した、あるいは色ムラの無い良好な画像が得られる。つまり、条件式(2A)の下限値を下回る場合や上限値を上回る場合では、レンズの有効領域内で光路長が不均一となって好ましくない。 Conditional expression (3A) shows the relationship between the total absorptance of the lens and the transmittance of the infrared cut coat. As described above, the wavelength range of the transmission band of the coating varies depending on the incident angle. The T2_50% λ of the coating at 30 ° incidence is smaller than that at 0 ° incidence. Therefore, if T2_50% λ by coating is shorter than T1_50% λ by infrared absorbing material added to the lens, the effect on color unevenness will be diminished. Conditional expression (3A) stipulates that T2_50% λ of the coating does not become too short than T1_50% λ of the infrared absorbing material. That is, by satisfying conditional expressions (2A) and (3A), the optical path length can be made substantially uniform over the entire effective area of the lens, and the difference in reflection performance caused by the angle dependency of the infrared cut coat can be canceled. A substantially uniform infrared absorption amount (transmission characteristic) can be obtained over the entire effective area of the lens, and a good image with reduced color unevenness or no color unevenness can be obtained. That is, when the lower limit value of conditional expression (2A) is exceeded or when the upper limit value is exceeded, the optical path length is not uniform within the effective region of the lens, which is not preferable.
 上記特徴的構成によると、赤外線吸収材料を含んだ樹脂材料製の非球面レンズと、赤外線を反射する赤外カットコートと、を所定の条件で有することにより、色シェーディングを抑える構成になっているため、低背化による広い視野角にも対応可能な高性能の赤外線吸収機能を有する低コストの撮像光学系び撮像光学装置を実現することができる。その高性能の撮像光学系又は撮像光学装置をデジタル機器(例えばデジタルカメラ)に用いることによって、デジタル機器に対して上記高性能の画像入力機能を低コストかつコンパクトに付加することが可能となる。赤外線カットコートをレンズに成膜することにより、赤外線カットフィルターを省略すること(フィルターレス化)が可能であるため、更なる低背化を実現することもできる。また、安価な赤外カットフィルターを使用した場合、コストダウンが可能となる。 According to the above characteristic configuration, it has a configuration that suppresses color shading by having an aspheric lens made of a resin material including an infrared absorbing material and an infrared cut coat that reflects infrared rays under predetermined conditions. Therefore, it is possible to realize a low-cost imaging optical system and imaging optical apparatus having a high-performance infrared absorption function that can cope with a wide viewing angle due to a low profile. By using the high-performance imaging optical system or imaging optical device for a digital device (for example, a digital camera), the high-performance image input function can be added to the digital device at low cost and in a compact manner. By forming an infrared cut coat on the lens, it is possible to omit the infrared cut filter (less filter), and thus a further reduction in height can be realized. Further, when an inexpensive infrared cut filter is used, the cost can be reduced.
 前記条件式(2A),(3A)と同様の観点から、前記赤外線吸収材料を含んだレンズが、2割像高、4割像高、6割像高、8割像高に対する光路において以下の条件式(2B)を満足し、前記赤外カットコートが以下の条件式(3B)を満足することが好ましい。
√Y×ΣDCn・Mn≦ΣDn・Mn≦(1/√Y)×ΣDCn・Mn …(2B)
T1_50%λ-7≦T2_50%λ …(3B)
From the same viewpoint as the conditional expressions (2A) and (3A), the lens including the infrared absorbing material has the following optical path for 20% image height, 40% image height, 60% image height, and 80% image height. It is preferable that the conditional expression (2B) is satisfied and the infrared cut coat satisfies the following conditional expression (3B).
√Y × ΣDCn · Mn ≦ ΣDn · Mn ≦ (1 / √Y) × ΣDCn · Mn (2B)
T1_50% λ-7 ≦ T2_50% λ (3B)
 赤外線吸収材料を含むレンズは、中心部と周辺部とで肉厚差が少ないことが好ましい。4から6枚で構成される携帯端末用レンズの場合には、物体側から3枚目のレンズに赤外線吸収材料を含むことが好ましい。 It is preferable that the lens including the infrared absorbing material has a small thickness difference between the central portion and the peripheral portion. In the case of a lens for a mobile terminal composed of 4 to 6 lenses, it is preferable that the third lens from the object side contains an infrared absorbing material.
 次に、上述の撮像光学系OPが組み込まれた画像入力機能付きデジタル機器DUを説明する。図1は、デジタル機器DUの概略構成例を示すブロック図である。デジタル機器DUは、例えば、図1に示すように、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36及びインタフェース部(I/F部)37を備える。デジタル機器DUとして、例えば、デジタルスチルカメラ、ビデオカメラ、監視カメラ(モニタカメラ)、携帯電話機や携帯情報端末(PDA)等の携帯端末、パーソナルコンピュータ及びモバイルコンピュータが挙げられ、これらの周辺機器(例えば、マウス、スキャナ及びプリンタ等)が含まれてもよい。特に、本実施形態の撮像光学系OPは、携帯電話機や携帯情報端末(PDA)等の携帯端末に搭載する上で充分にコンパクト化及び低背化されており、この携帯端末に好適に搭載される。 Next, a digital device DU with an image input function in which the above-described imaging optical system OP is incorporated will be described. FIG. 1 is a block diagram illustrating a schematic configuration example of the digital device DU. For example, as illustrated in FIG. 1, the digital device DU has an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a control unit 35, and a storage unit 36 for the imaging function. And an interface unit (I / F unit) 37. Examples of the digital device DU include a digital still camera, a video camera, a monitoring camera (monitor camera), a portable terminal such as a mobile phone or a personal digital assistant (PDA), a personal computer, and a mobile computer, and these peripheral devices (for example, , Mouse, scanner, printer, etc.). In particular, the imaging optical system OP of the present embodiment is sufficiently compact and low-profile when mounted on a mobile terminal such as a mobile phone or a personal digital assistant (PDA), and is suitably mounted on this mobile terminal. The
 撮像部30は、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像光学装置LUの一例であり、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素である。撮像光学装置LUは、例えば、物体(すなわち被写体)側から順に、物体の光学像を形成する撮像光学系OP(図3)と、その撮像光学系OPにより形成された光学像を電気的な信号に変換する撮像素子SRと、撮像光学系OPに含まれるフォーカスレンズを光軸方向に駆動してフォーカシングを行うためのレンズ駆動装置(不図示)等と、を備えることにより構成される。 The imaging unit 30 is an example of an imaging optical device LU that optically captures an image of a subject and outputs it as an electrical signal, and is a main component of a camera used for still image shooting and moving image shooting of the subject. The imaging optical device LU, for example, in order from the object (that is, the subject) side, an imaging optical system OP (FIG. 3) that forms an optical image of the object, and an optical signal formed by the imaging optical system OP. And an imaging element SR for converting to a lens, a lens driving device (not shown) for performing focusing by driving a focus lens included in the imaging optical system OP in the optical axis direction, and the like.
 図3に、撮像光学系OPの例を、レンズ構成(レンズ断面形状,レンズ配置等),光路等で示す。撮像光学系OPは、図3に示すように、物体側から順に、複数のレンズ(第1~第5レンズL1~L5)からなるレンズ群LN(ST:絞り,AX:光軸)と、必要に応じて配置されるIRカットフィルターFLと、で構成される。撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサー,CMOS型イメージセンサー等の固体撮像素子が用いられる。撮像光学系OPは、撮像素子SRの光電変換部である受光面(すなわち撮像面)SS上に被写体の光学像IMが形成されるように設けられているので、撮像光学系OPによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。 FIG. 3 shows an example of the imaging optical system OP in terms of lens configuration (lens cross-sectional shape, lens arrangement, etc.), optical path, and the like. As shown in FIG. 3, the imaging optical system OP includes a lens group LN (ST: aperture, AX: optical axis) composed of a plurality of lenses (first to fifth lenses L1 to L5) in order from the object side, and necessary. IR cut filter FL arranged according to the above. As the image sensor SR, for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. The imaging optical system OP is provided by the imaging optical system OP because the optical image IM of the subject is formed on the light receiving surface (that is, the imaging surface) SS that is a photoelectric conversion unit of the imaging element SR. The optical image IM is converted into an electrical signal by the imaging element SR.
 撮像素子SRは、上述したように、撮像光学系OPにより結像された被写体の光学像をR,G,Bの色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子SRは、制御部35によって静止画あるいは動画のいずれか一方の撮像、又は、撮像素子SRにおける各画素の出力信号の読出し(水平同期、垂直同期、転送)等の撮像動作が制御される。また、撮像素子SRは、いわゆる裏面照射型の固体撮像素子であってもよい。この裏面照射型の固体撮像素子は、受光部(PN接合等の光電変換を行う箇所)が配線層よりも撮像レンズ側に配置されている素子であり、このため、前記受光部に到達する実質的な光量が従来構成の固体撮像素子よりも増加するから、低輝度感度が向上する効果や斜め入射による周辺光量落ちを抑制する効果が極めて大きい。 As described above, the imaging element SR converts the optical image of the subject imaged by the imaging optical system OP into electrical signals (image signals) of R, G, and B color components, and each of the R, G, and B colors. It outputs to the image generation part 31 as an image signal. In the image pickup device SR, the image pickup operation such as image pickup of either a still image or a moving image or reading of output signals of each pixel (horizontal synchronization, vertical synchronization, transfer) in the image pickup device SR is controlled by the control unit 35. . Further, the imaging element SR may be a so-called back-illuminated solid-state imaging element. This back-illuminated solid-state imaging device is an element in which a light receiving portion (a portion where photoelectric conversion such as a PN junction is performed) is arranged on the imaging lens side with respect to the wiring layer, and therefore substantially reaches the light receiving portion. Therefore, the effect of improving the low-luminance sensitivity and the effect of suppressing the peripheral light amount drop due to the oblique incidence are extremely large.
 画像生成部31は、撮像素子SRからのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正及び色ムラ補正等の周知の画像処理を行って、画像信号から画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。 The image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor SR, and determines an appropriate black level, γ correction, and white balance adjustment (WB adjustment) for the entire image. Image data is generated from the image signal by performing known image processing such as contour correction and color unevenness correction. The image data generated by the image generation unit 31 is output to the image data buffer 32.
 画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリーであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)等で構成される。 The image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing later-described processing on the image data by the image processing unit 33. For example, the image data buffer 32 is a volatile storage element. It is composed of some RAM (Random Access Memory).
 画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。 The image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32.
 また、必要に応じて画像処理部33は、撮像素子SRの受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、撮像光学系OPでは補正しきれなかった収差を補正するように構成されてもよい。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。このように構成することによって、撮像光学系OPによって撮像素子SRへ導かれた被写体の光学像に歪みが生じていたとしても、略歪みのない自然な画像を生成することが可能となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、歪曲収差を除く他の諸収差だけを考慮すればよいので、撮像光学系OPの設計の自由度が増し、設計がより容易となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、像面に近いレンズによる収差負担が軽減されるため、射出瞳位置の制御が容易となり、レンズ形状を加工性の良い形状にすることができる。 Further, if necessary, the image processing unit 33 could not be corrected by the imaging optical system OP, such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the imaging element SR. It may be configured to correct aberrations. In the distortion correction, an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion. With this configuration, even if the optical image of the subject guided to the image sensor SR by the imaging optical system OP is distorted, it is possible to generate a natural image with substantially no distortion. Further, in the configuration in which such distortion is corrected by image processing based on information processing, in particular, only other aberrations other than distortion aberration need to be taken into consideration, so that the degree of freedom in designing the imaging optical system OP increases and the design is improved. It becomes easier. In addition, in the configuration in which such distortion is corrected by image processing based on information processing, the aberration burden due to the lens close to the image plane is reduced, so that the exit pupil position can be easily controlled, and the lens shape is easy to process. It can be shaped.
 また、必要に応じて画像処理部33は、撮像素子SRの受光面上に形成される被写体の光学像における周辺照度落ちを補正する公知の周辺照度落ち補正処理を含んでもよく、周辺照度落ち補正処理をさらに備えることによって、より良好な画像を得ることができる。周辺照度落ち補正(シェーディング補正)は、周辺照度落ち補正を行うための補正データを予め記憶しておき、撮影後の画像(画素)に対して補正データを乗算することによって実行される。周辺照度落ちが主に撮像素子SRにおける感度の入射角依存性、レンズの口径食及びコサイン4乗則等によって生じるため、前記補正データは、これら要因によって生じる照度落ちを補正するような所定値に設定される。このように構成することによって、撮像光学系OPによって撮像素子SRへ導かれた被写体の光学像に周辺照度落ちが生じていたとしても、周辺まで充分な照度を持った画像を生成することが可能となる。 In addition, the image processing unit 33 may include a known peripheral illuminance decrease correction process for correcting a peripheral illuminance decrease correction in an optical image of a subject formed on the light receiving surface of the image sensor SR as necessary. By further providing the processing, a better image can be obtained. The peripheral illuminance drop correction (shading correction) is executed by storing correction data for performing the peripheral illuminance drop correction in advance and multiplying the image (pixel) after photographing by the correction data. Since the decrease in ambient illuminance mainly occurs due to the incident angle dependency of the sensitivity in the image sensor SR, the vignetting of the lens, the cosine fourth law, and the like, the correction data has a predetermined value that corrects the decrease in illuminance caused by these factors. Is set. By configuring in this way, even if the peripheral illuminance drops in the optical image of the subject guided to the image sensor SR by the imaging optical system OP, it is possible to generate an image having sufficient illuminance to the periphery. It becomes.
 駆動部34は、制御部35から出力される制御信号に基づいて前記レンズ駆動装置(不図示)を動作させることにより、所望のフォーカシングを行わせるように撮像光学系OPにおけるフォーカスのためのレンズを駆動する。 The driving unit 34 operates a lens driving device (not shown) based on a control signal output from the control unit 35 to thereby select a lens for focusing in the imaging optical system OP so as to perform desired focusing. To drive.
 制御部35は、例えばマイクロプロセッサ及びその周辺回路等を備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36及びI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、撮像光学装置LUは、被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を実行するよう制御される。 The control unit 35 includes, for example, a microprocessor and its peripheral circuits, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit. The operation of each part 37 is controlled according to its function. In other words, the imaging optical device LU is controlled by the control unit 35 so as to perform at least one of the still image shooting and the moving image shooting of the subject.
 記憶部36は、被写体の静止画撮影又は動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、RAM等を備えて構成される。つまり、記憶部36は、静止画用及び動画用のメモリーとしての機能を有する。 The storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject. For example, a ROM (Read Only Memory) that is a nonvolatile storage element, a rewritable nonvolatile memory, or the like. It comprises an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a storage element, a RAM, and the like. That is, the storage unit 36 has a function as a still image memory and a moving image memory.
 I/F部37は、外部機器と画像データを送受信するインタフェースであり、例えば、USBやIEEE1394等の規格に準拠したインタフェースである。 The I / F unit 37 is an interface that transmits / receives image data to / from an external device.
 このような構成のデジタル機器DUの撮像動作に次について説明する。 The following describes the imaging operation of the digital device DU having such a configuration.
 静止画を撮影する場合は、制御部35は、撮像部30(撮像光学装置LU)に静止画の撮影を行わせるように制御すると共に、駆動部34を介して撮像部30の前記レンズ駆動装置(不図示)を動作させ、全玉を移動させることによってフォーカシングを行う。これにより、ピントの合った光学像が撮像素子SRの受光面に周期的に繰り返し結像され、R,G,Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、撮影者は、前記ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆるシャッターボタン(不図示)が押されることによって、静止画用のメモリーとしての記憶部36に画像データが格納され、静止画像が得られる。 When photographing a still image, the control unit 35 controls the imaging unit 30 (imaging optical device LU) to shoot a still image, and the lens driving device of the imaging unit 30 via the driving unit 34. Focusing is performed by operating (not shown) and moving all balls. As a result, the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor SR, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. . The image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). The photographer can adjust the main subject so as to be within a desired position on the screen by referring to the display. When a so-called shutter button (not shown) is pressed in this state, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
 また、動画撮影を行う場合は、制御部35は、撮像部30に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、前記ディスプレイ(不図示)を参照することで、撮像部30を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。前記シャッターボタン(不図示)が押されることによって、動画撮影が開始される。そして、動画撮影時、制御部35は、撮像部30に動画の撮影を行わせるように制御すると共に、駆動部34を介して撮像部30の前記レンズ駆動装置(不図示)を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子SRの受光面に周期的に繰り返し結像され、R,G,Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、もう一度前記シャッターボタン(不図示)を押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリーとしての記憶部36に導かれて格納される。 In addition, when performing moving image shooting, the control unit 35 controls the imaging unit 30 to perform moving image shooting. After that, as in the case of still image shooting, the photographer refers to the display (not shown) so that the image of the subject obtained through the imaging unit 30 is in a desired position on the screen. Can be adjusted. When a shutter button (not shown) is pressed, moving image shooting is started. At the time of moving image shooting, the control unit 35 controls the imaging unit 30 to shoot a moving image and operates the lens driving device (not shown) of the imaging unit 30 via the driving unit 34 to perform focusing. I do. As a result, a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor SR, converted into image signals of R, G, and B color components, and then output to the image generator 31. . The image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button (not shown) is pressed again, the moving image shooting is completed. The captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
 このようなデジタル機器DUや撮像光学装置LU(撮像部30)は、赤外線を吸収する機能をより容易にレンズに付与することができる撮像光学系OPを用いるので、赤外線カットフィルターを省くことができ、より低背化を図ることができる。すなわち、薄型のデジタル機器DUや撮像光学装置LUが提供される。このため、薄型化が進む携帯電話機、特に、いわゆるスマートフォンに好適である。その一例として、携帯電話機に撮像光学装置LUを搭載した場合について、以下に説明する。 Such a digital device DU or imaging optical device LU (imaging unit 30) uses an imaging optical system OP that can easily impart a function of absorbing infrared rays to the lens, and therefore can eliminate an infrared cut filter. Therefore, the height can be further reduced. That is, a thin digital device DU and an imaging optical device LU are provided. For this reason, it is suitable for mobile phones that are becoming thinner, particularly so-called smartphones. As an example, a case where the imaging optical device LU is mounted on a mobile phone will be described below.
 図2は、デジタル機器の一実施形態を示すカメラ付き携帯電話機の外観構成図である。図2(A)は、携帯電話機の操作面を示しており、図2(B)は、操作面の裏面、つまり背面を示している。 FIG. 2 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device. FIG. 2A shows an operation surface of the mobile phone, and FIG. 2B shows a back surface of the operation surface, that is, a back surface.
 携帯電話機5は、例えば図2に示すように、所定の情報を表示する表示部51と、所定の指示の入力を受け付ける入力操作部52と、携帯電話網を用いて通信を行って電話機能を実現する通信部(不図示)と、図1に示す各部30~37と、これらを収納する薄い板状の筐体HSとを備えている。筐体HSの一方の主面(表面)には、表示部51における長方形の表示面が臨み、表示面の一方の端側(下側)には、入力操作部52が配設されている。表示部51の表示面には、前記表示面に指先あるいはペンで触れることによって入力を受け付けるタッチパネルが備えられ、入力操作部52で入力することができない指示の入力が、タッチパネルと表示部51に表示される情報と合わせることによって実現されている。例えば、表示部51には、画像撮影モードの起動ボタン、静止画撮影と動画撮影との切り替えを行う画像撮影ボタン及びシャッタボタン等が表示され、表示されたボタンの位置の表示面を触れることで、当該ボタンが示す指示が携帯電話機5に入力される。なお、前記タッチパネルは、いわゆる静電容量方式等の公知の方式のものであってよい。そして、筐体HSの他方主面(裏面)には、撮像部30(撮像光学装置LU)が臨んでいる。 For example, as shown in FIG. 2, the mobile phone 5 has a display unit 51 for displaying predetermined information, an input operation unit 52 for receiving an input of a predetermined instruction, and a telephone function by performing communication using a mobile phone network. A communication unit (not shown) to be realized, each unit 30 to 37 shown in FIG. 1, and a thin plate-like casing HS for storing these units are provided. A rectangular display surface of the display unit 51 faces one main surface (front surface) of the housing HS, and an input operation unit 52 is disposed on one end side (lower side) of the display surface. The display surface of the display unit 51 is provided with a touch panel that accepts input by touching the display surface with a fingertip or a pen, and an instruction input that cannot be input by the input operation unit 52 is displayed on the touch panel and the display unit 51. It is realized by combining it with information. For example, the display unit 51 displays an image shooting mode start button, an image shooting button for switching between still image shooting and moving image shooting, a shutter button, and the like, and touches the display surface of the displayed button position. The instruction indicated by the button is input to the mobile phone 5. The touch panel may be of a known type such as a so-called capacitance type. The imaging unit 30 (imaging optical device LU) faces the other main surface (back surface) of the housing HS.
 このような携帯電話機5では、前記画像撮影モードの起動ボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、画像撮影の機能を起動し、また、前記画像撮影ボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影モードの起動、実行や、動画撮影モードの起動、実行等の、その操作内容に応じた動作を実行する。そして、前記シャッタボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影や動画撮影等の、その操作内容に応じた動作を実行する。 In such a cellular phone 5, when the start button of the image capturing mode is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 activates the image capturing function. When the image shooting button is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 activates and executes the still image shooting mode and starts and executes the moving image shooting mode. The operation according to the operation content is executed. When the shutter button is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs an operation corresponding to the operation content, such as still image shooting or moving image shooting. .
 以下、本発明を実施した撮像光学系の構成等を、実施例1~12(EX1~12)及び比較例1~4(CX1~4)のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる撮像光学系OPの例(EX1~12,CX1~4)は、図3に示す撮像光学系OPにおいて、赤外線吸収材料の添加量を変化させた数値例である。 Hereinafter, the configuration of the imaging optical system embodying the present invention will be described in more detail with reference to the construction data of Examples 1 to 12 (EX1 to 12) and Comparative Examples 1 to 4 (CX1 to 4). The examples (EX1 to 12, CX1 to 4) of the imaging optical system OP mentioned here are numerical examples in which the addition amount of the infrared absorbing material is changed in the imaging optical system OP shown in FIG.
 撮像光学系OPの数値例(EX1~12,CX1~4)のコンストラクションデータでは、面データとして、左側の欄から順に、面番号#,曲率半径r(mm),軸上面間隔d(mm),d線(波長587.56nm)に関する屈折率nd,d線に関するアッベ数vdを示す。面番号#に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してe-n=×10-nである。
z=(c・h2)/[1+√{1-(1+K)・c2・h2}]+Σ(Aj・hj) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
c:面頂点での曲率(曲率半径rの逆数)、
K:円錐定数、
Aj:j次の非球面係数、
である。
In the construction data of the numerical examples (EX1 to 12, CX1 to 4) of the imaging optical system OP, the surface number #, the radius of curvature r (mm), the axial upper surface distance d (mm), in order from the left column, as surface data. The refractive index nd for the d line (wavelength 587.56 nm), and the Abbe number vd for the d line are shown. The surface with * in the surface number # is an aspheric surface, and the surface shape is defined by the following equation (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. The As aspheric data, an aspheric coefficient or the like is shown. Note that the coefficient of a term not described in the aspherical data is 0, and enn = × 10 −n for all data.
z = (c · h 2 ) / [1 + √ {1− (1 + K) · c 2 · h 2 }] + Σ (Aj · h j ) (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
c: curvature at the surface vertex (the reciprocal of the radius of curvature r),
K: conic constant,
Aj: j-order aspheric coefficient,
It is.
 各種データとして、全系の焦点距離(Fl,mm),Fナンバー(Fno.),半画角(ω,°),像高(y’max,mm),レンズ全長(TL,mm),及びバックフォーカス(BF,mm)を示す。さらに、単レンズデータとして各レンズの焦点距離(mm)を示す。 As various data, the focal length (Fl, mm) of the entire system, F number (Fno.), Half angle of view (ω, °), image height (y′max, mm), total lens length (TL, mm), and Indicates the back focus (BF, mm). Furthermore, the focal length (mm) of each lens is shown as single lens data.
 各数値例(EX1~12,CX1~4)に対応する赤外カットコートのコンストラクションデータを示す。実施例1~5;実施例7~11;比較例1,2に対応するコートと、実施例6,実施例12に対応するコートと、比較例3,比較例4に対応するコートの、3種類のコートを示す。ここでは、赤外カットコートを2つ(A面,B面)に分けているが、1つのコートでもよく、3つ以上に分けて構成してもよい。 The construction data of the infrared cut coat corresponding to each numerical example (EX1 to 12, CX1 to 4) is shown. Examples 1 to 5; Examples 7 to 11; 3 of the coat corresponding to Comparative Examples 1 and 2, the coat corresponding to Example 6 and Example 12, and the coat corresponding to Comparative Example 3 and Comparative Example 4 Indicates the type of coat. Here, the infrared cut coat is divided into two (A surface, B surface), but may be one coat or may be divided into three or more.
 撮像光学系OP(図3)は、物体側から順に、レンズ群LNと、IRカットフィルターFLと、から構成されている。レンズ群LNは、物体側から順に、絞りSTと、正の第1レンズL1と、負の第2レンズL2と、正の第3レンズL3と、正の第4レンズL4と、負の第5レンズL5と、から構成されており、全てのレンズはプラスチック材料から形成されており、レンズ面は全て非球面である。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の正メニスカスレンズであり、第2レンズL2は像側に凹の負メニスカスレンズであり、第3レンズL3は物体側に凸の正の平凸レンズであり、第4レンズL4は像側に凸の正メニスカスレンズであり、第5レンズL5は両凹の負レンズである。 The imaging optical system OP (FIG. 3) includes a lens group LN and an IR cut filter FL in order from the object side. The lens group LN includes an aperture ST, a positive first lens L1, a negative second lens L2, a positive third lens L3, a positive fourth lens L4, and a negative fifth lens in order from the object side. All the lenses are made of a plastic material, and all the lens surfaces are aspherical. When viewing each lens with a paraxial surface shape, the first lens L1 is a positive meniscus lens convex on the object side, the second lens L2 is a negative meniscus lens concave on the image side, and the third lens L3 is The fourth lens L4 is a positive meniscus lens convex on the image side, and the fifth lens L5 is a biconcave negative lens.
 表1に、撮像光学系OP(図3)の各像高F1~F6(光軸中心,2割像高,4割像高,6割像高,8割像高,10割像高)に対する第1~第5レンズL1~L5における光路長(物理的)を示す。また表2に、実施例1~12(EX1~12)及び比較例1~4(CX1~4)の赤外線吸収材料の添加量を示す。ここでは、赤外線吸収材料として、BASF社製のLumogen IR765(吸収材A)、又はExciton社製のABS670T(吸収材B)を用いた。 Table 1 shows the image heights F1 to F6 (optical axis center, 20% image height, 40% image height, 60% image height, 80% image height, 100% image height) of the imaging optical system OP (FIG. 3). The optical path lengths (physical) in the first to fifth lenses L1 to L5 are shown. Table 2 shows the amount of the infrared absorbing material added in Examples 1 to 12 (EX1 to 12) and Comparative Examples 1 to 4 (CX1 to 4). Here, BASF Lumogen IR765 (absorbing material A) or Exciton ABS670T (absorbing material B) was used as the infrared absorbing material.
 表3に、吸収材Aを用いた場合の実施例1~6及び比較例1~3の各数値と画像確認結果を示し、表4に、吸収材Bを用いた場合の実施例7~12及び比較例4の各数値と画像確認結果を示す。表3及び表4中の画像確認結果において、○:良好,△:許容範囲だが、わずかにシェーディングが発生,×:シェーディングが発生、である。また、図5~20のグラフに、実施例1~12(EX1~12)及び比較例1~4(CX1~4)の600~700nmの波長領域を含む分光特性(Total特性)を示す。 Table 3 shows numerical values and image confirmation results of Examples 1 to 6 and Comparative Examples 1 to 3 when the absorbent material A is used, and Table 4 shows Examples 7 to 12 when the absorbent material B is used. And each numerical value and image confirmation result of the comparative example 4 are shown. In the image confirmation results in Tables 3 and 4, ○: good, Δ: acceptable range, slightly shading occurs, x: shading occurs. Also, the graphs of FIGS. 5 to 20 show the spectral characteristics (total characteristics) including the wavelength region of 600 to 700 nm of Examples 1 to 12 (EX1 to 12) and Comparative Examples 1 to 4 (CX1 to 4).
 図4に、レンズに添加する赤外線吸収材料の分光特性(吸収係数)を示す。吸収材A(BASF社製のLumogen IR765)は、その吸収特性からλ_0.9Kpeak=763nm、λ_0.3Kpeak=673nmであり、それによりYは0.600と算出できる。また、M_600nm=0.098%、M_700nm=0.018%であった。吸収材B(Exciton社製のABS670T)は、その吸収特性からλ_0.9Kpeak=664nm、λ_0.3Kpeak=644nmであり、それによりYは0.283と算出できる。また、M_600nm=0.270%、M_700nmは700nmでの吸収係数がほぼ0であるため設定できなかった。 FIG. 4 shows the spectral characteristics (absorption coefficient) of the infrared absorbing material added to the lens. Absorbent A (Lumogen IR765 manufactured by BASF) has λ_0.9Kpeak = 763 nm and λ_0.3Kpeak = 673 nm from its absorption characteristics, and Y can be calculated as 0.600. In addition, M_600 nm = 0.098% and M_700 nm = 0.018%. Absorbing material B (ABS670T manufactured by Exciton) has λ_0.9 Kpeak = 664 nm and λ_0.3 Kpeak = 644 nm from its absorption characteristics, and Y can be calculated as 0.283. Further, M_600 nm = 0.270% and M_700 nm could not be set because the absorption coefficient at 700 nm was almost zero.
 実施例1は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第1レンズL1に0.030%、第2レンズL2に0.015%、第3レンズL3に0.033%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.995、6割像高のF4とF1とのΣDn・Mn比は0.996、8割像高のF5とF1とのΣDn・Mn比は0.998となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表3に示すとおり、良好な結果となっている。 In Example 1, the absorber A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.098%, M_700 nm = 0.018%, Y = 0.600) is added to the first lens L1 by 0.030%, and the second 0.015% was added to the lens L2, 0.033% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Also, the ΣDn · Mn ratio between F2 and F1 with 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 with 40% image height is 0.995, and F4 and F1 with 60% image height. The ΣDn · Mn ratio is 0.996, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.998, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a good result.
 実施例2は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第3レンズL3に0.085%、添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.004、4割像高のF3とF1とのΣDn・Mn比は1.012、6割像高のF4とF1とのΣDn・Mn比は1.017、8割像高のF5とF1とのΣDn・Mn比は1.004となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表3に示すとおり、良好な結果となっている。 In Example 2, Absorbent A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.098%, M_700 nm = 0.018%, Y = 0.600) was added to the third lens L3 by 0.085%. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 1.004, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 1.012, and F4 and F1 at 60% image height are The ΣDn · Mn ratio is 1.017, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.004, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a good result.
 実施例3は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第1レンズL1に0.068%を添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.005、4割像高のF3とF1とのΣDn・Mn比は1.020、6割像高のF4とF1とのΣDn・Mn比は1.042、8割像高のF5とF1とのΣDn・Mn比は1.069となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表3に示すとおり、良好な結果となっている。 In Example 3, Absorbent A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.098%, M_700 nm = 0.018%, Y = 0.600) was added to the first lens L1 in 0.068%. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 1.005, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 1.020, and F4 and F1 at 60% image height. The ΣDn · Mn ratio is 1.042, and the ΣDn · Mn ratio of F5 and F1 with 80% image height is 1.069, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a good result.
 比較例1は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第3レンズL3に0.049%、第5レンズL5に0.042%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.087、4割像高のF3とF1とのΣDn・Mn比は1.298、6割像高のF4とF1とのΣDn・Mn比は1.535、8割像高のF5とF1とのΣDn・Mn比は1.670となり、8割像高においては条件式(2A)を満足しない。IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足するが、画像確認結果は表3に示すとおり、シェーディングが大きく発生した結果となっている。 In Comparative Example 1, Absorbent A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.998%, M_700 nm = 0.018%, Y = 0.600) is added to the third lens L3 by 0.049%, 0.042% was added to the lens L5. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 1.087, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 1.298, and F4 and F1 at 60% image height are The ΣDn · Mn ratio is 1.535, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.670, and conditional expression (2A) is not satisfied at 80% image height. Conditional expressions (3A) and (3B) where T2_50% λ of IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ (wavelength that makes the total internal transmittance 50%) of the lens. However, as shown in Table 3, the image confirmation result is a result of large shading.
 実施例4は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第3レンズL3に0.068%、第5レンズL5に0.020%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.044、4割像高のF3とF1とのΣDn・Mn比は1.148、6割像高のF4とF1とのΣDn・Mn比は1.264、8割像高のF5とF1とのΣDn・Mn比は1.321となり、全て条件式(2A)を満足するが、条件式(2B)は満足しない。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表3に示すとおり、条件式(2B)は満足しないため許容できる程度のシェーディングが発生した結果となっている。 In Example 4, Absorbent A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.998%, M_700 nm = 0.018%, Y = 0.600) is added to the third lens L3 by 0.068%, 0.020% was added to the lens L5. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Also, the ΣDn · Mn ratio between F2 and F1 with a 20% image height is 1.044, and the ΣDn · Mn ratio between F3 and F1 with a 40% image height is 1.148, and between the F4 and F1 with a 60% image height. The ΣDn · Mn ratio is 1.264, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.321, which all satisfy the conditional expression (2A), but the conditional expression (2B) is not satisfied. Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a result of occurrence of acceptable shading because the conditional expression (2B) is not satisfied.
 比較例2は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第3レンズL3に0.011%、第4レンズL4に0.047%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.935、4割像高のF3とF1とのΣDn・Mn比は0.799、6割像高のF4とF1とのΣDn・Mn比は0.667、8割像高のF5とF1とのΣDn・Mn比は0.587となり、8割像高においては条件式(2A)をしない。IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足するが、画像確認結果は表3に示すとおり、シェーディングが大きく発生した結果となっている。 In Comparative Example 2, Absorbent A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.998%, M_700 nm = 0.018%, Y = 0.600) is added to the third lens L3 by 0.011%, 0.047% was added to the lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Also, the ΣDn · Mn ratio between F2 and F1 with 20% image height is 0.935, and the ΣDn · Mn ratio between F3 and F1 with 40% image height is 0.799, and between F4 and F1 with 60% image height. The ΣDn · Mn ratio is 0.667, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.587, and conditional expression (2A) is not satisfied at 80% image height. Conditional expressions (3A) and (3B) where T2_50% λ of IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ (wavelength that makes the total internal transmittance 50%) of the lens. However, as shown in Table 3, the image confirmation result is a result of large shading.
 実施例5は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第3レンズL3に0.029%、第4レンズL4に0.036%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.951、4割像高のF3とF1とのΣDn・Mn比は0.850、6割像高のF4とF1とのΣDn・Mn比は0.751、8割像高のF5とF1とのΣDn・Mn比は0.687となり、全て条件式(2A)を満足するが、条件式(2B)は満足しない。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表3に示すとおり、条件式(2B)は満足しないため許容できる程度のシェーディングが発生した結果となっている。 In Example 5, the absorber A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.098%, M_700 nm = 0.018%, Y = 0.600) is added to the third lens L3 by 0.029%, 0.036% was added to the lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 with a 20% image height is 0.951, the ΣDn · Mn ratio between F3 and F1 with a 40% image height is 0.850, and F4 and F1 with a 60% image height. The ΣDn · Mn ratio is 0.751, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.687, which satisfies the conditional expression (2A), but does not satisfy the conditional expression (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 3, the image confirmation result is a result of occurrence of acceptable shading because the conditional expression (2B) is not satisfied.
 実施例6は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第1レンズL1に0.030%、第2レンズL2に0.015%、第3レンズL3に0.033%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.995、6割像高のF4とF1とのΣDn・Mn比は0.996、8割像高のF5とF1とのΣDn・Mn比は0.998となり、全て条件式(2A)、条件式(2B)を満足する。しかし、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より8nm短く、条件式(3A)は満足するが、条件式(3B)は満足しない。画像確認結果は表3に示すとおり、条件式(3B)は満足しないため、許容できる程度だがシェーディングが発生した結果となっている。 In Example 6, the absorber A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.998%, M_700 nm = 0.018%, Y = 0.600) is added to the first lens L1 by 0.030%, second 0.015% was added to the lens L2, 0.033% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Also, the ΣDn · Mn ratio between F2 and F1 with 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 with 40% image height is 0.995, and F4 and F1 with 60% image height. The ΣDn · Mn ratio is 0.996, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.998, which all satisfy the conditional expressions (2A) and (2B). However, T2_50% λ of IR cut filter (wavelength at 50% with 30 ° incident light) is 8 nm shorter than T1_50% λ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. However, the conditional expression (3B) is not satisfied. As shown in Table 3, since the conditional expression (3B) is not satisfied as shown in Table 3, the result is that the shading occurs to an acceptable level.
 比較例3は、吸収材A(BASF社製のLumogen IR765;M_600nm=0.098%,M_700nm=0.018%,Y=0.600)を、第1レンズL1に0.030%、第2レンズL2に0.015%、第3レンズL3に0.033%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.027となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.995、6割像高のF4とF1とのΣDn・Mn比は0.996、8割像高のF5とF1とのΣDn・Mn比は0.998となり、全て条件式(2A)を満足する。しかし、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より12nm短く、条件式(3A)は満足しない。画像確認結果は表3に示すとおり、シェーディングが大きく発生した結果となっている。 In Comparative Example 3, the absorber A (Lumogen IR765 manufactured by BASF; M_600 nm = 0.998%, M_700 nm = 0.018%, Y = 0.600) is applied to the first lens L1 by 0.030%, the second 0.015% was added to the lens L2, 0.033% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.027, which satisfies the conditional expression (1). Also, the ΣDn · Mn ratio between F2 and F1 with 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 with 40% image height is 0.995, and F4 and F1 with 60% image height. The ΣDn · Mn ratio is 0.996, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.998, and all satisfy the conditional expression (2A). However, T2_50% λ of IR cut filter (wavelength at 50% with 30 ° incident light) is 12 nm shorter than T1_50% λ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. do not do. As shown in Table 3, the image confirmation result is a result of large shading.
 実施例7は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第1レンズL1に0.035%、第2レンズL2に0.018%、第3レンズL3に0.035%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.998、6割像高のF4とF1とのΣDn・Mn比は1.000、8割像高のF5とF1とのΣDn・Mn比は1.005となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表4に示すとおり、良好な結果となっている。 In Example 7, the absorber B (ABS 670T manufactured by Exciton; M_600 nm = 0.270%, M_700 nm cannot be set as described above; Y = 0.283) is set to 0.035% for the first lens L1. 0.018% was added to the second lens L2, 0.035% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 0.998, and F4 and F1 at 60% image height. The ΣDn · Mn ratio is 1.000, and the ΣDn · Mn ratio of F5 and F1 with 80% image height is 1.005, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image confirmation result is a good result.
 実施例8は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第3レンズL3に0.095%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.004、4割像高のF3とF1とのΣDn・Mn比は1.012、6割像高のF4とF1とのΣDn・Mn比は1.017、8割像高のF5とF1とのΣDn・Mn比は1.004となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表4に示すとおり、良好な結果となっている。 In Example 8, 0.095% of the absorbing material B (ABS670T manufactured by Exciton; M_600nm = 0.270%, M_700nm cannot be set as described above; Y = 0.283) was added to the third lens L3. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 1.004, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 1.012, and F4 and F1 at 60% image height are The ΣDn · Mn ratio is 1.017, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.004, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image confirmation result is a good result.
 実施例9は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第1レンズL1に0.073%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.029となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.005、4割像高のF3とF1とのΣDn・Mn比は1.020、6割像高のF4とF1とのΣDn・Mn比は1.042、8割像高のF5とF1とのΣDn・Mn比は1.069となり、全て条件式(2A),(2B)を満足する。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表4に示すとおり、良好な結果となっている。 In Example 9, 0.073% of Absorbent B (ABS670T manufactured by Exciton; M_600nm = 0.270%, M_700nm cannot be set as described above, Y = 0.283) was added to the first lens L1. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.029, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 1.005, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 1.020, and F4 and F1 at 60% image height. The ΣDn · Mn ratio is 1.042, and the ΣDn · Mn ratio of F5 and F1 with 80% image height is 1.069, which all satisfy the conditional expressions (2A) and (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image confirmation result is a good result.
 実施例10は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第5レンズL5に0.110%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は1.200、4割像高のF3とF1とのΣDn・Mn比は1.683、6割像高のF4とF1とのΣDn・Mn比は2.236、8割像高のF5とF1とのΣDn・Mn比は2.570となり、全て条件式(2A)を満足するが、条件式(2B)は満足しない。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表4に示すとおり、条件式(2B)は満足しないため許容できる程度のシェーディングが発生した結果となっている。 In Example 10, 0.110% of Absorbing Material B (ABS670T manufactured by Exciton; M_600 nm = 0.270%, M_700 nm cannot be set as described above, Y = 0.283) was added to the fifth lens L5. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 with a 20% image height is 1.200, the ΣDn · Mn ratio between F3 and F1 with a 40% image height is 1.683, and the F4 and F1 with 60% image height are F4 and F1. The ΣDn · Mn ratio is 2.236, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 2.570, which all satisfy the conditional expression (2A), but does not satisfy the conditional expression (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image check result does not satisfy the conditional expression (2B), and is an acceptable shading.
 実施例11は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第4レンズL4に0.060%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.925、4割像高のF3とF1とのΣDn・Mn比は0.767、6割像高のF4とF1とのΣDn・Mn比は0.615、8割像高のF5とF1とのΣDn・Mn比は0.526となり、全て条件式(2A)を満足するが、条件式(2B)は満足しない。また、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より7nm長く、条件式(3A),(3B)を満足する。画像確認結果は表4に示すとおり、条件式(2B)は満足しないため許容できる程度のシェーディングが発生した結果となっている。 In Example 11, 0.060% of Absorbent B (ABS670T manufactured by Exciton; M_600nm = 0.270%, M_700nm cannot be set as described above; Y = 0.283) was added to the fourth lens L4. . At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Moreover, the ΣDn · Mn ratio between F2 and F1 with 20% image height is 0.925, the ΣDn · Mn ratio between F3 and F1 with 40% image height is 0.767, and the F4 and F1 with 60% image height are F4 and F1. The ΣDn · Mn ratio is 0.615, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 0.526, which all satisfy the conditional expression (2A), but does not satisfy the conditional expression (2B). Also, T2_50% λ of the IR cut filter (wavelength that becomes 50% with 30 ° incident light) is 7 nm longer than T1_50% λ of the lens (wavelength that makes the total internal transmittance 50%), and conditional expressions (3A), ( 3B) is satisfied. As shown in Table 4, the image check result does not satisfy the conditional expression (2B), and is an acceptable shading.
 実施例12は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第1レンズL1に0.035%、第2レンズL2に0.018%、第3レンズL3に0.035%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.998、6割像高のF4とF1とのΣDn・Mn比は1.000、8割像高のF5とF1とのΣDn・Mn比は1.005となり、全て条件式(2A)、条件式(2B)を満足する。しかし、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より8nm短く、条件式(3A)は満足するが、条件式(3B)は満足しない。画像確認結果は表4に示すとおり、条件式(3B)は満足しないため、許容できる程度だがシェーディングが発生した結果となっている。 In Example 12, the absorber B (ABS670T manufactured by Exciton; M_600 nm = 0.270%, M_700 nm cannot be set as described above; Y = 0.283) is set to 0.035% for the first lens L1. 0.018% was added to the second lens L2, 0.035% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 0.998, and F4 and F1 at 60% image height. The ΣDn · Mn ratio is 1.000, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.005, and all satisfy the conditional expressions (2A) and (2B). However, T2_50% λ of IR cut filter (wavelength at 50% with 30 ° incident light) is 8 nm shorter than T1_50% λ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. However, the conditional expression (3B) is not satisfied. As shown in Table 4, since the image confirmation result does not satisfy the conditional expression (3B), the result is that shading has occurred although it is acceptable.
 比較例4は、吸収材B(Exciton社製のABS670T;M_600nm=0.270%,M_700nmは前述のとおり設定できず。Y=0.283)を、第1レンズL1に0.035%、第2レンズL2に0.018%、第3レンズL3に0.035%、第4レンズL4に0.005%添加した。このとき、光軸中心のF1のΣDCn・Mnは0.030となり、条件式(1)を満足する。また、2割像高のF2とF1とのΣDn・Mn比は0.998、4割像高のF3とF1とのΣDn・Mn比は0.998、6割像高のF4とF1とのΣDn・Mn比は1.000、8割像高のF5とF1とのΣDn・Mn比は1.005となり、全て条件式(2A)、条件式(2B)を満足する。しかし、IRカットフィルターのT2_50%λ(30°入射光で50%となる波長)がレンズのT1_50%λ(総合内部透過率が50%となる波長)より12nm短く、条件式(3A)は満足しない。画像確認結果は表4に示すとおり、シェーディングが大きく発生した結果となっている。 In Comparative Example 4, the absorbing material B (ABS670T manufactured by Exciton; M_600 nm = 0.270%, M_700 nm cannot be set as described above; Y = 0.283) is set to 0.035% for the first lens L1. 0.018% was added to the second lens L2, 0.035% was added to the third lens L3, and 0.005% was added to the fourth lens L4. At this time, ΣDCn · Mn of F1 at the center of the optical axis is 0.030, which satisfies the conditional expression (1). Further, the ΣDn · Mn ratio between F2 and F1 at 20% image height is 0.998, the ΣDn · Mn ratio between F3 and F1 at 40% image height is 0.998, and F4 and F1 at 60% image height. The ΣDn · Mn ratio is 1.000, and the ΣDn · Mn ratio between F5 and F1 with 80% image height is 1.005, and all satisfy the conditional expressions (2A) and (2B). However, T2_50% λ of IR cut filter (wavelength at 50% with 30 ° incident light) is 12 nm shorter than T1_50% λ of lens (wavelength at which total internal transmittance is 50%), and conditional expression (3A) is satisfied. do not do. As shown in Table 4, the image confirmation result is a result of large shading.
 本発明を表現するために、上述の記載において図面を参照しながら実施の形態,実施例等を通して本発明を適切かつ十分に説明したが、当業者であれば上述の実施の形態等を変更及び/又は改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments, examples and the like with reference to the drawings in the above description. However, those skilled in the art can change and modify the above-described embodiments and the like. It should be recognized that improving can be easily done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 撮像光学系OPの数値例(EX1~12,CX1~4)のコンストラクションデータ
単位:mm
面データ
    #              r          d       nd         vd
object         infinity   infinity
    1 (絞り)   infinity      0.050
    2          infinity     -0.213
    3*            1.196      0.394   1.54470   56.15
    4*           28.057      0.070
    5*            7.081      0.150   1.63469   23.87
    6*            1.686      0.274
    7*            5.738      0.313   1.54470   56.15
    8*         infinity      0.429
    9*          -10.948      0.496   1.54470   56.15
   10*           -0.775      0.195
   11*           -1.939      0.270   1.54470   56.15
   12*            1.056      0.394
   13          infinity      0.110   1.51633   64.14
   14          infinity      0.320
 image         infinity
Construction data unit of the numerical example (EX1 to 12, CX1 to 4) of the imaging optical system OP: mm
Surface data # r d nd vd
object infinity infinity
1 (Aperture) infinity 0.050
2 infinity -0.213
3 * 1.196 0.394 1.54470 56.15
4 * 28.057 0.070
5 * 7.081 0.150 1.63469 23.87
6 * 1.686 0.274
7 * 5.738 0.313 1.54470 56.15
8 * infinity 0.429
9 * -10.948 0.496 1.54470 56.15
10 * -0.775 0.195
11 * -1.939 0.270 1.54470 56.15
12 * 1.056 0.394
13 infinity 0.110 1.51633 64.14
14 infinity 0.320
image infinity
非球面データ
   #        K            A4            A6            A8
   3   8.7537e-002   4.9836e-003   1.5452e-002  -8.5926e-003
   4   5.0110e+001   3.4607e-002   1.6459e-001  -9.3958e-002
   5  -9.9430e+000  -6.9162e-002   4.9692e-001  -6.7921e-001
   6  -6.9050e+000   2.8488e-001   7.5769e-002  -1.8127e-001
   7  -5.0016e+000  -2.0028e-001   2.2349e-001  -1.6952e-001
   8   0.0000e+000  -2.6523e-001  -3.8436e-002  -1.6913e-001
   9  -8.0000e+001   5.8310e-001  -1.2546e-001   4.8683e-001
  10  -5.9249e+000  -2.3353e-002   1.0586e-001  -1.4222e-001
  11  -1.0973e+001   1.7785e-003   2.6163e-002  -2.3721e-003
  12  -1.0542e+001   9.1390e-004   5.6367e-003  -6.4540e-003
Aspheric data # K A4 A6 A8
3 8.7537e-002 4.9836e-003 1.5452e-002 -8.5926e-003
4 5.0110e + 001 3.4607e-002 1.6459e-001 -9.3958e-002
5 -9.9430e + 000 -6.9162e-002 4.9692e-001 -6.7921e-001
6 -6.9050e + 000 2.8488e-001 7.5769e-002 -1.8127e-001
7 -5.0016e + 000 -2.0028e-001 2.2349e-001 -1.6952e-001
8 0.0000e + 000 -2.6523e-001 -3.8436e-002 -1.6913e-001
9 -8.0000e + 001 5.8310e-001 -1.2546e-001 4.8683e-001
10 -5.9249e + 000 -2.3353e-002 1.0586e-001 -1.4222e-001
11 -1.0973e + 001 1.7785e-003 2.6163e-002 -2.3721e-003
12 -1.0542e + 001 9.1390e-004 5.6367e-003 -6.4540e-003
非球面データ
   #       A10           A12           A14
   3   1.6410e-001   1.8807e-001  -9.8917e-001
   4  -8.3392e-001  -7.2956e-001   1.4357e+000
   5  -1.3817e+000  -2.1077e-001   3.0251e+000
   6  -2.4791e-002  -6.7937e-001   1.6488e+000
   7   1.2840e-002   1.1248e+000  -9.9765e-001
   8   8.5382e-002   2.4251e-002   3.0179e-001
   9  -2.5004e-001  -3.4793e-001   2.4650e-001
  10   2.5127e-002   4.0653e-002  -1.7797e-002
  11  -1.3176e-003   1.4713e-004   1.5916e-005
  12   1.0827e-003  -1.1058e-004   2.9569e-005
Aspheric data # A10 A12 A14
3 1.6410e-001 1.8807e-001 -9.8917e-001
4 -8.3392e-001 -7.2956e-001 1.4357e + 000
5 -1.3817e + 000 -2.1077e-001 3.0251e + 000
6 -2.4791e-002 -6.7937e-001 1.6488e + 000
7 1.2840e-002 1.1248e + 000 -9.9765e-001
8 8.5382e-002 2.4251e-002 3.0179e-001
9 -2.5004e-001 -3.4793e-001 2.4650e-001
10 2.5127e-002 4.0653e-002 -1.7797e-002
11 -1.3176e-003 1.4713e-004 1.5916e-005
12 1.0827e-003 -1.1058e-004 2.9569e-005
各種データ
   Fl         2.892
   Fno.       2.087
   ω        38.413
  y'max       2.295
   TL         3.253
   BF         0.825
Various data Fl 2.892
Fno. 2.087
ω 38.413
y'max 2.295
TL 3.253
BF 0.825
 単レンズデータ
 レンズ (#)      焦点距離
  1 (  3-  4)      2.273
  2 (  5-  6)     -3.498
  3 (  7-  8)     10.500
  4 (  9- 10)      1.500
  5 ( 11- 12)     -1.213
Single lens data Lens (#) Focal length 1 (3-4) 2.273
2 (5-6) -3.498
3 (7-8) 10.500
4 (9-10) 1.500
5 (11-12) -1.213
 実施例1~5;実施例7~11;比較例1,2
A面
基板    単位(nm)
SIO2     63.12
TIO2     10.00
SIO2     40.17
TIO2     96.55
SIO2    155.11
TIO2     86.05
SIO2    144.65
TIO2     83.35
SIO2    143.83
TIO2     81.95
SIO2    142.61
TIO2     81.83
SIO2    142.00
TIO2     81.48
SIO2    141.89
TIO2     81.49
SIO2    141.62
TIO2     81.66
SIO2    141.67
TIO2     81.92
SIO2    141.74
TIO2     82.44
SIO2    142.28
TIO2     83.50
SIO2    142.57
TIO2     85.99
SIO2    151.58
TIO2     82.91
SIO2     73.50
Examples 1 to 5; Examples 7 to 11; Comparative Examples 1 and 2
Side A substrate Unit (nm)
SIO2 63.12
TIO2 10.00
SIO2 40.17
TIO2 96.55
SIO2 155.11
TIO2 86.05
SIO2 144.65
TIO2 83.35
SIO2 143.83
TIO2 81.95
SIO2 142.61
TIO2 81.83
SIO2 142.00
TIO2 81.48
SIO2 141.89
TIO2 81.49
SIO2 141.62
TIO2 81.66
SIO2 141.67
TIO2 81.92
SIO2 141.74
TIO2 82.44
SIO2 142.28
TIO2 83.50
SIO2 142.57
TIO2 85.99
SIO2 151.58
TIO2 82.91
SIO2 73.50
 実施例1~5;実施例7~11;比較例1,2
B面
基板    単位(nm)
TIO2     13.07
SIO2     33.62
TIO2    127.30
SIO2     30.76
TIO2     33.37
SIO2     25.73
TIO2    167.43
SIO2     12.54
TIO2     43.27
SIO2     50.55
TIO2     22.35
SIO2     53.72
TIO2    119.36
SIO2    187.99
TIO2    112.43
SIO2    188.49
TIO2    112.71
SIO2    188.29
TIO2    112.75
SIO2    188.08
TIO2    112.29
SIO2    187.22
TIO2    110.70
SIO2    184.00
TIO2    105.51
SIO2    171.52
TIO2     99.22
SIO2    173.11
TIO2    104.57
SIO2    177.36
TIO2    100.29
SIO2    162.25
TIO2     93.56
SIO2    160.70
TIO2     89.57
SIO2     76.38
Examples 1 to 5; Examples 7 to 11; Comparative Examples 1 and 2
Side B substrate Unit (nm)
TIO2 13.07
SIO2 33.62
TIO2 127.30
SIO2 30.76
TIO2 33.37
SIO2 25.73
TIO2 167.43
SIO2 12.54
TIO2 43.27
SIO2 50.55
TIO2 22.35
SIO2 53.72
TIO2 119.36
SIO2 187.99
TIO2 112.43
SIO2 188.49
TIO2 112.71
SIO2 188.29
TIO2 112.75
SIO2 188.08
TIO2 112.29
SIO2 187.22
TIO2 110.70
SIO2 184.00
TIO2 105.51
SIO2 171.52
TIO2 99.22
SIO2 173.11
TIO2 104.57
SIO2 177.36
TIO2 100.29
SIO2 162.25
TIO2 93.56
SIO2 160.70
TIO2 89.57
SIO2 76.38
 実施例6,実施例12
A面
基板    単位(nm)
SIO2     61.67
TIO2      9.77
SIO2     39.26
TIO2     94.32
SIO2    151.54
TIO2     84.07
SIO2    141.32
TIO2     81.44
SIO2    140.52
TIO2     80.07
SIO2    139.33
TIO2     79.95
SIO2    138.74
TIO2     79.61
SIO2    138.62
TIO2     79.62
SIO2    138.36
TIO2     79.78
SIO2    138.41
TIO2     80.03
SIO2    138.48
TIO2     80.54
SIO2    139.01
TIO2     81.58
SIO2    139.29
TIO2     84.01
SIO2    148.09
TIO2     81.00
SIO2     71.81
Example 6 and Example 12
Side A substrate Unit (nm)
SIO2 61.67
TIO2 9.77
SIO2 39.26
TIO2 94.32
SIO2 151.54
TIO2 84.07
SIO2 141.32
TIO2 81.44
SIO2 140.52
TIO2 80.07
SIO2 139.33
TIO2 79.95
SIO2 138.74
TIO2 79.61
SIO2 138.62
TIO2 79.62
SIO2 138.36
TIO2 79.78
SIO2 138.41
TIO2 80.03
SIO2 138.48
TIO2 80.54
SIO2 139.01
TIO2 81.58
SIO2 139.29
TIO2 84.01
SIO2 148.09
TIO2 81.00
SIO2 71.81
 実施例6,実施例12
B面
基板    単位(nm)
TIO2     12.77
SIO2     32.85
TIO2    124.37
SIO2     30.05
TIO2     32.60
SIO2     25.14
TIO2    163.58
SIO2     12.24
TIO2     42.28
SIO2     49.39
TIO2     21.84
SIO2     52.48
TIO2    116.62
SIO2    183.67
TIO2    109.85
SIO2    184.16
TIO2    110.12
SIO2    183.96
TIO2    110.16
SIO2    183.76
TIO2    109.71
SIO2    182.91
TIO2    108.15
SIO2    179.77
TIO2    103.09
SIO2    167.58
TIO2     96.93
SIO2    169.13
TIO2    102.16
SIO2    173.28
TIO2     97.98
SIO2    158.51
TIO2     91.41
SIO2    157.00
TIO2     87.50
SIO2     74.62
Example 6 and Example 12
Side B substrate Unit (nm)
TIO2 12.77
SIO2 32.85
TIO2 124.37
SIO2 30.05
TIO2 32.60
SIO2 25.14
TIO2 163.58
SIO2 12.24
TIO2 42.28
SIO2 49.39
TIO2 21.84
SIO2 52.48
TIO2 116.62
SIO2 183.67
TIO2 109.85
SIO2 184.16
TIO2 110.12
SIO2 183.96
TIO2 110.16
SIO2 183.76
TIO2 109.71
SIO2 182.91
TIO2 108.15
SIO2 179.77
TIO2 103.09
SIO2 167.58
TIO2 96.93
SIO2 169.13
TIO2 102.16
SIO2 173.28
TIO2 97.98
SIO2 158.51
TIO2 91.41
SIO2 157.00
TIO2 87.50
SIO2 74.62
 比較例3,比較例4
A面
基板    単位(nm)
SIO2     61.23
TIO2      9.70
SIO2     38.97
TIO2     93.65
SIO2    150.46
TIO2     83.47
SIO2    140.31
TIO2     80.85
SIO2    139.52
TIO2     79.49
SIO2    138.33
TIO2     79.38
SIO2    137.74
TIO2     79.04
SIO2    137.63
TIO2     79.05
SIO2    137.37
TIO2     79.21
SIO2    137.42
TIO2     79.46
SIO2    137.49
TIO2     79.97
SIO2    138.01
TIO2     81.00
SIO2    138.29
TIO2     83.41
SIO2    147.03
TIO2     80.42
SIO2     71.30
Comparative Example 3 and Comparative Example 4
Side A substrate Unit (nm)
SIO2 61.23
TIO2 9.70
SIO2 38.97
TIO2 93.65
SIO2 150.46
TIO2 83.47
SIO2 140.31
TIO2 80.85
SIO2 139.52
TIO2 79.49
SIO2 138.33
TIO2 79.38
SIO2 137.74
TIO2 79.04
SIO2 137.63
TIO2 79.05
SIO2 137.37
TIO2 79.21
SIO2 137.42
TIO2 79.46
SIO2 137.49
TIO2 79.97
SIO2 138.01
TIO2 81.00
SIO2 138.29
TIO2 83.41
SIO2 147.03
TIO2 80.42
SIO2 71.30
 比較例3,比較例4
B面
基板    単位(nm)
TIO2     12.68
SIO2     32.61
TIO2    123.48
SIO2     29.84
TIO2     32.37
SIO2     24.96
TIO2    162.41
SIO2     12.16
TIO2     41.97
SIO2     49.03
TIO2     21.68
SIO2     52.11
TIO2    115.78
SIO2    182.35
TIO2    109.06
SIO2    182.84
TIO2    109.33
SIO2    182.64
TIO2    109.37
SIO2    182.44
TIO2    108.92
SIO2    181.60
TIO2    107.38
SIO2    178.48
TIO2    102.35
SIO2    166.38
TIO2     96.24
SIO2    167.92
TIO2    101.43
SIO2    172.04
TIO2     97.28
SIO2    157.38
TIO2     90.75
SIO2    155.88
TIO2     86.88
SIO2     74.09
Comparative Example 3 and Comparative Example 4
Side B substrate Unit (nm)
TIO2 12.68
SIO2 32.61
TIO2 123.48
SIO2 29.84
TIO2 32.37
SIO2 24.96
TIO2 162.41
SIO2 12.16
TIO2 41.97
SIO2 49.03
TIO2 21.68
SIO2 52.11
TIO2 115.78
SIO2 182.35
TIO2 109.06
SIO2 182.84
TIO2 109.33
SIO2 182.64
TIO2 109.37
SIO2 182.44
TIO2 108.92
SIO2 181.60
TIO2 107.38
SIO2 178.48
TIO2 102.35
SIO2 166.38
TIO2 96.24
SIO2 167.92
TIO2 101.43
SIO2 172.04
TIO2 97.28
SIO2 157.38
TIO2 90.75
SIO2 155.88
TIO2 86.88
SIO2 74.09
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 DU  デジタル機器
 LU  撮像光学装置
 OP  撮像光学系
 LN  レンズ群
 L1~L5  第1~第5レンズ
 ST  絞り
 FL  IRカットフィルター
 SR  撮像素子
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 5   携帯電話機
 30  撮像部
 31  画像生成部
 32  画像データバッファ
 33  画像処理部
 34  駆動部
 35  制御部
 36  記憶部
 37  I/F部
DU Digital equipment LU Imaging optical device OP Imaging optical system LN Lens group L1 to L5 First to fifth lenses ST Aperture FL IR cut filter SR Imaging element SS Light receiving surface (imaging surface)
IM image plane (optical image)
AX Optical axis 5 Mobile phone 30 Imaging unit 31 Image generation unit 32 Image data buffer 33 Image processing unit 34 Drive unit 35 Control unit 36 Storage unit 37 I / F unit

Claims (11)

  1.  複数のレンズと、多層膜と、を有する撮像光学系であって、
     前記複数のレンズのうちの少なくとも1枚のレンズが、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズであり、
     前記多層膜が、赤外線を反射する赤外カットコートであり、
     前記赤外線吸収材料を含んだレンズが、全体として以下の条件式(1)を満足し、かつ、2割像高、4割像高、6割像高、8割像高に対する光路において以下の条件式(2A)を満足し、
     前記赤外カットコートが以下の条件式(3A)を満足することを特徴とする撮像光学系;
    M_700nm≦ΣDCn・Mn≦M_600nm …(1)
    Y×ΣDCn・Mn≦ΣDn・Mn≦(1/Y)×ΣDCn・Mn …(2A)
    T1_50%λ-10≦T2_50%λ …(3A)
     ただし、赤外線吸収材料を含んだレンズの枚数はk枚であり、Σはnについて物体側から1枚目からk枚目までの総和を表すものとし、
    DCn:物体側からn枚目のレンズの光線中心の厚み(物理的光路長,mm)、
    Mn:物体側からn枚目のレンズに含まれる赤外線吸収材料の重量パーセント濃度(%)、
    M_600nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが600nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で600nmの吸収係数が0に近くM_600nmが計算できない場合にはM_600nmは無限大とする。)、
    M_700nm:1mm厚の透明基板に赤外線吸収材料を含ませた場合に、T1_50%λが700nmとなるような、赤外線吸収材料の重量パーセント濃度(ただし、赤外線吸収材料の吸収特性で700nmの吸収係数が0に近くM_700nmが計算できない場合にはM_700nmは0とする。)、
    T1_50%λ:赤外線を吸収するレンズの中心光線に対する合計内部透過率が600~700nmの範囲で50%となる波長(nm)、
    Dn:物体側からn枚目のレンズの厚み(物理的光路長,mm)、
    Y=2×√(λ_0.9Kpeak-λ_0.3Kpeak)
    λ_0.9Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の90%の値となる波長(μm)、
    λ_0.3Kpeak:添加する赤外線吸収材料の吸収係数の吸収ピークについて、その吸収ピークでの波長よりも小さい波長であって、吸収ピーク値の30%の値となる波長(μm)、
    T2_50%λ:入射角度30°のときの赤外カットコートの透過率が600~700nmの範囲で50%となる波長(nm)、
    である。
    An imaging optical system having a plurality of lenses and a multilayer film,
    At least one of the plurality of lenses is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays;
    The multilayer film is an infrared cut coat that reflects infrared rays,
    The lens including the infrared absorbing material as a whole satisfies the following conditional expression (1), and in the optical path for the 20% image height, 40% image height, 60% image height, and 80% image height, the following conditions are satisfied. Satisfying the formula (2A),
    The imaging optical system, wherein the infrared cut coat satisfies the following conditional expression (3A);
    M_700 nm ≦ ΣDCn · Mn ≦ M_600 nm (1)
    Y × ΣDCn · Mn ≦ ΣDn · Mn ≦ (1 / Y) × ΣDCn · Mn (2A)
    T1_50% λ−10 ≦ T2_50% λ (3A)
    However, the number of lenses including the infrared absorbing material is k, and Σ represents the total from the first to the kth from the object side for n,
    DCn: thickness of the light beam center of the nth lens from the object side (physical optical path length, mm),
    Mn: weight percent concentration (%) of the infrared absorbing material contained in the nth lens from the object side,
    M_600 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 600 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 600 nm). When M_600 nm cannot be calculated close to 0, M_600 nm is infinite.)
    M_700 nm: When an infrared absorbing material is included in a transparent substrate having a thickness of 1 mm, the weight percent concentration of the infrared absorbing material such that T1_50% λ is 700 nm (however, the absorption characteristic of the infrared absorbing material has an absorption coefficient of 700 nm). When M_700 nm cannot be calculated close to 0, M_700 nm is set to 0).
    T1 — 50% λ: wavelength (nm) at which the total internal transmittance with respect to the central ray of the lens that absorbs infrared rays is 50% in the range of 600 to 700 nm,
    Dn: the thickness of the nth lens from the object side (physical optical path length, mm),
    Y = 2 × √ (λ_0.9Kpeak−λ_0.3Kpeak)
    λ_0.9 Kpeak: The wavelength (μm) of the absorption peak of the absorption coefficient of the infrared absorbing material to be added is a wavelength smaller than the wavelength at the absorption peak and 90% of the absorption peak value,
    λ_0.3 Kpeak: About the absorption peak of the absorption coefficient of the infrared absorbing material to be added, the wavelength (μm) which is smaller than the wavelength at the absorption peak and is 30% of the absorption peak value,
    T2 — 50% λ: wavelength (nm) at which the transmittance of the infrared cut coat when the incident angle is 30 ° is 50% in the range of 600 to 700 nm,
    It is.
  2.  前記赤外線吸収材料を含んだレンズが、2割像高、4割像高、6割像高、8割像高に対する光路において以下の条件式(2B)を満足し、前記赤外カットコートが以下の条件式(3B)を満足することを特徴とする請求項1記載の撮像光学系。
    √Y×ΣDCn・Mn≦ΣDn・Mn≦(1/√Y)×ΣDCn・Mn …(2B)
    T1_50%λ-7≦T2_50%λ …(3B)
    The lens including the infrared absorbing material satisfies the following conditional expression (2B) in the optical path for 20% image height, 40% image height, 60% image height, and 80% image height, and the infrared cut coat is: The imaging optical system according to claim 1, wherein the conditional expression (3B) is satisfied.
    √Y × ΣDCn · Mn ≦ ΣDn · Mn ≦ (1 / √Y) × ΣDCn · Mn (2B)
    T1_50% λ-7 ≦ T2_50% λ (3B)
  3.  前記赤外線吸収材料の吸収ピークが600~900nmの間にあることを特徴とする請求項1又は2記載の撮像光学系。 The imaging optical system according to claim 1 or 2, wherein the infrared absorption material has an absorption peak between 600 and 900 nm.
  4.  前記赤外線吸収材料を含んだレンズが1枚又は2枚であることを特徴とする請求項1~3のいずれか1項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 3, wherein the number of lenses including the infrared absorbing material is one or two.
  5.  4から6枚構成の撮像光学系において、物体側から3枚目のレンズが、前記赤外線吸収材料を含んだレンズであることを特徴とする請求項1~4のいずれか1項に記載の撮像光学系。 5. The imaging according to claim 1, wherein in the imaging optical system having 4 to 6 lenses, the third lens from the object side is a lens including the infrared absorbing material. Optical system.
  6.  前記赤外カットコートが、レンズ面に設けられていることを特徴とする請求項1~5のいずれか1項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 5, wherein the infrared cut coat is provided on a lens surface.
  7.  前記赤外カットコートが、前記赤外線吸収材料を含んだレンズのレンズ面に設けられていることを特徴とする請求項6記載の撮像光学系。 The imaging optical system according to claim 6, wherein the infrared cut coat is provided on a lens surface of a lens including the infrared absorbing material.
  8.  前記赤外カットコートが、前記赤外線吸収材料を含んでいないレンズのレンズ面に設けられていることを特徴とする請求項6記載の撮像光学系。 The imaging optical system according to claim 6, wherein the infrared cut coat is provided on a lens surface of a lens not including the infrared absorbing material.
  9.  前記赤外カットコートが、前記複数のレンズとは別に設けられた基板にコーティングされていることを特徴とする請求項1~5のいずれか1項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 5, wherein the infrared cut coat is coated on a substrate provided separately from the plurality of lenses.
  10.  請求項1~9のいずれか1項に記載の撮像光学系と、受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の受光面上に被写体の光学像が形成されるように前記撮像光学系が設けられていることを特徴とする撮像光学装置。 An image pickup optical system according to any one of claims 1 to 9, and an image pickup device that converts an optical image formed on the light receiving surface into an electrical signal, the light receiving surface of the image pickup device being provided on the light receiving surface. An imaging optical apparatus, wherein the imaging optical system is provided so that an optical image of a subject is formed.
  11.  請求項10記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とするデジタル機器。 11. A digital apparatus comprising the imaging optical device according to claim 10 to which at least one function of still image shooting and moving image shooting of a subject is added.
PCT/JP2014/082692 2014-01-24 2014-12-10 Imaging optical system, imaging optical device, and digital instrument WO2015111316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558750A JP6414083B2 (en) 2014-01-24 2014-12-10 Imaging optical system, imaging optical device, and digital device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011086 2014-01-24
JP2014-011086 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111316A1 true WO2015111316A1 (en) 2015-07-30

Family

ID=53681136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082692 WO2015111316A1 (en) 2014-01-24 2014-12-10 Imaging optical system, imaging optical device, and digital instrument

Country Status (2)

Country Link
JP (1) JP6414083B2 (en)
WO (1) WO2015111316A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187566A (en) * 2016-04-04 2017-10-12 カンタツ株式会社 Image capturing lens
JP6273063B1 (en) * 2017-10-03 2018-01-31 日本板硝子株式会社 Optical filter and imaging device
JP6273062B1 (en) * 2017-10-03 2018-01-31 日本板硝子株式会社 Optical filter and imaging device
JP2018055091A (en) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 Optical imaging lens, plastic material thereof, image capturing device, and electronic device
JP2018055092A (en) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 Optical imaging lens, plastic material thereof, image capturing device, and electronic device
CN110361831A (en) * 2018-04-11 2019-10-22 大立光电股份有限公司 Optical image lens, image-taking device and electronic device
CN111736323A (en) * 2020-08-26 2020-10-02 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10942305B2 (en) 2018-04-11 2021-03-09 Largan Precision Co., Ltd. Optical image lens assembly, imaging apparatus and electronic device
CN113917657A (en) * 2021-09-27 2022-01-11 浙江舜宇光学有限公司 Camera lens

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006595A1 (en) * 2020-11-25 2022-06-01 Largan Precision Co. Ltd. Optical lens assembly, imaging apparatus and electronic device
TWI817205B (en) * 2020-11-25 2023-10-01 大立光電股份有限公司 Optical lens assembly, imaging apparatus and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246141A (en) * 2003-02-14 2004-09-02 Olympus Corp Electronic imaging unit
JP2008020513A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus equipped therewith
WO2008072410A1 (en) * 2006-12-12 2008-06-19 Panasonic Corporation Imaging lens and imaging apparatus
JP2011100084A (en) * 2008-11-28 2011-05-19 Jsr Corp Near infrared ray cut filter and device comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246141A (en) * 2003-02-14 2004-09-02 Olympus Corp Electronic imaging unit
JP2008020513A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus equipped therewith
WO2008072410A1 (en) * 2006-12-12 2008-06-19 Panasonic Corporation Imaging lens and imaging apparatus
JP2011100084A (en) * 2008-11-28 2011-05-19 Jsr Corp Near infrared ray cut filter and device comprising the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187566A (en) * 2016-04-04 2017-10-12 カンタツ株式会社 Image capturing lens
US10890699B2 (en) 2016-09-07 2021-01-12 Largan Precision Co., Ltd. Optical image lens assembly, image capturing apparatus and electronic device
US11073638B2 (en) 2016-09-07 2021-07-27 Largan Precision Co., Ltd. Optical image lens assembly and plastic material thereof, image capturing apparatus and electronic device
JP2018055092A (en) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 Optical imaging lens, plastic material thereof, image capturing device, and electronic device
JP2018055091A (en) * 2016-09-07 2018-04-05 大立光電股▲ふん▼有限公司 Optical imaging lens, plastic material thereof, image capturing device, and electronic device
CN107976771A (en) * 2016-09-07 2018-05-01 大立光电股份有限公司 Optical image lens, plastic material thereof, image capturing device and electronic device
JP6273063B1 (en) * 2017-10-03 2018-01-31 日本板硝子株式会社 Optical filter and imaging device
JP2019066742A (en) * 2017-10-03 2019-04-25 日本板硝子株式会社 Optical filter and image capturing device
JP2019066741A (en) * 2017-10-03 2019-04-25 日本板硝子株式会社 Optical filter and imaging device
US11428857B2 (en) 2017-10-03 2022-08-30 Nippon Sheet Glass Company, Limited Optical filter and imaging apparatus
JP6273062B1 (en) * 2017-10-03 2018-01-31 日本板硝子株式会社 Optical filter and imaging device
WO2019069687A1 (en) * 2017-10-03 2019-04-11 日本板硝子株式会社 Optical filter and imaging device
TWI687717B (en) * 2018-04-11 2020-03-11 大立光電股份有限公司 Optical image lens assembly, imaging apparatus and electronic device
US10942305B2 (en) 2018-04-11 2021-03-09 Largan Precision Co., Ltd. Optical image lens assembly, imaging apparatus and electronic device
CN110361831B (en) * 2018-04-11 2022-11-18 大立光电股份有限公司 Optical image lens, image capturing device and electronic device
CN110361831A (en) * 2018-04-11 2019-10-22 大立光电股份有限公司 Optical image lens, image-taking device and electronic device
CN111736323A (en) * 2020-08-26 2020-10-02 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2022041392A1 (en) * 2020-08-26 2022-03-03 诚瑞光学(深圳)有限公司 Photographing optical lens
CN113917657A (en) * 2021-09-27 2022-01-11 浙江舜宇光学有限公司 Camera lens

Also Published As

Publication number Publication date
JPWO2015111316A1 (en) 2017-03-23
JP6414083B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6414083B2 (en) Imaging optical system, imaging optical device, and digital device
JP6478903B2 (en) Imaging lens
JP5752856B2 (en) Imaging lens and imaging device provided with imaging lens
JP5735712B2 (en) Imaging lens and imaging device provided with imaging lens
JP5854227B2 (en) Imaging lens and imaging apparatus
JP5823527B2 (en) Imaging lens and imaging device provided with imaging lens
JP5827688B2 (en) Imaging lens and imaging device provided with imaging lens
JP5687390B2 (en) Imaging lens and imaging device provided with imaging lens
WO2014155467A1 (en) Imaging lens and imaging device provided with imaging lens
WO2014080561A1 (en) Imaging optical system, imaging device and digital device
TWI485424B (en) Camera lens
JP5785324B2 (en) Imaging lens and imaging device provided with imaging lens
JPWO2017199633A1 (en) Imaging lens and imaging apparatus
JP5937036B2 (en) Imaging lens and imaging device provided with imaging lens
WO2013099255A1 (en) Imaging lens and imaging device provided with imaging lens
JP2014240918A (en) Imaging lens and imaging apparatus including imaging lens
JP2016099550A (en) Imaging lens and imaging apparatus including imaging lens
JP2016095460A (en) Imaging lens and imaging apparatus including imaging lens
JP2016114803A (en) Image capturing lens and image capturing device having the same
WO2014155466A1 (en) Imaging lens and imaging device equipped with imaging lens
JP5917431B2 (en) Imaging lens and imaging device provided with imaging lens
JP2015169889A (en) Imaging lens and imaging apparatus including the imaging lens
JP2015222369A (en) Imaging lens and imaging apparatus including the same
JP2014123034A (en) Imaging optical system, image capturing device, and digital equipment
US9164259B2 (en) Zooming optical system, imaging optical device, and digital device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879454

Country of ref document: EP

Kind code of ref document: A1