WO2015108113A1 - Polishing liquid production method, and polishing method - Google Patents

Polishing liquid production method, and polishing method Download PDF

Info

Publication number
WO2015108113A1
WO2015108113A1 PCT/JP2015/050954 JP2015050954W WO2015108113A1 WO 2015108113 A1 WO2015108113 A1 WO 2015108113A1 JP 2015050954 W JP2015050954 W JP 2015050954W WO 2015108113 A1 WO2015108113 A1 WO 2015108113A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing liquid
acid
methacrylic acid
acid compound
Prior art date
Application number
PCT/JP2015/050954
Other languages
French (fr)
Japanese (ja)
Inventor
真之 花野
雅弘 坂下
深沢 正人
公二 三嶋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015108113A1 publication Critical patent/WO2015108113A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing liquid production method and a polishing method. Specifically, the present invention relates to a manufacturing method of a polishing liquid used for polishing in a wiring formation process of a semiconductor device and a polishing method using the polishing liquid.
  • CMP chemical mechanical polishing
  • the copper material is prevented from diffusing into the insulating material 2 formed on the silicon substrate 1 below the conductive material layer 5 made of copper-based metal, and the insulating material.
  • a barrier metal film (hereinafter also referred to as "barrier metal layer 3") may be formed. In this case, it is necessary to remove the exposed barrier metal layer 3 by CMP except for the wiring portion in which the conductive substance (wiring metal) is embedded.
  • the polishing step is shown as “first polishing step” in which the conductive material layer 5 is polished from the state shown in FIG. 1A to the state shown in FIG.
  • the two-stage polishing method in which the barrier metal layer 3 and the conductive material layer 5 are polished from the state shown in FIG. 1C to the state shown in FIG. Generally applied.
  • the metal used for the barrier metal layer 3 in FIG. 1 is a metal containing a Co (cobalt) element as a main component (referred to as a metal containing 50 mol% or more of cobalt; hereinafter referred to as “cobalt-based metal”). ) Is being considered.
  • an intermediate layer 4 formed of a cobalt-based metal is interposed between the barrier metal layer 3 and the conductive material layer 5. .
  • the intermediate layer 4 of the cobalt-based metal By using the intermediate layer 4 of the cobalt-based metal, the diffusion of the conductive substance can be suppressed. Furthermore, since cobalt has a high affinity with copper, which is widely used as a conductive material, the embedding property of copper in the wiring portion is improved. Furthermore, adhesion with the copper layer can be supplemented.
  • the intermediate layer 4 here is also a barrier metal layer in a broad sense.
  • the term “barrier metal layer” includes the intermediate layer 4 within the range.
  • metal polishing liquid When a cobalt-based metal is used as a barrier metal layer in an LSI, it is necessary for the metal polishing liquid to be able to remove excess cobalt-based metal.
  • Various metal polishing liquids are known. On the other hand, when polishing is attempted using a conventional metal polishing liquid, any metal can be suitably removed. Not exclusively. Conventional metal polishing liquids are known for polishing metals such as copper, tantalum, titanium, tungsten, and aluminum (targets to be removed as extra parts), but cobalt-based metals are target for polishing. There is not much known polishing liquid.
  • cobalt-based metals are more easily corroded (strongly corrosive) than conductive materials such as copper that have been conventionally used as wiring metals. Therefore, if the conventional polishing liquid is used as it is, the cobalt metal may be excessively eroded (etched) or a slit may be formed in the wiring layer. Therefore, there is a concern that the cobalt metal does not function as a barrier metal layer and the conductive metal ions diffuse. If metal ions diffuse into the insulating material, the semiconductor device is more likely to short. On the other hand, in order to prevent this, if an anticorrosive having a strong anticorrosive action is added or the amount of the anticorrosive added is increased, there is a problem that the overall polishing rate is lowered.
  • Polishing using a specific metal anticorrosive agent which is a 4-membered to 6-membered heterocyclic compound containing two or more double bonds and containing one or more nitrogen atoms in order to cope with such a problem.
  • a specific metal anticorrosive agent which is a 4-membered to 6-membered heterocyclic compound containing two or more double bonds and containing one or more nitrogen atoms in order to cope with such a problem.
  • liquids see, for example, Patent Document 2
  • polishing liquids using phthalic acid compounds, isophthalic acid compounds, and dicarboxylic acid compounds for example, see Patent Document 3).
  • the polishing rate of the silicon dioxide film which is an interlayer insulating film formed other than the metal buried portion
  • the phenomenon that the thickness of the wiring with the interlayer insulating film becomes thin hereinafter, “ And the phenomenon that the interlayer insulating film in the vicinity of the wiring metal part is locally scraped (hereinafter referred to as “seam”) occurs, and the flatness deteriorates.
  • the interlayer insulating film include a silicon dioxide film, an organosilicate glass which is a low-k (low dielectric constant) film, a wholly aromatic ring-based low-k film, and the like.
  • a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid are used to protect the surface of the wiring metal (for example, copper). It is known to use a polishing liquid comprising the same (for example, see Patent Document 4).
  • the polishing liquid containing the methacrylic acid polymer increases the etching rate with respect to the cobalt metal. If the etching rate for the cobalt metal is high, when the cobalt metal is used as the barrier metal layer, the cobalt metal may be excessively eroded or a slit may be formed in the wiring layer. Therefore, as described above, there is a problem that the cobalt-based metal does not function as a barrier metal layer.
  • An object of the present invention is to provide a method for producing a polishing liquid that is excellent in planarizing the surface of a substrate and has a low etching rate for a cobalt-based metal, and a polishing method using the polishing liquid obtained thereby.
  • Another object of the present invention is to provide a polishing liquid manufacturing method that suppresses the generation of erosion and seam while maintaining a good polishing rate for an interlayer insulating film, and has a high leveling ability of the surface to be polished, and the manufacturing method thereof.
  • An object of the present invention is to provide a polishing method using a polishing liquid.
  • ⁇ 1> A step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid type
  • a step of mixing a polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive to obtain a polishing liquid, wherein the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, or a dicarboxylic acid represented by the following general formula (I) Containing at least one selected from the group consisting of acid compounds, their salts, and acid anhydrides of phthalic acid compounds and acid anhydrides of dicarboxylic acid compounds represented by the following general formula (I), and the pH of the polishing
  • polishing liquid thus obtained, it is possible to moderately suppress the corrosion of the cobalt-based metal and reduce the occurrence of erosion and seam while maintaining a good polishing rate for the cobalt-based metal.
  • ⁇ 2> The production method according to ⁇ 1>, wherein the aqueous solvent is water or water and an organic acid.
  • polishing liquid is a polishing liquid for chemical mechanical polishing (CMP) a substrate containing cobalt (cobalt element).
  • methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid.
  • the methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid.
  • ⁇ 5> The production method according to any one of ⁇ 1> to ⁇ 4>, wherein the metal anticorrosive contains a compound having a triazole skeleton.
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein in the step of obtaining a polishing liquid, an organic solvent is further mixed to obtain the polishing liquid.
  • the film to be polished includes a metal layer other than the cobalt-based metal
  • a polishing liquid capable of further improving the polishing rate of the metal layer other than the cobalt-based metal can be obtained.
  • the polishing is performed by mixing a methacrylic acid polymer, a first liquid containing a carboxylic acid compound, abrasive particles and a metal anticorrosive, and a second liquid containing an oxidizing agent.
  • a methacrylic acid polymer a first liquid containing a carboxylic acid compound, abrasive particles and a metal anticorrosive
  • a second liquid containing an oxidizing agent a second liquid containing an oxidizing agent.
  • a step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid type A step of mixing a polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive to obtain a polishing liquid, a step of preparing a substrate containing a cobalt-based metal, a step of chemically mechanically polishing the substrate using the polishing solution,
  • the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, and an acid anhydride of the phthalic acid compound and the above general formula (I)
  • a polishing method comprising at least one selected from the group consisting of acid anhydrides of dicarboxy
  • ⁇ 10> The polishing method according to ⁇ 9>, wherein the aqueous solvent is water or water and an organic acid.
  • methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid. > Polishing method.
  • a first liquid containing a methacrylic acid polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive and a second liquid containing an oxidizing agent are mixed to obtain the polishing liquid.
  • polishing method of the present invention it becomes possible to polish a film to be polished containing cobalt element while suppressing excessive corrosion.
  • a methacrylic acid polymer obtained without using an inorganic acid as a raw material at the time of synthesis a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), and salts thereof And at least one carboxylic acid compound selected from the group consisting of an acid anhydride of a phthalic acid compound and an acid anhydride of a dicarboxylic acid compound represented by the above general formula (I), and having a pH of The manufacturing method of the polishing liquid which is 4 or less can be provided.
  • the polishing liquid obtained by the production method it is possible to moderately suppress the corrosion of the cobalt-based metal while maintaining a good polishing rate for the cobalt-based metal, and while maintaining a good polishing rate for the interlayer insulating film. Generation of erosion and seam can be suppressed. That is, according to the present invention, it is possible to provide a method for producing a polishing liquid having a high leveling ability of the surface to be polished and a method for polishing a substrate using the polishing liquid obtained thereby.
  • the term “process” includes not only an independent process but also a process that cannot be clearly distinguished from other processes and in which the intended purpose can be achieved.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the polishing liquid means the total amount of the plurality of substances present in the polishing liquid unless there is a specific notice when there are a plurality of substances corresponding to each component in the polishing liquid.
  • polishing liquid obtained by the production method (hereinafter also simply referred to as “polishing liquid”), and a substrate polishing method using the polishing liquid will be described in detail.
  • the production method of this embodiment includes a step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, and a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution. And a step of mixing a methacrylic acid polymer, a carboxylic acid compound, abrasive particles, and a metal anticorrosive to obtain a polishing liquid.
  • the polishing liquid obtained by the production method of the present embodiment is represented by a methacrylic acid polymer obtained without using an inorganic acid as a raw material during synthesis, a phthalic acid compound, an isophthalic acid compound, and the following general formula (I).
  • Dicarboxylic acid compounds, salts thereof that is, salts of phthalic acid compounds, isophthalic acid compounds and dicarboxylic acid compounds represented by the following general formula (I)
  • acid anhydrides of phthalic acid compounds and the following general formula (I) It contains at least one carboxylic acid compound selected from the group consisting of acid anhydrides of dicarboxylic acid compounds represented by the formula: abrasive particles, metal anticorrosive, and water, and has a pH of 4 or less.
  • Such a polishing liquid can be suitably used, for example, for chemical mechanical polishing of a substrate containing cobalt element.
  • HOOC-R-COOH (I) [In the above general formula (I), R has 3 to 10 carbon atoms and contains only carbon and hydrogen as constituent elements. ]
  • the polishing liquid of this embodiment includes a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I) (hereinafter, also referred to as “specific dicarboxylic acid compound”), a salt thereof, and phthalic acid.
  • a carboxylic acid compound that is at least one selected from the group consisting of an acid anhydride of an acid compound and an acid anhydride of the dicarboxylic acid compound hereinafter also referred to as “specific carboxylic acid compound”.
  • the said specific carboxylic acid compound can be used individually by 1 type or in mixture of 2 or more types.
  • carboxylic acids and carboxylic acid derivatives there are countless carboxylic acids and carboxylic acid derivatives.
  • the etching rate for the same layer is controlled while maintaining a good polishing rate for the cobalt-based metal. Thereby, corrosion of a cobalt-type metal is suppressed and a favorable grinding
  • being excellent in corrosion inhibition means that the cobalt-based metal is etched on the surface to be polished or slits in the wiring layer are effectively suppressed.
  • the present inventor presumes as follows. That is, it is considered that the specific carboxylic acid compound functions as a metal solubilizer and has an effect of improving the polishing rate for the cobalt-based metal. At the same time, it is considered that the two carboxy groups of the specific carboxylic acid compound are chelated to the cobalt atom so as to form a cyclic structure, thereby forming a stable complex state. . For this reason, it is presumed that the etching rate of the cobalt-based metal is controlled and corrosion on the polished surface is suppressed. In addition, there is a possibility that the metal anticorrosive described later contributes to the formation of this stable complex state.
  • the specific carboxylic acid compound is composed of a specific dicarboxylic acid compound, a salt thereof, and an acid anhydride thereof (limited to an acid anhydride) from the viewpoints of polishing rate with respect to the cobalt layer, controllability of etching rate, and corrosion inhibition. Selected from the group.
  • acidic compounds other than the specific carboxylic acid compound it is difficult to achieve both good polishing rate for the cobalt layer and suppression of the etching rate of the cobalt layer. This is presumably because the formation of a stable complex state is important in the present embodiment as described above, and the three-dimensional structure of the acidic compound is an important factor.
  • the etching rate of a cobalt layer may raise notably. This is considered to be because the etching effect of the cobalt layer by other acidic compounds has priority over the formation of the complex state as described above.
  • the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, or a phthalic acid compound. It consists of at least one selected from the group consisting of acid anhydrides and acid anhydrides of dicarboxylic acid compounds represented by the above general formula (I).
  • the carboxylic acid compound may contain other carboxylic acid compounds (including salts thereof and acid anhydrides) as long as the effects of the present embodiment are not significantly impaired.
  • the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, an acid anhydride of the phthalic acid compound, or the above general formula (I). It is preferable to be substantially composed of a specific carboxylic acid compound which is at least one selected from the group consisting of acid anhydrides of the dicarboxylic acid compounds represented.
  • “substantially” means that a sufficient amount of the specific carboxylic acid compound is contained in the polishing liquid to such an extent that the effect of the polishing liquid of the present embodiment is not significantly impaired.
  • the content of the other carboxylic acid compound is 10% by mass or less based on the total mass of the specific carboxylic acid compound. Furthermore, the content of the other carboxylic acid compound is preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total mass of the specific carboxylic acid compound.
  • the phthalic acid compound includes at least one of phthalic acid (benzene-1,2-dicarboxylic acid) and a phthalic acid derivative having one or more substituents on the benzene ring.
  • the substituent include a methyl group, an amino group, and a nitro group. Among these, at least one of a nitro group and a methyl group is preferable.
  • the phthalic acid compound examples include phthalic acid; alkylphthalic acid such as 3-methylphthalic acid and 4-methylphthalic acid; aminophthalic acid such as 3-aminophthalic acid and 4-aminophthalic acid; 3-nitrophthalic acid, 4 -Nitrophthalic acid such as nitrophthalic acid.
  • a phthalic acid compound having an alkyl group as a substituent for example, methylphthalic acid
  • at least one of 3-methylphthalic acid and 4-methylphthalic acid is more preferable
  • 4-methylphthalic acid is particularly preferable.
  • the phthalic acid compound may be used as an acid anhydride or a salt.
  • the isophthalic acid compound includes at least one of isophthalic acid (benzene-1,3-dicarboxylic acid) and an isophthalic acid derivative having one or more substituents on the benzene ring.
  • the substituent include a nitro group, a methyl group, an amino group, and a hydroxy group. Among these, a methyl group is preferable.
  • isophthalic acid compound examples include isophthalic acid and 5-nitroisophthalic acid.
  • the isophthalic acid compound may be used as a salt.
  • the R part of the dicarboxylic acid compound represented by the general formula (I) is a divalent group having 3 to 10 carbon atoms and containing only carbon (C) and hydrogen (H) as constituent elements.
  • the said carbon number is carbon number of R part, and the carbon atom contained in a carboxylic acid group is not counted as said carbon number.
  • the R portion may be cyclic, linear or branched. Among these, linear is preferable. From the viewpoints of polishing rate and etching rate control for cobalt-based metals, and corrosion inhibition, the number of carbons is preferably from 3 to 8, and more preferably from 3 to 6.
  • the dicarboxylic acid compound may be used as an acid anhydride or a salt depending on the number of carbon atoms.
  • dicarboxylic acid compound having 3 to 10 carbon atoms examples include adipic acid, pimelic acid, suberic acid, azelaic acid, itaconic acid and the like.
  • adipic acid, pimelic acid and itaconic acid are preferable, and pimelic acid is more preferable.
  • the content of the carboxylic acid compound is preferably in the range of 0.001 to 10% by mass based on the total mass of the polishing liquid.
  • the content of the carboxylic acid compound is more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more from the viewpoint of polishing rate.
  • the content of the dicarboxylic acid is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass from the viewpoints of the etching inhibitory effect and corrosion inhibitory effect on the cobalt-based metal. The following are particularly preferred:
  • the polishing liquid is represented by phthalic acid, alkylphthalic acid, aminophthalic acid, nitrophthalic acid, isophthalic acid, 5-nitroisophthalic acid, and the above general formula (I) as a carboxylic acid compound
  • R Preferably contains 0.01% by mass or more of at least one selected from the group consisting of dicarboxylic acid compounds having 3 to 8 carbon atoms, and salts and acid anhydrides thereof (limited to those that become acid anhydrides).
  • the polishing liquid contains phthalic acid, alkylphthalic acid, aminophthalic acid, nitrophthalic acid, isophthalic acid, 5-nitroisophthalic acid, and the above general formula (I) as a carboxylic acid compound. And at least one selected from the group consisting of dicarboxylic acid compounds in which R is a straight chain having 3 to 8 carbon atoms, and salts and acid anhydrides thereof (limited to acid anhydrides). It is preferable to contain 1.0 mass% or less.
  • the salt of the carboxylic acid compound is not particularly limited, and examples thereof include a salt of the carboxylic acid compound and an alkali metal, alkaline earth metal, halide or the like.
  • the substrate to be polished is a silicon substrate including an integrated circuit element, contamination with alkali metal, alkaline earth metal, halide, etc. is not desirable. Preference is given to other than salts with earth metals or halides.
  • ⁇ Methacrylic acid polymer> A methacrylic acid polymer obtained by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid to obtain a solution, and polymerizing a monomer component containing at least methacrylic acid in the solution to obtain a methacrylic acid polymer. Is estimated to be able to suppress corrosion on cobalt-based metals as compared with methacrylic acid-based polymers obtained using an aqueous solvent containing an inorganic acid.
  • the aqueous solvent is not particularly limited as long as it can dissolve the polymerization initiator, but water or a solvent composed of water and an organic acid described later is preferable.
  • the step of obtaining the methacrylic acid polymer of the present embodiment there are two methods, a case where a water-soluble polymerization initiator is used and a case where a polymerization initiator which dissolves in a monomer component containing methacrylic acid is used.
  • a polymerization initiator which dissolves in a monomer component containing methacrylic acid first dissolve the polymerization initiator in the monomer component containing methacrylic acid, and then dissolve the polymerization initiator in an aqueous solvent.
  • a polymer By adding dropwise a monomer component containing methacrylic acid, a polymer can be obtained while dissolving the polymerization initiator in an aqueous solvent.
  • Examples of the polymerization initiator for synthesizing the polymer include a water-soluble azo polymerization initiator and an azo polymerization initiator dissolved in a monomer component containing methacrylic acid.
  • water-soluble azobis polymerization initiators include 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-carboxyethyl) -2- Methyl propionamidine], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide], salts thereof and the like.
  • Examples of the azo polymerization initiator dissolved in the monomer component containing methacrylic acid include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), these Examples include salts.
  • the salt of the azo polymerization initiator is not particularly limited.
  • the substrate to be polished is a silicon substrate including an integrated circuit element as described above, the salt with an alkali metal, alkaline earth metal, halide, or the like is used. Other than salts are preferred.
  • Polymerization initiators such as 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide] and the like
  • an acid other than the inorganic acid as the acid added to make the aqueous solvent acidic
  • the etching rate for the same layer can be controlled while maintaining a good polishing rate for the cobalt-based metal. Therefore, corrosion of the same layer is suppressed and a good polished surface can be obtained. Even under more severe conditions (for example, 60 ° C.), the etching rate of the cobalt-based metal is more effectively suppressed, and excellent corrosion inhibition is achieved.
  • the polymer contained in the polishing liquid of this embodiment needs to be a methacrylic acid polymer obtained without using an inorganic acid as a raw material during the synthesis.
  • the acid added to make the aqueous solvent acidic is not particularly limited as long as it is an acid other than the inorganic acid in that it can suppress the corrosion of the cobalt metal.
  • Such acids include 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide] and the like
  • formic acid acetic acid, propionic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid.
  • organic acids such as maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid and p-phenolsulfonic acid.
  • acetic acid, glycolic acid, glutaric acid, p-phenolsulfonic acid, methanesulfonic acid, malic acid, and the like are preferable because corrosion of cobalt-based metals can be effectively suppressed.
  • the amount of acid used is not particularly limited as long as it is an amount sufficient to dissolve the polymerization initiator in the aqueous solvent, but is preferably about equimolar with the polymerization initiator.
  • the methacrylic acid polymer is preferably at least one selected from a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid.
  • the ratio of methacrylic acid to the total amount of the monomer is preferably 40 mol% or more and less than 100 mol%, more preferably 50 mol%. It is more than 100 mol%, more preferably 60 mol% or more and less than 100 mol%, particularly preferably 70 mol% or more and less than 100 mol%.
  • the weight average molecular weight of the methacrylic acid polymer is preferably 3000 or more, more preferably 5000 or more. By setting the weight average molecular weight of the methacrylic acid polymer to 3000 or more, generation of erosion and seam is effectively suppressed, and the flatness of the surface to be polished can be easily improved.
  • the upper limit of the weight average molecular weight is not particularly defined, but is preferably 5 million or less from the viewpoint of solubility.
  • the weight average molecular weight is preferably 1,000,000 or less from the viewpoint of ease of synthesis, control of molecular weight, etc., and from the viewpoint of excellent solubility in water and increasing the degree of freedom of addition. More preferably, it is 10,000 or less.
  • the weight average molecular weight of the methacrylic acid polymer can be measured by gel permeation chromatography using a standard polystyrene calibration curve. Specifically, for example, measurement can be performed by size exclusion chromatography using a calibration curve prepared with a sodium polyacrylate standard substance manufactured by Polymer Laboratories under the following measurement conditions.
  • Column: Shodex Asahipak GS-520HQ + 620HQ manufactured by Showa Denko KK Pump: Hitachi, Ltd. L-71000 Eluent: 50 mM Na 2 HPO 4 aq. / CH 3 CN 90/10 Flow rate: 0.6 mL / min Detector: L-3300 differential refractometer manufactured by Hitachi, Ltd.
  • Data processing D-2520 GPC integrator manufactured by Hitachi, Ltd. Sample concentration: 10 mg / mL Injection volume: 5 ⁇ L
  • Examples of the monomer copolymerizable with methacrylic acid include acrylic acid, crotonic acid, vinyl acetic acid, tiglic acid, 2-trifluoromethyl acrylic acid, itaconic acid, fumaric acid, maleic acid, citraconic acid, mesaconic acid, and glucone.
  • Carboxylic acids such as acids; sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate And acrylic acid esters such as propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate; and salts thereof such as ammonium salts, alkali metal salts and alkylamine salts thereof.
  • an ammonium salt is preferable among the salts.
  • the methacrylic acid polymer may be copolymerized with methacrylic acid and the methacrylic acid. It is preferred to use copolymers with possible monomers.
  • acrylic acid and acrylic acid esters are more preferable in that they are effective in reducing the above-mentioned defects, and further in balance with reduction of erosion and seam generation. Acrylic acid and acrylic acid esters are more preferred.
  • the content of the methacrylic acid polymer is preferably 0.001 to 15% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the polishing liquid.
  • the content of the methacrylic acid polymer is preferably 0.001 to 15% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the polishing liquid.
  • the polishing liquid of the present embodiment preferably satisfies at least one of the following (1) and (2) from the viewpoint of effectively suppressing the generation of erosion and seam.
  • (1) To increase the ratio of methacrylic acid to the total amount of monomers constituting the methacrylic acid polymer.
  • acrylic acid or acrylic acid esters as a monomer component to be copolymerized with methacrylic acid.
  • the methacrylic acid polymer (including both homopolymers and copolymers) is preferably a copolymer of methacrylic acid and acrylic acid, or a copolymer of methacrylic acid and acrylic acid esters.
  • the methacrylic acid polymer is preferably a copolymer of methacrylic acid and acrylic acid or a copolymer of methacrylic acid and acrylic acid ester from the viewpoint of reducing the occurrence of erosion and seam.
  • the ratio of methacrylic acid to the total amount of monomers constituting the methacrylic acid polymer is preferably 70 mol% or more and less than 100 mol%, more preferably 80 mol% or more, and still more preferably 90 mol% or more. Moreover, in order to suppress defects effectively, the ratio of methacrylic acid to the total amount of the monomer is preferably 99 mol% or less, and more preferably 95 mol% or less.
  • the polishing liquid of this embodiment can also be obtained by mixing two liquids divided into a slurry containing at least abrasive particles and an additive liquid containing at least a methacrylic acid polymer. By doing so, it is possible to avoid the problem of stability of the abrasive particles which occurs when a large amount of methacrylic acid polymer is added.
  • the slurry may contain a methacrylic acid polymer. In this case, the content of the methacrylic acid polymer in the slurry is in a range that does not impair the dispersibility of the abrasive particles.
  • the polishing liquid of this embodiment preferably contains abrasive particles from the viewpoint of obtaining a good polishing rate for the barrier layer and the interlayer insulating film.
  • the abrasive particles that can be used include at least one selected from the group consisting of silica, alumina, zirconia, ceria, titania, germania, and modified products thereof.
  • the modified product is obtained by modifying the surface of abrasive particles such as silica, alumina, zirconia, ceria, titania and germania with an alkyl group.
  • the method of modifying the surface of the abrasive particles with an alkyl group is not particularly limited, and examples thereof include a method of reacting a hydroxyl group present on the surface of the abrasive particle with an alkoxysilane having an alkyl group.
  • the alkoxysilane having an alkyl group is not particularly limited, but monomethyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, triethylmonomethoxysilane, monomethyltriethoxysilane, dimethyl Examples include diethoxysilane and trimethylmonoethoxysilane.
  • limiting in particular as a reaction method For example, both simply react with a polishing liquid containing abrasive particles and alkoxysilane at room temperature. However, heating may be performed to accelerate the reaction.
  • colloidal silica and / or colloidal alumina having a good dispersion stability in the polishing liquid, a small number of polishing scratches (scratches) generated by CMP, and an average particle diameter of 200 nm or less are preferable, Colloidal silica and / or colloidal alumina having an average particle size of 100 nm or less is more preferable.
  • the “average particle diameter” of the abrasive particles means the average secondary particle diameter of the abrasive particles.
  • the average particle size is a value of D50 (median diameter of volume distribution, cumulative median value) obtained by measuring the polishing liquid with a dynamic light scattering particle size distribution analyzer (for example, COULTER Electronics, trade name: COULTER N4 SD). Say.
  • the average particle diameter can be measured by the following procedure. First, 100 ⁇ L of polishing liquid (L represents liter, the same applies hereinafter) is weighed, and the content of abrasive particles is about 0.05% by mass (transmittance (H) during measurement is about 60 to 70%). Dilute with ion-exchanged water to obtain a diluted solution. And an average particle diameter can be measured by throwing a dilution liquid into the sample tank of a dynamic light scattering type particle size distribution analyzer, and reading the value displayed as D50.
  • L represents liter, the same applies hereinafter
  • the content of abrasive particles is preferably 0.01 to 50% by mass, more preferably 0.02 to 30% by mass, and particularly preferably 0.05 to 20% by mass with respect to the total mass of the polishing liquid.
  • the content of the abrasive particles is 0.01% by mass or more, the polishing rate is improved, and when the content is 50% by mass or less, the generation of scratches is easily suppressed.
  • abrasive particles whose surfaces are modified with anionic groups or cationic groups may be used. Thereby, since the surface potential of the abrasive particles is negatively or positively charged, there is a tendency that aggregation of the abrasive particles is easily suppressed.
  • the modification with an anionic group include sulfonic acid modification and aluminate modification.
  • the modification with a cationic group include modification using an amine compound or the like.
  • metal anticorrosive is at least one selected from the group consisting of triazole compounds, pyridine compounds, pyrazole compounds, pyrimidine compounds, imidazole compounds, guanidine compounds, thiazole compounds, tetrazole compounds, triazine compounds, and hexamethylenetetramine.
  • XX compound is a general term for compounds having an XX skeleton, and for example, a triazole compound means a compound having a triazole skeleton.
  • the metal anticorrosive can be used alone or in combination of two or more.
  • the content of the metal anticorrosive is 0.001 to 10% by mass with respect to the total mass of the polishing liquid in that a good polishing rate can be obtained for a film to be polished containing cobalt element.
  • the content of the metal anticorrosive is more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more. Further, from the same viewpoint, the content of the metal anticorrosive is more preferably 5.0% by mass or less, and further preferably 0.5% by mass.
  • the etching rate of the cobalt-based metal can be remarkably suppressed even under severe temperature conditions (for example, 60 ° C.). That is, by the above combination, corrosion of the cobalt metal can be suppressed while polishing the cobalt metal at an appropriate speed. This is considered to be because, for example, the metal anticorrosive exhibits an excellent function as a complex-forming agent and a film protective agent in the presence of the specific dicarboxylic acid compound.
  • the metal anticorrosive agent forms a protective film against a wiring metal such as a copper-based metal, thereby suppressing the etching of the wiring metal and easily reducing the roughness of the surface to be polished.
  • At least one selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine is preferable.
  • Triazole compounds such as triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole, 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, 3-hydroxypyridine More preferred is at least one selected from the group consisting of benzimidazole, 5-amino-1H-tetrazole, 3,4-dihydro-3-hydroxy-4-oxo-1,2,4-triazine and hexamethylenetetramine.
  • the ratio of the carboxylic acid compound to the metal anticorrosive in the polishing liquid is in the range of 10/1 to 1/5 in terms of mass ratio from the viewpoint of favorably controlling the etching rate and the polishing rate. It is preferably in the range of 7/1 to 1/5, more preferably in the range of 5/1 to 1/5, and more preferably in the range of 5/1 to 1/1. Is particularly preferred.
  • the ratio of the carboxylic acid compound to the metal anticorrosive is 10/1 to 1/5 from the viewpoint of controlling the etching rate and the polishing rate satisfactorily.
  • the ratio of the carboxylic acid compound to at least one metal anticorrosive selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine (carboxylic acid compound / metal anticorrosion) Agent) is more preferably 5/1 to 1/5, the carboxylic acid compound, 3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole Triazolation of 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, etc.
  • the polishing liquid preferably further contains at least one oxidizing agent (metal oxidizing agent).
  • metal oxidizing agent metal oxidizing agent
  • the polishing rate of layers other than the cobalt-based metal can be further improved.
  • oxidizing agent metal oxidizing agent
  • limiting in particular in the said oxidizing agent It can select suitably from the oxidizing agent used normally.
  • Specific examples include hydrogen peroxide, peroxosulfate, nitric acid, potassium periodate, hypochlorous acid, ozone water, etc. Among these, hydrogen peroxide is preferable.
  • These oxidizing agents can be used alone or in combination of two or more.
  • the content of the oxidizing agent is preferably 0.01 to 50% by mass with respect to the total mass of the polishing liquid.
  • the content is more preferably 0.02% by mass or more, and still more preferably 0.05% by mass or more from the viewpoint of preventing metal oxidation from becoming insufficient and reducing the polishing rate.
  • 30 mass% or less is more preferable, and 15 mass% or less is still more preferable at the point which can prevent that a surface to be polished becomes rough.
  • an oxidizing agent that is generally available as an aqueous solution such as aqueous hydrogen peroxide, may be prepared so that the content of the oxidizing agent contained in the aqueous solution falls within the above range in the polishing liquid.
  • the polishing liquid may further contain an organic solvent.
  • an organic solvent By adding an organic solvent, the wettability of a layer other than the cobalt-based metal provided in the vicinity of the cobalt-based metal can be improved, and the polishing rate can be further improved.
  • a water-soluble thing is preferable.
  • water-soluble is defined as one that dissolves at least 0.1 g at 25 ° C. with respect to 100 g of water.
  • organic solvent examples include carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactone solvents such as butyrolactone and propyl lactone; ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, Glycol solvents such as triethylene glycol and tripropylene glycol; ether solvents such as tetrahydrofuran, dioxane, dimethoxyethane, polyethylene oxide, ethylene glycol monomethyl acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methanol, ethanol, propanol, n -Butanol, n-pen Alcohol solvents such as diol, n-hexanol, isopropanol, 3-methoxy-3-methyl-1-butanol; ketone solvents such as acetone and methyl
  • the organic solvent may be a glycol solvent derivative.
  • At least one selected from the group consisting of a glycol solvent, a glycol solvent derivative, an alcohol solvent, and a carbonate ester solvent is preferable, and at least one selected from an alcohol solvent is more preferable.
  • These organic solvents can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the organic solvent is preferably 0.1 to 95% by mass with respect to the total mass of the polishing liquid.
  • the content of the organic solvent is more preferably 0.2% by mass or more, and still more preferably 0.5% by mass or more in terms of preventing the wettability of the polishing liquid to the substrate from being lowered. Further, the content is more preferably 50% by mass or less, and further preferably 10% by mass or less, in terms of facilitating preparation, use, waste liquid treatment, and the like of the polishing liquid.
  • the polishing liquid according to this embodiment can further contain a surfactant.
  • a surfactant water-soluble anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene lauryl ether ammonium sulfate, alkyl phosphate ester salt, polyoxyethylene alkyl ether phosphate, lauroyl sarcosine salt; polyoxyethylene lauryl ether
  • Water-soluble nonionic surfactants such as polyethylene glycol monostearate; hexadecyltrimethylammonium salt, myristyltrimethylammonium salt, lauryltrimethylammonium salt, stearyltrimethylammonium salt, cetyltrimethylammonium salt, distearyldimethylammonium salt, alkyl
  • Water-soluble cationic surfactants such as benzyldimethylammonium salt, coconutamine acetate, stearylamine acetate, etc.
  • a water-soluble anionic surfactant is preferable.
  • at least one water-soluble anionic surfactant such as a polymer dispersant obtained using an ammonium salt as a copolymerization component.
  • a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant and the like may be used in combination.
  • the content of the surfactant is, for example, 0.0001 to 0.1% by mass based on the total mass of the polishing liquid.
  • the polishing liquid according to the present embodiment contains water.
  • the content of water in the polishing liquid may be the remainder of the polishing liquid excluding the content of other components.
  • the pH of the polishing liquid according to the present embodiment is 4 or less from the viewpoint of suppressing the corrosion of the cobalt-based metal.
  • a polishing liquid having a pH exceeding 4 and containing an oxidizing agent causes corrosion of a cobalt-based metal.
  • the present inventors guess as follows. It is considered that the polishing liquid having a pH exceeding 4 and containing an oxidizing agent changes cobalt to cobalt tetroxide.
  • the pH of the polishing liquid is preferably 1 or higher, preferably 2 or higher. It is more preferable that it is 3 or more.
  • pH adjusters for example, aqueous ammonia, potassium hydroxide, etc.
  • an acid and a base can be used.
  • the pH is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the polishing liquid can be measured with a pH meter (for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.). For example, after two-point calibration using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.))
  • the pH of the polishing liquid can be measured by putting the electrode in the polishing liquid and measuring the value after 2 minutes or more have passed and stabilized at 25 ° C.
  • the constituents of the polishing liquid according to the present embodiment can be stored, transported and used in a plurality of liquids. Therefore, for example, the polishing liquid according to the present embodiment may be obtained by mixing a component containing an oxidizing agent that has been stored separately and a component other than the oxidizing agent.
  • the polishing liquid is a first liquid and a second liquid that have been stored separately (that is, the abrasive particles, a methacrylic acid polymer obtained without using an inorganic acid as a raw material during the synthesis, and
  • the phthalic acid compound, the isophthalic acid compound and the dicarboxylic acid compound represented by the general formula (I), salts thereof, acid anhydrides of the phthalic acid compound and the dicarboxylic acid compound represented by the general formula (I) Obtained by mixing at least one carboxylic acid compound component selected from the group consisting of acid anhydrides, a first liquid containing the metal anticorrosive, and a second liquid containing the oxidizing agent). May be.
  • the first liquid may further contain an organic solvent, a surfactant and the like.
  • the polishing liquid of this embodiment can be suitably used for polishing a film to be polished having a wiring forming portion having a wiring density of 50% or more.
  • the wiring density is a value calculated from the respective widths of the interlayer insulating film portion and the wiring metal portion (including the barrier metal) in the portion where the wiring is formed. For example, when the line and space is 100 ⁇ m / 100 ⁇ m, the wiring density at that portion is 50%.
  • the polishing liquid of this embodiment can also be suitably used for polishing a film to be polished having a wiring forming portion having a wiring density of 80% or more.
  • the polishing method of the present embodiment is a polishing method in which a film to be polished containing cobalt element formed on at least one surface of a substrate is polished using the above-described polishing liquid to remove an excess portion containing cobalt element. It is.
  • a step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid polymer
  • a polishing method in which the pH of the polishing liquid is 4 or less.
  • the step of chemically mechanically polishing the substrate includes the polishing described above between the film to be polished containing cobalt element formed on at least one surface of the substrate and the polishing cloth on the polishing surface plate. At least a part of the film to be polished by relatively moving the substrate and the polishing platen while supplying the liquid while pressing the surface of the substrate on the surface provided with the film to be polished against the polishing cloth This is a step of removing.
  • polishing liquid of the present embodiment is not limited to the following steps. Since the polishing liquid obtained in the step of obtaining the polishing liquid is as described above, detailed description thereof is omitted here.
  • the substrate 10 before polishing has an insulating material 2 having a predetermined pattern of recesses on the silicon substrate 1 and the insulating material 2 along the unevenness of the surface of the insulating material 2. It has a barrier metal layer 3 to be coated and a cobalt-based metal 4 that covers the barrier metal layer 3, and a conductive material layer 5 is formed on the cobalt-based metal 4.
  • the “base” refers to, for example, a structure in which predetermined layers are sequentially formed on a silicon substrate as described above.
  • at least one of the formed layers includes a cobalt element. .
  • the cobalt-based metal 4 also has a role as a barrier metal layer. However, for the sake of explanation, the cobalt-based metal 4 will be described separately from the barrier metal layer 3.
  • Examples of the insulating material 2 include a silicon-based insulating material and an organic polymer-based insulating material.
  • Silicon-based insulating materials include silicon dioxide; fluorosilicate glass; organosilicate glass obtained using trimethylsilane or dimethoxydimethylsilane as a starting material; silica-based insulating materials such as silicon oxynitride and silsesquioxane hydride; silicon carbide A silicon nitride may be used.
  • Examples of the organic polymer insulating material include wholly aromatic low dielectric constant insulating materials. Among these, silicon dioxide is particularly preferable.
  • the insulating material 2 is formed by a CVD (chemical vapor deposition) method, a spin coating method, a dip coating method, or a spray method.
  • Specific examples of the insulating material 2 include an insulating material in an LSI manufacturing process, particularly a multilayer wiring forming process.
  • the barrier metal layer 3 is formed to prevent the conductive material from diffusing into the insulating material 2 and to improve the adhesion between the insulating material 2 and the conductive material layer 5.
  • the barrier metal used for the barrier metal layer 3 include tantalum compounds such as tantalum, tantalum nitride, and tantalum alloys, titanium compounds such as titanium, titanium nitride, and titanium alloys, tungsten compounds such as tungsten, tungsten nitride, and tungsten alloys, ruthenium, and the like. And ruthenium compounds.
  • the barrier metal layer 3 may have a single layer structure made of one of these or a laminated structure made of two or more.
  • the barrier metal layer 3 is formed by vapor deposition, CVD (chemical vapor deposition) or the like. Note that only the cobalt-based metal 4 may be provided as the barrier metal layer 3.
  • cobalt used for the cobalt-based metal 4 examples include cobalt, a cobalt alloy, a cobalt oxide, and a cobalt alloy oxide.
  • the cobalt-based metal is formed by a known sputtering method or the like.
  • Examples of the conductive material used for the conductive material layer 5 include copper, copper alloys, copper oxides, copper-based metals such as copper alloys, tungsten metals such as tungsten and tungsten alloys, silver, Examples include noble metals such as gold. Among these, metals having copper as a main component such as copper, copper alloys, copper oxides, and copper alloy oxides are preferable.
  • the conductive material layer 5 is formed by a known sputtering method, plating method or the like.
  • each layer is not particularly limited.
  • the thickness of the insulating material 2 is about 0.01 to 2.0 ⁇ m
  • the thickness of the barrier metal layer 3 is about 0.01 to 2.5 ⁇ m.
  • the thickness of the metal 4 is preferably about 0.01 to 2.5 ⁇ m
  • the thickness of the conductive material layer 5 is preferably about 0.01 to 2.5 ⁇ m.
  • the step of chemically mechanically polishing the cobalt-based metal 4 (substrate containing cobalt element) using the polishing liquid can include, for example, the following first polishing step and second polishing step.
  • the first polishing step of polishing the conductive material layer 5 from the state shown in FIG. 2A to the state shown in FIG. 2B the conductive material layer 5 on the surface of the substrate 10 before polishing is For example, polishing is performed by CMP using a polishing liquid for a conductive material having a sufficiently high polishing rate ratio of the conductive material layer 5 / cobalt metal 4.
  • substrate 20 which has the conductor pattern in which the cobalt-type metal 4 of the convex part on a board
  • the polishing liquid for the conductive material having a sufficiently high polishing rate ratio of the conductive material layer 5 / cobalt-based metal 4 for example, the polishing liquid described in Japanese Patent No. 337464 can be used.
  • a part of the cobalt-based metal 4 in the convex portion may be polished together with the conductive material layer 5.
  • the conductor pattern obtained in the first polishing step is polished using the polishing liquid of this embodiment as a film to be polished for the second polishing step.
  • the polishing surface plate and the substrate 20 are supplied while supplying the polishing liquid of the present embodiment between the polishing cloth and the substrate.
  • the cobalt-based metal 4 exposed in the first polishing step is polished by relatively moving the.
  • a polishing apparatus As a polishing apparatus, a general polishing apparatus having a holder for holding a substrate to be polished and a polishing platen connected to a motor capable of changing the number of rotations and attached with a polishing cloth can be used.
  • abrasive cloth As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction
  • the polishing conditions are not particularly limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rpm (times / min) or less so that the substrate does not pop out.
  • the pressing pressure of the substrate having the film to be polished onto the polishing cloth is preferably 1 to 100 kPa, and 5 to 50 kPa in order to satisfy the in-surface uniformity of the polishing rate and the flatness of the pattern. It is more preferable.
  • the polishing liquid of this embodiment is continuously supplied between the polishing cloth and the film to be polished by a pump or the like.
  • a pump or the like Although there is no restriction
  • the substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
  • polishing cloth conditioning step before polishing.
  • the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform the polishing method of the present embodiment and further add a substrate cleaning step.
  • the second polishing step at least the exposed cobalt-based metal 4 is polished to remove excess cobalt.
  • the cobalt-based metal 4 is polished, and when the barrier metal layer 3 is exposed, the polishing is terminated, and the barrier metal layer 3 may be separately polished with a polishing liquid for barrier metal layer polishing. Further, as shown in FIGS. 2B to 2C, the cobalt metal 4 to the barrier metal layer 3 may be polished in series in the second polishing step. Furthermore, the conductive material layer 5 embedded in the recess may be polished together with the cobalt metal 4 and the barrier metal layer 3.
  • the insulating material 2 under the convex barrier metal layer 3 is completely exposed, the conductive material layer 5 serving as a wiring layer is left in the concave portion, and the barrier metal layer 3 and the cobalt-based metal 4 at the boundary between the convex portion and the concave portion.
  • the polishing is finished when the substrate 30 having the desired pattern in which the cross section is exposed is obtained.
  • overpolishing may be further performed as shown in FIG.
  • polishing for 50 seconds in addition to the polishing for 100 seconds is referred to as over polishing 50%.
  • overpolishing a part of the insulating material 2 is also removed by polishing.
  • a second-layer insulating material and metal wiring are further formed on the metal wiring thus formed, and then polished to obtain a smooth surface over the entire surface of the semiconductor substrate. By repeating this step a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured.
  • the polishing liquid of the present embodiment can be used not only for polishing a metal film formed on a semiconductor substrate as described above but also for polishing a substrate such as a magnetic head.
  • the type and ratio of the polishing liquid material may be other than the type and ratio described in this example, and the composition and structure of the object to be polished may also be a composition and structure other than those described in this example.
  • the molecular names of the polymerization initiators in Table 1 are as follows.
  • VA-061 2,2′-azobis [2- (2-imidazolin-2-yl) propane]
  • AIBN 2,2′-azobis (isobutyronitrile)
  • VA-057 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] Since VA-061 is soluble in an acidic aqueous solution, the acids shown in Table 1 are added when the polymer is synthesized.
  • a copper film other than the groove of the patterned substrate with copper wiring is formed by a known CMP method using a polishing liquid for copper film polishing (HS-H635, manufactured by Hitachi Chemical Co., Ltd.). Polishing was performed to expose the convex barrier layer on the surface to be polished. As a result, a substrate as shown in FIG. 1B was obtained.
  • substrate was used for the grinding
  • the barrier layer of the pattern substrate was made of a tantalum nitride film having a thickness of 250 mm.
  • the pattern substrate was subjected to chemical mechanical polishing for 60 seconds under the following polishing conditions with each metal film polishing liquid prepared by the above polishing liquid preparation method. This corresponds to the second polishing step, and the convex interlayer insulating film was exposed on the surface to be polished in about 30 seconds except for Comparative Example 9. For the remaining 30 seconds, the exposed interlayer insulating film was polished for the protrusions.
  • Polishing device Single-sided metal film polishing machine (MIRRA, Applied Materials) Polishing cloth: Polishing cloth made of suede foam polyurethane resin Surface plate rotation speed: 93 times / min Head rotation speed: 87 times / min Polishing pressure: 14 kPa Supply amount of polishing liquid: 200 ml / min
  • Comparative Example 9 the entire interlayer insulating film could not be exposed on the surface to be polished in the first 30 seconds of polishing, but the convex interlayer insulating film was exposed on the surface to be polished in the remaining 30 seconds of polishing.
  • a sponge brush (made of polyvinyl alcohol resin) was pressed against the surface to be polished of the patterned substrate polished in the substrate polishing step, and the substrate and the sponge brush were rotated while supplying distilled water to the substrate, and washed for 60 seconds. .
  • the sponge brush was removed, and distilled water was supplied to the polished surface of the substrate for 60 seconds.
  • the substrate was rotated at high speed to blow off distilled water and dried to obtain a pattern substrate to be used in the following evaluation.
  • Amount of interlayer insulating film polishing optical film thickness meter for the thickness of an interlayer insulating film portion of a striped pattern with a total width of 2900 ⁇ m in which wiring metal portions with a width of 100 ⁇ m and interlayer insulating film portions with a width of 100 ⁇ m are alternately arranged And determined as the amount of interlayer insulating film polishing.
  • FIG. 4 is a schematic cross-sectional view of a striped pattern in which a wiring metal portion having a width of 90 ⁇ m and an interlayer insulating film portion having a width of 10 ⁇ m are alternately arranged on the patterned substrate with copper wiring, 11 is an interlayer insulating film, 13 Is the barrier metal layer, 15 is the wiring metal layer, 40 is the erosion, 50 is the state before polishing, A is the polishing amount of the interlayer insulating film portion at the outer edge of the stripe pattern, and B is the polishing amount of the interlayer insulating film portion of the stripe pattern Maximum values are shown respectively.
  • FIG. 5 is a schematic cross-sectional view of a portion in which the wiring metal part having a width of 100 ⁇ m and the interlayer insulating film part having a thickness of 100 ⁇ m are alternately arranged on the patterned substrate with copper wiring, 11 is an interlayer insulating film, 13 is a barrier layer, 15 is a wiring metal layer, 50 is a state before polishing, 60 is the vicinity of the wiring metal part of the interlayer insulating film part, 70 is a seam, and C is an interlayer insulating film excessively shaved from the upper end of the interlayer insulating film part near the wiring metal part Indicates the distance to the bottom of the part.
  • a blanket substrate (a) in which a cobalt layer having a thickness of 300 nm was formed by CVD on an 8-inch silicon substrate was prepared.
  • the blanket substrate (a) was cut into 20 mm square chips to prepare evaluation chips (b).
  • the chips for evaluation (b) were placed in a beaker containing 50 g of each polishing liquid and immersed in a 60 ° C. constant temperature bath for 1 minute.
  • the evaluation chip (b) after immersion was taken out and thoroughly washed with pure water, and then nitrogen gas was blown to dry the water on the chip.
  • the resistance of the evaluation chip (b) after drying was measured with a resistivity meter and converted into the film thickness of the cobalt layer after immersion by the following formula (1).
  • a calibration curve was obtained from information on resistance values corresponding to the respective film thicknesses of the blanket substrate (a), and the film thickness of the cobalt layer was determined from the following formula (1).
  • Film thickness [nm] of cobalt layer after immersion 104.5 ⁇ (resistance value [m ⁇ ] / 1000 of evaluation chip (b)) ⁇ 0.893 (1)
  • the etching rate of the cobalt layer was calculated
  • Etching rate of cobalt layer (Co-ER) [nm / min] (film thickness of cobalt layer before immersion [nm] ⁇ film thickness of cobalt layer after immersion [nm]) / 1 minute (2)
  • Blanket substrate (a) A silicon substrate on which cobalt (thickness: 300 nm) is formed by a CVD method.
  • Blanket substrate (b) A silicon substrate on which copper (thickness: 1000 nm) is formed by a plating method.
  • Blanket substrate (c) A silicon substrate on which tantalum nitride (thickness: 200 nm) is formed by sputtering.
  • Blanket substrate (e) A silicon substrate on which an organosilicate glass (thickness: 1000 nm) is formed. Using the blanket substrates (a) to (e), chemical mechanical polishing was performed for 60 seconds under the substrate polishing conditions with the polishing liquids of Examples 1 to 15.
  • polishing rate was calculated by the following method using the blanket substrates (a) to (e) after chemical mechanical polishing.
  • Cobalt film The resistance of the blanket substrate (a) before and after polishing is measured using a metal film thickness measuring device (product name “VR-120 / 08S” manufactured by Hitachi Kokusai Electric Co., Ltd.), and then the cobalt layer Similar to the calculation of the etching rate, the film thickness of the cobalt layer before and after polishing was calculated using the following equation (1).
  • Film thickness [nm] 104.5 ⁇ (Cobalt layer resistance [m ⁇ ] / 1000) ⁇ 0.893 (1)
  • the polishing rate (Co polishing rate) [nm / min] when the cobalt film was polished was evaluated.
  • Copper film, tantalum nitride film About blanket substrates (b) and (c), film thickness before and after polishing using a metal film thickness measuring device (product name “VR-120 / 08S” manufactured by Hitachi Kokusai Electric Co., Ltd.) The difference was measured, and from the obtained results, the polishing rate when polishing the copper film (Cu polishing rate) [nm / min] and the polishing rate when polishing the tantalum nitride film (TaN polishing rate) [nm / min] Evaluated.
  • Cu polishing rate copper film
  • TaN polishing rate polishing rate when polishing the tantalum nitride film
  • Silicon dioxide film, organosilicate glass film obtained by measuring the film thickness difference before and after polishing using a film thickness measuring device (manufactured by Dainippon Screen Mfg. Co., Ltd., product name “Lambda Ace, VL-M8000LS”) From the results, the polishing rate when polishing the silicon dioxide film (SiO 2 polishing rate) [nm / min] and the polishing rate when polishing the organosilicate glass film (SiOC polishing rate) [nm / min] were evaluated. These results are shown in Table 4.
  • Comparative Examples 1 to 7 and 11 in Table 3 the erosion and seam were the same values as in the example, but the cobalt etching rate was high. Further, in Comparative Examples 8 to 9 in Table 3, erosion was greatly generated at 430 to 570 mm and seam was 260 to 340 mm, and the flatness of the polished surface was low. In Comparative Example 10 in Table 3, the polishing amount of the interlayer insulating film was not sufficient, and when the pH exceeded 5, the cobalt etching rate was high.
  • Examples 1 to 15 had good polishing rates for cobalt, copper, tantalum nitride, silicon dioxide and organosilicate glass. From this, in the polishing liquid of the present invention containing the methacrylic acid polymer and the carboxylic acid compound, erosion and seam are suppressed by using the specific methacrylic acid polymer, and the specific methacrylic acid polymer and the It is considered that the etching of cobalt is suppressed by using a specific dicarboxylic acid compound and adjusting the pH to 4 or less.
  • polishing liquid of the present invention erosion and seam are suppressed, and when a layer containing cobalt element is polished, the layer containing cobalt element is excessively etched or a slit due to corrosion is generated. It is suggested that polishing can be effectively suppressed.
  • SYMBOLS 1 Silicon substrate, 2, 11 ... Insulating material (interlayer insulating film), 3, 13 ... Barrier metal layer (barrier layer), 4 ... Intermediate layer (cobalt metal), 5, 15 ... Conductive substance layer (wiring metal) Layer) 10, 20, 30 ... substrate, 40 ... erosion, 50 ... state before polishing, 60 ... near wiring metal part of interlayer insulating film, 70 ... seam.

Abstract

 The present invention relates to a polishing liquid production method in which the pH of the polishing liquid is 4 or less, said method comprising: a step for obtaining a solution by dissolving a polymerization initiator in an aqueous solvent that does not contain inorganic acid; a step for obtaining a methacrylic acid polymer by at least polymerizing a monomer component that contains methacrylic acid in said solution; and a step for obtaining a polishing liquid by mixing the methacrylic acid polymer, a specific carboxylic acid compound, polishing particles, and a metal corrosion prevention agent.

Description

研磨液の製造方法及び研磨方法Manufacturing method and polishing method of polishing liquid
 本発明は、研磨液の製造方法及び研磨方法に関する。具体的には、本発明は、半導体デバイスの配線形成工程等における研磨に使用される研磨液の製造方法及び研磨液を用いた研磨方法に関する。 The present invention relates to a polishing liquid production method and a polishing method. Specifically, the present invention relates to a manufacturing method of a polishing liquid used for polishing in a wiring formation process of a semiconductor device and a polishing method using the polishing liquid.
 近年、半導体集積回路(以下、「LSI」と記す。)の高集積化、高性能化等に伴って、新たな微細加工技術が開発されている。化学機械研磨(以下、「CMP」と記す。)法もその一つであり、LSI製造工程(特に多層配線形成工程における絶縁材料の平坦化、金属プラグ形成、埋め込み配線形成等)において頻繁に利用される技術である。 In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as “LSI”). A chemical mechanical polishing (hereinafter referred to as “CMP”) method is one of them, and is frequently used in LSI manufacturing processes (particularly, planarization of insulating materials, formation of metal plugs, formation of embedded wiring, etc. in multilayer wiring forming processes). Technology.
 また、最近は、LSIを高性能化するために、配線材料として銅、銅合金等の銅系金属(copper based-metal)の利用が試みられている。しかし、銅系金属に対しては、従来のアルミニウム配線の形成で頻繁に用いられてきたドライエッチング法による微細加工が困難である。そこで、例えば、予め溝が形成された絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜を、CMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている(例えば、特許文献1参照。)。 Recently, in order to improve the performance of LSIs, use of copper-based metals such as copper and copper alloys as wiring materials has been attempted. However, it is difficult for copper-based metals to be finely processed by a dry etching method that has been frequently used in the formation of conventional aluminum wiring. Therefore, for example, a so-called damascene method is mainly employed in which a copper alloy thin film is deposited and embedded on an insulating film in which a groove is formed in advance, and a copper alloy thin film other than the groove is removed by CMP to form a buried wiring. (For example, refer to Patent Document 1).
 ここで、図1(a)に示すように、銅系金属により形成された導電性物質層5の下層には、シリコン基板1上に形成した絶縁材料2中への銅拡散防止、及び絶縁材料2と導電性物質層5との密着性向上のため、バリア金属の膜(以下、「バリア金属層3」ともいう)が形成されることがある。この場合、導電性物質(配線用金属)を埋め込む配線部以外では、露出したバリア金属層3をCMPにより取り除く必要がある。 Here, as shown in FIG. 1 (a), the copper material is prevented from diffusing into the insulating material 2 formed on the silicon substrate 1 below the conductive material layer 5 made of copper-based metal, and the insulating material. In order to improve the adhesion between the conductive material layer 5 and the conductive material layer 5, a barrier metal film (hereinafter also referred to as "barrier metal layer 3") may be formed. In this case, it is necessary to remove the exposed barrier metal layer 3 by CMP except for the wiring portion in which the conductive substance (wiring metal) is embedded.
 そこで、研磨工程を、図1(a)に示される状態から図1(b)に示される状態まで導電性物質層5を研磨する「第一の研磨工程」と、図1(b)に示される状態から図1(c)に示される状態までバリア金属層3及び導電性物質層5を研磨する「第二の研磨工程」とに分け、それぞれ異なる研磨液で研磨を行う2段研磨方法が一般に適用されている。 Therefore, the polishing step is shown as “first polishing step” in which the conductive material layer 5 is polished from the state shown in FIG. 1A to the state shown in FIG. The two-stage polishing method in which the barrier metal layer 3 and the conductive material layer 5 are polished from the state shown in FIG. 1C to the state shown in FIG. Generally applied.
 ところで、デザインルールの微細化とともに、前記配線形成工程の各層も薄くなる傾向がある。しかしながら前記バリア金属層3が薄くなることにより、例えば銅、銅合金及びこれらの酸化物から選ばれた少なくとも一種を含む導電性物質の拡散を防止する効果が低下する。また、配線幅が狭くなることで、導電性物質による配線部の埋め込み性が低下し、配線部にボイドと呼ばれる空孔が発生する。更に、バリア金属層3と導電性物質層5との密着性も低下する傾向がある。このため、図1におけるバリア金属層3に用いる金属をCo(コバルト)元素を主成分として含む金属(コバルトを50mol%以上含む金属をいう。以下「コバルト系金属(cobalt based-metal)」という。)に置き換えることが検討されている。 By the way, with the miniaturization of design rules, each layer in the wiring forming process tends to become thinner. However, when the barrier metal layer 3 is thinned, the effect of preventing the diffusion of a conductive substance containing at least one selected from, for example, copper, copper alloys, and oxides thereof is lowered. In addition, since the wiring width is narrowed, the embedding property of the wiring part by the conductive material is lowered, and voids called voids are generated in the wiring part. Furthermore, the adhesion between the barrier metal layer 3 and the conductive material layer 5 also tends to decrease. Therefore, the metal used for the barrier metal layer 3 in FIG. 1 is a metal containing a Co (cobalt) element as a main component (referred to as a metal containing 50 mol% or more of cobalt; hereinafter referred to as “cobalt-based metal”). ) Is being considered.
 また、同様の観点から、図2(a)に示すように、バリア金属層3と導電性物質層5の間に、コバルト系金属で形成される中間層4を介在させることも提案されている。コバルト系金属の中間層4を用いることで導電性物質の拡散が抑えられる。更に、コバルトは導電性物質として広く用いられている銅との親和性が高いため、銅による配線部への埋め込み性が向上する。更に銅層との密着性も補うことができる。なお、ここでいう中間層4も、広義にはバリア金属層である。以下、簡便のため、バリア金属層という場合は、中間層4もその範囲に含むものとする。 From the same point of view, as shown in FIG. 2A, an intermediate layer 4 formed of a cobalt-based metal is interposed between the barrier metal layer 3 and the conductive material layer 5. . By using the intermediate layer 4 of the cobalt-based metal, the diffusion of the conductive substance can be suppressed. Furthermore, since cobalt has a high affinity with copper, which is widely used as a conductive material, the embedding property of copper in the wiring portion is improved. Furthermore, adhesion with the copper layer can be supplemented. The intermediate layer 4 here is also a barrier metal layer in a broad sense. Hereinafter, for the sake of simplicity, the term “barrier metal layer” includes the intermediate layer 4 within the range.
 LSIに、バリア金属層としてコバルト系金属を用いる場合、金属用研磨液が、余分のコバルト系金属を除去できる必要がある。金属用研磨液としては、種々のものが知られているが、一方で、従来の金属用研磨液を用いて研磨を行おうとしたときに、それがどのような金属でも好適に除去できるとは限らない。従来の金属用研磨液としては、銅、タンタル、チタン、タングステン、アルミニウム等の金属を研磨対象(余分な部分として除去される対象)とするものが知られているが、コバルト系金属を研磨対象とする研磨液はあまり知られていない。 When a cobalt-based metal is used as a barrier metal layer in an LSI, it is necessary for the metal polishing liquid to be able to remove excess cobalt-based metal. Various metal polishing liquids are known. On the other hand, when polishing is attempted using a conventional metal polishing liquid, any metal can be suitably removed. Not exclusively. Conventional metal polishing liquids are known for polishing metals such as copper, tantalum, titanium, tungsten, and aluminum (targets to be removed as extra parts), but cobalt-based metals are target for polishing. There is not much known polishing liquid.
 ところで、コバルト系金属は、従来配線用金属として使用されてきた銅等の導電性物質と比較して腐食され易い(腐食性が強い)。そのため、従来の研磨液をそのまま使用すると、コバルト系金属が過度に浸食(エッチング)されたり、配線層にスリットが生じたりする場合がある。そのため、コバルト系金属がバリア金属層としての機能を果たさず、導電性金属イオンが拡散する懸念がある。絶縁材料に金属イオンが拡散した場合、半導体デバイスはショートの可能性が高くなる。一方で、これを防ぐために、防食作用の強い防食剤を添加したり、防食剤の添加量を増やしたりすると、全体の研磨速度が低下してしまうという課題ある。 By the way, cobalt-based metals are more easily corroded (strongly corrosive) than conductive materials such as copper that have been conventionally used as wiring metals. Therefore, if the conventional polishing liquid is used as it is, the cobalt metal may be excessively eroded (etched) or a slit may be formed in the wiring layer. Therefore, there is a concern that the cobalt metal does not function as a barrier metal layer and the conductive metal ions diffuse. If metal ions diffuse into the insulating material, the semiconductor device is more likely to short. On the other hand, in order to prevent this, if an anticorrosive having a strong anticorrosive action is added or the amount of the anticorrosive added is increased, there is a problem that the overall polishing rate is lowered.
 このような課題に対応するべく、四員環~六員環の複素環式化合物であって、二重結合を2つ以上含み、窒素原子を1つ以上含む、特定の金属防食剤を用いる研磨液(例えば、特許文献2参照。)、フタル酸化合物、イソフタル酸化合物及びジカルボン酸化合物を用いる研磨液(例えば、特許文献3参照)等が知られている。 Polishing using a specific metal anticorrosive agent which is a 4-membered to 6-membered heterocyclic compound containing two or more double bonds and containing one or more nitrogen atoms in order to cope with such a problem. Known are liquids (see, for example, Patent Document 2), polishing liquids using phthalic acid compounds, isophthalic acid compounds, and dicarboxylic acid compounds (for example, see Patent Document 3).
 また、上記第二の研磨工程において、金属埋め込み部分以外に形成される層間絶縁膜である二酸化珪素膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなる現象(以下、「エロージョン」と記す。)及び配線金属部近傍の層間絶縁膜が局所的に削られる現象(以下、「シーム」と記す。)が発生し、平坦性が悪化する。その結果、配線抵抗の増加等の問題が生じてしまうので、エロージョン及びシームの発生は可能な限り低減することが要求される。上記層間絶縁膜としては、例えば、二酸化珪素膜、あるいはLow-k(低誘電率)膜であるオルガノシリケートグラス、全芳香環系Low-k膜等が挙げられる。 Further, in the second polishing step, when the polishing rate of the silicon dioxide film, which is an interlayer insulating film formed other than the metal buried portion, is also high, the phenomenon that the thickness of the wiring with the interlayer insulating film becomes thin (hereinafter, “ And the phenomenon that the interlayer insulating film in the vicinity of the wiring metal part is locally scraped (hereinafter referred to as “seam”) occurs, and the flatness deteriorates. As a result, problems such as an increase in wiring resistance occur, so that the occurrence of erosion and seam is required to be reduced as much as possible. Examples of the interlayer insulating film include a silicon dioxide film, an organosilicate glass which is a low-k (low dielectric constant) film, a wholly aromatic ring-based low-k film, and the like.
 上記のエロージョン及びシームの発生を低減する方法として、配線金属(例えば、銅)の表面を保護するために、メタクリル酸のホモポリマ及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマを含んでなる研磨液を用いることが知られている(例えば、特許文献4参照)。 As a method for reducing the generation of erosion and seam, a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid are used to protect the surface of the wiring metal (for example, copper). It is known to use a polishing liquid comprising the same (for example, see Patent Document 4).
特開平2-278822号公報JP-A-2-278822 特開2011-91248号公報JP 2011-91248 A 特開2013-42123号公報JP2013-42123A 特開2013-62516号公報JP 2013-62516 A
 しかしながら、発明者らの検討の結果、前記メタクリル酸系ポリマを含む研磨液は、コバルト系金属に対するエッチング速度が大きくなることが分かった。コバルト系金属に対するエッチング速度が大きいと、バリア金属層としてコバルト系金属を用いた場合、コバルト系金属が過度に浸食されたり、配線層にスリットが生じたりする場合がある。そのため、上述のとおりコバルト系金属がバリア金属層としての機能を果たさなくなるという問題がある。 However, as a result of investigations by the inventors, it has been found that the polishing liquid containing the methacrylic acid polymer increases the etching rate with respect to the cobalt metal. If the etching rate for the cobalt metal is high, when the cobalt metal is used as the barrier metal layer, the cobalt metal may be excessively eroded or a slit may be formed in the wiring layer. Therefore, as described above, there is a problem that the cobalt-based metal does not function as a barrier metal layer.
 本発明の課題は、基体表面の平坦化能に優れ、かつコバルト系金属に対するエッチング速度の小さい研磨液の製造方法、及びそれにより得られる研磨液を用いた研磨方法を提供することである。 An object of the present invention is to provide a method for producing a polishing liquid that is excellent in planarizing the surface of a substrate and has a low etching rate for a cobalt-based metal, and a polishing method using the polishing liquid obtained thereby.
 また、本発明の課題は、層間絶縁膜に対する良好な研磨速度を維持しながら、エロージョン及びシームの発生を抑制し、なおかつ被研磨面の平坦化能が高い研磨液の製造方法及びそれにより得られる研磨液を用いた研磨方法を提供することである。 Another object of the present invention is to provide a polishing liquid manufacturing method that suppresses the generation of erosion and seam while maintaining a good polishing rate for an interlayer insulating film, and has a high leveling ability of the surface to be polished, and the manufacturing method thereof. An object of the present invention is to provide a polishing method using a polishing liquid.
 コバルト系金属がバリア金属層としての機能を果たさなくなるという問題について、その原因を詳細に検討した結果、上記のメタクリル酸系ポリマの合成方法を改良することが、上記課題解決の重要なポイントであることを発明者らは見いだした。例えば、上記ポリマを合成する際の重合開始剤として、水溶性アゾ系重合開始剤である2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕が用いられるが、これは酸性の水溶液に溶解可能であり、一般的には硫酸等の無機酸を用いて溶解を行う。そのため、上記ポリマ中には無機酸が数mol含まれることになる。このような無機酸(硫酸等)を含んだポリマを用いた従来の研磨液を使用すると、コバルト系金属が過度に浸食(エッチング)されたり、配線層にスリットが生じたりすることが分かった。 As a result of examining the cause of the problem that the cobalt-based metal does not function as a barrier metal layer in detail, improving the synthesis method of the methacrylic acid-based polymer is an important point for solving the above problem. The inventors found that. For example, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], which is a water-soluble azo polymerization initiator, is used as a polymerization initiator for the synthesis of the polymer. It can be dissolved in an acidic aqueous solution, and is generally dissolved using an inorganic acid such as sulfuric acid. Therefore, the polymer contains several moles of inorganic acid. It has been found that when a conventional polishing liquid using a polymer containing such an inorganic acid (such as sulfuric acid) is used, the cobalt-based metal is excessively eroded (etched) or slits are formed in the wiring layer.
 前記課題を解決するための具体的手段は以下の<1>~<17>の通りである。
<1> 無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、を備え、カルボン酸化合物が、フタル酸化合物、イソフタル酸化合物、下記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び下記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種を含有し、研磨液のpHが4以下である、研磨液の製造方法。
  HOOC-R-COOH・・・(I)
[上記一般式(I)中、Rは炭素数が3~10でありかつ炭素及び水素のみを構成元素として含む。]
Specific means for solving the above-mentioned problems are as follows <1> to <17>.
<1> A step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid type And a step of mixing a polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive to obtain a polishing liquid, wherein the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, or a dicarboxylic acid represented by the following general formula (I) Containing at least one selected from the group consisting of acid compounds, their salts, and acid anhydrides of phthalic acid compounds and acid anhydrides of dicarboxylic acid compounds represented by the following general formula (I), and the pH of the polishing liquid The manufacturing method of polishing liquid whose is 4 or less.
HOOC-R-COOH (I)
[In the above general formula (I), R has 3 to 10 carbon atoms and contains only carbon and hydrogen as constituent elements. ]
 このようにして得られる研磨液によれば、コバルト系金属に対する良好な研磨速度を保ちながら、コバルト系金属に対する腐食を適度に抑制し、エロージョン及びシームの発生を低減させることができる。 According to the polishing liquid thus obtained, it is possible to moderately suppress the corrosion of the cobalt-based metal and reduce the occurrence of erosion and seam while maintaining a good polishing rate for the cobalt-based metal.
<2> 水系溶媒が水、又は、水及び有機酸からなる、上記<1>に記載の製造方法。 <2> The production method according to <1>, wherein the aqueous solvent is water or water and an organic acid.
<3> 研磨液がコバルト(コバルト元素)を含む基体を化学機械研磨する(CMPする)ための研磨液である、上記<1>又<2>記載の製造方法。 <3> The method according to <1> or <2> above, wherein the polishing liquid is a polishing liquid for chemical mechanical polishing (CMP) a substrate containing cobalt (cobalt element).
<4> 上記メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも一種である、上記<1>~<3>のいずれか1つに記載の製造方法。 <4> The above <1> to <1>, wherein the methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid. 3> The manufacturing method as described in any one of 3>.
 これにより、層間絶縁膜をより効果的に研磨することができる研磨液を得られる。 Thereby, a polishing liquid capable of more effectively polishing the interlayer insulating film can be obtained.
<5> 上記金属防食剤がトリアゾール骨格を有する化合物を含有する、上記<1>~<4>のいずれか1つに記載の製造方法。 <5> The production method according to any one of <1> to <4>, wherein the metal anticorrosive contains a compound having a triazole skeleton.
 これにより、腐食性をより効果的に抑制することができる研磨液を得られる。 Thereby, a polishing liquid capable of more effectively suppressing the corrosiveness can be obtained.
<6> 研磨液を得る工程において更に有機溶媒を混合して前記研磨液を得る、上記<1>~<5>のいずれか1つに記載の製造方法。 <6> The method according to any one of <1> to <5>, wherein in the step of obtaining a polishing liquid, an organic solvent is further mixed to obtain the polishing liquid.
 これにより、被研磨膜がコバルト系金属以外の層を含む場合に、コバルト系金属以外の層に対する濡れ性が向上するため、研磨速度をより向上させることができる研磨液を得られる。
<7> 研磨液を得る工程において更に酸化剤を混合して前記研磨液を得る、上記<1>~<6>のいずれか1つに記載の製造方法。
Thereby, when the film to be polished includes a layer other than the cobalt-based metal, wettability with respect to the layer other than the cobalt-based metal is improved, so that a polishing liquid capable of further improving the polishing rate can be obtained.
<7> The production method according to any one of <1> to <6>, wherein in the step of obtaining a polishing liquid, an oxidizing agent is further mixed to obtain the polishing liquid.
 これにより、被研磨膜がコバルト系金属以外の金属層を含む場合に、コバルト系金属以外の金属層の研磨速度をより向上させることができる研磨液を得られる。 Thereby, when the film to be polished includes a metal layer other than the cobalt-based metal, a polishing liquid capable of further improving the polishing rate of the metal layer other than the cobalt-based metal can be obtained.
<8> 研磨液を得る工程において、メタクリル酸系ポリマと、カルボン酸化合物、研磨粒子及び金属防食剤を含む第一の液と、酸化剤を含む第二の液と、を混合して前記研磨液を得る、上記<7>に記載の製造方法。 <8> In the step of obtaining a polishing liquid, the polishing is performed by mixing a methacrylic acid polymer, a first liquid containing a carboxylic acid compound, abrasive particles and a metal anticorrosive, and a second liquid containing an oxidizing agent. The production method according to <7>, wherein a liquid is obtained.
<9> 無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、コバルト系金属を含む基体を用意する工程と、研磨液を用いて、基体を化学機械研磨する工程と、を備え、カルボン酸化合物が、フタル酸化合物、イソフタル酸化合物、上記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び上記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種を含有し、研磨液のpHが4以下である、研磨方法。 <9> A step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid type A step of mixing a polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive to obtain a polishing liquid, a step of preparing a substrate containing a cobalt-based metal, a step of chemically mechanically polishing the substrate using the polishing solution, The carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, and an acid anhydride of the phthalic acid compound and the above general formula (I) A polishing method comprising at least one selected from the group consisting of acid anhydrides of dicarboxylic acid compounds represented, wherein the pH of the polishing liquid is 4 or less.
<10> 水系溶媒が水、又は、水及び有機酸からなる、上記<9>に記載の研磨方法。 <10> The polishing method according to <9>, wherein the aqueous solvent is water or water and an organic acid.
<11> メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも一種である、上記<9>又は<10>に記載の研磨方法。 <11> The above <9> or <10, wherein the methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid. > Polishing method.
<12> 金属防食剤がトリアゾール骨格を有する化合物を含有する、上記<9>~<11>のいずれか1つに記載の研磨方法。 <12> The polishing method according to any one of <9> to <11>, wherein the metal anticorrosive contains a compound having a triazole skeleton.
<13> 研磨液を得る工程において更に有機溶媒を混合して前記研磨液を得る、上記<9>~<12>のいずれか1つに記載の研磨方法。 <13> The polishing method according to any one of <9> to <12>, wherein in the step of obtaining a polishing liquid, an organic solvent is further mixed to obtain the polishing liquid.
<14> 研磨液を得る工程において更に酸化剤を混合して前記研磨液を得る、上記<9>~<13>のいずれか1つに記載の研磨方法。 <14> The polishing method according to any one of <9> to <13>, wherein in the step of obtaining a polishing liquid, an oxidizing agent is further mixed to obtain the polishing liquid.
<15> 研磨液を得る工程において、メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を含む第一の液と、酸化剤を含む第二の液とを混合して前記研磨液を得る、上記<14>に記載の研磨方法。 <15> In the step of obtaining a polishing liquid, a first liquid containing a methacrylic acid polymer, a carboxylic acid compound, abrasive particles and a metal anticorrosive and a second liquid containing an oxidizing agent are mixed to obtain the polishing liquid. The polishing method according to <14>, obtained.
 本発明の研磨方法によれば、コバルト元素を含む被研磨膜を過度な腐食を抑制しつつ研磨することが可能となる。 According to the polishing method of the present invention, it becomes possible to polish a film to be polished containing cobalt element while suppressing excessive corrosion.
 本発明によれば、合成時の原料として無機酸を用いずに得られるメタクリル酸系ポリマと、フタル酸化合物、イソフタル酸化合物及び上記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び上記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種からなるカルボン酸化合物と、を使用し、なおかつpHが4以下である研磨液の製造方法を提供することができる。当該製造方法により得られる研磨液を用いることによってコバルト系金属に対する良好な研磨速度を保ちながらコバルト系金属の腐食を適度に抑えることができ、更には層間絶縁膜に対する良好な研磨速度を維持しながらエロージョン及びシームの発生を抑制することができる。すなわち、本発明によれば、被研磨面の平坦化能が高い研磨液の製造方法及びそれにより得られる研磨液を用いた基板の研磨方法を提供することができる。 According to the present invention, a methacrylic acid polymer obtained without using an inorganic acid as a raw material at the time of synthesis, a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), and salts thereof And at least one carboxylic acid compound selected from the group consisting of an acid anhydride of a phthalic acid compound and an acid anhydride of a dicarboxylic acid compound represented by the above general formula (I), and having a pH of The manufacturing method of the polishing liquid which is 4 or less can be provided. By using the polishing liquid obtained by the production method, it is possible to moderately suppress the corrosion of the cobalt-based metal while maintaining a good polishing rate for the cobalt-based metal, and while maintaining a good polishing rate for the interlayer insulating film. Generation of erosion and seam can be suppressed. That is, according to the present invention, it is possible to provide a method for producing a polishing liquid having a high leveling ability of the surface to be polished and a method for polishing a substrate using the polishing liquid obtained thereby.
従来のダマシンプロセスにおける配線形成過程を示す模式断面図である。It is a schematic cross section which shows the wiring formation process in the conventional damascene process. コバルト系金属の中間層がある場合の、ダマシンプロセスにおける配線形成過程を示す模式断面図である。It is a schematic cross section which shows the wiring formation process in a damascene process when there exists an intermediate | middle layer of a cobalt-type metal. 本実施形態の研磨方法による研磨後の基板の一例を示す断面図である。It is sectional drawing which shows an example of the board | substrate after grinding | polishing by the grinding | polishing method of this embodiment. 銅配線付きパターン基板における、配線金属部及び層間絶縁膜部が交互に並んだストライプ状パターンとエロージョンを示す断面模式図である。It is a cross-sectional schematic diagram which shows the striped pattern and the erosion which the wiring metal part and the interlayer insulation film part arranged in the pattern board | substrate with a copper wiring alternately. 銅配線付きパターン基板における、配線金属部及び層間絶縁膜部が交互に並んだ部分とシームを示す断面模式図である。It is a cross-sectional schematic diagram which shows the part and seam where the wiring metal part and the interlayer insulation film part were located in a line in a pattern board with copper wiring.
 本明細書において「工程」との用語には、独立した工程が含まれるだけではなく、他の工程と明確に区別できない工程であってその工程において所期の目的が達成されうる工程も含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に研磨液中の各成分の含有量は、研磨液中に各成分に該当する物質が複数存在する場合、特に断らない限り、研磨液中に存在する当該複数の物質の合計量を意味する。 In this specification, the term “process” includes not only an independent process but also a process that cannot be clearly distinguished from other processes and in which the intended purpose can be achieved. . A numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, the content of each component in the polishing liquid means the total amount of the plurality of substances present in the polishing liquid unless there is a specific notice when there are a plurality of substances corresponding to each component in the polishing liquid.
 以下、本発明の製造方法、同製造方法により得られる研磨液(以下、単に「研磨液」ともいう。)、及び研磨液を用いた基板の研磨方法の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of a production method of the present invention, a polishing liquid obtained by the production method (hereinafter also simply referred to as “polishing liquid”), and a substrate polishing method using the polishing liquid will be described in detail.
[研磨液の製造方法]
 本実施形態の製造方法は、無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、を備える、研磨液の製造方法である。
[Production method of polishing liquid]
The production method of this embodiment includes a step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, and a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution. And a step of mixing a methacrylic acid polymer, a carboxylic acid compound, abrasive particles, and a metal anticorrosive to obtain a polishing liquid.
 それぞれの工程における「溶解」、「重合」及び「混合」の操作については当業者であれば適宜実施することができる。したがって、各工程で規定される化合物等について、次の「研磨液」の項で詳述する。 The operations of “dissolution”, “polymerization”, and “mixing” in each step can be appropriately performed by those skilled in the art. Therefore, the compounds defined in each step will be described in detail in the next section “Polishing liquid”.
[研磨液]
 本実施形態の製造方法により得られる研磨液は、合成時の原料として無機酸を用いずに得られるメタクリル酸系ポリマと、フタル酸化合物、イソフタル酸化合物及び下記一般式(I)で表されるジカルボン酸化合物、これらの塩(すなわち、フタル酸化合物、イソフタル酸化合物及び下記一般式(I)で表されるジカルボン酸化合物の塩)、並びにフタル酸化合物の酸無水物及び下記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種からなるカルボン酸化合物と、研磨粒子と、金属防食剤と、水とを含有し、pHが4以下であることを特徴とする。このような研磨液は、例えばコバルト元素を含む基体を化学機械研磨するために好適に用いることができる。
  HOOC-R-COOH・・・(I)
[上記一般式(I)中、Rは炭素数が3~10でありかつ炭素及び水素のみを構成元素として含む。]
[Polishing liquid]
The polishing liquid obtained by the production method of the present embodiment is represented by a methacrylic acid polymer obtained without using an inorganic acid as a raw material during synthesis, a phthalic acid compound, an isophthalic acid compound, and the following general formula (I). Dicarboxylic acid compounds, salts thereof (that is, salts of phthalic acid compounds, isophthalic acid compounds and dicarboxylic acid compounds represented by the following general formula (I)), and acid anhydrides of phthalic acid compounds and the following general formula (I) It contains at least one carboxylic acid compound selected from the group consisting of acid anhydrides of dicarboxylic acid compounds represented by the formula: abrasive particles, metal anticorrosive, and water, and has a pH of 4 or less. Features. Such a polishing liquid can be suitably used, for example, for chemical mechanical polishing of a substrate containing cobalt element.
HOOC-R-COOH (I)
[In the above general formula (I), R has 3 to 10 carbon atoms and contains only carbon and hydrogen as constituent elements. ]
<カルボン酸化合物>
 本実施形態の研磨液は、フタル酸化合物、イソフタル酸化合物及び上記一般式(I)で表されるジカルボン酸化合物(以下、これらを「特定ジカルボン酸化合物」ともいう)、これらの塩、並びにフタル酸化合物の酸無水物及び前記ジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種であるカルボン酸化合物(以下、「特定カルボン酸化合物」ともいう。)を含む。前記特定カルボン酸化合物は、一種類単独で、又は二種類以上混合して用いることができる。
<Carboxylic acid compound>
The polishing liquid of this embodiment includes a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I) (hereinafter, also referred to as “specific dicarboxylic acid compound”), a salt thereof, and phthalic acid. A carboxylic acid compound that is at least one selected from the group consisting of an acid anhydride of an acid compound and an acid anhydride of the dicarboxylic acid compound (hereinafter also referred to as “specific carboxylic acid compound”). The said specific carboxylic acid compound can be used individually by 1 type or in mixture of 2 or more types.
 カルボン酸及びカルボン酸誘導体は無数に存在する。しかし、この中から、前記特定カルボン酸化合物を選択することにより、コバルト系金属に対する良好な研磨速度を保ちながらなおかつ同層に対するエッチング速度が制御される。これにより、コバルト系金属の腐食が抑制され、良好な研磨面を得ることができる。更により厳しい条件下(例えば60℃)であっても、コバルト系金属のエッチング速度がより効果的に抑制され、優れた腐食抑制性が達成される。ここで腐食抑制性に優れるとは、被研磨面においてコバルト系金属がエッチングされたり、配線層にスリットが生じたりすることが効果的に抑制されることを意味する。 There are countless carboxylic acids and carboxylic acid derivatives. However, by selecting the specific carboxylic acid compound from these, the etching rate for the same layer is controlled while maintaining a good polishing rate for the cobalt-based metal. Thereby, corrosion of a cobalt-type metal is suppressed and a favorable grinding | polishing surface can be obtained. Even under more severe conditions (for example, 60 ° C.), the etching rate of the cobalt-based metal is more effectively suppressed, and excellent corrosion inhibition is achieved. Here, being excellent in corrosion inhibition means that the cobalt-based metal is etched on the surface to be polished or slits in the wiring layer are effectively suppressed.
 このような効果が得られる理由は明らかではないが、本発明者は次のように推察している。すなわち、前記特定カルボン酸化合物が、金属溶解剤として機能し、コバルト系金属に対する研磨速度を向上させる効果を有していると考えられる。それと同時に、コバルト原子に対して、前記特定カルボン酸化合物の二つのカルボキシ基がキレートして環状構造をとるように作用することにより、安定な錯体状態を形成する効果を有していると考えられる。このため、コバルト系金属のエッチング速度が制御されて、被研磨面における腐食が抑制されるものと推測される。なお、この安定な錯体状態の形成には、後述する金属防食剤も寄与している可能性も考えられる。 The reason why such an effect is obtained is not clear, but the present inventor presumes as follows. That is, it is considered that the specific carboxylic acid compound functions as a metal solubilizer and has an effect of improving the polishing rate for the cobalt-based metal. At the same time, it is considered that the two carboxy groups of the specific carboxylic acid compound are chelated to the cobalt atom so as to form a cyclic structure, thereby forming a stable complex state. . For this reason, it is presumed that the etching rate of the cobalt-based metal is controlled and corrosion on the polished surface is suppressed. In addition, there is a possibility that the metal anticorrosive described later contributes to the formation of this stable complex state.
 前記特定カルボン酸化合物は、コバルト層に対する研磨速度、エッチング速度の制御性及び腐食抑制性の観点から、特定ジカルボン酸化合物、その塩及びその酸無水物(酸無水物となるものに限る)からなる群より選択される。前記特定カルボン酸化合物以外の酸性化合物では、コバルト層に対する良好な研磨速度と、コバルト層のエッチング速度の抑制との両立が難しい。これは、本実施形態において前述のように安定な錯体状態の形成が重要であり、酸性化合物の立体構造が重要なファクターとなるためであると考えられる。また、前記特定カルボン酸化合物を含んでいても、それ以外の他の酸性化合物を含有すると、コバルト層のエッチング速度が顕著に上昇してしまう場合がある。これは、他の酸性化合物によるコバルト層のエッチング効果が、前述のような錯体状態の形成より優先してしまうためであると考えられる。 The specific carboxylic acid compound is composed of a specific dicarboxylic acid compound, a salt thereof, and an acid anhydride thereof (limited to an acid anhydride) from the viewpoints of polishing rate with respect to the cobalt layer, controllability of etching rate, and corrosion inhibition. Selected from the group. With acidic compounds other than the specific carboxylic acid compound, it is difficult to achieve both good polishing rate for the cobalt layer and suppression of the etching rate of the cobalt layer. This is presumably because the formation of a stable complex state is important in the present embodiment as described above, and the three-dimensional structure of the acidic compound is an important factor. Moreover, even if it contains the said specific carboxylic acid compound, when it contains other acidic compounds other than that, the etching rate of a cobalt layer may raise notably. This is considered to be because the etching effect of the cobalt layer by other acidic compounds has priority over the formation of the complex state as described above.
 本実施形態の研磨液の第一の態様において、前記カルボン酸化合物は、フタル酸化合物、イソフタル酸化合物及び上記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び上記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種からなるものである。但し、前記カルボン酸化合物は、本実施形態の効果を著しく損なわない範囲で、その他のカルボン酸化合物(その塩及びその酸無水物を含む。)を含んでいてもよい。 In the first aspect of the polishing liquid of this embodiment, the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, or a phthalic acid compound. It consists of at least one selected from the group consisting of acid anhydrides and acid anhydrides of dicarboxylic acid compounds represented by the above general formula (I). However, the carboxylic acid compound may contain other carboxylic acid compounds (including salts thereof and acid anhydrides) as long as the effects of the present embodiment are not significantly impaired.
 ただし、前記カルボン酸化合物は、フタル酸化合物、イソフタル酸化合物及び上記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び上記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種である特定カルボン酸化合物から実質的に構成されることが好ましい。ここで「実質的に」とは、本実施形態の研磨液の効果が著しく損なわれない程度に特定カルボン酸化合物が研磨液中に十分な量含まれることを意味するものであり、具体的には前記その他のカルボン酸化合物の含有率が特定カルボン酸化合物の総質量に対して10質量%以下であることを意味する。更に前記その他のカルボン酸化合物の含有率は、特定カルボン酸化合物の総質量に対して5質量%以下であることが好ましく、1質量%以下であることがより好ましい。 However, the carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the above general formula (I), a salt thereof, an acid anhydride of the phthalic acid compound, or the above general formula (I). It is preferable to be substantially composed of a specific carboxylic acid compound which is at least one selected from the group consisting of acid anhydrides of the dicarboxylic acid compounds represented. Here, “substantially” means that a sufficient amount of the specific carboxylic acid compound is contained in the polishing liquid to such an extent that the effect of the polishing liquid of the present embodiment is not significantly impaired. Means that the content of the other carboxylic acid compound is 10% by mass or less based on the total mass of the specific carboxylic acid compound. Furthermore, the content of the other carboxylic acid compound is preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total mass of the specific carboxylic acid compound.
 前記特定ジカルボン酸化合物のうち、フタル酸化合物には、フタル酸(ベンゼン-1,2-ジカルボン酸)及びベンゼン環上に1以上の置換基を有するフタル酸誘導体の少なくとも一種が含まれる。前記置換基としては、メチル基、アミノ基、ニトロ基等が挙げられる。これらの中でも、ニトロ基及びメチル基の少なくとも一方が好ましい。 Among the specific dicarboxylic acid compounds, the phthalic acid compound includes at least one of phthalic acid (benzene-1,2-dicarboxylic acid) and a phthalic acid derivative having one or more substituents on the benzene ring. Examples of the substituent include a methyl group, an amino group, and a nitro group. Among these, at least one of a nitro group and a methyl group is preferable.
 前記フタル酸化合物としては、具体的には、フタル酸;3-メチルフタル酸、4-メチルフタル酸等のアルキルフタル酸;3-アミノフタル酸、4-アミノフタル酸等のアミノフタル酸;3-ニトロフタル酸、4-ニトロフタル酸等のニトロフタル酸などが挙げられる。これらの中でも、アルキル基を置換基として有するフタル酸化合物(例えば、メチルフタル酸)が好ましく、3-メチルフタル酸及び4-メチルフタル酸の少なくとも一方がより好ましく、4-メチルフタル酸が特に好ましい。前記フタル酸化合物は、酸無水物として用いられてもよく、塩として用いられてもよい。 Specific examples of the phthalic acid compound include phthalic acid; alkylphthalic acid such as 3-methylphthalic acid and 4-methylphthalic acid; aminophthalic acid such as 3-aminophthalic acid and 4-aminophthalic acid; 3-nitrophthalic acid, 4 -Nitrophthalic acid such as nitrophthalic acid. Among these, a phthalic acid compound having an alkyl group as a substituent (for example, methylphthalic acid) is preferable, at least one of 3-methylphthalic acid and 4-methylphthalic acid is more preferable, and 4-methylphthalic acid is particularly preferable. The phthalic acid compound may be used as an acid anhydride or a salt.
 前記イソフタル酸化合物には、イソフタル酸(ベンゼン-1,3-ジカルボン酸)及びベンゼン環上に1以上の置換基を有するイソフタル酸誘導体の少なくとも一種が含まれる。前記置換基としては、ニトロ基、メチル基、アミノ基、ヒドロキシ基等が挙げられる。これらの中でも、メチル基が好ましい。 The isophthalic acid compound includes at least one of isophthalic acid (benzene-1,3-dicarboxylic acid) and an isophthalic acid derivative having one or more substituents on the benzene ring. Examples of the substituent include a nitro group, a methyl group, an amino group, and a hydroxy group. Among these, a methyl group is preferable.
 前記イソフタル酸化合物としては、具体的には、イソフタル酸、5-ニトロイソフタル酸等が挙げられる。前記イソフタル酸化合物は塩として用いられてもよい。 Specific examples of the isophthalic acid compound include isophthalic acid and 5-nitroisophthalic acid. The isophthalic acid compound may be used as a salt.
 前記一般式(I)で表されるジカルボン酸化合物のR部は、炭素数3~10でありかつ炭素(C)及び水素(H)のみを構成元素として含む二価の基である。なお、前記炭素数はR部の炭素数であり、カルボン酸基に含まれる炭素原子は前記炭素数として数えない。前記R部は、環状、直鎖状又は分岐鎖状のいずれであってもよい。これらの中でも直鎖状であることが好ましい。コバルト系金属に対する研磨速度、エッチング速度の制御性及び腐食抑制の観点から、炭素数は3~8であることが好ましく、3~6であることがより好ましい。前記ジカルボン酸化合物は、炭素数にもよるが、酸無水物として用いられてもよく、塩として用いられてもよい。 The R part of the dicarboxylic acid compound represented by the general formula (I) is a divalent group having 3 to 10 carbon atoms and containing only carbon (C) and hydrogen (H) as constituent elements. In addition, the said carbon number is carbon number of R part, and the carbon atom contained in a carboxylic acid group is not counted as said carbon number. The R portion may be cyclic, linear or branched. Among these, linear is preferable. From the viewpoints of polishing rate and etching rate control for cobalt-based metals, and corrosion inhibition, the number of carbons is preferably from 3 to 8, and more preferably from 3 to 6. The dicarboxylic acid compound may be used as an acid anhydride or a salt depending on the number of carbon atoms.
 炭素数3~10のジカルボン酸化合物として具体的には、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、イタコン酸等が挙げられる。これらの中でもアジピン酸、ピメリン酸、イタコン酸が好ましく、ピメリン酸がより好ましい。 Specific examples of the dicarboxylic acid compound having 3 to 10 carbon atoms include adipic acid, pimelic acid, suberic acid, azelaic acid, itaconic acid and the like. Among these, adipic acid, pimelic acid and itaconic acid are preferable, and pimelic acid is more preferable.
 前記カルボン酸化合物の含有量は、研磨液の総質量を基準として、0.001~10質量%の範囲であることが好ましい。前記カルボン酸化合物の含有量を前記範囲に調整することにより、コバルト系金属の近傍に設けられたコバルト系金属以外の層(例えば、図2(a)に示す中間層4の近傍に設けられた、導電性物質層5である銅等の配線用金属、バリア金属層3等)の良好な研磨速度を得ることができる。 The content of the carboxylic acid compound is preferably in the range of 0.001 to 10% by mass based on the total mass of the polishing liquid. By adjusting the content of the carboxylic acid compound to the above range, a layer other than the cobalt metal provided in the vicinity of the cobalt metal (for example, provided in the vicinity of the intermediate layer 4 shown in FIG. 2A). A good polishing rate of the conductive material layer 5 such as copper, such as copper, and the barrier metal layer 3 can be obtained.
 前記カルボン酸化合物の含有量は、研磨速度の観点で、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましい。また、前記ジカルボン酸の含有量は、コバルト系金属に対するエッチング抑制効果及び腐食抑制性の観点で、1.0質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.1質量%以下が特に好ましい。 The content of the carboxylic acid compound is more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more from the viewpoint of polishing rate. In addition, the content of the dicarboxylic acid is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass from the viewpoints of the etching inhibitory effect and corrosion inhibitory effect on the cobalt-based metal. The following are particularly preferred:
 前記研磨液は、研磨速度の観点から、カルボン酸化合物として、フタル酸、アルキルフタル酸、アミノフタル酸、ニトロフタル酸、イソフタル酸、5-ニトロイソフタル酸、及び上記一般式(I)で表され、Rが炭素数3~8のジカルボン酸化合物、並びにこれらの塩及び酸無水物(酸無水物となるものに限る)からなる群より選択される少なくとも一種を、0.01質量%以上含むことが好ましい。 From the viewpoint of polishing rate, the polishing liquid is represented by phthalic acid, alkylphthalic acid, aminophthalic acid, nitrophthalic acid, isophthalic acid, 5-nitroisophthalic acid, and the above general formula (I) as a carboxylic acid compound, and R Preferably contains 0.01% by mass or more of at least one selected from the group consisting of dicarboxylic acid compounds having 3 to 8 carbon atoms, and salts and acid anhydrides thereof (limited to those that become acid anhydrides). .
 また前記研磨液は、コバルト系金属に対するエッチング効果抑制の観点から、カルボン酸化合物として、フタル酸、アルキルフタル酸、アミノフタル酸、ニトロフタル酸、イソフタル酸、5-ニトロイソフタル酸、及び上記一般式(I)で表され、Rが炭素数3~8の直鎖状であるジカルボン酸化合物、並びにこれらの塩及び酸無水物(酸無水物となるものに限る)からなる群より選択される少なくとも一種を1.0質量%以下含むことが好ましい。 In addition, from the viewpoint of suppressing the etching effect on the cobalt-based metal, the polishing liquid contains phthalic acid, alkylphthalic acid, aminophthalic acid, nitrophthalic acid, isophthalic acid, 5-nitroisophthalic acid, and the above general formula (I) as a carboxylic acid compound. And at least one selected from the group consisting of dicarboxylic acid compounds in which R is a straight chain having 3 to 8 carbon atoms, and salts and acid anhydrides thereof (limited to acid anhydrides). It is preferable to contain 1.0 mass% or less.
 なお、上記カルボン酸化合物の塩としては特に限定されず、カルボン酸化合物と、アルカリ金属、アルカリ土類金属、ハロゲン化物等との塩が挙げられる。ただし、例えば研磨する基板が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、上記カルボン酸化合物の塩としては、アルカリ金属、アルカリ土類金属又はハロゲン化物との塩以外が好ましい。 The salt of the carboxylic acid compound is not particularly limited, and examples thereof include a salt of the carboxylic acid compound and an alkali metal, alkaline earth metal, halide or the like. However, for example, when the substrate to be polished is a silicon substrate including an integrated circuit element, contamination with alkali metal, alkaline earth metal, halide, etc. is not desirable. Preference is given to other than salts with earth metals or halides.
<メタクリル酸系ポリマ>
 無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程、及び前記溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程により得られるメタクリル酸系ポリマは、無機酸を含む水系溶媒を用いて得られるメタクリル酸系ポリマと比較して、コバルト系金属に対する腐食を抑えることができると推定される。ここで、水系溶媒としては、重合開始剤を溶解させることができるものであれば特に制限はないが、水、又は水及び後述の有機酸からなる溶媒であることが好ましい。
<Methacrylic acid polymer>
A methacrylic acid polymer obtained by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid to obtain a solution, and polymerizing a monomer component containing at least methacrylic acid in the solution to obtain a methacrylic acid polymer. Is estimated to be able to suppress corrosion on cobalt-based metals as compared with methacrylic acid-based polymers obtained using an aqueous solvent containing an inorganic acid. Here, the aqueous solvent is not particularly limited as long as it can dissolve the polymerization initiator, but water or a solvent composed of water and an organic acid described later is preferable.
 本実施形態のメタクリル酸系ポリマを得る工程においては、水溶性の重合開始剤を用いる場合と、メタクリル酸を含むモノマ成分に溶解する重合開始剤を用いる場合の二種類の方法がある。後者の、メタクリル酸を含むモノマ成分に溶解する重合開始剤を用いる場合は、まずメタクリル酸を含むモノマ成分に前記の重合開始剤を一旦溶解させ、その後水系溶媒中に前記重合開始剤を溶解させたメタクリル酸を含むモノマ成分を滴下することで重合開始剤を水系溶媒に溶解させつつポリマを得ることができる。 In the step of obtaining the methacrylic acid polymer of the present embodiment, there are two methods, a case where a water-soluble polymerization initiator is used and a case where a polymerization initiator which dissolves in a monomer component containing methacrylic acid is used. When using the latter polymerization initiator that dissolves in the monomer component containing methacrylic acid, first dissolve the polymerization initiator in the monomer component containing methacrylic acid, and then dissolve the polymerization initiator in an aqueous solvent. By adding dropwise a monomer component containing methacrylic acid, a polymer can be obtained while dissolving the polymerization initiator in an aqueous solvent.
 上記ポリマを合成する際の重合開始剤としては水溶性アゾ系重合開始剤、メタクリル酸を含むモノマ成分に溶解するアゾ系重合開始剤等が挙げられる。例えば水溶性アゾビス系重合開始剤としては、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕、2,2’-アゾビス〔N-(2-ヒドロキシエチル)-2-メチルプロパンアミド〕、これらの塩等が挙げられる。また、メタクリル酸を含むモノマ成分に溶解するアゾ系重合開始剤としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、これらの塩等が挙げられる。 Examples of the polymerization initiator for synthesizing the polymer include a water-soluble azo polymerization initiator and an azo polymerization initiator dissolved in a monomer component containing methacrylic acid. For example, water-soluble azobis polymerization initiators include 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-carboxyethyl) -2- Methyl propionamidine], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide], salts thereof and the like. Examples of the azo polymerization initiator dissolved in the monomer component containing methacrylic acid include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), these Examples include salts.
 上記アゾ系重合開始剤の塩としては特に限定されないが、前述のように研磨する基板が集積回路用素子を含むシリコン基板である場合には、アルカリ金属、アルカリ土類金属又はハロゲン化物等との塩以外が好ましい。 The salt of the azo polymerization initiator is not particularly limited. However, when the substrate to be polished is a silicon substrate including an integrated circuit element as described above, the salt with an alkali metal, alkaline earth metal, halide, or the like is used. Other than salts are preferred.
 また、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス〔N-(2-ヒドロキシエチル)-2-メチルプロパンアミド〕等の重合開始剤を水系溶媒に溶解させるためには、水系溶媒を酸性にする必要がある。水系溶媒を酸性にするために加える酸として、無機酸以外の酸を選択することにより、コバルト系金属に対する良好な研磨速度を保ちながら、なおかつ同層に対するエッチング速度を制御できる。そのため、同層の腐食が抑制され、良好な研磨面を得ることができる。更により厳しい条件下(例えば60℃)であっても、コバルト系金属のエッチング速度がより効果的に抑制され、優れた腐食抑制性が達成される。 Polymerization initiators such as 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide] and the like In order to dissolve in an aqueous solvent, it is necessary to make the aqueous solvent acidic. By selecting an acid other than the inorganic acid as the acid added to make the aqueous solvent acidic, the etching rate for the same layer can be controlled while maintaining a good polishing rate for the cobalt-based metal. Therefore, corrosion of the same layer is suppressed and a good polished surface can be obtained. Even under more severe conditions (for example, 60 ° C.), the etching rate of the cobalt-based metal is more effectively suppressed, and excellent corrosion inhibition is achieved.
 重合開始剤の使用量に特に制限はないが、モノマ成分と重合開始剤とのモル比率が、モノマ成分:重合開始剤=100mol:0.2~4mol程度となるように添加することが好ましい。 The amount of the polymerization initiator used is not particularly limited, but it is preferably added so that the molar ratio of the monomer component to the polymerization initiator is about monomer component: polymerization initiator = 100 mol: about 0.2 to 4 mol.
 本実施形態の研磨液に含まれるポリマは、前記の合成時の原料として無機酸を用いずに得られるメタクリル酸系ポリマである必要がある。
 水系溶媒を酸性にするために加える酸としては、コバルト系金属の腐食を抑えることができる点で、無機酸以外の酸ならば特に制限はない。このような酸として、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス〔N-(2-ヒドロキシエチル)-2-メチルプロパンアミド〕等を水系溶媒に溶解させることができる酸性度にするという点で例えば、ギ酸、酢酸、プロピオン酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、p-フェノールスルホン酸等の有機酸などが挙げられる。これらの中では、コバルト系金属の腐食を効果的に抑制できるという点で酢酸、グリコール酸、グルタル酸、p-フェノールスルホン酸、メタンスルホン酸、リンゴ酸等が好ましい。なお、酸の使用量は、重合開始剤を水系溶媒に溶解させるに足る量であれば特に制限はないが、重合開始剤と等モル程度とすることが好ましい。
The polymer contained in the polishing liquid of this embodiment needs to be a methacrylic acid polymer obtained without using an inorganic acid as a raw material during the synthesis.
The acid added to make the aqueous solvent acidic is not particularly limited as long as it is an acid other than the inorganic acid in that it can suppress the corrosion of the cobalt metal. Such acids include 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropanamide] and the like For example, formic acid, acetic acid, propionic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid. And organic acids such as maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid and p-phenolsulfonic acid. Among these, acetic acid, glycolic acid, glutaric acid, p-phenolsulfonic acid, methanesulfonic acid, malic acid, and the like are preferable because corrosion of cobalt-based metals can be effectively suppressed. The amount of acid used is not particularly limited as long as it is an amount sufficient to dissolve the polymerization initiator in the aqueous solvent, but is preferably about equimolar with the polymerization initiator.
 また、上記ポリマは他の水溶性ポリマと比較して銅に対する吸着性が高い。上記ポリマは、特に配線密度の高い部位における銅に対する吸着性が高く、銅の保護性能に優れるため、被研磨膜を研磨する際に、エロージョン及びシームの発生を低減することが可能となると推定される。上記メタクリル酸系ポリマとしては、メタクリル酸のホモポリマ及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマから選ばれる少なくとも一種であることが好ましい。 In addition, the above polymer has higher adsorptivity to copper than other water-soluble polymers. Since the polymer has a high adsorptivity to copper particularly in a portion having a high wiring density and is excellent in the protection performance of copper, it is estimated that it is possible to reduce the occurrence of erosion and seam when polishing a film to be polished. The The methacrylic acid polymer is preferably at least one selected from a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid.
 メタクリル酸系ポリマがメタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマである場合、モノマ全量に対するメタクリル酸の割合は、好ましくは40モル%以上100モル%未満、より好ましくは50モル%以上100モル%未満、更に好ましくは60モル%以上100モル%未満、特に好ましくは70モル%以上100モル%未満である。上記メタクリル酸の割合を40モル%以上にすることにより、エロージョン及びシームの発生を効果的に抑制し、被研磨面の平坦性を高め易くなる。 When the methacrylic acid polymer is a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid, the ratio of methacrylic acid to the total amount of the monomer is preferably 40 mol% or more and less than 100 mol%, more preferably 50 mol%. It is more than 100 mol%, more preferably 60 mol% or more and less than 100 mol%, particularly preferably 70 mol% or more and less than 100 mol%. By making the ratio of the methacrylic acid 40 mol% or more, the generation of erosion and seam can be effectively suppressed, and the flatness of the surface to be polished can be easily improved.
 メタクリル酸系ポリマの重量平均分子量は、好ましくは3000以上、より好ましくは5000以上である。上記メタクリル酸系ポリマの重量平均分子量を3000以上にすることにより、エロージョン及びシームの発生を効果的に抑制し、被研磨面の平坦性を高め易くなる。また、上記重量平均分子量の上限は特に規定されるものではないが、溶解性の観点から500万以下であることが好ましい。また、合成のし易さ、分子量制御の容易さ等の観点より、上記重量平均分子量は100万以下であることが好ましく、水への溶解性に優れ、添加量の自由度が上がる観点では10万以下であることがより好ましい。 The weight average molecular weight of the methacrylic acid polymer is preferably 3000 or more, more preferably 5000 or more. By setting the weight average molecular weight of the methacrylic acid polymer to 3000 or more, generation of erosion and seam is effectively suppressed, and the flatness of the surface to be polished can be easily improved. The upper limit of the weight average molecular weight is not particularly defined, but is preferably 5 million or less from the viewpoint of solubility. The weight average molecular weight is preferably 1,000,000 or less from the viewpoint of ease of synthesis, control of molecular weight, etc., and from the viewpoint of excellent solubility in water and increasing the degree of freedom of addition. More preferably, it is 10,000 or less.
 メタクリル酸系ポリマの重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレンの検量線を用いて測定することができる。具体的には、例えば、下記のような測定条件にて、ポリマーラボラトリー社製のポリアクリル酸ナトリウム標準物質で作成した検量線を用い、サイズ排除クロマトグラフ法で測定することができる。
カラム:昭和電工株式会社製 Shodex Asahipak GS-520HQ+620HQ
ポンプ:株式会社日立製作所製 L-71000
溶離液:50mM-NaHPO aq./CHCN=90/10
流速:0.6mL/min
検出器:株式会社日立製作所製 L-3300型示差屈折計
データ処理:株式会社日立製作所製 D-2520型GPCインテグレーター
試料濃度:10mg/mL
注入量:5μL
The weight average molecular weight of the methacrylic acid polymer can be measured by gel permeation chromatography using a standard polystyrene calibration curve. Specifically, for example, measurement can be performed by size exclusion chromatography using a calibration curve prepared with a sodium polyacrylate standard substance manufactured by Polymer Laboratories under the following measurement conditions.
Column: Shodex Asahipak GS-520HQ + 620HQ manufactured by Showa Denko KK
Pump: Hitachi, Ltd. L-71000
Eluent: 50 mM Na 2 HPO 4 aq. / CH 3 CN = 90/10
Flow rate: 0.6 mL / min
Detector: L-3300 differential refractometer manufactured by Hitachi, Ltd. Data processing: D-2520 GPC integrator manufactured by Hitachi, Ltd. Sample concentration: 10 mg / mL
Injection volume: 5 μL
 上記メタクリル酸と共重合可能なモノマとしては、例えば、アクリル酸、クロトン酸、ビニル酢酸、チグリック酸、2-トリフルオロメチルアクリル酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸、メサコン酸、グルコン酸等のカルボン酸類;2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等のアクリル酸系エステル類;及びこれらのアンモニウム塩、アルカリ金属塩、アルキルアミン塩等の塩などが挙げられる。適用する基板が半導体集積回路用シリコン基板等の場合は、塩の中でもアンモニウム塩が好ましい。 Examples of the monomer copolymerizable with methacrylic acid include acrylic acid, crotonic acid, vinyl acetic acid, tiglic acid, 2-trifluoromethyl acrylic acid, itaconic acid, fumaric acid, maleic acid, citraconic acid, mesaconic acid, and glucone. Carboxylic acids such as acids; sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate And acrylic acid esters such as propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate; and salts thereof such as ammonium salts, alkali metal salts and alkylamine salts thereof. When the substrate to be applied is a silicon substrate for a semiconductor integrated circuit, an ammonium salt is preferable among the salts.
 上記の通り、メタクリル酸系ポリマにおいてメタクリル酸の含有量が多い方がエロージョン及びシームの発生の低減には有効である。しかし一方で、研磨後の被研磨面上における有機残渣の発生、スクラッチの発生等の欠陥を低減できるという点に着目すれば、上記メタクリル酸系ポリマとしては、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマを使用することが好ましい。上記メタクリル酸と共重合可能なモノマとしては、上記欠陥の低減に有効である点で、アクリル酸及びアクリル酸系エステル類がより好ましく、更にエロージョン及びシームの発生の低減とのバランスがとれる点で、アクリル酸及びアクリル酸エステルがより好ましい。 As described above, a higher content of methacrylic acid in a methacrylic acid polymer is effective in reducing erosion and seam generation. However, if attention is paid to the fact that defects such as generation of organic residues and generation of scratches on the polished surface after polishing can be reduced, the methacrylic acid polymer may be copolymerized with methacrylic acid and the methacrylic acid. It is preferred to use copolymers with possible monomers. As the monomer copolymerizable with methacrylic acid, acrylic acid and acrylic acid esters are more preferable in that they are effective in reducing the above-mentioned defects, and further in balance with reduction of erosion and seam generation. Acrylic acid and acrylic acid esters are more preferred.
 メタクリル酸系ポリマの含有量は、研磨液の総質量に対し、好ましくは0.001~15質量%、より好ましくは0.01~5質量%である。上記メタクリル酸系ポリマの含有量を0.001質量%以上にすることにより、エロージョン及びシームの発生を効果的に抑制し、被研磨面の平坦性を高め易くなる。また、当該含有量を15質量%以下にすることにより、エロージョン及びシームの発生を抑制しつつ、研磨液に含まれる研磨粒子の安定性を維持し、研磨粒子の分散性を良好にし易くなる。 The content of the methacrylic acid polymer is preferably 0.001 to 15% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the polishing liquid. By setting the content of the methacrylic acid polymer to 0.001% by mass or more, generation of erosion and seam is effectively suppressed, and the flatness of the surface to be polished can be easily improved. In addition, by controlling the content to 15% by mass or less, it is easy to maintain the stability of the abrasive particles contained in the polishing liquid and improve the dispersibility of the abrasive particles while suppressing the generation of erosion and seam.
 これまで説明したように、本実施形態の研磨液は、エロージョン及びシームの発生を効果的に抑制する点で、下記(1)及び(2)の少なくとも一つを満たすことが好ましい。
(1)メタクリル酸系ポリマを構成するモノマ全量に対するメタクリル酸の割合を高めること。
(2)メタクリル酸と共重合させる単量体成分として、アクリル酸又はアクリル酸系エステル類を使用すること。
As explained so far, the polishing liquid of the present embodiment preferably satisfies at least one of the following (1) and (2) from the viewpoint of effectively suppressing the generation of erosion and seam.
(1) To increase the ratio of methacrylic acid to the total amount of monomers constituting the methacrylic acid polymer.
(2) Use acrylic acid or acrylic acid esters as a monomer component to be copolymerized with methacrylic acid.
 また、上記(1)及び(2)を満たすことが、エロージョン及びシームの発生を抑制しつつ、スクラッチ、有機残渣等の欠陥を低減できる点で好ましい。すなわち、メタクリル酸系ポリマ(ホモポリマ及びコポリマを共に含む)が、メタクリル酸とアクリル酸との共重合体、又はメタクリル酸とアクリル酸系エステル類との共重合体であることが好ましい。これらの中でも、メタクリル酸系ポリマが、メタクリル酸とアクリル酸との共重合体、又はメタクリル酸とアクリル酸エステルの共重合体であることが、エロージョン及びシームの発生低減の観点で好ましい。
 メタクリル酸系ポリマを構成するモノマ全量に対するメタクリル酸の割合が70モル%以上100モル%未満であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが更に好ましい。また、欠陥を効果的に抑制するためには、上記モノマ全量に対するメタクリル酸の割合は99モル%以下であることが好ましく、95モル%以下であることがより好ましい。
Further, satisfying the above (1) and (2) is preferable in that defects such as scratches and organic residues can be reduced while suppressing generation of erosion and seam. That is, the methacrylic acid polymer (including both homopolymers and copolymers) is preferably a copolymer of methacrylic acid and acrylic acid, or a copolymer of methacrylic acid and acrylic acid esters. Among these, the methacrylic acid polymer is preferably a copolymer of methacrylic acid and acrylic acid or a copolymer of methacrylic acid and acrylic acid ester from the viewpoint of reducing the occurrence of erosion and seam.
The ratio of methacrylic acid to the total amount of monomers constituting the methacrylic acid polymer is preferably 70 mol% or more and less than 100 mol%, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . Moreover, in order to suppress defects effectively, the ratio of methacrylic acid to the total amount of the monomer is preferably 99 mol% or less, and more preferably 95 mol% or less.
 本実施形態の研磨液は、少なくとも研磨粒子を含むスラリと、少なくともメタクリル酸系ポリマを含む添加液とに分けられた二液を混合することにより得ることもできる。このようにすることによって、メタクリル酸系ポリマを大量に添加したときに生じる研磨粒子の安定性の問題を回避することができる。二液に分ける場合、スラリ中にメタクリル酸系ポリマが含まれていてもかまわない。この場合、スラリ中のメタクリル酸系ポリマの含有量は研磨粒子の分散性を損なわない範囲とする。 The polishing liquid of this embodiment can also be obtained by mixing two liquids divided into a slurry containing at least abrasive particles and an additive liquid containing at least a methacrylic acid polymer. By doing so, it is possible to avoid the problem of stability of the abrasive particles which occurs when a large amount of methacrylic acid polymer is added. In the case of dividing into two liquids, the slurry may contain a methacrylic acid polymer. In this case, the content of the methacrylic acid polymer in the slurry is in a range that does not impair the dispersibility of the abrasive particles.
<研磨粒子>
 本実施形態の研磨液は、バリア層及び層間絶縁膜に対する良好な研磨速度を得る点で、研磨粒子を含有することが好ましい。用いることのできる研磨粒子としては、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア及びこれらの変性物からなる群より選ばれる少なくとも一種が挙げられる。なお、上記変性物とは、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア等の研磨粒子の表面をアルキル基で変性したものである。
<Abrasive particles>
The polishing liquid of this embodiment preferably contains abrasive particles from the viewpoint of obtaining a good polishing rate for the barrier layer and the interlayer insulating film. The abrasive particles that can be used include at least one selected from the group consisting of silica, alumina, zirconia, ceria, titania, germania, and modified products thereof. The modified product is obtained by modifying the surface of abrasive particles such as silica, alumina, zirconia, ceria, titania and germania with an alkyl group.
 研磨粒子の表面をアルキル基で変性する方法には、特に制限はないが、研磨粒子の表面に存在する水酸基とアルキル基を有するアルコキシシランとを反応させる方法が挙げられる。アルキル基を有するアルコキシシランとしては、特に制限はないが、モノメチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルモノメトキシシラン、モノエチルトリメトキシシラン、ジエチルジメトキシシラン、トリエチルモノメトキシシラン、モノメチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルモノエトキシシラン等が挙げられる。反応方法としては、特に制限はない。例えば研磨粒子とアルコキシシランとを含む研磨液を室温に置いておくだけでも両者は反応する。ただし、反応を加速するために加熱してもよい。 The method of modifying the surface of the abrasive particles with an alkyl group is not particularly limited, and examples thereof include a method of reacting a hydroxyl group present on the surface of the abrasive particle with an alkoxysilane having an alkyl group. The alkoxysilane having an alkyl group is not particularly limited, but monomethyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, triethylmonomethoxysilane, monomethyltriethoxysilane, dimethyl Examples include diethoxysilane and trimethylmonoethoxysilane. There is no restriction | limiting in particular as a reaction method. For example, both simply react with a polishing liquid containing abrasive particles and alkoxysilane at room temperature. However, heating may be performed to accelerate the reaction.
 上記研磨粒子のなかでも、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が200nm以下のコロイダルシリカ及び/又はコロイダルアルミナが好ましく、平均粒径が100nm以下のコロイダルシリカ及び/又はコロイダルアルミナがより好ましい。 Among the above abrasive particles, colloidal silica and / or colloidal alumina having a good dispersion stability in the polishing liquid, a small number of polishing scratches (scratches) generated by CMP, and an average particle diameter of 200 nm or less are preferable, Colloidal silica and / or colloidal alumina having an average particle size of 100 nm or less is more preferable.
 研磨粒子の「平均粒径」とは、研磨粒子の平均二次粒子径を意味する。前記平均粒径とは、研磨液を動的光散乱式粒度分布計(例えば、COULTER Electronics社製の商品名:COULTER N4 SD)で測定したD50の値(体積分布のメジアン径、累積中央値)をいう。 The “average particle diameter” of the abrasive particles means the average secondary particle diameter of the abrasive particles. The average particle size is a value of D50 (median diameter of volume distribution, cumulative median value) obtained by measuring the polishing liquid with a dynamic light scattering particle size distribution analyzer (for example, COULTER Electronics, trade name: COULTER N4 SD). Say.
 具体的には、平均粒径は下記の手順により測定できる。まず、研磨液を100μL(Lはリットルを表す。以下同じ。)程度量り取り、それを研磨粒子の含有量が0.05質量%前後(測定時透過率(H)が60~70%程度)になるようにイオン交換水で希釈して希釈液を得る。そして、希釈液を動的光散乱式粒度分布計の試料槽に投入し、D50として表示される値を読み取ることにより、平均粒径を測ることができる。 Specifically, the average particle diameter can be measured by the following procedure. First, 100 μL of polishing liquid (L represents liter, the same applies hereinafter) is weighed, and the content of abrasive particles is about 0.05% by mass (transmittance (H) during measurement is about 60 to 70%). Dilute with ion-exchanged water to obtain a diluted solution. And an average particle diameter can be measured by throwing a dilution liquid into the sample tank of a dynamic light scattering type particle size distribution analyzer, and reading the value displayed as D50.
 研磨粒子の含有量は、研磨液の総質量に対し、好ましくは0.01~50質量%、より好ましくは0.02~30質量%、特に好ましくは0.05~20質量%である。上記研磨粒子の含有量を0.01質量%以上にすることにより研磨速度を良好にし、50質量%以下にすることによりスクラッチの発生を抑制し易くなる。 The content of abrasive particles is preferably 0.01 to 50% by mass, more preferably 0.02 to 30% by mass, and particularly preferably 0.05 to 20% by mass with respect to the total mass of the polishing liquid. When the content of the abrasive particles is 0.01% by mass or more, the polishing rate is improved, and when the content is 50% by mass or less, the generation of scratches is easily suppressed.
 研磨粒子としては表面をアニオン基又はカチオン基で修飾した研磨粒子を用いてもよい。これにより、研磨粒子の表面電位がマイナス又はプラスに帯電するため、研磨粒子の凝集を抑制し易くなる傾向がある。アニオン基での修飾としては、スルホン酸修飾、アルミン酸修飾等が挙げられる。また、カチオン基での修飾としては、アミン系化合物等を用いた修飾が挙げられる。 As the abrasive particles, abrasive particles whose surfaces are modified with anionic groups or cationic groups may be used. Thereby, since the surface potential of the abrasive particles is negatively or positively charged, there is a tendency that aggregation of the abrasive particles is easily suppressed. Examples of the modification with an anionic group include sulfonic acid modification and aluminate modification. Examples of the modification with a cationic group include modification using an amine compound or the like.
<金属防食剤>
 本実施形態の研磨液に含まれる金属防食剤としては特に制限はなく、金属に対する防食作用を有する化合物として従来公知のものがいずれも使用可能である。具体的には、金属防食剤としては、トリアゾール化合物、ピリジン化合物、ピラゾール化合物、ピリミジン化合物、イミダゾール化合物、グアニジン化合物、チアゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも一種を用いることができる。ここで「XX化合物」とは、XX骨格を有する化合物の総称であり、例えばトリアゾール化合物とはトリアゾール骨格を有する化合物を意味する。
<Metal anticorrosive>
There is no restriction | limiting in particular as a metal anticorrosive agent contained in the polishing liquid of this embodiment, Any conventionally well-known thing can be used as a compound which has the anticorrosion action with respect to a metal. Specifically, the metal anticorrosive is at least one selected from the group consisting of triazole compounds, pyridine compounds, pyrazole compounds, pyrimidine compounds, imidazole compounds, guanidine compounds, thiazole compounds, tetrazole compounds, triazine compounds, and hexamethylenetetramine. Can be used. Here, “XX compound” is a general term for compounds having an XX skeleton, and for example, a triazole compound means a compound having a triazole skeleton.
 前記金属防食剤は一種類を単独で、又は二種類以上を混合して用いることができる。前記金属防食剤の含有量は、コバルト元素を含む被研磨膜に対して良好な研磨速度を得ることができる点で、研磨液の総質量に対し、0.001~10質量%であることが好ましい。同様の観点で、前記金属防食剤の含有量は、0.01質量%以上であることがより好ましく、0.02質量%以上であることが更に好ましい。また、同様の観点で、前記金属防食剤の含有量は、5.0質量%以下であることがより好ましく、0.5質量%であることが更に好ましい。 The metal anticorrosive can be used alone or in combination of two or more. The content of the metal anticorrosive is 0.001 to 10% by mass with respect to the total mass of the polishing liquid in that a good polishing rate can be obtained for a film to be polished containing cobalt element. preferable. From the same viewpoint, the content of the metal anticorrosive is more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more. Further, from the same viewpoint, the content of the metal anticorrosive is more preferably 5.0% by mass or less, and further preferably 0.5% by mass.
 前記金属防食剤は、前記カルボン酸化合物と組み合わせることにより、厳しい温度条件下(例えば、60℃)でもコバルト系金属のエッチング速度を顕著に抑制することができる。すなわち、上記組み合わせにより、コバルト系金属を適度な速度で研磨しつつ、コバルト系金属の腐食抑制を可能とする。これは、例えば金属防食剤が前記特定ジカルボン酸化合物との共存下において、優れた錯体形成剤と膜保護剤としての機能を発揮するためと考えられる。 When the metal anticorrosive is combined with the carboxylic acid compound, the etching rate of the cobalt-based metal can be remarkably suppressed even under severe temperature conditions (for example, 60 ° C.). That is, by the above combination, corrosion of the cobalt metal can be suppressed while polishing the cobalt metal at an appropriate speed. This is considered to be because, for example, the metal anticorrosive exhibits an excellent function as a complex-forming agent and a film protective agent in the presence of the specific dicarboxylic acid compound.
 また、前記金属防食剤は銅系金属等の配線金属に対して保護膜を形成することで、配線金属のエッチングを抑制し被研磨面の荒れを低減し易くなる。 Also, the metal anticorrosive agent forms a protective film against a wiring metal such as a copper-based metal, thereby suppressing the etching of the wiring metal and easily reducing the roughness of the surface to be polished.
 このような観点で、前記金属防食剤の中でも、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも一種が好ましく、3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1-ヒドロキシベンゾトリアゾール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、ベンゾトリアゾール等のトリアゾール化合物、3-ヒドロキシピリジン、ベンズイミダゾール、5-アミノ-1H-テトラゾール、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジン及びヘキサメチレンテトラミンからなる群より選ばれる少なくとも一種がより好ましい。 From this point of view, among the metal anticorrosives, at least one selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine is preferable. Triazole compounds such as triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole, 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, 3-hydroxypyridine More preferred is at least one selected from the group consisting of benzimidazole, 5-amino-1H-tetrazole, 3,4-dihydro-3-hydroxy-4-oxo-1,2,4-triazine and hexamethylenetetramine.
 前記研磨液におけるカルボン酸化合物と金属防食剤との比率(カルボン酸化合物/金属防食剤)は、エッチング速度と研磨速度を良好に制御する観点から、質量比で10/1~1/5の範囲であることが好ましく、7/1~1/5の範囲であることがより好ましく、5/1~1/5の範囲であることが更に好ましく、5/1~1/1の範囲であることが特に好ましい。 The ratio of the carboxylic acid compound to the metal anticorrosive in the polishing liquid (carboxylic acid compound / metal anticorrosive) is in the range of 10/1 to 1/5 in terms of mass ratio from the viewpoint of favorably controlling the etching rate and the polishing rate. It is preferably in the range of 7/1 to 1/5, more preferably in the range of 5/1 to 1/5, and more preferably in the range of 5/1 to 1/1. Is particularly preferred.
 更に前記研磨液は、エッチング速度と研磨速度を良好に制御する観点から、カルボン酸化合物と、金属防食剤との比率(カルボン酸化合物/金属防食剤)が10/1~1/5であることが好ましく、前記カルボン酸化合物と、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも一種の金属防食剤との比率(カルボン酸化合物/金属防食剤)が5/1~1/5であることがより好ましく、前記カルボン酸化合物と、3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1-ヒドロキシベンゾトリアゾール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、ベンゾトリアゾール等のトリアゾール化合物、3-ヒドロキシピリジン、ベンズイミダゾール、5-アミノ-1H-テトラゾール、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジン及びヘキサメチレンテトラミンからなる群より選ばれる少なくとも一種の金属防食剤との比率(カルボン酸化合物/金属防食剤)が5/1~1/1であることが更に好ましい。 Further, in the polishing liquid, the ratio of the carboxylic acid compound to the metal anticorrosive (carboxylic acid compound / metal anticorrosive) is 10/1 to 1/5 from the viewpoint of controlling the etching rate and the polishing rate satisfactorily. The ratio of the carboxylic acid compound to at least one metal anticorrosive selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine (carboxylic acid compound / metal anticorrosion) Agent) is more preferably 5/1 to 1/5, the carboxylic acid compound, 3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole Triazolation of 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, etc. At least selected from the group consisting of 3-hydroxypyridine, benzimidazole, 5-amino-1H-tetrazole, 3,4-dihydro-3-hydroxy-4-oxo-1,2,4-triazine and hexamethylenetetramine It is more preferable that the ratio (carboxylic acid compound / metal anticorrosive agent) to one type of metal anticorrosive agent is 5/1 to 1/1.
<酸化剤>
 前記研磨液は、少なくとも一種の酸化剤(金属酸化剤)を更に含むことが好ましい。酸化剤を更に含むことでコバルト系金属以外の層の研磨速度をより向上させることができる。前記酸化剤は、特に制限はなく、通常用いられる酸化剤から適宜選択することができる。具体的には、過酸化水素、ペルオキソ硫酸塩、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、これらの中でも過酸化水素が好ましい。これら酸化剤は、一種類単独で又は二種類以上を混合して用いることができる。
<Oxidizing agent>
The polishing liquid preferably further contains at least one oxidizing agent (metal oxidizing agent). By further containing an oxidizing agent, the polishing rate of layers other than the cobalt-based metal can be further improved. There is no restriction | limiting in particular in the said oxidizing agent, It can select suitably from the oxidizing agent used normally. Specific examples include hydrogen peroxide, peroxosulfate, nitric acid, potassium periodate, hypochlorous acid, ozone water, etc. Among these, hydrogen peroxide is preferable. These oxidizing agents can be used alone or in combination of two or more.
 研磨液が酸化剤を含む場合、酸化剤の含有量は、研磨液の総質量に対し、0.01~50質量%とすることが好ましい。前記含有量は、金属の酸化が不充分となり、研磨速度が低下することを防ぐ観点から、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、被研磨面に荒れが生じるのを防ぐことができる点で、30質量%以下がより好ましく、15質量%以下が更に好ましい。なお、過酸化水素水のように、一般に水溶液として入手できる酸化剤は、当該水溶液中に含まれる酸化剤の含有量が研磨液において前記範囲になるように調製すればよい。 When the polishing liquid contains an oxidizing agent, the content of the oxidizing agent is preferably 0.01 to 50% by mass with respect to the total mass of the polishing liquid. The content is more preferably 0.02% by mass or more, and still more preferably 0.05% by mass or more from the viewpoint of preventing metal oxidation from becoming insufficient and reducing the polishing rate. Moreover, 30 mass% or less is more preferable, and 15 mass% or less is still more preferable at the point which can prevent that a surface to be polished becomes rough. Note that an oxidizing agent that is generally available as an aqueous solution, such as aqueous hydrogen peroxide, may be prepared so that the content of the oxidizing agent contained in the aqueous solution falls within the above range in the polishing liquid.
<有機溶媒>
 前記研磨液は、更に有機溶媒を含んでいてもよい。有機溶媒の添加により、コバルト系金属の近傍に設けられたコバルト系金属以外の層の濡れ性を向上させることができ、研磨速度をより向上させることができる。前記有機溶媒としては、特に制限はないが、水溶性のものが好ましい。ここで水溶性とは、水100gに対して25℃において0.1g以上溶解するものとして定義される。
<Organic solvent>
The polishing liquid may further contain an organic solvent. By adding an organic solvent, the wettability of a layer other than the cobalt-based metal provided in the vicinity of the cobalt-based metal can be improved, and the polishing rate can be further improved. Although there is no restriction | limiting in particular as said organic solvent, A water-soluble thing is preferable. Here, water-soluble is defined as one that dissolves at least 0.1 g at 25 ° C. with respect to 100 g of water.
 前記有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル溶剤;ブチロラクトン、プロピルラクトン等のラクトン溶剤;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のグリコール溶剤;テトラヒドロフラン、ジオキサン、ジメトキシエタン、ポリエチレンオキサイド、エチレングリコールモノメチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエーテル溶剤;メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、イソプロパノール、3-メトキシ-3-メチル-1-ブタノール等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、乳酸エチル、スルホラン等のその他の有機溶媒などが挙げられる。 Examples of the organic solvent include carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactone solvents such as butyrolactone and propyl lactone; ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, Glycol solvents such as triethylene glycol and tripropylene glycol; ether solvents such as tetrahydrofuran, dioxane, dimethoxyethane, polyethylene oxide, ethylene glycol monomethyl acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methanol, ethanol, propanol, n -Butanol, n-pen Alcohol solvents such as diol, n-hexanol, isopropanol, 3-methoxy-3-methyl-1-butanol; ketone solvents such as acetone and methyl ethyl ketone; and others such as dimethylformamide, N-methylpyrrolidone, ethyl acetate, ethyl lactate, and sulfolane The organic solvent of these is mentioned.
 また、有機溶媒はグリコール溶剤の誘導体であってもよい。例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノプロピルエーテル、トリエチレングリコールモノプロピルエーテル、トリプロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等のグリコールモノエーテル溶剤;エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエチルエーテル、トリプロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、ジエチレングリコールジプロピルエーテル、ジプロピレングリコールジプロピルエーテル、トリエチレングリコールジプロピルエーテル、トリプロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、トリエチレングリコールジブチルエーテル、トリプロピレングリコールジブチルエーテル等のグリコールエーテル溶剤などが挙げられる。 The organic solvent may be a glycol solvent derivative. For example, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monoethyl ether , Dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether, tripropylene glycol monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, diethylene glycol monopropyl ether, triethylene glycol monopropyl ether Glycol monoether solvents such as tripropylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, diethylene glycol monobutyl ether, tripropylene glycol monobutyl ether, triethylene glycol monobutyl ether, tripropylene glycol monobutyl ether; ethylene glycol dimethyl ether, propylene Glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ethyl ether, tripropylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, diethylene glycol diethyl Ether, dipropylene glycol diethyl ether, triethylene glycol diethyl ether, tripropylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol dipropyl ether, diethylene glycol dipropyl ether, dipropylene glycol dipropyl ether, triethylene glycol dipropyl ether And glycol ether solvents such as tripropylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, triethylene glycol dibutyl ether, and tripropylene glycol dibutyl ether.
 これらの中でも、グリコール溶剤、グリコール溶剤の誘導体、アルコール溶剤及び炭酸エステル溶剤からなる群より選ばれる少なくとも一種であることが好ましく、アルコール溶剤から選ばれる少なくとも一種であることがより好ましい。これら有機溶媒は、一種類単独で又は二種類以上を混合して用いることができる。 Among these, at least one selected from the group consisting of a glycol solvent, a glycol solvent derivative, an alcohol solvent, and a carbonate ester solvent is preferable, and at least one selected from an alcohol solvent is more preferable. These organic solvents can be used individually by 1 type or in mixture of 2 or more types.
 研磨液が有機溶媒を含む場合、有機溶媒の含有量は、研磨液の総質量に対し、0.1~95質量%であることが好ましい。前記有機溶媒の含有量は、研磨液の基板に対する濡れ性が低くなるのを防ぐ点で、0.2質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、研磨液の調製、使用、廃液処理等が容易になる点で、同含有量は50質量%以下がより好ましく、10質量%以下が更に好ましい。 When the polishing liquid contains an organic solvent, the content of the organic solvent is preferably 0.1 to 95% by mass with respect to the total mass of the polishing liquid. The content of the organic solvent is more preferably 0.2% by mass or more, and still more preferably 0.5% by mass or more in terms of preventing the wettability of the polishing liquid to the substrate from being lowered. Further, the content is more preferably 50% by mass or less, and further preferably 10% by mass or less, in terms of facilitating preparation, use, waste liquid treatment, and the like of the polishing liquid.
<界面活性剤>
 本実施形態に係る研磨液は、界面活性剤を更に含有できる。界面活性剤としては、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸塩、ラウロイルサルコシン塩等の水溶性陰イオン性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤;ヘキサデシルトリメチルアンモニウム塩、ミリスチルトリメチルアンモニウム塩、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、セチルトリメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、ココナットアミンアセテート、ステアリルアミンアセテート等の水溶性陽イオン界面活性剤などが挙げられる。これらの中でも、界面活性剤としては、水溶性陰イオン性界面活性剤が好ましい。特に、共重合成分としてアンモニウム塩を用いて得られた高分子分散剤等の水溶性陰イオン性界面活性剤の少なくとも一種を使用することがより好ましい。水溶性非イオン性界面活性剤、水溶性陰イオン性界面活性剤、水溶性陽イオン性界面活性剤等を併用してもよい。界面活性剤の含有量は、研磨液の全質量基準で例えば0.0001~0.1質量%である。
<Surfactant>
The polishing liquid according to this embodiment can further contain a surfactant. As the surfactant, water-soluble anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene lauryl ether ammonium sulfate, alkyl phosphate ester salt, polyoxyethylene alkyl ether phosphate, lauroyl sarcosine salt; polyoxyethylene lauryl ether Water-soluble nonionic surfactants such as polyethylene glycol monostearate; hexadecyltrimethylammonium salt, myristyltrimethylammonium salt, lauryltrimethylammonium salt, stearyltrimethylammonium salt, cetyltrimethylammonium salt, distearyldimethylammonium salt, alkyl Water-soluble cationic surfactants such as benzyldimethylammonium salt, coconutamine acetate, stearylamine acetate, etc. And the like. Among these, as the surfactant, a water-soluble anionic surfactant is preferable. In particular, it is more preferable to use at least one water-soluble anionic surfactant such as a polymer dispersant obtained using an ammonium salt as a copolymerization component. A water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant and the like may be used in combination. The content of the surfactant is, for example, 0.0001 to 0.1% by mass based on the total mass of the polishing liquid.
<水>
 本実施形態に係る研磨液は、水を含有している。研磨液における水の含有量は、他の構成成分の含有量を除いた研磨液の残部でよい。
<Water>
The polishing liquid according to the present embodiment contains water. The content of water in the polishing liquid may be the remainder of the polishing liquid excluding the content of other components.
<研磨液のpH>
 本実施形態に係る研磨液のpHは、コバルト系金属の腐食を抑制させる観点から、4以下である。例えば、pHが4を超え、酸化剤を含む研磨液はコバルト系金属の腐食を発生させる。このような挙動を示す要因は必ずしも明らかではないが、本発明者らは次のように推察している。pHが4を超え、酸化剤を含む研磨液はコバルトを四酸化コバルトに変化させると考えられる。四酸化コバルトは酸性又は塩基性の水溶液に溶解するため、研磨液中で四酸化コバルトとなることでコバルトが溶解し、その結果コバルトが腐食すると考えられる。
<PH of polishing liquid>
The pH of the polishing liquid according to the present embodiment is 4 or less from the viewpoint of suppressing the corrosion of the cobalt-based metal. For example, a polishing liquid having a pH exceeding 4 and containing an oxidizing agent causes corrosion of a cobalt-based metal. Although the factor which shows such behavior is not necessarily clear, the present inventors guess as follows. It is considered that the polishing liquid having a pH exceeding 4 and containing an oxidizing agent changes cobalt to cobalt tetroxide. Since cobalt tetroxide is dissolved in an acidic or basic aqueous solution, it is considered that cobalt is dissolved by becoming cobalt tetroxide in the polishing liquid, and as a result, the cobalt is corroded.
 一方で、pHが4以下の領域においては、pHが高いほど(pHが4に近いほど)コバルト系金属の腐食が抑制される傾向がある。これは、研磨液中に水素イオンが多いほど、コバルト系金属が腐食され易い傾向があるためであると考えられる。すなわち、pHが低いほど、研磨液中の研磨液中の水素イオンが多くなり、コバルト系金属が腐食され易くなる傾向があるため、研磨液のpHは、1以上であることが好ましく、2以上であることがより好ましく、3以上であることが更に好ましい。 On the other hand, in the region where the pH is 4 or less, the higher the pH is (the closer the pH is to 4), the more the corrosion of the cobalt-based metal tends to be suppressed. This is presumably because the cobalt-based metal tends to be corroded as the amount of hydrogen ions in the polishing liquid increases. That is, the lower the pH, the more hydrogen ions in the polishing liquid in the polishing liquid, and the cobalt-based metal tends to be corroded. Therefore, the pH of the polishing liquid is preferably 1 or higher, preferably 2 or higher. It is more preferable that it is 3 or more.
 なお、pHを調整するために、酸及び塩基等の公知のpH調整剤(例えばアンモニア水、水酸化カリウム等)を使用できる。pHは液温25℃におけるpHと定義する。 In addition, in order to adjust pH, well-known pH adjusters (for example, aqueous ammonia, potassium hydroxide, etc.), such as an acid and a base, can be used. The pH is defined as the pH at a liquid temperature of 25 ° C.
 研磨液のpHは、pHメータ(例えば、電気化学計器株式会社製、型番:PHL-40)で測定できる。例えば、標準緩衝液(フタル酸塩pH緩衝剤、pH:4.01(25℃);中性リン酸塩pH緩衝剤、pH:6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、25℃で2分以上経過して安定した後の値を測定することで、研磨液のpHを測定できる。 The pH of the polishing liquid can be measured with a pH meter (for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.). For example, after two-point calibration using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.)) The pH of the polishing liquid can be measured by putting the electrode in the polishing liquid and measuring the value after 2 minutes or more have passed and stabilized at 25 ° C.
 本実施形態に係る研磨液の構成成分は、複数の液に分けて貯蔵、運搬及び使用できる。したがって、例えば、本実施形態に係る研磨液は、分けて保管されていた酸化剤を含む成分と、酸化剤以外の構成成分とを混合して得てもよい。すなわち、当該研磨液は、分けて保管されていた第一の液と第二の液(すなわち、前記研磨粒子と、前記合成時の原料として無機酸を用いずに得られるメタクリル酸系ポリマと、前記フタル酸化合物、イソフタル酸化合物及び前記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びにフタル酸化合物の酸無水物及び上記一般式(I)で表されるジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種からなるカルボン酸化合物成分と、前記金属防食剤とを含む第一の液と、前記酸化剤を含む第二の液)と、を混合して得てもよい。第一の液は、有機溶媒、界面活性剤等を更に含んでいてもよい。 The constituents of the polishing liquid according to the present embodiment can be stored, transported and used in a plurality of liquids. Therefore, for example, the polishing liquid according to the present embodiment may be obtained by mixing a component containing an oxidizing agent that has been stored separately and a component other than the oxidizing agent. That is, the polishing liquid is a first liquid and a second liquid that have been stored separately (that is, the abrasive particles, a methacrylic acid polymer obtained without using an inorganic acid as a raw material during the synthesis, and The phthalic acid compound, the isophthalic acid compound and the dicarboxylic acid compound represented by the general formula (I), salts thereof, acid anhydrides of the phthalic acid compound and the dicarboxylic acid compound represented by the general formula (I) Obtained by mixing at least one carboxylic acid compound component selected from the group consisting of acid anhydrides, a first liquid containing the metal anticorrosive, and a second liquid containing the oxidizing agent). May be. The first liquid may further contain an organic solvent, a surfactant and the like.
 本実施形態の研磨液は、配線密度が50%以上である配線形成部を有する被研磨膜を研磨する場合に好適に使用できる。ここで配線密度とは、配線が形成されている部位において、層間絶縁膜部と配線金属部(バリア金属を含む)のそれぞれの幅から計算される値である。例えばラインアンドスペースが100μm/100μmである場合は、その部分の配線密度は50%である。 The polishing liquid of this embodiment can be suitably used for polishing a film to be polished having a wiring forming portion having a wiring density of 50% or more. Here, the wiring density is a value calculated from the respective widths of the interlayer insulating film portion and the wiring metal portion (including the barrier metal) in the portion where the wiring is formed. For example, when the line and space is 100 μm / 100 μm, the wiring density at that portion is 50%.
 配線密度が50%以上であると、配線金属部の占める面積が大きくなるため、その部分におけるエロージョン及びシームの問題が顕著になる傾向があるが、本実施形態の研磨液を用いて研磨を行うことで、これらの問題を低減することができる。本実施形態の研磨液は、上記配線密度が80%以上である配線形成部を有する被研磨膜を研磨する場合にも好適に使用できる。 When the wiring density is 50% or more, the area occupied by the wiring metal portion becomes large, and the problem of erosion and seam in the portion tends to become remarkable. However, polishing is performed using the polishing liquid of this embodiment. Thus, these problems can be reduced. The polishing liquid of this embodiment can also be suitably used for polishing a film to be polished having a wiring forming portion having a wiring density of 80% or more.
[研磨方法]
 本実施形態の研磨方法は、基板の少なくとも一方の表面に形成されたコバルト元素を含む被研磨膜を、前述した研磨液を用いて研磨して、コバルト元素を含む余分の部分を除去する研磨方法である。すなわち、無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、コバルト系金属を含む基体を用意する工程と、研磨液を用いて、基体を化学機械研磨する工程と、を備え、研磨液のpHが4以下である、研磨方法である。なお、基体を化学機械研磨する工程は、より具体的には、基板の少なくとも一方の表面に形成されたコバルト元素を含む被研磨膜と研磨定盤上の研磨布との間に、前述した研磨液を供給しながら、前記被研磨膜が設けられた面側の前記基板表面を研磨布に押圧した状態で、該基板と研磨定盤とを相対的に動かすことによって被研磨膜の少なくとも一部を除去する工程である。
[Polishing method]
The polishing method of the present embodiment is a polishing method in which a film to be polished containing cobalt element formed on at least one surface of a substrate is polished using the above-described polishing liquid to remove an excess portion containing cobalt element. It is. Namely, a step of obtaining a solution by dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid, a step of obtaining a methacrylic acid polymer by polymerizing a monomer component containing at least methacrylic acid in the solution, and a methacrylic acid polymer A step of mixing a carboxylic acid compound, abrasive particles and a metal anticorrosive to obtain a polishing liquid, a step of preparing a substrate containing a cobalt-based metal, and a step of chemically mechanically polishing the substrate using the polishing liquid. And a polishing method in which the pH of the polishing liquid is 4 or less. More specifically, the step of chemically mechanically polishing the substrate includes the polishing described above between the film to be polished containing cobalt element formed on at least one surface of the substrate and the polishing cloth on the polishing surface plate. At least a part of the film to be polished by relatively moving the substrate and the polishing platen while supplying the liquid while pressing the surface of the substrate on the surface provided with the film to be polished against the polishing cloth This is a step of removing.
 以下、本実施形態の基板の研磨方法を用いる、半導体デバイスにおける配線層形成の一連の工程を、図2を参照しながら説明する。但し、本実施形態の研磨液の用途は、下記工程に限定されない。なお、研磨液を得る工程にて得られる研磨液については既に述べたとおりであるためここでの詳述は割愛する。 Hereinafter, a series of steps for forming a wiring layer in a semiconductor device using the substrate polishing method of this embodiment will be described with reference to FIG. However, the use of the polishing liquid of the present embodiment is not limited to the following steps. Since the polishing liquid obtained in the step of obtaining the polishing liquid is as described above, detailed description thereof is omitted here.
 研磨前の基板10は、図2(a)に示すように、シリコン基板1の上に、所定パターンの凹部を有する絶縁材料2と、この絶縁材料2の表面の凸凹に沿って絶縁材料2を被覆するバリア金属層3と、バリア金属層3を被覆するコバルト系金属4とを有し、コバルト系金属4上に導電性物質層5が形成されている。本実施形態において「基体」とは、例えばこのようにシリコン基板上に所定の層が順次形成されたものを指し、特に本実施形態においては形成された少なくともいずれかの層にコバルト元素を含むものである。また、前記のようにコバルト系金属4もバリア金属層としての役割を有しているが、ここでは説明のため、バリア金属層3と区別して説明する。 As shown in FIG. 2A, the substrate 10 before polishing has an insulating material 2 having a predetermined pattern of recesses on the silicon substrate 1 and the insulating material 2 along the unevenness of the surface of the insulating material 2. It has a barrier metal layer 3 to be coated and a cobalt-based metal 4 that covers the barrier metal layer 3, and a conductive material layer 5 is formed on the cobalt-based metal 4. In the present embodiment, the “base” refers to, for example, a structure in which predetermined layers are sequentially formed on a silicon substrate as described above. In particular, in the present embodiment, at least one of the formed layers includes a cobalt element. . Further, as described above, the cobalt-based metal 4 also has a role as a barrier metal layer. However, for the sake of explanation, the cobalt-based metal 4 will be described separately from the barrier metal layer 3.
 絶縁材料2としては、シリコン系絶縁材料、有機ポリマ系絶縁材料等が挙げられる。シリコン系絶縁材料としては、二酸化珪素;フルオロシリケートグラス;トリメチルシラン又はジメトキシジメチルシランを出発原料として得られるオルガノシリケートグラス;シリコンオキシナイトライド、水素化シルセスキオキサン等のシリカ系絶縁材料;シリコンカーバイド;シリコンナイトライドなどが挙げられる。また、有機ポリマ系絶縁材料としては、全芳香族系低誘電率絶縁材料が挙げられる。これらの中でも特に、二酸化珪素が好ましい。 Examples of the insulating material 2 include a silicon-based insulating material and an organic polymer-based insulating material. Silicon-based insulating materials include silicon dioxide; fluorosilicate glass; organosilicate glass obtained using trimethylsilane or dimethoxydimethylsilane as a starting material; silica-based insulating materials such as silicon oxynitride and silsesquioxane hydride; silicon carbide A silicon nitride may be used. Examples of the organic polymer insulating material include wholly aromatic low dielectric constant insulating materials. Among these, silicon dioxide is particularly preferable.
 絶縁材料2は、CVD(化学気相成長)法、スピンコート法、ディップコート法、又はスプレー法によって成膜される。絶縁材料2の具体例としては、LSI製造工程、特に多層配線形成工程における絶縁材料等が挙げられる。 The insulating material 2 is formed by a CVD (chemical vapor deposition) method, a spin coating method, a dip coating method, or a spray method. Specific examples of the insulating material 2 include an insulating material in an LSI manufacturing process, particularly a multilayer wiring forming process.
 バリア金属層3は、絶縁材料2中へ導電性物質が拡散するのを防止するため、及び絶縁材料2と導電性物質層5との密着性向上のために形成される。バリア金属層3に用いられるバリア金属としては、タンタル、窒化タンタル、タンタル合金等のタンタル化合物、チタン、窒化チタン、チタン合金等のチタン化合物、タングステン、窒化タングステン、タングステン合金等のタングステン化合物、ルテニウム等のルテニウム化合物などが挙げられる。バリア金属層3は、これらの一種からなる単層構造であっても、二種以上からなる積層構造であってもよい。バリア金属層3は、蒸着、CVD(化学気相成長)等によって成膜される。なお、バリア金属層3としてコバルト系金属4のみを設けてもよい。 The barrier metal layer 3 is formed to prevent the conductive material from diffusing into the insulating material 2 and to improve the adhesion between the insulating material 2 and the conductive material layer 5. Examples of the barrier metal used for the barrier metal layer 3 include tantalum compounds such as tantalum, tantalum nitride, and tantalum alloys, titanium compounds such as titanium, titanium nitride, and titanium alloys, tungsten compounds such as tungsten, tungsten nitride, and tungsten alloys, ruthenium, and the like. And ruthenium compounds. The barrier metal layer 3 may have a single layer structure made of one of these or a laminated structure made of two or more. The barrier metal layer 3 is formed by vapor deposition, CVD (chemical vapor deposition) or the like. Note that only the cobalt-based metal 4 may be provided as the barrier metal layer 3.
 コバルト系金属4に用いられるコバルト類としては、コバルト、コバルト合金、コバルトの酸化物、コバルト合金の酸化物等が挙げられる。コバルト系金属は、公知のスパッタ法等により成膜される。 Examples of cobalt used for the cobalt-based metal 4 include cobalt, a cobalt alloy, a cobalt oxide, and a cobalt alloy oxide. The cobalt-based metal is formed by a known sputtering method or the like.
 導電性物質層5に用いられる導電性物質としては、銅、銅合金、銅の酸化物、銅合金の酸化物等の銅を主成分とする金属、タングステン、タングステン合金等のタングステン金属、銀、金等の貴金属などが挙げられる。これらの中でも、銅、銅合金、銅の酸化物、銅合金の酸化物等の銅を主成分とする金属が好ましい。導電性物質層5は、公知のスパッタ法、メッキ法等によって成膜される。 Examples of the conductive material used for the conductive material layer 5 include copper, copper alloys, copper oxides, copper-based metals such as copper alloys, tungsten metals such as tungsten and tungsten alloys, silver, Examples include noble metals such as gold. Among these, metals having copper as a main component such as copper, copper alloys, copper oxides, and copper alloy oxides are preferable. The conductive material layer 5 is formed by a known sputtering method, plating method or the like.
 各層の厚さに特に制限はないが、例えば、絶縁材料2の厚さは、0.01~2.0μm程度、バリア金属層3の厚さは、0.01~2.5μm程度、コバルト系金属4の厚さは、0.01~2.5μm程度、導電性物質層5の厚さは、0.01~2.5μm程度が好ましい。 The thickness of each layer is not particularly limited. For example, the thickness of the insulating material 2 is about 0.01 to 2.0 μm, and the thickness of the barrier metal layer 3 is about 0.01 to 2.5 μm. The thickness of the metal 4 is preferably about 0.01 to 2.5 μm, and the thickness of the conductive material layer 5 is preferably about 0.01 to 2.5 μm.
 研磨液を用いて、コバルト系金属4(コバルト元素を含む基体)を化学機械研磨する工程は、例えば次の第一の研磨工程と第二の研磨工程とを含むことができる。図2(a)に示される状態から図2(b)に示される状態まで導電性物質層5を研磨する第一の研磨工程では、研磨前の基板10の表面の導電性物質層5を、例えば、導電性物質層5/コバルト系金属4の研磨速度比が充分大きい導電性物質用の研磨液を用いて、CMPにより研磨する。これにより、基板上の凸部のコバルト系金属4が表面に露出し、凹部に導電性物質層5が残された導体パターンを有する基板20が得られる。導電性物質層5/コバルト系金属4の研磨速度比が充分大きい前記導電性物質用の研磨液としては、例えば、特許第三337464号明細書に記載の研磨液を用いることができる。第一の研磨工程では、導電性物質層5とともに凸部のコバルト系金属4の一部が研磨されてもよい。 The step of chemically mechanically polishing the cobalt-based metal 4 (substrate containing cobalt element) using the polishing liquid can include, for example, the following first polishing step and second polishing step. In the first polishing step of polishing the conductive material layer 5 from the state shown in FIG. 2A to the state shown in FIG. 2B, the conductive material layer 5 on the surface of the substrate 10 before polishing is For example, polishing is performed by CMP using a polishing liquid for a conductive material having a sufficiently high polishing rate ratio of the conductive material layer 5 / cobalt metal 4. Thereby, the board | substrate 20 which has the conductor pattern in which the cobalt-type metal 4 of the convex part on a board | substrate is exposed on the surface, and the electroconductive substance layer 5 was left in the recessed part is obtained. As the polishing liquid for the conductive material having a sufficiently high polishing rate ratio of the conductive material layer 5 / cobalt-based metal 4, for example, the polishing liquid described in Japanese Patent No. 337464 can be used. In the first polishing step, a part of the cobalt-based metal 4 in the convex portion may be polished together with the conductive material layer 5.
 引き続く第二の研磨工程では、第一の研磨工程により得られた導体パターンを、第二の研磨工程用の被研磨膜として、本実施形態の研磨液を用いて研磨する。 In the subsequent second polishing step, the conductor pattern obtained in the first polishing step is polished using the polishing liquid of this embodiment as a film to be polished for the second polishing step.
 第二の研磨工程では、研磨定盤の研磨布上に基板20を押圧した状態で、研磨布と基板との間に、本実施形態の研磨液を供給しながら、研磨定盤と基板20とを相対的に動かすことにより、第一の研磨工程により露出したコバルト系金属4を研磨する。 In the second polishing step, while the substrate 20 is pressed onto the polishing cloth of the polishing surface plate, the polishing surface plate and the substrate 20 are supplied while supplying the polishing liquid of the present embodiment between the polishing cloth and the substrate. The cobalt-based metal 4 exposed in the first polishing step is polished by relatively moving the.
 研磨する装置としては、研磨される基板を保持するホルダと、回転数が変更可能なモータ等と接続し、研磨布を貼り付けた研磨定盤と、を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用でき、特に制限はない。 As a polishing apparatus, a general polishing apparatus having a holder for holding a substrate to be polished and a polishing platen connected to a motor capable of changing the number of rotations and attached with a polishing cloth can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular.
 研磨条件は、特に制限がないが、研磨定盤の回転速度は基板が飛び出さないように、200rpm(回/min)以下の低回転が好ましい。被研磨膜を有する基板の研磨布への押し付け圧力は、1~100kPaであることが好ましく、研磨速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5~50kPaであることがより好ましい。 The polishing conditions are not particularly limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rpm (times / min) or less so that the substrate does not pop out. The pressing pressure of the substrate having the film to be polished onto the polishing cloth is preferably 1 to 100 kPa, and 5 to 50 kPa in order to satisfy the in-surface uniformity of the polishing rate and the flatness of the pattern. It is more preferable.
 研磨している間、研磨布と被研磨膜との間には、本実施形態の研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。 During polishing, the polishing liquid of this embodiment is continuously supplied between the polishing cloth and the film to be polished by a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
 研磨布の表面状態を常に同一にして化学機械研磨を行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本実施形態の研磨方法を実施し、更に、基板洗浄工程を加えるのが好ましい。 In order to perform chemical mechanical polishing with the surface state of the polishing cloth always the same, it is preferable to perform a polishing cloth conditioning step before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform the polishing method of the present embodiment and further add a substrate cleaning step.
 第二の研磨工程では、少なくとも、露出しているコバルト系金属4を研磨し、余分のコバルト部分を除去する。第二の研磨工程では、コバルト系金属4を研磨して、バリア金属層3が露出したら研磨を終了し、別途、バリア金属層研磨用の研磨液によりバリア金属層3を研磨してもよい。また、図2(b)から図2(c)に示されるように、第二の研磨工程において一連でコバルト系金属4からバリア金属層3までを研磨してもよい。更に、凹部に埋め込まれた導電性物質層5がコバルト系金属4及びバリア金属層3とともに研磨されてもよい。 In the second polishing step, at least the exposed cobalt-based metal 4 is polished to remove excess cobalt. In the second polishing step, the cobalt-based metal 4 is polished, and when the barrier metal layer 3 is exposed, the polishing is terminated, and the barrier metal layer 3 may be separately polished with a polishing liquid for barrier metal layer polishing. Further, as shown in FIGS. 2B to 2C, the cobalt metal 4 to the barrier metal layer 3 may be polished in series in the second polishing step. Furthermore, the conductive material layer 5 embedded in the recess may be polished together with the cobalt metal 4 and the barrier metal layer 3.
 凸部のバリア金属層3の下の絶縁材料2が全て露出し、凹部に配線層となる導電性物質層5が残され、凸部と凹部との境界にバリア金属層3及びコバルト系金属4の断面が露出した所望のパターンを有する基板30が得られた時点で研磨を終了する。 The insulating material 2 under the convex barrier metal layer 3 is completely exposed, the conductive material layer 5 serving as a wiring layer is left in the concave portion, and the barrier metal layer 3 and the cobalt-based metal 4 at the boundary between the convex portion and the concave portion. The polishing is finished when the substrate 30 having the desired pattern in which the cross section is exposed is obtained.
 研磨終了時のより優れた平坦性を確保するために、更に、図3に示すように、オーバー研磨してもよい。例えば、第二の研磨工程で所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。オーバー研磨する場合には、絶縁材料2の一部も研磨で除去される。 In order to ensure better flatness at the end of polishing, overpolishing may be further performed as shown in FIG. For example, when the time until a desired pattern is obtained in the second polishing step is 100 seconds, polishing for 50 seconds in addition to the polishing for 100 seconds is referred to as over polishing 50%. In the case of overpolishing, a part of the insulating material 2 is also removed by polishing.
 このようにして形成された金属配線の上に、更に、第二層目の絶縁材料及び金属配線を形成した後、研磨して半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の配線層数を有する半導体デバイスを製造することができる。 A second-layer insulating material and metal wiring are further formed on the metal wiring thus formed, and then polished to obtain a smooth surface over the entire surface of the semiconductor substrate. By repeating this step a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured.
 本実施形態の研磨液は、上記のような半導体基板に形成された金属膜の研磨だけでなく、磁気ヘッド等の基板を研磨するためにも使用することができる。 The polishing liquid of the present embodiment can be used not only for polishing a metal film formed on a semiconductor substrate as described above but also for polishing a substrate such as a magnetic head.
 以下に、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。例えば、研磨液の材料の種類及びその配合比率は、本実施例記載の種類及び比率以外でもよく、研磨対象の組成及び構造も、本実施例記載以外の組成及び構造でもよい。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples without departing from the technical idea of the present invention. For example, the type and ratio of the polishing liquid material may be other than the type and ratio described in this example, and the composition and structure of the object to be polished may also be a composition and structure other than those described in this example.
<実施例及び比較例>
(メタクリル酸系ポリマの合成)
(ポリマ1~7、9~15)
 表1にメタクリル酸系ポリマにおける各モノマのモル比率(モル%)、メタクリル酸系ポリマを合成する時に使用する重合開始剤、及び重合開始剤溶解用の酸を示す。表1に示す酸を含む水を、水系溶媒として用意し、これに重合開始剤を溶解させた。次いで、水系溶媒中において、表1に示すモノマ成分を重合させてメタクリル酸系ポリマを得た
(ポリマ8)
 メタクリル酸を含むモノマ成分(モル比:メタクリル酸/アクリル酸=94/6)に、重合開始剤としてAIBNを溶解させた(原料A)。その後、水中に、前記原料Aを滴下することで、ポリマ8を得た。なお、重合開始剤は水に溶解された状態であった。
<Examples and Comparative Examples>
(Synthesis of methacrylic acid polymer)
(Polymers 1-7, 9-15)
Table 1 shows the molar ratio (mol%) of each monomer in the methacrylic acid polymer, the polymerization initiator used when synthesizing the methacrylic acid polymer, and the acid for dissolving the polymerization initiator. Water containing an acid shown in Table 1 was prepared as an aqueous solvent, and a polymerization initiator was dissolved therein. Subsequently, the monomer components shown in Table 1 were polymerized in an aqueous solvent to obtain a methacrylic acid polymer (polymer 8).
AIBN was dissolved in the monomer component containing methacrylic acid (molar ratio: methacrylic acid / acrylic acid = 94/6) as a polymerization initiator (raw material A). Then, the polymer 8 was obtained by dripping the said raw material A in water. The polymerization initiator was dissolved in water.
 表1中の重合開始剤の分子名は下記の通りである。
VA-061:2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕
AIBN  :2,2’-アゾビス(イソブチロニトリル)
VA-057:2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕
 なお、VA-061は酸性の水溶液に可溶であるため、ポリマを合成する時に表1に示す酸を添加している。
The molecular names of the polymerization initiators in Table 1 are as follows.
VA-061: 2,2′-azobis [2- (2-imidazolin-2-yl) propane]
AIBN: 2,2′-azobis (isobutyronitrile)
VA-057: 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine]
Since VA-061 is soluble in an acidic aqueous solution, the acids shown in Table 1 are added when the polymer is synthesized.
(研磨液調製方法)
 表2~表3に従って、前記メタクリル酸系ポリマ(ポリマ1~15)、カルボン酸化合物、研磨粒子、金属防食剤等を所定量混合して、各実施例及び各比較例の各研磨液を調製した。なお、研磨粒子としては平均粒径70nmのコロイダルシリカを使用した。pHは、pHメータ(電気化学計器株式会社製、型番:PHL-40)で測定した。
(Polishing liquid preparation method)
According to Tables 2 to 3, a predetermined amount of the methacrylic acid polymer (polymers 1 to 15), carboxylic acid compound, abrasive particles, metal anticorrosive agent, etc. are mixed to prepare each polishing liquid of each example and each comparative example. did. Incidentally, colloidal silica having an average particle diameter of 70 nm was used as the abrasive particles. The pH was measured with a pH meter (manufactured by Electrochemical Instrument Co., Ltd., model number: PHL-40).
(銅パターン基板の研磨)
 銅配線付きパターン基板(Advanced Technology Development Facility, Inc社製854CMPパターン)の溝部以外の銅膜を、銅膜研磨用研磨液(日立化成株式会社製、HS-H635)を用いて公知のCMP法により研磨して、凸部のバリア層を被研磨面に露出させた。これにより、図1の(b)に示すような状態の基板が得られた。この基板を各実施例及び比較例の研磨液の研磨特性評価に使用した。なお、上記パターン基板のバリア層は厚さ250Åの窒化タンタル膜からなっていた。
(Polishing copper pattern substrate)
A copper film other than the groove of the patterned substrate with copper wiring (Advanced Technology Development Facility, Inc., 854CMP pattern) is formed by a known CMP method using a polishing liquid for copper film polishing (HS-H635, manufactured by Hitachi Chemical Co., Ltd.). Polishing was performed to expose the convex barrier layer on the surface to be polished. As a result, a substrate as shown in FIG. 1B was obtained. This board | substrate was used for the grinding | polishing characteristic evaluation of the polishing liquid of each Example and a comparative example. The barrier layer of the pattern substrate was made of a tantalum nitride film having a thickness of 250 mm.
 上記パターン基板を上記研磨液調製方法で調製した各金属膜用研磨液で、下記研磨条件にて60秒間化学機械研磨した。これは、第二の研磨工程に相当し、比較例9以外は約30秒間で凸部の層間絶縁膜が被研磨面に露出した。残りの30秒間は、凸部についてはこの露出した層間絶縁膜を研磨した。 The pattern substrate was subjected to chemical mechanical polishing for 60 seconds under the following polishing conditions with each metal film polishing liquid prepared by the above polishing liquid preparation method. This corresponds to the second polishing step, and the convex interlayer insulating film was exposed on the surface to be polished in about 30 seconds except for Comparative Example 9. For the remaining 30 seconds, the exposed interlayer insulating film was polished for the protrusions.
[基板研磨条件]
 研磨装置:片面金属膜用研磨機(アプライドマテリアルズ製、MIRRA)
 研磨布:スウェード状発泡ポリウレタン樹脂製研磨布
 定盤回転数:93回/min
 ヘッド回転数:87回/min
 研磨圧力:14kPa
 研磨液の供給量:200ml/min
[Substrate polishing conditions]
Polishing device: Single-sided metal film polishing machine (MIRRA, Applied Materials)
Polishing cloth: Polishing cloth made of suede foam polyurethane resin Surface plate rotation speed: 93 times / min
Head rotation speed: 87 times / min
Polishing pressure: 14 kPa
Supply amount of polishing liquid: 200 ml / min
 最初の30秒間で層間絶縁膜が被研磨面に露出したことは、抵抗率計を用いて表面に金属配線が露出していない部分の抵抗率を測定することにより確認した。 The fact that the interlayer insulating film was exposed on the polished surface in the first 30 seconds was confirmed by measuring the resistivity of the portion where the metal wiring was not exposed on the surface using a resistivity meter.
 比較例9は最初の30秒研磨では被研磨面に層間絶縁膜を全ては露出することができなかったが、残りの30秒研磨で凸部の層間絶縁膜が被研磨面に露出した。 In Comparative Example 9, the entire interlayer insulating film could not be exposed on the surface to be polished in the first 30 seconds of polishing, but the convex interlayer insulating film was exposed on the surface to be polished in the remaining 30 seconds of polishing.
 次に、上記基板の研磨工程で研磨したパターン基板の被研磨面にスポンジブラシ(ポリビニルアルコール系樹脂製)を押し付け、蒸留水を基板に供給しながら基板とスポンジブラシを回転させ、60秒間洗浄した。次にスポンジブラシを取り除き、基板の被研磨面に蒸留水を60秒間供給した。最後に基板を高速で回転させることで蒸留水を弾き飛ばして基板を乾燥し、以下の評価で用いるパターン基板を得た。 Next, a sponge brush (made of polyvinyl alcohol resin) was pressed against the surface to be polished of the patterned substrate polished in the substrate polishing step, and the substrate and the sponge brush were rotated while supplying distilled water to the substrate, and washed for 60 seconds. . Next, the sponge brush was removed, and distilled water was supplied to the polished surface of the substrate for 60 seconds. Finally, the substrate was rotated at high speed to blow off distilled water and dried to obtain a pattern substrate to be used in the following evaluation.
(平坦性評価)
 上記基板の洗浄工程で得たパターン基板について、下記(1)~(3)に示す評価を行った。
(Flatness evaluation)
The following evaluations (1) to (3) were performed on the pattern substrate obtained in the substrate cleaning step.
(1)層間絶縁膜研磨量:幅100μmの配線金属部、幅100μmの層間絶縁膜部が交互に並んだ総幅2900μmのストライプ状パターンの、層間絶縁膜部の膜厚を光学式膜厚計により求め、層間絶縁膜研磨量とした。 (1) Amount of interlayer insulating film polishing: optical film thickness meter for the thickness of an interlayer insulating film portion of a striped pattern with a total width of 2900 μm in which wiring metal portions with a width of 100 μm and interlayer insulating film portions with a width of 100 μm are alternately arranged And determined as the amount of interlayer insulating film polishing.
(2)エロージョン量:図4の(a)に示すように、幅90μmの配線金属部、幅10μmの層間絶縁膜部が交互に並んだ総幅2990μmのストライプ状パターンの表面形状を触針式段差計により測定した。次いで、図4の(b)に示すように、ストライプ状パターンの層間絶縁膜部の研磨量の最大値(B)と、ストライプ状パターン外縁の層間絶縁膜部の研磨量(A)との差(B)-(A)としてエロージョン量を求めた。 (2) Erosion amount: As shown in FIG. 4A, the surface shape of a striped pattern having a total width of 2990 μm in which wiring metal portions having a width of 90 μm and interlayer insulating film portions having a width of 10 μm are alternately arranged is a stylus type Measured with a step gauge. Next, as shown in FIG. 4B, the difference between the maximum polishing amount (B) of the interlayer insulating film portion of the stripe pattern and the polishing amount (A) of the interlayer insulating film portion at the outer edge of the stripe pattern. The amount of erosion was determined as (B)-(A).
 なお、図4は、上記銅配線付きパターン基板の、幅90μmの配線金属部、幅10μmの層間絶縁膜部が交互に並んだストライプ状パターンの断面模式図であり、11は層間絶縁膜、13はバリア層、15は配線金属層、40はエロージョン、50は研磨前の状態、Aはストライプ状パターン外縁の層間絶縁膜部の研磨量、Bはストライプ状パターンの層間絶縁膜部の研磨量の最大値をそれぞれ示す。 FIG. 4 is a schematic cross-sectional view of a striped pattern in which a wiring metal portion having a width of 90 μm and an interlayer insulating film portion having a width of 10 μm are alternately arranged on the patterned substrate with copper wiring, 11 is an interlayer insulating film, 13 Is the barrier metal layer, 15 is the wiring metal layer, 40 is the erosion, 50 is the state before polishing, A is the polishing amount of the interlayer insulating film portion at the outer edge of the stripe pattern, and B is the polishing amount of the interlayer insulating film portion of the stripe pattern Maximum values are shown respectively.
(3)シーム量:図5の(a)に示すように、幅100μmの配線金属部、幅100μmの層間絶縁膜部が交互に並んだ総幅2900μmのストライプ状パターンの表面形状を触針式段差計により測定した。次いで、図5の(b)に示すように、配線金属部近傍の層間絶縁膜部上端から、過剰に削れた層間絶縁膜部下端までの距離(C)としてシーム量を求めた。 (3) Seam amount: As shown in FIG. 5 (a), the surface shape of a striped pattern with a total width of 2900 μm in which wiring metal portions with a width of 100 μm and interlayer insulating film portions with a width of 100 μm are alternately arranged is a stylus type Measured with a step gauge. Next, as shown in FIG. 5B, the seam amount was determined as the distance (C) from the upper end of the interlayer insulating film near the wiring metal portion to the lower end of the excessively shaved interlayer insulating film.
 なお、図5は、上記銅配線付きパターン基板の幅100μmの配線金属部、100μmの層間絶縁膜部が交互に並んだ部分の断面模式図であり、11は層間絶縁膜、13はバリア層、15は配線金属層、50は研磨前の状態、60は層間絶縁膜部の配線金属部近傍、70はシーム、Cは配線金属部近傍の層間絶縁膜部上端から、過剰に削れた層間絶縁膜部下端までの距離を示す。 FIG. 5 is a schematic cross-sectional view of a portion in which the wiring metal part having a width of 100 μm and the interlayer insulating film part having a thickness of 100 μm are alternately arranged on the patterned substrate with copper wiring, 11 is an interlayer insulating film, 13 is a barrier layer, 15 is a wiring metal layer, 50 is a state before polishing, 60 is the vicinity of the wiring metal part of the interlayer insulating film part, 70 is a seam, and C is an interlayer insulating film excessively shaved from the upper end of the interlayer insulating film part near the wiring metal part Indicates the distance to the bottom of the part.
(コバルトに対するエッチング量(Co-ER)の評価)
 8インチのシリコン基板上に、CVD法で厚さ300nmのコバルト層を形成したブランケット基板(a)を用意した。上記ブランケット基板(a)を、20mm角のチップに切り出して評価用チップ(b)を用意した。
(Evaluation of etching amount for cobalt (Co-ER))
A blanket substrate (a) in which a cobalt layer having a thickness of 300 nm was formed by CVD on an 8-inch silicon substrate was prepared. The blanket substrate (a) was cut into 20 mm square chips to prepare evaluation chips (b).
 前記各研磨液50gを入れたビーカの中に前記評価用チップ(b)をそれぞれ入れ、60℃の恒温槽に1分間浸漬した。浸漬後の評価用チップ(b)を取り出し、純水で充分に洗浄した後、窒素ガスを吹きかけてチップ上の水分を乾燥させた。乾燥後の評価用チップ(b)の抵抗を抵抗率計にて測定し、下記式(1)にて浸漬後のコバルト層の膜厚に換算した。 The chips for evaluation (b) were placed in a beaker containing 50 g of each polishing liquid and immersed in a 60 ° C. constant temperature bath for 1 minute. The evaluation chip (b) after immersion was taken out and thoroughly washed with pure water, and then nitrogen gas was blown to dry the water on the chip. The resistance of the evaluation chip (b) after drying was measured with a resistivity meter and converted into the film thickness of the cobalt layer after immersion by the following formula (1).
 ブランケット基板(a)の各膜厚にそれぞれ対応する抵抗値の情報から検量線を得て、下記式(1)より、コバルト層の膜厚を求めた。
浸漬後のコバルト層の膜厚[nm]=104.5×(評価用チップ(b)の抵抗値[mΩ]/1000)-0.893・・・(1)
 そして、得られた浸漬後のコバルト層の膜厚と浸漬前のコバルト層の膜厚から、下記式(2)より、コバルト層のエッチング速度を求めた。
コバルト層のエッチング速度(Co-ER)[nm/min]=(浸漬前のコバルト層の膜厚[nm]-浸漬後のコバルト層の膜厚[nm])/1分・・・(2)
A calibration curve was obtained from information on resistance values corresponding to the respective film thicknesses of the blanket substrate (a), and the film thickness of the cobalt layer was determined from the following formula (1).
Film thickness [nm] of cobalt layer after immersion = 104.5 × (resistance value [mΩ] / 1000 of evaluation chip (b)) − 0.893 (1)
And the etching rate of the cobalt layer was calculated | required from the following formula (2) from the film thickness of the obtained cobalt layer after immersion, and the film thickness of the cobalt layer before immersion.
Etching rate of cobalt layer (Co-ER) [nm / min] = (film thickness of cobalt layer before immersion [nm] −film thickness of cobalt layer after immersion [nm]) / 1 minute (2)
 以上の評価結果を表2及び表3に記す。 The above evaluation results are shown in Table 2 and Table 3.
(研磨速度の評価)
 ブランケット基板の研磨速度の評価には、以下の基板(a)~(e)をそれぞれ使用した。
ブランケット基板(a):CVD法でコバルト(厚さ:300nm)を形成したシリコン基板。
ブランケット基板(b):めっき法で銅(厚さ:1000nm)を形成したシリコン基板。
ブランケット基板(c):スパッタ法で窒化タンタル(厚さ:200nm)を形成したシリコン基板。
ブランケット基板(d):CVD法で二酸化珪素(厚さ:1000nm)を形成したシリコン基板。
ブランケット基板(e):オルガノシリケートグラス(厚さ:1000nm)を形成したシリコン基板。
 上記ブランケット基板(a)~(e)を用い、実施例1~15の研磨液により、上記基板研磨条件で60秒間化学機械研磨を行った。
(Evaluation of polishing rate)
The following substrates (a) to (e) were used for evaluation of the blanket substrate polishing rate.
Blanket substrate (a): A silicon substrate on which cobalt (thickness: 300 nm) is formed by a CVD method.
Blanket substrate (b): A silicon substrate on which copper (thickness: 1000 nm) is formed by a plating method.
Blanket substrate (c): A silicon substrate on which tantalum nitride (thickness: 200 nm) is formed by sputtering.
Blanket substrate (d): A silicon substrate on which silicon dioxide (thickness: 1000 nm) is formed by CVD.
Blanket substrate (e): A silicon substrate on which an organosilicate glass (thickness: 1000 nm) is formed.
Using the blanket substrates (a) to (e), chemical mechanical polishing was performed for 60 seconds under the substrate polishing conditions with the polishing liquids of Examples 1 to 15.
[研磨速度の算出]
 化学機械研磨後のブランケット基板(a)~(e)を用いて下記の方法で研磨速度を算出した。
[Calculation of polishing speed]
The polishing rate was calculated by the following method using the blanket substrates (a) to (e) after chemical mechanical polishing.
 コバルト膜:金属膜厚測定装置(日立国際電気株式会社製、製品名“VR-120/08S”)を用いてブランケット基板(a)の研磨前後での抵抗を測定し、次に前記のコバルト層のエッチング速度の計算と同様に、コバルト層の研磨前後の膜厚を下記(1)の式を用いて算出した。
膜厚[nm]=104.5×(コバルト層の抵抗値[mΩ]/1000)-0.893・・・(1)
 (1)の計算の結果得られたコバルト層の研磨前後の膜厚を用いて、コバルト膜を研磨したときの研磨速度(Co研磨速度)[nm/min]を評価した。
Cobalt film: The resistance of the blanket substrate (a) before and after polishing is measured using a metal film thickness measuring device (product name “VR-120 / 08S” manufactured by Hitachi Kokusai Electric Co., Ltd.), and then the cobalt layer Similar to the calculation of the etching rate, the film thickness of the cobalt layer before and after polishing was calculated using the following equation (1).
Film thickness [nm] = 104.5 × (Cobalt layer resistance [mΩ] / 1000) −0.893 (1)
Using the film thickness before and after polishing of the cobalt layer obtained as a result of the calculation of (1), the polishing rate (Co polishing rate) [nm / min] when the cobalt film was polished was evaluated.
 銅膜、窒化タンタル膜:ブランケット基板(b)及び(c)について、金属膜厚測定装置(日立国際電気株式会社製、製品名“VR-120/08S”)を用いて研磨前後での膜厚差を測定し、得られた結果から銅膜を研磨したときの研磨速度(Cu研磨速度)[nm/min]と窒化タンタル膜を研磨したときの研磨速度(TaN研磨速度)[nm/min]を評価した。 Copper film, tantalum nitride film: About blanket substrates (b) and (c), film thickness before and after polishing using a metal film thickness measuring device (product name “VR-120 / 08S” manufactured by Hitachi Kokusai Electric Co., Ltd.) The difference was measured, and from the obtained results, the polishing rate when polishing the copper film (Cu polishing rate) [nm / min] and the polishing rate when polishing the tantalum nitride film (TaN polishing rate) [nm / min] Evaluated.
 二酸化珪素膜、オルガノシリケートグラス膜:膜厚測定装置(大日本スクリーン製造株式会社製、製品名“ラムダエース、VL-M8000LS”)を用いて研磨前後での膜厚差を測定し、得られた結果から二酸化珪素膜を研磨したときの研磨速度(SiO研磨速度)[nm/min]とオルガノシリケートグラス膜を研磨したときの研磨速度(SiOC研磨速度)[nm/min]を評価した。
 これらの結果を表4に示す。
Silicon dioxide film, organosilicate glass film: obtained by measuring the film thickness difference before and after polishing using a film thickness measuring device (manufactured by Dainippon Screen Mfg. Co., Ltd., product name “Lambda Ace, VL-M8000LS”) From the results, the polishing rate when polishing the silicon dioxide film (SiO 2 polishing rate) [nm / min] and the polishing rate when polishing the organosilicate glass film (SiOC polishing rate) [nm / min] were evaluated.
These results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、実施例1~15では、特定のメタクリル酸系ポリマ、特定のジカルボン酸及び金属防食剤を同時に含むことで、エロージョン及びシームが効果的に抑制され、被研磨面の高い平坦性が得られた。また、60℃の条件下でもコバルトのエッチング速度が顕著に抑制されることが分かった。 As is apparent from Table 2, in Examples 1 to 15, the erosion and seam were effectively suppressed by containing a specific methacrylic acid polymer, a specific dicarboxylic acid and a metal anticorrosive at the same time. High flatness was obtained. It was also found that the cobalt etching rate was significantly suppressed even at 60 ° C.
 一方、表3の比較例1~7、11では、エロージョン及びシームが実施例と同等の値となっているが、コバルトエッチング速度が速かった。また、表3の比較例8~9では、エロージョンが430~570Å、シームが260~340Åと大きく発生して被研磨面の平坦性が低かった。表3の比較例10では、層間絶縁膜研磨量が十分ではなく、またpHが5を超えることでコバルトのエッチング速度が速かった。 On the other hand, in Comparative Examples 1 to 7 and 11 in Table 3, the erosion and seam were the same values as in the example, but the cobalt etching rate was high. Further, in Comparative Examples 8 to 9 in Table 3, erosion was greatly generated at 430 to 570 mm and seam was 260 to 340 mm, and the flatness of the polished surface was low. In Comparative Example 10 in Table 3, the polishing amount of the interlayer insulating film was not sufficient, and when the pH exceeded 5, the cobalt etching rate was high.
 表4から、実施例1~15はコバルト、銅、窒化タンタル、二酸化珪素及びオルガノシリケートグラスに対して良好な研磨速度が得られていることが分かった。このことから、前記メタクリル酸系ポリマと前記カルボン酸化合物を含有する本発明の研磨液においては、前記特定メタクリル酸系ポリマを用いることでエロージョン及びシームを抑え、また前記特定メタクリル酸系ポリマと前記特定ジカルボン酸化合物を用い、pHを4以下にすることで、コバルトのエッチングを抑えていると考えられる。すなわち、上記の結果から、本発明の研磨液によればエロージョン及びシームが抑制され、コバルト元素を含む層を研磨した場合に、コバルト元素を含む層が過剰にエッチングされたり、腐食によるスリットを生じたりすることを効果的に抑制して研磨できることが示唆される。 From Table 4, it was found that Examples 1 to 15 had good polishing rates for cobalt, copper, tantalum nitride, silicon dioxide and organosilicate glass. From this, in the polishing liquid of the present invention containing the methacrylic acid polymer and the carboxylic acid compound, erosion and seam are suppressed by using the specific methacrylic acid polymer, and the specific methacrylic acid polymer and the It is considered that the etching of cobalt is suppressed by using a specific dicarboxylic acid compound and adjusting the pH to 4 or less. That is, from the above results, according to the polishing liquid of the present invention, erosion and seam are suppressed, and when a layer containing cobalt element is polished, the layer containing cobalt element is excessively etched or a slit due to corrosion is generated. It is suggested that polishing can be effectively suppressed.
 1…シリコン基板、2,11…絶縁材料(層間絶縁膜)、3,13…バリア金属層(バリア層)、4…中間層(コバルト系金属)、5,15…導電性物質層(配線金属層)、10,20,30…基板、40…エロージョン、50…研磨前の状態、60…層間絶縁膜の配線金属部近傍、70…シーム。 DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2, 11 ... Insulating material (interlayer insulating film), 3, 13 ... Barrier metal layer (barrier layer), 4 ... Intermediate layer (cobalt metal), 5, 15 ... Conductive substance layer (wiring metal) Layer) 10, 20, 30 ... substrate, 40 ... erosion, 50 ... state before polishing, 60 ... near wiring metal part of interlayer insulating film, 70 ... seam.

Claims (15)

  1.  無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、
     前記溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、
     前記メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、を備え、
     前記カルボン酸化合物が、フタル酸化合物、イソフタル酸化合物、下記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びに前記フタル酸化合物の酸無水物及び前記ジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種を含有し、
     前記研磨液のpHが4以下である、研磨液の製造方法。
      HOOC-R-COOH・・・(I)
    [上記一般式(I)中、Rは炭素数が3~10でありかつ炭素及び水素のみを構成元素として含む。]
    A step of dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid to obtain a solution;
    Polymerizing a monomer component containing at least methacrylic acid in the solution to obtain a methacrylic acid polymer;
    Mixing the methacrylic acid polymer, carboxylic acid compound, abrasive particles and metal anticorrosive to obtain a polishing liquid,
    The carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the following general formula (I), a salt thereof, an acid anhydride of the phthalic acid compound, and an acid anhydride of the dicarboxylic acid compound Containing at least one selected from the group consisting of:
    The manufacturing method of polishing liquid whose pH of the said polishing liquid is 4 or less.
    HOOC-R-COOH (I)
    [In the above general formula (I), R has 3 to 10 carbon atoms and contains only carbon and hydrogen as constituent elements. ]
  2.  前記水系溶媒が水、又は、水及び有機酸からなる、請求項1記載の製造方法。 The production method according to claim 1, wherein the aqueous solvent comprises water or water and an organic acid.
  3.  前記研磨液がコバルトを含む基体を化学機械研磨するための研磨液である、請求項1又は2記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the polishing liquid is a polishing liquid for chemical mechanical polishing a substrate containing cobalt.
  4.  前記メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも一種である、請求項1~3のいずれか一項に記載の製造方法。 The methacrylic acid-based polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid. The production method according to item.
  5.  前記金属防食剤がトリアゾール骨格を有する化合物を含有する、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the metal anticorrosive contains a compound having a triazole skeleton.
  6.  前記研磨液を得る工程において更に有機溶媒を混合して前記研磨液を得る、請求項1~5のいずれか一項に記載の製造方法。 6. The production method according to claim 1, wherein in the step of obtaining the polishing liquid, an organic solvent is further mixed to obtain the polishing liquid.
  7.  前記研磨液を得る工程において更に酸化剤を混合して前記研磨液を得る、請求項1~6のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein in the step of obtaining the polishing liquid, an oxidizing agent is further mixed to obtain the polishing liquid.
  8.  前記研磨液を得る工程において、前記メタクリル酸系ポリマ、前記カルボン酸化合物、前記研磨粒子及び前記金属防食剤を含む第一の液と、前記酸化剤を含む第二の液と、を混合して前記研磨液を得る、請求項7に記載の製造方法。 In the step of obtaining the polishing liquid, the first liquid containing the methacrylic acid polymer, the carboxylic acid compound, the polishing particles, and the metal anticorrosive and the second liquid containing the oxidizing agent are mixed. The manufacturing method of Claim 7 which obtains the said polishing liquid.
  9.  無機酸を含まない水系溶媒に重合開始剤を溶解させて溶液を得る工程と、
     前記溶液中で少なくともメタクリル酸を含むモノマ成分を重合させてメタクリル酸系ポリマを得る工程と、
     前記メタクリル酸系ポリマ、カルボン酸化合物、研磨粒子及び金属防食剤を混合して研磨液を得る工程と、
     コバルトを含む基体を用意する工程と、
     前記研磨液を用いて、前記基体を化学機械研磨する工程と、を備え、
     前記カルボン酸化合物が、フタル酸化合物、イソフタル酸化合物、下記一般式(I)で表されるジカルボン酸化合物、これらの塩、並びに前記フタル酸化合物の酸無水物及び前記ジカルボン酸化合物の酸無水物からなる群より選択される少なくとも一種を含有し、
     前記研磨液のpHが4以下である、研磨方法。
      HOOC-R-COOH・・・(I)
    [上記一般式(I)中、Rは炭素数が3~10でありかつ炭素及び水素のみを構成元素として含む。]
    A step of dissolving a polymerization initiator in an aqueous solvent not containing an inorganic acid to obtain a solution;
    Polymerizing a monomer component containing at least methacrylic acid in the solution to obtain a methacrylic acid polymer;
    Mixing the methacrylic acid polymer, carboxylic acid compound, abrasive particles and metal anticorrosive to obtain a polishing liquid;
    Preparing a substrate containing cobalt;
    Chemical mechanical polishing the substrate using the polishing liquid, and
    The carboxylic acid compound is a phthalic acid compound, an isophthalic acid compound, a dicarboxylic acid compound represented by the following general formula (I), a salt thereof, an acid anhydride of the phthalic acid compound, and an acid anhydride of the dicarboxylic acid compound Containing at least one selected from the group consisting of:
    A polishing method, wherein the polishing liquid has a pH of 4 or less.
    HOOC-R-COOH (I)
    [In the above general formula (I), R has 3 to 10 carbon atoms and contains only carbon and hydrogen as constituent elements. ]
  10.  前記水系溶媒が水、又は、水及び有機酸からなる、請求項9記載の研磨方法。 The polishing method according to claim 9, wherein the aqueous solvent is water or water and an organic acid.
  11.  前記メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも一種である、請求項9又は10に記載の研磨方法。 The polishing according to claim 9 or 10, wherein the methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid. Method.
  12.  前記金属防食剤がトリアゾール骨格を有する化合物を含有する、請求項9~11のいずれか一項に記載の研磨方法。 The polishing method according to any one of Claims 9 to 11, wherein the metal anticorrosive contains a compound having a triazole skeleton.
  13.  前記研磨液を得る工程において更に有機溶媒を混合して前記研磨液を得る、請求項9~12のいずれか一項に記載の研磨方法。 The polishing method according to any one of claims 9 to 12, wherein in the step of obtaining the polishing liquid, an organic solvent is further mixed to obtain the polishing liquid.
  14.  前記研磨液を得る工程において更に酸化剤を混合して前記研磨液を得る、請求項9~13のいずれか一項に記載の研磨方法。 The polishing method according to any one of claims 9 to 13, wherein in the step of obtaining the polishing liquid, an oxidizing agent is further mixed to obtain the polishing liquid.
  15.  前記研磨液を得る工程において、前記メタクリル酸系ポリマ、前記カルボン酸化合物、前記研磨粒子及び前記金属防食剤を含む第一の液と、前記酸化剤を含む第二の液と、を混合して前記研磨液を得る、請求項14に記載の研磨方法。
     
    In the step of obtaining the polishing liquid, the first liquid containing the methacrylic acid polymer, the carboxylic acid compound, the polishing particles, and the metal anticorrosive and the second liquid containing the oxidizing agent are mixed. The polishing method according to claim 14, wherein the polishing liquid is obtained.
PCT/JP2015/050954 2014-01-16 2015-01-15 Polishing liquid production method, and polishing method WO2015108113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014005831A JP2017048256A (en) 2014-01-16 2014-01-16 Method for producing polishing liquid, and polishing method
JP2014-005831 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015108113A1 true WO2015108113A1 (en) 2015-07-23

Family

ID=53542998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050954 WO2015108113A1 (en) 2014-01-16 2015-01-15 Polishing liquid production method, and polishing method

Country Status (3)

Country Link
JP (1) JP2017048256A (en)
TW (1) TW201531540A (en)
WO (1) WO2015108113A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006631A1 (en) * 2014-07-09 2016-01-14 日立化成株式会社 Cmp polishing solution and polishing method
WO2017070074A1 (en) * 2015-10-21 2017-04-27 Cabot Microelectronics Corporation Cobalt inhibitor combination for improved dishing
JP2017107918A (en) * 2015-12-07 2017-06-15 日立化成株式会社 Polishing liquid for cmp and manufacturing method thereof, and polishing method
JP2017157591A (en) * 2016-02-29 2017-09-07 日立化成株式会社 CMP polishing liquid and polishing method
JP2018530909A (en) * 2015-08-12 2018-10-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method of using a chemical mechanical polishing (CMP) composition for polishing a substrate containing cobalt
CN110291619A (en) * 2017-02-08 2019-09-27 日立化成株式会社 Lapping liquid and grinding method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152748A (en) * 2019-03-18 2020-09-24 三菱ケミカル株式会社 Conductive polymer and production method of the same, and conductive composition
WO2020255616A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical-mechanical polishing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688407A (en) * 1979-12-20 1981-07-17 Sumitomo Chem Co Ltd Preparation of high-molecular weight, water-soluble polymer
JPH08333420A (en) * 1995-06-07 1996-12-17 Kao Corp Production of (meth)acrylic acid (co)polymer
JPH10204108A (en) * 1997-01-22 1998-08-04 Idemitsu Kosan Co Ltd Production of acrylate polymer
WO2005012369A1 (en) * 2003-08-04 2005-02-10 Sumitomo Seika Chemicals Co., Ltd. Process for producing water-absorbing resin
WO2007116770A1 (en) * 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
WO2009005143A1 (en) * 2007-07-05 2009-01-08 Hitachi Chemical Co., Ltd. Polishing liquid for metal film and polishing method
JP2009242594A (en) * 2008-03-31 2009-10-22 Nippon Shokubai Co Ltd Production method of (meta)acrylic acid-based polymer
JP2012134358A (en) * 2010-12-22 2012-07-12 Hitachi Chem Co Ltd Cmp polishing liquid and polishing method
JP2013042123A (en) * 2011-07-20 2013-02-28 Hitachi Chemical Co Ltd Abrasive and method for polishing substrate
JP2013197526A (en) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Cmp polishing fluid and polishing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688407A (en) * 1979-12-20 1981-07-17 Sumitomo Chem Co Ltd Preparation of high-molecular weight, water-soluble polymer
JPH08333420A (en) * 1995-06-07 1996-12-17 Kao Corp Production of (meth)acrylic acid (co)polymer
JPH10204108A (en) * 1997-01-22 1998-08-04 Idemitsu Kosan Co Ltd Production of acrylate polymer
WO2005012369A1 (en) * 2003-08-04 2005-02-10 Sumitomo Seika Chemicals Co., Ltd. Process for producing water-absorbing resin
WO2007116770A1 (en) * 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
WO2009005143A1 (en) * 2007-07-05 2009-01-08 Hitachi Chemical Co., Ltd. Polishing liquid for metal film and polishing method
JP2009242594A (en) * 2008-03-31 2009-10-22 Nippon Shokubai Co Ltd Production method of (meta)acrylic acid-based polymer
JP2012134358A (en) * 2010-12-22 2012-07-12 Hitachi Chem Co Ltd Cmp polishing liquid and polishing method
JP2013042123A (en) * 2011-07-20 2013-02-28 Hitachi Chemical Co Ltd Abrasive and method for polishing substrate
JP2013197526A (en) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Cmp polishing fluid and polishing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006631A1 (en) * 2014-07-09 2016-01-14 日立化成株式会社 Cmp polishing solution and polishing method
US10283373B2 (en) 2014-07-09 2019-05-07 Hitachi Chemical Company, Ltd. CMP polishing liquid and polishing method
JP2018530909A (en) * 2015-08-12 2018-10-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method of using a chemical mechanical polishing (CMP) composition for polishing a substrate containing cobalt
WO2017070074A1 (en) * 2015-10-21 2017-04-27 Cabot Microelectronics Corporation Cobalt inhibitor combination for improved dishing
JP2019501511A (en) * 2015-10-21 2019-01-17 キャボット マイクロエレクトロニクス コーポレイション Cobalt inhibitor combinations for improving dishing
JP2017107918A (en) * 2015-12-07 2017-06-15 日立化成株式会社 Polishing liquid for cmp and manufacturing method thereof, and polishing method
JP2017157591A (en) * 2016-02-29 2017-09-07 日立化成株式会社 CMP polishing liquid and polishing method
CN110291619A (en) * 2017-02-08 2019-09-27 日立化成株式会社 Lapping liquid and grinding method
KR20190116284A (en) * 2017-02-08 2019-10-14 히타치가세이가부시끼가이샤 Polishing liquid and polishing method
EP3582252A4 (en) * 2017-02-08 2020-12-16 Hitachi Chemical Company, Ltd. Polishing liquid and polishing method
US11136474B2 (en) 2017-02-08 2021-10-05 Showa Denko Materials Co., Ltd. Polishing liquid and polishing method
KR102532672B1 (en) 2017-02-08 2023-05-12 가부시끼가이샤 레조낙 Polishing liquid and polishing method

Also Published As

Publication number Publication date
TW201531540A (en) 2015-08-16
JP2017048256A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5141792B2 (en) CMP polishing liquid and polishing method
JP6051632B2 (en) Abrasive and substrate polishing method
WO2015108113A1 (en) Polishing liquid production method, and polishing method
JP5605418B2 (en) CMP polishing liquid and polishing method
JP5741738B2 (en) Polishing liquid for metal film and polishing method
JP7028193B2 (en) Polishing liquid and polishing method
WO2013137220A1 (en) Grinding method
JP2009055047A (en) Polishing slurry
JPWO2008105342A1 (en) Polishing liquid for metal and polishing method
JP2008199036A (en) Polishing solution and polishing method
JP2012182158A (en) Polishing liquid and method for polishing substrate using polishing liquid
JP2013038237A (en) Cmp polishing liquid and polishing method
JP2017107918A (en) Polishing liquid for cmp and manufacturing method thereof, and polishing method
TWI722306B (en) Grinding method and slurry
JP2015029001A (en) Polishing liquid for cmp, and polishing method
WO2015178476A1 (en) Polishing solution for metal films, and polishing method using same
JP6604061B2 (en) Polishing liquid and polishing method for CMP
WO2016098817A1 (en) Cmp polishing liquid and polishing method using same
JP2009259950A (en) Polishing solution for cmp and polishing method of substrate using the same
JP2008124509A (en) Polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP