WO2015110107A2 - Verfahren zur bestimmungeiner motortemperatur eines elektromotors - Google Patents

Verfahren zur bestimmungeiner motortemperatur eines elektromotors Download PDF

Info

Publication number
WO2015110107A2
WO2015110107A2 PCT/DE2014/200693 DE2014200693W WO2015110107A2 WO 2015110107 A2 WO2015110107 A2 WO 2015110107A2 DE 2014200693 W DE2014200693 W DE 2014200693W WO 2015110107 A2 WO2015110107 A2 WO 2015110107A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electric motor
power electronics
model
engine
Prior art date
Application number
PCT/DE2014/200693
Other languages
English (en)
French (fr)
Inventor
Carsten Angrick
Jochen Reith
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112014006233.2T priority Critical patent/DE112014006233A5/de
Publication of WO2015110107A2 publication Critical patent/WO2015110107A2/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for determining an engine temperature of an electric motor, which is preferably used in an electric drive train of a motor vehicle, wherein the engine temperature is estimated via an engine temperature model.
  • DE 10 201 1 085 750 A1 uses thermal models. Although a temperature is measured by a temperature sensor, but not at the hottest point of the electric motor. In addition, the temperatures differ at different positions within the electric motor. These not measured, but still important temperatures in the various engine parts are therefore largely unknown. When determining the engine temperature, a cooling capacity, which takes place by air convection, is additionally used.
  • the measurement of the temperature by means of temperature sensors is usually possible only spatially offset to the hottest point in the electric motor. This results in temperature deviations and time delays of the measurement signal. This can result in components being either insufficiently protected or not optimally utilized.
  • an electric motor used as a drive motor is installed in an automated clutch and / or an automated transmission of a motor vehicle.
  • the temperature of the automated clutch or the automatic Geared siert the temperature of the drive motor or an element of the drive motor such as the coolant temperature or the engine oil temperature is used.
  • the coolant temperature or the engine oil temperature is used.
  • only one point in the stator of the electric motor is measured to determine the engine temperature.
  • the invention is therefore based on the object to provide a method for determining an engine temperature of an electric motor, in which also not measurable temperatures in different parts of the electric motor and in the environment of the electric motor are taken into account.
  • the object is achieved in that the estimation of the engine temperature in dependence on a temperature of the electric motor driving power electronics takes place.
  • the temperature of the power electronics By including the temperature of the power electronics, additional temperatures which influence the motor temperature of the electric motor are taken into account in the determination of the motor temperature of the electric motor. Due to this, an improved estimation of the engine temperature is possible, which allows a safe and at the same time optimal, highly utilized control of the electric motor in the drive train of the motor vehicle.
  • the object is achieved in that in a method for determining a power electronics temperature of an electric motor, which is preferably used in an electric drive train of a motor vehicle, the estimation of the power electronics temperature in dependence on the engine temperature of the electric motor.
  • the temperature determination of the power electronics takes place via a power electronics temperature model whose output quantity forms an input variable of the engine temperature model and vice versa.
  • the determination of the temperature of the associated power electronics is very useful, since there are possibly on the mechanics and cooling distinctive thermal interactions between the power electronics and the electric motor. In particular, if the power electronics and the electric motor are mechanically connected to each other, such an interaction should be considered.
  • the junction temperatures of the power semiconductors of the power electronics are calculated by means of the power electronics temperature model on the basis of the temperature measured at the power electronics and the calculated power losses incurred in the component. The junction temperature is the temperature at the barrier layer of two semiconductor materials in the power device.
  • the highest temperature of the power electronics arises here, as a rule. Since this temperature can not be measured directly, an actual temperature is measured by means of a sensor on the housing or on the printed circuit board, which is included in the power electronics temperature model. The thus improved characterization of the thermal state of the power electronics leads to an optimal control of the electric motor.
  • a cooling water temperature and / or a volume flow of the cooling water which flows around the electric motor and the power electronics, are used as the input temperature of the power electronics temperature model. Since both the electric motor and the power electronics give off heat to the cooling water or the cooling water transfers power between the power electronics and the electric motor, the calculation of the coolant temperature using the power electronics temperature model leads to an improved estimation of the engine temperature.
  • the corresponding temperature increases are calculated in the electric motor by a model with concentrated parameters in the form of a state space representation.
  • the input variables are the coolant inlet temperature and the losses in the individual engine components.
  • the temperatures are compared with the measured temperature of the sensor by means of an observer calculating the coolant temperature. This applies to a calculation of the engine temperature based on the temperature the power electronics as well as vice versa in a calculation of the temperature of the power electronics based on the engine temperature.
  • the motor temperature of the electric motor is initialized when the drive train is started by evaluating a switch-off time of the drive train. By means of the length of the switch-off time, conclusions can be drawn as to how far the temperature of the power electronics and the temperature of the electric motor have cooled.
  • the different switch-off temperatures measured at the time of switch-off of at least one sensor arranged in the power electronics and the electric motor and preferably the calculated temperatures of the power electronics temperature model and the engine temperature model are stored and when the drive system is restarted, the engine temperature is initialized by means of the switch-off temperatures and off a turn-off time detected by a controller based on the power electronics temperature model and the engine temperature model.
  • a controller based on the power electronics temperature model and the engine temperature model.
  • the power electronics temperature model has at least one observer, who closes the current cooling-water temperature with as little as possible cross-sensitivities unknown to the operating time of the electric motor. By dispensing with cross sensitivities, a fairly accurate cooling water temperature can thus be estimated.
  • the power electronics temperature model and the engine temperature model are directly coupled together.
  • common parameters such as the mechanical thermal connection can be modeled.
  • Fig. 2 is a schematic representation of the heat distribution of a power electronics of a
  • the electric motor The electric motor.
  • FIG. 1 A temperature model for an estimation of a motor temperature of an electric motor installed in a drive system of an electric or hybrid vehicle is shown in FIG.
  • This temperature model consists of two sub-temperature models, a power electronics temperature model and an engine temperature model. It is assumed that the power electronics is mechanically arranged directly on the electric motor. Both the power electronics and the electric motor are surrounded by a cooling fluid, which additionally takes place a heat transfer from one component to the other.
  • the temperature 9 to the coolant as well as a volume flow V of the coolant each form an input variable.
  • the junction temperatures 9 of the power semiconductors of the power electronics are calculated.
  • Heat source serving power semiconductor In addition to the junction temperature 9, which for the
  • Coolant output temperature Sab of the power electronics calculated, which in turn represents an important input variable for the engine temperature model.
  • the advantage here is the generally lower thermal time constant of the power temperature model.
  • the output quantity Sab determined in the power electronics temperature model forms the input variable of the temperature model of the electric motor.
  • the volume flow V of the coolant at the electric motor can be considered as a further input variable.
  • Fig. 2 shows the principle of a heat cycle in which the power electronics is coupled to an electric motor shown.
  • the coupling takes place via a common housing, in which both the electric motor and the power electronics are arranged.
  • the mechanical connection of the electric motor and the power electronics to the common housing results in a first thermal coupling path.
  • the electric motor and the power electronics are surrounded by the same cooling medium, which corresponds to a second thermal coupling path.
  • the heat from the power semiconductor which serves as a heat source, goes to the housing and from the housing into the, the heat sink forming cooling over.
  • the rotor and the stator each form a heat source, wherein the heat emitted is absorbed by the heat sink in the form of cooling.
  • the thermal models of the power electronics and the electric motor are coupled together to increase the accuracy of the cooling circuit.
  • This information can be divided into the current flow, the coolant temperature and other boundary conditions, such as the heat sources.
  • the two sub-temperature models in which the temperature profiles are calculated on the basis of the current power losses, merge into a holistic system, which is particularly important for integrated drive systems.
  • the sub-temperature models with concentrated parameters can be used for fast calculation of the thermal behavior.
  • the respective occurring power losses P v in the current operating points of the electric motor can be identified beforehand on the basis of measured data as well as analytical calculations as well as FEM calculations (finite element method).
  • the solution according to the invention thus takes a model-based estimate of all relevant temperatures of the electric motor in common cooling system with additional attention to the measured temperature of the power electronics to help.
  • This has the advantage that it can be dispensed with a variety of temperature sensors, which normally have to be used at each different point of the electric motor.
  • a model-based temperature estimation By such a model-based temperature estimation, a safer and at the same time optimal, highly utilized operation of the electric motor is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Description

Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors
Die Erfindung betrifft ein Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors, welcher vorzugsweise in einem elektrischen Antriebsstrang eines Kraftfahrzeuges verwendet wird, wobei die Motortemperatur über ein Motortemperaturmodell geschätzt wird.
Die Kenntnis der Temperatur eines Elektromotors ist im elektrischen Antriebssystem von großer Bedeutung. Zum einen kann der Elektromotor mit Hilfe der Leitungs- und Magnettemperatur vor einer thermischen Zerstörung bzw. einer Entmagnetisierung geschützt werden. Dies ermöglicht eine maximale thermische Ausnutzung des Elektromotors. Zum anderen erlaubt diese Kenntnis des aktuellen thermischen Zustandes eine optimale Ansteuerung des Elektromotors, da sowohl der magnetische Fluss als auch der Leitungswiderstand stark von der Temperatur abhängen.
Um die Motortemperatur eines Elektromotors zu schätzen, werden gemäß der
DE 10 201 1 085 750 A1 thermische Modelle eingesetzt. Zwar wird dabei eine Temperatur durch einen Temperatursensor gemessen, doch nicht an der heißesten Stelle des Elektromotors. Außerdem unterscheiden sich die Temperaturen an verschiedenen Positionen innerhalb des Elektromotors. Diese nicht weiter gemessenen, aber dennoch wichtigen Temperaturen in den verschiedenen Motorteilen sind somit weitgehend unbekannt. Bei der Ermittlung der Motortemperatur wird zusätzlich eine Kühlleistung, die durch Luftkonvektion erfolgt, herangezogen.
Die Messung der Temperatur mittels Temperatursensoren ist in aller Regel nur räumlich versetzt zur heißesten Stelle im Elektromotor möglich. Hierdurch entstehen Temperaturabweichungen sowie zeitliche Verzögerungen des Messsignals. Dies kann dazu führen, dass die Komponenten entweder nicht ausreichend geschützt oder nicht optimal ausgenutzt werden.
Wie aus der DE 101 55 459 A1 hervorgeht ist ein als Antriebsmotor verwendeter Elektromotor in einer automatisierten Kupplung und/oder einem automatisierten Getriebes eines Kraftfahrzeuges verbaut. Zur Temperaturberechnung der automatisierten Kupplung oder des automati- sierten Getriebes wird die Temperatur des Antriebsmotors oder eines Elementes des Antriebsmotors, wie beispielsweise die Kühlmitteltemperatur oder die Motoröltemperatur herangezogen. Zur Bestimmung der Motortemperatur wird aus Kosten- und Aufwandsgründen nur eine Stelle im Stator des Elektromotors gemessen.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors anzugeben, bei welchem auch nicht messbare Temperaturen in verschiedenen Teilen des Elektromotors und in der Umgebung des Elektromotors mit berücksichtigt werden.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Schätzung der Motortemperatur in Abhängigkeit von einer Temperatur einer, den Elektromotor ansteuernden Leistungselektronik erfolgt. Durch die Einbeziehung der Temperatur der Leistungselektronik werden zusätzliche Temperaturen, welche die Motortemperatur des Elektromotors beeinflussen, bei der Bestimmung der Motortemperatur des Elektromotors mit berücksichtigt. Aufgrund dessen ist eine verbesserte Schätzung der Motortemperatur möglich, was eine sichere und zugleich optimale, hochausgenutzte Ansteuerung des Elektromotors im Antriebsstrang des Kraftfahrzeuges erlaubt.
Alternativ wird die Aufgabe dadurch gelöst, dass bei einem Verfahren zur Bestimmung einer Leistungselektroniktemperatur eines Elektromotors, welcher vorzugsweise in einem elektrischen Antriebsstrang eines Kraftfahrzeuges verwendet wird die Schätzung der Leistungselektroniktemperatur in Abhängigkeit der Motortemperatur des Elektromotors erfolgt.
Vorteilhafterweise erfolgt die Temperaturbestimmung der direkt mechanisch und/oder durch ein gemeinsames Kühlmittel thermisch mit dem Elektromotor gekoppelten Leistungselektronik über ein Leistungselektroniktemperaturmodell, dessen Ausgangsgröße eine Eingangsgröße des Motortemperaturmodells bildet und umgekehrt. Die Temperaturbestimmung der zugehörigen Leistungselektronik ist dabei sehr nützlich, da es gegebenenfalls über die Mechanik und die Kühlung markante thermische Wechselwirkungen zwischen der Leistungselektronik und dem Elektromotor gibt. Insbesondere, wenn die Leistungselektronik und der Elektromotor mechanisch miteinander verbunden sind, ist eine solche Wechselwirkung zu beachten. ln einer Ausgestaltung werden mittels des Leistungselektroniktemperaturmodells die Junction- Temperaturen der Leistungshalbleiter der Leistungselektronik auf Basis der an der Leistungselektronik gemessenen Temperatur sowie der berechneten, im Bauteil anfallenden Verlustleistungen berechnet. Bei der Junction-Temperatur handelt es sich um die Temperatur an der Sperr- bzw. Grenzschicht zweier Halbleitermaterialien im Leistungsbauteil. Durch einen Stromfluss entsteht hier, in der Regel, die höchste Temperatur der Leistungselektronik. Da diese Temperatur nicht direkt gemessen werden kann, wird mittels eines Sensors am Gehäuse oder auf der Leiterplatte eine tatsächliche Temperatur gemessen, welche in das Leistungs- elektroniktemperaturmodell mit eingeht. Die somit verbesserte Charakterisierung des thermischen Zustandes der Leistungselektronik führt zu einer optimalen Ansteuerung des Elektromotors.
In einer Variante werden als Eingangstemperatur des Leistungselektroniktemperaturmodells eine Kühlwassertemperatur und/oder ein Volumenstrom des Kühlwassers, welches den Elektromotor und die Leistungselektronik umströmt, verwendet. Da sowohl der Elektromotor als auch die Leistungselektronik Wärme an das Kühlwasser abgeben bzw. das Kühlwasser zwischen Leistungselektronik und Elektromotor Wärme überträgt, führt die Berechnung der Kühlmitteltemperatur anhand des Leistungselektroniktemperaturmodells zu einer verbesserten Schätzung der Motortemperatur um umgekehrt.
In einer Variante werden im Elektromotor durch ein Modell mit konzentrierten Parametern in Form einer Zustandsraumdarstellung die entsprechenden Temperaturerhöhungen berechnet. Als Eingangsgrößen dienen die Kühlmitteleingangstemperatur sowie, die in den einzelnen Motorkomponenten entstehenden Verluste. Somit kann eine genaue Schätzung der Motortemperatur des Elektromotors realisiert werden. Mittels Beobachter können diese mit der Temperatur der Messstelle abgeglichen werden.
In einer weiteren Ausführungsform werden die Temperaturen mittels einem, die Kühlmitteltemperatur berechnenden Beobachters mit der gemessenen Temperatur des Sensors abgeglichen. Dies gilt für eine Berechnung der Motortemperatur auf der Grundlage der Temperatur der Leistungselektronik genauso wie umgekehrt bei einer Berechnung der Temperatur der Leistungselektronik auf der Grundlage der Motortemperatur.
In einer weiteren Ausführungsform erfolgt eine Initialisierung der Motortemperatur des Elektromotors bei einem Start des Antriebsstrangs durch eine Auswertung einer Ausschaltzeit des Antriebsstrangs. Mittels der Länge der Ausschaltzeit können Rückschlüsse darauf gezogen werden, wie weit sich die Temperatur der Leistungselektronik und die Temperatur des Elektromotors abgekühlt haben.
Vorteilhafterweise werden die zum Abschaltzeitpunkt von mindestens je einem in der Leistungselektronik und dem Elektromotor angeordneten Sensor gemessenen unterschiedlichen Abschalttemperaturen und vorzugsweise die berechneten Temperaturen des Leistungselekt- roniktemperaturmodells und des Motortemperaturmodells abgespeichert und beim Wiedereinschalten des Antriebssystems erfolgt eine Initialisierung der Motortemperatur mittels der Abschalttemperaturen und einer, von einem Steuergerät detektierten Ausschaltzeit auf der Grundlage des Leistungselektroniktemperaturmodells und des Motortemperaturmodells. Somit steht zum Startzeitpunkt des Antriebssystems eine Motortemperatur zur Verfügung, welche der tatsächlich vorhandenen Motortemperatur sehr nahe kommt.
In einer Ausgestaltung weist das Leistungselektroniktemperaturmodell mindestens einen Beobachter auf, welcher mit möglichst wenig, zur Betriebszeit des Elektromotors unbekannten Querempfindlichkeiten auf die aktuelle Kühlwassertemperatur schließt. Durch den Verzicht auf Berücksichtigung von Querempfindlichkeiten lässt sich somit eine ziemlich genaue Kühlwassertemperatur abschätzen.
Vorteilhafterweise werden das Leistungselektroniktemperaturmodell und das Motortemperaturmodell direkt miteinander gekoppelt. Dadurch können auch gemeinsame Parameter, wie beispielsweise die mechanische thermische Anbindung modelliert werden.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigt
Fig. 1 gekoppeltes Thermik- und Verlustmodell von Leistungselektronik und Elektromotor,
Fig. 2 eine Prinzipdarstellung der Wärmeverteilung einer Leistungselektronik eines
Elektromotors.
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
Ein Temperaturmodell für eine Schätzung einer Motortemperatur eines Elektromotors, der in einem Antriebssystem eines Elektro- oder Hybridfahrzeuges verbaut ist, ist in Fig. 1 dargestellt. Dieses Temperaturmodell besteht aus zwei Sub-Temperaturmodellen, einem Leis- tungselektroniktemperaturmodell und einem Motortemperaturmodell. Es wird dabei davon ausgegangen, dass die Leistungselektronik mechanisch direkt an dem Elektromotor angeordnet ist. Sowohl die Leistungselektronik als auch der Elektromotor sind von einer Kühlflüssigkeit umgeben, wodurch zusätzlich ein Wärmetransport von einer Komponente in die andere erfolgt.
In dem ersten Sub-Modell des Leistungselektroniktemperaturmodells bildet die Temperatur 9zu des Kühlmittels genauso wie ein Volumenstrom V des Kühlmittels je eine Eingangsgröße.
Diese Größen sind jedoch im Allgemeinen unbekannt. Basierend auf der Messung der Temperatur am Gehäuse der Leistungshalbleiter sowie von weiteren Randbedingungen, wie beispielsweise weiteren Umgebungstemperaturen, werden die Junction-Temperaturen 9 der Leistungshalbleiter der Leistungselektronik berechnet. Hierfür werden alle hilfreichen und verfügbaren Systeminformationen herangezogen, insbesondere die Verlustleistung Pv des als
Wärmequelle dienenden Leistungshalbleiters. Neben der Junction-Temperatur 9, die für den
Schutz der Leistungselektronik benötigt wird, wird dann aber auch die Gehäuse- und/oder die
Kühlmittelausgangstemperatur Sab der Leistungselektronik berechnet, die wiederum eine wichtige Eingangsgröße für das Motortemperaturmodell darstellt. Vorteilhaft hierbei ist die in der Regel geringere thermische Zeitkonstante des Leistungstemperaturmodells. Die in dem Leistungselektroniktemperaturmodell bestimmte Ausgangsgröße Sab bildet die Eingangsgröße des Temperaturmodells des Elektromotors. Gleichzeitig kann, sofern bekannt, der Volumenstrom V des Kühlmittels am Elektromotor als weitere Eingangsgröße berücksichtigt werden. Auch bei dem Motortemperaturmodell wird die Verlustleistung der Wärmequelle Elektromotor und eine durch einen Temperatursensor am Elektromotor, beispielsweise am
Stator, gemessene Temperatur zur Schätzung der tatsächlichen Motortemperatur 9 herangezogen.
Fig. 2 zeigt das Prinzip eines Wärmekreislaufes, bei welchem die Leistungselektronik mit einem dargestellten Elektromotor gekoppelt ist. Die Kopplung erfolgt dabei über ein gemeinsames Gehäuse, in welchem sowohl der Elektromotor als auch die Leistungselektronik angeordnet sind. Die mechanische Anbindung des Elektromotors und der Leistungselektronik an das gemeinsame Gehäuse ergibt einen ersten thermischen Koppelpfad.
Darüber hinaus sind der Elektromotor und die Leistungselektronik von dem gleichen Kühlmedium umgeben, was einem zweiten thermischen Koppelpfad entspricht. In der Leistungselektronik geht die Wärme von dem Leistungshalbleiter, der als Wärmequelle dient, auf das Gehäuse und von dem Gehäuse in die, die Wärmesenke bildende Kühlung über. Bei dem Elektromotor bilden der Rotor und der Stator jeweils eine Wärmequelle, wobei die abgegebene Wärme von der Wärmesenke in Form der Kühlung aufgenommen wird.
Die thermischen Modelle der Leistungselektronik und des Elektromotors werden zur Erhöhung der Genauigkeit über den Kühlkreislauf miteinander gekoppelt. Hiermit können die Informationen über den aktuellen Durchfluss, die Kühlmitteltemperatur und sonstige Randbedingungen, wie beispielsweise die Wärmequellen, geteilt werden. Die beiden Sub- Temperaturmodelle, in denen jeweils anhand der aktuellen Verlustleistungen die Temperaturverläufe berechnet werden, verschmelzen hierzu zu einem ganzheitlichen System, was insbesondere bei integrierten Antriebssystemen von Bedeutung ist. Zur schnellen Berechnung des thermischen Verhaltens können die Sub-Temperaturmodelle mit konzentrierten Parametern verwendet werden. Die jeweils anfallenden Verlustleistungen Pv in den aktuellen Betriebspunkten des Elektromotors können vorab anhand von Messdaten sowie von analytischen Berechnungen sowie von FEM-Berechnungen (Finite-Elemente-Methode) identifiziert werden. Die erfindungsgemäße Lösung nimmt somit eine modellbasierte Schätzung aller relevanten Temperaturen des Elektromotors bei gemeinsamem Kühlsystem unter zusätzlicher Beachtung der gemessenen Temperatur der Leistungselektronik zu Hilfe. Dies hat den Vorteil, dass auf eine Vielzahl von Temperatursensoren, die normalerweise an jedem unterschiedlichen Punkt des Elektromotors eingesetzt werden müssen, verzichtet werden kann. Durch eine solche modellbasierte Temperaturschätzung ist ein sichererer und zugleich optimaler, hoch ausgenützter Betrieb des Elektromotors möglich.
Bezugszeichenliste
9 im Temperaturmodell berechnete Temperatur
Pv Verlustleistung
Zulauftemperatur des Kühlmittels ab Ablauftemperatur des Kühlmittels
V Durchflussgeschwindigkeit des Kühlmediums

Claims

Patentansprüche
1 . Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors, welcher vorzugsweise in einem elektrischen Antriebsstrang eines Kraftfahrzeuges verwendet wird, wobei die Motortemperatur über ein Motortemperaturmodell geschätzt wird, dadurch gekennzeichnet, dass die Schätzung der Motortemperatur in Abhängigkeit einer Temperatur einer, den Elektromotor ansteuernden Leistungselektronik erfolgt.
2. Verfahren zur Bestimmung einer Leistungselektroniktemperatur eines Elektromotors, welcher vorzugsweise in einem elektrischen Antriebsstrang eines Kraftfahrzeuges verwendet wird, dadurch gekennzeichnet, dass die Schätzung der Leistungselektroniktemperatur in Abhängigkeit der Motortemperatur des Elektromotors erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Temperaturbestimmung der direkt mechanisch und/oder durch ein gemeinsames Kühlmittel thermisch mit dem Elektromotor gekoppelten Leistungselektronik über ein Leistungselekt- roniktemperaturmodell erfolgt, dessen Ausgangsgröße die Eingangsgröße des Motortemperaturmodells oder umgekehrt bildet.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass mittels des Leistungs- elektroniktemperaturmodells die Junction-Temperaturen der Leistungshalbleiter der Leistungselektronik auf Basis der an der Leistungselektronik gemessenen Temperatur sowie der berechneten, im Bauteil anfallenden Verlustleistungen berechnet werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als Eingangsparameter des Leistungselektroniktemperaturmodells eine Kühlwassertemperatur und/oder ein Volumenstrom des Kühlmittels, welches den Elektromotor und die Leistungselektronik umströmt, verwendet werden.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Elektromotor durch ein Modell mit konzentrierten Parametern in Form einer Zustandsraumdarstellung die entsprechenden Temperaturerhöhungen berechnet werden.
7. Verfahren nach Anspruch 6 dadurch gekennzeichnet, dass das Leistungselektronik- temperaturmodell und das Motortemperaturmodell direkt miteinander gekoppelt werden.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Initialisierung der Motortemperatur des Elektromotors bei einem Start des Antriebssystems durch eine Speicherung und eine Auswertung einer Ausschaltzeit des Antriebssystems erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die zum Abschaltzeitpunkt von mindestens je einem in der Leistungselektronik und dem Elektromotor angeordneten Sensor gemessenen unterschiedlichen Abschalttemperaturen und vorzugsweise die Temperaturen des Leistungselektroniktemperaturmodells und des Motortemperaturmodells abgespeichert werden und beim Wiedereinschalten des Antriebssystems eine Initialisierung der Motortemperatur mittels der Abschalttemperaturen und einer, von einem Steuergerät detektierten Ausschaltzeit auf der Grundlage des Leistungselektroniktemperaturmodells und des Motortemperaturmodells erfolgt.
10. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Leistungselektroniktemperaturmodell mindestens einen Beobachter aufweist, welcher mit möglichst wenig, zur Betriebszeit unbekannten Querempfindlichkeiten auf die aktuelle Kühlwassertemperatur schließt.
PCT/DE2014/200693 2014-01-22 2014-12-09 Verfahren zur bestimmungeiner motortemperatur eines elektromotors WO2015110107A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014006233.2T DE112014006233A5 (de) 2014-01-22 2014-12-09 Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014201067.5 2014-01-22
DE102014201067 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015110107A2 true WO2015110107A2 (de) 2015-07-30

Family

ID=52544236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200693 WO2015110107A2 (de) 2014-01-22 2014-12-09 Verfahren zur bestimmungeiner motortemperatur eines elektromotors

Country Status (2)

Country Link
DE (1) DE112014006233A5 (de)
WO (1) WO2015110107A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108693A1 (de) 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zur laufenden zustandsüberwachung eines elektromotors
DE102019101163B3 (de) 2019-01-17 2020-06-04 Schaeffler Technologies AG & Co. KG Elektrische Antriebseinheit und Verfahren zur Temperaturberechnung in einer elektrischen Antriebseinheit
CN113179070A (zh) * 2021-04-28 2021-07-27 联合汽车电子有限公司 一种车用电力驱动系统动力端子动态保护系统
US11320321B2 (en) * 2018-09-21 2022-05-03 Maschinenfabrik Reinhausen Gmbh Determining a characteristic temperature of an electric or electronic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155459A1 (de) 2000-11-27 2002-05-29 Luk Lamellen & Kupplungsbau Kraftfahrzeug
DE102011085750A1 (de) 2010-11-11 2012-05-16 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Steuerung einer automatisierten Kupplung oder eines automatisierten Getriebes oder einer Antriebseinheit in einem Fahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155459A1 (de) 2000-11-27 2002-05-29 Luk Lamellen & Kupplungsbau Kraftfahrzeug
DE102011085750A1 (de) 2010-11-11 2012-05-16 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Steuerung einer automatisierten Kupplung oder eines automatisierten Getriebes oder einer Antriebseinheit in einem Fahrzeug

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320321B2 (en) * 2018-09-21 2022-05-03 Maschinenfabrik Reinhausen Gmbh Determining a characteristic temperature of an electric or electronic system
WO2020108693A1 (de) 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zur laufenden zustandsüberwachung eines elektromotors
DE102018130495A1 (de) 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zur laufenden Zustandsüberwachung eines Elektromotors
US11575340B2 (en) 2018-11-30 2023-02-07 Schaeffler Technologies AG & Co. KG Method for continuous condition monitoring of an electric motor
DE102019101163B3 (de) 2019-01-17 2020-06-04 Schaeffler Technologies AG & Co. KG Elektrische Antriebseinheit und Verfahren zur Temperaturberechnung in einer elektrischen Antriebseinheit
US11971314B2 (en) 2019-01-17 2024-04-30 Schaeffler Technologies AG & Co. KG Electric drive unit and method for temperature calculation in an electrical drive unit
CN113179070A (zh) * 2021-04-28 2021-07-27 联合汽车电子有限公司 一种车用电力驱动系统动力端子动态保护系统

Also Published As

Publication number Publication date
DE112014006233A5 (de) 2016-10-13

Similar Documents

Publication Publication Date Title
DE102012207410B4 (de) Thermisches Modell für Trockendoppelkupplungsgetriebe
DE102017111976B4 (de) Motorkühlmittelsystem zur erfassung eines kühlmittellecks durch auswertung der elektrischen signale einer kühlmittelpumpe
DE102018116110A1 (de) Bremsentemperatur-überwachungssystem
WO2015110107A2 (de) Verfahren zur bestimmungeiner motortemperatur eines elektromotors
EP2700124B1 (de) Verfahren und vorrichtung zur ermittlung der innentemperatur eines energiespeichers
EP2551982B1 (de) Thermische Überwachung eines Umrichters
DE102016010049A1 (de) Vorrichtung für maschinelles Lernen und Verfahren zum Lernen einer vorhergesagten Lebensdauer eines Motors, Lebensdauer-Vorhersagevorrichtung und Motorsystem mit einer Vorrichtung für maschinelles Lernen
DE102015110643B4 (de) Steuervorrichtung für eine Werkzeugmaschine, welche ein Überhitzen eines Motors schätzt
EP2681433B1 (de) Verfahren zum bestimmen einer temperatur von kraftstoff
DE102015111186B4 (de) Verfahren und Vorrichtung zum Steuern einer elektrischen Maschine
CN103029650B (zh) 预测在车辆逆变器功率模块中的晶体管温度以及相关的操作方法
EP3749864B1 (de) Verfahren zur ermittlung von betriebszuständen eines ventilators
DE102016112923A1 (de) Motorantriebsvorrichtung und Erkennungsverfahren zum Erkennen einer Fehlfunktion des Wärmeabstrahlungsbetriebs einer Wärmesenke
DE102016109611A1 (de) Motorantriebsvorrichtung und Verfahren zum Melden einer Fehlfunktion bei einer Fluidströmung in einem Kühlkörper
DE102012204135A1 (de) Fahrzeugmotor-temperaturbestimmung
DE102014216310A1 (de) Verfahren zur Bestimmung einer Temperatur einer Leistungs- und Ansteuerelektronik eines elektrischen Antriebssystems
DE102008020933B4 (de) Verfahren zur Plausibilitätsprüfung einer Temperaturmessung bei einer Brennkraftmaschine
DE102019101163B3 (de) Elektrische Antriebseinheit und Verfahren zur Temperaturberechnung in einer elektrischen Antriebseinheit
DE102011111912A1 (de) Verfahren und System zum Berechnen der Temperatur eines Öls in einer Fahrzeugachse für variable Ölwechselintervalle
EP2914935B1 (de) Messvorrichtung, messanordnung und verfahren zur bestimmung einer messgrösse
EP3728902B1 (de) Motorvorrichtung
DE102014226079A1 (de) Verfahren und Vorrichtung zur Diagnose einer Zusatzheizfunktion eines Luftmassensensors
WO2023280353A1 (de) Verfahren zur ermittlung der wicklungstemperatur eines elektromotors
EP3002871B1 (de) Verfahren zum Initialisieren einer Temperaturüberwachung und Steuerungsverfahren für einen Elektromotor
DE112018008007B4 (de) Temperaturschätzvorrichtung, Motorsteuervorrichtung, und Temperaturschätzverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838780

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112014006233

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014006233

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838780

Country of ref document: EP

Kind code of ref document: A2