WO2015108353A1 - Turbine cooling device - Google Patents

Turbine cooling device Download PDF

Info

Publication number
WO2015108353A1
WO2015108353A1 PCT/KR2015/000439 KR2015000439W WO2015108353A1 WO 2015108353 A1 WO2015108353 A1 WO 2015108353A1 KR 2015000439 W KR2015000439 W KR 2015000439W WO 2015108353 A1 WO2015108353 A1 WO 2015108353A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
passage
dust collecting
turbine
cooling
Prior art date
Application number
PCT/KR2015/000439
Other languages
French (fr)
Korean (ko)
Inventor
김기백
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Publication of WO2015108353A1 publication Critical patent/WO2015108353A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present invention relates to a turbine cooling device, and more particularly, to a turbine cooling device for cooling a rotary blade or fixed blade of a turbine exposed to a high temperature fluid by air cooling.
  • turbomachines such as gas turbines and steam turbines (hereinafter, engines and devices including turbines, including gas turbines and steam turbines) are referred to as turbomachines, and power for converting the thermal energy of a fluid into rotational force, which is mechanical energy.
  • a generator includes a rotating body axially rotated by a fluid and a fixed body supporting and wrapping the rotating body.
  • the steam turbine includes a high pressure (HP) turbine, an intermediate pressure (IP) turbine, and a low pressure (LP) turbine in series or in parallel.
  • HP high pressure
  • IP intermediate pressure
  • LP low pressure
  • the high pressure, medium pressure, and low pressure turbines share one rotor.
  • the high pressure steam drives the rotor blades of the high pressure (HP) turbine, the medium pressure (IP) turbine, and the low pressure (LP) turbine to rotate the rotor.
  • the gas turbine is composed of a combustor 110 for generating combustion gas, a turbine 120 driven by the combustion gas discharged from the combustor 110, and a high pressure air to the combustor 110. It includes a compressor 130 for supplying.
  • the compressor 130 is rotated to intake and compress external air to be sent to the combustor 110.
  • the combustor 110 supplies fuel to the compressed air to combust the gas to generate combustion gas having a high temperature and high pressure, and then to the turbine 120.
  • the high-temperature, high-pressure combustion gas discharged from the combustor 110 drives the rotor blades of the turbine 120 to rotate the rotor 140 of the turbine 120.
  • fixed blades 121, 123, 125 and rotary blades 122, 124, 126 are alternately provided in multiple stages along the axial direction of the rotor 140.
  • Korean Unexamined Patent Publication No. 2011-0021933 discloses one example of the technology in detail.
  • the rotor 140 is provided with a rotor wheel 101 on the outside, a plurality of rotor blades 102 on the outer circumferential surface of the rotor wheel 101 is a plurality of predetermined intervals along the circumferential direction Is placed.
  • the rotor blade 102 has a cooling passage 103 formed therein, and the rotor wheel 101 has an air supply passage 104 for supplying air for cooling to the cooling passage 103 of the rotor blade 102. It is.
  • the conventional air supply passage 104 configured as described above includes foreign substances such as dust in the cooling air flowing in and enters the cooling passage 103 of the rotor blade 102, thereby causing the air supply passage of the rotor wheel 101 ( When stacked inside the cooling passage 103 of the 104 and the rotor blade 102, the air supply passage 104 and the interior of the cooling passage 103 are kept closed to inhibit the flow of air, and cooling There was a problem that performance is reduced.
  • the present invention was created to improve the problems of the conventional turbine cooling apparatus as described above, by capturing and removing foreign matter flowing into the passage through which the cooling air passes, the air passage is blocked by the foreign matter to reduce the cooling performance. It is an object to provide a turbine cooling apparatus that can be prevented.
  • the present invention was created to improve the problems of the conventional turbine cooling apparatus as described above, by capturing and removing foreign matter flowing into the passage through which the cooling air passes, the air passage is blocked by the foreign matter to reduce the cooling performance. It is an object to provide a turbine cooling apparatus that can be prevented.
  • a turbine cooling apparatus includes a airfoil member having a cooling passage through which air for cooling passes and exposed to a high temperature fluid for driving a turbine, and the airfoil member is coupled thereto. And a support member having an air supply passage for supplying air for cooling into the cooling passage of the airfoil member and having a dust collecting groove formed at one side of the air supply passage to collect foreign substances introduced with cooling air. do.
  • the airfoil member is a rotor blade driven by the turbine drive fluid to rotate the rotor
  • the support member may be a disk coupled to the rotor blades on the outer peripheral surface.
  • the airfoil member is a fixed blade for guiding a turbine driving fluid to the rotary blade
  • the support member may be a support ring.
  • the air supply passage is composed of an air inflow passage and an air discharge passage
  • the dust collecting groove may be formed in communication with the front end of the air inflow passage
  • the air inflow passage and the air discharge passage are formed to form a predetermined angle to each other.
  • the air inflow passage and the dust collecting groove may be formed on the same straight line, in which case the dust collecting groove is the air discharge passage and the predetermined at the end of the air inflow passage It may be formed in communication with each other forming an angle of.
  • the air discharge flow path and the dust collecting groove may be formed on the same straight line, in which case the dust collecting groove is the air inflow passage and the predetermined end of the air discharge passage. It may be formed in communication with each other forming an angle of.
  • the dust collecting groove may be formed by drilling or electric discharge machining.
  • the disk has a rotary blade coupling groove on the outer circumferential surface
  • the air inlet flow passage is formed by drilling in the side of the disk
  • the air discharge passage is the rotary blade coupling groove
  • In the air inlet can be formed to be perforated.
  • the dust collecting groove and the air inflow passage are preferably formed to be inclined in the opposite direction with a predetermined angle with respect to the rotation direction of the rotor.
  • the dust collecting grooves and the air inflow passage are formed in the radial direction of the rotor.
  • the dust collecting grooves and the air inflow passage are formed to be inclined along the axial direction of the rotor.
  • the turbine cooling apparatus according to the present invention, by trapping and removing foreign substances introduced into the passage through which air for cooling passes, the air passage is blocked by the substance, thereby preventing the cooling performance from being lowered. This has the effect of improving the durability of the rotor blades.
  • the collected foreign matter can be easily and quickly removed by drilling, thereby reducing the maintenance cost.
  • FIG. 1 is a schematic side cross-sectional view showing a conventional gas turbine
  • FIG. 2 is a partially enlarged cross-sectional view showing the turbine cooling apparatus shown in FIG. 1;
  • FIG. 3 is a side view showing the turbine disk shown in FIG.
  • Figure 4 is a schematic side cross-sectional view showing a turbine cooling apparatus according to an embodiment of the present invention
  • FIG. 5 is a partially enlarged view of FIG. 4;
  • Figure 6 is a schematic side cross-sectional view showing a turbine cooling apparatus according to another embodiment of the present invention.
  • FIG. 7 is a schematic side cross-sectional view cut along the line A-A of FIG. 6;
  • FIG. 8 is a partially enlarged view of FIG. 7;
  • FIGS. 9 and 10 are schematic side cross-sectional views showing a turbine cooling apparatus according to another embodiment of the present invention.
  • Turbine cooling device is a device for cooling the airfoil member provided in the turbine of the turbomachine.
  • the airfoil member includes a rotor blade and a fixed blade provided on a movement path through which a high temperature fluid for driving a turbine passes, and the rotor blade and the fixed blade are provided in a steam turbine and a gas turbine.
  • the rotor blades rotate the rotor by a driving fluid injected at high pressure inside the turbine, and the fixed blades guide the turbine driving fluid to the rotor blades.
  • a plurality of the rotor blades and the fixed blades are provided with a predetermined interval from each other along the circumferential direction of the rotor, the plurality of rotor blades and fixed blades are respectively coupled to the support member.
  • the support member includes a rotor wheel that is axially rotatable integrally with the rotor, and a support ring fixedly coupled to the casing of the turbine.
  • the rotor blade is fixedly coupled to the rotor wheel is axially rotated with the rotor, the fixed blade is fixedly coupled to the support ring.
  • the support ring is provided at the upper and lower ends of the fixed blade, respectively, to securely couple both ends of the fixed blade.
  • the support ring coupled to the upper end of the fixed blade is coupled to the inner wall of the casing, and the support ring coupled to the lower end of the fixed blade is fixedly coupled to one side of a rotor housing or a transition piece provided in the casing.
  • steam is used in the case of a steam turbine, and combustion gas generated by mixing and combusting fuel and outside air is used in the case of a gas turbine.
  • the turbine cooling apparatus according to an embodiment of the present invention is introduced into the rotary blade 10, the cooling passage 12 is formed therein through which the air for cooling passes, and the cooling air It includes a rotor wheel 20 is formed with a dust collecting groove 33 is collected foreign matter.
  • the rotor blade 10 is provided in the radial direction of the rotor wheel 20 on the outer circumferential surface of the rotor wheel 20.
  • a lower end of the rotor blade 10 includes a root 11 formed in a tapered shape for coupling with the rotor wheel 20, and the cooling passage 12 is formed through the root 11 of the rotor blade 10. do.
  • the rotor wheel 20 is fixedly coupled to the outer circumferential surface of the rotor and axially rotated integrally with the rotor, the rotor wheel 20 is formed in a disk (disk) shape, the rotor blade coupling groove 21 is formed on the outer circumferential surface There is a mounting on the rotor blade (10).
  • the rotor blade 10 is coupled to the rotor wheel 20 by the root 11 and is fitted into the rotor blade coupling groove 21 in the axial direction X of the rotor to maintain a stable state.
  • the rotor wheel 20 has an air supply passage 30 for supplying air for cooling to the cooling passage 12 of the rotor blade 10 therein is formed in the form of a tube having a predetermined diameter, diameter, length and inclination angle
  • the drawings are limited to the diameter, length, and inclination angle shown in the drawings.
  • the cooling flow path 12 is connected to the rotary blade 10 through heat exchange with high temperature heat caused by steam or combustion gas that comes into contact with the outer circumferential surface of the rotary blade 10 while the cooling air introduced from the air supply passage 30 passes. Cooling takes place. Cooling air may be supplied from external air introduced into the compressor or from a separate cooling air source (not shown) located outside the turbine for cooling.
  • Cooling passage 12 is formed in the radial direction of the rotor wheel 20, it is also possible to be formed in a shape other than the shape shown in the figure and the discharge port is formed at a position other than the top of the rotor blade 10 It may also be possible.
  • the air supply passage 30 includes an air inlet passage 31 and an air inlet passage 31 and an air outlet passage 32 communicating with each other to form a predetermined angle between the air inlet passage 31 and the air inlet passage 31.
  • the side of the rotor wheel 20 is formed on the side of the rotor wheel 20 to be drilled toward the rotor blade coupling groove 21 toward the inner upper side from the lower left side of the rotor wheel 20 with reference to the drawings.
  • the flow path 32 is formed by being drilled toward the air inflow path 31 via the rotary blade coupling groove 21. Accordingly, an inlet of the air inflow passage 31 is formed at the side surface 22 of the rotor wheel 20, and an outlet of the air discharge passage 32 is formed at an inner wall of the rotor blade coupling groove 21. .
  • the air inflow passage 31 and the air discharge passage 32 are formed by drilling or electric discharge machining (EDM). This is because the rotor wheel 20 is manufactured through a forging process, and because of the rigidity of the material, a method of processing long flow paths such as the air inflow passage 31 and the air discharge passage 32 is extremely limited. Of course, it can also be processed by other processing methods.
  • EDM electric discharge machining
  • the air inflow passage 31 and the air discharge passage 32 are formed in a straight line. Note that it is also possible.
  • the air inflow passage 31 is further processed by a predetermined depth past the point where the air discharge passage 32 meets, and a dust collecting groove 33 is formed, and the dust collecting groove 33 provides a space in which foreign matter is collected.
  • the length and diameter may be variously changed and are not necessarily limited to the length and diameter shown in the drawings.
  • the dust collecting groove 33 revealed that it is possible to maintain the state in which the foreign matter is attached through the roughness different from the roughness of the air supply passage 30 described above or a separate roughening process when the inner circumference of the dust collecting groove 33 improves the adhesion performance of the foreign matter. Put it.
  • the air inflow passage 31 and the dust collecting groove 33 are formed on the same straight line, it is possible to more accurately check the workability and abnormality of the worker and to perform the machining work, thereby improving the workability of the worker.
  • the dust collecting groove 33 is formed to communicate with the tip of the air inflow passage 31 so that foreign matters such as dust flowing into the air inflow passage 31 enter the dust collecting groove 33.
  • the dust collecting groove 33 is formed in a different direction from the air discharge passage 32 so that when foreign matter is introduced through the air inlet passage 31, the cooling passage 12 for moving the cooling air for cooling moves. It is possible to perform stable cooling for the rotor blade 10 by not partially obstructing a specific portion or preventing foreign matter located in a specific section from moving the cooling air.
  • the air inflow passage 31 is formed in the radial direction R of the rotor and is inclined at a predetermined angle ⁇ along the axial direction X of the rotor.
  • the predetermined angle ⁇ is, for example, a value larger than 0 degrees and smaller than 90 degrees, and is preferably formed such that 15 degrees ⁇ ⁇ 75 degrees.
  • is smaller than 15 degrees or larger than 75 degrees, the angle ⁇ between the air inflow passage 31 and the air discharge passage 32 becomes excessively large and bends sharply at the intersection so that the frictional resistance during movement of air is large. You lose.
  • the dust collecting groove 33 is formed with a predetermined angle ⁇ with respect to the radial direction R of the rotor together with the air inflow passage 31 is located on the centrifugal force working line of the rotor wheel 20 As a result, centrifugal force acts on the foreign matter introduced into the dust collecting groove 33, and thus, the centrifugal force is not easily escaped from the dust collecting groove 33 and maintained in the dust collecting groove 33.
  • the air supplied to the air inflow passage 31 is moved to the cooling passage 12 of the rotor blade 10 through the air discharge passage 32, the rotor blade 10 of the rotor wheel 20 Since the air inflow passage 31 is formed in the radial direction R of the rotor, similar to the cooling passage 12 of the rotor blade 10, the air can flow while minimizing the frictional resistance because the air inflow passage 31 is coupled in the radial direction R.
  • the air inflow passage 31 and the air discharge passage 32 form a predetermined angle ⁇ to each other, and the dust collecting groove 33 is in line with the air inflow passage 31. Is formed. Therefore, the dust collecting groove 33 also forms a predetermined angle ⁇ with the air discharge passage 32.
  • the predetermined angle ⁇ is a value larger than 0 degrees and smaller than 90 degrees, and is preferably formed such that 0 degrees ⁇ ⁇ 45 degrees. If ⁇ is greater than 45 degrees, foreign matters introduced into the dust collecting groove 33 do not stay in the collected state, but are affected by the flow of the flow air, so that the air may flow out into the air discharge passage 32 again. Therefore, the inclination angle within 45 degrees is preferably maintained.
  • the ⁇ is smaller than 45 degrees, particularly at 30 degrees or less, foreign substances introduced into the dust collecting groove 33 may not be easily released and may be continuously deposited, thereby improving dust collection performance of the foreign substances.
  • the cooling passage 12 may be configured in a single form or may include a plurality of branch passages (not shown) branched from the cooling passage 12, in which case the cooling illustrated in the drawing
  • the flow passage 12 may be a main cooling flow passage and the branch flow passage branched from the main cooling flow passage may be formed to extend outwardly from the main cooling flow passage.
  • the dust collecting groove 43 and the air inflow passage 41 are formed to be inclined to the opposite side with respect to the rotational direction Y of the rotor. It consists of the flow path 41 and the air discharge flow path 42.
  • the air inflow passage 41 and the air discharge passage 42 are formed on a plane extending along the same AA line, and as shown in FIG. 7, the air inflow passage 41 is It is formed to be inclined in the opposite direction with a predetermined angle ⁇ with respect to the rotational direction Y of the rotor.
  • the predetermined angle ⁇ may have a value greater than 0 degrees and less than 90 degrees.
  • the air inflow passage 41 and the air discharge passage 42 of the present embodiment are also formed to form a predetermined angle ⁇ to each other, and the dust collecting groove 43 is formed in line with the air inflow passage 41. Accordingly, the dust collecting groove 43 also forms a predetermined angle ⁇ with the air discharge passage 42.
  • 0 degree ⁇ ⁇ 90 degrees in particular, 0 degree ⁇ ⁇ It is preferable that it is 45 degrees and the dust collection performance of the foreign matter at the inclination angle can be made stable, cooling to the rotor blade 10 in contact with the hot steam or combustion gas is made stable.
  • the dust collecting groove 43 is formed to be inclined with a predetermined angle ⁇ to the opposite side of the rotation direction Y of the rotor together with the air inflow passage 41 on the rotational force working line of the rotor wheel 20. Will be located. Therefore, a reaction force in the reverse rotational direction acts on the foreign matter introduced into the dust collecting groove 43, so that it is not easily exited from the dust collecting groove 43 and is maintained in the dust collecting groove 43.
  • the dust collecting grooves 53 and 53 ′ are formed not only at the front end of the air inflow passage 51 but also at the front end of the air discharge passage 52.
  • the dust collecting groove 53 'formed at the tip of the air discharge passage 52 is a variation of the second embodiment, and the dust collecting groove formed at the tip of the air inflow passage 51 with respect to the radial direction of the rotor wheel 20 ( It is difficult to collect by centrifugal force as in the first embodiment because it is formed in the opposite direction to 53), but it is possible to collect by rotational force as in the second embodiment.
  • the fixed blade 70 of the present embodiment guides the combustion gas to the rotary blade 10 behind the first nozzle vane provided at the discharging tip of the transition piece 111 of the combustor.
  • the support ring 80 is provided at the upper and lower ends of the fixed blade 70, respectively.
  • the plurality of fixed blades 70 are fixedly coupled to each other at predetermined intervals along the circumferential direction of the rotor between the two support rings 81 and 82.
  • An air supply passage 60 for supplying cooling air to the cooling passage 71 of the fixed blade 70 is formed in the support ring 81 at the bottom of the fixed blade 70.
  • the air supply passage 60 includes an air inflow passage 61 and an air discharge passage 62 that communicate with each other to form a predetermined angle (').
  • the dust collecting groove 63 is formed in direct communication with the air inflow passage 61 at the tip of the air inflow passage 61.
  • the dust collecting groove 63 of the present embodiment is formed in the fixed support ring 81, foreign matter introduced with the cooling air is not affected by the rotational force or centrifugal force. And only the angle ⁇ 'with the air discharge passage 62 is affected.
  • the present invention relates to a turbine cooling device, and more particularly, to a turbine cooling device for cooling a rotary blade or fixed blade of a turbine exposed to a high temperature fluid by air cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The present invention relates to a turbine cooling device comprising: an airfoil-shaped member exposed to high-temperature fluid for driving a turbine and having a cooling passage formed therein so as to allow air for cooling to pass therethrough; and a supporting member to which the airfoil-shaped member is coupled, and which has an air supply passage for supplying the air for cooling to the cooling passage of the airfoil-shaped member and a dust collecting groove formed at one side of the air supply passage so as to collect foreign substances which flow in with the cooling air, such that the foreign substances flowing into the passage, through which the air for cooling passes, are collected and removed so as to prevent the degradation of cooling performance caused by the clogging of an air passage by the foreign substances.

Description

터빈 냉각장치Turbine chiller
본 발명은 터빈 냉각장치에 관한 것으로, 보다 상세하게는 고온의 유체에 노출되는 터빈의 회전익이나 고정익을 공냉식으로 냉각시키는 터빈 냉각장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine cooling device, and more particularly, to a turbine cooling device for cooling a rotary blade or fixed blade of a turbine exposed to a high temperature fluid by air cooling.
일반적으로, 가스터빈이나 증기터빈과 같은 터보머신(Turbo machine, 이하 가스터빈과 증기터빈을 비롯하여 터빈을 구비한 기관 내지 장치를 터보머신이라 한다)은 유체의 열에너지를 기계적 에너지인 회전력으로 변환하는 동력발생장치로, 유체에 의해 축회전하는 회전체 및 상기 회전체를 지지하고 감싸는 고정체를 포함하고 있다. In general, turbomachines such as gas turbines and steam turbines (hereinafter, engines and devices including turbines, including gas turbines and steam turbines) are referred to as turbomachines, and power for converting the thermal energy of a fluid into rotational force, which is mechanical energy. A generator includes a rotating body axially rotated by a fluid and a fixed body supporting and wrapping the rotating body.
증기터빈은 고압(HP) 터빈, 중압(IP) 터빈, 저압(LP) 터빈을 직렬 또는 병렬로 구비하고, 직렬구조의 경우 고압, 중압, 저압 터빈이 하나의 로터를 공유한다. 증기터빈에서는 고압 증기가 고압(HP) 터빈, 중압(IP) 터빈, 저압(LP) 터빈의 회전익을 구동시켜 로터를 회전시키게 된다. The steam turbine includes a high pressure (HP) turbine, an intermediate pressure (IP) turbine, and a low pressure (LP) turbine in series or in parallel. In the case of the series structure, the high pressure, medium pressure, and low pressure turbines share one rotor. In the steam turbine, the high pressure steam drives the rotor blades of the high pressure (HP) turbine, the medium pressure (IP) turbine, and the low pressure (LP) turbine to rotate the rotor.
도 1에 도시된 바와 같이, 가스터빈은 크게 연소가스를 생성하기 위한 연소기(110), 연소기(110)로부터 토출되는 연소가스에 의해 구동하는 터빈(120), 및 연소기(110)로 고압의 공기를 공급하는 압축기(130)를 포함하고 있다. As shown in FIG. 1, the gas turbine is composed of a combustor 110 for generating combustion gas, a turbine 120 driven by the combustion gas discharged from the combustor 110, and a high pressure air to the combustor 110. It includes a compressor 130 for supplying.
상기 압축기(130)를 회전시켜 외부 공기를 흡입압축하여 연소기(110)로 보내고, 연소기(110)에서 압축 공기에 연료를 공급하여 연소시킴으로써 고온고압의 연소 가스를 생성한 후 터빈(120)으로 보내지며, 연소기(110)로부터 토출된 고온고압의 연소가스가 터빈(120)의 회전익을 구동시켜 터빈(120)의 로터(140)를 회전시키게 된다. The compressor 130 is rotated to intake and compress external air to be sent to the combustor 110. The combustor 110 supplies fuel to the compressed air to combust the gas to generate combustion gas having a high temperature and high pressure, and then to the turbine 120. The high-temperature, high-pressure combustion gas discharged from the combustor 110 drives the rotor blades of the turbine 120 to rotate the rotor 140 of the turbine 120.
상기 터빈(120)에는 고정익(121,123,125)과 회전익(122,124,126)이 로터(140)의 축방향을 따라 교대로 다단으로 구비되어 있다. In the turbine 120, fixed blades 121, 123, 125 and rotary blades 122, 124, 126 are alternately provided in multiple stages along the axial direction of the rotor 140.
그러나, 가스터빈과 증기터빈은 회전익에 고온 고압의 연소 가스나 증기가 작용하여 변형되거나 손상될 우려가 있었다. 이에 터빈의 회전익에 공기를 순환시켜 냉각하는 방식이 채택되고 있다. 한국공개특허 제2011-0021933호에는 이에 대한 기술의 일 예가 상세히 개시되어 있다. However, gas turbines and steam turbines may be deformed or damaged by the action of hot or high pressure combustion gases or steam on the rotor blades. Thus, a method of circulating air in the rotor blades of the turbine and cooling is adopted. Korean Unexamined Patent Publication No. 2011-0021933 discloses one example of the technology in detail.
도 2와 도 3을 참조하면, 로터(140)는 외측에 로터휠(101)이 구비되고, 상기 로터휠(101)의 외주면에 다수개의 회전익(102)이 원주방향을 따라 소정간격으로 다수개가 배치된다. 2 and 3, the rotor 140 is provided with a rotor wheel 101 on the outside, a plurality of rotor blades 102 on the outer circumferential surface of the rotor wheel 101 is a plurality of predetermined intervals along the circumferential direction Is placed.
회전익(102)은 내부에 냉각유로(103)가 형성되어 있고, 로터휠(101)에는 상기 회전익(102)의 냉각유로(103)로 냉각을 위한 공기를 공급하는 공기공급유로(104)가 형성되어 있다. The rotor blade 102 has a cooling passage 103 formed therein, and the rotor wheel 101 has an air supply passage 104 for supplying air for cooling to the cooling passage 103 of the rotor blade 102. It is.
이와 같이 구성된 종래의 공기공급유로(104)는 유입되는 냉각공기에 먼지와 같은 이물질이 포함되어 회전익(102)의 냉각유로(103)로 유입되고 이로 인해이 상기 로터휠(101)의 공기공급유로(104)와 회전익(102)의 냉각유로(103)의 내부에 적층될 경우 상기 공기공급유로(104)와 냉각유로(103)의 내부가 폐쇄된 상태가 유지되어 공기의 흐름을 저해하게 되고, 냉각성능이 저하되는 문제점이 있었다. The conventional air supply passage 104 configured as described above includes foreign substances such as dust in the cooling air flowing in and enters the cooling passage 103 of the rotor blade 102, thereby causing the air supply passage of the rotor wheel 101 ( When stacked inside the cooling passage 103 of the 104 and the rotor blade 102, the air supply passage 104 and the interior of the cooling passage 103 are kept closed to inhibit the flow of air, and cooling There was a problem that performance is reduced.
본 발명은 상기한 바와 같은 종래 터빈 냉각장치가 가지는 문제점들을 개선하기 위해 창출된 것으로, 냉각 공기가 통과하는 유로로 유입되는 이물질을 포집하여 제거함으로써 이물질에 의해 공기유로가 막혀 냉각성능이 저하되는 것을 방지할 수 있는 터빈 냉각장치를 제공하는 것을 목적으로 한다.The present invention was created to improve the problems of the conventional turbine cooling apparatus as described above, by capturing and removing foreign matter flowing into the passage through which the cooling air passes, the air passage is blocked by the foreign matter to reduce the cooling performance. It is an object to provide a turbine cooling apparatus that can be prevented.
본 발명은 상기한 바와 같은 종래 터빈 냉각장치가 가지는 문제점들을 개선하기 위해 창출된 것으로, 냉각 공기가 통과하는 유로로 유입되는 이물질을 포집하여 제거함으로써 이물질에 의해 공기유로가 막혀 냉각성능이 저하되는 것을 방지할 수 있는 터빈 냉각장치를 제공하는 것을 목적으로 한다.The present invention was created to improve the problems of the conventional turbine cooling apparatus as described above, by capturing and removing foreign matter flowing into the passage through which the cooling air passes, the air passage is blocked by the foreign matter to reduce the cooling performance. It is an object to provide a turbine cooling apparatus that can be prevented.
기술적 해결방법Technical solution
상기한 바와 같은 목적을 달성하기 위하여 본 발명에 의한 터빈 냉각장치는, 터빈 구동을 위한 고온의 유체에 노출되고 내부에 냉각을 위한 공기가 통과하는 냉각유로가 형성된 익형부재, 및 상기 익형부재가 결합되고 상기 익형부재의 냉각유로로 냉각을 위한 공기를 공급하는 공기공급유로를 구비하며 상기 공기공급유로의 일측에 냉각공기와 함께 유입되는 이물질이 포집되는 집진홈이 형성된 지지부재를 포함하는 것을 특징으로 한다. In order to achieve the above object, a turbine cooling apparatus according to the present invention includes a airfoil member having a cooling passage through which air for cooling passes and exposed to a high temperature fluid for driving a turbine, and the airfoil member is coupled thereto. And a support member having an air supply passage for supplying air for cooling into the cooling passage of the airfoil member and having a dust collecting groove formed at one side of the air supply passage to collect foreign substances introduced with cooling air. do.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 익형부재는 터빈 구동 유체에 의해 구동하여 로터를 회전시키는 회전익이고, 상기 지지부재는 외주면에 상기 회전익이 결합되는 디스크인 것도 가능하다. In the turbine cooling apparatus according to an embodiment of the present invention, the airfoil member is a rotor blade driven by the turbine drive fluid to rotate the rotor, the support member may be a disk coupled to the rotor blades on the outer peripheral surface.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 익형부재는 터빈 구동 유체를 상기 회전익으로 안내하는 고정익이고, 상기 지지부재는 지지링인 것도 가능하다. In the turbine cooling apparatus according to an embodiment of the present invention, the airfoil member is a fixed blade for guiding a turbine driving fluid to the rotary blade, the support member may be a support ring.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 공기공급유로는 공기유입유로 및 공기토출유로로 이루어지고, 상기 집진홈은 상기 공기유입유로의 선단에 연통되어 형성될 수 있다. In the turbine cooling apparatus according to an embodiment of the present invention, the air supply passage is composed of an air inflow passage and an air discharge passage, and the dust collecting groove may be formed in communication with the front end of the air inflow passage.
바람직하게는, 상기 공기유입유로와 상기 공기토출유로는 서로 소정의 사이각을 이루며 형성된다. Preferably, the air inflow passage and the air discharge passage are formed to form a predetermined angle to each other.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 공기유입유로와 집진홈은 동일한 직선상에 형성될 수 있고, 이 경우 상기 집진홈은 상기 공기유입유로의 선단에 상기 공기토출유로와 소정의 사이각을 이루며 연통되게 형성될 수 있다. In the turbine cooling apparatus according to an embodiment of the present invention, the air inflow passage and the dust collecting groove may be formed on the same straight line, in which case the dust collecting groove is the air discharge passage and the predetermined at the end of the air inflow passage It may be formed in communication with each other forming an angle of.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 공기토출유로와 집진홈은 동일한 직선상에 형성될 수 있고, 이 경우 상기 집진홈은 상기 공기토출유로의 선단에 상기 공기유입유로와 소정의 사이각을 이루며 연통되게 형성될 수 있다. In the turbine cooling apparatus according to an embodiment of the present invention, the air discharge flow path and the dust collecting groove may be formed on the same straight line, in which case the dust collecting groove is the air inflow passage and the predetermined end of the air discharge passage. It may be formed in communication with each other forming an angle of.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 집진홈은 드릴링이나 방전가공에 의해 형성될 수 있다. In the turbine cooling apparatus according to an embodiment of the present invention, the dust collecting groove may be formed by drilling or electric discharge machining.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 디스크는 외주면에 회전익 결합홈을 구비하고, 상기 공기유입유로는 상기 디스크의 측면에서 천공되어 형성되며, 상기 공기토출유로는 상기 회전익 결합홈에서 상기 공기유입유로 쪽으로 천공되어 형성될 수 있다. In the turbine cooling apparatus according to an embodiment of the present invention, the disk has a rotary blade coupling groove on the outer circumferential surface, the air inlet flow passage is formed by drilling in the side of the disk, the air discharge passage is the rotary blade coupling groove In the air inlet can be formed to be perforated.
본 발명의 일 실시예에 따른 터빈 냉각장치에 있어서, 상기 집진홈과 공기유입유로는 로터의 회전방향에 대하여 소정의 사이각을 가지고 반대쪽으로 기울어지게 형성되는 것이 바람직하다. In the turbine cooling apparatus according to an embodiment of the present invention, the dust collecting groove and the air inflow passage are preferably formed to be inclined in the opposite direction with a predetermined angle with respect to the rotation direction of the rotor.
더욱 바람직하게는, 상기 집진홈과 공기유입유로는 로터의 반경방향으로 형성된다. More preferably, the dust collecting grooves and the air inflow passage are formed in the radial direction of the rotor.
바람직하게는, 상기 집진홈과 공기유입유로는 로터의 축방향을 따라 기울어지게 형성된다. Preferably, the dust collecting grooves and the air inflow passage are formed to be inclined along the axial direction of the rotor.
이상에서 설명한 바와 같이 본 발명에 따른 터빈 냉각장치에 의하면, 냉각을 위한 공기가 통과하는 유로로 유입되는 이물질을 포집하여 제거함으로써 상기 물질에 의해 공기유로가 막혀 냉각성능이 저하되는 것을 방지할 수 있고, 이로 인해 회전익의 내구성을 향상시킬 수 있는 효과가 있다.As described above, according to the turbine cooling apparatus according to the present invention, by trapping and removing foreign substances introduced into the passage through which air for cooling passes, the air passage is blocked by the substance, thereby preventing the cooling performance from being lowered. This has the effect of improving the durability of the rotor blades.
또한, 로터의 회전력과 원심력을 이용하여 이물질을 효과적으로 포집할 수 있고, 포집된 이물질이 빠져 나가지 않도록 붙잡아 둘 수 있게 된다.In addition, by using the rotational force and the centrifugal force of the rotor can effectively collect the foreign matter, it is possible to hold the captured foreign matter so as not to escape.
또한, 포집된 이물질을 드릴링에 의해 간편하고 신속하게 제거할 수 있게 되고, 이로 인해 유지보수비용을 절감할 수 있게 된다.In addition, the collected foreign matter can be easily and quickly removed by drilling, thereby reducing the maintenance cost.
도 1은 통상의 가스터빈을 나타낸 개략적 측단면도,1 is a schematic side cross-sectional view showing a conventional gas turbine,
도 2는 도 1에 도시된 터빈 냉각장치를 나타낸 부분 확대단면도,2 is a partially enlarged cross-sectional view showing the turbine cooling apparatus shown in FIG. 1;
도 3은 도 2에 도시된 터빈 디스크를 나타낸 일측면도,3 is a side view showing the turbine disk shown in FIG.
도 4는 본 발명의 일 실시예에 따른 터빈 냉각장치를 나타낸 개략적 측단면도,Figure 4 is a schematic side cross-sectional view showing a turbine cooling apparatus according to an embodiment of the present invention,
도 5는 도 4의 부분 확대도,5 is a partially enlarged view of FIG. 4;
도 6은 본 발명의 다른 실시예에 따른 터빈 냉각장치를 나타낸 개략적 측단면도,Figure 6 is a schematic side cross-sectional view showing a turbine cooling apparatus according to another embodiment of the present invention,
도 7은 도 6의 A-A선을 따라 절개한 개략적 측단면도,FIG. 7 is a schematic side cross-sectional view cut along the line A-A of FIG. 6;
도 8은 도 7의 부분 확대도,8 is a partially enlarged view of FIG. 7;
도 9 및 도 10은 본 발명의 또 다른 실시예에 따른 터빈 냉각장치를 나타낸 개략적 측단면도이다.9 and 10 are schematic side cross-sectional views showing a turbine cooling apparatus according to another embodiment of the present invention.
본 발명에 따른 터빈 냉각장치는 터보머신의 터빈에 구비된 익형부재를 냉각시키는 장치이다.Turbine cooling device according to the invention is a device for cooling the airfoil member provided in the turbine of the turbomachine.
상기 익형부재는 터빈 구동을 위한 고온의 유체가 통과하는 이동경로상에 구비되는 회전익과 고정익을 포함하고, 상기 회전익과 고정익은 증기터빈 및 가스터빈에 구비된다. The airfoil member includes a rotor blade and a fixed blade provided on a movement path through which a high temperature fluid for driving a turbine passes, and the rotor blade and the fixed blade are provided in a steam turbine and a gas turbine.
상기 회전익은 터빈 내부에서 고압으로 분사된 구동 유체에 의해 로터를 회전시키고, 상기 고정익은 터빈 구동 유체를 상기 회전익으로 안내한다.The rotor blades rotate the rotor by a driving fluid injected at high pressure inside the turbine, and the fixed blades guide the turbine driving fluid to the rotor blades.
상기 회전익과 고정익은 다수개가 로터의 원주방향을 따라 서로 소정간격을 두고 구비되며, 다수개의 회전익과 고정익은 지지부재에 각각 결합된다.A plurality of the rotor blades and the fixed blades are provided with a predetermined interval from each other along the circumferential direction of the rotor, the plurality of rotor blades and fixed blades are respectively coupled to the support member.
상기 지지부재는 로터와 일체로 축회전가능하게 구비되는 로터 휠, 및 터빈의 케이싱 내부에 고정결합되는 지지링을 포함한다. The support member includes a rotor wheel that is axially rotatable integrally with the rotor, and a support ring fixedly coupled to the casing of the turbine.
상기 회전익은 상기 로터휠에 고정결합되어 로터와 함께 축회전하게 되고, 상기 고정익은 상기 지지링에 고정결합된다. The rotor blade is fixedly coupled to the rotor wheel is axially rotated with the rotor, the fixed blade is fixedly coupled to the support ring.
상기 지지링은 상기 고정익의 상단과 하단에 각각 구비되어 고정익의 양단을 고정결합시키게 된다. The support ring is provided at the upper and lower ends of the fixed blade, respectively, to securely couple both ends of the fixed blade.
상기 고정익의 상단에 결합되는 지지링은 케이싱의 내측벽에 결합되어 있고, 상기 고정익의 하단에 결합되는 지지링은 케이싱의 내부에 구비되는 로터 하우징이나 트랜지션 피스 등의 일측에 고정결합되어 있다. The support ring coupled to the upper end of the fixed blade is coupled to the inner wall of the casing, and the support ring coupled to the lower end of the fixed blade is fixedly coupled to one side of a rotor housing or a transition piece provided in the casing.
터빈 구동을 위한 고온의 유체로서 증기터빈의 경우 증기가 사용되고, 가스터빈의 경우 연료와 외기가 함께 혼합되어 연소되면서 발생된 연소가스가 사용된다.. As a high temperature fluid for driving a turbine, steam is used in the case of a steam turbine, and combustion gas generated by mixing and combusting fuel and outside air is used in the case of a gas turbine.
이하 본 발명에 의한 터빈 냉각장치가 가스터빈의 회전익에 구비된 경우와 고정익에 구비된 경우를 도면을 참조하여 상세히 설명하기로 한다. Hereinafter, the turbine cooling apparatus according to the present invention will be described in detail with reference to the accompanying drawings and the case provided in the rotor blades of the gas turbine.
제1실시예First embodiment
첨부된 도 4 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 터빈 냉각장치는 내부에 냉각을 위한 공기가 통과하는 냉각유로(12)가 형성된 회전익(10), 및 냉각공기와 함께 유입되는 이물질이 포집되는 집진홈(33)이 형성된 로터휠(20)을 포함한다. 4 to 5, the turbine cooling apparatus according to an embodiment of the present invention is introduced into the rotary blade 10, the cooling passage 12 is formed therein through which the air for cooling passes, and the cooling air It includes a rotor wheel 20 is formed with a dust collecting groove 33 is collected foreign matter.
상기 회전익(10)은 상기 로터휠(20)의 외주면에 상기 로터휠(20)의 반경방향으로 구비된다. 상기 회전익(10)의 하단에는 로터휠(20)과의 결합을 위해 테이퍼 형상으로 이루어진 루트(11)를 포함하고, 상기 냉각유로(12)는 회전익(10)의 루트(11)를 관통하여 형성된다. The rotor blade 10 is provided in the radial direction of the rotor wheel 20 on the outer circumferential surface of the rotor wheel 20. A lower end of the rotor blade 10 includes a root 11 formed in a tapered shape for coupling with the rotor wheel 20, and the cooling passage 12 is formed through the root 11 of the rotor blade 10. do.
상기 로터휠(20)은 로터의 외주면에 고정결합되어 상기 로터와 일체로 축회전하는데, 상기 로터휠(20)은 디스크(disk) 형상으로 형성되고, 외주면에 회전익 결합홈(21)이 형성되어 있어 회전익(10)에 대한 장착이 이루어진다. The rotor wheel 20 is fixedly coupled to the outer circumferential surface of the rotor and axially rotated integrally with the rotor, the rotor wheel 20 is formed in a disk (disk) shape, the rotor blade coupling groove 21 is formed on the outer circumferential surface There is a mounting on the rotor blade (10).
상기 회전익(10)은 루트(11)에 의해 로터 휠(20)에 결합되며 상기 회전익 결합홈(21)에 로터의 축방향(X)으로 끼워져 결합된 상태가 안정적으로 유지된다. The rotor blade 10 is coupled to the rotor wheel 20 by the root 11 and is fitted into the rotor blade coupling groove 21 in the axial direction X of the rotor to maintain a stable state.
상기 로터휠(20)은 내부에 상기 회전익(10)의 냉각유로(12)로 냉각을 위한 공기를 공급하는 공기공급유로(30)가 소정의 직경을 갖는 관 형태로 형성되며 직경과 길이 및 경사각도는 도면에 도시된 직경과 길이 및 경사각도로 한정하여 설명한다.되The rotor wheel 20 has an air supply passage 30 for supplying air for cooling to the cooling passage 12 of the rotor blade 10 therein is formed in the form of a tube having a predetermined diameter, diameter, length and inclination angle The drawings are limited to the diameter, length, and inclination angle shown in the drawings.
상기 냉각유로(12)는 상기 공기공급유로(30)로부터 유입된 냉각공기가 통과하면서 회전익(10)의 외주면과 접촉되는 증기 또는 연소 가스로 인한 고온의 열과 열교환을 통해 상기 회전익(10)에 대한 냉각이 이루어진다. 냉각공기는 압축기로 유입된 외부공기 또는 냉각을 위해 터빈의 외측에 위치된 별도의 냉각 공기 공급원(미도시)으로부터 공급받는 것도 가능하다. The cooling flow path 12 is connected to the rotary blade 10 through heat exchange with high temperature heat caused by steam or combustion gas that comes into contact with the outer circumferential surface of the rotary blade 10 while the cooling air introduced from the air supply passage 30 passes. Cooling takes place. Cooling air may be supplied from external air introduced into the compressor or from a separate cooling air source (not shown) located outside the turbine for cooling.
냉각유로(12)는 로터휠(20)의 반경방향으로 형성되어 있으나, 도면에 도시된 형상 이외의 다른 형상으로 형성되는 것도 가능할 뿐만 아니라 토출구가 상기 회전익(10)의 상단이 아닌 위치에 형성되는 것도 가능할 수 있다. Cooling passage 12 is formed in the radial direction of the rotor wheel 20, it is also possible to be formed in a shape other than the shape shown in the figure and the discharge port is formed at a position other than the top of the rotor blade 10 It may also be possible.
공기공급유로(30)는 공기유입유로(31)와 서로 간에 소정의 사이각()을 이루며 연통된 공기유입유로(31) 및 공기토출유로(32)를 포함하고, 상기 공기유입유로(31)는 상기 로터휠(20)의 측면(22) 위치 보다 상세하게는 도면을 기준으로 로터휠(20)의 좌측 하면에서 내측 상부를 향해 상기 회전익 결합홈(21) 쪽으로 천공되어 형성되고, 상기 공기토출유로(32)는 상기 회전익 결합홈(21)을 경유하여 상기 공기유입유로(31) 쪽으로 천공되어 형성된다. 따라서, 상기 로터휠(20)의 측면(22)에는 상기 공기유입유로(31)의 입구가 형성되고, 상기 회전익 결합홈(21)의 내측벽에 상기 공기토출유로(32)의 출구가 형성된다. The air supply passage 30 includes an air inlet passage 31 and an air inlet passage 31 and an air outlet passage 32 communicating with each other to form a predetermined angle between the air inlet passage 31 and the air inlet passage 31. More specifically, the side of the rotor wheel 20 is formed on the side of the rotor wheel 20 to be drilled toward the rotor blade coupling groove 21 toward the inner upper side from the lower left side of the rotor wheel 20 with reference to the drawings. The flow path 32 is formed by being drilled toward the air inflow path 31 via the rotary blade coupling groove 21. Accordingly, an inlet of the air inflow passage 31 is formed at the side surface 22 of the rotor wheel 20, and an outlet of the air discharge passage 32 is formed at an inner wall of the rotor blade coupling groove 21. .
상기 공기유입유로(31)와 공기토출유로(32)는 드릴링(drilling)가공이나 방전가공(electric discharge machining, EDM)에 의해 형성된다. 이는 상기 로터휠(20)이 단조(forging)공정을 통해 제조되므로 소재의 강성으로 인해 상기 공기유입유로(31)와 공기토출유로(32)와 같은 장공의 유로를 가공하는 방법이 극히 제한적이기 때문이나 이외의 가공방법으로 가공되는 것도 가능함은 물론이다. The air inflow passage 31 and the air discharge passage 32 are formed by drilling or electric discharge machining (EDM). This is because the rotor wheel 20 is manufactured through a forging process, and because of the rigidity of the material, a method of processing long flow paths such as the air inflow passage 31 and the air discharge passage 32 is extremely limited. Of course, it can also be processed by other processing methods.
이와 같이 드릴링가공이나 방전가공하게 되면 상기 공기유입유로(31)와 공기토출유로(32)는 직선으로 형성되나, 도면에 도시된 바와 같이 길이 방향으로 직경이 일정한 직선 형태 이외의 다른 형태로의 변경도 가능함을 밝혀둔다.As such, when the drilling or discharge processing is performed, the air inflow passage 31 and the air discharge passage 32 are formed in a straight line. Note that it is also possible.
상기 공기유입유로(31)는 상기 공기토출유로(32)와 만나는 지점을 지나 소정의 깊이만큼 더 가공하여 집진홈(33)이 형성되는데, 상기 집진홈(33)은 이물질이 포집되는 공간을 제공하기 위해 형성되며 길이와 직경은 다양하게 변경될 수 있으며 반드시 도면에 도시된 길이와 직경으로 한정하지 않는다. 또한 집진홈(33)은 이물질의 부착 성능이 향상되도록 내주면 거칠기가 전술한 공기공급유로(30)의 거칠기와 상이한 거칠기 또는 별도의 거칠기 가공을 통해 이물질이 부착된 상태가 유지되도록 하는 것도 가능함을 밝혀둔다.The air inflow passage 31 is further processed by a predetermined depth past the point where the air discharge passage 32 meets, and a dust collecting groove 33 is formed, and the dust collecting groove 33 provides a space in which foreign matter is collected. The length and diameter may be variously changed and are not necessarily limited to the length and diameter shown in the drawings. In addition, the dust collecting groove 33 revealed that it is possible to maintain the state in which the foreign matter is attached through the roughness different from the roughness of the air supply passage 30 described above or a separate roughening process when the inner circumference of the dust collecting groove 33 improves the adhesion performance of the foreign matter. Put it.
또한상기 공기유입유로(31)와 집진홈(33)이 동일 직선상에 형성되므로 작업자의 작업성 향상과 이상 유무를 보다 정확하게 확인하고 가공 작업을 실시할 수 있어 작업자의 작업성이 향상된다.In addition, since the air inflow passage 31 and the dust collecting groove 33 are formed on the same straight line, it is possible to more accurately check the workability and abnormality of the worker and to perform the machining work, thereby improving the workability of the worker.
집진홈(33)은 상기 공기유입유로(31)의 선단에 연통되게 형성되어 상기 공기유입유로(31)로 유입되는 먼지와 같은 이물질이 집진홈(33)으로 진입하게 된다. 상기 집진홈(33)은 상기 공기토출유로(32)와는 다른 방향으로 형성되어 있어 이물질이 상기 공기유입유로(31)를 통해 유입될 경우 냉각을 위한 냉각용 공기가 이동하는 냉각유로(12)의 특정 부분을 부분 폐쇄하거나 특정 구간에 위치된 이물질로 인해 냉각용 공기의 이동을 방해하지 않아 회전익(10)에 대한 안정적인 냉각을 실시할 수 있다.The dust collecting groove 33 is formed to communicate with the tip of the air inflow passage 31 so that foreign matters such as dust flowing into the air inflow passage 31 enter the dust collecting groove 33. The dust collecting groove 33 is formed in a different direction from the air discharge passage 32 so that when foreign matter is introduced through the air inlet passage 31, the cooling passage 12 for moving the cooling air for cooling moves. It is possible to perform stable cooling for the rotor blade 10 by not partially obstructing a specific portion or preventing foreign matter located in a specific section from moving the cooling air.
도 5에 도시된 바와 같이, 상기 공기유입유로(31)는 로터의 반경방향(R)으로 형성되되 로터의 축방향(X)을 따라 소정의 각도(α)로 기울어지게 형성된다.As shown in FIG. 5, the air inflow passage 31 is formed in the radial direction R of the rotor and is inclined at a predetermined angle α along the axial direction X of the rotor.
여기서, 소정의 각도(α)는 일 예로 0도보다 크고 90도보다 작은 값으로, 15도 < α < 75도가 되게 형성되는 것이 바람직하다. α가 15도보다 작거나 75도보다 큰 경우에는 상기 공기유입유로(31)와 공기토출유로(32)의 사이각(β)이 지나치게 커져 교차부분에서 급격하게 절곡되므로 공기의 이동시 마찰저항이 커지게 된다. Here, the predetermined angle α is, for example, a value larger than 0 degrees and smaller than 90 degrees, and is preferably formed such that 15 degrees <α <75 degrees. When α is smaller than 15 degrees or larger than 75 degrees, the angle β between the air inflow passage 31 and the air discharge passage 32 becomes excessively large and bends sharply at the intersection so that the frictional resistance during movement of air is large. You lose.
이와 같이 상기 집진홈(33)이 상기 공기유입유로(31)와 함께 로터의 반경방향(R)에 대하여 소정의 각도(α)를 가지고 형성됨으로써 로터휠(20)의 원심력 작용선상에 위치하게 되고, 이로 인해 상기 집진홈(33)에 유입된 이물질에 원심력이 작용하게 되어 상기 집진홈(33)으로부터 쉽게 빠져 나가지 못하고 상기 집진홈(33)에 위치된 상태가 유지된다. Thus, the dust collecting groove 33 is formed with a predetermined angle α with respect to the radial direction R of the rotor together with the air inflow passage 31 is located on the centrifugal force working line of the rotor wheel 20 As a result, centrifugal force acts on the foreign matter introduced into the dust collecting groove 33, and thus, the centrifugal force is not easily escaped from the dust collecting groove 33 and maintained in the dust collecting groove 33.
또한, 상기 공기유입유로(31)로 공급되는 공기는 상기 공기토출유로(32)를 지나 상기 회전익(10)의 냉각유로(12)로 이동하게 되는데 상기 회전익(10)이 로터휠(20)의 반경방향(R)으로 결합되므로, 상기 공기유입유로(31)가 회전익(10)의 냉각유로(12)와 유사하게 로터의 반경방향(R)으로 형성됨으로 인해 마찰저항을 최소화하면서 공기가 이동할 수 있게 된다. In addition, the air supplied to the air inflow passage 31 is moved to the cooling passage 12 of the rotor blade 10 through the air discharge passage 32, the rotor blade 10 of the rotor wheel 20 Since the air inflow passage 31 is formed in the radial direction R of the rotor, similar to the cooling passage 12 of the rotor blade 10, the air can flow while minimizing the frictional resistance because the air inflow passage 31 is coupled in the radial direction R. FIG. Will be.
상술한 바와 같이, 상기 공기유입유로(31)와 공기토출유로(32)는 서로 소정의 사이각(β)을 이루며 형성되고 상기 집진홈(33)은 상기 공기유입유로(31)와 일직선상에 형성된다. 따라서, 상기 집진홈(33) 또한 상기 공기토출유로(32)와 소정의 사이각(β)을 이루게 된다.As described above, the air inflow passage 31 and the air discharge passage 32 form a predetermined angle β to each other, and the dust collecting groove 33 is in line with the air inflow passage 31. Is formed. Therefore, the dust collecting groove 33 also forms a predetermined angle β with the air discharge passage 32.
여기서, 소정의 각도(β)는 0도보다 크고 90도보다 작은 값으로, 0도 < β < 45도가 되게 형성되는 것이 바람직하다. β가 45도보다 큰 경우에는 상기 집진홈(33)으로 유입된 이물질이 포집된 상태로 머물지 못하고 유동공기의 흐름에 영향을 받아 다시 빠져 나와 상기 공기토출유로(32)로 유입될 우려가 커지게 되므로 45도 이내의 경사각이 유지되는 것이 바람직하다.Here, the predetermined angle β is a value larger than 0 degrees and smaller than 90 degrees, and is preferably formed such that 0 degrees <β <45 degrees. If β is greater than 45 degrees, foreign matters introduced into the dust collecting groove 33 do not stay in the collected state, but are affected by the flow of the flow air, so that the air may flow out into the air discharge passage 32 again. Therefore, the inclination angle within 45 degrees is preferably maintained.
만약, β가 45도보다 작은 경우, 특히 30도 이하에서는 상기 집진홈(33)으로 유입된 이물질이 쉽게 빠져 나오지 못하고 지속적으로 퇴적될 수 있어 이물질에 대한 집진 성능이 향상된다. If the β is smaller than 45 degrees, particularly at 30 degrees or less, foreign substances introduced into the dust collecting groove 33 may not be easily released and may be continuously deposited, thereby improving dust collection performance of the foreign substances.
본 실시 예에 의한 냉각유로(12)는 단일 형태로 구성되거나 상기 냉각유로(12)에서 분기된 다수개의 분기 유로(미도시)를 포함하는 형태로도 변경 가능하며, 이 경우 도면에 도시된 냉각유로(12)가 메인 냉각유로가 되고 상기 메인 냉각유로에서 분기된 분기유로는 메인 냉각 유로에서 외측으로 연장된 형태로 형성될 수 있다.The cooling passage 12 according to the present embodiment may be configured in a single form or may include a plurality of branch passages (not shown) branched from the cooling passage 12, in which case the cooling illustrated in the drawing The flow passage 12 may be a main cooling flow passage and the branch flow passage branched from the main cooling flow passage may be formed to extend outwardly from the main cooling flow passage.
제2실시예Second embodiment
도 6 내지 도 8을 참조하면, 집진홈(43)과 공기유입유로(41)는 로터의 회전방향(Y)에 대하여 반대쪽으로 기울어지게 형성된다.본 실시예의 공기공급유로(40)도 공기유입유로(41)와 공기토출유로(42)로 구성된다.6 to 8, the dust collecting groove 43 and the air inflow passage 41 are formed to be inclined to the opposite side with respect to the rotational direction Y of the rotor. It consists of the flow path 41 and the air discharge flow path 42.
도 6에 도시된 바와 같이 상기 공기유입유로(41)와 공기토출유로(42)는 동일한 A-A선을 따라 연장된 평면상에 형성되고, 도 7에 도시된 바와 같이 상기 공기유입유로(41)는 로터의 회전방향(Y)에 대하여 소정의 사이각(γ)을 가지고 반대쪽으로 기울어지게 형성되어 있다. As shown in FIG. 6, the air inflow passage 41 and the air discharge passage 42 are formed on a plane extending along the same AA line, and as shown in FIG. 7, the air inflow passage 41 is It is formed to be inclined in the opposite direction with a predetermined angle γ with respect to the rotational direction Y of the rotor.
여기서, 소정의 사이각(γ)는 0도보다 크고 90도보다 작은 값을 가질 수 있다. Here, the predetermined angle γ may have a value greater than 0 degrees and less than 90 degrees.
본 실시예의 공기유입유로(41)와 공기토출유로(42)도 서로 소정의 사이각(γ)을 이루며 형성되고 상기 집진홈(43)은 상기 공기유입유로(41)와 일직선상에 형성된다. 따라서, 상기 집진홈(43) 또한 상기 공기토출유로(42)와 소정의 사이각(γ)을 이루게 되며, 제1실시예의 경우와 마찬가지로 0도 < γ < 90도이고 특히, 0도 < γ < 45도인 것이 바람직하며 상기 경사 각도에서 이물질에 대한 집진 성능이 안정적으로 이루어질 수 있어 고온의 증기 또는 연소가스와 접하는 회전익(10)에 대한 냉각이 안정적으로 이루어진다. The air inflow passage 41 and the air discharge passage 42 of the present embodiment are also formed to form a predetermined angle γ to each other, and the dust collecting groove 43 is formed in line with the air inflow passage 41. Accordingly, the dust collecting groove 43 also forms a predetermined angle γ with the air discharge passage 42. As in the case of the first embodiment, 0 degree <γ <90 degrees, in particular, 0 degree <γ < It is preferable that it is 45 degrees and the dust collection performance of the foreign matter at the inclination angle can be made stable, cooling to the rotor blade 10 in contact with the hot steam or combustion gas is made stable.
이와 같이 상기 집진홈(43)은 상기 공기유입유로(41)와 함께 로터의 회전방향(Y)의 반대쪽으로 소정의 각도(γ)를 가지고 기울어지게 형성됨으로써 로터휠(20)의 회전력 작용선상에 위치하게 된다. 따라서, 상기 집진홈(43)에 유입된 이물질에 역회전방향으로의 반작용력이 작용하게 되어 상기 집진홈(43)으로부터 쉽게 빠져 나가지 못하고 상기 집진홈(43)에 위치된 상태가 유지된다. In this way, the dust collecting groove 43 is formed to be inclined with a predetermined angle γ to the opposite side of the rotation direction Y of the rotor together with the air inflow passage 41 on the rotational force working line of the rotor wheel 20. Will be located. Therefore, a reaction force in the reverse rotational direction acts on the foreign matter introduced into the dust collecting groove 43, so that it is not easily exited from the dust collecting groove 43 and is maintained in the dust collecting groove 43.
제3실시예Third embodiment
도 9를 참조하면, 집진홈(53)(53')은 공기유입유로(51)의 선단뿐만 아니라 공기토출유로(52)의 선단에도 형성된다. 9, the dust collecting grooves 53 and 53 ′ are formed not only at the front end of the air inflow passage 51 but also at the front end of the air discharge passage 52.
이 경우에도 상기 공기토출유로(52)와 집진홈(53')은 드릴링가공이나 방전가공에 의해 형성되므로 상기 공기토출유로(52)와 집진홈(53')은 동일한 직선상에 형성된다. Even in this case, since the air discharge passage 52 and the dust collecting groove 53 'are formed by drilling or discharging, the air discharge passage 52 and the dust collecting groove 53' are formed on the same straight line.
상기 공기토출유로(52)의 선단에 형성된 집진홈(53')은 제2실시예의 변형예로, 로터휠(20)의 반경방향에 대하여 상기 공기유입유로(51)의 선단에 형성된 집진홈(53)과 반대방향으로 형성되어 제1실시예와 같은 원심력에 의한 포집은 어려우나, 제2실시예와 같은 회전력에 의한 포집은 가능해진다. The dust collecting groove 53 'formed at the tip of the air discharge passage 52 is a variation of the second embodiment, and the dust collecting groove formed at the tip of the air inflow passage 51 with respect to the radial direction of the rotor wheel 20 ( It is difficult to collect by centrifugal force as in the first embodiment because it is formed in the opposite direction to 53), but it is possible to collect by rotational force as in the second embodiment.
도 9에 도시된 바와 같이, 상기 공기유입유로(51)와 공기토출유로(52)의 선단에 집진홈(53)(53')을 모두 형성시킴으로써 1개의 집진홈(53)만이 구비된 경우에 비해 개수 증가로 인해 보다 많은 양의 이물질에 대한 포집이 이루어져 집진효과가 증가된다. As shown in FIG. 9, when only one dust collecting groove 53 is provided by forming both of the dust collecting grooves 53 and 53 ′ at the ends of the air inflow passage 51 and the air discharge passage 52. Compared with the increase in number, the collection of a larger amount of foreign matter is increased, which increases the dust collection effect.
제4실시예Fourth embodiment
도 10을 참조하면, 본 발명의 다른 실시예에 따른 터빈 냉각장치는, 내부에 냉각을 위한 공기가 통과하는 냉각유로(71)가 형성된 고정익(70), 및 냉각공기와 함께 유입되는 이물질이 포집되는 집진홈(63)이 형성된 지지링(80)을 포함한다. Referring to FIG. 10, in the turbine cooling apparatus according to another embodiment of the present invention, a fixed blade 70 having a cooling passage 71 through which air for cooling passes is collected, and foreign substances introduced together with cooling air are collected. It includes a support ring 80 is formed a dust collecting groove (63).
본 실시예의 고정익(70)은 연소기의 트랜지션 피스(111)의 토출 선단에 구비되는 제1노즐 베인으로 후방의 회전익(10)으로 연소가스를 안내한다. The fixed blade 70 of the present embodiment guides the combustion gas to the rotary blade 10 behind the first nozzle vane provided at the discharging tip of the transition piece 111 of the combustor.
상기 지지링(80)은 상기 고정익(70)의 상단과 하단에 각각 구비된다. 다수개의 고정익(70)들은 상기 2개의 지지링(81,82) 사이에 로터의 원주방향을 따라 서로 소정간격을 두고 고정결합되어 있다. The support ring 80 is provided at the upper and lower ends of the fixed blade 70, respectively. The plurality of fixed blades 70 are fixedly coupled to each other at predetermined intervals along the circumferential direction of the rotor between the two support rings 81 and 82.
상기 고정익(70) 하단의 지지링(81)에 고정익(70)의 냉각유로(71)로 냉각공기를 공급하는 공기공급유로(60)가 형성된다.An air supply passage 60 for supplying cooling air to the cooling passage 71 of the fixed blade 70 is formed in the support ring 81 at the bottom of the fixed blade 70.
상기 공기공급유로(60)는 제1실시예와 마찬가지로 서로 소정의 사이각(')을 이루며 연통된 공기유입유로(61) 및 공기토출유로(62)로 이루어진다. As in the first embodiment, the air supply passage 60 includes an air inflow passage 61 and an air discharge passage 62 that communicate with each other to form a predetermined angle (').
상기 집진홈(63)은 상기 공기유입유로(61)의 선단에 상기 공기유입유로(61)와 일직선상에 연통되게 형성된다. The dust collecting groove 63 is formed in direct communication with the air inflow passage 61 at the tip of the air inflow passage 61.
여기서, 집진홈이 회전하는 로터휠에 형성된 경우와 달리, 본 실시예의 집진홈(63)은 고정된 지지링(81)에 형성되므로, 냉각공기와 함께 유입되는 이물질이 회전력이나 원심력의 영향을 받지 않고 상기 공기토출유로(62)와의 사이각(β')에만 영향을 받게 된다. Here, unlike the case where the dust collecting groove is formed in the rotating rotor wheel, the dust collecting groove 63 of the present embodiment is formed in the fixed support ring 81, foreign matter introduced with the cooling air is not affected by the rotational force or centrifugal force. And only the angle β 'with the air discharge passage 62 is affected.
따라서, 상기 공기유입유로(61)와 공기토출유로(62)의 사이각(β') 조건인 0도 < β < 90도, 특히 0도 < β < 45도를 만족시키는 한 다양한 형태로 형성될 수 있다. Therefore, as long as it satisfies 0 degree <β <90 degrees, in particular 0 degree <β <45 degrees, which is the angle? 'Condition between the air inflow passage 61 and the air discharge passage 62, Can be.
본 발명은 터빈 냉각장치에 관한 것으로, 보다 상세하게는 고온의 유체에 노출되는 터빈의 회전익이나 고정익을 공냉식으로 냉각시키는 터빈 냉각장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine cooling device, and more particularly, to a turbine cooling device for cooling a rotary blade or fixed blade of a turbine exposed to a high temperature fluid by air cooling.

Claims (14)

  1. 터빈 구동을 위한 고온의 유체에 노출되고, 내부에 냉각을 위한 공기가 통과하는 냉각유로가 형성된 익형부재; 및An airfoil member exposed to a high temperature fluid for driving a turbine and having a cooling passage through which air for cooling passes; And
    상기 익형부재가 결합되고, 상기 익형부재의 냉각유로로 냉각을 위한 공기를 공급하는 공기공급유로를 구비하며, 상기 공기공급유로의 일측에 냉각공기와 함께 유입되는 이물질이 포집되는 집진홈이 형성된 지지부재를 포함하는 터빈 냉각장치.The airfoil member is coupled, and provided with an air supply passage for supplying air for cooling into the cooling passage of the airfoil member, a support formed with a dust collecting groove for collecting foreign matter introduced with the cooling air on one side of the air supply passage Turbine chiller comprising a member.
  2. 제1항에 있어서,The method of claim 1,
    상기 익형부재는 터빈 구동 유체에 의해 구동하여 로터를 회전시키는 회전익이고, 상기 지지부재는 로터와 일체로 축회전가능하게 구비되고, 외주면에 상기 회전익이 결합되는 로터휠인 것을 특징으로 하는 터빈 냉각장치.The airfoil member is a rotor blade driven by the turbine driving fluid to rotate the rotor, the support member is a turbine cooling device, characterized in that the rotor wheel is provided integrally with the rotor, the rotor blade is coupled to the outer peripheral surface .
  3. 제1항에 있어서, The method of claim 1,
    상기 익형부재는 터빈 구동 유체를 상기 회전익으로 안내하는 고정익이고,The airfoil member is a fixed blade for guiding a turbine drive fluid to the rotary blade,
    상기 지지부재는 터빈의 일측에 고정된 지지링인 것을 특징으로 하는 터빈 냉각장치.The support member is a turbine cooling apparatus, characterized in that the support ring fixed to one side of the turbine.
  4. 제2항 또는 제3항에 있어서, 상기 공기공급유로는,According to claim 2 or 3, wherein the air supply passage,
    서로 소정의 사이각을 이루며 배치된 공기유입유로 및 공기토출유로를 포함하는 것을 특징으로 하는 터빈 냉각장치.Turbine cooling apparatus comprising an air inflow passage and an air discharge passage disposed to form a predetermined angle between each other.
  5. 제4항에 있어서, 상기 집진홈은,The method of claim 4, wherein the dust collecting groove,
    상기 공기유입유로의 선단에 연통되게 형성된 것을 특징으로 하는 터빈 냉각장치.Turbine cooling device, characterized in that formed in communication with the tip of the air inflow passage.
  6. 제5항에 있어서,The method of claim 5,
    상기 공기유입유로와 집진홈은 동일한 직선상에 형성된 것을 특징으로 하는 터빈 냉각장치.And the air inflow passage and the dust collecting groove are formed on the same straight line.
  7. 제4항에 있어서, 상기 집진홈은,The method of claim 4, wherein the dust collecting groove,
    상기 공기토출유로의 선단에 연통되게 형성된 것을 특징으로 하는 터빈 냉각장치.Turbine cooling apparatus, characterized in that formed in communication with the tip of the air discharge passage.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 공기토출유로와 집진홈은 동일한 직선상에 형성된 것을 특징으로 하는 터빈 냉각장치.And the air discharge passage and the dust collecting groove are formed on the same straight line.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 집진홈은 드릴링에 의해 형성된 것을 특징으로 하는 터빈 냉각장치.The dust collecting groove is a turbine cooling apparatus, characterized in that formed by drilling.
  10. 제4항에 있어서,The method of claim 4, wherein
    상기 집진홈은 드릴링에 의해 형성된 것을 특징으로 하는 터빈 냉각장치.The dust collecting groove is a turbine cooling apparatus, characterized in that formed by drilling.
  11. 제2항에 있어서,The method of claim 2,
    상기 공기공급유로는 서로 소정의 사이각을 이루며 배치된 공기유입유로 및 공기토출유로를 포함하고,The air supply passage includes an air inflow passage and an air discharge passage disposed at a predetermined angle to each other,
    상기 공기유입유로의 선단에 집진홈이 형성되며,A dust collecting groove is formed at the tip of the air inflow passage,
    상기 로터휠은 외주면에 회전익 결합홈을 구비하고,The rotor wheel has a rotary blade coupling groove on the outer circumferential surface,
    상기 공기유입유로는 상기 로터휠의 측면에서 천공되어 형성되며,The air inflow passage is formed by drilling in the side of the rotor wheel,
    상기 공기토출유로는 상기 회전익 결합홈에서 상기 공기유입유로 쪽으로 천공되어 형성된 것을 특징으로 하는 터빈 냉각장치.And the air discharge passage is perforated from the rotary blade coupling groove toward the air inlet passage.
  12. 제2항에 있어서,The method of claim 2,
    상기 공기공급유로는 서로 소정의 사이각을 이루는 공기유입유로 및 공기토출유로를 포함하고, The air supply passage includes an air inflow passage and an air discharge passage forming a predetermined angle to each other,
    상기 공기유입유로의 선단에 집진홈이 형성되며,A dust collecting groove is formed at the tip of the air inflow passage,
    상기 집진홈과 공기유입유로는 로터의 회전방향에 대하여 소정의 사이각을 가지고 반대쪽으로 기울어지게 형성된 것을 특징으로 하는 터빈 냉각장치.And the dust collecting groove and the air inflow passage are inclined to the opposite side with a predetermined angle with respect to the rotation direction of the rotor.
  13. 제2항에 있어서,The method of claim 2,
    상기 공기공급유로는 서로 소정의 사이각을 이루는 공기유입유로 및 공기토출유로를 포함하고,The air supply passage includes an air inflow passage and an air discharge passage forming a predetermined angle to each other,
    상기 공기유입유로의 선단에 집진홈이 형성되며,A dust collecting groove is formed at the tip of the air inflow passage,
    상기 집진홈과 공기유입유로는 로터의 반경방향으로 형성된 것을 특징으로 하는 터빈 냉각장치.And the dust collecting groove and the air inflow passage are formed in the radial direction of the rotor.
  14. 제2항에 있어서,The method of claim 2,
    상기 공기공급유로는 서로 소정의 사이각을 이루는 공기유입유로 및 공기토출유로를 포함하고,The air supply passage includes an air inflow passage and an air discharge passage forming a predetermined angle to each other,
    상기 공기유입유로의 선단에 집진홈이 형성되며,A dust collecting groove is formed at the tip of the air inflow passage,
    상기 집진홈과 공기유입유로는 로터의 축방향을 따라 기울어지게 형성된 것을 특징으로 하는 터빈 냉각장치.And the dust collecting groove and the air inflow passage are inclined along the axial direction of the rotor.
PCT/KR2015/000439 2014-01-15 2015-01-15 Turbine cooling device WO2015108353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0005084 2014-01-15
KR20140005084A KR101509383B1 (en) 2014-01-15 2014-01-15 A cooling device for a turbine

Publications (1)

Publication Number Publication Date
WO2015108353A1 true WO2015108353A1 (en) 2015-07-23

Family

ID=53032580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000439 WO2015108353A1 (en) 2014-01-15 2015-01-15 Turbine cooling device

Country Status (2)

Country Link
KR (1) KR101509383B1 (en)
WO (1) WO2015108353A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647261B1 (en) * 2015-10-05 2016-08-09 두산중공업 주식회사 Debris removal device of a gas turbine
KR101985098B1 (en) 2017-10-19 2019-05-31 두산중공업 주식회사 Gas turbine
KR101985103B1 (en) 2017-10-30 2019-05-31 두산중공업 주식회사 Gas turbine
KR102583948B1 (en) * 2021-04-16 2023-10-05 주식회사 블루모션테크 Air injection nozzle of linear stage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011580A (en) * 2002-06-10 2004-01-15 Toshiba Corp Gas turbine rotor
KR20060128284A (en) * 2005-06-10 2006-12-14 연세대학교 산학협력단 Cooling passage structure of turbine blade platform
JP2010174885A (en) * 2009-01-30 2010-08-12 General Electric Co <Ge> Rotor chamber cover member having aperture for dirt separation and related turbine
KR20120092183A (en) * 2010-03-03 2012-08-20 미츠비시 쥬고교 가부시키가이샤 Rotor blade for gas turbine, method for manufacturing same, and gas turbine using rotor blade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011580A (en) * 2002-06-10 2004-01-15 Toshiba Corp Gas turbine rotor
KR20060128284A (en) * 2005-06-10 2006-12-14 연세대학교 산학협력단 Cooling passage structure of turbine blade platform
JP2010174885A (en) * 2009-01-30 2010-08-12 General Electric Co <Ge> Rotor chamber cover member having aperture for dirt separation and related turbine
KR20120092183A (en) * 2010-03-03 2012-08-20 미츠비시 쥬고교 가부시키가이샤 Rotor blade for gas turbine, method for manufacturing same, and gas turbine using rotor blade

Also Published As

Publication number Publication date
KR101509383B1 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
WO2015108353A1 (en) Turbine cooling device
US10267179B2 (en) Dirt extraction apparatus for a gas turbine engine
US9329377B2 (en) Boroscope and a method of processing a component within an assembled apparatus using a boroscope
EP3225780A1 (en) Compressor art rotor rim cooling for high opr (t3) engine
JP4778603B2 (en) Refrigerant supply system for third stage bucket of gas turbine
JP6431690B2 (en) Turbine rotor blade for the turbine section of a gas turbine
US6413044B1 (en) Blade cooling in gas turbine
RU2007107799A (en) STEAM TURBINE AND METHOD FOR OPERATING A STEAM TURBINE
JP2019039423A (en) Blade with tip rail cooling
WO2017026875A1 (en) Gas turbine blade
EP2325438A2 (en) Seal plates for directing airflow through a turbine section of an engine and turbine sections
US10533425B2 (en) Doublet vane assembly for a gas turbine engine
EP3293382B1 (en) Gas turbine engine compressor impeller cooling air sinks
WO2017010627A1 (en) Gas turbine including cooling system provided with cool-air supply path detouring to outer casing
JP2015224629A (en) Cooling supply circuit for turbomachinery
US8974174B2 (en) Axial flow gas turbine
WO2012118288A1 (en) Gas turbine
WO2016167456A1 (en) Volute casing and rotary machine having same
EP2672062A2 (en) Nozzle diaphragm inducer
WO2017069391A1 (en) Sealing assembly for turbine
WO2021025524A1 (en) Impulse turbine and turbine device
WO2013058500A1 (en) Reaction-type turbine
EP2791472A1 (en) Film cooled turbine component
WO2017061690A1 (en) Device for removing foreign material of gas turbine
US20210207492A1 (en) Industrial gas turbine engine with first and second stage rotor cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737604

Country of ref document: EP

Kind code of ref document: A1