WO2015111253A1 - Thruster - Google Patents

Thruster Download PDF

Info

Publication number
WO2015111253A1
WO2015111253A1 PCT/JP2014/077030 JP2014077030W WO2015111253A1 WO 2015111253 A1 WO2015111253 A1 WO 2015111253A1 JP 2014077030 W JP2014077030 W JP 2014077030W WO 2015111253 A1 WO2015111253 A1 WO 2015111253A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
cover material
thruster
leak gas
throat
Prior art date
Application number
PCT/JP2014/077030
Other languages
French (fr)
Japanese (ja)
Inventor
康智 田中
中村 武志
雅人 石崎
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2015111253A1 publication Critical patent/WO2015111253A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/974Nozzle- linings; Ablative coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • the present invention relates to a thruster used for an artificial satellite, a spacecraft, and a flying object.
  • the thruster is a member used for attitude control of artificial satellites, spacecrafts, and flying objects, and is attached to a predetermined position on the outer surface of the aircraft such as artificial satellites.
  • the basic structure of the thruster is composed of an injector assembly, a chamber, a throat, and a nozzle skirt.
  • Fuel for propelling satellites and the like is introduced from the fuel tank into the chamber via the injector assembly.
  • the introduced fuel is mixed and burned in the chamber.
  • the combustion gas is compressed by the throat and then injected from the nozzle skirt, and the attitude of the artificial satellite or the like is controlled by the thrust.
  • Nb alloy with a special coating can be used as a thruster material.
  • Nb alloys are heavy and expensive, a lightweight and inexpensive thruster material is required.
  • a cooling type inexpensive thruster and a thruster using light monolithic ceramics.
  • the above-described thruster requires a cooling mechanism, so that the problem of weight reduction remains.
  • a brittle material is used, the reliability of strength is low.
  • CFRP carbon / carbon
  • C / C thruster due to the heat of the combustion gas in a high temperature / oxidizing atmosphere.
  • the C / C thruster deforms, and thinning is particularly noticeable on the throat inner wall where heat tends to collect.
  • the flow path of the combustion gas changes and the thrust is reduced. Therefore, the C / C thruster is not suitable for repeated use and is not used for attitude control of spacecrafts and satellites.
  • the main application of C / C thrusters is the first stage rocket nozzle and auxiliary rockets for disposable launches.
  • CMC ceramic matrix composite material reinforced with ceramic fibers
  • An example of CMC is a SiC / SiC composite material.
  • Patent Document 1 discloses a SiC / SiC thruster having high airtightness and high thermal shock resistance. The SiC / SiC thruster is suitable for repeated use because it does not generate ablation due to combustion gas.
  • microcracks very fine cracks
  • combustion gas inside the thruster may leak from the microcracks. Since the leaked leak gas is very small, it does not affect the thrust of the thruster.
  • a component derived from leak gas adheres to a fuselage such as an artificial satellite equipped with a thruster, a camera, a sensor, or the like installed in the artificial satellite, smooth operation and accurate observation may be hindered.
  • a CMC thruster whose surface is coated is proposed as a leak gas leakage prevention means.
  • the coating material adhered to the outer surface of the CMC thruster is affected by the thermal stress generated by the CMC thruster and breaks or peels off. This phenomenon is particularly remarkable in the region where the combustion heat is concentrated in the CMC thruster. Further, the combustion heat is transmitted to the coating material, the temperature difference between the inside and the outside (coating material surface) of the CMC thruster is enlarged, and the thermal stress is increased, which may promote the generation of microcracks.
  • An object of the present invention is to prevent contamination due to leak gas leaking from a microcrack of a thruster.
  • the present invention includes a main body using a ceramic matrix composite material and a cover material having a covering portion that covers an outer surface of a microcrack generation region of the main body, and the covering portion of the cover material is a microcrack generation region of the main body.
  • the gap between the inner surface of the covering portion of the cover material and the outer surface of the main body forms a gap for rectifying the leak gas leaking from the microcracks in the thrust direction, and the gap is located on the rear side in the thrust direction.
  • It is a thruster provided with the leak gas outflow port which is located in the edge part of this and flows out leak gas.
  • the microcrack generation region of the main body is at least one of a chamber, a throat, and a nozzle skirt.
  • the main component of the cover material is preferably titanium, nickel, or an alloy thereof.
  • the present invention can prevent and reduce contamination by leak gas leaking from the microcracks of the main body.
  • the thruster of the present invention includes a main body using a ceramic matrix composite material and a cover material having a covering portion that covers a microcrack generation region of the main body.
  • the covering portion of the cover material is provided to be separated from the outer surface of the main body.
  • FIG. 1 is a perspective view illustrating a thruster of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the thruster of the present invention.
  • 100 is a thruster
  • 110 is a main body
  • 120 is a cover material.
  • the main body 110 is a rotating body in which an axis X is a rotation axis and an outer radius j of a cross section perpendicular to the axis X is appropriately changed along the axis X.
  • the rotating body has a hollow and includes areas of an injector assembly 111, a chamber 112, a throat 113, and a nozzle skirt 114.
  • the chamber 112 communicates with a fuel tank (not shown) via an injector assembly 111. As a result, fuel is supplied from the fuel tank to the chamber 112.
  • the combustion gas burned in the chamber 112 is compressed by the throat 113 and then injected from the nozzle skirt 114.
  • the thrust direction is a direction in which an artificial satellite or the like to which the thruster 100 is attached is propelled.
  • the thrust direction is determined along an array including the injector assembly 111, the chamber 112, the throat 113, and the nozzle skirt 114.
  • the area close to the fuel tank is the front side in the thrust direction, and the area away from the fuel tank is the rear side in the thrust direction.
  • the thrust direction is substantially parallel to the axis X.
  • the injector assembly 111 side is the front side in the thrust direction
  • the nozzle skirt side is the rear side in the thrust direction.
  • the cover material 120 is a rotating body having a rotation axis that is coaxial with the rotation axis of the main body 110, and includes a mounting portion 121 that attaches the cover material 120 to the main body 110 and a covering portion 122 that covers the outer surface of the main body.
  • the inner dimension of the covering portion 122 is larger than the outer dimension of the corresponding region of the main body 110. Therefore, when the cover material 120 is attached to the main body 110, the cover portion 122 of the cover material 120 is separated from the opposing outer surface of the main body, and the gap between the inner surface of the cover portion 122 of the cover material 120 and the outer surface of the main body 110 is increased. 130 is formed.
  • an annular leak gas outlet 140 is formed at the end of the main body 110 on the nozzle skirt side by a gap between the main body 110 and the cover member 120, as shown in an enlarged sectional view A in the vicinity of the nozzle skirt. .
  • the leak gas outlet 140 allows leak gas to flow out.
  • the end of the main body 110 on the nozzle skirt side and the cover member 120 may or may not be coupled as long as the leak gas outlet 140 is formed.
  • Reference numeral 150 denotes a microcrack generated by a thermal shock given by heating the thruster of the present invention.
  • the arrow shown in the gap 130 is the flow of leak gas.
  • the leak gas is rectified in the gap 130 and escaped to the outside from the leak gas outlet 140 located at the rear end of the gap 130 in the thrust direction.
  • the arrows shown in FIG. 2 represent the rectification direction of the leak gas.
  • the leak gas is rectified along the outer surface of the main body and the inner surface of the cover portion of the cover material, and flows to the leak gas outlet
  • the main body of the thruster of the present invention is manufactured using a ceramic matrix composite material.
  • the main body can be made lightweight and tough.
  • ceramic-based composite materials include SiC / SiC composite materials with SiC fibers and SiC matrix, carbon / SiC (C / SiC) composite materials, and carbon / carbon with an oxidation resistant coating (C / C) Composite materials.
  • the main body uses a ceramic fiber fabric to form a megaphone-type (partial cone-shaped) fabric molded body including an injector assembly, chamber, throat, and nozzle skirt illustrated in FIGS. 1 and 2, and the fabric molded body It can be produced by impregnating a ceramic matrix.
  • a ceramic matrix composite material in which another matrix layer having a low binding force of ceramic fibers may be formed in the voids of the ceramic matrix.
  • the main body of a thruster can be made excellent in lightness, airtightness, and impact resistance.
  • the material used for the other matrix layer include a combination of an organic silicon polymer such as polycarbosilane and a carbon-based organic polymer such as phenol and Si (metal).
  • the main body having the above structure is manufactured by a hybrid process in which a ceramic matrix layer is formed by CVI treatment and another ceramic matrix layer is formed by PIP treatment after forming a fiber molded body by net shape molding of ceramic fibers.
  • Other manufacturing methods include SPI treatment in which carbon powder and Si powder are mixed and fired as exemplified in Japanese Patent No. 5138901, and MI treatment in which phenol containing carbon powder is fired, carbonized, and impregnated with molten Si. .
  • microcrack generation region means a region where a microcrack is generated by thermal shock, and includes a region where the generation of the microcrack is expected based on a microcrack generation condition described later. .
  • the microcrack generation condition is that combustion heat gathers and the temperature becomes high. For example, a region where the combustion heat has passed through the body and the temperature has been raised to 1000 ° C. or more is likely to generate microcracks due to the progress of sintering and crystallization.
  • Another condition is that the heated region is thick. That is, when the thick region of the main body is heated with combustion heat, the temperature difference between the inside and the outside of the region increases. Therefore, a large thermal stress is applied to the region, and microcracks are easily generated.
  • the temperature condition is 1000 ° C or higher, a SiC / SiC composite material with a thickness of 3 mm or more is liable to generate microcracks.
  • microcrack generation conditions include stress caused by differences in the thermal expansion coefficients of different materials such as C / SiC composite materials and reinforcing fibers.
  • the absolute value of the difference in thermal expansion coefficient between the reinforcing fiber and the matrix is 3.0 ⁇ 10 ⁇ 6 (/ K) or more, microcracks are likely to occur.
  • the absolute value of the difference in coefficient of thermal expansion is 0 to 0.5 ⁇ 10 -6 (/ K) in the case of SiC / SiC composite material, which is unlikely to cause microcracks.
  • C / SiC composite material it is 3.0 to 4.5 ⁇ 10 -6 (/ K), which is the main cause of micro cracks.
  • a microcrack is generated by satisfying one of the above microcrack generation conditions in a protruding manner or by satisfying a plurality of conditions in a composite manner.
  • the main body includes the chamber 112, the throat 113, and the nozzle skirt 114 shown in FIG. 2, and the thickness of each region is 1 to 2.5 mm for the chamber, 1 to 2.5 mm for the throat, and 1 to 2.5 mm for the nozzle skirt.
  • a material manufactured by using a SiC / SiC composite material is used.
  • the throat is easy to collect combustion heat due to its structure and tends to become high temperature. Therefore, from the viewpoint of reducing the influence of thermal stress, the thickness of the main body of the above example is smaller than the thickness of any region of the chamber or the nozzle skirt in the region where the thickness of the throat is the smallest.
  • micro cracks are generated even if the thickness is reduced. Therefore, when combustion gas of 2000 ° C. or higher passes through the inside of the main body in the above example, microcracks are most likely to occur at the throat, and a small number of microcracks are also generated at the chamber and nozzle skirt.
  • microcrack generation region having the microcrack generation conditions exemplified above include a throat, a nozzle skirt, and a chamber.
  • the covering portion of the cover material of the present invention covers one or more regions of these specific examples.
  • the covering portion of the cover material which will be described later, is not limited to a mode of covering the outer surfaces of the chamber, the throat, and the nozzle skirt of the main body as illustrated in FIGS. 1 and 2, and covers the outer surfaces of the chamber and the throat. And a mode of covering the outer surface of the throat.
  • the present invention includes a cover material that covers a microcrack generation region. As illustrated in FIGS. 1 and 2, in the present invention, a gap 130 is formed between the cover portion 122 of the cover material and the main body. Therefore, the combustion heat in the main body 110 is hardly transmitted to the cover material 120, and the temperature rise of the cover material 120 is suppressed. Further, the cover material 120 is not easily affected by the thermal stress generated in the main body 110. Therefore, breakage of the cover material 120 can be prevented. Thus, the present invention improves the leakage gas leakage prevention effect in the microcrack generation region.
  • the leak gas leaked from the micro crack 150 of the main body 110 is rectified in the thrust direction in the gap 130 and is released to the outside from the leak gas outlet 140 formed at the end of the nozzle skirt. Therefore, the leak gas does not stay in the gap 130.
  • the present invention suppresses the diffusion of leak gas in the vicinity of a fuselage such as an artificial satellite to which a thruster is attached. As a result, contamination due to leak gas-derived components can be avoided.
  • the present invention it is possible to suppress the adhesion of leak gas-derived components to an airframe such as an artificial satellite, maintain the thermal design at the initial design, and obtain a desired heat insulation effect. In addition, it prevents the leak gas-derived components from adhering to the cameras, sensors, etc. equipped in the aircraft, contributing to accurate observation and smooth operation.
  • the cover material used in the present invention is a rotating body having a rotation axis coaxial with the rotation axis X of the main body 110 and has a hollow. Comparing the inner radius h of the covering portion 122 of the cover material 120 with the outer radius j of the corresponding region of the main body 110 in the cross section in the direction perpendicular to the rotation axis X, the inner radius h of the covering portion 122 is Greater than 110 outer radius j.
  • the present invention covers the microcrack generation region in a state where the cover portion of the cover material is separated from the outer surface of the main body, and the gap 130 is formed by the inner surface of the cover portion and the outer surface of the main body. Can be formed.
  • the shape of the cover material is determined according to the outer shape of the main body.
  • the separation distance d between the inner surface of the covering portion and the outer surface of the main body facing the cover portion may be changed along the rotation axis X.
  • the megaphone-type cover material shown in FIG. 2 has a shape in which the covering portion 122 gradually increases the inner radius h of the covering portion along the rotation axis X direction from the attachment portion 121 side.
  • the separation distance d becomes the largest at the throat 113 and becomes smaller from the throat 113 toward the chamber 112 or the nozzle skirt 114.
  • the throat 113 is an area where the temperature tends to increase and microcracks are most likely to occur. Therefore, the amount of leaked gas is relatively large. By increasing the separation distance d of such a region, heat transfer to the cover material 120 can be suppressed, and the leakage gas can be kept in the gap 130 to a minimum.
  • the preferable separation distance is 15 to 30 mm, more preferably 20 mm in a region where the amount of microcracks generated is large and the leak amount of leak gas is large. is there.
  • the separation distance in the region where the amount of microcracks generated is small and the amount of leaked gas is small may be about 10 mm.
  • the separation distance at the leak gas outlet 140 is preferably 0.5 to 2 mm, more preferably 1 mm.
  • the material of the cover material used in the present invention is preferably a lightweight material having high heat resistance and high airtightness corresponding to the environment in which the thruster is used and leak gas.
  • the heat resistant temperature of the cover material is preferably 600 ° C or higher, and more preferably 800 ° C or higher.
  • titanium, nickel, and alloys thereof are preferably selected.
  • the cover material contains 50% by mass or more, preferably 96% by mass or more, based on the total mass of the cover material, with the preferred material as a main component.
  • the attachment part of the cover material is not particularly limited as long as the covering part can be disposed at a position corresponding to the microcrack generation region of the main body.
  • a preferable mounting position of the cover material is a region at least in front of the throat in the thrust direction on the outer surface of the main body, and more preferably a region of the injector assembly of the main body. Since the injector assembly region is kept at a low temperature, the thermal stress is relatively low. Therefore, even if the cover material is brought into close contact with the injector assembly, there is no risk of damage.
  • the shape of the attachment portion is a shape that can be attached to an airframe such as an artificial satellite to which the present invention is attached, and can be fitted to the main body of the present invention. Specific examples include a ring shape.
  • methods for attaching the cover material to the main body include the following methods.
  • the above-described attachment region of the main body is fitted to the attachment portion, and the outer surface of the main body and the inner surface of the attachment portion are joined. Thereafter, a cover material covering portion is joined to the attachment portion by means such as welding.
  • the attachment region of the main body may be fitted to a cover material in which the attachment portion and the covering portion having the above shape are integrated.
  • the length in the thrust direction of the joining region between the main body and the cover material is preferably at least 8 to 15 mm, and more preferably 8 mm.
  • the attachment part of the main body and the cover material can be joined using a known high heat-resistant brazing material.
  • a brazing material include a brazing material containing any one of titanium, zirconium, and hafnium. Specifically, active silver wax or the like.
  • the thruster of the present invention can provide a clearance of about 0.1 to 0.2 mm between the inner surface of the mounting portion and the outer surface of the mounting region of the main body at the melting temperature of the brazing material. Designed to.
  • the more specific joining process includes at least a fitting process, an infiltration process, and a cooling process.
  • the fitting step the above-mentioned clearance is formed by fitting the attachment region of the main body to the attachment member of the cover material.
  • the brazing material is poured into the clearance in the permeation process, and the brazing material is infiltrated into the cover material and the main body, and then held at a temperature exceeding the melting temperature of the brazing material for 10 minutes or more.
  • the cover can be attached to the main body by cooling at a cooling rate of about 1 ° C / min.
  • a covering portion can be joined to the attachment portion to obtain the thruster of the present invention.
  • the cover material of the present invention contributes to preventing contamination due to diffusion of leak gas, extending the life of the thruster, and has the effect of protecting the main body.
  • the above effects are remarkably exhibited when applied to a main body using a ceramic matrix composite material, but can also be applied to a main body manufactured from other materials.
  • the above cover material can obtain the above-described effects even when attached to a main body in which a C / C composite material is used.
  • the fuel supplied to the chamber of the present invention may be a liquid fuel or a solid fuel, and specific examples include nitric oxide (NTO) / nitrogen (N 2 ), NTO / monomethylhydrazine (MMH), and the like.
  • NTO nitric oxide
  • N 2 nitrogen
  • MMH monomethylhydrazine
  • a main body made of SiC / SiC composite material formed into the shape shown in FIG. 1 was prepared.
  • the shape of the main body is a shape including an injector assembly, a chamber, a throat, and a nozzle skirt as shown in FIG.
  • the injector assembly of the main body was 1 cm
  • the chamber was 1.3 cm
  • the throat was 1.4 cm
  • the nozzle skirt was 3.4 cm.
  • the outer diameter of the cross section in the direction perpendicular to the axial center was 3.0 cm in the injector assembly, and gradually decreased toward the throat.
  • the minimum outer diameter of the throat cross section was 1.6 cm.
  • the outer diameter of the cross section increased from the throat to the nozzle skirt, and the outer diameter of the cross section at the end of the nozzle skirt was 4.4 cm.
  • the attachment of the cover material comprising the attachment portion and the covering portion of the present invention to the main body was performed by first fixing the attachment portion to the main body and then welding the covering portion to the attachment portion.
  • a titanium alloy ring having an inner diameter of 3.3 cm was prepared as an attachment part for the cover material.
  • the injector assembly (outer diameter: 3.0 cm) of the main body was heated, and 8 mm in length in the thrust direction was fitted to the ring.
  • Activated silver wax was poured as a brazing material into the clearance between the injector assembly and the ring of the main body, and further heat treatment was performed.
  • the heat treatment temperature was 750 ° C., and the heat treatment holding time was 5 minutes. Thereafter, the ring was cooled at a cooling rate of 1 ° C./min for 720 minutes, and the ring was fixed to the outer surface of the injector assembly.
  • a covering part made of the same titanium alloy as the ring was prepared.
  • the shape of the covering portion was a megaphone-type partial conical shape shown in FIG. 1, and the inner diameter gradually increased from the end portion on the side to be welded to the ring toward the opposite end portion.
  • the length in the thrust direction was 7.1 cm
  • the inner diameter of the end on the welding side with the ring was 3.3 cm
  • the inner diameter of the opposite end was 3.7 cm.
  • the covering portion was welded to a ring fixed to the main body to cover the main body chamber, throat, and nozzle skirt, thereby obtaining the thrusters of the examples.
  • the separation distance between the outer surface of the main body and the inner surface of the cover material was calculated from the size of each region of the main body and the size of the covering portion of the cover material.
  • the maximum separation distance was 1.2 cm of the gap formed on the throat outer peripheral surface.
  • the width of the annular leak gas outlet formed on the outer peripheral surface of the nozzle skirt at the end of the main body was 2 mm.
  • the above embodiment has the effects of the present invention described above.
  • this invention is manufactured with the size corresponding to an attachment object, it is larger than the size of said Example.
  • the dimensional ratios of the main body and the cover material, and the gaps formed by these are attached with those manufactured at the same dimensional ratio as in the above embodiment.
  • the present invention is lightweight and can suppress contamination due to leak gas-derived components of an airframe such as an artificial satellite to which a thruster is attached. Moreover, leak gas can be made to flow out in the thrust direction.
  • thrusters 110 body 111 Injector assembly 112 chambers 113 Throat 114 nozzle skirt 120 Cover material 121 Mounting part 122 Cover 130 gap 140 Leak gas outlet 150 micro crack X axis of rotation (axis) d Distance between the outer surface of the body and the inner surface of the cover material h Cover radius j Outer radius of the body

Abstract

[Problem] A thruster having a main body using a ceramic base composite material, that suppresses contamination caused by leaked gas leaking from micro-cracks formed in the main body. [Solution] Provided is a thruster comprising: a main body using a ceramic base composite material; and a cover material having a covering section that covers the outer surface of a micro-crack generation area in the main body. The covering section of the cover material is provided at a distance from the outer surface of the micro-crack generation area in the main body. The inner surface of the covering section of the cover material and the outer surface of the main body form a gap that rectifies, in the thrust direction, leaked gas that leaks from the micro-cracks. A leaked gas outlet is provided positioned at an end section on the rear side of the gap in the thrust direction and causes leaked gas to flow out. The micro-crack generation area in the main body is at least one area among a chamber, a throat, and a nozzle skirt. A main component of the cover material is either titanium, nickel, or an alloy of these.

Description

スラスタThruster
 本発明は、人工衛星、宇宙往還機、飛しょう体に用いられるスラスタに関する。 The present invention relates to a thruster used for an artificial satellite, a spacecraft, and a flying object.
 スラスタは、人工衛星や、宇宙往還機、飛しょう体の姿勢制御に用いられる部材であり、人工衛星等の機体外表面の所定の位置に取付けられる。スラスタの基本構造は、インジェクタアッシー、チャンバ、スロート、ノズルスカートからなる。 The thruster is a member used for attitude control of artificial satellites, spacecrafts, and flying objects, and is attached to a predetermined position on the outer surface of the aircraft such as artificial satellites. The basic structure of the thruster is composed of an injector assembly, a chamber, a throat, and a nozzle skirt.
 人工衛星等を推進させる燃料は、燃料タンクからインジェクタアッシーを介してチャンバに導入される。導入された燃料は、チャンバ内で混合され燃焼する。燃焼ガスはスロートで圧縮された後、ノズルスカートから噴射され、その推力により人工衛星等の姿勢が制御される。 Fuel for propelling satellites and the like is introduced from the fuel tank into the chamber via the injector assembly. The introduced fuel is mixed and burned in the chamber. The combustion gas is compressed by the throat and then injected from the nozzle skirt, and the attitude of the artificial satellite or the like is controlled by the thrust.
 従来、スラスタの材料として特殊なコーティングをしたNb合金が挙げられる。しかしNb合金は重く高価なため、軽量かつ安価なスラスタ材料が求められる。Nb合金に代えて、冷却式の安価なスラスタや軽いモノリシックセラミックスを用いるスラスタがある。しかし上記のスラスタは、冷却機構が必要なため軽量化の課題が残る。また脆性材料を用いるため強度の信頼性が低い。 Conventionally, Nb alloy with a special coating can be used as a thruster material. However, since Nb alloys are heavy and expensive, a lightweight and inexpensive thruster material is required. Instead of the Nb alloy, there are a cooling type inexpensive thruster and a thruster using light monolithic ceramics. However, the above-described thruster requires a cooling mechanism, so that the problem of weight reduction remains. Moreover, since a brittle material is used, the reliability of strength is low.
 軽量かつ脆性破壊しない材料として複合材料がある。スラスタに用いられる複合材料としては、カーボン/カーボン(C/C)複合材料が挙げられる。しかし、C/C複合材料で製造されたスラスタは、繰り返し使用により推力が低下しやすい。その一因は、燃焼ガスによるアブレーションである。 There is a composite material as a material that is lightweight and does not break brittlely. Examples of the composite material used for the thruster include a carbon / carbon (C / C) composite material. However, a thruster manufactured from a C / C composite material tends to have a reduced thrust due to repeated use. One reason is ablation by combustion gas.
 すなわち燃料の燃焼時、C/Cスラスタ内では、高温・酸化雰囲気中、燃焼ガスの熱によりアブレーションが発生する。アブレーションが生じるとC/Cスラスタは変形し、特に熱が集まりやすいスロート内壁は減肉が顕著である。初期形状から変形したスラスタは、燃焼ガスの流路が変化し推力が低下する。したがって、C/Cスラスタは、繰り返し使用に適当でなく、宇宙往還機や人工衛星などの姿勢制御には用いられない。C/Cスラスタの主な用途は、使い捨ての打ち上げ時の一段目のロケットノズルや補助ロケットである。 That is, during fuel combustion, ablation occurs in the C / C thruster due to the heat of the combustion gas in a high temperature / oxidizing atmosphere. When ablation occurs, the C / C thruster deforms, and thinning is particularly noticeable on the throat inner wall where heat tends to collect. In the thruster deformed from the initial shape, the flow path of the combustion gas changes and the thrust is reduced. Therefore, the C / C thruster is not suitable for repeated use and is not used for attitude control of spacecrafts and satellites. The main application of C / C thrusters is the first stage rocket nozzle and auxiliary rockets for disposable launches.
 繰り返し使用可能な複合材料として、セラミックス繊維で強化したセラミックス基複合材料(CMC)が提案される。CMCの例として、SiC/SiC複合材料が挙げられる。特許文献1には、高気密性、高耐熱衝撃性を備えるSiC/SiCスラスタが開示される。上記SiC/SiCスラスタは、燃焼ガスによるアブレーションが発生しないため、繰り返し使用に適する。 As a composite material that can be used repeatedly, a ceramic matrix composite material (CMC) reinforced with ceramic fibers is proposed. An example of CMC is a SiC / SiC composite material. Patent Document 1 discloses a SiC / SiC thruster having high airtightness and high thermal shock resistance. The SiC / SiC thruster is suitable for repeated use because it does not generate ablation due to combustion gas.
 しかし、従来のSiC/SiCスラスタは、一回目のミッションの後、熱衝撃により非常に微細な亀裂(マイクロクラック)が発生する。マイクロクラックが発生すると、マイクロクラックからスラスタ内部の燃焼ガスが漏出する場合がある。漏出するリークガスは微量であるためスラスタの推力には影響しない。しかし、リークガスに由来する成分が、スラスタが取り付けられた人工衛星等の機体や人工衛星等に装備されるカメラ、センサ等に付着すると、円滑な運行や正確な観測を妨げる場合がある。 However, in the conventional SiC / SiC thruster, after the first mission, very fine cracks (microcracks) are generated due to thermal shock. When microcracks occur, combustion gas inside the thruster may leak from the microcracks. Since the leaked leak gas is very small, it does not affect the thrust of the thruster. However, if a component derived from leak gas adheres to a fuselage such as an artificial satellite equipped with a thruster, a camera, a sensor, or the like installed in the artificial satellite, smooth operation and accurate observation may be hindered.
 リークガス漏出防止手段として、その表面をコーティングさせたCMCスラスタが提案される。しかしCMCスラスタの外表面に密着させたコーティング材は、CMCスラスタで生じる熱応力の影響を受け、破断や剥離が生じる。特にCMCスラスタにおいて燃焼熱が集中する領域では、その現象が顕著である。またコーティング材に燃焼熱が伝達されることでCMCスラスタの内側と外側(コーティング材表面)との温度差が拡大して熱応力が上昇し、マイクロクラックの発生を助長するおそれがある。 A CMC thruster whose surface is coated is proposed as a leak gas leakage prevention means. However, the coating material adhered to the outer surface of the CMC thruster is affected by the thermal stress generated by the CMC thruster and breaks or peels off. This phenomenon is particularly remarkable in the region where the combustion heat is concentrated in the CMC thruster. Further, the combustion heat is transmitted to the coating material, the temperature difference between the inside and the outside (coating material surface) of the CMC thruster is enlarged, and the thermal stress is increased, which may promote the generation of microcracks.
特願平11-19416号公報Japanese Patent Application No. 11-19416
 しかし、リークガス由来成分によるコンタミネーションを防止できるスラスタが望まれる。本発明の課題は、スラスタのマイクロクラックから漏出するリークガスによるコンタミネーションを防止することである。 However, a thruster that can prevent contamination due to leak gas-derived components is desired. An object of the present invention is to prevent contamination due to leak gas leaking from a microcrack of a thruster.
 本発明は、セラミックス基複合材料を用いた本体と、本体のマイクロクラック発生領域の外表面を被覆する被覆部を有するカバー材とを備え、該カバー材の被覆部が、本体のマイクロクラック発生領域の外表面から離間させて設けられ、カバー材の被覆部の内表面と本体の外表面とが、マイクロクラックから漏出するリークガスをスラスト方向に整流させる間隙を形成し、間隙のスラスト方向の後方側の端部に位置し、リークガスを流出させるリークガス流出口を備えたスラスタである。本体のマイクロクラック発生領域は、少なくともチャンバ、スロート、ノズルスカートのいずれか一以上の領域である。カバー材の主成分は、チタン、ニッケルおよびこれらの合金のいずれかが好ましい。 The present invention includes a main body using a ceramic matrix composite material and a cover material having a covering portion that covers an outer surface of a microcrack generation region of the main body, and the covering portion of the cover material is a microcrack generation region of the main body. The gap between the inner surface of the covering portion of the cover material and the outer surface of the main body forms a gap for rectifying the leak gas leaking from the microcracks in the thrust direction, and the gap is located on the rear side in the thrust direction. It is a thruster provided with the leak gas outflow port which is located in the edge part of this and flows out leak gas. The microcrack generation region of the main body is at least one of a chamber, a throat, and a nozzle skirt. The main component of the cover material is preferably titanium, nickel, or an alloy thereof.
 本発明は、本体のマイクロクラックから漏出するリークガスによるコンタミネーションを防止し、また低減することができる。 The present invention can prevent and reduce contamination by leak gas leaking from the microcracks of the main body.
本発明のスラスタを例示する透視図である。It is a perspective view which illustrates the thruster of this invention. 本発明のスラスタを例示する断面概略図である。It is the cross-sectional schematic which illustrates the thruster of this invention.
 本発明のスラスタは、セラミックス基複合材料を用いた本体と、本体のマイクロクラック発生領域を被覆する被覆部を有するカバー材とを備える。該カバー材の被覆部は、本体外表面から離間させて設けられる。図1は、本発明のスラスタを例示する透視図である。図2は、本発明のスラスタを例示する断面概略図である。 The thruster of the present invention includes a main body using a ceramic matrix composite material and a cover material having a covering portion that covers a microcrack generation region of the main body. The covering portion of the cover material is provided to be separated from the outer surface of the main body. FIG. 1 is a perspective view illustrating a thruster of the present invention. FIG. 2 is a schematic cross-sectional view illustrating the thruster of the present invention.
 図1および図2において、100はスラスタ、110は本体、120はカバー材である。本体110は、軸Xを回転軸とし、軸Xに垂直な断面の外半径jを軸Xに沿って適宜変化させてなる回転体である。該回転体は中空を有し、インジェクタアッシー111、チャンバ112、スロート113、ノズルスカート114の各領域を備える。チャンバ112は、インジェクタアッシー111を介して不図示の燃料タンクと連通する。これにより燃料タンクからチャンバ112に燃料が供給される。チャンバ112内で燃焼させた燃焼ガスは、スロート113で圧縮された後、ノズルスカート114から噴射される。本発明においてスラスト方向とは、スラスタ100を取り付けた人工衛星等を推進させる方向である。インジェクタアッシー111と、チャンバ112と、スロート113と、ノズルスカート114とを含む配列に沿ってスラスト方向は定まる。燃料タンクに近い領域がスラスト方向の前方側であり、燃料タンクから離れた領域がスラスト方向の後方側である。図2で具体的に示す場合、スラスト方向は、軸Xと概ね平行になる。インジェクタアッシー111側がスラスト方向の前方側、ノズルスカート側がスラスト方向の後方側である。 1 and 2, 100 is a thruster, 110 is a main body, and 120 is a cover material. The main body 110 is a rotating body in which an axis X is a rotation axis and an outer radius j of a cross section perpendicular to the axis X is appropriately changed along the axis X. The rotating body has a hollow and includes areas of an injector assembly 111, a chamber 112, a throat 113, and a nozzle skirt 114. The chamber 112 communicates with a fuel tank (not shown) via an injector assembly 111. As a result, fuel is supplied from the fuel tank to the chamber 112. The combustion gas burned in the chamber 112 is compressed by the throat 113 and then injected from the nozzle skirt 114. In the present invention, the thrust direction is a direction in which an artificial satellite or the like to which the thruster 100 is attached is propelled. The thrust direction is determined along an array including the injector assembly 111, the chamber 112, the throat 113, and the nozzle skirt 114. The area close to the fuel tank is the front side in the thrust direction, and the area away from the fuel tank is the rear side in the thrust direction. When specifically shown in FIG. 2, the thrust direction is substantially parallel to the axis X. The injector assembly 111 side is the front side in the thrust direction, and the nozzle skirt side is the rear side in the thrust direction.
 カバー材120は、本体110の回転軸と同軸を回転軸とする回転体であって、該カバー材120を本体110に取付ける取付部121と本体外表面を被覆する被覆部122とを備える。上記被覆部122の内寸は、本体110の対応する領域の外寸より大きい。したがってカバー材120を本体110に取付けたとき、カバー材120の被覆部122は、対向する本体外表面から離間し、カバー材120の被覆部122の内表面と本体110の外表面とにより、間隙130が形成される。 The cover material 120 is a rotating body having a rotation axis that is coaxial with the rotation axis of the main body 110, and includes a mounting portion 121 that attaches the cover material 120 to the main body 110 and a covering portion 122 that covers the outer surface of the main body. The inner dimension of the covering portion 122 is larger than the outer dimension of the corresponding region of the main body 110. Therefore, when the cover material 120 is attached to the main body 110, the cover portion 122 of the cover material 120 is separated from the opposing outer surface of the main body, and the gap between the inner surface of the cover portion 122 of the cover material 120 and the outer surface of the main body 110 is increased. 130 is formed.
 図2中、ノズルスカート近傍の拡大断面図Aに示されるように、本体110のノズルスカート側の端部には、本体110とカバー材120との間隙により環状のリークガス流出口140が形成される。リークガス流出口140は、リークガスを流出させる。本体110のノズルスカート側の端部とカバー材120とは、リークガス流出口140が形成される限りにおいて、結合されていてもよく、結合されていなくてもよい。150は、本発明のスラスタが加熱されて与えられる熱衝撃により発生するマイクロクラックである。間隙130に図示される矢印は、リークガスの流れである。リークガスは、間隙130内で整流され、間隙130のスラスト方向の後方側の端部に位置するリークガス流出口140から外部へ逃がされる。図2に示される矢印は、リークガスの整流方向を表す。図2に示されるように、リークガスは、本体外表面やカバー材の被覆部内表面に沿って整流され、リークガス流出口140へと流れる。 2, an annular leak gas outlet 140 is formed at the end of the main body 110 on the nozzle skirt side by a gap between the main body 110 and the cover member 120, as shown in an enlarged sectional view A in the vicinity of the nozzle skirt. . The leak gas outlet 140 allows leak gas to flow out. The end of the main body 110 on the nozzle skirt side and the cover member 120 may or may not be coupled as long as the leak gas outlet 140 is formed. Reference numeral 150 denotes a microcrack generated by a thermal shock given by heating the thruster of the present invention. The arrow shown in the gap 130 is the flow of leak gas. The leak gas is rectified in the gap 130 and escaped to the outside from the leak gas outlet 140 located at the rear end of the gap 130 in the thrust direction. The arrows shown in FIG. 2 represent the rectification direction of the leak gas. As shown in FIG. 2, the leak gas is rectified along the outer surface of the main body and the inner surface of the cover portion of the cover material, and flows to the leak gas outlet 140.
 本発明のスラスタの本体は、セラミックス基複合材料を用いて製造される。セラミックス基複合材料を用いることにより、該本体を軽量かつ高靱性にすることができる。上記のセラミックス基複合材料の例としては、SiC繊維とSiCマトリックスとを備えるSiC/SiC複合材料や、カーボン/SiC(C/SiC)複合材料、耐酸化コーティングが施されたカーボン/カーボン(C/C)複合材料が挙げられる。 The main body of the thruster of the present invention is manufactured using a ceramic matrix composite material. By using the ceramic matrix composite material, the main body can be made lightweight and tough. Examples of ceramic-based composite materials include SiC / SiC composite materials with SiC fibers and SiC matrix, carbon / SiC (C / SiC) composite materials, and carbon / carbon with an oxidation resistant coating (C / C) Composite materials.
 該本体は、セラミックス繊維織物を用いて図1および図2に例示されるインジェクタアッシー、チャンバ、スロート、ノズルスカートを備えるメガホン型(部分円錐形状)の織物成形体を成形し、該織物成形体にセラミックスマトリックスを含浸させて製造することができる。 The main body uses a ceramic fiber fabric to form a megaphone-type (partial cone-shaped) fabric molded body including an injector assembly, chamber, throat, and nozzle skirt illustrated in FIGS. 1 and 2, and the fabric molded body It can be produced by impregnating a ceramic matrix.
 さらに上記セラミックスマトリックスの空隙に、セラミックス繊維の拘束力が低い他のマトリックス層を形成させたセラミックス基複合材料を用いてもよい。これにより、スラスタの本体を軽量性、気密性、耐衝撃性に優れたものにすることができる。上記の他のマトリックス層に用いられる材料としては、ポリカルボシラン等の有機ケイ素ポリマー、フェノール等の炭素元となる有機ポリマーとSi(金属)との組み合わせが挙げられる。 Furthermore, a ceramic matrix composite material in which another matrix layer having a low binding force of ceramic fibers may be formed in the voids of the ceramic matrix. Thereby, the main body of a thruster can be made excellent in lightness, airtightness, and impact resistance. Examples of the material used for the other matrix layer include a combination of an organic silicon polymer such as polycarbosilane and a carbon-based organic polymer such as phenol and Si (metal).
 上記の構造を備える本体は、セラミックス繊維をネットシェイプ成型して繊維成型体を成型後、CVI処理によりセラミックスマトリックス層を形成し、さらにPIP処理により他のセラミックスマトリックス層を形成させるハイブリッド処理により製造することができる。他の製造方法としては、特許第5183901号に例示される炭素粉末とSi粉末とを混合焼成するSPI処理や、炭素粉末を含むフェノールを焼成、炭化させ、溶融Siを含浸させるMI処理が挙げられる。 The main body having the above structure is manufactured by a hybrid process in which a ceramic matrix layer is formed by CVI treatment and another ceramic matrix layer is formed by PIP treatment after forming a fiber molded body by net shape molding of ceramic fibers. be able to. Other manufacturing methods include SPI treatment in which carbon powder and Si powder are mixed and fired as exemplified in Japanese Patent No. 5138901, and MI treatment in which phenol containing carbon powder is fired, carbonized, and impregnated with molten Si. .
 上記の本体のチャンバ内で混合された燃料が燃焼すると、その熱衝撃により本体にマイクロクラックが発生する。本発明において、「マイクロクラック発生領域」とは、熱衝撃によりマイクロクラックが発生する領域を意味し、後に説明するマイクロクラック発生条件に基づいて、前記マイクロクラックの発生が予想される領域を包含する。 When the fuel mixed in the chamber of the main body burns, microcracks are generated in the main body due to the thermal shock. In the present invention, the “microcrack generation region” means a region where a microcrack is generated by thermal shock, and includes a region where the generation of the microcrack is expected based on a microcrack generation condition described later. .
 マイクロクラック発生条件としては、燃焼熱が集まることで高温になることが挙げられる。例えば、本体内を燃焼熱が通過して1000°C以上に昇温した領域は、焼結や結晶化の進行によるマイクロクラックを発生しやすい。 The microcrack generation condition is that combustion heat gathers and the temperature becomes high. For example, a region where the combustion heat has passed through the body and the temperature has been raised to 1000 ° C. or more is likely to generate microcracks due to the progress of sintering and crystallization.
 他の条件として、加熱される領域が肉厚であることが挙げられる。すなわち本体の肉厚な領域が燃焼熱で加熱されると、該領域の内側と外側とで温度差が大きくなる。そのため該領域に大きな熱応力がはたらき、マイクロクラックが発生しやすい。温度条件1000°C以上の場合、厚み3mm以上のSiC/SiC複合材料は、マイクロクラックが発生しやすい。 Another condition is that the heated region is thick. That is, when the thick region of the main body is heated with combustion heat, the temperature difference between the inside and the outside of the region increases. Therefore, a large thermal stress is applied to the region, and microcracks are easily generated. When the temperature condition is 1000 ° C or higher, a SiC / SiC composite material with a thickness of 3 mm or more is liable to generate microcracks.
 その他のマイクロクラック発生条件としては、C/SiC複合材料等の強化繊維とマトリックスとで異なる素材の熱膨張係数差に起因した応力によるものが挙げられる。強化繊維とマトリックスとの熱膨張係数差の絶対値が3.0×10-6(/K)以上の場合、マイクロクラックが発生しやすい。熱膨張係数差の絶対値について、SiC/SiC複合材料の場合は0~0.5×10-6(/K)であり、マイクロクラックの発生要因となり難い。C/SiC複合材料の場合は3.0~4.5×10-6(/K)であり、マイクロクラックの主な発生要因である。耐酸化コーティングが施されたC/C複合材料の場合は0~1.0×10-6(/K)であるが、耐酸化コーティングとの熱膨張係数差の絶対値は3.0×10-6(/K)以上となる材質が多く、マイクロクラックの発生要因である。マイクロクラックは、上記のマイクロクラック発生条件のうち、ひとつの条件を突出して満たすことにより、または複数の条件を複合的に満たすことにより発生する。 Other microcrack generation conditions include stress caused by differences in the thermal expansion coefficients of different materials such as C / SiC composite materials and reinforcing fibers. When the absolute value of the difference in thermal expansion coefficient between the reinforcing fiber and the matrix is 3.0 × 10 −6 (/ K) or more, microcracks are likely to occur. The absolute value of the difference in coefficient of thermal expansion is 0 to 0.5 × 10 -6 (/ K) in the case of SiC / SiC composite material, which is unlikely to cause microcracks. In the case of C / SiC composite material, it is 3.0 to 4.5 × 10 -6 (/ K), which is the main cause of micro cracks. In the case of C / C composite material with oxidation resistant coating, it is 0 to 1.0 × 10 -6 (/ K), but the absolute value of the difference in coefficient of thermal expansion from the oxidation resistant coating is 3.0 × 10 -6 (/ K) Many of the above materials are the cause of microcracks. A microcrack is generated by satisfying one of the above microcrack generation conditions in a protruding manner or by satisfying a plurality of conditions in a composite manner.
 例えば、本体として、図2に図示されるチャンバ112、スロート113、ノズルスカート114を備え、各領域の厚みが、チャンバは1~2.5mm、スロートは1~2.5mm、ノズルスカートは1~2.5mmの範囲内でそれぞれ変化し、かつSiC/SiC複合材料で製造されたものを用いるとする。スロートは、構造上燃焼熱が集まりやすく高温になりやすい。そのため上記例の本体は、熱応力の影響を低減する観点から、スロートの最も厚みが小さい領域では、その厚みをチャンバやノズルスカートのいずれの領域の厚みよりも小さくしている。 For example, the main body includes the chamber 112, the throat 113, and the nozzle skirt 114 shown in FIG. 2, and the thickness of each region is 1 to 2.5 mm for the chamber, 1 to 2.5 mm for the throat, and 1 to 2.5 mm for the nozzle skirt. It is assumed that a material manufactured by using a SiC / SiC composite material is used. The throat is easy to collect combustion heat due to its structure and tends to become high temperature. Therefore, from the viewpoint of reducing the influence of thermal stress, the thickness of the main body of the above example is smaller than the thickness of any region of the chamber or the nozzle skirt in the region where the thickness of the throat is the smallest.
 しかし、本体内部の温度勾配が大きく、スロートに過度の熱衝撃が与えられる場合、厚みを小さくしても、マイクロクラックが発生する。したがって、上記例の本体の内部を、2000°C以上の燃焼ガスが通過すると、スロートで最もマイクロクラックが発生しやすく、チャンバ、ノズルスカートでも少数のマイクロクラックが発生する。 However, when the temperature gradient inside the main body is large and an excessive thermal shock is given to the throat, micro cracks are generated even if the thickness is reduced. Therefore, when combustion gas of 2000 ° C. or higher passes through the inside of the main body in the above example, microcracks are most likely to occur at the throat, and a small number of microcracks are also generated at the chamber and nozzle skirt.
 上記に例示するマイクロクラック発生条件を備えるマイクロクラック発生領域の具体例としては、スロート、ノズルスカート、チャンバが挙げられる。本発明のカバー材の被覆部は、これらの具体例の一以上の領域を被覆する。後に説明するカバー材の被覆部は、図1および図2に例示されるような本体のチャンバとスロートとノズルスカートとの外表面を被覆させる態様に限定されず、チャンバとスロートの外表面を被覆させる態様や、スロートの外表面を被覆させる態様も包含する。 Specific examples of the microcrack generation region having the microcrack generation conditions exemplified above include a throat, a nozzle skirt, and a chamber. The covering portion of the cover material of the present invention covers one or more regions of these specific examples. The covering portion of the cover material, which will be described later, is not limited to a mode of covering the outer surfaces of the chamber, the throat, and the nozzle skirt of the main body as illustrated in FIGS. 1 and 2, and covers the outer surfaces of the chamber and the throat. And a mode of covering the outer surface of the throat.
 マイクロクラックが発生すると、該マイクロクラックを介して本体内の燃焼ガスや煤がごく微量、本体外へリークガスとして漏出する。本発明はマイクロクラック発生領域を被覆するカバー材を備える。図1および図2に例示されるように、本発明においては、カバー材の被覆部122と本体との間に間隙130が形成される。そのため、本体110内の燃焼熱がカバー材120に伝達されにくくカバー材120の高温化が抑制される。また本体110で生じる熱応力の影響をカバー材120が受けにくい。そのため、カバー材120の破断を防止できる。これにより本発明は、マイクロクラック発生領域でのリークガス漏出防止効果を向上させる。 When microcracks occur, a very small amount of combustion gas and soot in the main body leaks out of the main body as leak gas through the microcracks. The present invention includes a cover material that covers a microcrack generation region. As illustrated in FIGS. 1 and 2, in the present invention, a gap 130 is formed between the cover portion 122 of the cover material and the main body. Therefore, the combustion heat in the main body 110 is hardly transmitted to the cover material 120, and the temperature rise of the cover material 120 is suppressed. Further, the cover material 120 is not easily affected by the thermal stress generated in the main body 110. Therefore, breakage of the cover material 120 can be prevented. Thus, the present invention improves the leakage gas leakage prevention effect in the microcrack generation region.
 また、本体110のマイクロクラック150から漏出したリークガスは、間隙130内でスラスト方向に整流され、ノズルスカート端部に形成されるリークガス流出口140から外部へ逃がされる。そのため、リークガスは間隙130内に滞留しない。本発明は、スラスタが取り付けられた人工衛星等の機体の近傍でリークガスが拡散することを抑制する。その結果、リークガス由来成分によるコンタミネーションを回避することができる。 Further, the leak gas leaked from the micro crack 150 of the main body 110 is rectified in the thrust direction in the gap 130 and is released to the outside from the leak gas outlet 140 formed at the end of the nozzle skirt. Therefore, the leak gas does not stay in the gap 130. The present invention suppresses the diffusion of leak gas in the vicinity of a fuselage such as an artificial satellite to which a thruster is attached. As a result, contamination due to leak gas-derived components can be avoided.
 すなわち本発明は、人工衛星等の機体に対するリークガス由来成分の付着を抑制し、設計当初の熱設計を維持し所望の断熱効果を得ることができる。また、該機体に装備されるカメラ、センサ等へのリークガス由来成分の付着を抑制し、正確な観測や、円滑な運行に寄与する。 That is, according to the present invention, it is possible to suppress the adhesion of leak gas-derived components to an airframe such as an artificial satellite, maintain the thermal design at the initial design, and obtain a desired heat insulation effect. In addition, it prevents the leak gas-derived components from adhering to the cameras, sensors, etc. equipped in the aircraft, contributing to accurate observation and smooth operation.
 本発明に用いられるカバー材は、図2に例示されるように、本体110の回転軸Xと同軸を回転軸とする回転体であって中空を有する。回転軸Xに直交する方向の断面においてカバー材120の被覆部122の内半径hと、これに対応する本体110の領域の外半径jとを比較すると、被覆部122の内半径hは、本体110の外半径jより大きい。これにより、本発明は、カバー材を本体に取付けると、カバー材の被覆部が本体外表面から離間された状態でマイクロクラック発生領域を被覆し、該被覆部内表面と本体外表面とにより間隙130を形成させることができる。 As illustrated in FIG. 2, the cover material used in the present invention is a rotating body having a rotation axis coaxial with the rotation axis X of the main body 110 and has a hollow. Comparing the inner radius h of the covering portion 122 of the cover material 120 with the outer radius j of the corresponding region of the main body 110 in the cross section in the direction perpendicular to the rotation axis X, the inner radius h of the covering portion 122 is Greater than 110 outer radius j. As a result, when the cover material is attached to the main body, the present invention covers the microcrack generation region in a state where the cover portion of the cover material is separated from the outer surface of the main body, and the gap 130 is formed by the inner surface of the cover portion and the outer surface of the main body. Can be formed.
 従って、カバー材の形状は本体の外形に対応して決定される。回転軸Xに直交する方向において、被覆部内表面とこれに対向する本体外表面との離間距離dは、回転軸Xに沿って変化させてもよい。図2に示されるメガホン型のカバー材は、被覆部122が取付部121側から回転軸X方向に沿って、被覆部の内半径hが徐々に大きくなる形状である。該メガホン型のカバー材を用いる場合、上記離間距離dは、スロート113で最も大きくなり、スロート113からチャンバ112あるいはノズルスカート114に向かうにしたがって小さくなる。スロート113は高温化しやすく、最もマイクロクラックが発生しやすい領域である。そのため、リークガスの漏出量も比較的多い。そのような領域の離間距離dを大きくすることで、カバー材120への熱伝達を抑制すると共に、間隙130内でのリークガスの滞留を最小限にとどめることができる。なお、被覆部内表面とこれに対する本体外表面との離間距離dは、回転軸Xに直交する方向の断面におけるカバー材の被覆部の内半径hと本体の対応する領域の外半径jとの差(d=h-j)と言い換えることができる。 Therefore, the shape of the cover material is determined according to the outer shape of the main body. In the direction orthogonal to the rotation axis X, the separation distance d between the inner surface of the covering portion and the outer surface of the main body facing the cover portion may be changed along the rotation axis X. The megaphone-type cover material shown in FIG. 2 has a shape in which the covering portion 122 gradually increases the inner radius h of the covering portion along the rotation axis X direction from the attachment portion 121 side. When the megaphone-type cover material is used, the separation distance d becomes the largest at the throat 113 and becomes smaller from the throat 113 toward the chamber 112 or the nozzle skirt 114. The throat 113 is an area where the temperature tends to increase and microcracks are most likely to occur. Therefore, the amount of leaked gas is relatively large. By increasing the separation distance d of such a region, heat transfer to the cover material 120 can be suppressed, and the leakage gas can be kept in the gap 130 to a minimum. The distance d between the inner surface of the covering portion and the outer surface of the main body relative thereto is the difference between the inner radius h of the covering portion of the cover material and the outer radius j of the corresponding region of the main body in the cross section perpendicular to the rotation axis X In other words, (d = h−j).
 間隙130内におけるリークガスの滞留を抑制し、整流を促進する観点から、好ましい離間距離は、マイクロクラックの発生量が多量でリークガスの漏出量が多い領域では15~30mmであり、より好ましくは20mmである。マイクロクラックの発生量が少量でリークガスの漏出量が少ない領域での離間距離は、10mm程度でよい。リークガス流出口140における離間距離は0.5~2mmが好ましく、1mmが好ましい。離間距離を上記の好ましい範囲内で設けることにより、リークガスは間隙130内でスラスト方向に適切に整流され、リークガス流出口140からスラスト方向の後方側に向かって流出する。またカバー材120とリークガスとが局所的に接触することがないため、本発明のスラスタは、カバー材の部分的な高温化が回避され劣化が少ない。 From the viewpoint of suppressing the retention of leak gas in the gap 130 and promoting rectification, the preferable separation distance is 15 to 30 mm, more preferably 20 mm in a region where the amount of microcracks generated is large and the leak amount of leak gas is large. is there. The separation distance in the region where the amount of microcracks generated is small and the amount of leaked gas is small may be about 10 mm. The separation distance at the leak gas outlet 140 is preferably 0.5 to 2 mm, more preferably 1 mm. By providing the separation distance within the above preferable range, the leak gas is appropriately rectified in the thrust direction in the gap 130 and flows out from the leak gas outlet 140 toward the rear side in the thrust direction. In addition, since the cover material 120 and the leak gas do not come into local contact, the thruster of the present invention avoids a partial increase in the temperature of the cover material and is less deteriorated.
 本発明に用いられるカバー材の材料は、軽量で、かつスラスタが用いられる機材の使用環境やリークガスに対応する高耐熱性と高気密性とを備えるものが好ましい。例えば人工衛星に本発明が取り付けられる場合、カバー材の耐熱温度としては600°C以上が好ましく、800°C以上がより好ましい。具体的には、チタン、ニッケルおよびこれらの合金が好ましく選択される。上記のカバー材は、上記の好ましい材料を主成分として、カバー材全質量に対し、50質量%以上含有し、好ましくは96質量%以上含有する。 The material of the cover material used in the present invention is preferably a lightweight material having high heat resistance and high airtightness corresponding to the environment in which the thruster is used and leak gas. For example, when the present invention is attached to an artificial satellite, the heat resistant temperature of the cover material is preferably 600 ° C or higher, and more preferably 800 ° C or higher. Specifically, titanium, nickel, and alloys thereof are preferably selected. The cover material contains 50% by mass or more, preferably 96% by mass or more, based on the total mass of the cover material, with the preferred material as a main component.
 カバー材の取付部は、被覆部を本体のマイクロクラック発生領域に対応する位置に配置できる態様であれば特に制限されない。カバー材の好ましい取付位置は、本体外表面において、スラスト方向の少なくともスロートより前方側の領域であり、より好ましくは本体のインジェクタアッシーの領域である。インジェクタアッシーの領域は低温に保たれるため、熱応力が比較的少ない。そのためカバー材をインジェクタアッシーと密接させても破損する恐れがない。 The attachment part of the cover material is not particularly limited as long as the covering part can be disposed at a position corresponding to the microcrack generation region of the main body. A preferable mounting position of the cover material is a region at least in front of the throat in the thrust direction on the outer surface of the main body, and more preferably a region of the injector assembly of the main body. Since the injector assembly region is kept at a low temperature, the thermal stress is relatively low. Therefore, even if the cover material is brought into close contact with the injector assembly, there is no risk of damage.
 取付部の形状は、本発明が取り付けられる人工衛星等の機体に取付け可能な形状であって、かつ本発明の本体に嵌合可能な形状である。具体的にはリング状が挙げられる。本体へのカバー材の取付方法の例として、下記の方法がある。取付部に本体の上記の取付領域を嵌合させ、本体外表面と取付部内表面とを接合させる。その後、該取付部にカバー材の被覆部を溶接等の手段により接合させる方法である。他法として、あらかじめ上記形状の取付部と被覆部とが一体化させたカバー材に本体の取付領域を嵌合させてもよい。あるいは、本体にフランジを接合しておき、該フランジにカバー材をボルト止めする方法もある。いずれの場合も、本体とカバー材との接合領域のスラスト方向における長さは、少なくとも8~15mmが好ましく、8mmがより好ましい。 The shape of the attachment portion is a shape that can be attached to an airframe such as an artificial satellite to which the present invention is attached, and can be fitted to the main body of the present invention. Specific examples include a ring shape. Examples of methods for attaching the cover material to the main body include the following methods. The above-described attachment region of the main body is fitted to the attachment portion, and the outer surface of the main body and the inner surface of the attachment portion are joined. Thereafter, a cover material covering portion is joined to the attachment portion by means such as welding. As another method, the attachment region of the main body may be fitted to a cover material in which the attachment portion and the covering portion having the above shape are integrated. Alternatively, there is a method in which a flange is joined to the main body and a cover material is bolted to the flange. In any case, the length in the thrust direction of the joining region between the main body and the cover material is preferably at least 8 to 15 mm, and more preferably 8 mm.
 本体とカバー材の取付部とは、公知の高耐熱性ロウ材を用いて接合させることができる。そのようなロウ材としては、チタン、ジルコニウム、ハフニウムのいずれか一種を含むロウ材が挙げられる。具体的には、活性銀ロウ等である。ロウ材を用いて接合する場合、本発明のスラスタは、ロウ材の溶融温度において取付部の内表面と本体の取付領域の外表面との間に、0.1~0.2mm程度のクリアランスが得られるように設計される。 The attachment part of the main body and the cover material can be joined using a known high heat-resistant brazing material. Examples of such a brazing material include a brazing material containing any one of titanium, zirconium, and hafnium. Specifically, active silver wax or the like. When joining using brazing material, the thruster of the present invention can provide a clearance of about 0.1 to 0.2 mm between the inner surface of the mounting portion and the outer surface of the mounting region of the main body at the melting temperature of the brazing material. Designed to.
 より具体的な接合工程は、すくなくとも嵌合工程と浸透工程と冷却工程とを含む。嵌合工程においては、カバー材の取付部材に本体の取付領域を嵌合させて上記のクリアランスを形成させる。浸透工程で該クリアランスにロウ材が流し込まれ、ロウ材をカバー材と本体とに浸透させた後、ロウ材溶融温度を上回る温度で10分間以上保持する。その後冷却工程で、冷却速度1°C/min程度にて冷却して本体にカバー材の取付部を取り付けることができる。該取付部に被覆部を接合し、本発明のスラスタを得ることができる。 The more specific joining process includes at least a fitting process, an infiltration process, and a cooling process. In the fitting step, the above-mentioned clearance is formed by fitting the attachment region of the main body to the attachment member of the cover material. The brazing material is poured into the clearance in the permeation process, and the brazing material is infiltrated into the cover material and the main body, and then held at a temperature exceeding the melting temperature of the brazing material for 10 minutes or more. Thereafter, in the cooling process, the cover can be attached to the main body by cooling at a cooling rate of about 1 ° C / min. A covering portion can be joined to the attachment portion to obtain the thruster of the present invention.
 本発明のカバー材は、リークガス拡散によるコンタミネーション防止や、スラスタの長寿命化に寄与し、さらに本体保護効果を有する。上記の作用効果は、セラミックス基複合材料を用いた本体に適用する場合に顕著に発揮されるが、他の材料により製造された本体へも適用できる。上記のカバー材は、C/C複合材料が用いられる本体に取付けた場合にも、上記の作用効果を得ることができる。 The cover material of the present invention contributes to preventing contamination due to diffusion of leak gas, extending the life of the thruster, and has the effect of protecting the main body. The above effects are remarkably exhibited when applied to a main body using a ceramic matrix composite material, but can also be applied to a main body manufactured from other materials. The above cover material can obtain the above-described effects even when attached to a main body in which a C / C composite material is used.
 本発明のチャンバに供給される燃料は、液体燃料でも固体燃料でもよく、具体例としては、四酸化窒素(NTO)/窒素(N2)、NTO/モノメチルヒドラジン(MMH)等が挙げられる。 The fuel supplied to the chamber of the present invention may be a liquid fuel or a solid fuel, and specific examples include nitric oxide (NTO) / nitrogen (N 2 ), NTO / monomethylhydrazine (MMH), and the like.
 本発明の実施例を以下に記載する。ただし本発明は以下の実施例に限定されない。 Examples of the present invention will be described below. However, the present invention is not limited to the following examples.
[実施例]
 図1に示される形状に成形されたSiC/SiC複合材料製の本体を用意した。該本体の形状は、図2に示されるようなインジェクタアッシー、チャンバ、スロート、ノズルスカートを備える形状である。スラスト方向の長さについて、上記本体のインジェクタアッシーは1cm、チャンバは1.3cm、スロートは1.4cm、ノズルスカートは3.4cmであった。軸心に対し直交する方向の断面の外径は、インジェクタアッシーにおいて、3.0cmであり、スロートに向かって徐々に小さくなり、スロートの断面の最小外径は、1.6cmであった。スロートからノズルスカートへかけて上記断面の外径は大きくなり、ノズルスカート最端部の上記断面の外径は、4.4cmであった。
[Example]
A main body made of SiC / SiC composite material formed into the shape shown in FIG. 1 was prepared. The shape of the main body is a shape including an injector assembly, a chamber, a throat, and a nozzle skirt as shown in FIG. Regarding the length in the thrust direction, the injector assembly of the main body was 1 cm, the chamber was 1.3 cm, the throat was 1.4 cm, and the nozzle skirt was 3.4 cm. The outer diameter of the cross section in the direction perpendicular to the axial center was 3.0 cm in the injector assembly, and gradually decreased toward the throat. The minimum outer diameter of the throat cross section was 1.6 cm. The outer diameter of the cross section increased from the throat to the nozzle skirt, and the outer diameter of the cross section at the end of the nozzle skirt was 4.4 cm.
 本発明の取付部と被覆部とからなるカバー材の上記本体への取付けは、まず取付部を本体に固定し、さらに該取付部に被覆部を溶接して行った。カバー材の取付部となる内径3.3cmのチタン合金製リングを用意した。上記本体のインジェクタアッシー(外径3.0cm)を加熱し、該リングに、スラスト方向の長さで8mm嵌合させた。本体のインジェクタアッシーとリングとのクリアランスにロウ材として活性銀ロウを流し込み、さらに熱処理を行った。熱処理温度は750°C、熱処理保持時間は5分間であった。その後、冷却速度1°C/minで720分間冷却し、上記インジェクタアッシー外表面に上記リングを固定した。 The attachment of the cover material comprising the attachment portion and the covering portion of the present invention to the main body was performed by first fixing the attachment portion to the main body and then welding the covering portion to the attachment portion. A titanium alloy ring having an inner diameter of 3.3 cm was prepared as an attachment part for the cover material. The injector assembly (outer diameter: 3.0 cm) of the main body was heated, and 8 mm in length in the thrust direction was fitted to the ring. Activated silver wax was poured as a brazing material into the clearance between the injector assembly and the ring of the main body, and further heat treatment was performed. The heat treatment temperature was 750 ° C., and the heat treatment holding time was 5 minutes. Thereafter, the ring was cooled at a cooling rate of 1 ° C./min for 720 minutes, and the ring was fixed to the outer surface of the injector assembly.
 リングと同じチタン合金で作製した被覆部を用意した。被覆部の形状は図1に示されるメガホン型の部分円錐形状で、リングと溶接させる側の端部から反対側の端部に向かって、徐々に内径が大きくなる形状であった。その寸法は、スラスト方向の長さが7.1cm、リングとの溶接側の端部の内径が3.3cm、反対側の端部の内径が3.7cmであった。上記被覆部を本体に固定されたリングに溶接して、本体のチャンバ、スロートおよびノズルスカートを被覆させ、実施例のスラスタを得た。 A covering part made of the same titanium alloy as the ring was prepared. The shape of the covering portion was a megaphone-type partial conical shape shown in FIG. 1, and the inner diameter gradually increased from the end portion on the side to be welded to the ring toward the opposite end portion. As for the dimensions, the length in the thrust direction was 7.1 cm, the inner diameter of the end on the welding side with the ring was 3.3 cm, and the inner diameter of the opposite end was 3.7 cm. The covering portion was welded to a ring fixed to the main body to cover the main body chamber, throat, and nozzle skirt, thereby obtaining the thrusters of the examples.
 本体の各領域のサイズとカバー材の被覆部のサイズとから、本体外表面とカバー材内表面との間の離間距離を計算した。最大離間距離は、スロート外周面上に形成される間隙の1.2cmであった。また、本体のノズルスカート最端部外周面上に形成される環状のリークガス流出口の幅は、2mmであった。 The separation distance between the outer surface of the main body and the inner surface of the cover material was calculated from the size of each region of the main body and the size of the covering portion of the cover material. The maximum separation distance was 1.2 cm of the gap formed on the throat outer peripheral surface. The width of the annular leak gas outlet formed on the outer peripheral surface of the nozzle skirt at the end of the main body was 2 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の実施例は、上記に説明した本発明の作用効果を有する。実際に人工衛星、宇宙往還機、飛しょう体等に取り付ける場合、本発明は、取付対象に対応するサイズで製造されるため、上記の実施例のサイズよりも大きい。ただし本体およびカバー材、さらにこれらにより形成される間隙等の寸法比は、上記の実施例と同様の寸法比で製造したものを取り付ける。本発明は軽量で、スラスタが取り付けられる人工衛星等の機体のリークガス由来成分によるコンタミネーションを抑制することができる。またリークガスをスラスト方向に流出させることができる。 The above embodiment has the effects of the present invention described above. When actually attaching to an artificial satellite, a spacecraft, a flying object, etc., since this invention is manufactured with the size corresponding to an attachment object, it is larger than the size of said Example. However, the dimensional ratios of the main body and the cover material, and the gaps formed by these are attached with those manufactured at the same dimensional ratio as in the above embodiment. The present invention is lightweight and can suppress contamination due to leak gas-derived components of an airframe such as an artificial satellite to which a thruster is attached. Moreover, leak gas can be made to flow out in the thrust direction.
100 スラスタ
110 本体
111 インジェクタアッシー
112 チャンバ
113 スロート
114 ノズルスカート
120 カバー材
121 取付部
122 被覆部
130 間隙
140 リークガス流出口
150 マイクロクラック
X   回転軸(軸心)
d   本体外表面とカバー材内表面との離間距離
h   被覆部の内半径
j   本体の外半径
100 thrusters
110 body
111 Injector assembly
112 chambers
113 Throat
114 nozzle skirt
120 Cover material
121 Mounting part
122 Cover
130 gap
140 Leak gas outlet
150 micro crack
X axis of rotation (axis)
d Distance between the outer surface of the body and the inner surface of the cover material
h Cover radius
j Outer radius of the body

Claims (3)

  1.  セラミックス基複合材料を用いた本体と、本体のマイクロクラック発生領域の外表面を被覆する被覆部を有するカバー材とを備え、カバー材の被覆部が、本体のマイクロクラック発生領域の外表面から離間させて設けられ、カバー材の被覆部の内表面と本体の外表面とが、マイクロクラックから漏出するリークガスをスラスト方向に整流させる間隙を形成し、間隙のスラスト方向の後方側の端部に位置し、リークガスを流出させるリークガス流出口を備えたスラスタ。 A main body using a ceramic matrix composite material and a cover material having a covering portion that covers the outer surface of the microcrack generation region of the main body, the covering portion of the cover material being separated from the outer surface of the microcrack generation region of the main body The gap between the inner surface of the covering portion of the cover material and the outer surface of the main body forms a gap that rectifies the leak gas leaked from the microcracks in the thrust direction, and is located at the end of the gap on the rear side in the thrust direction. And a thruster provided with a leak gas outlet for allowing leak gas to flow out.
  2.  本体のマイクロクラック発生領域が、少なくともチャンバ、スロート、ノズルスカートのいずれか一以上の領域である請求項1に記載されるスラスタ。 The thruster according to claim 1, wherein the microcrack generation region of the main body is at least one of a chamber, a throat, and a nozzle skirt.
  3.  カバー材の主成分が、チタン、ニッケルおよびこれらの合金のいずれかである請求項1又は請求項2に記載されるスラスタ。 The thruster according to claim 1 or 2, wherein a main component of the cover material is titanium, nickel, or an alloy thereof.
PCT/JP2014/077030 2014-01-22 2014-10-09 Thruster WO2015111253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-009442 2014-01-22
JP2014009442 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111253A1 true WO2015111253A1 (en) 2015-07-30

Family

ID=53681076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077030 WO2015111253A1 (en) 2014-01-22 2014-10-09 Thruster

Country Status (1)

Country Link
WO (1) WO2015111253A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206345A (en) * 1989-10-04 1991-09-09 Soc Europ Propulsion <Sep> Combustion chamber for propulsion unit
JP2003003907A (en) * 2001-06-01 2003-01-08 Astrium Gmbh Rocket propulsion unit provided with inner case-to-outer case separation means
JP2006193383A (en) * 2005-01-14 2006-07-27 Tech Res & Dev Inst Of Japan Def Agency Ceramic composite material and its manufacturing method
JP2007239473A (en) * 2006-03-06 2007-09-20 Ihi Aerospace Co Ltd Rocket engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206345A (en) * 1989-10-04 1991-09-09 Soc Europ Propulsion <Sep> Combustion chamber for propulsion unit
JP2003003907A (en) * 2001-06-01 2003-01-08 Astrium Gmbh Rocket propulsion unit provided with inner case-to-outer case separation means
JP2006193383A (en) * 2005-01-14 2006-07-27 Tech Res & Dev Inst Of Japan Def Agency Ceramic composite material and its manufacturing method
JP2007239473A (en) * 2006-03-06 2007-09-20 Ihi Aerospace Co Ltd Rocket engine

Similar Documents

Publication Publication Date Title
EP2255086B1 (en) Stave and ring cmc nozzle
US6758386B2 (en) Method of joining ceramic matrix composites and metals
EP3018305B1 (en) Exhaust nozzle center body attachment
US5780157A (en) Composite structure
EP2375045B1 (en) Afterbody assembly provided with flexible links with abutments
US8127555B2 (en) Flowpath heat exchanger for thermal management and power generation within a hypersonic vehicle
US5720339A (en) Refractory-composite/heat-pipe-cooled leading edge and method for fabrication
US4838346A (en) Reusable high-temperature heat pipes and heat pipe panels
US7980057B2 (en) Integral composite rocket motor dome/nozzle structure
AU2002244289B2 (en) Dissolvable thrust vector control vane
US10458653B2 (en) Machinable CMC insert
EP3109043B1 (en) Method for integral joining infiltrated ceramic matrix composites
CN108995792B (en) Air rudder with composite material structure
US20170138219A1 (en) Turbine engine and exhaust system connection
US20160356497A1 (en) Machinable cmc insert
JP5681728B2 (en) Integrated aircraft engine flow path structure
FR2787514A1 (en) PROPELLER
US9835425B2 (en) Metallic nosecone with unitary assembly
EP2874975B1 (en) Method for brazing parts made from a composite ceramic matrix material, with anchoring of the brazed joint
US10472976B2 (en) Machinable CMC insert
WO2015111253A1 (en) Thruster
EP3478956B1 (en) Rocket motor with composite divergent nozzle section
EP0421865B1 (en) Rocket combustion chamber
Berdoyes Snecma Propulsion Solide Advanced Technology SRM Nozzles. History and Future.
JP4946295B2 (en) Thruster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP