WO2015108084A1 - Process for producing absobent article - Google Patents

Process for producing absobent article Download PDF

Info

Publication number
WO2015108084A1
WO2015108084A1 PCT/JP2015/050841 JP2015050841W WO2015108084A1 WO 2015108084 A1 WO2015108084 A1 WO 2015108084A1 JP 2015050841 W JP2015050841 W JP 2015050841W WO 2015108084 A1 WO2015108084 A1 WO 2015108084A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mass
resin particles
acid
particles
Prior art date
Application number
PCT/JP2015/050841
Other languages
French (fr)
Japanese (ja)
Inventor
まり子 玉置
裕子 植田
舞 源常
博之 池内
大志 小林
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201580004876.6A priority Critical patent/CN105916475B/en
Priority to JP2015557855A priority patent/JP6327571B2/en
Publication of WO2015108084A1 publication Critical patent/WO2015108084A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530489Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material

Definitions

  • the present invention relates to a method for producing absorbent articles such as paper diapers and sanitary napkins, so-called incontinence pads.
  • Absorbent articles such as paper diapers and sanitary napkins, so-called incontinence pads, usually include an absorbent body, a liquid-permeable top sheet, and a liquid-impermeable back sheet.
  • As a constituent material of the absorber water-absorbing resin particles intended to absorb body fluid are widely used.
  • As the water-absorbent resin particles polyacrylic acid (salt) -based water-absorbent resins are often used from the viewpoint of water absorption characteristics.
  • the water-absorbing resin particles are processed and absorbed by processing the water-absorbing resin particles and the fiber base material while maintaining the water-absorbing properties such as excellent water absorption when in contact with an aqueous liquid such as body fluid.
  • an aqueous liquid such as body fluid.
  • the polyacrylic acid (salt) water-absorbing resin is usually stored for a certain period of time after being manufactured as an article (absorber). Further, depending on the storage environment, it may be stored under high humidity conditions. At the time of storage, the polyacrylic acid (salt) water-absorbing resin may absorb moisture in the air and the water-absorbing resin particles may lose fluidity.
  • One object of the present invention is to provide a method for producing an absorbent article that recovers the fluidity of water-absorbent resin particles that have lost fluidity due to moisture absorption during the production of the absorbent article, without impairing the water-absorbing properties. It is to be.
  • the absorbent article is required to have a high absolute absorption amount of body fluid or the like as a basic physical property. Therefore, another object of the present invention is to provide an absorbent article having a high absorption amount.
  • the present invention is a method for producing an absorbent article comprising at least water-absorbing resin particles and water-insoluble inorganic particles, wherein the water-absorbing resin particles and the water-insoluble inorganic particles are added to 100% by mass of the water-absorbing resin particles.
  • the present invention also relates to a method for producing an absorbent article, comprising a step of mixing such that the ratio of the water-insoluble inorganic particles is 0.01% by mass or more and less than 10% by mass.
  • a weight and mass, weight% and mass%, a weight part, and a mass part are the same meaning, and use in a sentence is unified to a mass, a mass%, and a mass part.
  • the “water absorbing agent” is an aqueous liquid gelling agent obtained mainly with water-absorbing resin particles.
  • the main component means that the content of the water-absorbing resin particles in the water-absorbing agent is preferably 70% by mass or more of the water-absorbing agent, more preferably 80% by mass or more, and still more preferably 90% by mass or more. (The upper limit is 100% by mass, preferably 99.99% by mass).
  • Water-absorbing agents include water-absorbing resin particles, cationic polymer compounds, water-soluble polyvalent metal cation-containing compounds, surfactants, coloring inhibitors, urine resistance improvers, deodorants, fragrances, antibacterial agents, foaming Agents, pigments, dyes, fertilizers, oxidizing agents, reducing agents and the like may be contained in an amount of 0 to 10% by mass, preferably 0.1 to 1% by mass, respectively.
  • surface-crosslinked water-absorbing resin is an aqueous liquid gelling agent obtained by subjecting water-absorbing resin particles to a surface-crosslinking step.
  • Water-absorbing resin in the present specification means a water-swelling, water-insoluble polymer gelling agent.
  • Water swellability means that the CRC (water absorption capacity under no pressure) specified by ERT441.2-02 is 5 g / g or more, and “water-insoluble” means ERT470.2- Extr defined in 02 (water-soluble component) is 0 to 50% by mass.
  • the total amount (100% by mass) of the water-absorbent resin is not limited to the polymer, and may contain additives and the like within the range of maintaining the above performance, and the water-absorbent resin composition containing a small amount of additives.
  • a water-absorbing resin in the present invention.
  • the shape of the water-absorbing resin is powdery, particularly preferably a powdery water-absorbing resin having a particle size and water content described later, and is referred to as water-absorbing resin particles.
  • polyacrylic acid (salt) water-absorbing resin optionally includes a graft component, and as a repeating unit, acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid (salt)”). Is a polymer containing as a main component.
  • a polymer containing acrylic acid (salt) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, More preferably, it refers to a water-absorbent resin containing 90 to 100 mol%, particularly preferably substantially 100 mol%.
  • polyacrylate type (neutralization type) polymers are also collectively referred to as polyacrylic acid (salt) water-absorbing resins.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for a method for measuring water-absorbent resin (EDANA Recommended Test Methods), which is a European standard.
  • EDANA Recommended Test Methods EDANA Recommended Test Methods
  • CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means water absorption capacity without pressure (hereinafter also referred to as “water absorption capacity”). Specifically, after 0.200 g of the water-absorbing resin in the non-woven fabric was freely swollen for 30 minutes with respect to a large excess of 0.9 mass% sodium chloride aqueous solution (physiological saline), further using a centrifuge. Water absorption ratio after draining at 250 G (unit: [g / g]).
  • AAP is an abbreviation for Absorption Against Pressure, which means water absorption capacity under pressure. Specifically, 0.900 g of the water-absorbent resin was swollen under a load of 2.06 kPa (0.3 psi) for 1 hour against a 0.9 mass% sodium chloride aqueous solution (physiological saline). It is a water absorption magnification (unit; [g / g]).
  • PSD is an abbreviation for Particle Size Distribution and means a particle size distribution measured by sieving.
  • the mass average particle size (D50) and the particle size distribution width are measured by the same method as “Average Particle Diameter and Distribution of Particle Diameter” described in European Patent 0349240.
  • X to Y indicating a range means “X or more and Y or less” including X and Y.
  • t (ton) as a unit of mass means “Metric ton” (metric ton)
  • ppm means “mass ppm” unless otherwise noted.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • measurement is performed at room temperature (20 to 25 ° C.) and relative humidity 40 to 50% RH.
  • the method for producing an absorbent article of the present invention is a method for producing an absorbent article comprising at least water-absorbent resin particles and water-insoluble inorganic particles. And a step of mixing water-insoluble inorganic particles so that a ratio of the water-insoluble inorganic particles is 0.01% by mass or more and less than 10% by mass with respect to 100% by mass of the water-absorbent resin particles. It is a manufacturing method of an absorptive article.
  • an absorbent article of the present invention it is possible to recover the fluidity of the water-absorbent resin particles that have lost the fluidity due to moisture absorption without impairing the water-absorbing characteristics. Moreover, according to the manufacturing method of the absorbent article of this invention, an absorbent article with high absorption amount can be provided. Furthermore, according to the method for manufacturing an absorbent article of the present invention, an absorbent article having an excellent balance between the absorption amount and the return amount can be provided.
  • acrylic acid (salt) monomer aqueous solution means a single amount mainly composed of acrylic acid (salt).
  • This is an aqueous solution of the body that contains components that make up the water-absorbing resin particles such as crosslinking agents, grafting components and trace components (chelating agents, surfactants, dispersants, etc.) as necessary.
  • a polymerization initiator added to the polymerization.
  • the acrylic acid (salt) may be unneutralized or salt type (completely neutralized type or partially neutralized type), and the monomer aqueous solution may exceed the saturation concentration, and acrylic acid ( Even a supersaturated aqueous solution of salt) or a slurry aqueous solution (aqueous dispersion) is treated as the acrylic acid (salt) monomer aqueous solution of the present invention.
  • acrylic acid (salt) type monomer aqueous solution below saturation concentration from a viewpoint of the physical property of the water-absorbent resin particle obtained.
  • water is preferred as the monomer solvent, and acrylic acid (salt) monomers are treated as aqueous solutions.
  • aqueous solution means that 100% by mass of the solvent is not limited to water, and a water-soluble organic solvent (for example, alcohol) is preferably used in an amount of 0 to 30% by mass, more preferably 0 to 5% by mass. In the present invention, these are treated as aqueous solutions.
  • the “acrylic acid (salt) -based monomer aqueous solution being prepared” refers to a monomer aqueous solution containing acrylic acid (salt) as a main component before all components are mixed. It refers to an aqueous solution of acrylic acid (salt), and specifically includes an aqueous solution of acrylic acid and a completely neutralized or partially neutralized acrylate solution.
  • the final acrylic acid (salt) system can be obtained by further neutralizing the acrylic acid (salt) monomer aqueous solution being prepared, mixing water as a solvent, or mixing the above-mentioned trace components. A monomer aqueous solution is used.
  • this final acrylic acid (salt) monomer aqueous solution the state before the polymerization is started before being charged into the polymerization apparatus or after being charged into the polymerization apparatus, “after the preparation before the polymerization step” Acrylic acid (salt) monomer aqueous solution ”.
  • the monomer to be used is not particularly limited as long as it becomes a water-absorbent resin particle by polymerization.
  • Anionic unsaturated monomers (salts) such as 2-hydroxyethyl (meth) acryloyl phosphate; mercapto group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; (meth) acrylamide, N- Contains amide groups such as ethyl (meth)
  • the content (amount used) of acrylic acid (salt) is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, based on the entire monomer (excluding the internal crosslinking agent). More preferably, it is 90 mol% or more, particularly preferably 95 mol% or more (the upper limit is 100 mol%).
  • polyacrylic acid (salt) is not limited to non-neutralization (neutralization rate 0 mol%), but is a concept including partial neutralization or complete neutralization (neutralization rate 100 mol%).
  • the neutralization rate of the acrylic acid (salt) monomer or the hydrogel crosslinked polymer after polymerization is not particularly limited, but the properties of the water-absorbent resin particles obtained and the reactivity with the surface crosslinking agent In view of the above, it is preferably 40 to 90 mol%, more preferably 50 to 80 mol%, still more preferably more than 70 mol% and 80 mol% or less.
  • the neutralization rate when the neutralization rate is low, the water absorption rate (for example, FSR and Vortex) tends to decrease. Conversely, when the neutralization rate is high, the polyacrylic acid (salt) water-absorbing resin particles and the surface cross-linking agent are used. In particular, the reactivity with alkylene carbonate tends to decrease, and the productivity, liquid permeability (for example, SFC) and water absorption capacity under pressure (for example, AAP and PUP) tend to decrease. The sum is preferred. In applications that may come into contact with the human body, such as paper diapers, neutralization after polymerization is not required.
  • the acrylic acid (salt) monomer or the hydrogel crosslinked polymer is partially or entirely. May be in a salt form, monovalent salts such as sodium salt, lithium salt, potassium salt, ammonium salt, amines are preferred, alkali metal salt is more preferred, sodium salt and / or potassium salt is more preferred, cost and physical properties In view of the above, sodium salt is particularly preferable.
  • the acrylic acid (salt) monomer may contain a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and examples thereof include N-oxyl compounds, manganese compounds, and substituted phenol compounds disclosed in International Publication No. 2008/096713. Of these, substituted phenol compounds are preferred, and methoxyphenols are more preferred.
  • methoxyphenol examples include o, m, p-methoxyphenol, and methoxyphenol having one or more substituents such as a methyl group, a t-butyl group, and a hydroxyl group.
  • -Methoxyphenol is particularly preferred.
  • the content of the polymerization inhibitor in the acrylic acid (salt) monomer is preferably 10 to 200 ppm, and in the following order, preferably 5 to 160 ppm, 10 to 160 ppm, 10 to 100 ppm, and 10 to 80 ppm. ⁇ 70 ppm is most preferred.
  • the content is 10 to 200 ppm, the resulting water-absorbent resin particles have little deterioration in color tone (coloration such as yellowing and yellowing), and are not intended when the polymerization inhibitor is removed by purification such as distillation. Less risk of causing polymerization.
  • the aqueous monomer solution may contain an internal crosslinking agent as required.
  • an internal crosslinking agent known ones can be used. For example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethyl Roll propane tri (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, tri Allyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol Poly
  • the internal cross-linked structure can be changed by changing the reactivity of the functional group, so that an amide compound, a (meth) acrylate compound, an allyl compound, an amine compound It is preferable to select and use an internal cross-linking agent having a different functional group from the above exemplified compounds such as an imine compound, an alcohol compound, a carbonate compound, and a glycidyl compound.
  • the amount of the internal cross-linking agent to be used can be appropriately determined depending on the desired properties of the water-absorbent resin particles, but is preferably 0.001 to 5 mol%, based on the total acrylic acid (salt) monomer. 005 to 2 mol% is more preferable, and 0.01 to 1 mol% is still more preferable.
  • the amount of each internal cross-linking agent used is preferably 0.001 to 5 mol% with respect to the entire acrylic acid (salt) monomer. 0.005 to 2 mol% is more preferable, and 0.01 to 1 mol% is still more preferable.
  • the water-absorbent resin particles obtained When the amount used (the total amount in the case of two or more combinations) is 0.001 to 5 mol%, the water-absorbent resin particles obtained have a low water-soluble content, and the amount of water absorption under pressure can be reduced. The water-absorbent resin particles obtained can be adequately secured and the crosslinking density of the resulting water-absorbent resin particles becomes appropriate, so that the amount of water absorption is sufficient.
  • the internal cross-linking agent may be added to the acrylic acid (salt) monomer aqueous solution after preparation before the polymerization step, or a part thereof may be added after the start of polymerization.
  • Aqueous solution polymerization step (Polymerization method)
  • the polymerization method for obtaining water-absorbent resin particles include spray polymerization, droplet polymerization, bulk polymerization, precipitation polymerization, aqueous solution polymerization, or reverse phase suspension polymerization.
  • the monomer is an aqueous solution. Aqueous polymerization is used.
  • the aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent.
  • U.S. Pat. Nos. 4,462,001, 4,873,299, 4,286,682, 4,973,632, and 4,985,518. No. 5124416, No. 5,250,640, No. 5,264,495, No. 5,145,906, No. 5,380,808, European Patent Nos. 081636, 09555086, No. 0922717, etc. This also applies to the present invention.
  • the concentration of the aqueous monomer solution during the polymerization is not particularly limited, but is preferably 20% by mass to saturated concentration or less, more preferably 25 to 80% by mass, and further preferably 30 to 70% by mass. When the concentration is 20% by mass or more, a decrease in productivity can be suppressed. It is to be noted that the polymerization in the monomer slurry (aqueous dispersion of acrylate) shows a decrease in physical properties. Therefore, the polymerization is preferably carried out at a saturated concentration or less (see Japanese Patent Application Laid-Open No. 1-318021).
  • a dissolved oxygen degassing step (for example, a substitution step with an inert gas) may be provided as necessary during the polymerization.
  • a dissolved oxygen degassing step for example, a substitution step with an inert gas
  • bubbles particularly inert gas
  • various foaming agents for example, organic or inorganic carbonates, azo compounds, urea compounds
  • foaming may be performed so that the volume becomes 1.001 to 10 times.
  • the polymerization step in the present invention can be carried out at normal pressure, reduced pressure, or increased pressure, but is preferably carried out at normal pressure (or in the vicinity thereof, usually atmospheric pressure ⁇ 10 mmHg).
  • the temperature at the start of the polymerization is preferably 15 to 130 ° C., more preferably 20 to 120 ° C., although it depends on the type of polymerization initiator used.
  • the polymerization initiator used in the present invention is appropriately determined depending on the polymerization form and is not particularly limited, and examples thereof include a photodegradable polymerization initiator, a thermal decomposition polymerization initiator, and a redox polymerization initiator. Polymerization is initiated by these polymerization initiators.
  • photodegradable polymerization initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, and azo compounds. Specifically, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, ⁇ -methylbenzoin, ⁇ -phenylbenzoin, anthraquinone, methylanthraquinone, acetophenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2 -Phenylacetone, benzyldiacetylacetophenone, benzophenone, p-chlorobenzophenone, 2-hydroxy-2-methylpropiophenone, diphenyl disulfide, tetramethylthiuram sulfide, ⁇ -chloromethylnaphthalene, anthracene, hexachlorobutadiene, pentachlorobutadiene, Mich
  • Such a photodegradable polymerization initiator may be a commercially available product, such as Irgacure (registered trademark) 184 (hydroxycyclohexyl-phenyl ketone), Irgacure (registered trademark) 2959 (1- [4- (2 -Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one) and the like.
  • thermal decomposition polymerization initiator examples include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide; 2 Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
  • persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate
  • peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide
  • 2 Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2- (2-imidazolin-2-yl) propane]
  • examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium bisulfite is used in combination with the persulfate or peroxide.
  • photodecomposition polymerization initiator and the thermal decomposition polymerization initiator in combination.
  • active energy rays such as ultraviolet rays, electron beams, and ⁇ rays may be used alone or in combination with the above polymerization initiator.
  • the amount of the polymerization initiator used is preferably 0.0001 to 1 mol%, more preferably 0.0005 to 0.5 mol%, based on the monomer. It is preferable that the amount used be in the above-mentioned range since the color tone deterioration of the water-absorbent resin particles is small and the residual monomer is also small.
  • a chain transfer agent such as hypophosphorous acid (salt), a chelating agent such as diethylenetriaminepentaacetic acid (salt), a coloring inhibitor described later or A urine resistance improver or the like may be added.
  • the polymerization method of the acrylic acid (salt) monomer aqueous solution is a reverse phase suspension from the viewpoint of the physical properties (for example, water absorption rate and liquid permeability) of the water absorbent resin particles and the ease of polymerization control.
  • At least one of polymerization, spray polymerization, droplet polymerization or aqueous solution polymerization, particularly aqueous solution polymerization is employed.
  • the polymerization initiation temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, particularly preferably 70 ° C. or higher, and most preferably 80 ° C. or higher (the upper limit is High-temperature initiating aqueous solution polymerization to the boiling point) or the monomer concentration is preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more (the upper limit is 90% by mass or less, preferably 80% by mass). % Or less, more preferably 70% by mass or less), and high-concentration / high-temperature initiating aqueous solution polymerization combining these.
  • kneader polymerization or belt polymerization is preferable.
  • aqueous solution polymerization continuous belt polymerization (US Pat. Nos. 4,893,999, 6,241,928, US Patent Application Publication No. 2005/215734, International Publication No. 2008/114847), continuous kneader polymerization, batch kneader polymerization (disclosed in US Pat. Nos. 6,987,151, 6,710,141, and International Publication No. 2008/114848).
  • Another preferable example is batch kneader polymerization or continuous kneader polymerization in which the polymerization start temperature is 15 ° C. or more and the monomer concentration is 30% by mass or more.
  • the polymerization start time (the time from when the polymerization initiator is added until the polymerization starts) is preferably more than 0 and within 300 seconds, and more preferably from 1 to 240 seconds.
  • hydrous gel-like crosslinked polymer (hereinafter referred to as “hydrous gel”) obtained through the above-described polymerization step (particularly aqueous solution polymerization) is gel-crushed to form a particulate hydrous powder.
  • This is an optional step for obtaining a gel (hereinafter referred to as “particulate hydrous gel”).
  • the water-containing gel is finely divided by gel pulverization, particularly gel pulverization by kneading, so that both the water absorption speed and the liquid permeability can be achieved, and the impact resistance is also improved. That is, aqueous polymerization in which gel pulverization is performed particularly during polymerization (for example, kneader polymerization) or after polymerization (for example, belt polymerization, and further, kneader polymerization if necessary) is preferable.
  • the gel pulverizer that can be used in the present invention is not particularly limited.
  • a gel pulverizer having a plurality of rotary stirring blades such as a batch-type or continuous double-arm kneader, a single-screw extruder, and a twin-screw extruder. , Meat chopper and the like.
  • a screw type extruder having a perforated plate at the tip is preferable, and examples thereof include a screw type extruder disclosed in Japanese Patent Application Laid-Open No. 2000-063527.
  • the temperature of the hydrogel before gel grinding is preferably 60 to 120 ° C., more preferably 65 to 110 ° C., from the viewpoints of particle size control and physical properties.
  • the gel temperature is within the above range, the hardness (softness) of the hydrogel is optimized, and the particle shape and particle size distribution can be easily controlled during gel pulverization.
  • the gel temperature can be controlled by the temperature during polymerization, heating or cooling after polymerization, and the like.
  • the mass average particle diameter (D50) (specified by sieve classification) of the particulate hydrogel after gel pulverization is preferably 0.5 to 10 mm, more preferably 1.0 to 10 mm, and 2.0 to 8.0 mm. Is more preferable.
  • the ratio of coarse particles having a particle diameter of more than 10 mm contained in the particulate hydrogel to be subjected to the subsequent drying step is preferably 10% by mass or less, more preferably 5% by mass or less of the entire particulate hydrous gel. 1 mass% or less is still more preferable.
  • the polymerization step and the gel grinding step are a kneader polymerization method in which the water-containing gel-like crosslinked polymer is gel-ground during polymerization, a method in which the water-containing gel-like crosslinked polymer obtained by continuous belt polymerization is subjected to the gel grinding step, Any method of performing the polymerization step and the gel grinding step in a batch can be carried out.
  • (2-4) Drying step This step is a step of drying the hydrogel obtained through the above polymerization step and the like to obtain a dry polymer.
  • polymerization process is aqueous solution polymerization
  • pulverization fine-graining
  • the drying method in the present invention is not particularly limited, and various methods can be employed. Specific examples include heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, azeotropic dehydration drying with a hydrophobic organic solvent, and high humidity drying using high-temperature steam. Or 2 types can also be used together.
  • the drying temperature is preferably from 100 to 300 ° C, more preferably from 150 to 250 ° C.
  • the drying time depends on the surface area and water content of the hydrogel, the type of dryer, etc., and for example, 1 minute to 5 hours is preferable, and 5 minutes to 1 hour is more preferable.
  • the resin solid content obtained from loss on drying (1 g of sample (hydrogel or water-absorbent resin particles) is dried at 180 ° C. for 3 hours) is preferably 80% by mass or more, more preferably 85 to 99% by mass, and more preferably 90 to 98 mass% is still more preferable.
  • This step is a step for pulverizing and / or classifying the dried polymer obtained in the drying step to obtain water absorbent resin particles having a specific particle size.
  • the (2-3) gel pulverization step is different in that the object to be pulverized has undergone a drying step. Further, the water absorbent resin particles after the pulverization step may be referred to as a pulverized polymer.
  • the mass average particle diameter (D50) of the water-absorbing resin particles used in the subsequent surface cross-linking step is preferably in the range of 200 to 600 ⁇ m from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, and the like.
  • the range of 550 ⁇ m is more preferable, the range of 250 to 500 ⁇ m is still more preferable, and the range of 300 to 450 ⁇ m is particularly preferable.
  • the content of the fine particles is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, 0 to 1% by mass is more preferable.
  • the content of coarse particles is preferably 0 to 5% by mass, 3% by mass is more preferable, and 0 to 1% by mass is even more preferable.
  • the particle size distribution range is preferably 150 ⁇ m or more and less than 850 ⁇ m, more preferably 150 ⁇ m or more and less than 710 ⁇ m, from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, etc. It is more preferable that 98% by mass or more is included, and 99% by mass or more is more preferable (the upper limit is 100% by mass).
  • the particle size can be controlled in the polymerization step, the gel pulverization step, or the pulverization / classification step in the drying step, but is particularly preferably performed in the classification step after drying.
  • the particle size is measured using a JIS standard sieve (Z8801-1 (2000)) according to a method defined in International Publication No. 2004/69915 or EDANA-ERT420.2-02.
  • the shape of the water-absorbent resin particles of the present invention may be a spherical shape or an aggregate thereof, or may be an indeterminate shape (crushed shape) obtained through a pulverization process on a hydrous gel or a dry polymer. From the viewpoint, an irregular shape (crushed) or a granulated product thereof is preferable.
  • the above particle size is preferably applied to the water-absorbing agent, preferably after the surface crosslinking step. That is, the water-absorbing agent of the present invention is preferably contained in a range of 150 ⁇ m or more and less than 850 ⁇ m, more preferably 150 ⁇ m or more and less than 710 ⁇ m, from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, etc. It is more preferable that 98% by mass or more is included, and 99% by mass or more is more preferable (the upper limit is 100% by mass).
  • Fine powder recovery step Water-absorbing property including a classification step after the drying step (including the second classification step after the surface cross-linking step, the same shall apply hereinafter), and passing through a standard sieve having a mesh size of 150 ⁇ m. After separating the resin fine particles, it is preferable to collect (reuse) the water-absorbent resin fine particles or a water additive thereof in a step before the drying step. The coarse particles removed in the classification step may be re-pulverized as necessary, and the water absorbent resin fine particles removed in the classification step may be discarded or used for other purposes. Or you may use for this fine powder collection
  • the water absorption rate (for example, FSR) can be further improved by removing the water absorbent resin fine particles.
  • the fine powder collecting step includes water-absorbing resin fine particles (particularly those containing 70% by mass or more of particles having a particle size of 150 ⁇ m or less. May be referred to as “fine powder.”) And then collected as it is, or hydrated or granulated, and collected before the drying step, preferably in the polymerization step, gel grinding step or drying step. Refers to a process.
  • the particle size of the water-absorbing resin particles can be controlled, and the water absorption rate can be further improved by this step.
  • the fine powder to be recovered may be a fine powder before the surface cross-linking step or a fine powder after the surface cross-linking step, and the amount of fine powder recovered is preferably 1 to 40% by mass of the dry polymer, and more preferably 5 to 30% by mass.
  • the fine powder recovery method suitable for the present invention is a method in which a water-absorbent resin fine powder or a hydrate or granulated product thereof is mixed with an aqueous monomer solution before polymerization or a water-containing gel during polymerization, if necessary. is there.
  • the method for recovering the monomer aqueous solution before the polymerization is WO 92/001008 and 92/020723, and the method for recovering the hydrogel during polymerization is WO 2007/074167, No. 2009/109563, No. 2009/153196, No. 2010/006937, and a recovery method to a drying step (dryer) are disclosed in US Pat. No. 6,228,930, etc.
  • the recovery method is preferably applied to the present invention.
  • This step is an optional step for preparing water-absorbing resin particles containing a surface cross-linking agent for use in the surface cross-linking step.
  • surface cross-linking is performed by adding an organic surface cross-linking agent described later, polymerizing monomers on the surface of water-absorbent resin particles, or adding a radical polymerization initiator such as persulfate, and heating / ultraviolet irradiation. Is called.
  • Organic surface cross-linking agent As the organic surface crosslinking agent that can be used in the present invention, from the viewpoint of the physical properties of the water-absorbing resin particles obtained, a carboxyl group that is a functional group of the polyacrylic acid (salt) -based water-absorbing resin particles, An organic compound having a reactive group such as a hydroxyl group and / or an amino group that undergoes dehydration amidation reaction is preferable.
  • the organic compound is not limited to an alcohol compound or an amine compound having a hydroxyl group or an amino group directly, and even if it is a cyclic compound such as an alkylene carbonate compound or an oxazolidinone compound, a reactive group and / or a hydroxyl group and an amino group are generated.
  • a compound having a reactive group that directly reacts with the carboxyl group is also included.
  • organic surface crosslinking agents include polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds or condensates thereof with haloepoxy compounds, oxazoline compounds, (mono, di, or poly) oxazolidinone compounds, oxetane compounds, alkylene carbonate compounds, and the like.
  • An epoxy compound, a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound are more preferable. These may be used alone or in combination of two or more.
  • organic surface crosslinking agent examples include (di, tri, tetra, poly) ethylene glycol, (di, poly) propylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, (Poly) glycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, di- or triethanol
  • Polyalcohol compounds such as amine, pentaerythritol, sorbitol; epoxy compounds such as (poly) ethylene glycol diglycidyl ether, (di, poly) glycerol polyglycidyl ether, glycidol; 2-oxazolidone, N-hydroxyethyl-2-oxazolidone, 1,2-ethylenebisoxa Ox
  • the polyhydric alcohol is preferably a polyhydric alcohol having 2 to 8 carbon atoms, more preferably a polyhydric alcohol having 3 to 6 carbon atoms, and still more preferably a polyhydric alcohol having 3 to 4 carbon atoms.
  • a diol is preferable, and examples thereof include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol.
  • polyhydric alcohols selected from propylene glycol (1,2-propanediol), 1,3-propanediol, and 1,4-butanediol are more preferable.
  • the epoxy compound is preferably a polyglycidyl compound, ethylene glycol diglycidyl ether is preferably used, the oxazoline compound is preferably 2-oxazolidinone, and the alkylene carbonate compound is 1,3-dioxolan-2-one. (Ethylene carbonate) is preferably used.
  • a combination of two or more compounds selected from polyhydric alcohol compounds, epoxy compounds, oxazoline compounds, and alkylene carbonate compounds is preferable, a combination of a polyhydric alcohol and the organic surface cross-linking agent other than the polyhydric alcohol is preferable, a combination of a polyhydric alcohol and an epoxy compound and / or an alkylene carbonate compound is more preferable, and CRC is improved. From the viewpoint, it is more preferable to use a combination of at least a polyhydric alcohol and an alkylene carbonate compound.
  • the ratio (mass ratio) is 1 except for the polyhydric alcohol: polyhydric alcohol. : 100 to 100: 1 is preferable, 1:50 to 50: 1 is more preferable, and 1:30 to 30: 1 is still more preferable.
  • the temperature of the solvent in which these are mixed is appropriately determined. However, if the temperature is too low, the solubility and viscosity may become too low.
  • water heated to room temperature or higher preferably 30 to 100 ° C., more preferably 35 to 70 ° C., and further preferably 40 to 65 ° C. is used as the solvent.
  • non-polymeric organic compounds especially solid surface crosslinking agents, and further cyclic compounds such as solid polyhydric alcohols and alkylene carbonates, particularly water, are preferably heated. It is more preferable that it is in the temperature range.
  • the alkylene carbonate compound or the polyhydric alcohol compound, particularly the solid alkylene carbonate compound is preferably heated in advance before mixing with water.
  • the heating temperature is preferably higher than the temperature of the aqueous surface crosslinking agent solution after the addition of water.
  • polyhydric alcohol, particularly solid polyhydric alcohol is also heated and melted.
  • the temperature is preferably 30 to 100 ° C., more preferably 35 to 70 ° C., and still more preferably 40 to 65 ° C.
  • the total amount of the organic surface cross-linking agent added is preferably 0.001 to 15 parts by mass, and 0.01 to 5 parts by mass with respect to 100 parts by mass of the water absorbent resin particles before the addition. More preferably.
  • a polyhydric alcohol compound with respect to 100 mass parts of said water absorbent resin particles before addition Is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and the total amount of compounds other than polyhydric alcohols is 0.001 to 10 parts by mass. It is preferably 0.01 to 5 parts by mass.
  • the organic surface cross-linking agent is preferably added as an aqueous solution.
  • the amount of water used in the aqueous solution is preferably 0.5 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the water absorbent resin particles before the addition treatment. Note that the amount of water includes crystallization water, hydration water, and the like, which are surface crosslinking agents.
  • a hydrophilic organic solvent may be added to the organic surface cross-linking agent aqueous solution, and the amount of the hydrophilic organic solvent is more than 0 parts by mass with respect to 100 parts by mass of the water-absorbing resin particles before the addition treatment.
  • the amount is preferably not more than mass parts, more preferably more than 0 mass parts and not more than 5 mass parts.
  • the hydrophilic organic solvent include primary alcohols having 1 to 4 carbon atoms, more preferably 2 to 3 carbon atoms, and lower ketones having 4 or less carbon atoms such as acetone. In the case of volatile alcohols having a temperature of less than 150 ° C., more preferably less than 100 ° C., the volatile alcohol is volatilized during the surface cross-linking treatment, so that no residue remains, which is more preferable.
  • lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol and t-butyl alcohol; ketones such as acetone; dioxane, tetrahydrofuran, methoxy (poly ) Ethers such as ethylene glycol; Amides such as ⁇ -caprolactam and N, N-dimethylformamide; Sulphoxides such as dimethyl sulfoxide; Polyhydric alcohols such as polyoxypropylene and oxyethylene-oxypropylene block copolymers Is mentioned.
  • the water-insoluble fine particles and the surfactant are added to 100 parts by weight of the water-absorbent resin particles before the addition treatment within a range that does not hinder the effects of the present invention.
  • it is preferably more than 0 parts by mass and 10 parts by mass or less, more preferably more than 0 parts by mass and 5 parts by mass or less, still more preferably more than 0 parts by mass and 1 part by mass or less.
  • the surfactant used is disclosed in US Pat. No. 7,473,739.
  • the water-insoluble fine particles include silicon dioxide (silica), zeolite, talc, and titanium dioxide.
  • the concentration of the surface crosslinking agent in the surface crosslinking agent solution is appropriately determined. From the viewpoint of physical properties, it is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, still more preferably 10 to 40% by mass, and particularly preferably. Is an aqueous solution of 15 to 30% by mass. The remainder contains the hydrophilic organic solvent and other components.
  • the temperature of the surface cross-linking agent solution is appropriately determined based on the solubility of the organic surface cross-linking agent used, the viscosity of the aqueous solution, etc., but is preferably ⁇ 10 to 100 ° C., more preferably 5 to 70 ° C., and further preferably 10 to 65 ° C. A range of 25 to 50 ° C. is particularly preferable.
  • the cyclic compound is hydrolyzed (for example, decomposition from ethylene carbonate to ethylene glycol, decomposition from oxazolidinone to ethanolamine), water, This is preferable because there are few harmful effects such as volatilization of the hydrophilic organic solvent and the mixing property is lowered, and there is little possibility that the surface crosslinking agent solution is solidified or the surface crosslinking agent is precipitated.
  • the surface crosslinking agent solution may contain an acid or base in addition to the organic surface crosslinking agent, water, hydrophilic organic solvent, surfactant and water-insoluble fine particles in order to promote the reaction and uniform mixing of the surface crosslinking agent. Good.
  • an organic acid or a salt thereof, an inorganic acid or a salt thereof, or an inorganic base is used, and is preferably 0 to 10 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the water absorbent resin particles before the addition treatment. Is suitably used in an amount of 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass.
  • the organic acid is preferably a water-soluble organic acid having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, a water-soluble saturated organic acid, particularly a saturated organic acid containing a hydroxyl group.
  • non-crosslinkable water-soluble inorganic bases preferably alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or hydroxides thereof
  • non-reducing alkali metal salt pH buffering agents Preferably bicarbonate, dihydrogen phosphate, hydrogen phosphate, etc.
  • the organic surface cross-linking agent is added to the water-absorbent resin particles.
  • the method of the addition treatment is not particularly limited.
  • the water-absorbing resin particles are immersed in a hydrophilic organic solvent to adsorb the added cross-linking agent, or the added cross-linking agent solution is sprayed or dropped directly on the water-absorbing resin particles. From the viewpoint of uniformly adding a predetermined amount, the latter is preferable.
  • two or more types of crosslinking agents having different compositions may be added simultaneously using different spray nozzles, for example, but a single composition is preferred from the viewpoint of uniformity and the like. Moreover, if it is a single composition, you may use several spray nozzles in consideration of the magnitude
  • Examples of the apparatus used for the addition treatment include, for example, a cylindrical mixer, a double wall conical mixer, a V-shaped mixer, a ribbon mixer, and a screw-type mixer. Suitable are a machine, a fluidized-type furnace, a rotary disk mixer, an airflow-type mixer, a double-arm kneader, an internal mixer, a pulverizing kneader, a rotary mixer, a screw-type extruder, a turbuler, a pro-share mixer, etc. . Furthermore, in large-scale production such as commercial production, an apparatus capable of continuous mixing is preferable. Moreover, the same apparatus may be used for each addition process, and a different apparatus may be used.
  • the water absorbent resin particles used in this step are preferably heated and kept warm, and the temperature is preferably in the range of 30 to 100 ° C., more preferably 35 to 80 ° C., still more preferably 40 to 70 ° C. It is.
  • the temperature is preferably in the range of 30 to 100 ° C., more preferably 35 to 80 ° C., still more preferably 40 to 70 ° C. It is.
  • This step heat treatment is performed to cross-link the surface of the water-absorbent resin particles or the vicinity of the surface in order to improve the water absorption capacity and liquid permeability under pressure. It is an optional process. It can be carried out simultaneously with the surface cross-linking agent addition step or after the surface cross-linking agent addition step, preferably after the surface cross-linking agent addition step. Further, this step may be performed once or a plurality of times under the same conditions or different conditions.
  • the heating temperature is preferably 250 ° C. or lower, more preferably 70 to 200 ° C., and particularly preferably 90 to 180 ° C. when damage resistance is considered as a physical property of the water-absorbent resin particles obtained.
  • the heating temperature is more preferably 120 to 280 ° C., further preferably 150 to 250 ° C., and particularly preferably 170 to 230 ° C.
  • the heating time is preferably 1 minute to 2 hours.
  • Heating device As the heating device used in the present invention, a continuous or batch type (batch type) heating device provided with a gas discharge mechanism and / or a gas supply mechanism for setting a predetermined atmosphere in a known dryer or heating furnace, A continuous heating device is preferable.
  • a conduction heat transfer type As the heating method of the heating device, a conduction heat transfer type, a radiation heat transfer type, a hot air heat transfer type, and a dielectric heating type are suitable. More preferred is a conductive heat transfer and / or hot air heat transfer type heating method, and still more preferred is a conductive heat transfer type method.
  • control temperature of the heating device is not limited as long as the water-absorbent resin particles can be heated to an appropriate temperature, and need not be constant from the beginning to the end of the process.
  • the temperature is preferably 50 to 300 ° C.
  • an apparatus equipped with a mechanism for continuously stirring and / or flowing the object to be heated in order to increase the heating efficiency and perform uniform heat treatment is preferable.
  • a stirring and / or fluidizing method a grooved stirring method, a screw type, a rotary type, a disk type, a kneading type, a fluidized tank type, etc. are preferable, such as a stirring method using a stirring blade (paddle) or a rotary retort furnace.
  • a stirring method by movement of the heat transfer surface itself is more preferable.
  • the stirring and / or flow mechanism is intended to perform a uniform heat treatment, and therefore, when the amount of treatment is small, for example, when the thickness of an object to be heated is less than 1 cm, it may not be used. It doesn't matter.
  • the heating device includes a gas discharge mechanism for discharging steam generated from the object to be heated, and controls the dew point and temperature of the atmosphere of the heating unit (inside the heating device) by adjusting the mechanism, for example, the discharge amount. You can also.
  • the heating unit is not a so-called heat source such as a heater or a dielectric coil but a place for raising the temperature of an object to be heated.
  • the outlet mechanism When the gas is discharged from the outlet of the heat treatment product as well as the simple exhaust port, the outlet mechanism also corresponds to the discharge mechanism. Further, it is preferable to adjust the amount of gas discharged and the pressure using a blower or the like. Further, the number of exhaust locations is not limited to one, and a plurality of exhaust locations can be provided in consideration of the size of the heating device and the adjustment state of the dew point and temperature.
  • the heating device includes a gas supply mechanism, and the dew point and temperature of the atmosphere of the heating unit can be controlled by adjusting the mechanism, for example, the supply amount.
  • the gas pressure in the heating part is preferably slightly reduced from normal pressure.
  • the differential pressure with respect to atmospheric pressure is preferably 0 to ⁇ 10 kPa, more preferably 0 to ⁇ 5 kPa, and further preferably 0 to ⁇ 2 kPa.
  • the heated object is placed in one or more trays that are substantially evenly distributed, or the heated object is filled in a single tank or multiple tanks.
  • a method of heating while stirring with a stirring blade or the like, a fluidized tank or the like is used.
  • a method of transferring the material to be heated to a belt or a plurality of trays substantially evenly, a method of transferring while stirring with a stirring blade or a screw, etc. A method of transporting by the method is used.
  • the water-absorbent resin particles taken out from the heating device as necessary are preferably less than 100 ° C., more preferably 0 to 95 ° C., for the purpose of suppressing excessive crosslinking reaction and improving the handleability in the subsequent process. Preferably, it may be cooled to 40 to 90 ° C.
  • Water-absorbent resin particles are obtained by the above steps (2-1) to (2-8).
  • additives examples include liquid permeability improvers, organic fine particles, cationic polymer compounds, water-soluble polyvalent metal cation-containing compounds, surfactants, coloring inhibitors, urine resistance improvers, deodorants, fragrances, Antibacterial agents, foaming agents, pigments, dyes, fertilizers, oxidizing agents, reducing agents, and the like may be mentioned, and the functions of the additive may be imparted or enhanced.
  • the amount of the additive is preferably less than 10% by mass (lower limit 0% by mass), more preferably less than 5% by mass, and even more preferably 1% by mass with respect to 100% by mass of the water-absorbent resin particles. Is less than.
  • These additives can be added simultaneously with or separately from the surface cross-linking agent addition step.
  • the liquid permeability improver referred to in the present invention improves the saline flow conductivity (SFC) of the water-absorbent resin particles after the addition of the liquid permeability improver compared to before the addition of the liquid permeability improver.
  • SFC saline flow conductivity
  • liquid permeability improvers include water-soluble polyvalent metal cation-containing compounds.
  • the polyvalent metal cation is preferably a divalent or higher valent metal cation, more preferably 2 to 4 valent, and still more preferably trivalent.
  • the water-soluble refers to a compound that dissolves in 100 g of water (25 ° C.), preferably 1 g or more, more preferably 10 g or more.
  • the polyvalent metal compound containing the polyvalent metal cation may be mixed with the water-absorbent resin particles as it is (mainly in solid form), but it is preferable to mix an aqueous solution with the water-absorbent resin particles.
  • the polyvalent metal cation element that can be used in the present invention is at least one metal selected from a typical metal and a transition metal having a group number of 4 to 11, and includes Mg, Ca, Ti, Zr, V, One selected from Cr, Mn, Fe, Co, Ni, Pd, Cu, Zn, Cd, and Al is preferable, Mg, Ca, Zn, and Al are more preferable, and Al is particularly preferable.
  • the anion of the counter may be either organic or inorganic and is not particularly limited.
  • water-soluble aluminum salts such as aluminum acetate, aluminum lactate, aluminum acrylate, aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium bissulfate aluminum, sodium bissulfate aluminum; calcium chloride, calcium nitrate, magnesium chloride, Examples thereof include water-soluble alkaline earth metal salts such as magnesium sulfate and magnesium nitrate; transition metal salts such as zinc chloride, zinc sulfate, zinc nitrate, copper sulfate, cobalt chloride, zirconium chloride, zirconium sulfate and zirconium nitrate.
  • aluminum compounds are particularly preferred.
  • aluminum sulfate is preferred, and water-containing crystal powders such as aluminum sulfate 14-18 hydrate can be most suitably used.
  • preferred anions are anisic acid, benzoic acid, p-hydroxybenzoic acid, formic acid, valeric acid, citric acid, glycolic acid, glyceric acid, glutaric acid, chloroacetic acid, chloropropionic acid.
  • bases corresponding to acids such as maleic acid, adipic acid, itaconic acid, crotonic acid, oxalic acid, salicylic acid, gluconic acid, gallic acid, sorbic acid and stearic acid.
  • tartrate and lactate are preferred, and lactate such as aluminum lactate and calcium lactate is most preferred.
  • the mixing method of the polyvalent metal cation is an aqueous solution containing the polyvalent metal cation in the water-absorbent resin particles, particularly an aqueous solution having a polyvalent metal cation concentration of preferably 1 to 60% by mass, more preferably 10 to 50% by mass. Furthermore, it may be heated at about 40 to 150 ° C., more preferably about 60 to 100 ° C., if necessary after mixing.
  • the amount of water used is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • a polyhydric alcohol or ⁇ -hydroxycarboxylic acid is used together during mixing.
  • the polyhydric alcohol is appropriately selected from the above-mentioned various compounds, and the ⁇ -hydroxycarboxylic acid is selected from various compounds described in the column of the coloration inhibitor and urine resistance improving agent described later.
  • the polyhydric alcohol or ⁇ -hydroxycarboxylic acid is less than water and is preferably 0 to 4 parts by weight, more preferably 0.01 to 3 parts by weight, and still more preferably 100 parts by weight of the water absorbent resin particles. Used at 0.1 to 0.5 parts by weight.
  • the polyvalent metal compound is used in an amount of 0.001 to 1 mass with respect to 100 parts by mass of the water-absorbent resin particles as a polyvalent metal cation (for example, in the case of an aluminum salt, Al 3+ regardless of the type of salt).
  • a polyvalent metal cation for example, in the case of an aluminum salt, Al 3+ regardless of the type of salt.
  • 0.005 to 0.5 parts by weight more preferably in the range of 0.01 to 0.2 parts by weight, particularly in the range of 0.02 to 0.1 parts by weight. preferable.
  • the polyvalent metal cation content with respect to 100 parts by mass of the water-absorbent resin particles is 0.001 part by mass or more, the SFC is sufficiently improved, and when the content is 1 part by mass or less, AAP is maintained.
  • organic fine particles examples include organic fine powders such as calcium lactate, aluminum lactate, and metal soap (polyvalent metal salt of long chain fatty acid).
  • the organic fine particles have a volume average particle size (specified by a laser diffraction scattering particle size meter) of preferably 10 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the lower limit of the volume average particle diameter of the organic fine particles is not particularly limited, but is preferably 5 nm or more.
  • water-absorbent resin particles may be mixed with the water-absorbent resin particles as a powder, mixed with an aqueous dispersion (slurry, for example, colloidal silica), or may be mixed with being dispersed in a surface cross-linking agent or an aqueous solution thereof. .
  • aqueous dispersion slurry, for example, colloidal silica
  • the addition amount of the organic fine particles to be used is preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the water absorbent resin particles to be added. preferable.
  • the cationic polymer compound is not particularly limited, but is disclosed in US Pat. Nos. 5,382,610, 7098284, WO2009 / 110645, 2009/041731, and 2009/041727.
  • the disclosed cationic polymer compound can be suitably used. Among these, polyethyleneimine, polyvinylamine, polyallylamine, and a dimethylamine / ammonia / epichlorohydrin condensate are preferable.
  • the molecular weight of the cationic polymer compound is preferably 1,000 to 5,000,000, more preferably 2,000 to 1,000,000, and even more preferably 10,000 to 500,000.
  • the cationic polymer compound is preferably water-soluble.
  • water-soluble means that preferably 1 g or more dissolves in 100 g of water at 25 ° C.
  • the cationic polymer compound may be directly mixed with the water-absorbent resin particles, may be mixed with a solution, particularly an aqueous solution, or may be mixed after being dissolved in a surface crosslinking agent or an aqueous solution thereof.
  • the water-soluble polyvalent metal cation-containing compound refers to a compound other than a multi-component metal compound containing a metal cation, which is preferably divalent or higher, more preferably trivalent or higher.
  • a metal cation which is preferably divalent or higher, more preferably trivalent or higher.
  • the trivalent or higher metal cation include aluminum, zirconium, and titanium, and among these, aluminum is preferable.
  • polyvalent metal cation-containing compound examples include aluminum sulfate, aluminum chloride, zirconium chloride oxide, zirconium carbonate ammonium, zirconium carbonate potassium, zirconium carbonate potassium, zirconium sulfate, zirconium acetate, zirconium nitrate, and other inorganic salts of polyvalent metals, acetic acid And polyvalent metal compounds such as organic salts of polyvalent metals such as aluminum, aluminum lactate, zirconium hydroxychloride, titanium triethanolamate, and titanium lactate. Among these, a compound containing aluminum as a polyvalent metal cation is preferable.
  • the water-soluble polyvalent metal cation-containing compound may be mixed directly with the water-absorbent resin particles as a powder, or may be mixed with a solution, particularly an aqueous solution, or dissolved and mixed in a surface crosslinking agent or an aqueous solution thereof. May be.
  • the amount of the water-soluble polyvalent metal cation-containing compound added is preferably 0.001 to 5 parts by mass in terms of the amount of polyvalent metal cation with respect to 100 parts by mass of the water-absorbing resin particles to be added.
  • the amount is more preferably 0.01 to 2 parts by mass, and still more preferably 0.01 to 1 part by mass.
  • the (mass) ratio is preferably in the range of 1/99 to 99/1, more preferably in the range of 10/90 to 90/10. It is prescribed. Exceeding these ranges is not preferable because it is very close to the same situation as the one-time addition and the effect of the multiple-time addition becomes poor.
  • a hydrophilic organic solvent alcohol or polyglycol
  • a surfactant is used in combination to improve dispersibility, solubility and mixing properties. Also good.
  • the amount of water to be used is appropriately determined depending on the type and addition method of the additive. For example, it is preferably 0 part by mass (dry mixing) to 50 parts by mass, more preferably 100 parts by mass of the water absorbent resin particles. Is 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass.
  • the polyacrylic acid (salt) -based water-absorbent resin particles may contain a surfactant, and the production method of the present invention preferably includes a step of mixing the surfactant in any step.
  • the surface of the water-absorbing resin particles of the present invention is coated with a surfactant to obtain water-absorbing resin particles having a high water absorption rate and high liquid permeability.
  • the surfactant is not particularly limited, but the surfactant disclosed in International Publication No. 97/017397 and US Pat. No. 6,107,358, that is, nonionic surfactant, anionic surfactant, cationic interface. Examples include activators and amphoteric surfactants. These surfactants may be polymerizable or reactive with acrylic acid (salt) monomers or water-absorbing resin particles.
  • the type and amount of the surfactant to be used are appropriately determined. From the viewpoint of surface tension, it is preferably 0 to 0.5 parts by mass, more preferably 0.00001, relative to 100 parts by mass of the water-absorbent resin particles. It is used in the range of ⁇ 0.1 parts by mass, more preferably 0.001 to 0.05 parts by mass.
  • anionic surfactants, nonionic surfactants, or silicone surfactants are preferably used from the viewpoint of effects, and nonionic surfactants or silicone surfactants are used. More preferably.
  • chelating agents especially organophosphorus chelating agents and aminocarboxylic acid chelating agents
  • ⁇ -hydroxycarboxylic acids especially malic acid (salts)
  • a coloring inhibitor or a urine resistance improver selected from inorganic or organic reducing agents (especially sulfur-based inorganic reducing agents).
  • water-absorbing resin particles having a large surface area generally tend to be easily colored or deteriorated.
  • a chelating agent is preferably included from the viewpoint of preventing coloration over time and improving urine resistance.
  • a chelating agent ⁇ -hydroxycarboxylic acid (salt), inorganic or organic reduction is preferable.
  • a preferred embodiment of the present invention includes a chelating agent addition step of adding a chelating agent.
  • chelating agent examples include chelating agents disclosed in US Pat. Nos. 6,599,989, 6,469,080, and European Patent No. 2,163,302, particularly non-polymer chelating agents, organophosphorus chelating agents, and aminocarboxylic acid chelating agents. Agents, inorganic polyvalent phosphoric acid, and amino polyvalent phosphoric acid.
  • Organic phosphorus chelating agents include nitriloacetic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid- ⁇ -propionic acid-methylenephosphonic acid, nitrilotris (methylenephosphonic acid), 1-hydroxy And ethylidene diphosphonic acid.
  • aminocarboxylic acid chelating agents include iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, nitrilo-3-propionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexane.
  • Examples of the inorganic polyvalent phosphoric acid include metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, hexametaphosphoric acid, and salts thereof.
  • aminopolyvalent phosphoric acid examples include ethylenediamine-N, N′-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N′-diacetic acid-N , N'-di (methylenephosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) And salts thereof.
  • the salt include monovalent salts, particularly alkali metal salts such as sodium salts and potassium salts, ammonium salts, and amine salts, and sodium salts and potassium salts are particularly preferable.
  • aminocarboxylic acid chelating agents aminocarboxylic acid chelating agents, amino polyvalent phosphoric acids, and salts thereof are preferably used from the viewpoint of preventing coloring.
  • diethylenetriaminepentaacetic acid triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and salts thereof are more preferably used.
  • ethylenediaminetetra (methylenephosphonic acid) or a salt thereof is most preferable.
  • ⁇ -hydroxycarboxylic acid examples include malic acid (salt), succinic acid (salt), and lactic acid (salt) disclosed in US Patent Application Publication No. 2009/0312183.
  • Examples of the inorganic or organic reducing agent include sulfur-based reducing agents disclosed in US Patent Application Publication No. 2010/0062252 and the like, particularly sulfites and bisulfites.
  • the inorganic reducing agent in the present invention is distinguished from the reducing agent as the polymerization initiator used in the polymerization step. That is, the inorganic reducing agent refers to a compound having a reducing property, as long as it has a reducing inorganic element, and specifically includes a compound having a reducing sulfur atom or a reducing phosphorus atom. And preferably a compound containing a reducing sulfur atom or a water-soluble compound containing a reducing phosphorus atom. Therefore, even if it is an inorganic compound or an organic compound, if it has a reducing sulfur atom or a reducing phosphorus atom, it is regarded as the inorganic reducing agent of the present invention.
  • the inorganic reducing agent may be an acid type, but is preferably a salt type, and the salt is more preferably a monovalent or polyvalent metal salt, and more preferably a monovalent salt.
  • oxygen-containing reducing inorganic compounds listed below that is, inorganic reducing agents in which sulfur or phosphorus is combined with oxygen, among them oxygen-containing reducing inorganic salts are preferable.
  • These inorganic reducing agents may be inorganic reducing agents having a reducing inorganic atom, preferably a reducing sulfur atom or phosphorus atom, in an organic compound such as an alkyl group or a hydroxyalkyl group.
  • the inorganic reducing agent having a reducing sulfur atom or a reducing phosphorus atom used in the present invention the most stable oxidation number of the sulfur atom is +6 (positive hexavalent), and the oxidation of the phosphorus atom.
  • the number is +5 (positive pentavalent), but generally, each atom having an oxidation number of less than that has reducibility, and a + 4-valent sulfur compound (for example, sulfite, bisulfite, pyrosulfite), + Trivalent sulfur compounds (e.g. dithionite), + divalent sulfur compounds (e.g. sulfoxylate), + tetravalent phosphorus compounds (e.g.
  • hypophosphate + trivalent phosphorus compounds (e.g. suboxide) Phosphates, pyrophosphites), +1 valent phosphorus compounds (eg hypophosphites) are used.
  • the reducing sulfur atom or the reducing phosphorus atom may be substituted with an organic substance.
  • the inorganic compound containing a sulfur atom which is an inorganic reducing agent, is not particularly limited, but examples thereof include sulfites such as sodium sulfite, potassium sulfite, calcium sulfite, zinc sulfite, and ammonium sulfite; Bisulfites such as calcium hydrogen and ammonium bisulfite; pyrosulfites such as sodium pyrosulfite, potassium pyrosulfite and ammonium pyrosulfite; sodium dithionite, potassium dithionite, ammonium dithionite, dithione Dithionites such as calcium oxide and zinc dithionite; Trithionates such as potassium trithionate and sodium trithionate; Tethionates such as potassium tetrathionate and sodium tetrathionate; Thiosulfate Sodium, potassium thiosulfate, ammonium thiosulfate Thiosulfates such beam; sodium nit
  • Examples of the organic compound containing a sulfur atom as an inorganic reducing agent include 2-hydroxy-2-sulfinate acetic acid, sodium formaldehydesulfoxylate, formamidinesulfinic acid, and tris (2-carboxyethyl) phosphine thioglycolate.
  • Examples include hydrochloride (TCEP) and tributylphosphine (TBP).
  • TCEP hydrochloride
  • TBP tributylphosphine
  • sulfites, hydrogen sulfites, pyrosulfites, and dithionites are preferred.
  • Sodium sulfite, sodium hydrogen sulfite, potassium pyrosulfite, sodium dithionite, 2-hydroxy-2-sulfinate acetate, -Hydroxy-2-sulfonatoacetic acid and / or salts thereof are more preferred.
  • Preferred salts are alkali metal and alkaline earth metal salts, with Li, Na and K being preferred, and sodium salt being particularly preferred.
  • 2-Hydroxy-2-sulfinate acetic acid (salt) may be used in combination with 2-hydroxy-2-sulfonatoacetic acid (salt).
  • 2-hydroxy-2-sulfinate acetic acid is an inorganic reducing agent of the present invention because it has a reducing sulfur atom as a sulfinate group, and BRUGGOLITE (available from Brueggemann Chemical, Heilbron, Germany) R) FF7, available from 50-60 wt% 2-hydroxy-2-sulfinate acetic acid disodium salt, 30-35 wt% sodium sulfite (Na 2 SO 3 ) and 2-hydroxy-2-sulfonate It can be obtained as BRUGGOLITE® FF6 containing 10-15% by weight of disodium acetate.
  • the phosphorus compound includes an organic phosphorus compound or an inorganic phosphorus compound, preferably a water-soluble phosphorus compound. Furthermore, an inorganic phosphorus compound is preferable from the viewpoint of the physical properties of the obtained water-absorbing agent, for example, the water absorption capacity under pressure, and particularly the suppression of a decrease in surface tension.
  • Particularly preferred phosphorus compounds are water-soluble inorganic phosphorus compounds.
  • particularly preferable compounds are phosphoric acid (salt) having no reducing property from the viewpoint of the water absorption property of the water-absorbing agent.
  • Preferred salts include water-soluble monovalent salts, that is, alkali metal salts such as sodium salts and potassium salts, ammonium salts, and amine salts.
  • the salts from the viewpoint of the effect of preventing coloration with time, it is most preferable to exhibit an acidity of pH 7 or lower.
  • the above phosphorus compounds may be used alone or in combination of two or more.
  • the amount of the coloring inhibitor or urine resistance improver used is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 part by mass, and more preferably 0.05 to 0. 5 parts by mass is particularly preferred.
  • the anti-coloring agent or urine resistance (weather resistance) improver can be added to the monomer, water-containing gel, dry polymer, water-absorbing resin particles, etc., but is preferably added after the polymerization step.
  • the inorganic or organic reducing agent is consumed in the polymerization step, it is preferably added after the polymerization step, further after the drying step, particularly at least partly after the surface crosslinking step.
  • an anti-coloring agent or a urine resistance (weather resistance) improver is added in the step (2-1) of preparing the acrylic acid (salt) monomer aqueous solution.
  • each additive in a water-absorbing agent is a residual monomer and a water-soluble component.
  • water can be extracted from the water-absorbing agent with physiological saline and quantified appropriately by liquid chromatography, ion chromatography, or the like.
  • a water-absorbing agent containing a chelating agent As described above, it is preferable to use a water-absorbing agent containing a chelating agent.
  • the chelating agent is (2-1) the step of preparing the acrylic acid (salt) monomer aqueous solution, or (2 -2) It is preferably added in the aqueous solution polymerization step, and more preferably added to the acrylic acid (salt) monomer aqueous solution at least in step (2-1).
  • the addition amount of the chelating agent is preferably 0.1 to 3.0% by mass with respect to the acrylic acid (salt) monomer.
  • Addition of chelating agent, inorganic reducing agent, ⁇ -hydroxycarboxylic acid and phosphorus compound does not require a solvent and may be added directly to the water-absorbent resin particles after surface cross-linking. (Dry blend).
  • the compound is preferably added as a solution, more preferably as an aqueous solution or an aqueous solution.
  • water, the mixed solvent of an organic solvent, and water are used for a solvent.
  • the amount is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 30 parts by weight, and still more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-absorbent resin particles.
  • the concentration of the aqueous solution is preferably about 1 to 50% by mass. Further, a surfactant or the like may be used if necessary.
  • the solvent may be dried if necessary.
  • Water-soluble polysiloxanes described in International Publication No. 2009/093708 and primary to tertiary amine compounds described in International Publication No. 2008/108343 are also preferably used as additives. I can do it.
  • the water-absorbing resin particles to which the water-insoluble inorganic particles are added may be surface-crosslinked or may not be surface-crosslinked.
  • the water-insoluble inorganic particles may be mixed with a water-absorbing agent particle (hereinafter referred to as “water-absorbing agent”) containing water-absorbing resin particles or other additives.
  • water-absorbing agent a water-absorbing agent particle
  • the mixing of the water-insoluble inorganic particles may be performed by mixing the water-absorbing resin particles or the water-absorbing agent, the water-insoluble inorganic particles, and the hydrophilic fibers when the absorbent article is manufactured as described later.
  • the step of mixing the water-absorbing resin particles and the water-insoluble inorganic particles is a step of manufacturing the absorbent body by mixing the water-absorbing resin particles, the water-insoluble inorganic particles, and the hydrophilic fibers.
  • the water absorbent resin particles or the water absorbent may be referred to as “water absorbent resin particles / water absorbent”.
  • Addition of water-insoluble inorganic particles ensures the fluidity of the water-absorbent resin particles / water-absorbing agent used in the absorbent article. Moreover, the absorption amount of an absorbent article can be improved by adding water-insoluble inorganic particles.
  • the water-absorbent resin particles / water-absorbing agent may lose fluidity when producing absorbent articles by storage after production.
  • Such water-absorbing resin particles / water-absorbing agent that have lost its fluidity are mixed with water-insoluble inorganic particles, preferably by forming an absorbent body, while maintaining the performance of the water-absorbing resin particles / water-absorbing agent. Since the fluidity of the agent is restored, productivity is improved.
  • the water-insoluble inorganic particles may be added immediately after the production of the water-absorbing resin particles / water-absorbing agent, or the water-absorbing resin particles / water-absorbing agent may be added after storage for a certain period.
  • water-absorbing resin particles / water-absorbing agent As the water-absorbing resin particles / water-absorbing agent to be added, water-absorbing resin particles / water-absorbing agent having a 2000 ⁇ m sieve transmittance after moisture absorption of 50% by mass or less (lower limit 0% by mass) is preferably used.
  • water-insoluble inorganic particles By adding water-insoluble inorganic particles to such water-absorbing resin particles / water-absorbing agent, the fluidity of the water-absorbing resin particles / water-absorbing agent is not easily lowered even when stored in a moisture-absorbing environment such as high humidity conditions. .
  • the water-absorbent resin particles / water-absorbing agent having a 2000 ⁇ m sieve permeability after moisture absorption exceeding 50% by mass is difficult to obtain the effects of the present invention.
  • the 2000 ⁇ m sieve transmittance after moisture absorption of the water absorbent resin particles / water absorbent is preferably 30% by mass or less, more preferably 15% by mass or less.
  • the water-absorbing resin particles / water-absorbing agent that has lost its fluidity are mixed with water-insoluble inorganic particles, and an absorbent body is preferably formed, so that the water-absorbing property is maintained while maintaining the performance.
  • the fluidity of the resin particles / water absorbent can be recovered.
  • the suitable addition time of the water-insoluble inorganic particles is, for example, a form in which the water-insoluble inorganic particles are added in a state where the water-absorbing resin particles / water-absorbing agent absorbs moisture after storage for a certain period of time.
  • the moisture absorption state of the water-absorbent resin particles / water-absorbing agent can be determined using a sieve transmittance of 2000 ⁇ m as an index.
  • One preferred embodiment of the present invention is a form in which water-insoluble particles are mixed with water-absorbing resin particles / water-absorbing agent having a 2000 ⁇ m sieve permeability of preferably 50% by mass or less (lower limit 0% by mass).
  • the 2000 ⁇ m sieve permeability of the water-absorbing agent is more preferably 30% by mass or less, and further preferably 15% by mass or less.
  • the 2000 ⁇ m sieve transmittance and the 2000 ⁇ m sieve transmittance after moisture absorption are values measured by the methods described in the following examples.
  • the water-absorbent resin particles and the water-absorbing agent have a mass average particle size (D50) and a particle size distribution from the viewpoint of improving water absorption performance. Is preferably controlled. Even if the mass average particle size (D50) and the particle size distribution are controlled within a suitable range, for example, the particle size distribution is shifted to the larger particle size distribution due to moisture absorption during storage. By adding water-insoluble inorganic particles to the water-absorbing resin particles / water-absorbing agent shifted to the larger particle size distribution, the fluidity lost due to the coarsening of the particle diameter can be recovered.
  • a step of obtaining water-absorbing resin particles or a water-absorbing agent having a particle diameter of 95% by mass or more and a particle size of 150 ⁇ m or more and less than 850 ⁇ m, and a 2000 ⁇ m sieve permeability with time is obtained. It is a manufacturing method of an absorptive article which has the process of mixing the water-absorbent resin particles or water-absorbing agent which became 50 mass% or less, and water-insoluble inorganic particles.
  • the time elapsed in “time elapsed” is not uniquely determined because it largely varies depending on the humidity in the storage environment, for example.
  • the 2000 ⁇ m sieve transmittance of the mixture of the water-absorbent resin particles or water-absorbing agent and the water-insoluble inorganic particles is preferably more than 50% by mass, more preferably 75% by mass or more, More preferably, it is 80 mass% or more.
  • the present invention also provides a method for recovering the fluidity of water-absorbing resin particles or a water-absorbing agent, comprising mixing water-absorbing resin particles or a water-absorbing agent having a 2000 ⁇ m sieve permeability decrease with time and water-insoluble inorganic particles. .
  • the water-absorbing resin particles or the water-absorbing agent before adding the water-insoluble inorganic particles has a 2000 ⁇ m sieve transmittance, and the water-absorbing resin particles or the water-absorbing agent and the water-insoluble inorganic particles after the water-insoluble inorganic particles are added.
  • the latter is preferably 20% by mass or more, preferably 30% by mass or more, and preferably 50% by mass or more.
  • Water-insoluble inorganic particles include multi-component metal compounds such as hydrotalcite, silicon dioxide (silica), titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, metal phosphates (for example, calcium phosphates such as tricalcium phosphate , Barium phosphate, aluminum phosphate), metal borates (eg, titanium borate, aluminum borate, iron borate, magnesium borate, manganese borate, calcium borate), silicic acid or salts thereof, clay, diatomaceous earth, Zeolite, bentonite, kaolin, activated clay and the like can be mentioned.
  • metal compounds such as hydrotalcite, silicon dioxide (silica), titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc
  • metal phosphates for example, calcium phosphates such as tricalcium phosphate , Barium phosphate, aluminum phosphate
  • metal borates eg, titanium borate, aluminum borate, iron borate, magnesium borate, manganese borate, calcium borate
  • the water-insoluble inorganic particles preferably contain at least one selected from a multi-component metal compound, silicon dioxide, talc, and tricalcium phosphate because the effects of the present invention are remarkably obtained, and water absorption performance is maintained.
  • the fluidity of the water-absorbing water-absorbing resin particles or the water-absorbing agent is more recovered, and therefore it is more preferable to include at least one selected from multi-component metal compounds, tricalcium phosphate, and silicon dioxide, and multi-component metal compounds. More preferably.
  • the volume average particle diameter of the water-insoluble inorganic particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the volume average particle size is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.3 ⁇ m or more. By being more than the said minimum, the fall of workability
  • the volume average particle diameter of the water-insoluble inorganic particles can be measured by a “laser diffraction scattering method” (for example, measured by Nikkiso Co., Ltd., trade name: Microtrac MT3000II particle size analyzer).
  • the surface treatment of the water-insoluble inorganic particles may be performed.
  • Specific examples of the surface treatment agent for the surface treatment include the following multi-metal compound surface treatment agents.
  • water-insoluble inorganic particles can also be used.
  • examples of the silica include Aerosil 50, Aerosil 200, Aerosil 200CF (all manufactured by Nippon Aerosil Co., Ltd.), and the like.
  • examples of the talc include, for example, MAICRO ACE series SG-95, SG-2000, NANO ACE series D-1000. , D-800, D-600 (all manufactured by Nippon Talc Co., Ltd.) and the like.
  • the multi-component metal compound is a multi-component metal compound containing two kinds of bivalent and trivalent metal cations and a hydroxyl group.
  • the divalent metal cation examples include Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Ni 2+ , Co 2+ and Cu 2+ , and Mg 2+ is preferable from the viewpoint of heat resistance and the like.
  • the trivalent metal cation examples include Al 3+ , Fe 3+ and Mn 3+ , and Al 3+ is preferable from the viewpoint of heat resistance and the like. Accordingly, in a preferred embodiment of the multi-component metal compound, the divalent metal cation is a magnesium cation and the trivalent metal cation is an aluminum cation.
  • the multi-component metal compound has the general formula (1) [M 1 2+ 1-x M 2 3+ x (OH ⁇ ) 2 ] x + ⁇ [(A n ⁇ ) x / n ⁇ mH 2 O] x ⁇ (M 1 2+ is divalent metal cation, M 2 3+ is a trivalent metal cation, a n-hydrotalcite which n-valent anion, H 2 O is known as the structure of the lamellar compound represented by representing the water) It is preferable to have such a structure.
  • x is preferably in the range of 0.2 to 0.75, more preferably in the range of 0.25 to 0.7. A range of 0.25 to 0.5 is more preferable.
  • the anion include OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , NO 3 ⁇ , CO 3 2 ⁇ , SO 4 2 ⁇ , Fe (CN) 6 3 ⁇ , CH 3 COO ⁇ , oxalate ion or Examples thereof include salicinate ions, but carbonate anions are preferred.
  • M is a real number larger than 0, and preferably 0 ⁇ m ⁇ 10.
  • the shape of the multi-component metal compound is not particularly limited, but is preferably spherical (including powder).
  • the multi-component metal compound preferably has a constant particle size, and the volume average particle size is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the volume average particle size is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the measurement of the average particle diameter of the multi-component metal compound adhering to the surface of the water-absorbent resin particles can be performed by a measuring method using SEM (scanning electron microscope).
  • an organic compound may be intercalated between the layers, and a surface treatment may be performed to improve the mixing property with the water-absorbent resin particles.
  • Preferred structural formulas of the multi-element metal compound include Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, Mg 4 Al 2 (OH) 12 CO 3 .3H 2 O, and the like.
  • Specific examples include DHT-4H and DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd., STABIACE HT-1-NC and STABIACE HT-P manufactured by Sakai Chemical Industry Co., Ltd.
  • the multi-component metal compound may or may not be surface-treated, but a multi-component metal compound that is not surface-treated is more preferable.
  • Specific examples of the surface treatment agent used for the surface treatment include the following (a) to (j).
  • (C) Higher alcohol sulfates such as stearyl alcohol and oleyl alcohol, polyethylene glycol ether sulfates, amide bond sulfates, ether bond sulfonates, ester bond sulfonates, amide bond alkylaryl sulfonates, ethers Anionic surfactants such as bonded alkylaryl sulfonates.
  • Silane coupling agents such as vinylethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, and ⁇ -aminopropyltrimethoxysilane.
  • Titanium coupling agents such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tridecylbenzenesulfonyl titanate, and the like.
  • Alkaline coupling agents such as acetoalkoxyaluminum diisopropylate.
  • Ethanolamines such as monoethanolamine, diethanolamine or triethanolamine.
  • n-propanolamines such as n-propanolamine, di-n-propanolamine or tri-n-propanolamine.
  • Isopropanolamines such as monoisopropanolamine, diisopropanolamine or triisopropanolamine.
  • ethanolamines such as monoethanolamine, diethanolamine and triethanolamine are preferred.
  • the addition amount of the water-insoluble inorganic particles in the present invention improves the absorption amount of the absorbent article and is excellent in the balance between the absorption amount and the return amount, with respect to 100% by mass of the water-absorbent resin particles.
  • the content is 0.01 mass% or more and less than 10 mass%, preferably 0.1 to 5 mass%.
  • the addition amount of the water-insoluble inorganic particles is preferably 0.1 to 5% by mass, more preferably 0.1 to 4.5% by mass with respect to 100% by mass of the water-absorbing resin particles. More preferably, the content is 0.1 to 4% by mass, and particularly preferably 0.15 to 3.5% by mass.
  • the mixing method of the water-insoluble inorganic particles and the water-absorbing resin particles / water-absorbing agent is not particularly limited, but dry mixing is preferable.
  • the “dry mixing” means mixing in a state where there is no liquid substance other than the liquid substance absorbed or retained by the water-insoluble inorganic particles and the water-absorbing resin particles used in this step. Specifically, the liquid substance is further added to the water-insoluble inorganic particles and the water-absorbent resin particles having the drying residue, moisture absorption moisture, the surface cross-linking agent or the solvent added in the surface cross-linking agent addition step, and the like. The form which mixes without is included.
  • a method of stirring and mixing at a rotational speed of 300 rpm for about 30 seconds to 1 minute using a Redige mixer or a method of stirring and mixing at a rotational speed of 60 rpm for 20 minutes to 1 hour using a paddle type stirring device can be used.
  • a method of mixing while applying vibration or a method of adding water-absorbing resin particles while stirring may be used.
  • the absorbent article is not particularly limited, and preferably includes a paper diaper, a sanitary napkin, a so-called incontinence pad, and the like.
  • the absorbent article is preferably a high-concentration paper diaper (one paper diaper using a large amount of water-absorbing resin particles or water-absorbing agent).
  • the absorbent article preferably includes an absorber, and may further include a top sheet having liquid permeability and a back sheet having liquid impermeability.
  • the liquid-permeable sheet (hereinafter referred to as a liquid-permeable sheet) is made of a material having a property of transmitting an aqueous liquid. Examples of the material of the liquid permeable sheet include nonwoven fabrics, woven fabrics, and porous synthetic resin films made of polyethylene, polypropylene, polyester, polyamide, and the like.
  • the liquid-impermeable sheet (hereinafter referred to as a liquid-impermeable sheet) is made of a material having a property of not transmitting an aqueous liquid.
  • liquid-impermeable sheet examples include synthetic resin films made of polyethylene, polypropylene, ethylene vinyl acetate, polyvinyl chloride, etc .; films made of composite materials of these synthetic resins and nonwoven fabrics; And a film made of a composite material. Note that the liquid-impermeable sheet may have a property of allowing vapor to pass therethrough.
  • the absorber is a member that absorbs an aqueous liquid such as a body fluid among members constituting the absorbent article. More preferably, the absorbent body includes water-absorbing resin particles or water-absorbing agent and water-insoluble inorganic particles, and is obtained by mixing water-absorbing resin particles or water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers.
  • Water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles are powders.
  • An absorbent body can be obtained by molding such powdery water absorbent resin particles / water absorbent and water-insoluble inorganic particles together with any other absorbent material.
  • the shape of the absorber is not particularly limited, but is preferably processed into a sheet shape, a cylindrical shape, a film shape, and a fiber shape, and more preferably a sheet shape (also called a web shape).
  • hydrophilic materials include hydrophilic fibers.
  • the hydrophilic fiber can carry the water-absorbing resin particles / water-absorbing agent, and can also serve to prevent gel blocking that prevents water-permeable resin particles / water-absorbing agents from contacting each other. Is preferable.
  • the structure of the absorber includes, for example, water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and Structure in which hydrophilic fibers are uniformly mixed; water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are uniformly mixed to form a layer, and the layered hydrophilic fibers are laminated thereon Structure: Water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are uniformly mixed to form a layer, and the water-absorbing resin particles / water-absorbing agent are formed between the layered hydrophilic fibers.
  • the structure etc. which were pinched are mentioned.
  • a configuration in which water-absorbing resin particles / water-absorbing agent are sandwiched between hydrophilic fibers formed in layers may be used.
  • the absorbent body may be formed in a sheet shape by blending a specific amount of water with the water-absorbing resin particles / water-absorbing agent and the water-insoluble inorganic particles.
  • the structure of an absorber is not limited to said structure.
  • the mixing step of the water-absorbing resin particles / water-absorbing agent and the water-insoluble inorganic particles may be performed at the same time as the mixing step with the hydrophilic fibers.
  • the water-absorbing resin particles / water-absorbing agent absorbs moisture by storage or the like before manufacturing the absorber
  • the water-absorbing resin particles / The fluidity can be recovered while maintaining the water absorption performance of the water absorbing agent, and the productivity is improved. That is, one embodiment of the method for producing an absorbent article of the present invention includes a step of producing an absorbent body by mixing water-absorbing resin particles or a water-absorbing agent, water-insoluble inorganic particles, and hydrophilic fibers.
  • the mixing method is not particularly limited.
  • a form in which fibers are added and mixed, or a form in which water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are added and mixed together is preferable.
  • the hydrophilic fiber is not particularly limited, and examples thereof include pulverized wood pulp, cotton linter, crosslinked cellulose fiber, rayon, cotton, wool, acetate, and vinylon.
  • the absorbent body that is, the hydrophilic fibers may be bonded using an adhesive binder.
  • the adhesive binder include heat-bonded fibers such as polyolefin fibers such as polyethylene, polypropylene, ethylene-propylene copolymer, and 1-butene-ethylene copolymer, and adhesive emulsions. These adhesive binders may be used alone or in combination of two or more.
  • the mass ratio between the hydrophilic fiber and the adhesive binder is preferably within the range of 50/50 to 99/1, more preferably within the range of 70/30 to 95/5, and within the range of 80/20 to 95/5. Is more preferable.
  • the content (core concentration) of the water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles in the absorber is preferably in the range of 20 to 100% by mass. That is, a preferred embodiment of the present invention includes a step of producing an absorbent body by mixing water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles, and pulp. In the method for producing an absorbent article, the total amount (core concentration) of the resin particles / water-absorbing agent and water-insoluble inorganic particles is preferably 20 to 100% by mass. More preferably, it is 25 mass% or more, More preferably, it is 30 mass% or more. By being in such a range, the absorption performance and flow characteristics of the absorber are maintained.
  • the upper limit of the content (core concentration) of the water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles is preferably 100% by mass, for example, when the hydrophilic fibers are included,
  • the upper limit is preferably 90% by mass or less, and preferably 80% by mass or less.
  • the ratio of the water-insoluble inorganic particles to 100% by mass of the water-absorbent resin particles is 0.01% by mass or more and less than 10% by mass.
  • the content of the water-insoluble inorganic particles with respect to 100% by mass of the water-absorbent resin particles is preferably 1 to 5% by mass, and more preferably 1 to 3% by mass.
  • the amount of the water-insoluble inorganic particles in the absorbent body is not particularly limited, but is usually about 0.1 to 10% by mass, and the absorption amount of the absorbent article is further improved. Since the amount of return becomes smaller, it is preferably 0.1 to 5% by mass.
  • the method for producing such an absorber is not particularly limited.
  • water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are dry-mixed using a mixer such as a mixer, and the resulting mixture is For example, after forming into a web form by air papermaking etc., the method of compressing and manufacturing as needed is mentioned.
  • An absorbent body has a density 0.001 ⁇ 0.50g / cm 3, more preferably 0.001 ⁇ 0.05g / cm 3, a basis weight of 0.01 ⁇ 0.20 g / cm 2, more preferably 0.01 It is preferably compression molded in a range of ⁇ 0.15 g / cm 2 .
  • the method for producing the final absorbent article is not particularly limited.
  • the absorbent body is composed of a liquid-permeable base material (surface sheet) and a liquid-impermeable base material (back sheet). It is sufficient to make an absorbent article, for example, a paper diaper or a sanitary napkin, by sandwiching, and if necessary, equipped with an elastic member, a diffusion layer, an adhesive tape or the like.
  • the water-absorbent resin particles and the water-absorbing agent preferably have a predetermined AAP.
  • the water absorption capacity (AAP) with respect to a 0.9% by mass sodium chloride aqueous solution under a pressure of 2.06 kPa is preferably 20 g / g or more, more preferably 25 g / g. g or more, more preferably 30 g / g or more.
  • AAP is so preferable that it is high, from a viewpoint of balance with other physical properties (for example, CRC), as an upper limit, Preferably it is 50 g / g or less, More preferably, it is 40 g / g or less, More preferably, it is 35 g / g or less, Most preferably, it is 33 g / g or less.
  • AAP can be controlled by surface crosslinking and CRC.
  • the water-absorbing resin particles and the water-absorbing agent of the present invention preferably have a water absorption capacity (AAP) of 20 g / g or more with respect to a 0.9% by mass sodium chloride aqueous solution under a pressure of 2.06 kPa. .
  • AAP water absorption capacity
  • the water absorption capacity (CRC) of the water-absorbing resin particles and the water-absorbing agent is preferably 25 g / g or more, more preferably 30 g / g or more, and still more preferably 33 g / g or more. If the water absorption capacity under no pressure is low, the efficiency when used for absorbent articles such as paper diapers is deteriorated.
  • CRC is so preferable that it is high, from a viewpoint of balance with other physical properties (for example, AAP), as an upper limit, Preferably it is 60 g / g or less, More preferably, it is 50 g / g or less, More preferably, it is 45 g / g or less. Is done.
  • the CRC can be controlled by the crosslinking density during polymerization or surface crosslinking.
  • the solid content of the water-absorbent resin particles and the water-absorbing agent is a value calculated by the method described in the examples, preferably 85 to 99% by mass, more preferably 88 to 98% by mass, More preferably, it is 90 to 95% by mass.
  • the solid content is less than 85% by weight, the water absorption capacity under no pressure and the water absorption capacity under pressure are lowered, which is not preferable.
  • the solid content is higher than 98% by weight, the reduction in water absorption under pressure due to mechanical damage due to conveyance or the like is large, which is not preferable.
  • the upper limit of the particle diameter is less than 1 mm, and it is preferable to obtain water-absorbing resin particles and a water-absorbing agent with the following particle diameter.
  • the coarse particles not only cause discomfort to the wearer when used in a thin absorbent article, but also the water content of the absorbent article.
  • a permeable material, a so-called back sheet, is damaged due to scratches, which may cause leakage of urine or the like in actual use, which is not preferable.
  • the number of particles of 850 ⁇ m or more is smaller, preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 1% by mass, and particularly preferably substantially free of particles. .
  • the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 0 to 3% by mass, more preferably 0 to 2% by mass, and further preferably 0 to 1.5% by mass. preferable.
  • water-absorbing resin particles and water-absorbing agent fine particles dust tends to increase, moisture-absorbing fluidity decreases, and physical properties such as AAP and liquid permeability tend to decrease.
  • the particle size distribution of the water-absorbent resin particles and the water-absorbing agent is preferably included in a range of 150 ⁇ m or more and less than 850 ⁇ m, and preferably 95% by mass or more, and 98% by mass or more. More preferably, 99% by mass or more is further included, and it is most preferable that substantially the entire amount is included in the range.
  • the water-absorbent resin particles and the water-absorbing agent that have undergone the above-described steps preferably have a mass average particle diameter (D50) defined by standard sieve classification of 600 ⁇ m or less, and 550 to 200 ⁇ m for improving performance. Is more preferably in the range of 500 to 250 ⁇ m, and most preferably in the range of 450 to 300 ⁇ m.
  • the proportion of particles having a particle size of less than 300 ⁇ m is preferably 10% by mass or more, more preferably in the range of 10 to 50% by mass, and still more preferably in the range of 10 to 30% by mass. .
  • the particle size can be appropriately controlled by performing pulverization and classification (before and / or after the surface cross-linking step), granulation, the fine powder collecting step, and the like.
  • the shape of the water-absorbing resin particles and the water-absorbing agent is not particularly limited, and examples thereof include a sheet shape, a fiber shape, a powder shape, a gel shape, and the like. It is preferably in the form of particles.
  • the “indefinite shape” refers to the shape of particles obtained by pulverizing a hydrogel or a dry polymer. The particles may be a granulated product or primary particles.
  • CRC Water absorption capacity without pressure
  • the CRC of the water-absorbing resin particles and the water-absorbing agent is based on ERT441.2-0.2 and is 0.90% by mass sodium chloride aqueous solution (hereinafter sometimes referred to as “physiological saline”).
  • the water absorption capacity (CRC) (unit: g / g) for 30 minutes was determined under no pressure.
  • AAP Water absorption capacity under pressure
  • AAP water absorption capacity under pressure
  • AAP (g / g) (W5-W4) / W3 (5-3) 2000 ⁇ m sieve passage rate
  • Water-absorbent resin particles or water-absorbing agent (hereinafter referred to as “powder” in (5-3) and (5-4)) is a JIS standard sieve having an opening of 2000 ⁇ m (JIS Z8801-1 (2000)), record the amount of powder remaining on the sieve and the amount of powder that has passed through the sieve, and determine the ratio of the powder that has passed through the sieve to the total mass of 100% by mass. , 2000 ⁇ m sieve passage rate (unit: mass%).
  • the obtained moisture-absorbed powder is dropped onto a JIS standard sieve (JIS Z8801-1 (2000)) having an opening of 2000 ⁇ m, and the amount of powder remaining on the sieve and the powder passing through the sieve is recorded.
  • the ratio of the powder that passed through the sieve with respect to 100% by mass of the total amount of the powder was determined and used as the passing rate of 2000 ⁇ m sieve after moisture absorption (unit: mass%).
  • the monomer aqueous solution (a) is charged into a reactor having a lid on a double-armed jacketed stainless steel kneader having two sigma type blades with an internal volume of 10 L, and the liquid temperature is set to 30 ° C. While maintaining, nitrogen gas was blown into the reactor, and nitrogen substitution was performed so that the dissolved oxygen in the system was 1 ppm or less.
  • hydrogel crosslinked polymer (a) was polymerized at 30 to 90 ° C. while pulverizing the gel, and after 60 minutes from the start of polymerization, the hydrogel crosslinked polymer (a) was taken out from the reactor.
  • the obtained hydrogel crosslinked polymer (a) had a diameter of about 5 mm.
  • the finely divided hydrogel crosslinked polymer (a) is spread on a wire mesh having an opening of 300 ⁇ m (50 mesh), dried with hot air at 180 ° C. for 45 minutes, pulverized with a roll mill, and further has an opening of 850 ⁇ m. Classification was performed with a 150 ⁇ m JIS standard sieve. By this series of operations, water-absorbing resin particles (a) which are irregularly crushed water-absorbing resins (solid content: 4.0% by mass) were obtained.
  • the water-absorbent resin particles (a) had a CRC (water absorption capacity under no pressure) of 53.0 g / g.
  • the water-absorbent resin particles (a) were transferred to a rotary mixer manufactured by Ledige, Germany, and 100 parts by mass of the water-absorbent resin particles (a) were mixed with ethylene glycol diglycidyl ether (trade name; Denacol EX-810 / Nagase). From Chemtex Co., Ltd.) 0.025 parts by mass, ethylene carbonate (melting point 36 ° C.) 0.3 parts by mass, 1,2-propanediol (melting point ⁇ 59 ° C.) 0.5 parts by mass, and water 3.0 parts by mass The resulting surface cross-linking agent aqueous solution (a) was uniformly mixed and heat-treated at 175 ° C. for 40 minutes.
  • the particle size was adjusted by passing through a JIS standard sieve having an opening of 850 ⁇ m to obtain water-absorbing resin particles (surface-crosslinked water-absorbing resin) (a-1) having a cross-linked surface.
  • the water-absorbent resin particles (a-1) were indefinite, and the proportion of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was 95% by mass or more.
  • a solution (II) was prepared by mixing 247 g of a 48.5 mass% aqueous sodium hydroxide solution and 255 g of ion-exchanged water adjusted to 50 ° C. Subsequently, using a magnetic stirrer having a length of 5 cm, 800 r. p. m.
  • the monomer aqueous solution (b) was obtained by quickly adding and mixing the solution (II) to the solution (I) stirred in step (b).
  • the aqueous monomer solution (b) rose to about 100 ° C. due to heat of neutralization and heat of dissolution.
  • the neutralization rate of acrylic acid was 73.5 mol%.
  • hydrogel crosslinked polymer (b) was gel pulverized with a meat chopper (MEAT-CHOPER TYPE: 12VR-400KSOX Iizuka Kogyo Co., Ltd., die hole diameter: 6.4 mm, hole number: 38, die thickness: 8 mm). As a result, a finely divided particulate hydrous gel (b) was obtained (mass average particle diameter; 1000 ⁇ m).
  • This finely divided particulate hydrous gel (b) is spread on a 50 mesh (mesh opening 300 ⁇ m) wire mesh, dried with hot air at 180 ° C., the dried polymer (b) is pulverized with a roll mill, and further opened with a mesh opening 850 ⁇ m. And a JIS standard sieve having a mesh size of 150 ⁇ m, water-absorbent resin particles (b) which are irregularly crushed water-absorbent resins (solid content 96 mass%) were obtained.
  • the water absorbent resin particles (b) had a CRC (water absorption capacity under no pressure) of 47.3 g / g.
  • the water-absorbent resin particles (b) were transferred to a rotary mixer manufactured by Ledige, Germany, and 0.015 parts by mass of ethylene glycol diglycidyl ether and propylene glycol 1 with respect to 100 parts by mass of the water-absorbent resin particles (b).
  • a surface cross-linking agent aqueous solution (b) consisting of 0.0 part by mass and 3.0 parts by mass of water was uniformly mixed and heat-treated at 100 ° C. for 45 minutes. Thereafter, the particle size was adjusted by passing through a JIS standard sieve having an opening of 850 ⁇ m to obtain water-absorbing resin particles (surface-crosslinked water-absorbing resin) (b-1) having a cross-linked surface.
  • the water-absorbent resin particles (b-1) were indefinite, and the proportion of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m was 95% by mass or more.
  • the water absorbent resin particles (a-1) described in Production Example 1 were subjected to moisture absorption treatment under the following conditions. That is, about 30 g of the water-absorbing resin particles (a-1) were uniformly spread on a cabinet-size SUS bat (size: 170 mm ⁇ 210 mm ⁇ 30 mm), and the temperature was set at 25 ° C. using a small environmental tester SH-641 manufactured by ESPEC. Moisture absorption was performed for 30 minutes under the conditions of ° C. and relative humidity of 90% RH. Using the water-absorbent resin particles (a-1) after moisture absorption, the passing rate of 2000 ⁇ m sieve was measured. Table 1 shows the physical properties of the water-absorbent resin particles (a-1) and the passing rate of 2000 ⁇ m after the moisture absorption treatment.
  • the water absorption resin particles (b-1) described in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1. Using the water-absorbent resin particles (b-1) after moisture absorption, the passing rate of 2000 ⁇ m sieve was measured. Table 1 shows the physical properties of the water-absorbent resin particles (b-1) and the passing rate of 2000 ⁇ m after the moisture absorption treatment.
  • Example 1-1 100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles.
  • DHT hydrotalcite
  • Table 1 shows the 2000 ⁇ m sieve passing rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passing particles (the physical properties of the 2000 ⁇ m sieve passing particles are the columns of physical properties after addition of moisture-absorbing / water-insoluble inorganic particles in Table 1).
  • the physical properties (CRC, AAP) of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the physical properties before moisture absorption column of Table 1.
  • Example 1-2 100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles. -6, manufactured by Kyowa Chemical Industry Co., Ltd.) 1.0 part by mass was mixed in the same manner as in Example 1-1.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-3 100 parts by weight of the water-absorbent resin particles (b-1) obtained in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and silica (product name: Aerosil 200CF, 0.3 parts by mass of Nippon Aerosil Co., Ltd. was mixed in the same manner as in Example 1-1.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (b-1) obtained in Production Example 2 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-4 100 parts by mass of the water-absorbing resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and tricalcium phosphate (Wako Pure Chemical Industries) as water-insoluble inorganic particles. 1.0 part by mass of Kogyo Co., Ltd., CAS No. 7758-87-4) was mixed in the same manner as in Example 1-1.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-5 100 parts by mass of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: HT) as water-insoluble inorganic particles.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-6 100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-7 100 parts by mass of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: HT) as water-insoluble inorganic particles.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
  • Example 1-8 100 parts by weight of the water-absorbent resin particles (b-1) obtained in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and talc (product name: SG-2000) as water-insoluble inorganic particles. (Manufactured by Nippon Talc Co., Ltd.) was mixed in the same manner as in Example 1-1.
  • Table 1 shows the 2000 ⁇ m sieve passage rate of the obtained mixture and the physical properties of the 2000 ⁇ m sieve passed particles.
  • the physical properties of the water absorbent resin particles (b-1) obtained in Production Example 1 are shown in the physical properties before moisture absorption column of Table 1.
  • Example 2-1 40.0 parts by mass of pulverized wood pulp, 58.2 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 1 .8 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b, to obtain Model Absorbers (a-1) and (b-1). The total return amount was evaluated using the model absorber (a-1), and the absorption amount was evaluated using the model absorber (b-1). The obtained evaluation results are shown in Table 2-2.
  • the basis weight and density of the model absorbent are shown in Table 2-1.
  • the basis weight and density of the model absorbers a and b are the same.
  • Model absorber a A pulverized wood pulp, water-absorbing resin particles, and water-insoluble inorganic particles are placed on a 120 mm ⁇ 400 mm web on a 400 mesh (38 ⁇ m mesh) wire screen on which water-absorbing paper is placed, using a batch type air paper making device. Air paper making. The basis weight was adjusted by the air papermaking time. Thereafter, the web was pressed under pressure, cut into a size of 100 mm ⁇ 100 mm, and molded to obtain a model absorbent body a.
  • Model absorber b The size of 120 mm x 400 mm using a batch type air paper-making device on a 400 mesh (38 ⁇ m mesh) wire screen on which water-absorbing paper is loaded with pulverized wood pulp, water-absorbing resin particles, and water-insoluble inorganic particles. Air made on the web. The basis weight was adjusted by the air papermaking time. Thereafter, the web was pressed under pressure, cut into a size of 34 mm ⁇ 100 mm, and molded to obtain a model absorber b.
  • Example 2-2 40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 0 .6 parts by weight were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-2) and (b-2). The total return amount was evaluated using the model absorber (a-2), and the absorption amount was evaluated using the model absorber (b-2). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
  • Example 2-3 60.0 parts by mass of pulverized wood pulp, 39.6 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 0 .4 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-3) and (b-3). The total return amount was evaluated using the model absorber (a-3), and the absorption amount was evaluated using the model absorber (b-3). The obtained evaluation results are shown in Table 3-2. The basis weight and density of the model absorbent are shown in Table 3-1.
  • Example 2-4 40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, tricalcium phosphate (manufactured by Wako Pure Chemical Industries, Ltd., CAS No. 7758-87-) 4) 0.6 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-4) and (b-4) . The total return amount was evaluated using the model absorber (a-4), and the absorption amount was evaluated using the model absorber (b-4). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
  • Example 2-5 60.0 parts by mass of pulverized wood pulp, 39.6 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and 0.4 parts by mass of silica (product name: Aerosil 200CF, manufactured by Nippon Aerosil Co., Ltd.) Were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-5) and (b-5). The total return amount was evaluated using the model absorber (a-5), and the absorption amount was evaluated using the model absorber (b-5). The obtained evaluation results are shown in Table 3-2. The basis weight and density of the model absorbent are shown in Table 3-1.
  • Example 2-6 40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and 0.6 parts by mass of silica (product name: Aerosil 200CF, manufactured by Nippon Aerosil Co., Ltd.) Were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-6) and (b-6). The total return amount was evaluated using the model absorber (a-6), and the absorption amount was evaluated using the model absorber (b-6). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
  • the model absorbent body a is provided with a liquid-impermeable back sheet and a polyethylene sheet as a side gather, water-absorbing paper is used as a liquid-permeable top sheet, and is a paper diaper-type model absorbent having an inner diameter of 28 mm and a height.
  • a 100 mm ⁇ 100 mm device having a 100 mm cylinder at the center was placed, and weights were evenly placed so as to apply a load of 21 g / cm 2 (2.1 kPa) to the model absorber.
  • 25 ml of the test liquid adjusted to 25 ⁇ 3 ° C. was quickly poured into the cylinder.
  • the filter paper used for the measurement of the return amount was about 8 g (27 sheets) for the second time, and about 10 g (33 sheets) for the third time.
  • the test solution was a 0.9% by mass sodium chloride aqueous solution.
  • (B) Absorption amount The model absorbent body b, whose total weight (W3 ′ [g]) was measured in advance, was obtained by using a non-woven bag (size: 74 mm ⁇ 140 mm, manufacturer: Nankoku Pulp Co., Ltd., paper name: Heaton It was put into paper, product type: GSP-22, and heat-sealed (size of seal inner part (effective part): 64 mm ⁇ 130 mm), and then immersed horizontally in 1 L of test liquid adjusted to 25 ⁇ 3 ° C. 30 minutes after soaking, lift the bag by holding both sides of the short side (74mm), fix the one side so that it does not sag, hang it for 10 minutes, drain the bag (W4 ' [G]) was measured.
  • a non-woven bag size: 74 mm ⁇ 140 mm, manufacturer: Nankoku Pulp Co., Ltd., paper name: Heaton It was put into paper, product type: GSP-22, and heat-sealed (size of seal inner
  • the same operation was performed without inserting the model absorber, and the weight of the bag at that time (W5 ′ [g]) was measured.
  • the absorption amount [g] of the model absorber was calculated according to the following formula (3).
  • the test solution was a 0.9 mass% sodium chloride aqueous solution.
  • the absorbent articles described in Examples 2-1 to 2-6 had a higher absorption amount than the absorbent articles described in Comparative Examples 2-1 and 2-2.
  • the absorbent articles described in Examples 2-1 to 2-6 were excellent in the balance between the absorption amount and the return amount.

Abstract

Provided is a process for producing an absorbent article, said process enabling, in producing an absorbent article, water-absorbing resin particles which have absorbed moisture and therefore have lost fluidity to recover the fluidity without deterioration in the water absorption characteristics. A process for producing an absorbent article which contains both water-absorbing resin particles and water-insoluble inorganic particles as essential components, characterized by including a step for mixing the water-absorbing resin particles with the water-insoluble inorganic particles so as to make the content of the water-insoluble inorganic particles fall within a range of 0.01 to less than 10 mass% relative to 100 mass% of the water-absorbing resin particles.

Description

吸収性物品の製造方法Method for manufacturing absorbent article
 本発明は紙オムツや生理用ナプキン、いわゆる失禁パット等の吸収性物品の製造方法に関するものである。 The present invention relates to a method for producing absorbent articles such as paper diapers and sanitary napkins, so-called incontinence pads.
 紙オムツや生理用ナプキン、いわゆる失禁パット等の吸収性物品は、通常、吸収体、液透過性を有する表面シート、及び液不透過性を有する背面シートを備える。該吸収体の構成材として、体液を吸収させることを目的とする吸水性樹脂粒子が幅広く利用されている。上記の吸水性樹脂粒子としては、吸水特性の点から、ポリアクリル酸(塩)系吸水性樹脂が多く用いられている。 Absorbent articles such as paper diapers and sanitary napkins, so-called incontinence pads, usually include an absorbent body, a liquid-permeable top sheet, and a liquid-impermeable back sheet. As a constituent material of the absorber, water-absorbing resin particles intended to absorb body fluid are widely used. As the water-absorbent resin particles, polyacrylic acid (salt) -based water-absorbent resins are often used from the viewpoint of water absorption characteristics.
 吸収体に用いられるポリアクリル酸(塩)系吸水性樹脂の性能向上を目的として、例えば、特表2003-525105号公報(国際公開第01/30290号)では、30%以上の遊離酸基を有するポリアクリル酸と再水和された層状複水酸化陰イオン土を含む吸収体によって、尿のように電解質を含む液体の吸収性能が向上することが記載されている。 For the purpose of improving the performance of the polyacrylic acid (salt) water-absorbing resin used in the absorber, for example, in Japanese Translation of PCT International Publication No. 2003-525105 (International Publication No. 01/30290), 30% or more of free acid groups are contained. It is described that the absorption performance of a liquid containing an electrolyte such as urine is improved by an absorbent containing polyacrylic acid and rehydrated layered double hydroxide anionic soil.
 上記吸水性樹脂粒子に求められる特性として、体液等の水性液体に接した際に吸水倍率が優れているといった吸水特性を維持しつつ、吸水性樹脂粒子と繊維基材等とを加工して吸収体を作製する際、製造時や搬送時に吸水性樹脂粒子が吸湿したとしても優れた流動性を示すといった取り扱い性を有することが挙げられる。 The water-absorbing resin particles are processed and absorbed by processing the water-absorbing resin particles and the fiber base material while maintaining the water-absorbing properties such as excellent water absorption when in contact with an aqueous liquid such as body fluid. When producing a body, even if the water-absorbent resin particles absorb moisture at the time of production or transportation, it has a handling property that exhibits excellent fluidity.
 ポリアクリル酸(塩)系吸水性樹脂は、製造後、物品(吸収体)として製造されるまでに通常は一定期間保管される。また、保存環境下によっては高湿条件下に保管されることもある。この保管時にポリアクリル酸(塩)系吸水性樹脂が大気中の水分等を吸湿し、吸水性樹脂粒子が流動性を失う場合があった。 The polyacrylic acid (salt) water-absorbing resin is usually stored for a certain period of time after being manufactured as an article (absorber). Further, depending on the storage environment, it may be stored under high humidity conditions. At the time of storage, the polyacrylic acid (salt) water-absorbing resin may absorb moisture in the air and the water-absorbing resin particles may lose fluidity.
 本発明の一目的は、吸収性物品の製造時に、吸湿して流動性を失った吸水性樹脂粒子を、その吸水特性を損なうことなく、流動性を回復させる、吸収性物品の製造方法を提供することである。 One object of the present invention is to provide a method for producing an absorbent article that recovers the fluidity of water-absorbent resin particles that have lost fluidity due to moisture absorption during the production of the absorbent article, without impairing the water-absorbing properties. It is to be.
 また、吸収性物品は、基本的物性として体液等の絶対吸収量が高いことが求められる。そのため、本発明の他の目的は、吸収量が高い吸収性物品を提供することにある。 In addition, the absorbent article is required to have a high absolute absorption amount of body fluid or the like as a basic physical property. Therefore, another object of the present invention is to provide an absorbent article having a high absorption amount.
 本発明は、少なくとも吸水性樹脂粒子と水不溶性無機粒子とを含む吸収性物品の製造方法であって、前記吸水性樹脂粒子と前記水不溶性無機粒子とを、前記吸水性樹脂粒子100質量%に対して前記水不溶性無機粒子の割合が、0.01質量%以上10質量%未満となるように混合する工程を有することを特徴とする吸収性物品の製造方法に関する。 The present invention is a method for producing an absorbent article comprising at least water-absorbing resin particles and water-insoluble inorganic particles, wherein the water-absorbing resin particles and the water-insoluble inorganic particles are added to 100% by mass of the water-absorbing resin particles. The present invention also relates to a method for producing an absorbent article, comprising a step of mixing such that the ratio of the water-insoluble inorganic particles is 0.01% by mass or more and less than 10% by mass.
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。また、本発明では、重量及び質量、重量%及び質量%、重量部及び質量部は同様の意味であり、文中での使用は質量、質量%、質量部に統一する。 Hereinafter, the present invention will be described in detail, but the scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be changed and implemented as appropriate without departing from the spirit of the present invention. Moreover, in this invention, a weight and mass, weight% and mass%, a weight part, and a mass part are the same meaning, and use in a sentence is unified to a mass, a mass%, and a mass part.
 〔1〕用語の定義
 (1-1)吸水剤
 本明細書において、「吸水剤」とは、吸水性樹脂粒子を主成分として得られた水性液のゲル化剤である。ここで、主成分とは、吸水剤における吸水性樹脂粒子の含有量が、吸水剤の好ましくは70質量%以上であることを指し、より好ましくは80質量%以上、更に好ましくは90質量%以上である(上限は100質量%、好適には99.99質量%)。吸水剤は、吸水性樹脂粒子の他、カチオン性高分子化合物、水溶性多価金属カチオン含有化合物、界面活性剤、着色防止剤、耐尿性向上剤、消臭剤、香料、抗菌剤、発泡剤、顔料、染料、肥料、酸化剤、還元剤等を、それぞれ0~10質量%、好ましくは0.1~1質量%含有してもよい。
[1] Definition of Terms (1-1) Water Absorbing Agent In the present specification, the “water absorbing agent” is an aqueous liquid gelling agent obtained mainly with water-absorbing resin particles. Here, the main component means that the content of the water-absorbing resin particles in the water-absorbing agent is preferably 70% by mass or more of the water-absorbing agent, more preferably 80% by mass or more, and still more preferably 90% by mass or more. (The upper limit is 100% by mass, preferably 99.99% by mass). Water-absorbing agents include water-absorbing resin particles, cationic polymer compounds, water-soluble polyvalent metal cation-containing compounds, surfactants, coloring inhibitors, urine resistance improvers, deodorants, fragrances, antibacterial agents, foaming Agents, pigments, dyes, fertilizers, oxidizing agents, reducing agents and the like may be contained in an amount of 0 to 10% by mass, preferably 0.1 to 1% by mass, respectively.
 (1-2)表面架橋吸水性樹脂
 本明細書において、「表面架橋吸水性樹脂」とは、吸水性樹脂粒子に表面架橋工程を施して得られた、水性液のゲル化剤である。
(1-2) Surface-crosslinked water-absorbing resin In the present specification, “surface-crosslinked water-absorbing resin” is an aqueous liquid gelling agent obtained by subjecting water-absorbing resin particles to a surface-crosslinking step.
 (1-3)ポリアクリル酸(塩)系吸水性樹脂
 本明細書における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。なお、「水膨潤性」とは、ERT441.2-02で規定するCRC(無加圧下吸水倍率)が5g/g以上であることをいい、また、「水不溶性」とは、ERT470.2-02で規定するExtr(水可溶分)が0~50質量%であることをいう。
(1-3) Polyacrylic acid (salt) water-absorbing resin The “water-absorbing resin” in the present specification means a water-swelling, water-insoluble polymer gelling agent. “Water swellability” means that the CRC (water absorption capacity under no pressure) specified by ERT441.2-02 is 5 g / g or more, and “water-insoluble” means ERT470.2- Extr defined in 02 (water-soluble component) is 0 to 50% by mass.
 また、吸水性樹脂は、全量(100質量%)が重合体に限定されず、上記性能を維持する範囲内において、添加剤等を含んでもよく、少量の添加剤を含有する吸水性樹脂組成物も本発明では吸水性樹脂と総称する。なお、吸水性樹脂の形状としては粉末状、特に好ましくは後述の粒度や含水率を有する粉末状の吸水性樹脂がよく、吸水性樹脂粒子と称する。 Further, the total amount (100% by mass) of the water-absorbent resin is not limited to the polymer, and may contain additives and the like within the range of maintaining the above performance, and the water-absorbent resin composition containing a small amount of additives. Is also collectively referred to as a water-absorbing resin in the present invention. The shape of the water-absorbing resin is powdery, particularly preferably a powdery water-absorbing resin having a particle size and water content described later, and is referred to as water-absorbing resin particles.
 本明細書における「ポリアクリル酸(塩)系吸水性樹脂」とは、任意にグラフト成分を含み、繰り返し単位として、アクリル酸及び/又はその塩(以下、「アクリル酸(塩)」と称する)を主成分とする重合体を意味する。 As used herein, “polyacrylic acid (salt) water-absorbing resin” optionally includes a graft component, and as a repeating unit, acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid (salt)”). Is a polymer containing as a main component.
 具体的には、重合に用いられる総単量体(架橋剤を除く)のうち、アクリル酸(塩)を好ましくは50~100モル%含む重合体をいい、より好ましくは70~100モル%、更に好ましくは90~100モル%、特に好ましくは実質100モル%を含む吸水性樹脂をいう。また、本発明では、ポリアクリル酸塩型(中和型)の重合体もポリアクリル酸(塩)系吸水性樹脂と総称する。 Specifically, among the total monomers (excluding the crosslinking agent) used in the polymerization, a polymer containing acrylic acid (salt) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, More preferably, it refers to a water-absorbent resin containing 90 to 100 mol%, particularly preferably substantially 100 mol%. In the present invention, polyacrylate type (neutralization type) polymers are also collectively referred to as polyacrylic acid (salt) water-absorbing resins.
 (1-4)「EDANA」及び「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準である吸水性樹脂の測定方法(EDANA Recommended Test Methods)の略称である。なお、本発明では、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して、吸水性樹脂の物性を測定する。
(1-4) “EDANA” and “ERT”
“EDANA” is an abbreviation for European Disposables and Nonwovens Associations, and “ERT” is an abbreviation for a method for measuring water-absorbent resin (EDANA Recommended Test Methods), which is a European standard. In the present invention, unless otherwise specified, the physical properties of the water-absorbent resin are measured in accordance with the ERT original (known document: revised in 2002).
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、不織布中の吸水性樹脂0.200gを、大過剰の0.9質量%塩化ナトリウム水溶液(生理食塩水)に対して30分間自由膨潤させた後、更に遠心分離機を用いて250Gで水切りした後の吸水倍率(単位;[g/g])である。
(A) "CRC" (ERT441.2-02)
“CRC” is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means water absorption capacity without pressure (hereinafter also referred to as “water absorption capacity”). Specifically, after 0.200 g of the water-absorbing resin in the non-woven fabric was freely swollen for 30 minutes with respect to a large excess of 0.9 mass% sodium chloride aqueous solution (physiological saline), further using a centrifuge. Water absorption ratio after draining at 250 G (unit: [g / g]).
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、加圧下吸水倍率を意味する。具体的には、吸水性樹脂0.900gを、0.9質量%塩化ナトリウム水溶液(生理食塩水)に対して1時間、2.06kPa(0.3psi)での荷重下で膨潤させた後の吸水倍率(単位;[g/g])である。
(B) “AAP” (ERT442.2-02)
“AAP” is an abbreviation for Absorption Against Pressure, which means water absorption capacity under pressure. Specifically, 0.900 g of the water-absorbent resin was swollen under a load of 2.06 kPa (0.3 psi) for 1 hour against a 0.9 mass% sodium chloride aqueous solution (physiological saline). It is a water absorption magnification (unit; [g / g]).
 (c)「PSD」(ERT420.2-02)
 「PSD」とは、Particle Size Distributionの略称であり、篩分級により測定される粒度分布を意味する。なお、質量平均粒子径(D50)及び粒子径分布幅は欧州特許0349240号に記載された「Average Particle Diameter and Distribution of Particle Diameter」と同様の方法で測定する。
(C) “PSD” (ERT420.2-02)
“PSD” is an abbreviation for Particle Size Distribution and means a particle size distribution measured by sieving. The mass average particle size (D50) and the particle size distribution width are measured by the same method as “Average Particle Diameter and Distribution of Particle Diameter” described in European Patent 0349240.
 (1-5)その他
 本明細書において、範囲を示す「X~Y」は、X及びYを含む「X以上Y以下」であることを意味する。また、質量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味し、更に、特に注釈のない限り、「ppm」は「質量ppm」を意味する。また、「~酸(塩)」は「~酸及び/又はその塩」を意味し、「(メタ)アクリル」は「アクリル及び/又はメタクリル」を意味する。また、物性等の測定に関しては、特に断りのない限り、室温(20~25℃)、相対湿度40~50%RHで測定する。
(1-5) Others In this specification, “X to Y” indicating a range means “X or more and Y or less” including X and Y. Further, “t (ton)” as a unit of mass means “Metric ton” (metric ton), and “ppm” means “mass ppm” unless otherwise noted. Further, “˜acid (salt)” means “˜acid and / or salt thereof”, and “(meth) acryl” means “acryl and / or methacryl”. Further, regarding physical properties and the like, unless otherwise specified, measurement is performed at room temperature (20 to 25 ° C.) and relative humidity 40 to 50% RH.
 〔2〕吸収性物品の製造方法
 本発明の吸収性物品の製造方法は、少なくとも吸水性樹脂粒子と水不溶性無機粒子とを含む吸収性物品の製造方法であって、前記吸水性樹脂粒子と前記水不溶性無機粒子とを、前記吸水性樹脂粒子100質量%に対して前記水不溶性無機粒子の割合が、0.01質量%以上10質量%未満となるように混合する工程を有することを特徴とする吸収性物品の製造方法である。
[2] Method for Producing Absorbent Article The method for producing an absorbent article of the present invention is a method for producing an absorbent article comprising at least water-absorbent resin particles and water-insoluble inorganic particles. And a step of mixing water-insoluble inorganic particles so that a ratio of the water-insoluble inorganic particles is 0.01% by mass or more and less than 10% by mass with respect to 100% by mass of the water-absorbent resin particles. It is a manufacturing method of an absorptive article.
 本発明の吸収性物品の製造方法によれば、吸湿して流動性を失った吸水性樹脂粒子を、その吸水特性を損なうことなく、流動性を回復させることができる。また、本発明の吸収性物品の製造方法によれば、吸収量が高い吸収性物品を提供することができる。更に、本発明の吸収性物品の製造方法によれば、吸収量と戻り量との双方のバランスに優れた吸収性物品を提供することができる。 According to the method for producing an absorbent article of the present invention, it is possible to recover the fluidity of the water-absorbent resin particles that have lost the fluidity due to moisture absorption without impairing the water-absorbing characteristics. Moreover, according to the manufacturing method of the absorbent article of this invention, an absorbent article with high absorption amount can be provided. Furthermore, according to the method for manufacturing an absorbent article of the present invention, an absorbent article having an excellent balance between the absorption amount and the return amount can be provided.
 まず、吸水性樹脂粒子の製造方法における好適な実施形態であるポリアクリル酸(塩)系吸水性樹脂粒子の製造方法について記載する。 First, a method for producing polyacrylic acid (salt) -based water absorbent resin particles, which is a preferred embodiment of the method for producing water absorbent resin particles, will be described.
 (2-1)アクリル酸(塩)系単量体水溶液の調製工程
 本明細書において、「アクリル酸(塩)系単量体水溶液」とは、アクリル酸(塩)を主成分とする単量体の水溶液であって、必要により架橋剤、グラフト成分や微量成分(キレート剤、界面活性剤、分散剤等)等の吸水性樹脂粒子を構成する成分が調合されたものを指し、そのままの状態で重合開始剤を添加して重合に供されるものをいう。
(2-1) Step of Preparing Acrylic Acid (Salt) Monomer Aqueous Solution In this specification, “acrylic acid (salt) monomer aqueous solution” means a single amount mainly composed of acrylic acid (salt). This is an aqueous solution of the body that contains components that make up the water-absorbing resin particles such as crosslinking agents, grafting components and trace components (chelating agents, surfactants, dispersants, etc.) as necessary. And a polymerization initiator added to the polymerization.
 上記アクリル酸(塩)としては、未中和でも、塩型(完全中和型又は部分中和型)でもよく、また、単量体水溶液としては、飽和濃度を超えてもよく、アクリル酸(塩)の過飽和水溶液やスラリー水溶液(水分散液)であっても、本発明のアクリル酸(塩)系単量体水溶液として扱う。なお、得られる吸水性樹脂粒子の物性の観点から、飽和濃度以下のアクリル酸(塩)系単量体水溶液を用いることが好ましい。 The acrylic acid (salt) may be unneutralized or salt type (completely neutralized type or partially neutralized type), and the monomer aqueous solution may exceed the saturation concentration, and acrylic acid ( Even a supersaturated aqueous solution of salt) or a slurry aqueous solution (aqueous dispersion) is treated as the acrylic acid (salt) monomer aqueous solution of the present invention. In addition, it is preferable to use the acrylic acid (salt) type monomer aqueous solution below saturation concentration from a viewpoint of the physical property of the water-absorbent resin particle obtained.
 また、単量体の溶媒としては水が好ましく、アクリル酸(塩)系単量体は水溶液として扱われる。ここで、「水溶液」とは、溶媒の100質量%が水に限定されず、水溶性有機溶剤(例えば、アルコール等)を好ましくは0~30質量%、より好ましくは0~5質量%を併用してもよく、本発明ではこれらを水溶液として扱う。 Also, water is preferred as the monomer solvent, and acrylic acid (salt) monomers are treated as aqueous solutions. Here, the “aqueous solution” means that 100% by mass of the solvent is not limited to water, and a water-soluble organic solvent (for example, alcohol) is preferably used in an amount of 0 to 30% by mass, more preferably 0 to 5% by mass. In the present invention, these are treated as aqueous solutions.
 本明細書において、「調製中のアクリル酸(塩)系単量体水溶液」とは、上記アクリル酸(塩)を主成分とする単量体水溶液に、すべての構成成分が混合される前のアクリル酸(塩)の水溶液をいい、具体的にはアクリル酸水溶液、完全中和又は部分中和のアクリル酸塩水溶液が該当する。 In the present specification, the “acrylic acid (salt) -based monomer aqueous solution being prepared” refers to a monomer aqueous solution containing acrylic acid (salt) as a main component before all components are mixed. It refers to an aqueous solution of acrylic acid (salt), and specifically includes an aqueous solution of acrylic acid and a completely neutralized or partially neutralized acrylate solution.
 調製中のアクリル酸(塩)系単量体水溶液を更に中和したり、溶媒である水を混合したり、上記微量成分等を混合したりすることで、最終的なアクリル酸(塩)系単量体水溶液とされる。なお、この最終的なアクリル酸(塩)系単量体水溶液について、重合装置に投入される前又は重合装置に投入された後重合が開始する前の状態を、「重合工程前の調製後のアクリル酸(塩)系単量体水溶液」という。 The final acrylic acid (salt) system can be obtained by further neutralizing the acrylic acid (salt) monomer aqueous solution being prepared, mixing water as a solvent, or mixing the above-mentioned trace components. A monomer aqueous solution is used. In addition, about this final acrylic acid (salt) monomer aqueous solution, the state before the polymerization is started before being charged into the polymerization apparatus or after being charged into the polymerization apparatus, “after the preparation before the polymerization step” Acrylic acid (salt) monomer aqueous solution ”.
 (単量体)
 用いられるモノマー(単量体)としては、重合により吸水性樹脂粒子となるものであれば特に限定されず、例えば、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等のアニオン性不飽和単量体(塩);メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体等が挙げられる。これらの単量体は単独で用いてもよいし、2種以上併用してもよい。
(Monomer)
The monomer to be used is not particularly limited as long as it becomes a water-absorbent resin particle by polymerization. For example, (meth) acrylic acid, (anhydrous) maleic acid, itaconic acid, cinnamic acid, vinyl Sulfonic acid, allyltoluenesulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid Anionic unsaturated monomers (salts) such as 2-hydroxyethyl (meth) acryloyl phosphate; mercapto group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; (meth) acrylamide, N- Contains amide groups such as ethyl (meth) acrylamide and N, N-dimethyl (meth) acrylamide Saturated monomer; amino group-containing unsaturated monomer such as N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide Etc. These monomers may be used alone or in combination of two or more.
 アクリル酸(塩)の含有量(使用量)としては、単量体(内部架橋剤を除く)全体に対して、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、特に好ましくは95モル%以上(上限は100モル%)である。なお、本発明においてポリアクリル酸(塩)は、未中和(中和率0モル%)に限定されず、部分中和又は完全中和(中和率100モル%)を含む概念である。 The content (amount used) of acrylic acid (salt) is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, based on the entire monomer (excluding the internal crosslinking agent). More preferably, it is 90 mol% or more, particularly preferably 95 mol% or more (the upper limit is 100 mol%). In addition, in this invention, polyacrylic acid (salt) is not limited to non-neutralization (neutralization rate 0 mol%), but is a concept including partial neutralization or complete neutralization (neutralization rate 100 mol%).
 本発明において、アクリル酸(塩)系単量体又は重合後の含水ゲル状架橋重合体の中和率については特に限定されないが、得られる吸水性樹脂粒子の物性や表面架橋剤との反応性の観点から、40~90モル%が好ましく、50~80モル%がより好ましく、70モル%を超えて80モル%以下であることが更に好ましい。 In the present invention, the neutralization rate of the acrylic acid (salt) monomer or the hydrogel crosslinked polymer after polymerization is not particularly limited, but the properties of the water-absorbent resin particles obtained and the reactivity with the surface crosslinking agent In view of the above, it is preferably 40 to 90 mol%, more preferably 50 to 80 mol%, still more preferably more than 70 mol% and 80 mol% or less.
 ただし、上記中和率が低い場合は吸水速度(例えば、FSRやVortex)が低下する傾向にあり、逆に中和率が高い場合はポリアクリル酸(塩)系吸水性樹脂粒子と表面架橋剤、特にアルキレンカーボネートとの反応性が低下し、生産性の低下や通液性(例えば、SFC)や加圧下吸水倍率(例えば、AAPやPUP)が低下する傾向にあるため、上記範囲内の中和率が好ましい。なお、紙オムツ等、人体に接触する可能性のある用途では、重合後の中和は必要とされない。 However, when the neutralization rate is low, the water absorption rate (for example, FSR and Vortex) tends to decrease. Conversely, when the neutralization rate is high, the polyacrylic acid (salt) water-absorbing resin particles and the surface cross-linking agent are used. In particular, the reactivity with alkylene carbonate tends to decrease, and the productivity, liquid permeability (for example, SFC) and water absorption capacity under pressure (for example, AAP and PUP) tend to decrease. The sum is preferred. In applications that may come into contact with the human body, such as paper diapers, neutralization after polymerization is not required.
 また、得られる吸水性樹脂粒子の無加圧下吸水倍率(CRC)や加圧下吸水倍率(AAP)の観点から、アクリル酸(塩)系単量体又は含水ゲル状架橋重合体は一部又は全部が塩型でもよく、ナトリウム塩、リチウム塩、カリウム塩、アンモニウム塩、アミン類等の一価塩が好ましく、中でもアルカリ金属塩がより好ましく、更にナトリウム塩及び/又はカリウム塩が好ましく、コストや物性の観点から、特にナトリウム塩が好ましい。 In addition, from the viewpoint of the non-pressurized water absorption capacity (CRC) and the pressurized water absorption capacity (AAP) of the obtained water-absorbent resin particles, the acrylic acid (salt) monomer or the hydrogel crosslinked polymer is partially or entirely. May be in a salt form, monovalent salts such as sodium salt, lithium salt, potassium salt, ammonium salt, amines are preferred, alkali metal salt is more preferred, sodium salt and / or potassium salt is more preferred, cost and physical properties In view of the above, sodium salt is particularly preferable.
 (重合禁止剤)
 アクリル酸(塩)系単量体は重合禁止剤を含有していてもよい。該重合禁止剤としては、特に限定されないが、例えば、国際公開第2008/096713号に開示されるN-オキシル化合物、マンガン化合物、置換フェノール化合物等が挙げられる。中でも、置換フェノール化合物が好ましく、メトキシフェノール類がより好ましい。
(Polymerization inhibitor)
The acrylic acid (salt) monomer may contain a polymerization inhibitor. The polymerization inhibitor is not particularly limited, and examples thereof include N-oxyl compounds, manganese compounds, and substituted phenol compounds disclosed in International Publication No. 2008/096713. Of these, substituted phenol compounds are preferred, and methoxyphenols are more preferred.
 上記メトキシフェノール類としては、例えば、o,m,p-メトキシフェノールや、メチル基、t-ブチル基、水酸基等の1又は2以上の置換基を有するメトキシフェノール類等が挙げられるが、中でもp-メトキシフェノールが特に好ましい。 Examples of the methoxyphenol include o, m, p-methoxyphenol, and methoxyphenol having one or more substituents such as a methyl group, a t-butyl group, and a hydroxyl group. -Methoxyphenol is particularly preferred.
 なお、上記アクリル酸(塩)系単量体中の重合禁止剤の含有量は、10~200ppmが好ましく、以下順に、5~160ppm、10~160ppm、10~100ppm、10~80ppmが好ましく、10~70ppmが最も好ましい。上記含有量が10~200ppmであることで、得られる吸水性樹脂粒子の色調の悪化(黄ばみや黄変といった着色)が少なく、また、蒸留等の精製によって重合禁止剤を除去した場合、意図しない重合を引き起こす危険性が少ない。 The content of the polymerization inhibitor in the acrylic acid (salt) monomer is preferably 10 to 200 ppm, and in the following order, preferably 5 to 160 ppm, 10 to 160 ppm, 10 to 100 ppm, and 10 to 80 ppm. ˜70 ppm is most preferred. When the content is 10 to 200 ppm, the resulting water-absorbent resin particles have little deterioration in color tone (coloration such as yellowing and yellowing), and are not intended when the polymerization inhibitor is removed by purification such as distillation. Less risk of causing polymerization.
 (内部架橋剤)
 単量体水溶液は、必要に応じて内部架橋剤を含んでいてもよい。該内部架橋剤としては、公知のものが使用でき、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる。これらの中から、反応性を考慮して、1種又は2種以上を使用することができ、中でも2個以上の重合性不飽和基を有する化合物を使用することが好ましい。
(Internal crosslinking agent)
The aqueous monomer solution may contain an internal crosslinking agent as required. As the internal cross-linking agent, known ones can be used. For example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethyl Roll propane tri (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, tri Allyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol Polyethylene glycol, propylene glycol, glycerin, 1,4-butanediol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethyleneimine, glycidyl (meth) acrylate, and the like. Among these, in consideration of reactivity, one or more kinds can be used, and among them, it is preferable to use a compound having two or more polymerizable unsaturated groups.
 また、内部架橋剤を2種以上併用する際には、その官能基の反応性を変えることで内部架橋構造を変化させることができるため、アミド化合物、(メタ)アクリレート化合物、アリル化合物、アミン化合物、イミン化合物、アルコール化合物、カーボネート化合物、グリシジル化合物といった上記例示の化合物から異なる官能基をもつ内部架橋剤を選択して併用することが好ましい。 In addition, when two or more kinds of internal cross-linking agents are used in combination, the internal cross-linked structure can be changed by changing the reactivity of the functional group, so that an amide compound, a (meth) acrylate compound, an allyl compound, an amine compound It is preferable to select and use an internal cross-linking agent having a different functional group from the above exemplified compounds such as an imine compound, an alcohol compound, a carbonate compound, and a glycidyl compound.
 上記内部架橋剤の使用量は、所望する吸水性樹脂粒子の物性により適宜決定できるが、上記アクリル酸(塩)系単量体全体に対して、0.001~5モル%が好ましく、0.005~2モル%がより好ましく、0.01~1モル%が更に好ましい。また、内部架橋剤を2種以上併用する場合には、それぞれの内部架橋剤の使用量が上記アクリル酸(塩)系単量体全体に対して、0.001~5モル%が好ましく、0.005~2モル%がより好ましく、0.01~1モル%が更に好ましい。 The amount of the internal cross-linking agent to be used can be appropriately determined depending on the desired properties of the water-absorbent resin particles, but is preferably 0.001 to 5 mol%, based on the total acrylic acid (salt) monomer. 005 to 2 mol% is more preferable, and 0.01 to 1 mol% is still more preferable. When two or more types of internal cross-linking agents are used in combination, the amount of each internal cross-linking agent used is preferably 0.001 to 5 mol% with respect to the entire acrylic acid (salt) monomer. 0.005 to 2 mol% is more preferable, and 0.01 to 1 mol% is still more preferable.
 該使用量(2種以上の併用の場合にはその総量)が0.001~5モル%であることで、得られる吸水性樹脂粒子の水可溶分が低く、加圧下での吸水量を充分に確保でき、また、得られる吸水性樹脂粒子の架橋密度が適当となり、吸水量が充分となる。なお、内部架橋剤は、重合工程前の調製後のアクリル酸(塩)系単量体水溶液に全量添加してもよく、一部を重合開始後に添加してもよい。 When the amount used (the total amount in the case of two or more combinations) is 0.001 to 5 mol%, the water-absorbent resin particles obtained have a low water-soluble content, and the amount of water absorption under pressure can be reduced. The water-absorbent resin particles obtained can be adequately secured and the crosslinking density of the resulting water-absorbent resin particles becomes appropriate, so that the amount of water absorption is sufficient. The internal cross-linking agent may be added to the acrylic acid (salt) monomer aqueous solution after preparation before the polymerization step, or a part thereof may be added after the start of polymerization.
 (2-2)水溶液重合工程
 (重合方法)
 吸水性樹脂粒子を得るための重合方法として、噴霧重合、液滴重合、バルク重合、沈殿重合、水溶液重合又は逆相懸濁重合等を挙げることができるが、好適には、単量体を水溶液とする水溶液重合が用いられる。
(2-2) Aqueous solution polymerization step (Polymerization method)
Examples of the polymerization method for obtaining water-absorbent resin particles include spray polymerization, droplet polymerization, bulk polymerization, precipitation polymerization, aqueous solution polymerization, or reverse phase suspension polymerization. Preferably, the monomer is an aqueous solution. Aqueous polymerization is used.
 なお、上記水溶液重合は、分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、米国特許第4625001号、同第4873299号、同第4286082号、同第4973632号、同第4985518号、同第5124416号、同第5250640号、同第5264495号、同第5145906号、同第5380808号、欧州特許第0811636号、同第0955086号、同第0922717号等に開示されている重合方法が本発明にも適用される。 The aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent. For example, U.S. Pat. Nos. 4,462,001, 4,873,299, 4,286,682, 4,973,632, and 4,985,518. , No. 5124416, No. 5,250,640, No. 5,264,495, No. 5,145,906, No. 5,380,808, European Patent Nos. 081636, 09555086, No. 0922717, etc. This also applies to the present invention.
 上記重合時における単量体水溶液の濃度については、特に制限がないが、20質量%~飽和濃度以下が好ましく、25~80質量%がより好ましく、30~70質量%が更に好ましい。該濃度が20質量%以上であることで、生産性の低下を抑制できる。なお、単量体のスラリー(アクリル酸塩の水分散液)での重合は物性の低下が見られるため、飽和濃度以下で重合を行うことが好ましい(参照;特開平1-318021号公報)。 The concentration of the aqueous monomer solution during the polymerization is not particularly limited, but is preferably 20% by mass to saturated concentration or less, more preferably 25 to 80% by mass, and further preferably 30 to 70% by mass. When the concentration is 20% by mass or more, a decrease in productivity can be suppressed. It is to be noted that the polymerization in the monomer slurry (aqueous dispersion of acrylate) shows a decrease in physical properties. Therefore, the polymerization is preferably carried out at a saturated concentration or less (see Japanese Patent Application Laid-Open No. 1-318021).
 また、重合を促進し物性を向上させるため、重合時に必要に応じて溶存酸素の脱気工程(例えば、不活性ガスでの置換工程)を設けてもよい。また、吸水速度アップや表面積アップや乾燥速度アップ等を目的として、重合時に気泡(特に不活性気体)や各種発泡剤(例えば、有機又は無機炭酸塩、アゾ化合物、尿素化合物)を含有させて、重合時や乾燥時に、例えば、体積が1.001~10倍になるように発泡させてもよい。 Also, in order to promote polymerization and improve physical properties, a dissolved oxygen degassing step (for example, a substitution step with an inert gas) may be provided as necessary during the polymerization. In addition, for the purpose of increasing the water absorption speed, increasing the surface area, increasing the drying speed, etc., bubbles (particularly inert gas) and various foaming agents (for example, organic or inorganic carbonates, azo compounds, urea compounds) are included during polymerization. At the time of polymerization or drying, for example, foaming may be performed so that the volume becomes 1.001 to 10 times.
 本発明における重合工程は、常圧、減圧、加圧のいずれでも行うことができるが、好ましくは常圧(又はその近傍、通常大気圧±10mmHg)で行われる。また、重合開始時の温度は、使用する重合開始剤の種類にもよるが、15~130℃が好ましく、20~120℃がより好ましい。 The polymerization step in the present invention can be carried out at normal pressure, reduced pressure, or increased pressure, but is preferably carried out at normal pressure (or in the vicinity thereof, usually atmospheric pressure ± 10 mmHg). The temperature at the start of the polymerization is preferably 15 to 130 ° C., more preferably 20 to 120 ° C., although it depends on the type of polymerization initiator used.
 (重合開始剤)
 本発明において使用される重合開始剤は、重合形態によって適宜決定され、特に限定されないが、例えば、光分解型重合開始剤、熱分解型重合開始剤、レドックス系重合開始剤等が挙げられる。これらの重合開始剤によって、重合が開始される。
(Polymerization initiator)
The polymerization initiator used in the present invention is appropriately determined depending on the polymerization form and is not particularly limited, and examples thereof include a photodegradable polymerization initiator, a thermal decomposition polymerization initiator, and a redox polymerization initiator. Polymerization is initiated by these polymerization initiators.
 上記光分解型重合開始剤としては、例えば、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が挙げられる。具体的にはベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、α-メチルベンゾイン、α-フェニルベンゾイン、アントラキノン、メチルアントラキノン、アセトフェノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトン、ベンジルジアセチルアセトフェノン、ベンゾフェノン、p-クロロベンゾフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、ジフェニルジスルフィド、テトラメチルチウラムスルフィド、α-クロルメチルナフタレン、アントラセン、ヘキサクロロブタジエン、ペンタクロロブタジエン、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1,2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等が挙げられる。かかる光分解型重合開始剤は市販品でもよく、例えば、チバ・スペシャルティケミカルズの商品名イルガキュア(登録商標)184(ヒドロキシシクロヘキシル-フェニルケトン)、イルガキュア(登録商標)2959(1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)等が挙げられる。 Examples of the photodegradable polymerization initiator include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, and azo compounds. Specifically, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, α-methylbenzoin, α-phenylbenzoin, anthraquinone, methylanthraquinone, acetophenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2 -Phenylacetone, benzyldiacetylacetophenone, benzophenone, p-chlorobenzophenone, 2-hydroxy-2-methylpropiophenone, diphenyl disulfide, tetramethylthiuram sulfide, α-chloromethylnaphthalene, anthracene, hexachlorobutadiene, pentachlorobutadiene, Michler's ketone 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzyldimethyl ketal, bis (2,4,6- Limethylbenzoyl) -phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, And 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one. Such a photodegradable polymerization initiator may be a commercially available product, such as Irgacure (registered trademark) 184 (hydroxycyclohexyl-phenyl ketone), Irgacure (registered trademark) 2959 (1- [4- (2 -Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one) and the like.
 また、上記熱分解型重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等が挙げられる。 Examples of the thermal decomposition polymerization initiator include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide; 2 Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
 更に、上記レドックス系重合開始剤としては、例えば、上記過硫酸塩や過酸化物にL-アスコルビン酸や亜硫酸水素ナトリウム等の還元性化合物を併用した系が挙げられる。 Furthermore, examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium bisulfite is used in combination with the persulfate or peroxide.
 また、上記光分解型重合開始剤と熱分解型重合開始剤とを併用することも、好ましい態様である。更に、紫外線、電子線、γ線等の活性エネルギー線を単独で、あるいは上記重合開始剤と併用しても良い。 Also, it is a preferable aspect to use the photodecomposition polymerization initiator and the thermal decomposition polymerization initiator in combination. Furthermore, active energy rays such as ultraviolet rays, electron beams, and γ rays may be used alone or in combination with the above polymerization initiator.
 上記重合開始剤の使用量は、上記単量体に対して、0.0001~1モル%が好ましく、0.0005~0.5モル%がより好ましい。該使用量が上記範囲内にあることで、吸水性樹脂粒子の色調悪化が少なく、また、残存モノマーも少なくなるため、好ましい。 The amount of the polymerization initiator used is preferably 0.0001 to 1 mol%, more preferably 0.0005 to 0.5 mol%, based on the monomer. It is preferable that the amount used be in the above-mentioned range since the color tone deterioration of the water-absorbent resin particles is small and the residual monomer is also small.
 (添加剤等)
 上記重合に際しては、更に必要に応じて、重合前又は重合途中の反応系に、次亜燐酸(塩)等の連鎖移動剤、ジエチレントリアミン5酢酸(塩)等のキレート剤、後述の着色防止剤又は耐尿性向上剤等を添加してもよい。
(Additives, etc.)
In the above polymerization, a chain transfer agent such as hypophosphorous acid (salt), a chelating agent such as diethylenetriaminepentaacetic acid (salt), a coloring inhibitor described later or A urine resistance improver or the like may be added.
 (更に好適な重合方法)
 本発明において、アクリル酸(塩)系単量体水溶液の重合方法として、吸水性樹脂粒子の物性(例えば、吸水速度や通液性)や重合制御の容易性等の観点から、逆相懸濁重合、噴霧重合、液滴重合又は水溶液重合の少なくとも1種、特に水溶液重合が採用される。
(More suitable polymerization method)
In the present invention, the polymerization method of the acrylic acid (salt) monomer aqueous solution is a reverse phase suspension from the viewpoint of the physical properties (for example, water absorption rate and liquid permeability) of the water absorbent resin particles and the ease of polymerization control. At least one of polymerization, spray polymerization, droplet polymerization or aqueous solution polymerization, particularly aqueous solution polymerization is employed.
 上記水溶液重合の好ましい態様の一例として、重合開始温度を好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上、特に好ましくは70℃以上、最も好ましくは80℃以上(上限は沸点)とする高温開始水溶液重合、又は、単量体濃度を好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上(上限は90質量%以下、好ましくは80質量%以下、更に好ましくは70質量%以下)とする高濃度水溶液重合、更に、これらを組み合わせた高濃度・高温開始水溶液重合を挙げることができる。 As an example of a preferred embodiment of the aqueous solution polymerization, the polymerization initiation temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, particularly preferably 70 ° C. or higher, and most preferably 80 ° C. or higher (the upper limit is High-temperature initiating aqueous solution polymerization to the boiling point) or the monomer concentration is preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more (the upper limit is 90% by mass or less, preferably 80% by mass). % Or less, more preferably 70% by mass or less), and high-concentration / high-temperature initiating aqueous solution polymerization combining these.
 重合形態としては、ニーダー重合又はベルト重合が好ましく、上記水溶液重合の好ましい形態としては、連続ベルト重合(米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号、国際公開第2008/114847号等に開示)、連続ニーダー重合、バッチニーダー重合(米国特許第6987151号、同第6710141号、国際公開第2008/114848号等に開示)等が挙げられる。 As the polymerization form, kneader polymerization or belt polymerization is preferable. As the preferable form of the aqueous solution polymerization, continuous belt polymerization (US Pat. Nos. 4,893,999, 6,241,928, US Patent Application Publication No. 2005/215734, International Publication No. 2008/114847), continuous kneader polymerization, batch kneader polymerization (disclosed in US Pat. Nos. 6,987,151, 6,710,141, and International Publication No. 2008/114848).
 更に、上記好ましい態様と好ましい重合形態とを組み合わせた、高温開始連続水溶液重合、高濃度連続水溶液重合、高濃度・高温開始連続水溶液重合を挙げることができる。 Furthermore, high temperature initiation continuous aqueous solution polymerization, high concentration continuous aqueous solution polymerization, and high concentration / high temperature initiation continuous aqueous solution polymerization, which combine the above preferred embodiments and preferred polymerization forms, can be mentioned.
 また、別の好ましい一例として、重合開始温度を15℃以上、単量体濃度を30質量%以上とするバッチニーダー重合又は連続ニーダー重合を挙げることもできる。 Another preferable example is batch kneader polymerization or continuous kneader polymerization in which the polymerization start temperature is 15 ° C. or more and the monomer concentration is 30% by mass or more.
 また、上記重合に際して、重合開始時間(重合開始剤を添加した時点から重合が開始するまでの時間)は、0を超えて300秒以内が好ましく、1~240秒がより好ましい。 In the above polymerization, the polymerization start time (the time from when the polymerization initiator is added until the polymerization starts) is preferably more than 0 and within 300 seconds, and more preferably from 1 to 240 seconds.
 (2-3)ゲル粉砕工程
 本工程は、上記重合工程(特に水溶液重合)を経て得られる、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)をゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る任意の工程である。
(2-3) Gel Grinding Step In this step, the hydrous gel-like crosslinked polymer (hereinafter referred to as “hydrous gel”) obtained through the above-described polymerization step (particularly aqueous solution polymerization) is gel-crushed to form a particulate hydrous powder. This is an optional step for obtaining a gel (hereinafter referred to as “particulate hydrous gel”).
 水溶液重合において上記含水ゲルのゲル粉砕、特に混練によるゲル粉砕によって細粒化されることで、吸水速度と通液性との両立が図れ、更に耐衝撃性も向上する。即ち、特に重合中(例えば、ニーダー重合)又は重合後(例えば、ベルト重合、更に必要によりニーダー重合)に、ゲル粉砕を行う水溶液重合が好ましい。 In the aqueous solution polymerization, the water-containing gel is finely divided by gel pulverization, particularly gel pulverization by kneading, so that both the water absorption speed and the liquid permeability can be achieved, and the impact resistance is also improved. That is, aqueous polymerization in which gel pulverization is performed particularly during polymerization (for example, kneader polymerization) or after polymerization (for example, belt polymerization, and further, kneader polymerization if necessary) is preferable.
 本発明で使用できるゲル粉砕機は、特に限定されないが、例えば、バッチ式又は連続式の双腕型ニーダー等、複数の回転撹拌翼を備えたゲル粉砕機、1軸押出機、2軸押出機、ミートチョッパー等が挙げられる。中でも、先端に多孔板を有するスクリュー型押出機が好ましく、例えば、特開2000-063527号公報に開示されたスクリュー型押出機が挙げられる。 The gel pulverizer that can be used in the present invention is not particularly limited. For example, a gel pulverizer having a plurality of rotary stirring blades such as a batch-type or continuous double-arm kneader, a single-screw extruder, and a twin-screw extruder. , Meat chopper and the like. Among these, a screw type extruder having a perforated plate at the tip is preferable, and examples thereof include a screw type extruder disclosed in Japanese Patent Application Laid-Open No. 2000-063527.
 本発明のゲル粉砕工程において、ゲル粉砕前の含水ゲルの温度(ゲル温度)は、粒度制御や物性の観点から、60~120℃が好ましく、65~110℃がより好ましい。上記ゲル温度が上記範囲にあることで、含水ゲルの硬度(軟度)が最適となり、また、ゲル粉砕時に粒子形状や粒度分布の制御が容易となる。なお、ゲル温度は、重合時の温度や重合後の加熱又は冷却等で制御することができる。 In the gel grinding step of the present invention, the temperature of the hydrogel before gel grinding (gel temperature) is preferably 60 to 120 ° C., more preferably 65 to 110 ° C., from the viewpoints of particle size control and physical properties. When the gel temperature is within the above range, the hardness (softness) of the hydrogel is optimized, and the particle shape and particle size distribution can be easily controlled during gel pulverization. The gel temperature can be controlled by the temperature during polymerization, heating or cooling after polymerization, and the like.
 また、ゲル粉砕後の粒子状含水ゲルの質量平均粒子径(D50)(篩分級で規定)は、0.5~10mmが好ましく、1.0~10mmがより好ましく、2.0~8.0mmが更に好ましい。また、次工程の乾燥工程に供される粒子状含水ゲルに含まれる粒子径10mm超の粗大粒子の割合は、該粒子状含水ゲル全体の10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。 Further, the mass average particle diameter (D50) (specified by sieve classification) of the particulate hydrogel after gel pulverization is preferably 0.5 to 10 mm, more preferably 1.0 to 10 mm, and 2.0 to 8.0 mm. Is more preferable. Further, the ratio of coarse particles having a particle diameter of more than 10 mm contained in the particulate hydrogel to be subjected to the subsequent drying step is preferably 10% by mass or less, more preferably 5% by mass or less of the entire particulate hydrous gel. 1 mass% or less is still more preferable.
 本発明において、重合工程及びゲル粉砕工程は、重合時に含水ゲル状架橋重合体がゲル粉砕されるニーダー重合方法、連続ベルト重合で得られた含水ゲル状架橋重合体をゲル粉砕工程に供する方法、バッチで重合工程及びゲル粉砕工程を行う方法のいずれでも実施することが出来る。 In the present invention, the polymerization step and the gel grinding step are a kneader polymerization method in which the water-containing gel-like crosslinked polymer is gel-ground during polymerization, a method in which the water-containing gel-like crosslinked polymer obtained by continuous belt polymerization is subjected to the gel grinding step, Any method of performing the polymerization step and the gel grinding step in a batch can be carried out.
 (2-4)乾燥工程
 本工程は、上記重合工程等を経て得られる含水ゲルを乾燥して乾燥重合体を得る工程である。なお、上記重合工程が水溶液重合である場合、含水ゲルの乾燥前及び/又は乾燥後に、ゲル粉砕(細粒化)が行われる。また、乾燥工程で得られる乾燥重合体(凝集物)はそのまま粉砕工程に供給されてもよい。
(2-4) Drying step This step is a step of drying the hydrogel obtained through the above polymerization step and the like to obtain a dry polymer. In addition, when the said superposition | polymerization process is aqueous solution polymerization, gel grinding | pulverization (fine-graining) is performed before drying of a hydrogel and / or after drying. Moreover, the dry polymer (aggregate) obtained by a drying process may be supplied to a grinding | pulverization process as it is.
 本発明における乾燥方法としては、特に限定されず、種々の方法を採用することができる。具体的には、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、疎水性有機溶媒での共沸脱水乾燥、高温の水蒸気を用いた高湿乾燥等が挙げられ、これらの1種又は2種を併用することもできる。乾燥温度は100~300℃が好ましく、150~250℃がより好ましい。 The drying method in the present invention is not particularly limited, and various methods can be employed. Specific examples include heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, azeotropic dehydration drying with a hydrophobic organic solvent, and high humidity drying using high-temperature steam. Or 2 types can also be used together. The drying temperature is preferably from 100 to 300 ° C, more preferably from 150 to 250 ° C.
 また、乾燥時間としては、含水ゲルの表面積や含水率、乾燥機の種類等に依存するため、例えば、1分間~5時間が好ましく、5分~1時間がより好ましい。更に、乾燥減量(試料(含水ゲル又は吸水性樹脂粒子)1gを180℃で3時間乾燥)から求められる樹脂固形分は、80質量%以上が好ましく、85~99質量%がより好ましく、90~98質量%が更に好ましい。 Also, the drying time depends on the surface area and water content of the hydrogel, the type of dryer, etc., and for example, 1 minute to 5 hours is preferable, and 5 minutes to 1 hour is more preferable. Further, the resin solid content obtained from loss on drying (1 g of sample (hydrogel or water-absorbent resin particles) is dried at 180 ° C. for 3 hours) is preferably 80% by mass or more, more preferably 85 to 99% by mass, and more preferably 90 to 98 mass% is still more preferable.
 (2-5)粉砕・分級工程
 本工程は、上記乾燥工程で得られた乾燥重合体を、粉砕及び/又は分級して、好ましくは特定粒度の吸水性樹脂粒子を得る工程である。なお、上記(2-3)ゲル粉砕工程とは、粉砕対象物が乾燥工程を経ている点で異なる。また、粉砕工程後の吸水性樹脂粒子を粉砕重合体と称することもある。
(2-5) Pulverization / Classification Step This step is a step for pulverizing and / or classifying the dried polymer obtained in the drying step to obtain water absorbent resin particles having a specific particle size. The (2-3) gel pulverization step is different in that the object to be pulverized has undergone a drying step. Further, the water absorbent resin particles after the pulverization step may be referred to as a pulverized polymer.
 (粒度分布)
 次工程の表面架橋工程に供される吸水性樹脂粒子の質量平均粒子径(D50)は、吸水速度や通液性、加圧下吸水倍率等の観点から、200~600μmの範囲が好ましく、200~550μmの範囲がより好ましく、250~500μmの範囲が更に好ましく、300~450μmの範囲が特に好ましい。
(Particle size distribution)
The mass average particle diameter (D50) of the water-absorbing resin particles used in the subsequent surface cross-linking step is preferably in the range of 200 to 600 μm from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, and the like. The range of 550 μm is more preferable, the range of 250 to 500 μm is still more preferable, and the range of 300 to 450 μm is particularly preferable.
 また、標準篩分級で規定される粒子径150μm未満の微粒子は少ない程よく、通液性等の観点から、該微粒子の含有量は0~5質量%が好ましく、0~3質量%がより好ましく、0~1質量%が更に好ましい。更に、標準篩分級で規定される粒子径850μm以上の、好ましくは710μm以上の粗大粒子も少ない程よく、吸水速度等の観点から該粗大粒子の含有量は、0~5質量%が好ましく、0~3質量%がより好ましく、0~1質量%が更に好ましい。 Further, the smaller the number of fine particles having a particle diameter of less than 150 μm defined by standard sieve classification, the better. From the viewpoint of liquid permeability, the content of the fine particles is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, 0 to 1% by mass is more preferable. Further, the smaller the coarse particles having a particle size of 850 μm or more, preferably 710 μm or more, as defined by the standard sieve classification, the better. From the viewpoint of water absorption rate, the content of coarse particles is preferably 0 to 5% by mass, 3% by mass is more preferable, and 0 to 1% by mass is even more preferable.
 また、粒子径の分布範囲は、好ましくは150μm以上850μm未満、より好ましくは150μm以上710μm未満の範囲において、吸水速度や通液性、加圧下吸水倍率等の観点から、95質量%以上含まれるのが好ましく、98質量%以上含まれるのがより好ましく、99質量%以上含まれるのが更に好ましい(上限は100質量%)。 The particle size distribution range is preferably 150 μm or more and less than 850 μm, more preferably 150 μm or more and less than 710 μm, from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, etc. It is more preferable that 98% by mass or more is included, and 99% by mass or more is more preferable (the upper limit is 100% by mass).
 上記粒度の制御は、重合工程、ゲル粉砕工程、又は乾燥工程の粉砕・分級工程で行うことができるが、特に乾燥後の分級工程で行うことが好ましい。また、上記粒度の測定は、JIS標準篩(Z8801-1(2000))を用いて、国際公開第2004/69915号やEDANA-ERT420.2-02で規定される方法に準じて行われる。 The particle size can be controlled in the polymerization step, the gel pulverization step, or the pulverization / classification step in the drying step, but is particularly preferably performed in the classification step after drying. The particle size is measured using a JIS standard sieve (Z8801-1 (2000)) according to a method defined in International Publication No. 2004/69915 or EDANA-ERT420.2-02.
 また、本発明の吸水性樹脂粒子の形状としては、球状やその凝集物でも、含水ゲル又は乾燥重合体に対して粉砕工程を経て得られた不定形(破砕状)でもよいが、吸水速度の観点から、不定形(破砕状)又はその造粒物が好ましい。 Further, the shape of the water-absorbent resin particles of the present invention may be a spherical shape or an aggregate thereof, or may be an indeterminate shape (crushed shape) obtained through a pulverization process on a hydrous gel or a dry polymer. From the viewpoint, an irregular shape (crushed) or a granulated product thereof is preferable.
 本発明の課題をより解決するためには、上記粒度は、好ましくは表面架橋工程後、更に好ましくは吸水剤にも適用される。すなわち、本発明の吸水剤は、好ましくは150μm以上850μm未満、より好ましくは150μm以上710μm未満の範囲において、吸水速度や通液性、加圧下吸水倍率等の観点から、95質量%以上含まれるのが好ましく、98質量%以上含まれるのがより好ましく、99質量%以上含まれるのが更に好ましい(上限は100質量%)。 In order to further solve the problem of the present invention, the above particle size is preferably applied to the water-absorbing agent, preferably after the surface crosslinking step. That is, the water-absorbing agent of the present invention is preferably contained in a range of 150 μm or more and less than 850 μm, more preferably 150 μm or more and less than 710 μm, from the viewpoint of water absorption speed, liquid permeability, water absorption capacity under pressure, etc. It is more preferable that 98% by mass or more is included, and 99% by mass or more is more preferable (the upper limit is 100% by mass).
 (2-6)微粉回収工程
 乾燥工程後に分級工程(表面架橋工程後の第2分級工程を含む。以下同じ。)を含み、上記分級工程において、目開き150μmの標準篩通過物である吸水性樹脂微粒子を分離した後、該吸水性樹脂微粒子又はその水添加物を乾燥工程以前の工程に回収(再利用)することが好ましい。なお、上記分級工程で除去される粗大粒子は、必要に応じて再粉砕してもよく、また、上記分級工程で除去される吸水性樹脂微粒子は、廃棄しても、他の用途に使用しても、本微粉回収工程に供してもよい。
(2-6) Fine powder recovery step Water-absorbing property including a classification step after the drying step (including the second classification step after the surface cross-linking step, the same shall apply hereinafter), and passing through a standard sieve having a mesh size of 150 μm. After separating the resin fine particles, it is preferable to collect (reuse) the water-absorbent resin fine particles or a water additive thereof in a step before the drying step. The coarse particles removed in the classification step may be re-pulverized as necessary, and the water absorbent resin fine particles removed in the classification step may be discarded or used for other purposes. Or you may use for this fine powder collection | recovery process.
 前記吸水性樹脂微粒子を除去することにより、吸水速度(例えば、FSR)を更に向上させることができる。 The water absorption rate (for example, FSR) can be further improved by removing the water absorbent resin fine particles.
 即ち、本発明の製造方法において、微粉回収工程とは、乾燥工程及び必要により粉砕、分級工程で発生する吸水性樹脂微粒子(特に粒子径150μm以下の粒子を70質量%以上含んだもの。以下、「微粉」と称することもある。)を分離した後、そのままの状態で、若しくは水和又は造粒して、乾燥工程以前に回収、好ましくは、重合工程、ゲル粉砕工程又は乾燥工程に回収する工程を指す。 That is, in the production method of the present invention, the fine powder collecting step includes water-absorbing resin fine particles (particularly those containing 70% by mass or more of particles having a particle size of 150 μm or less. May be referred to as “fine powder.”) And then collected as it is, or hydrated or granulated, and collected before the drying step, preferably in the polymerization step, gel grinding step or drying step. Refers to a process.
 微粉を回収することで、吸水性樹脂粒子の粒度を制御することができるとともに、本工程により吸水速度を更に向上することができる。 By collecting the fine powder, the particle size of the water-absorbing resin particles can be controlled, and the water absorption rate can be further improved by this step.
 回収する微粉としては表面架橋工程前の微粉でもよく、表面架橋工程後の微粉でもよく、微粉回収量は乾燥重合体の1~40質量%が好ましく、5~30質量%がより好ましい。 The fine powder to be recovered may be a fine powder before the surface cross-linking step or a fine powder after the surface cross-linking step, and the amount of fine powder recovered is preferably 1 to 40% by mass of the dry polymer, and more preferably 5 to 30% by mass.
 本発明に好適な微粉回収方法は、重合前の単量体水溶液や重合中の含水ゲルに吸水性樹脂微粉子又はその水和物や造粒物、必要により各種の添加剤を混合する方法である。なお、重合前の単量体水溶液への回収方法は国際公開第92/001008号、同第92/020723号に、重合中の含水ゲルへの回収方法は国際公開第2007/074167号、同第2009/109563号、同第2009/153196号、同第2010/006937号に、また、乾燥工程(乾燥機)への回収方法は米国特許第6228930号等に、それぞれ開示されるが、これらの微粉回収方法が本発明に好ましく適用される。 The fine powder recovery method suitable for the present invention is a method in which a water-absorbent resin fine powder or a hydrate or granulated product thereof is mixed with an aqueous monomer solution before polymerization or a water-containing gel during polymerization, if necessary. is there. The method for recovering the monomer aqueous solution before the polymerization is WO 92/001008 and 92/020723, and the method for recovering the hydrogel during polymerization is WO 2007/074167, No. 2009/109563, No. 2009/153196, No. 2010/006937, and a recovery method to a drying step (dryer) are disclosed in US Pat. No. 6,228,930, etc. The recovery method is preferably applied to the present invention.
 (2-7)表面架橋剤添加工程
 本工程は、表面架橋工程に供する表面架橋剤を含有する吸水性樹脂粒子を調製する任意の工程である。一般に、表面架橋は、後述の有機表面架橋剤の添加や、吸水性樹脂粒子表面での単量体の重合、又は、過硫酸塩等のラジカル重合開始剤の添加及び加熱・紫外線照射等によって行われる。本発明においては、上記分級工程で得られる吸水性樹脂粒子、更には微粉回収工程を経て得られた吸水性樹脂粒子を含む吸水性樹脂粒子に、有機表面架橋剤を添加するのが好ましい。また、後述する通液性向上剤添加工程を同時に行ってもよい。
(2-7) Surface cross-linking agent addition step This step is an optional step for preparing water-absorbing resin particles containing a surface cross-linking agent for use in the surface cross-linking step. In general, surface cross-linking is performed by adding an organic surface cross-linking agent described later, polymerizing monomers on the surface of water-absorbent resin particles, or adding a radical polymerization initiator such as persulfate, and heating / ultraviolet irradiation. Is called. In the present invention, it is preferable to add an organic surface cross-linking agent to the water absorbent resin particles obtained in the classification step, and further to the water absorbent resin particles including the water absorbent resin particles obtained through the fine powder collection step. Moreover, you may perform simultaneously the liquid permeability improving agent addition process mentioned later.
 (有機表面架橋剤)
 本発明で使用できる有機表面架橋剤としては、得られる吸水性樹脂粒子の物性の観点から、ポリアクリル酸(塩)系吸水性樹脂粒子の官能基であるカルボキシル基と、脱水エステル化反応、あるいは脱水アミド化反応する水酸基及び/又はアミノ基等の反応性基を有する有機化合物が好ましい。該有機化合物は、水酸基やアミノ基を直接有するアルコール化合物やアミン化合物に限られず、アルキレンカーボネート化合物やオキサゾリジノン化合物のように環状化合物であっても、水酸基やアミノ基を生成する反応性基及び/又は直接的に前記カルボキシル基と反応するような反応性基を有する化合物も含まれる。
(Organic surface cross-linking agent)
As the organic surface crosslinking agent that can be used in the present invention, from the viewpoint of the physical properties of the water-absorbing resin particles obtained, a carboxyl group that is a functional group of the polyacrylic acid (salt) -based water-absorbing resin particles, An organic compound having a reactive group such as a hydroxyl group and / or an amino group that undergoes dehydration amidation reaction is preferable. The organic compound is not limited to an alcohol compound or an amine compound having a hydroxyl group or an amino group directly, and even if it is a cyclic compound such as an alkylene carbonate compound or an oxazolidinone compound, a reactive group and / or a hydroxyl group and an amino group are generated. A compound having a reactive group that directly reacts with the carboxyl group is also included.
 有機表面架橋剤としては、多価アルコール化合物、エポキシ化合物、多価アミン化合物又はそのハロエポキシ化合物との縮合物、オキサゾリン化合物、(モノ、ジ、又はポリ)オキサゾリジノン化合物、オキセタン化合物、アルキレンカーボネート化合物等が挙げられ、エポキシ化合物、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物がより好ましい。これらは1種単独で用いてもよいし、2種以上併用してもよい。 Examples of organic surface crosslinking agents include polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds or condensates thereof with haloepoxy compounds, oxazoline compounds, (mono, di, or poly) oxazolidinone compounds, oxetane compounds, alkylene carbonate compounds, and the like. An epoxy compound, a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound are more preferable. These may be used alone or in combination of two or more.
 有機表面架橋剤の具体例として、(ジ、トリ、テトラ、ポリ)エチレングリコール、(ジ、ポリ)プロピレングリコール、1,3-プロパンジオール、2,2,4-トリメチルー1,3-ペンタンジオール、(ポリ)グリセリン、2―ブテンー1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ジ又はトリエタノールアミン、ペンタエリスリトール、ソルビトール等のポリアルコール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ジ、ポリ)グリセロールポリグリシジルエーテル、グリシドール等のエポキシ化合物;2-オキサゾリドン、N-ヒドロキシエチル-2-オキサゾリドン、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物、及び、その多価アミン付加物(例えば、ハーキュレス製カイメン(登録商標));γ-グリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン等のシランカップリング剤;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル3-オキセタンエタノール、3-クロロメチル-3-メチルオキセタン、3-クロロメチル-3-エチルオキセタン、多価オキセタン化合物等のオキセタン化合物、2-イミダゾリジノン等の環状尿素化合物等が挙げられる。 Specific examples of the organic surface crosslinking agent include (di, tri, tetra, poly) ethylene glycol, (di, poly) propylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, (Poly) glycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, di- or triethanol Polyalcohol compounds such as amine, pentaerythritol, sorbitol; epoxy compounds such as (poly) ethylene glycol diglycidyl ether, (di, poly) glycerol polyglycidyl ether, glycidol; 2-oxazolidone, N-hydroxyethyl-2-oxazolidone, 1,2-ethylenebisoxa Oxazoline compounds such as phosphorus; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4- Dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxane-2-one , Alkylene carbonate compounds such as 4-methyl-1,3-dioxane-2-one, 4,6-dimethyl-1,3-dioxane-2-one, 1,3-dioxopan-2-one; epichlorohydrin Haloepoxy compounds such as epibromhydrin and α-methylepichlorohydrin, and polyvalent amine adducts thereof (for example, Kaymen (registered trademark) manufactured by Hercules); γ-glycidoxy Silane coupling agents such as propyltrimethoxysilane and γ-aminopropyltriethoxysilane; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3 Oxetane compounds such as oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl 3-oxetane ethanol, 3-chloromethyl-3-methyl oxetane, 3-chloromethyl-3-ethyl oxetane, polyvalent oxetane compounds, And cyclic urea compounds such as 2-imidazolidinone.
 前記多価アルコールとしては、炭素数が2~8の多価アルコールが好ましく、炭素数3~6の多価アルコールがより好ましく、炭素数3~4の多価アルコールが更に好ましい。更に、ジオールが好ましく、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが挙げられる。中でも、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオールから選ばれる多価アルコールがより好ましい。 The polyhydric alcohol is preferably a polyhydric alcohol having 2 to 8 carbon atoms, more preferably a polyhydric alcohol having 3 to 6 carbon atoms, and still more preferably a polyhydric alcohol having 3 to 4 carbon atoms. Furthermore, a diol is preferable, and examples thereof include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol. Of these, polyhydric alcohols selected from propylene glycol (1,2-propanediol), 1,3-propanediol, and 1,4-butanediol are more preferable.
 また、エポキシ化合物としては、ポリグリシジル化合物が好ましく、エチレングリコールジグリシジルエーテルが好適に使用され、オキサゾリン化合物としては、2-オキサゾリジノンが好ましく、アルキレンカーボネート化合物としては、1,3-ジオキソラン-2-オン(エチレンカーボネート)が好適に使用される。 The epoxy compound is preferably a polyglycidyl compound, ethylene glycol diglycidyl ether is preferably used, the oxazoline compound is preferably 2-oxazolidinone, and the alkylene carbonate compound is 1,3-dioxolan-2-one. (Ethylene carbonate) is preferably used.
 更に、多価アルコール化合物、エポキシ化合物、オキサゾリン化合物、アルキレンカーボネート化合物から選ばれる2種以上の化合物を組み合わせて用いることが好ましい。より高物性という観点から、多価アルコールと多価アルコール以外の前記有機表面架橋剤との組合せが好ましく、多価アルコールとエポキシ化合物及び/又はアルキレンカーボネート化合物との組合せがより好ましく、CRCの向上という観点からは、少なくとも多価アルコールとアルキレンカーボネート化合物との組合せを用いることが更に好ましい。 Furthermore, it is preferable to use a combination of two or more compounds selected from polyhydric alcohol compounds, epoxy compounds, oxazoline compounds, and alkylene carbonate compounds. From the viewpoint of higher physical properties, a combination of a polyhydric alcohol and the organic surface cross-linking agent other than the polyhydric alcohol is preferable, a combination of a polyhydric alcohol and an epoxy compound and / or an alkylene carbonate compound is more preferable, and CRC is improved. From the viewpoint, it is more preferable to use a combination of at least a polyhydric alcohol and an alkylene carbonate compound.
 前記複数の有機表面架橋剤を組み合わせる場合、特に多価アルコールと多価アルコール以外の前記有機表面架橋剤との組合せにおいては、その比率(質量比)は、多価アルコール:多価アルコール以外で1:100~100:1が好ましく、1:50~50:1がより好ましく、1:30~30:1が更に好ましい。 When combining the plurality of organic surface cross-linking agents, particularly in the combination of the polyhydric alcohol and the organic surface cross-linking agent other than the polyhydric alcohol, the ratio (mass ratio) is 1 except for the polyhydric alcohol: polyhydric alcohol. : 100 to 100: 1 is preferable, 1:50 to 50: 1 is more preferable, and 1:30 to 30: 1 is still more preferable.
 これらが混合される溶媒の温度は適宜決定されるが、温度が低すぎると溶解度や粘度が低くなり過ぎる場合があるため、特に、固体の非高分子有機化合物を表面架橋剤に、特にエチレンカーボネートを表面架橋剤として使用する場合、室温以上に加温(30~100℃が好ましく、35~70℃がより好ましく、40~65℃が更に好ましい)された水が溶媒に使用される。 The temperature of the solvent in which these are mixed is appropriately determined. However, if the temperature is too low, the solubility and viscosity may become too low. When water is used as a surface cross-linking agent, water heated to room temperature or higher (preferably 30 to 100 ° C., more preferably 35 to 70 ° C., and further preferably 40 to 65 ° C.) is used as the solvent.
 すなわち、非高分子有機化合物(特に固体の表面架橋剤、更には固体の多価アルコールやアルキレンカーボネート等の環状化合物)と混合する他の化合物、特に水が加温されているのが好ましく、上述の温度範囲であるとより好ましい。 That is, other compounds to be mixed with non-polymeric organic compounds (especially solid surface crosslinking agents, and further cyclic compounds such as solid polyhydric alcohols and alkylene carbonates), particularly water, are preferably heated. It is more preferable that it is in the temperature range.
 また、アルキレンカーボネート化合物又は前記多価アルコール化合物、特に固体のアルキレンカーボネート化合物は、水と混合前に予め加熱することが好ましい。加熱温度は、水添加後の表面架橋剤水溶液の温度より高温に加熱することが好ましく、具体的には、固体のアルキレンカーボネート化合物の場合は、多価アルコール、特に固体の多価アルコールも加熱溶融するのが好ましく、その温度は、30~100℃が好ましく、35~70℃がより好ましく、40~65℃が更に好ましい。 The alkylene carbonate compound or the polyhydric alcohol compound, particularly the solid alkylene carbonate compound, is preferably heated in advance before mixing with water. The heating temperature is preferably higher than the temperature of the aqueous surface crosslinking agent solution after the addition of water. Specifically, in the case of a solid alkylene carbonate compound, polyhydric alcohol, particularly solid polyhydric alcohol is also heated and melted. The temperature is preferably 30 to 100 ° C., more preferably 35 to 70 ° C., and still more preferably 40 to 65 ° C.
 (溶媒及び濃度)
 有機表面架橋剤の添加量は、その総量が、添加前の前記吸水性樹脂粒子100質量部に対して、0.001~15質量部であることが好ましく、0.01~5質量部であることが更に好ましい。
(Solvent and concentration)
The total amount of the organic surface cross-linking agent added is preferably 0.001 to 15 parts by mass, and 0.01 to 5 parts by mass with respect to 100 parts by mass of the water absorbent resin particles before the addition. More preferably.
 また、前記有機表面架橋剤として、多価アルコール化合物と多価アルコール以外の化合物から選ばれる2種類を用いる場合には、添加前の前記吸水性樹脂粒子100質量部に対して、多価アルコール化合物の総量が0.001~10質量部であることが好ましく、0.01~5質量部であることが更に好ましく、また、多価アルコール以外の化合物の総量が0.001~10質量部であることが好ましく、0.01~5質量部であることが更に好ましい。 Moreover, when using 2 types chosen from compounds other than a polyhydric alcohol compound and a polyhydric alcohol as said organic surface crosslinking agent, a polyhydric alcohol compound with respect to 100 mass parts of said water absorbent resin particles before addition. Is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and the total amount of compounds other than polyhydric alcohols is 0.001 to 10 parts by mass. It is preferably 0.01 to 5 parts by mass.
 有機表面架橋剤は、水溶液として添加されるのが好ましい。該水溶液に用いられる水の量は、添加処理前の前記吸水性樹脂粒子100質量部に対する総量で、0.5~20質量部が好ましく、0.5~10質量部がより好ましい。なお、表面架橋剤の結晶水や水和水等も該水の量に含まれる。 The organic surface cross-linking agent is preferably added as an aqueous solution. The amount of water used in the aqueous solution is preferably 0.5 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the water absorbent resin particles before the addition treatment. Note that the amount of water includes crystallization water, hydration water, and the like, which are surface crosslinking agents.
 更に、有機表面架橋剤水溶液に、親水性有機溶媒を添加してもよく、該親水性有機溶媒の量は、添加処理前の吸水性樹脂粒子100質量部に対して、0質量部を超え10質量部以下が好ましく、0質量部を超え5質量部以下がより好ましい。該親水性有機溶媒として、好ましくは炭素数1~炭素数4、より好ましくは炭素数2~炭素数3の一級アルコールや、アセトン等の炭素数4以下の低級ケトン等が挙げられるが、沸点が150℃未満、更には100℃未満の揮発性アルコール類の場合は、表面架橋処理時に揮発してしまうので残存物が残らず、より好ましい。 Furthermore, a hydrophilic organic solvent may be added to the organic surface cross-linking agent aqueous solution, and the amount of the hydrophilic organic solvent is more than 0 parts by mass with respect to 100 parts by mass of the water-absorbing resin particles before the addition treatment. The amount is preferably not more than mass parts, more preferably more than 0 mass parts and not more than 5 mass parts. Examples of the hydrophilic organic solvent include primary alcohols having 1 to 4 carbon atoms, more preferably 2 to 3 carbon atoms, and lower ketones having 4 or less carbon atoms such as acetone. In the case of volatile alcohols having a temperature of less than 150 ° C., more preferably less than 100 ° C., the volatile alcohol is volatilized during the surface cross-linking treatment, so that no residue remains, which is more preferable.
 具体的には、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン、メトキシ(ポリ)エチレングリコール等のエーテル類;ε-カプロラクタム、N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体等の多価アルコール類等が挙げられる。 Specifically, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol and t-butyl alcohol; ketones such as acetone; dioxane, tetrahydrofuran, methoxy (poly ) Ethers such as ethylene glycol; Amides such as ε-caprolactam and N, N-dimethylformamide; Sulphoxides such as dimethyl sulfoxide; Polyhydric alcohols such as polyoxypropylene and oxyethylene-oxypropylene block copolymers Is mentioned.
 また、更に、吸水性樹脂粒子への表面架橋剤溶液の混合に際し、水不溶性微粒子や界面活性剤を、本発明の効果を妨げない範囲内で、添加処理前の吸水性樹脂粒子100質量部に対して、好ましくは0質量部を超え10質量部以下、より好ましくは0質量部を超え5質量部以下、更に好ましくは0質量部を超え1質量部以下を共存させることもできる。この際、用いられる界面活性剤等については、米国特許第7473739号等に開示されている。水不溶性微粒子としては、二酸化ケイ素(シリカ)、ゼオライト、タルク、二酸化チタン等が挙げられる。 Furthermore, when mixing the surface cross-linking agent solution with the water-absorbent resin particles, the water-insoluble fine particles and the surfactant are added to 100 parts by weight of the water-absorbent resin particles before the addition treatment within a range that does not hinder the effects of the present invention. On the other hand, it is preferably more than 0 parts by mass and 10 parts by mass or less, more preferably more than 0 parts by mass and 5 parts by mass or less, still more preferably more than 0 parts by mass and 1 part by mass or less. In this case, the surfactant used is disclosed in US Pat. No. 7,473,739. Examples of the water-insoluble fine particles include silicon dioxide (silica), zeolite, talc, and titanium dioxide.
 表面架橋剤溶液中の表面架橋剤濃度は適宜決定されるが、物性の観点から、好ましくは1~80質量%、より好ましくは5~60質量%、更に好ましくは10~40質量%、特に好ましくは15~30質量%の水溶液とされる。なお、残余として、前記親水性有機溶媒やその他の成分を含んでいる。 The concentration of the surface crosslinking agent in the surface crosslinking agent solution is appropriately determined. From the viewpoint of physical properties, it is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, still more preferably 10 to 40% by mass, and particularly preferably. Is an aqueous solution of 15 to 30% by mass. The remainder contains the hydrophilic organic solvent and other components.
 表面架橋剤溶液の温度は用いる前記有機表面架橋剤の溶解度や該水溶液の粘度等から適宜決定されるが、-10~100℃が好ましく、5~70℃がより好ましく、10~65℃が更に好ましく、25~50℃の範囲であると特に好ましい。上記範囲内にあることで、吸水性樹脂粒子と混合又は反応する前に、環状化合物が加水分解(例えば、エチレンカーボネートからエチレングリコールへの分解、オキサゾリジノンからエタノールアミンへの分解)したり、水や親水性有機溶媒が揮発する等して混合性が低下したりする等の弊害が少なく、また、該表面架橋剤溶液が凝固したり、表面架橋剤が析出したりする恐れが少ないため好ましい。 The temperature of the surface cross-linking agent solution is appropriately determined based on the solubility of the organic surface cross-linking agent used, the viscosity of the aqueous solution, etc., but is preferably −10 to 100 ° C., more preferably 5 to 70 ° C., and further preferably 10 to 65 ° C. A range of 25 to 50 ° C. is particularly preferable. By being within the above range, before mixing or reacting with the water-absorbent resin particles, the cyclic compound is hydrolyzed (for example, decomposition from ethylene carbonate to ethylene glycol, decomposition from oxazolidinone to ethanolamine), water, This is preferable because there are few harmful effects such as volatilization of the hydrophilic organic solvent and the mixing property is lowered, and there is little possibility that the surface crosslinking agent solution is solidified or the surface crosslinking agent is precipitated.
 (表面架橋剤溶液への酸又は塩基の併用)
 表面架橋剤溶液は、表面架橋剤の反応や均一な混合を促進するため、有機表面架橋剤、水、親水性有機溶媒、界面活性剤及び水不溶性微粒子以外に、酸又は塩基を含んでいてもよい。
(Use of acid or base in the surface cross-linking agent solution)
The surface crosslinking agent solution may contain an acid or base in addition to the organic surface crosslinking agent, water, hydrophilic organic solvent, surfactant and water-insoluble fine particles in order to promote the reaction and uniform mixing of the surface crosslinking agent. Good.
 酸又は塩基としては、有機酸又はその塩、無機酸又はその塩、無機塩基が使用され、添加処理前の前記吸水性樹脂粒子100質量部に対して、好ましくは0~10質量部、より好ましくは0.001~5質量部、更に好ましくは0.01~3質量部で適宜使用される。該有機酸としては、炭素数が好ましくは1~6、より好ましくは2~4の水溶性有機酸、水溶性飽和有機酸、特にヒドロキシル基含有の飽和有機酸である。 As the acid or base, an organic acid or a salt thereof, an inorganic acid or a salt thereof, or an inorganic base is used, and is preferably 0 to 10 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the water absorbent resin particles before the addition treatment. Is suitably used in an amount of 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass. The organic acid is preferably a water-soluble organic acid having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, a water-soluble saturated organic acid, particularly a saturated organic acid containing a hydroxyl group.
 その他としては、非架橋性の水溶性無機塩基類(好ましくは、アルカリ金属塩,アンモニウム塩,アルカリ金属水酸化物、及び、アンモニア又はその水酸化物)や、非還元性アルカリ金属塩pH緩衝剤(好ましくは炭酸水素塩、リン酸二水素塩、リン酸水素塩等)等が挙げられる。 Other examples include non-crosslinkable water-soluble inorganic bases (preferably alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or hydroxides thereof), and non-reducing alkali metal salt pH buffering agents. (Preferably bicarbonate, dihydrogen phosphate, hydrogen phosphate, etc.).
 (有機表面架橋剤溶液の添加方法)
 添加処理により、有機表面架橋剤は吸水性樹脂粒子に添加される。該添加処理の方法は特に限定されず、例えば、吸水性樹脂粒子を親水性有機溶剤に浸漬し、添加架橋剤を吸着させる方法、吸水性樹脂粒子に直接、添加架橋剤溶液を噴霧又は滴下して混合する方法等が挙げられ、所定量を均一に添加する観点から、後者が好ましい。更に、均一に添加するために、吸水性樹脂粒子を攪拌しながら添加処理を行うのが好ましく、更に表面架橋剤溶液を噴霧するのが好ましい。
(Method of adding organic surface crosslinking agent solution)
By the addition treatment, the organic surface cross-linking agent is added to the water-absorbent resin particles. The method of the addition treatment is not particularly limited. For example, the water-absorbing resin particles are immersed in a hydrophilic organic solvent to adsorb the added cross-linking agent, or the added cross-linking agent solution is sprayed or dropped directly on the water-absorbing resin particles. From the viewpoint of uniformly adding a predetermined amount, the latter is preferable. Furthermore, in order to add uniformly, it is preferable to perform the addition treatment while stirring the water-absorbent resin particles, and it is preferable to spray the surface cross-linking agent solution.
 添加処理において、組成の異なる2種類以上の架橋剤を例えば、異なる噴霧ノズルを用いて同時に添加しても良いが、均一性等の観点から単一組成の方が好ましい。また、単一組成であるならば、添加処理装置の大きさや処理量及び噴霧ノズルの噴霧角等を勘案して、複数の噴霧ノズルを使っても良い。 In the addition treatment, two or more types of crosslinking agents having different compositions may be added simultaneously using different spray nozzles, for example, but a single composition is preferred from the viewpoint of uniformity and the like. Moreover, if it is a single composition, you may use several spray nozzles in consideration of the magnitude | size of an addition processing apparatus, the processing amount, the spray angle of a spray nozzle, etc. FIG.
 前記添加処理に用いられる装置(以下、混合装置と称することがある)としては、例えば、円筒型混合機、二重壁円錐型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉、ロータリーディスク混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機、タービュラーザー、プロシェアミキサー等が好適である。更に、商業生産等の大規模生産においては、連続混合できる装置が好ましい。また、各々の添加処理は、同じ装置を用いても良く、異なる装置を用いても良い。 Examples of the apparatus used for the addition treatment (hereinafter sometimes referred to as a mixing apparatus) include, for example, a cylindrical mixer, a double wall conical mixer, a V-shaped mixer, a ribbon mixer, and a screw-type mixer. Suitable are a machine, a fluidized-type furnace, a rotary disk mixer, an airflow-type mixer, a double-arm kneader, an internal mixer, a pulverizing kneader, a rotary mixer, a screw-type extruder, a turbuler, a pro-share mixer, etc. . Furthermore, in large-scale production such as commercial production, an apparatus capable of continuous mixing is preferable. Moreover, the same apparatus may be used for each addition process, and a different apparatus may be used.
 本工程に供される吸水性樹脂粒子は、加熱・保温されていることが好ましく、該温度は、好ましくは30~100℃、より好ましくは35~80℃、更に好ましくは40~70℃の範囲である。上記好適な温度で加熱・保温されることで、表面架橋剤の析出や吸水性樹脂粒子の吸湿等により、表面処理が不十分或いは不均一になることが少なく、また、表面架橋剤水溶液から水が蒸発する等により、表面架橋剤の析出等が起こる恐れが少ない。 The water absorbent resin particles used in this step are preferably heated and kept warm, and the temperature is preferably in the range of 30 to 100 ° C., more preferably 35 to 80 ° C., still more preferably 40 to 70 ° C. It is. By heating and holding at the above-mentioned suitable temperature, surface treatment is less likely to be insufficient or non-uniform due to precipitation of the surface cross-linking agent, moisture absorption of the water-absorbing resin particles, etc. There is little possibility that precipitation of the surface cross-linking agent or the like occurs due to evaporation of the liquid.
 (2-8)表面架橋工程
 本工程は、吸水性樹脂粒子の加圧下吸水倍率や通液性を向上させるために、吸水性樹脂粒子の表面又は表面近傍を架橋処理するために加熱処理を行う任意の工程である。表面架橋剤添加工程と同時に実施する、又は表面架橋剤添加工程の後に実施することができ、表面架橋剤添加工程の後に実施するのが好ましい。また本工程の実施は一回でもよく、同じ条件又は別の条件で複数回行ってもよい。
(2-8) Surface cross-linking step In this step, heat treatment is performed to cross-link the surface of the water-absorbent resin particles or the vicinity of the surface in order to improve the water absorption capacity and liquid permeability under pressure. It is an optional process. It can be carried out simultaneously with the surface cross-linking agent addition step or after the surface cross-linking agent addition step, preferably after the surface cross-linking agent addition step. Further, this step may be performed once or a plurality of times under the same conditions or different conditions.
 加熱温度は得られる吸水性樹脂粒子の物性として、耐ダメージ性を重視する場合には、250℃以下がより好ましく、70~200℃が更に好ましく、90~180℃が特に好ましい。一方、吸水性能を重視する場合には、加熱温度は、120~280℃であるとより好ましく、150~250℃であると更に好ましく、170~230℃であると特に好ましい。また、加熱時間は好ましくは1分~2時間である。 The heating temperature is preferably 250 ° C. or lower, more preferably 70 to 200 ° C., and particularly preferably 90 to 180 ° C. when damage resistance is considered as a physical property of the water-absorbent resin particles obtained. On the other hand, when emphasizing water absorption performance, the heating temperature is more preferably 120 to 280 ° C., further preferably 150 to 250 ° C., and particularly preferably 170 to 230 ° C. The heating time is preferably 1 minute to 2 hours.
 (加熱装置)
 本発明で用いられる加熱装置としては、公知の乾燥機又は加熱炉に所定の雰囲気とするための気体排出機構及び/又は気体供給機構を具備せしめた連続式又は回分式(バッチ式)加熱装置、好ましくは連続式加熱装置が好適である。
(Heating device)
As the heating device used in the present invention, a continuous or batch type (batch type) heating device provided with a gas discharge mechanism and / or a gas supply mechanism for setting a predetermined atmosphere in a known dryer or heating furnace, A continuous heating device is preferable.
 該加熱装置の加熱方式としては、伝導伝熱型、輻射伝熱型、熱風伝熱型、誘電加熱型が好適である。より好ましくは、伝導伝熱及び/又は熱風伝熱型の加熱方式であり、更に好ましくは伝導伝熱型の方式である。 As the heating method of the heating device, a conduction heat transfer type, a radiation heat transfer type, a hot air heat transfer type, and a dielectric heating type are suitable. More preferred is a conductive heat transfer and / or hot air heat transfer type heating method, and still more preferred is a conductive heat transfer type method.
 該加熱装置のいわゆる制御温度は、吸水性樹脂粒子を適切な温度に加熱することが出来ればよく、該工程の最初から最後まで一定である必要はない。ただし、部分的な過加熱等を防ぐため、50~300℃であると好ましい。 The so-called control temperature of the heating device is not limited as long as the water-absorbent resin particles can be heated to an appropriate temperature, and need not be constant from the beginning to the end of the process. However, in order to prevent partial overheating and the like, the temperature is preferably 50 to 300 ° C.
 また、加熱の効率を高め、均一な加熱処理を行うために、被加熱物を連続で攪拌及び/又は流動させる機構を備えている装置が好ましい。攪拌及び/又は流動させる方式としては、溝型攪拌式、スクリュー型、回転型、円盤型、捏和型、流動槽式等が好ましく、攪拌翼(パドル)による攪拌方式や回転レトルト炉のような伝熱面自体の運動による攪拌方式が、より好ましい。なお、該攪拌及び/又は流動機構は、均一な加熱処理を行うことを目的としているため、処理量が少ない場合、例えば、被加熱物の厚みが1cmに満たないような場合には用いなくても構わない。 Also, an apparatus equipped with a mechanism for continuously stirring and / or flowing the object to be heated in order to increase the heating efficiency and perform uniform heat treatment is preferable. As a stirring and / or fluidizing method, a grooved stirring method, a screw type, a rotary type, a disk type, a kneading type, a fluidized tank type, etc. are preferable, such as a stirring method using a stirring blade (paddle) or a rotary retort furnace. A stirring method by movement of the heat transfer surface itself is more preferable. The stirring and / or flow mechanism is intended to perform a uniform heat treatment, and therefore, when the amount of treatment is small, for example, when the thickness of an object to be heated is less than 1 cm, it may not be used. It doesn't matter.
 該加熱装置は、被加熱物から発生する蒸気を排出するための気体排出機構を備え、該機構の調整、例えば、排出量により加熱部(加熱装置内部)の雰囲気の露点及び温度を制御することも出来る。なお、該加熱部とは、ヒーターや誘電コイル等のいわゆる熱源ではなく、被加熱物を昇温させるための場所である。 The heating device includes a gas discharge mechanism for discharging steam generated from the object to be heated, and controls the dew point and temperature of the atmosphere of the heating unit (inside the heating device) by adjusting the mechanism, for example, the discharge amount. You can also. The heating unit is not a so-called heat source such as a heater or a dielectric coil but a place for raising the temperature of an object to be heated.
 排出機構は、単なる排気口だけでなく加熱処理物の出口から気体が排出される場合には該出口も排出機構に該当する。更に、ブロワー等を用いて排出される気体量や圧力を調整するのが好ましい。また、排気の箇所は1箇所に限らず、前記加熱装置の大きさと露点及び温度の調整状態とを勘案して複数設けることが出来る。 When the gas is discharged from the outlet of the heat treatment product as well as the simple exhaust port, the outlet mechanism also corresponds to the discharge mechanism. Further, it is preferable to adjust the amount of gas discharged and the pressure using a blower or the like. Further, the number of exhaust locations is not limited to one, and a plurality of exhaust locations can be provided in consideration of the size of the heating device and the adjustment state of the dew point and temperature.
 該加熱装置は、気体供給機構を備え、該機構の調整、例えば、供給量により加熱部の雰囲気の露点及び温度を制御することも出来る。 The heating device includes a gas supply mechanism, and the dew point and temperature of the atmosphere of the heating unit can be controlled by adjusting the mechanism, for example, the supply amount.
 加熱部の気体圧力は、常圧からわずかに減圧になっていることが好ましい。その範囲としては、大気圧に対して差圧が0~-10kPaであることが好ましく、0~-5kPaであることがより好ましく、0~-2kPaであることが更に好ましい。 The gas pressure in the heating part is preferably slightly reduced from normal pressure. As the range, the differential pressure with respect to atmospheric pressure is preferably 0 to −10 kPa, more preferably 0 to −5 kPa, and further preferably 0 to −2 kPa.
 工業的連続生産を行う際には、上記の機構を備えた回分処理方式や連続処理方式の加熱装置を用いることが出来る。 When industrial continuous production is performed, a batch processing system or a continuous processing system heating apparatus having the above-described mechanism can be used.
 回分処理(バッチ)方式の場合には、被加熱物を実質的に均等に分配した1枚又は複数のトレー等に静置する方法や、単槽又は複数の槽に被加熱物を充填して攪拌翼等で攪拌しながら加熱する方法、流動槽等が用いられる。また連続処理方式の場合には、ベルトや複数のトレーに被加熱物を実質的に均等に分配して移送する方式や、攪拌翼やスクリュー等で攪拌しながら移送する方式や、加熱面の傾斜により移送する方式等が用いられる。 In the case of batch processing (batch method), the heated object is placed in one or more trays that are substantially evenly distributed, or the heated object is filled in a single tank or multiple tanks. A method of heating while stirring with a stirring blade or the like, a fluidized tank or the like is used. In the case of a continuous processing method, a method of transferring the material to be heated to a belt or a plurality of trays substantially evenly, a method of transferring while stirring with a stirring blade or a screw, etc. A method of transporting by the method is used.
 なお、加熱処理の前後の両方で添加処理を行う場合には、前記添加処理と同一の装置を用いて、あるいは異なる装置を用いて添加処理を行っても良い。特に連続式の生産装置を用いる場合には、加熱前の添加処理と加熱処理とを同じ装置を用いて、加熱後の添加処理は別装置を用いるのが、生産効率上、好ましいことがある。 In addition, when performing an addition process both before and after heat processing, you may perform an addition process using the apparatus same as the said addition process, or a different apparatus. In particular, when a continuous production apparatus is used, it may be preferable in terms of production efficiency to use the same apparatus for the addition treatment before heating and the heat treatment, and use a separate apparatus for the addition treatment after heating.
 また、必要に応じて加熱装置から取り出した吸水性樹脂粒子は、過度の架橋反応の抑制や後工程での取扱い性向上を目的として、好ましくは100℃未満、より好ましくは0~95℃、更に好ましくは40~90℃に冷却してもよい。 In addition, the water-absorbent resin particles taken out from the heating device as necessary are preferably less than 100 ° C., more preferably 0 to 95 ° C., for the purpose of suppressing excessive crosslinking reaction and improving the handleability in the subsequent process. Preferably, it may be cooled to 40 to 90 ° C.
 上述の工程(2-1)~(2-8)によって吸水性樹脂粒子が得られる。 Water-absorbent resin particles are obtained by the above steps (2-1) to (2-8).
 (2-9)その他の添加剤
 本発明の吸収性物品の製造方法においては、吸水性樹脂粒子(表面架橋吸水性樹脂)に種々の機能を付与するために、いずれかの段階でその他の添加剤を添加して吸水剤を得る工程を有していてもよい。
(2-9) Other additives In the method for producing an absorbent article of the present invention, other additives are added at any stage in order to impart various functions to the water absorbent resin particles (surface crosslinked water absorbent resin). You may have the process of adding an agent and obtaining a water absorbing agent.
 該添加剤としては、通液性向上剤、有機微粒子、カチオン性高分子化合物、水溶性多価金属カチオン含有化合物、界面活性剤、着色防止剤、耐尿性向上剤、消臭剤、香料、抗菌剤、発泡剤、顔料、染料、肥料、酸化剤、還元剤等が挙げられ、また、該添加物の機能を付与又は高めたものであってもよい。 Examples of the additives include liquid permeability improvers, organic fine particles, cationic polymer compounds, water-soluble polyvalent metal cation-containing compounds, surfactants, coloring inhibitors, urine resistance improvers, deodorants, fragrances, Antibacterial agents, foaming agents, pigments, dyes, fertilizers, oxidizing agents, reducing agents, and the like may be mentioned, and the functions of the additive may be imparted or enhanced.
 前記添加剤の量は、特に断りがない限り、吸水性樹脂粒子100質量%に対して好ましくは10質量%未満(下限0質量%)、より好ましくは5質量%未満、更に好ましくは1質量%未満である。また、これらの添加剤は、表面架橋剤添加工程と同時に、又は別途に、添加することができる。 Unless otherwise specified, the amount of the additive is preferably less than 10% by mass (lower limit 0% by mass), more preferably less than 5% by mass, and even more preferably 1% by mass with respect to 100% by mass of the water-absorbent resin particles. Is less than. These additives can be added simultaneously with or separately from the surface cross-linking agent addition step.
 (通液性向上剤)
 本発明でいう通液性向上剤とは、該通液性向上剤添加後の吸水性樹脂粒子の生理食塩水流れ誘導性(SFC)を、該通液性向上剤添加前に比べて向上させる物質をいう。
(Liquid permeability improver)
The liquid permeability improver referred to in the present invention improves the saline flow conductivity (SFC) of the water-absorbent resin particles after the addition of the liquid permeability improver compared to before the addition of the liquid permeability improver. A substance.
 通液性向上剤としては、水溶性多価金属カチオン含有化合物が挙げられる。該多価金属カチオンは、2価以上の金属カチオンが好ましく、2~4価であることがより好ましく、3価であることが更に好ましい。 Examples of liquid permeability improvers include water-soluble polyvalent metal cation-containing compounds. The polyvalent metal cation is preferably a divalent or higher valent metal cation, more preferably 2 to 4 valent, and still more preferably trivalent.
 前記水溶性とは、水100g(25℃)に、好ましくは1g以上、より好ましくは10g以上溶解する化合物をさす。前記多価金属カチオンを含む多価金属化合物は、そのまま(主に固体状)で吸水性樹脂粒子と混合してもよいが、水溶液としたものを吸水性樹脂粒子と混合することが好ましい。 The water-soluble refers to a compound that dissolves in 100 g of water (25 ° C.), preferably 1 g or more, more preferably 10 g or more. The polyvalent metal compound containing the polyvalent metal cation may be mixed with the water-absorbent resin particles as it is (mainly in solid form), but it is preferable to mix an aqueous solution with the water-absorbent resin particles.
 本発明に用いることができる多価金属カチオン元素は、典型金属及び族番号が4~11の遷移金属の中から選ばれる少なくとも一つ以上の金属であり、Mg,Ca,Ti,Zr,V,Cr,Mn,Fe,Co,Ni,Pd,Cu,Zn,Cd,Alから選ばれる1種が好ましく、Mg,Ca,Zn,Alがより好ましく、Alが特に好ましい。 The polyvalent metal cation element that can be used in the present invention is at least one metal selected from a typical metal and a transition metal having a group number of 4 to 11, and includes Mg, Ca, Ti, Zr, V, One selected from Cr, Mn, Fe, Co, Ni, Pd, Cu, Zn, Cd, and Al is preferable, Mg, Ca, Zn, and Al are more preferable, and Al is particularly preferable.
 前記多価金属カチオンを含む多価金属化合物としては、カウンターのアニオンは有機又は無機のいずれでもよく、特定に限定されない。例えば、酢酸アルミニウム、乳酸アルミニウム、アクリル酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム等の水溶性アルミニウム塩;塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等の水溶性アルカリ土類金属塩;塩化亜鉛、硫酸亜鉛、硝酸亜鉛、硫酸銅、塩化コバルト、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム等の遷移金属塩等が挙げられる。これらの中で特に好ましいのはアルミニウム化合物であり、中でも、硫酸アルミニウムが好ましく、硫酸アルミニウム14~18水塩等の含水結晶の粉末は最も好適に使用することが出来る。 As the polyvalent metal compound containing the polyvalent metal cation, the anion of the counter may be either organic or inorganic and is not particularly limited. For example, water-soluble aluminum salts such as aluminum acetate, aluminum lactate, aluminum acrylate, aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium bissulfate aluminum, sodium bissulfate aluminum; calcium chloride, calcium nitrate, magnesium chloride, Examples thereof include water-soluble alkaline earth metal salts such as magnesium sulfate and magnesium nitrate; transition metal salts such as zinc chloride, zinc sulfate, zinc nitrate, copper sulfate, cobalt chloride, zirconium chloride, zirconium sulfate and zirconium nitrate. Of these, aluminum compounds are particularly preferred. Among these, aluminum sulfate is preferred, and water-containing crystal powders such as aluminum sulfate 14-18 hydrate can be most suitably used.
 有機酸の多価金属塩を用いる場合、好ましいアニオンとして、アニス酸、安息香酸、p-ヒドロキシ安息香酸、ギ酸、吉草酸、クエン酸、グリコール酸、グリセリン酸、グルタル酸、クロロ酢酸、クロロプロピオン酸、けい皮酸、コハク酸、酢酸、酒石酸、乳酸、ピルビン酸、フマル酸、プロピオン酸、3-ヒドロキシプロピオン酸、マロン酸、マレイン酸、酪酸、イソ酪酸、イミジノ酢酸、リンゴ酸、イソチオン酸、メチルマレイン酸、アジピン酸、イタコン酸、クロトン酸、シュウ酸、サリチル酸、グルコン酸、没食子酸、ソルビン酸、ステアリン酸等の脂肪酸等の酸に対応する塩基が挙げられる。これらのうち、酒石酸塩及び乳酸塩が好ましく、乳酸アルミニウムや乳酸カルシウム等の乳酸塩が最も好ましい。 When an organic acid polyvalent metal salt is used, preferred anions are anisic acid, benzoic acid, p-hydroxybenzoic acid, formic acid, valeric acid, citric acid, glycolic acid, glyceric acid, glutaric acid, chloroacetic acid, chloropropionic acid. , Cinnamic acid, succinic acid, acetic acid, tartaric acid, lactic acid, pyruvic acid, fumaric acid, propionic acid, 3-hydroxypropionic acid, malonic acid, maleic acid, butyric acid, isobutyric acid, imidinoacetic acid, malic acid, isothionic acid, methyl Examples include bases corresponding to acids such as maleic acid, adipic acid, itaconic acid, crotonic acid, oxalic acid, salicylic acid, gluconic acid, gallic acid, sorbic acid and stearic acid. Of these, tartrate and lactate are preferred, and lactate such as aluminum lactate and calcium lactate is most preferred.
 前記多価金属カチオンの混合方法は、吸水性樹脂粒子に多価金属カチオンを含む水溶液、特に多価金属カチオン濃度が好ましくは1~60質量%、より好ましくは10~50質量%の水溶液として混合され、更に、混合後に必要に応じて、好ましくは40~150℃、より好ましくは60~100℃程度で加熱すればよい。水の使用量としては、吸水性樹脂粒子100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。 The mixing method of the polyvalent metal cation is an aqueous solution containing the polyvalent metal cation in the water-absorbent resin particles, particularly an aqueous solution having a polyvalent metal cation concentration of preferably 1 to 60% by mass, more preferably 10 to 50% by mass. Furthermore, it may be heated at about 40 to 150 ° C., more preferably about 60 to 100 ° C., if necessary after mixing. The amount of water used is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
 更に好ましくは、混合時に多価アルコール又はα-ヒドロキシカルボン酸が併用される。なお、多価アルコールとしては、上述した各種化合物から適宜選択され、α-ヒドロキシカルボン酸としては、後述の着色防止剤及び耐尿性向上剤の欄に記載の各種化合物から選択される。多価アルコール又はα-ヒドロキシカルボン酸は、水より少量で、かつ吸水性樹脂粒子100質量部に対して、好ましくは0~4質量部、より好ましくは0.01~3質量部、更に好ましくは0.1~0.5質量部で使用される。 More preferably, a polyhydric alcohol or α-hydroxycarboxylic acid is used together during mixing. The polyhydric alcohol is appropriately selected from the above-mentioned various compounds, and the α-hydroxycarboxylic acid is selected from various compounds described in the column of the coloration inhibitor and urine resistance improving agent described later. The polyhydric alcohol or α-hydroxycarboxylic acid is less than water and is preferably 0 to 4 parts by weight, more preferably 0.01 to 3 parts by weight, and still more preferably 100 parts by weight of the water absorbent resin particles. Used at 0.1 to 0.5 parts by weight.
 前記多価金属化合物の使用量は、多価金属カチオン(例えば、アルミニウム塩の場合、塩の種類にかかわらずAl3+)として、吸水性樹脂粒子100質量部に対して、0.001~1質量部の範囲が好ましく、0.005~0.5質量部の範囲がより好ましく、0.01~0.2質量部の範囲が更により好ましく、0.02~0.1質量部の範囲が特に好ましい。 The polyvalent metal compound is used in an amount of 0.001 to 1 mass with respect to 100 parts by mass of the water-absorbent resin particles as a polyvalent metal cation (for example, in the case of an aluminum salt, Al 3+ regardless of the type of salt). In the range of 0.005 to 0.5 parts by weight, more preferably in the range of 0.01 to 0.2 parts by weight, particularly in the range of 0.02 to 0.1 parts by weight. preferable.
 吸水性樹脂粒子100質量部に対する多価金属カチオン含有量が0.001質量部以上であると、SFCの向上が十分なものとなり、また該含有量が1質量部以下であるとAAPが維持される。 When the polyvalent metal cation content with respect to 100 parts by mass of the water-absorbent resin particles is 0.001 part by mass or more, the SFC is sufficiently improved, and when the content is 1 part by mass or less, AAP is maintained. The
 (有機微粒子)
 有機微粒子としては、乳酸カルシウム、乳酸アルミニウム、金属石鹸(長鎖脂肪酸の多価金属塩)等の有機微粉末が挙げられる。有機微粒子の体積平均粒子径(レーザー回折散乱粒度計で規定)は10μm以下が好ましく、1μm以下がより好ましい。有機微粒子の体積平均粒子径の下限は特に限定されないが、5nm以上であることが好ましい。
(Organic fine particles)
Examples of the organic fine particles include organic fine powders such as calcium lactate, aluminum lactate, and metal soap (polyvalent metal salt of long chain fatty acid). The organic fine particles have a volume average particle size (specified by a laser diffraction scattering particle size meter) of preferably 10 μm or less, and more preferably 1 μm or less. The lower limit of the volume average particle diameter of the organic fine particles is not particularly limited, but is preferably 5 nm or more.
 これらは粉体で吸水性樹脂粒子に混合してもよいし、水分散体(スラリー、例えば、コロイダルシリカ)で混合してもよく、表面架橋剤やその水溶液に分散させて混合してもよい。 These may be mixed with the water-absorbent resin particles as a powder, mixed with an aqueous dispersion (slurry, for example, colloidal silica), or may be mixed with being dispersed in a surface cross-linking agent or an aqueous solution thereof. .
 使用する有機微粒子の添加量は、添加される吸水性樹脂粒子100質量部に対して、0.01~3質量部であることが好ましく、0.1~1.0質量部であることがより好ましい。 The addition amount of the organic fine particles to be used is preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the water absorbent resin particles to be added. preferable.
 (カチオン性高分子化合物)
 該カチオン性高分子化合物は、特に限定されるものではないが、米国特許第5382610号、同第7098284号、国際公開第2009/110645号、同第2009/041731号、同第2009/041727号に開示されるカチオン性高分子化合物が好適に使用できる。中でも、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、ジメチルアミン/アンモニア/エピクロロヒドリンの縮合物が好ましい。
(Cationic polymer compound)
The cationic polymer compound is not particularly limited, but is disclosed in US Pat. Nos. 5,382,610, 7098284, WO2009 / 110645, 2009/041731, and 2009/041727. The disclosed cationic polymer compound can be suitably used. Among these, polyethyleneimine, polyvinylamine, polyallylamine, and a dimethylamine / ammonia / epichlorohydrin condensate are preferable.
 前記カチオン性高分子化合物の分子量は、重量平均分子量1000~500万が好ましく、2000~100万がより好ましく、1万~50万が更に好ましい。 The molecular weight of the cationic polymer compound is preferably 1,000 to 5,000,000, more preferably 2,000 to 1,000,000, and even more preferably 10,000 to 500,000.
 前記カチオン性高分子化合物は、水溶性であることが好ましい。ここで、水溶性とは、25℃の水100gに対して好ましくは1g以上溶解することをいう。 The cationic polymer compound is preferably water-soluble. Here, the term “water-soluble” means that preferably 1 g or more dissolves in 100 g of water at 25 ° C.
 上記カチオン性高分子化合物は、吸水性樹脂粒子に直接混合してもよいし、溶液、特に水溶液で混合してもよく、表面架橋剤やその水溶液に溶解させて混合してもよい。 The cationic polymer compound may be directly mixed with the water-absorbent resin particles, may be mixed with a solution, particularly an aqueous solution, or may be mixed after being dissolved in a surface crosslinking agent or an aqueous solution thereof.
 (水溶性多価金属カチオン含有化合物)
 水溶性多価金属カチオン含有化合物とは、好ましくは2価以上、より好ましくは3価以上の、金属カチオンを含有する多元金属化合物以外の化合物を指す。該3価以上の金属カチオンとしては、アルミニウム、ジルコニウム、チタニウムが挙げられ、中でもアルミニウムが好ましい。該多価金属カチオン含有化合物としては、硫酸アルミニウム、塩化アルミニウム、塩化酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムカリウム、硫酸ジルコニウム、酢酸ジルコニウム、硝酸ジルコニウム等の多価金属の無機塩、酢酸アルミニウム、乳酸アルミニウム、ヒドロキシ塩化ジルコニウム、チタントリエタノールアミネート、チタンラクテート等の多価金属の有機塩等の多価金属化合物等が挙げられる。中でも、多価金属カチオンとしてアルミニウムを含有する化合物であることが好ましい。
(Water-soluble polyvalent metal cation-containing compound)
The water-soluble polyvalent metal cation-containing compound refers to a compound other than a multi-component metal compound containing a metal cation, which is preferably divalent or higher, more preferably trivalent or higher. Examples of the trivalent or higher metal cation include aluminum, zirconium, and titanium, and among these, aluminum is preferable. Examples of the polyvalent metal cation-containing compound include aluminum sulfate, aluminum chloride, zirconium chloride oxide, zirconium carbonate ammonium, zirconium carbonate potassium, zirconium carbonate potassium, zirconium sulfate, zirconium acetate, zirconium nitrate, and other inorganic salts of polyvalent metals, acetic acid And polyvalent metal compounds such as organic salts of polyvalent metals such as aluminum, aluminum lactate, zirconium hydroxychloride, titanium triethanolamate, and titanium lactate. Among these, a compound containing aluminum as a polyvalent metal cation is preferable.
 上記水溶性多価金属カチオン含有化合物は、吸水性樹脂粒子に粉体として直接混合してもよいし、溶液、特に水溶液で混合してもよく、表面架橋剤やその水溶液に溶解させて混合してもよい。 The water-soluble polyvalent metal cation-containing compound may be mixed directly with the water-absorbent resin particles as a powder, or may be mixed with a solution, particularly an aqueous solution, or dissolved and mixed in a surface crosslinking agent or an aqueous solution thereof. May be.
 上記水溶性多価金属カチオン含有化合物の添加量は、添加される吸水性樹脂粒子100質量部に対して、多価金属カチオン量に換算で0.001~5質量部であることが好ましく、0.01~2質量部であることがより好ましく、0.01~1質量部であることが更に好ましい。 The amount of the water-soluble polyvalent metal cation-containing compound added is preferably 0.001 to 5 parts by mass in terms of the amount of polyvalent metal cation with respect to 100 parts by mass of the water-absorbing resin particles to be added. The amount is more preferably 0.01 to 2 parts by mass, and still more preferably 0.01 to 1 part by mass.
 また、複数回添加してもよく、その場合、例えば、2回添加する場合、その(質量)比率として好ましくは1/99~99/1、より好ましくは10/90~90/10の範囲に規定される。これらの範囲を超えると、極めて1回での添加と同じ状況に近くなり複数回添加の効果が乏しくなるため好ましくない。 Further, it may be added a plurality of times. In this case, for example, when added twice, the (mass) ratio is preferably in the range of 1/99 to 99/1, more preferably in the range of 10/90 to 90/10. It is prescribed. Exceeding these ranges is not preferable because it is very close to the same situation as the one-time addition and the effect of the multiple-time addition becomes poor.
 水溶性多価金属カチオン含有化合物を水溶液として添加する場合には、水以外に親水性有機溶媒(アルコール又はポリグリコール)や界面活性剤を併用して分散性や溶解性や混合性を向上させてもよい。使用する水の量は、添加剤の種類や添加方法で適宜決定されるが、例えば、吸水性樹脂粒子100質量部に対して、好ましくは0質量部(乾式混合)~50質量部、より好ましくは0.1~10質量部、更に好ましくは0.5~5質量部である。 When adding a water-soluble polyvalent metal cation-containing compound as an aqueous solution, in addition to water, a hydrophilic organic solvent (alcohol or polyglycol) or a surfactant is used in combination to improve dispersibility, solubility and mixing properties. Also good. The amount of water to be used is appropriately determined depending on the type and addition method of the additive. For example, it is preferably 0 part by mass (dry mixing) to 50 parts by mass, more preferably 100 parts by mass of the water absorbent resin particles. Is 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass.
 (界面活性剤)
 更に、ポリアクリル酸(塩)系吸水性樹脂粒子は、界面活性剤を含んでいてもよく、本発明の製造方法がいずれかの工程で界面活性剤を混合する工程を含むことが好ましい。
(Surfactant)
Furthermore, the polyacrylic acid (salt) -based water-absorbent resin particles may contain a surfactant, and the production method of the present invention preferably includes a step of mixing the surfactant in any step.
 本発明の吸水性樹脂粒子の表面を界面活性剤で被覆することで、高吸水速度及び高通液性の吸水性樹脂粒子が得られる。なお、界面活性剤としては特に限定されないが、国際公開第97/017397号や米国特許第6107358号に開示された界面活性剤、即ち、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。これらの界面活性剤はアクリル酸(塩)系単量体や吸水性樹脂粒子との重合性又は反応性を有するものであってもよい。 The surface of the water-absorbing resin particles of the present invention is coated with a surfactant to obtain water-absorbing resin particles having a high water absorption rate and high liquid permeability. The surfactant is not particularly limited, but the surfactant disclosed in International Publication No. 97/017397 and US Pat. No. 6,107,358, that is, nonionic surfactant, anionic surfactant, cationic interface. Examples include activators and amphoteric surfactants. These surfactants may be polymerizable or reactive with acrylic acid (salt) monomers or water-absorbing resin particles.
 使用する界面活性剤の種類や使用量は適宜決定されるが、表面張力の観点から、吸水性樹脂粒子100質量部に対して、好ましくは0~0.5質量部、より好ましくは0.00001~0.1質量部、更に好ましくは0.001~0.05質量部の範囲で使用される。これらの界面活性剤の中でも、効果の観点から、アニオン性界面活性剤、ノニオン性界面活性剤、又はシリコーン系界面活性剤を用いることが好ましく、ノニオン性界面活性剤又はシリコーン系界面活性剤を用いることが更に好ましい。 The type and amount of the surfactant to be used are appropriately determined. From the viewpoint of surface tension, it is preferably 0 to 0.5 parts by mass, more preferably 0.00001, relative to 100 parts by mass of the water-absorbent resin particles. It is used in the range of ~ 0.1 parts by mass, more preferably 0.001 to 0.05 parts by mass. Among these surfactants, anionic surfactants, nonionic surfactants, or silicone surfactants are preferably used from the viewpoint of effects, and nonionic surfactants or silicone surfactants are used. More preferably.
 (着色防止剤及び耐尿性向上剤)
 本発明においては、着色防止や劣化防止、残存モノマー低減等を目的として、キレート剤(特に、有機リン系キレート剤、アミノカルボン酸系キレート剤)、α-ヒドロキシカルボン酸(特に、リンゴ酸(塩))、無機又は有機還元剤(特に、硫黄系無機還元剤)から選ばれる着色防止剤又は耐尿性向上剤を更に含むことが好ましい。なお、表面積の大きい吸水性樹脂粒子は一般的に着色や劣化し易い傾向にある。中でも経時での着色防止効果及び耐尿性向上の観点から、キレート剤を含むことが好ましく、更に、着色防止効果の観点から、キレート剤と、α-ヒドロキシカルボン酸(塩)、無機又は有機還元剤(特に硫黄系無機還元剤)及びリン化合物からなる群から選ばれる化合物と、を含むことが好ましい。したがって、本発明の好適な一実施形態は、更にキレート剤を添加するキレート剤添加工程を含む。
(Anticolorant and urine resistance improver)
In the present invention, chelating agents (especially organophosphorus chelating agents and aminocarboxylic acid chelating agents) and α-hydroxycarboxylic acids (especially malic acid (salts) are used for the purpose of preventing coloring and deterioration, reducing residual monomers, and the like. )), A coloring inhibitor or a urine resistance improver selected from inorganic or organic reducing agents (especially sulfur-based inorganic reducing agents). In addition, water-absorbing resin particles having a large surface area generally tend to be easily colored or deteriorated. Among them, a chelating agent is preferably included from the viewpoint of preventing coloration over time and improving urine resistance. Further, from the viewpoint of preventing coloring, a chelating agent, α-hydroxycarboxylic acid (salt), inorganic or organic reduction is preferable. And a compound selected from the group consisting of an agent (particularly a sulfur-based inorganic reducing agent) and a phosphorus compound. Accordingly, a preferred embodiment of the present invention includes a chelating agent addition step of adding a chelating agent.
 上記キレート剤としては、米国特許第6599989号、同第6469080号、欧州特許第2163302号等に開示されたキレート剤、特に非高分子キレート剤、更には有機リン系キレート剤、アミノカルボン酸系キレート剤、無機多価リン酸、アミノ多価リン酸が挙げられる。 Examples of the chelating agent include chelating agents disclosed in US Pat. Nos. 6,599,989, 6,469,080, and European Patent No. 2,163,302, particularly non-polymer chelating agents, organophosphorus chelating agents, and aminocarboxylic acid chelating agents. Agents, inorganic polyvalent phosphoric acid, and amino polyvalent phosphoric acid.
 有機リン系キレート剤としては、ニトリロ酢酸-ジ(メチレンホスフィン酸)、ニトリロジ酢酸-(メチレンホスフィン酸)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸、ニトリロトリス(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸等が挙げられる。アミノカルボン酸系キレート剤としては、イミノ2酢酸、ヒドロキシエチルイミノ2酢酸、ニトリロ3酢酸、ニトリロ3プロピオン酸、エチレンジアミン4酢酸、ジエチレントリアミン5酢酸、トリエチレンテトラミン6酢酸、trans-1,2-ジアミノシクロヘキサン4酢酸、N,N-ビス(2-ヒドロキシエチル)グリシン、ジアミノプロパノール4酢酸、エチレンジアミン2プロピオン酸、ヒドロキシエチレンジアミン3酢酸、グリコールエーテルジアミン4酢酸、ジアミノプロパン4酢酸、N,N’-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N’-2酢酸、1,6-ヘキサメチレンジアミン-N,N,N’,N’-4酢酸及びそれらの塩等が挙げられる。 Organic phosphorus chelating agents include nitriloacetic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid-β-propionic acid-methylenephosphonic acid, nitrilotris (methylenephosphonic acid), 1-hydroxy And ethylidene diphosphonic acid. Examples of aminocarboxylic acid chelating agents include iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, nitrilo-3-propionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexane. 4-acetic acid, N, N-bis (2-hydroxyethyl) glycine, diaminopropanol tetraacetic acid, ethylenediamine 2-propionic acid, hydroxyethylenediamine triacetic acid, glycol ether diamine tetraacetic acid, diaminopropane tetraacetic acid, N, N′-bis (2 -Hydroxybenzyl) ethylenediamine-N, N'-2acetic acid, 1,6-hexamethylenediamine-N, N, N ', N'-4 acetic acid and salts thereof.
 無機多価リン酸としては、メタリン酸、ピロリン酸、トリポリリン酸、ヘキサメタリン酸、及びそれらの塩等が挙げられる。 Examples of the inorganic polyvalent phosphoric acid include metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, hexametaphosphoric acid, and salts thereof.
 アミノ多価リン酸としては、エチレンジアミン-N,N’-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ酢酸-N,N’-ジ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びこれらの塩等が挙げられる。 Examples of aminopolyvalent phosphoric acid include ethylenediamine-N, N′-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N′-diacetic acid-N , N'-di (methylenephosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) And salts thereof.
 上記塩として好ましいものは、一価塩、特にナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩を挙げることができ、ナトリウム塩、カリウム塩が特に好ましい。 Preferred examples of the salt include monovalent salts, particularly alkali metal salts such as sodium salts and potassium salts, ammonium salts, and amine salts, and sodium salts and potassium salts are particularly preferable.
 なお、上記キレート剤の中でも、着色防止の観点から、アミノカルボン酸系キレート剤、アミノ多価燐酸及びこれらの塩が好適に用いられる。中でも、ジエチレントリアミン5酢酸、トリエチレンテトラミン6酢酸、trans-1,2-ジアミノシクロヘキサン4酢酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好適に用いられる。これらの中でも、エチレンジアミンテトラ(メチレンホスホン酸)又はその塩が最も好ましい。 Among the chelating agents, aminocarboxylic acid chelating agents, amino polyvalent phosphoric acids, and salts thereof are preferably used from the viewpoint of preventing coloring. Of these, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and salts thereof are more preferably used. Among these, ethylenediaminetetra (methylenephosphonic acid) or a salt thereof is most preferable.
 上記α-ヒドロキシカルボン酸としては、米国特許出願公開第2009/0312183号等に開示されたリンゴ酸(塩)、琥珀酸(塩)、乳酸(塩)が挙げられる。 Examples of the α-hydroxycarboxylic acid include malic acid (salt), succinic acid (salt), and lactic acid (salt) disclosed in US Patent Application Publication No. 2009/0312183.
 上記無機又は有機還元剤としては、米国特許出願公開第2010/0062252号等に開示された硫黄系還元剤、特に亜硫酸塩又は亜硫酸水素塩等が挙げられる。 Examples of the inorganic or organic reducing agent include sulfur-based reducing agents disclosed in US Patent Application Publication No. 2010/0062252 and the like, particularly sulfites and bisulfites.
 本発明における無機還元剤は、上記重合工程で用いる重合開始剤としての還元剤とは区別される。すなわち、無機還元剤とは、還元性を有する化合物をいい、還元性無機元素を有していればよく、具体的には、還元性の硫黄原子又は還元性の燐原子を有する化合物が挙げられ、好ましくは還元性の硫黄原子を含む化合物又は還元性の燐原子を含む水溶性化合物が挙げられる。したがって、無機化合物であっても有機化合物であっても、還元性の硫黄原子又は還元性の燐原子を有していれば、本発明の無機還元剤とみなす。 The inorganic reducing agent in the present invention is distinguished from the reducing agent as the polymerization initiator used in the polymerization step. That is, the inorganic reducing agent refers to a compound having a reducing property, as long as it has a reducing inorganic element, and specifically includes a compound having a reducing sulfur atom or a reducing phosphorus atom. And preferably a compound containing a reducing sulfur atom or a water-soluble compound containing a reducing phosphorus atom. Therefore, even if it is an inorganic compound or an organic compound, if it has a reducing sulfur atom or a reducing phosphorus atom, it is regarded as the inorganic reducing agent of the present invention.
 無機還元剤は酸型でもよいが、好ましくは塩型であり、塩としては1価又は多価の金属塩がより好ましく、1価の塩が更に好ましい。これら無機還元剤のうち、下記に挙げられる含酸素還元性無機化合物、すなわち、硫黄や燐が酸素と結合した無機還元剤、中でも含酸素系還元性無機塩が好ましい。また、これらの無機還元剤は、アルキル基、ヒドロキシアルキル基等の有機化合物に還元性の無機原子、好ましくは、還元性の硫黄原子又は燐原子を有している無機還元剤でもよい。 The inorganic reducing agent may be an acid type, but is preferably a salt type, and the salt is more preferably a monovalent or polyvalent metal salt, and more preferably a monovalent salt. Among these inorganic reducing agents, oxygen-containing reducing inorganic compounds listed below, that is, inorganic reducing agents in which sulfur or phosphorus is combined with oxygen, among them oxygen-containing reducing inorganic salts are preferable. These inorganic reducing agents may be inorganic reducing agents having a reducing inorganic atom, preferably a reducing sulfur atom or phosphorus atom, in an organic compound such as an alkyl group or a hydroxyalkyl group.
 また、本発明で用いられる、還元性の硫黄原子又は還元性の燐原子を有している無機還元剤としては、最も安定な硫黄原子の酸化数は+6(正6価)、燐原子の酸化数は+5(正5価)であるが、一般にそれ以下の酸化数の各原子は還元性を有しており、+4価の硫黄化合物(例えば、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩)、+3価の硫黄化合物(例えば、亜二チオン酸塩)、+2価の硫黄化合物(例えば、スルホキシル酸塩)、+4価のリン化合物(例えば、次燐酸塩)、+3価のリン化合物(例えば、亜燐酸塩、ピロ亜燐酸塩)、+1価のリン化合物(例えば、次亜燐酸塩)が使用される。これら還元性の無機化合物では、還元性硫黄原子又は還元性燐原子が有機物で置換されていてもよい。 As the inorganic reducing agent having a reducing sulfur atom or a reducing phosphorus atom used in the present invention, the most stable oxidation number of the sulfur atom is +6 (positive hexavalent), and the oxidation of the phosphorus atom. The number is +5 (positive pentavalent), but generally, each atom having an oxidation number of less than that has reducibility, and a + 4-valent sulfur compound (for example, sulfite, bisulfite, pyrosulfite), + Trivalent sulfur compounds (e.g. dithionite), + divalent sulfur compounds (e.g. sulfoxylate), + tetravalent phosphorus compounds (e.g. hypophosphate), + trivalent phosphorus compounds (e.g. suboxide) Phosphates, pyrophosphites), +1 valent phosphorus compounds (eg hypophosphites) are used. In these reducing inorganic compounds, the reducing sulfur atom or the reducing phosphorus atom may be substituted with an organic substance.
 無機還元剤である、硫黄原子を含む無機化合物としては、特に限定されないが、例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸カルシウム、亜硫酸亜鉛、亜硫酸アンモニウム等の亜硫酸塩;亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素カルシウム、亜硫酸水素アンモニウム等の亜硫酸水素塩;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸アンモニウム等のピロ亜硫酸塩;亜二チオン酸ナトリウム、亜二チオン酸カリウム、亜二チオン酸アンモニウム、亜二チオン酸カルシウム、亜二チオン酸亜鉛等の亜二チオン酸塩;三チオン酸カリウム、三チオン酸ナトリウム等の三チオン酸塩;四チオン酸カリウム、四チオン酸ナトリウム等の四チオン酸塩;チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸アンモニウム等のチオ硫酸塩;亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸亜鉛等の亜硝酸塩等が挙げられ、リン原子を含む無機化合物としては、次亜リン酸ナトリウム等が挙げられる。また、無機還元剤である、硫黄原子を含む有機化合物としては、例えば、2-ヒドロキシ-2-スルフィナート酢酸、ホルムアルデヒドスルホキシル酸ナトリウム、ホルムアミジンスルフィン酸及びチオグリコール酸トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、トリブチルホスフィン(TBP)等も挙げられる。これらの中でも、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜二チオン酸塩が好ましく、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸カリウム、亜二チオン酸ナトリウム、2-ヒドロキシ-2-スルフィナート酢酸、2-ヒドロキシ-2-スルホナト酢酸、及び/又はこれらの塩がより好ましい。好ましい塩としては、アルカリ金属、及びアルカリ土類金属塩であり、Li、Na、Kが好ましく、特にナトリウム塩が好ましい。2-ヒドロキシ-2-スルフィナート酢酸(塩)は、2-ヒドロキシ-2-スルホナト酢酸(塩)と組み合わせて使用してもよい。 The inorganic compound containing a sulfur atom, which is an inorganic reducing agent, is not particularly limited, but examples thereof include sulfites such as sodium sulfite, potassium sulfite, calcium sulfite, zinc sulfite, and ammonium sulfite; Bisulfites such as calcium hydrogen and ammonium bisulfite; pyrosulfites such as sodium pyrosulfite, potassium pyrosulfite and ammonium pyrosulfite; sodium dithionite, potassium dithionite, ammonium dithionite, dithione Dithionites such as calcium oxide and zinc dithionite; Trithionates such as potassium trithionate and sodium trithionate; Tethionates such as potassium tetrathionate and sodium tetrathionate; Thiosulfate Sodium, potassium thiosulfate, ammonium thiosulfate Thiosulfates such beam; sodium nitrite, potassium nitrite, calcium nitrite, include nitrites such as zinc nitrite, the inorganic compound containing a phosphorus atom, sodium hypophosphite, and the like. Examples of the organic compound containing a sulfur atom as an inorganic reducing agent include 2-hydroxy-2-sulfinate acetic acid, sodium formaldehydesulfoxylate, formamidinesulfinic acid, and tris (2-carboxyethyl) phosphine thioglycolate. Examples include hydrochloride (TCEP) and tributylphosphine (TBP). Of these, sulfites, hydrogen sulfites, pyrosulfites, and dithionites are preferred. Sodium sulfite, sodium hydrogen sulfite, potassium pyrosulfite, sodium dithionite, 2-hydroxy-2-sulfinate acetate, -Hydroxy-2-sulfonatoacetic acid and / or salts thereof are more preferred. Preferred salts are alkali metal and alkaline earth metal salts, with Li, Na and K being preferred, and sodium salt being particularly preferred. 2-Hydroxy-2-sulfinate acetic acid (salt) may be used in combination with 2-hydroxy-2-sulfonatoacetic acid (salt).
 好ましい無機還元剤として、2-ヒドロキシ-2-スルフィナート酢酸は、還元性の硫黄原子をスルフィナート基として有するため本発明の無機還元剤であり、Brueggemann Chemical(ドイツ国Heilbron)から市販されているBRUGGOLITE(R)FF7として入手することができ、2-ヒドロキシ-2-スルフィナート酢酸二ナトリウム塩を50~60重量%、亜硫酸ナトリウム(NaSO)を30~35重量%及び2-ヒドロキシ-2-スルホナト酢酸二ナトリウム塩を10~15重量%含有するBRUGGOLITE(R)FF6として入手することができる。 As a preferred inorganic reducing agent, 2-hydroxy-2-sulfinate acetic acid is an inorganic reducing agent of the present invention because it has a reducing sulfur atom as a sulfinate group, and BRUGGOLITE (available from Brueggemann Chemical, Heilbron, Germany) R) FF7, available from 50-60 wt% 2-hydroxy-2-sulfinate acetic acid disodium salt, 30-35 wt% sodium sulfite (Na 2 SO 3 ) and 2-hydroxy-2-sulfonate It can be obtained as BRUGGOLITE® FF6 containing 10-15% by weight of disodium acetate.
 リン化合物としては有機リン化合物又は無機リン化合物があり、好ましくは、水溶性リン化合物である。更に、得られる吸水剤の物性、例えば、加圧下での吸水倍率や、特に表面張力低下の抑止の観点から、無機リン化合物が好ましい。 The phosphorus compound includes an organic phosphorus compound or an inorganic phosphorus compound, preferably a water-soluble phosphorus compound. Furthermore, an inorganic phosphorus compound is preferable from the viewpoint of the physical properties of the obtained water-absorbing agent, for example, the water absorption capacity under pressure, and particularly the suppression of a decrease in surface tension.
 特に好ましいリン化合物は、水溶性無機リン化合物であり、具体的には、リン酸、亜リン酸、次亜リン酸、トリリン酸、トリポリリン酸及びこれらの塩(例えば、リン酸1水素2ナトリウム塩やリン酸2水素1ナトリウム塩、リン酸3ナトリウム塩等)であり、特に好ましい化合物は、吸水剤の吸水特性の観点から、還元性を有しないリン酸(塩)である。また、好ましい塩としては水溶性一価塩、すなわち、ナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩を挙げることができる。前記塩のうち、経時着色防止効果の観点から、最も好ましくはpH7以下の酸性を呈するものであり、リン酸、リン酸2水素1ナトリウム塩、リン酸2水素1カリウム塩、リン酸2水素1アンモニウム塩である。 Particularly preferred phosphorus compounds are water-soluble inorganic phosphorus compounds. Specifically, phosphoric acid, phosphorous acid, hypophosphorous acid, triphosphoric acid, tripolyphosphoric acid and salts thereof (for example, monohydrogen phosphate disodium salt) And particularly preferable compounds are phosphoric acid (salt) having no reducing property from the viewpoint of the water absorption property of the water-absorbing agent. Preferred salts include water-soluble monovalent salts, that is, alkali metal salts such as sodium salts and potassium salts, ammonium salts, and amine salts. Among the salts, from the viewpoint of the effect of preventing coloration with time, it is most preferable to exhibit an acidity of pH 7 or lower. Phosphoric acid, dihydrogen phosphate monosodium salt, dihydrogen phosphate monopotassium salt, dihydrogen phosphate 1 Ammonium salt.
 上記リン化合物は1種単独で用いてもよいし、2種以上併用してもよい。 The above phosphorus compounds may be used alone or in combination of two or more.
 着色防止剤又は耐尿性向上剤の使用量は、吸水性樹脂粒子100質量部に対して、0~3質量部が好ましく、0.001~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。 The amount of the coloring inhibitor or urine resistance improver used is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 part by mass, and more preferably 0.05 to 0. 5 parts by mass is particularly preferred.
 着色防止剤又は耐尿性(耐候性)向上剤は、単量体、含水ゲル、乾燥重合体、吸水性樹脂粒子等に添加することが出来るが、重合工程以降に添加するのが好ましい。特に、前記無機又は有機還元剤は重合工程で消費されるため、重合工程後、更には乾燥工程後に、特に少なくとも一部は表面架橋工程後に添加することが好ましい。 The anti-coloring agent or urine resistance (weather resistance) improver can be added to the monomer, water-containing gel, dry polymer, water-absorbing resin particles, etc., but is preferably added after the polymerization step. In particular, since the inorganic or organic reducing agent is consumed in the polymerization step, it is preferably added after the polymerization step, further after the drying step, particularly at least partly after the surface crosslinking step.
 好適な一実施形態は、着色防止剤又は耐尿性(耐候性)向上剤を、上記(2-1)アクリル酸(塩)系単量体水溶液の調製工程において添加する。又は、(2-8)表面架橋工程の後で、かつ、(2-10)吸水性樹脂粒子と水不溶性無機粒子とを混合する工程の前に実施される表面架橋工程で得られた吸水性樹脂粒子に添加する。 In a preferred embodiment, an anti-coloring agent or a urine resistance (weather resistance) improver is added in the step (2-1) of preparing the acrylic acid (salt) monomer aqueous solution. Or (2-8) the water absorption obtained in the surface crosslinking step performed after the surface crosslinking step and (2-10) before the step of mixing the water absorbent resin particles and the water-insoluble inorganic particles. Add to resin particles.
 なお、各製造工程で添加される各種の添加剤の使用量が、実質的に得られた吸水剤中の含有量となるが、吸水剤中の各添加剤は、残存モノマーや水可溶分の定量と同様に水や生理食塩水によって吸水剤から抽出して、液体クロマトグラフィーやイオンクロマトグラフィー等で適宜定量することができる。 In addition, although the usage-amount of the various additives added at each manufacturing process becomes content in the obtained water-absorbing agent, each additive in a water-absorbing agent is a residual monomer and a water-soluble component. In the same manner as in quantification, water can be extracted from the water-absorbing agent with physiological saline and quantified appropriately by liquid chromatography, ion chromatography, or the like.
 上述したようにキレート剤を含んだ吸水剤とすることが好ましいが、キレート剤は、少なくとも一部を上記(2-1)アクリル酸(塩)系単量体水溶液の調製工程、又は、(2-2)水溶液重合工程において添加することが好ましく、少なくとも工程(2-1)において、アクリル酸(塩)系単量体水溶液に添加することがより好ましい。この際、キレート剤の添加量は、アクリル酸(塩)系単量体に対して、0.1~3.0質量%であることが好ましい。 As described above, it is preferable to use a water-absorbing agent containing a chelating agent. However, at least a part of the chelating agent is (2-1) the step of preparing the acrylic acid (salt) monomer aqueous solution, or (2 -2) It is preferably added in the aqueous solution polymerization step, and more preferably added to the acrylic acid (salt) monomer aqueous solution at least in step (2-1). In this case, the addition amount of the chelating agent is preferably 0.1 to 3.0% by mass with respect to the acrylic acid (salt) monomer.
 キレート剤、無機還元剤、α-ヒドロキシカルボン酸及びリン化合物の添加は、溶媒を必要とせず、直接、表面架橋後の吸水性樹脂粒子に添加してもよく、固体の場合には粉体混合(ドライブレンド)とすることができる。しかしながら、吸水性樹脂粒子への固定の観点から、上記化合物は、好ましくは溶液、より好ましくは水溶液又は水性液で添加される。その際、溶媒には、水、有機溶媒と水の混合溶媒が使用される。その量としては、吸水性樹脂粒子100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~30質量部、更に好ましくは0.1~10質量部の範囲であり、水溶液濃度は好ましくは1~50質量%程度でよい。更には必要により界面活性剤等を用いてもよい。溶媒は必要により乾燥すればよい。 Addition of chelating agent, inorganic reducing agent, α-hydroxycarboxylic acid and phosphorus compound does not require a solvent and may be added directly to the water-absorbent resin particles after surface cross-linking. (Dry blend). However, from the viewpoint of fixation to the water-absorbent resin particles, the compound is preferably added as a solution, more preferably as an aqueous solution or an aqueous solution. In that case, water, the mixed solvent of an organic solvent, and water are used for a solvent. The amount is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 30 parts by weight, and still more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-absorbent resin particles. The concentration of the aqueous solution is preferably about 1 to 50% by mass. Further, a surfactant or the like may be used if necessary. The solvent may be dried if necessary.
 なお、国際公開第2009/093708号記載の水溶性ポリシロキサンや、国際公開第2008/108343号(米国特許出願公開第2008/221229号)記載の1~3級アミン化合物等も添加剤として好ましく使用することが出来る。 Water-soluble polysiloxanes described in International Publication No. 2009/093708 and primary to tertiary amine compounds described in International Publication No. 2008/108343 (US Patent Application Publication No. 2008/221229) are also preferably used as additives. I can do it.
 (2-10)吸水性樹脂粒子と水不溶性無機粒子とを混合する工程
 次いで、上記一連の操作で得られた吸水性樹脂粒子と水不溶性無機粒子とを混合する。なお、水不溶性無機粒子が添加される吸水性樹脂粒子は、表面架橋されたものであってもよく、表面架橋されていないものであってもよい。また、水不溶性無機粒子の混合は、吸水性樹脂粒子又は他の添加剤を含有する吸水剤(以下、「吸水剤」と称する)と混合されてもよい。更に、水不溶性無機粒子の混合は、後述のように、吸収性物品を製造する際に、吸水性樹脂粒子又は吸水剤、水不溶性無機粒子、及び親水性繊維を混合してもよい。すなわち、吸水性樹脂粒子と水不溶性無機粒子とを混合する工程が、吸水性樹脂粒子、水不溶性無機粒子、及び親水性繊維を混合して吸収体を製造する工程となる形態も好ましい。なお、吸水性樹脂粒子又は吸水剤を以下、「吸水性樹脂粒子/吸水剤」と表記する場合がある。
(2-10) Step of mixing water-absorbing resin particles and water-insoluble inorganic particles Next, the water-absorbing resin particles and water-insoluble inorganic particles obtained by the above series of operations are mixed. The water-absorbing resin particles to which the water-insoluble inorganic particles are added may be surface-crosslinked or may not be surface-crosslinked. In addition, the water-insoluble inorganic particles may be mixed with a water-absorbing agent particle (hereinafter referred to as “water-absorbing agent”) containing water-absorbing resin particles or other additives. Furthermore, the mixing of the water-insoluble inorganic particles may be performed by mixing the water-absorbing resin particles or the water-absorbing agent, the water-insoluble inorganic particles, and the hydrophilic fibers when the absorbent article is manufactured as described later. That is, it is also preferable that the step of mixing the water-absorbing resin particles and the water-insoluble inorganic particles is a step of manufacturing the absorbent body by mixing the water-absorbing resin particles, the water-insoluble inorganic particles, and the hydrophilic fibers. Hereinafter, the water absorbent resin particles or the water absorbent may be referred to as “water absorbent resin particles / water absorbent”.
 水不溶性無機粒子を添加することで、吸収性物品に用いられる吸水性樹脂粒子/吸水剤の流動性が確保される。また、水不溶性無機粒子を添加することで、吸収性物品の吸収量の向上を図ることができる。 Addition of water-insoluble inorganic particles ensures the fluidity of the water-absorbent resin particles / water-absorbing agent used in the absorbent article. Moreover, the absorption amount of an absorbent article can be improved by adding water-insoluble inorganic particles.
 また、上述の通り、吸水性樹脂粒子/吸水剤は、製造後の保管によって吸収性物品を製造する際に流動性を失っている場合がある。かような流動性を失った吸水性樹脂粒子/吸水剤に対して、水不溶性無機粒子を混合して好適には吸収体を成形することで、性能を維持したまま、吸水性樹脂粒子/吸水剤の流動性が回復するので、生産性が向上する。 Also, as described above, the water-absorbent resin particles / water-absorbing agent may lose fluidity when producing absorbent articles by storage after production. Such water-absorbing resin particles / water-absorbing agent that have lost its fluidity are mixed with water-insoluble inorganic particles, preferably by forming an absorbent body, while maintaining the performance of the water-absorbing resin particles / water-absorbing agent. Since the fluidity of the agent is restored, productivity is improved.
 したがって、水不溶性無機粒子の添加時期は、吸水性樹脂粒子/吸水剤の製造直後であってもよいし、吸水性樹脂粒子/吸水剤を一定期間保管後に添加してもよい。 Therefore, the water-insoluble inorganic particles may be added immediately after the production of the water-absorbing resin particles / water-absorbing agent, or the water-absorbing resin particles / water-absorbing agent may be added after storage for a certain period.
 添加される吸水性樹脂粒子/吸水剤としては、吸湿後の2000μm篩透過率が50質量%以下(下限0質量%)となる吸水性樹脂粒子/吸水剤を用いることが好ましい。このような吸水性樹脂粒子/吸水剤に水不溶性無機粒子を添加することで、高湿条件下等の吸湿環境に保存されても、吸水性樹脂粒子/吸水剤の流動性が低下しにくくなる。また、吸湿後の2000μm篩透過率が50質量%を超える吸水性樹脂粒子/吸水剤では、本発明の効果が得られにくい。更に好適な形態は、吸水性樹脂粒子/吸水剤の吸湿後の2000μm篩透過率が好ましくは30質量%以下であり、より好ましくは15質量%以下である。 As the water-absorbing resin particles / water-absorbing agent to be added, water-absorbing resin particles / water-absorbing agent having a 2000 μm sieve transmittance after moisture absorption of 50% by mass or less (lower limit 0% by mass) is preferably used. By adding water-insoluble inorganic particles to such water-absorbing resin particles / water-absorbing agent, the fluidity of the water-absorbing resin particles / water-absorbing agent is not easily lowered even when stored in a moisture-absorbing environment such as high humidity conditions. . In addition, the water-absorbent resin particles / water-absorbing agent having a 2000 μm sieve permeability after moisture absorption exceeding 50% by mass is difficult to obtain the effects of the present invention. In a more preferred form, the 2000 μm sieve transmittance after moisture absorption of the water absorbent resin particles / water absorbent is preferably 30% by mass or less, more preferably 15% by mass or less.
 また、上記のように、流動性を失った吸水性樹脂粒子/吸水剤に対して、水不溶性無機粒子を混合して好適には吸収体を成形することで、性能を維持したまま、吸水性樹脂粒子/吸水剤の流動性を回復させることができる。このため、水不溶性無機粒子の好適な添加時期は、例えば、一定期間保管後に吸水性樹脂粒子/吸水剤が吸湿した状態で、水不溶性無機粒子を添加する形態である。吸水性樹脂粒子/吸水剤の吸湿状態は、2000μmの篩透過率を指標とすることができる。すなわち、吸水性樹脂粒子/吸水剤が吸湿すると凝集して粗大化するために、篩透過率が低下する。本発明における好適な一実施形態は、2000μm篩透過率が好ましくは50質量%以下(下限0質量%)の吸水性樹脂粒子/吸水剤に、水不溶性粒子を混合する形態である。より好適な形態は、吸水剤の2000μm篩透過率がより好ましくは30質量%以下であり、更に好ましくは15質量%以下である。 In addition, as described above, the water-absorbing resin particles / water-absorbing agent that has lost its fluidity are mixed with water-insoluble inorganic particles, and an absorbent body is preferably formed, so that the water-absorbing property is maintained while maintaining the performance. The fluidity of the resin particles / water absorbent can be recovered. For this reason, the suitable addition time of the water-insoluble inorganic particles is, for example, a form in which the water-insoluble inorganic particles are added in a state where the water-absorbing resin particles / water-absorbing agent absorbs moisture after storage for a certain period of time. The moisture absorption state of the water-absorbent resin particles / water-absorbing agent can be determined using a sieve transmittance of 2000 μm as an index. That is, when the water-absorbing resin particles / water-absorbing agent absorbs moisture, the water-absorbing resin particles / water-absorbing agent are aggregated and coarsened, so that the sieve permeability is lowered. One preferred embodiment of the present invention is a form in which water-insoluble particles are mixed with water-absorbing resin particles / water-absorbing agent having a 2000 μm sieve permeability of preferably 50% by mass or less (lower limit 0% by mass). In a more preferred form, the 2000 μm sieve permeability of the water-absorbing agent is more preferably 30% by mass or less, and further preferably 15% by mass or less.
 2000μm篩透過率及び吸湿後の2000μm篩透過率は、下記実施例に記載の方法によって測定された値とする。 The 2000 μm sieve transmittance and the 2000 μm sieve transmittance after moisture absorption are values measured by the methods described in the following examples.
 上述の(粒度分布)の欄、及び下記(4-4)粒度の欄に記載のように、吸水性樹脂粒子及び吸水剤は、吸水性能向上の観点から質量平均粒子径(D50)や粒度分布を制御することが好ましい。質量平均粒子径(D50)や粒度分布を好適な範囲に制御したとしても、例えば、保管時の吸湿により粒度分布として、粒子径が大きいほうにシフトしてしまう。粒度分布が大きいほうにシフトした吸水性樹脂粒子/吸水剤に、水不溶性無機粒子を添加することによって、粒子径の粗大化によって失われた流動性を回復させることができる。したがって、本発明の好適な一実施形態は、粒子径が150μm以上850μm未満である粒子の割合が95質量%以上である吸水性樹脂粒子又は吸水剤を得る工程、及び経時により2000μm篩透過率が50質量%以下となった前記吸水性樹脂粒子又は吸水剤と、水不溶性無機粒子と、を混合する工程を有する吸収性物品の製造方法である。ここで、「経時」における時間経過は、例えば、保存環境下における湿度によって大きく変化するため、一義的には決定されない。また、上記形態において、吸水性樹脂粒子又は吸水剤と、水不溶性無機粒子と、の混合物の2000μm篩透過率は、50質量%を超えることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。 As described in the above (Particle Size Distribution) column and the following (4-4) Particle Size column, the water-absorbent resin particles and the water-absorbing agent have a mass average particle size (D50) and a particle size distribution from the viewpoint of improving water absorption performance. Is preferably controlled. Even if the mass average particle size (D50) and the particle size distribution are controlled within a suitable range, for example, the particle size distribution is shifted to the larger particle size distribution due to moisture absorption during storage. By adding water-insoluble inorganic particles to the water-absorbing resin particles / water-absorbing agent shifted to the larger particle size distribution, the fluidity lost due to the coarsening of the particle diameter can be recovered. Therefore, in a preferred embodiment of the present invention, a step of obtaining water-absorbing resin particles or a water-absorbing agent having a particle diameter of 95% by mass or more and a particle size of 150 μm or more and less than 850 μm, and a 2000 μm sieve permeability with time is obtained. It is a manufacturing method of an absorptive article which has the process of mixing the water-absorbent resin particles or water-absorbing agent which became 50 mass% or less, and water-insoluble inorganic particles. Here, the time elapsed in “time elapsed” is not uniquely determined because it largely varies depending on the humidity in the storage environment, for example. In the above embodiment, the 2000 μm sieve transmittance of the mixture of the water-absorbent resin particles or water-absorbing agent and the water-insoluble inorganic particles is preferably more than 50% by mass, more preferably 75% by mass or more, More preferably, it is 80 mass% or more.
 また、本発明は、経時によって2000μm篩透過率が低下した吸水性樹脂粒子又は吸水剤と、水不溶性無機粒子と、を混合する、吸水性樹脂粒子又は吸水剤の流動性回復方法をも提供する。この際、水不溶性無機粒子を添加する前の吸水性樹脂粒子又は吸水剤の2000μm篩透過率と、水不溶性無機粒子を添加した後の吸水性樹脂粒子又は吸水剤と水不溶性無機粒子との混合物の2000μm篩透過率とを比較した場合、後者が20質量%以上高いことが好ましく、30質量%以上高いことが好ましく、50質量%以上高いことが好ましい。 The present invention also provides a method for recovering the fluidity of water-absorbing resin particles or a water-absorbing agent, comprising mixing water-absorbing resin particles or a water-absorbing agent having a 2000 μm sieve permeability decrease with time and water-insoluble inorganic particles. . At this time, the water-absorbing resin particles or the water-absorbing agent before adding the water-insoluble inorganic particles has a 2000 μm sieve transmittance, and the water-absorbing resin particles or the water-absorbing agent and the water-insoluble inorganic particles after the water-insoluble inorganic particles are added. Of the latter, the latter is preferably 20% by mass or more, preferably 30% by mass or more, and preferably 50% by mass or more.
 (水不溶性無機粒子)
 水不溶性無機粒子としては、ハイドロタルサイト等の多元金属化合物、二酸化ケイ素(シリカ)、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、金属リン酸塩(例えば、リン酸三カルシウム等のリン酸カルシウム、リン酸バリウム、リン酸アルミニウム)、金属硼酸塩(例えば、ホウ酸チタン、ホウ酸アルミニウム、ホウ酸鉄、ホウ酸マグネシウム、ホウ酸マンガン、ホウ酸カルシウム)、珪酸又はその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、活性白土等が挙げられる。中でも、本発明の効果が顕著に得られることから、水不溶性無機粒子が多元金属化合物、二酸化ケイ素、タルク、及びリン酸三カルシウムから選ばれる少なくとも1種を含むことが好ましく、吸水性能を維持したまま、吸湿した吸水性樹脂粒子又は吸水剤の流動性がより回復することから、多元金属化合物、リン酸三カルシウム、及び二酸化ケイ素から選ばれる少なくとも一種を含むことがより好ましく、多元金属化合物であることが更に好ましい。
(Water-insoluble inorganic particles)
Water-insoluble inorganic particles include multi-component metal compounds such as hydrotalcite, silicon dioxide (silica), titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, metal phosphates (for example, calcium phosphates such as tricalcium phosphate , Barium phosphate, aluminum phosphate), metal borates (eg, titanium borate, aluminum borate, iron borate, magnesium borate, manganese borate, calcium borate), silicic acid or salts thereof, clay, diatomaceous earth, Zeolite, bentonite, kaolin, activated clay and the like can be mentioned. Among them, the water-insoluble inorganic particles preferably contain at least one selected from a multi-component metal compound, silicon dioxide, talc, and tricalcium phosphate because the effects of the present invention are remarkably obtained, and water absorption performance is maintained. As it is, the fluidity of the water-absorbing water-absorbing resin particles or the water-absorbing agent is more recovered, and therefore it is more preferable to include at least one selected from multi-component metal compounds, tricalcium phosphate, and silicon dioxide, and multi-component metal compounds. More preferably.
 水不溶性無機粒子の体積平均粒子径としては、10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることが更に好ましい。また、体積平均粒子径は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。上記下限以上であることで、添加工程時の作業性の低下を抑制し、十分な性能を得ることができる。なお、水不溶性無機粒子の体積平均粒子径は、「レーザー回折散乱法」(例えば、日機装社製、商品名:マイクロトラックMT3000II粒度分析計を使用して測定)で測定することができる。 The volume average particle diameter of the water-insoluble inorganic particles is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 1 μm or less. The volume average particle size is preferably 0.05 μm or more, more preferably 0.1 μm or more, and further preferably 0.3 μm or more. By being more than the said minimum, the fall of workability | operativity at the time of an addition process can be suppressed, and sufficient performance can be obtained. The volume average particle diameter of the water-insoluble inorganic particles can be measured by a “laser diffraction scattering method” (for example, measured by Nikkiso Co., Ltd., trade name: Microtrac MT3000II particle size analyzer).
 水不溶性無機粒子は表面処理が行われていてもよい。表面処理に用いられる表面処理剤としては、下記多元金属化合物の表面処理剤の具体例が挙げられる。 The surface treatment of the water-insoluble inorganic particles may be performed. Specific examples of the surface treatment agent for the surface treatment include the following multi-metal compound surface treatment agents.
 水不溶性無機粒子としては、市販されているものを用いることもできる。シリカとしては、例えば、アエロジル50、アエロジル200、アエロジル200CF(いずれも日本アエロジル社製)等が挙げられ、タルクとしては、例えば、MAICRO ACEシリーズ SG-95、SG-2000、NANO ACEシリーズ D-1000、D-800、D-600(いずれも日本タルク社製)等が挙げられる。 Commercially available water-insoluble inorganic particles can also be used. Examples of the silica include Aerosil 50, Aerosil 200, Aerosil 200CF (all manufactured by Nippon Aerosil Co., Ltd.), and the like. Examples of the talc include, for example, MAICRO ACE series SG-95, SG-2000, NANO ACE series D-1000. , D-800, D-600 (all manufactured by Nippon Talc Co., Ltd.) and the like.
 上記多元金属化合物とは、2価及び3価の2種類の金属カチオンと水酸基とを含有する多元金属化合物である。 The multi-component metal compound is a multi-component metal compound containing two kinds of bivalent and trivalent metal cations and a hydroxyl group.
 上記2価の金属カチオンとしては、Mg2+、Fe2+、Zn2+、Ca2+、Ni2+、Co2+、Cu2+が挙げられ、耐熱性等の観点から、Mg2+が好ましい。上記3価の金属カチオンとしては、Al3+、Fe3+、Mn3+が挙げられ、耐熱性等の観点から、Al3+が好ましい。したがって、多元金属化合物の好適な一実施形態は、2価の金属カチオンがマグネシウムカチオンであり、3価の金属カチオンがアルミニウムカチオンである。 Examples of the divalent metal cation include Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Ni 2+ , Co 2+ and Cu 2+ , and Mg 2+ is preferable from the viewpoint of heat resistance and the like. Examples of the trivalent metal cation include Al 3+ , Fe 3+ and Mn 3+ , and Al 3+ is preferable from the viewpoint of heat resistance and the like. Accordingly, in a preferred embodiment of the multi-component metal compound, the divalent metal cation is a magnesium cation and the trivalent metal cation is an aluminum cation.
 多元金属化合物は、一般式(1)[M 2+ 1-x 3+ (OHx+・[(An-x/n・mHO]x-(M 2+は2価の金属カチオン、M 3+は3価の金属カチオン、An-はn価の陰イオン、HOは水を表す)で表される層状化合物の構造として知られているハイドロタルサイト様構造を有していることが好ましい。 The multi-component metal compound has the general formula (1) [M 1 2+ 1-x M 2 3+ x (OH ) 2 ] x + · [(A n− ) x / n · mH 2 O] x− (M 1 2+ is divalent metal cation, M 2 3+ is a trivalent metal cation, a n-hydrotalcite which n-valent anion, H 2 O is known as the structure of the lamellar compound represented by representing the water) It is preferable to have such a structure.
 また、一般式(1)における2価の金属カチオンと3価の金属カチオンとの比率は、xが0.2~0.75の範囲が好ましく、0.25~0.7の範囲がより好ましく、0.25~0.5の範囲が更に好ましい。また、陰イオンとしては、OH、F、Cl、Br、NO 、CO 2-、SO 2-、Fe(CN) 3-、CHCOO、シュウ酸イオン又はサリチン酸イオン等が挙げられるが、炭酸アニオンが好ましい。また、mは、0より大きい実数で、0<m≦10であることが好ましい。 Further, in the ratio of the divalent metal cation to the trivalent metal cation in the general formula (1), x is preferably in the range of 0.2 to 0.75, more preferably in the range of 0.25 to 0.7. A range of 0.25 to 0.5 is more preferable. Examples of the anion include OH , F , Cl , Br , NO 3 , CO 3 2− , SO 4 2− , Fe (CN) 6 3− , CH 3 COO , oxalate ion or Examples thereof include salicinate ions, but carbonate anions are preferred. M is a real number larger than 0, and preferably 0 <m ≦ 10.
 多元金属化合物の形状は、特に制限されないが、球状(粉末状を含む)であることが好ましい。また、多元金属化合物は、一定の粒度であることが好ましく、体積平均粒子径は2μm以下が好ましく、1.5μm以下がより好ましく、1μm以下が更に好ましい。粒子径が上記上限以下であることで、十分な効果を得るための添加量が多くなり過ぎることがなく、得られた吸水剤の吸水性能を損なうおそれが少ない。また、体積平均粒子径は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。上記下限以上であることで、添加工程時の作業性の低下を抑制し、十分な性能を得ることができる。また、吸水性樹脂粒子の表面に付着した多元金属化合物の平均粒子径の測定は、SEM(走査型電子顕微鏡)を用いた測定法により測定することができる。 The shape of the multi-component metal compound is not particularly limited, but is preferably spherical (including powder). The multi-component metal compound preferably has a constant particle size, and the volume average particle size is preferably 2 μm or less, more preferably 1.5 μm or less, and even more preferably 1 μm or less. When the particle diameter is not more than the above upper limit, the amount of addition for obtaining a sufficient effect is not excessively increased, and there is little possibility of impairing the water absorption performance of the obtained water absorbing agent. The volume average particle size is preferably 0.05 μm or more, more preferably 0.1 μm or more, and further preferably 0.3 μm or more. By being more than the said minimum, the fall of workability | operativity at the time of an addition process can be suppressed, and sufficient performance can be obtained. Moreover, the measurement of the average particle diameter of the multi-component metal compound adhering to the surface of the water-absorbent resin particles can be performed by a measuring method using SEM (scanning electron microscope).
 更に、層間に有機化合物をインターカレーションしていても良く、吸水性樹脂粒子等との混合性を高めるための表面処理が施されていても良い。 Furthermore, an organic compound may be intercalated between the layers, and a surface treatment may be performed to improve the mixing property with the water-absorbent resin particles.
 多元金属化合物の好ましい構造式としては、MgAl(OH)16CO・4HOや、MgAl(OH)12CO・3HO等が挙げられる。具体的には、協和化学工業株式会社製のDHT-4H、DHT-6、堺化学工業株式会社製のSTABIACE HT-1-NC、STABIACE HT-P等が挙げられる。 Preferred structural formulas of the multi-element metal compound include Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, Mg 4 Al 2 (OH) 12 CO 3 .3H 2 O, and the like. Specific examples include DHT-4H and DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd., STABIACE HT-1-NC and STABIACE HT-P manufactured by Sakai Chemical Industry Co., Ltd.
 多元金属化合物は、表面処理の有無を問わないが、表面処理されていない多元金属化合物がより好ましい。なお、前記表面処理に用いられる表面処理剤の具体例として、下記(a)~(j)が挙げられる。 The multi-component metal compound may or may not be surface-treated, but a multi-component metal compound that is not surface-treated is more preferable. Specific examples of the surface treatment agent used for the surface treatment include the following (a) to (j).
 (a)ステアリン酸、オレイン酸、エルカ酸、パルミチン酸、ラウリン酸等の高級脂肪酸。 (A) Higher fatty acids such as stearic acid, oleic acid, erucic acid, palmitic acid and lauric acid.
 (b)前記(a)のリチウム塩、ナトリウム塩、カリウム塩等の金属塩。 (B) Metal salts such as lithium salt, sodium salt and potassium salt of (a) above.
 (c)ステアリルアルコール、オレイルアルコール等の高級アルコールの硫酸エステル塩、ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エーテル結合スルホン酸塩、エステル結合スルホネート、アミド結合アルキルアリールスルホン酸塩、エーテル結合アルキルアリールスルホン酸塩等のアニオン界面活性剤。 (C) Higher alcohol sulfates such as stearyl alcohol and oleyl alcohol, polyethylene glycol ether sulfates, amide bond sulfates, ether bond sulfonates, ester bond sulfonates, amide bond alkylaryl sulfonates, ethers Anionic surfactants such as bonded alkylaryl sulfonates.
 (d)オルトリン酸とオレイルアルコール、ステアリルアルコール等のモノ又はジエステル又はこれらの混合物であって、それらの酸型又はアルカリ金属塩又はアミン塩等のリン酸エステル。 (D) Mono- or diesters such as orthophosphoric acid and oleyl alcohol, stearyl alcohol, or mixtures thereof, and their acid forms or phosphate esters such as alkali metal salts or amine salts.
 (e)ビニルエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-アミノプロピルトリメトキシシラン等のシランカップリング剤。 (E) Silane coupling agents such as vinylethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, and γ-aminopropyltrimethoxysilane.
 (f)イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリデシルベンゼンスルホニルチタネート等のチタンカップリング剤。 (F) Titanium coupling agents such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tridecylbenzenesulfonyl titanate, and the like.
 (g)アセトアルコキシアルミニウムジイソプロピレート等のアルカリカップリング剤。 (G) Alkaline coupling agents such as acetoalkoxyaluminum diisopropylate.
 (h)モノエタノールアミン、ジエタノールアミン又はトリエタノールアミン等のエタノールアミン類。 (H) Ethanolamines such as monoethanolamine, diethanolamine or triethanolamine.
 (i)n-プロパノールアミン、ジ-n-プロパノールアミン又はトリ-n-プロパノールアミン等のn-プロパノールアミン類。 (I) n-propanolamines such as n-propanolamine, di-n-propanolamine or tri-n-propanolamine.
 (j)モノイソプロパノールアミン、ジイソプロパノールアミン又はトリイソプロパノールアミン等のイソプロパノールアミン類。 (J) Isopropanolamines such as monoisopropanolamine, diisopropanolamine or triisopropanolamine.
 中でも、モノエタノールアミン、ジエタノールアミン又はトリエタノールアミン等のエタノールアミン類が好ましい。 Of these, ethanolamines such as monoethanolamine, diethanolamine and triethanolamine are preferred.
 (添加量)
 上記特表2003-525105号公報(国際公開第01/30290号)によれば、30%以上の遊離酸基を有するポリアクリル酸及び層状複水酸化陰イオン土が電解質を含む溶液を脱塩化し、吸水剤の性能を向上させるとしている。このため、特表2003-525105号公報(国際公開第01/30290号)の層状複水酸化陰イオン土は、ポリアクリル酸と同等以上に含有させる必要がある。
(Addition amount)
According to the above Japanese translation of PCT publication No. 2003-525105 (International Publication No. WO 01/30290), polyacrylic acid having 30% or more of free acid groups and layered double hydroxide anionic soil dechlorinate the solution containing the electrolyte. , Trying to improve the performance of the water-absorbing agent. For this reason, the layered double hydroxide anionic soil disclosed in JP-T-2003-525105 (International Publication No. 01/30290) needs to be contained at least as much as polyacrylic acid.
 一方、本発明における水不溶性無機粒子の添加量は、吸収性物品の吸収量を向上させ、吸収量及び戻り量のバランスに優れたものとするという観点から、吸水性樹脂粒子100質量%に対して、0.01質量%以上10質量%未満であり、好ましくは0.1~5質量%である。 On the other hand, the addition amount of the water-insoluble inorganic particles in the present invention improves the absorption amount of the absorbent article and is excellent in the balance between the absorption amount and the return amount, with respect to 100% by mass of the water-absorbent resin particles. The content is 0.01 mass% or more and less than 10 mass%, preferably 0.1 to 5 mass%.
 上述の本発明の好適な一実施形態の、2000μmの篩透過率が50質量%以下の吸水性樹脂粒子に対して、水不溶性無機粒子を添加する形態において、流動性回復の効果をより得られることから、水不溶性無機粒子の添加量は、吸水性樹脂粒子100質量%に対して、0.1~5質量%であることが好ましく、より好ましくは0.1~4.5質量%であり、更に好ましくは0.1~4質量%であり、特に好ましくは0.15~3.5質量%である。 In the preferred embodiment of the present invention described above, in the form in which water-insoluble inorganic particles are added to the water-absorbing resin particles having a sieve permeability of 2000 μm of 50% by mass or less, the effect of restoring fluidity can be further obtained. Therefore, the addition amount of the water-insoluble inorganic particles is preferably 0.1 to 5% by mass, more preferably 0.1 to 4.5% by mass with respect to 100% by mass of the water-absorbing resin particles. More preferably, the content is 0.1 to 4% by mass, and particularly preferably 0.15 to 3.5% by mass.
 (添加・混合方法)
 水不溶性無機粒子と吸水性樹脂粒子/吸水剤との混合方法は、特に限定されるものではないが、乾式混合とするのが好ましい。該「乾式混合」とは、本工程に供される水不溶性無機粒子及び吸水性樹脂粒子が、吸収又は保持している液状物質以外の液状物質が存在しない状態での混合を意味する。具体的には、水不溶性無機粒子と、乾燥残分や吸湿水分、前記表面架橋剤添加工程で添加された表面架橋剤や溶媒等を有する吸水性樹脂粒子とを、更に液状物質を添加することなしに混合する形態が含まれる。
(Addition / mixing method)
The mixing method of the water-insoluble inorganic particles and the water-absorbing resin particles / water-absorbing agent is not particularly limited, but dry mixing is preferable. The “dry mixing” means mixing in a state where there is no liquid substance other than the liquid substance absorbed or retained by the water-insoluble inorganic particles and the water-absorbing resin particles used in this step. Specifically, the liquid substance is further added to the water-insoluble inorganic particles and the water-absorbent resin particles having the drying residue, moisture absorption moisture, the surface cross-linking agent or the solvent added in the surface cross-linking agent addition step, and the like. The form which mixes without is included.
 水不溶性無機粒子の添加効果を十分に得るためには、添加後によく混合するのが好ましく、具体的な混合条件は、用いられる装置や処理量等に応じて適宜定めればよい。例えば、レディゲミキサーを用いて回転数300rpmで30秒から1分間程度撹拌混合する方法やパドル式撹拌装置を用いて回転数60rpmで20分から1時間撹拌混合する方法等が挙げられる。また、振動を付与しながら混合する方法や吸水性樹脂粒子を攪拌しながら添加する方法であってもよい。 In order to sufficiently obtain the effect of adding water-insoluble inorganic particles, it is preferable to mix well after the addition, and specific mixing conditions may be appropriately determined according to the apparatus used, the processing amount, and the like. For example, a method of stirring and mixing at a rotational speed of 300 rpm for about 30 seconds to 1 minute using a Redige mixer or a method of stirring and mixing at a rotational speed of 60 rpm for 20 minutes to 1 hour using a paddle type stirring device can be used. Further, a method of mixing while applying vibration or a method of adding water-absorbing resin particles while stirring may be used.
 (2-11)吸収性物品への成形
 吸収性物品としては、特に限定されないが、好ましくは、紙オムツ、生理用ナプキン、いわゆる失禁パット等が挙げられる。特に、吸収性物品が高濃度紙オムツ(1枚の紙オムツに多量の吸水性樹脂粒子又は吸水剤を使用したもの)であることが好ましい。
(2-11) Molding into Absorbent Article The absorbent article is not particularly limited, and preferably includes a paper diaper, a sanitary napkin, a so-called incontinence pad, and the like. In particular, the absorbent article is preferably a high-concentration paper diaper (one paper diaper using a large amount of water-absorbing resin particles or water-absorbing agent).
 吸収性物品は、吸収体を含むことが好ましく、更に液透過性を有する表面シートや液不透過性を有する背面シートを備えていてもよい。上記の透液性を有するシート(以下、液透過性シートと称する)は、水性液体を透過する性質を備えた材料からなっている。液透過性シートの材料としては、例えば、不織布、織布;ポリエチレンやポリプロピレン、ポリエステル、ポリアミド等からなる多孔質の合成樹脂フィルム等が挙げられる。上記の不透液性を有するシート(以下、液不透過性シートと称する)は、水性液体を透過しない性質を備えた材料からなっている。液不透過性シートの材料としては、例えば、ポリエチレン、ポリプロピレン、エチレンビニルアセテート、ポリ塩化ビニル等からなる合成樹脂フィルム;これら合成樹脂と不織布との複合材からなるフィルム;上記合成樹脂と織布との複合材からなるフィルム等が挙げられる。なお、液不透過性シートは、蒸気を透過する性質を備えていてもよい。 The absorbent article preferably includes an absorber, and may further include a top sheet having liquid permeability and a back sheet having liquid impermeability. The liquid-permeable sheet (hereinafter referred to as a liquid-permeable sheet) is made of a material having a property of transmitting an aqueous liquid. Examples of the material of the liquid permeable sheet include nonwoven fabrics, woven fabrics, and porous synthetic resin films made of polyethylene, polypropylene, polyester, polyamide, and the like. The liquid-impermeable sheet (hereinafter referred to as a liquid-impermeable sheet) is made of a material having a property of not transmitting an aqueous liquid. Examples of the material of the liquid-impermeable sheet include synthetic resin films made of polyethylene, polypropylene, ethylene vinyl acetate, polyvinyl chloride, etc .; films made of composite materials of these synthetic resins and nonwoven fabrics; And a film made of a composite material. Note that the liquid-impermeable sheet may have a property of allowing vapor to pass therethrough.
 吸収体とは吸収性物品を構成する部材のうち、体液等の水性液体を吸収する部材である。吸収体は、吸水性樹脂粒子又は吸水剤、及び水不溶性無機粒子を含み、吸水性樹脂粒子又は吸水剤、水不溶性無機粒子及び親水性繊維を混合して得られることがより好ましい。 The absorber is a member that absorbs an aqueous liquid such as a body fluid among members constituting the absorbent article. More preferably, the absorbent body includes water-absorbing resin particles or water-absorbing agent and water-insoluble inorganic particles, and is obtained by mixing water-absorbing resin particles or water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers.
 吸水性樹脂粒子/吸水剤及び水不溶性無機粒子は、粉末である。かかる粉末状の吸水性樹脂粒子/吸水剤及び水不溶性無機粒子を任意の他の吸収材料とともに成形することで吸収体が得られる。 Water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles are powders. An absorbent body can be obtained by molding such powdery water absorbent resin particles / water absorbent and water-insoluble inorganic particles together with any other absorbent material.
 吸収体の形状は、特に限定されないが、好ましくは、シート状、筒状、フィルム状、繊維状に加工され、より好ましくはシート状(別称ウェッブ状)である。 The shape of the absorber is not particularly limited, but is preferably processed into a sheet shape, a cylindrical shape, a film shape, and a fiber shape, and more preferably a sheet shape (also called a web shape).
 他の吸収材料としては、親水性繊維が挙げられる。親水性繊維は、吸水性樹脂粒子/吸水剤を担持することができ、また、吸水性樹脂粒子/吸水剤同士が接触して通液を妨げるゲルブロッキングを防止する役割を果たすことができるという点で好ましい。そして、吸収体が例えば、吸水性樹脂粒子/吸水剤、水不溶性無機粒子、親水性繊維を含む場合には、吸収体の構成として、例えば、吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を均一に混合した構成;吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を均一に混合して層状に形成し、この上に層状に形成した親水性繊維を積層した構成;吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を均一に混合して層状に形成し、これと層状に形成した親水性繊維との間に吸水性樹脂粒子/吸水剤を挟持した構成等が挙げられる。また、この他にも層状に形成した親水性繊維間に吸水性樹脂粒子/吸水剤を挟持した構成等でもよい。更に、吸収体は、吸水性樹脂粒子/吸水剤、及び水不溶性無機粒子に対して特定量の水を配合することによってシート状に形成してなる構成であってもよい。なお、吸収体の構成は、上記の構成に限定されるものではない。 Other hydrophilic materials include hydrophilic fibers. The hydrophilic fiber can carry the water-absorbing resin particles / water-absorbing agent, and can also serve to prevent gel blocking that prevents water-permeable resin particles / water-absorbing agents from contacting each other. Is preferable. When the absorber includes, for example, water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles, and hydrophilic fibers, the structure of the absorber includes, for example, water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and Structure in which hydrophilic fibers are uniformly mixed; water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are uniformly mixed to form a layer, and the layered hydrophilic fibers are laminated thereon Structure: Water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are uniformly mixed to form a layer, and the water-absorbing resin particles / water-absorbing agent are formed between the layered hydrophilic fibers. The structure etc. which were pinched are mentioned. In addition, a configuration in which water-absorbing resin particles / water-absorbing agent are sandwiched between hydrophilic fibers formed in layers may be used. Further, the absorbent body may be formed in a sheet shape by blending a specific amount of water with the water-absorbing resin particles / water-absorbing agent and the water-insoluble inorganic particles. In addition, the structure of an absorber is not limited to said structure.
 また、吸水性樹脂粒子/吸水剤と水不溶性無機粒子との混合工程は、上記親水性繊維との混合工程と同時であってもよい。このように、吸収体を製造する際に水不溶性無機粒子を混合することで、吸収体の製造前に、保管等によって吸水性樹脂粒子/吸水剤が吸湿した場合にも、吸水性樹脂粒子/吸水剤の吸水性能を維持したまま、流動性を回復することができ、生産性が向上する。すなわち、本発明の吸収性物品の製造方法の一実施形態は、吸水性樹脂粒子又は吸水剤、水不溶性無機粒子、及び親水性繊維を混合して吸収体を製造する工程を有する。混合方法としては特に限定されず、予め吸水性樹脂粒子/吸水剤及び水不溶性無機粒子を混合した後、親水性繊維を添加して混合する形態;予め吸水性樹脂粒子/吸水剤及び親水性繊維を混合した後、水不溶性無機粒子を添加して混合する形態;吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を一括添加して混合する形態等が挙げられる。水不溶性無機粒子の添加による、吸水性樹脂/吸水剤の流動性回復という効果がより効率的に得られることから、予め吸水性樹脂粒子/吸水剤及び水不溶性無機粒子を混合した後、親水性繊維を添加して混合する形態、又は、吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を一括添加して混合する形態が好ましい。 The mixing step of the water-absorbing resin particles / water-absorbing agent and the water-insoluble inorganic particles may be performed at the same time as the mixing step with the hydrophilic fibers. Thus, by mixing the water-insoluble inorganic particles at the time of manufacturing the absorber, even when the water-absorbing resin particles / water-absorbing agent absorbs moisture by storage or the like before manufacturing the absorber, the water-absorbing resin particles / The fluidity can be recovered while maintaining the water absorption performance of the water absorbing agent, and the productivity is improved. That is, one embodiment of the method for producing an absorbent article of the present invention includes a step of producing an absorbent body by mixing water-absorbing resin particles or a water-absorbing agent, water-insoluble inorganic particles, and hydrophilic fibers. The mixing method is not particularly limited. A form in which water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles are mixed in advance, and then hydrophilic fibers are added and mixed; water-absorbing resin particles / water-absorbing agent and hydrophilic fibers in advance. After mixing, water-insoluble inorganic particles are added and mixed; water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are added together and mixed. Since the effect of recovering the fluidity of the water-absorbing resin / water-absorbing agent can be obtained more efficiently by adding the water-insoluble inorganic particles, the water-absorbing resin particles / water-absorbing agent and the water-insoluble inorganic particles are mixed in advance and then hydrophilic. A form in which fibers are added and mixed, or a form in which water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are added and mixed together is preferable.
 親水性繊維としては、特に限定されないが、例えば、粉砕された木材パルプ、コットンリンター、架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等が挙げられる。 The hydrophilic fiber is not particularly limited, and examples thereof include pulverized wood pulp, cotton linter, crosslinked cellulose fiber, rayon, cotton, wool, acetate, and vinylon.
 また、吸収体における親水性繊維等の繊維材料の割合が比較的少ない場合には、接着性バインダーを用いて吸収体、つまり、親水性繊維同士を接着させてもよい。親水性繊維同士を接着させることにより、吸収体の使用前や使用中における該吸収体の強度や保形性を高めることができる。上記の接着性バインダーとしては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、1-ブテン-エチレン共重合体等のポリオレフィン繊維等の熱融着繊維や接着性を有するエマルション等が挙げられる。これら接着性バインダーは、単独で用いてもよく、また、2種類以上を混合して用いてもよい。親水性繊維と接着性バインダーとの質量比は、50/50~99/1の範囲内が好ましく、70/30~95/5の範囲内がより好ましく、80/20~95/5の範囲内が更に好ましい。 Further, when the ratio of the fiber material such as hydrophilic fiber in the absorbent body is relatively small, the absorbent body, that is, the hydrophilic fibers may be bonded using an adhesive binder. By adhering the hydrophilic fibers to each other, the strength and shape retention of the absorber can be improved before and during use of the absorber. Examples of the adhesive binder include heat-bonded fibers such as polyolefin fibers such as polyethylene, polypropylene, ethylene-propylene copolymer, and 1-butene-ethylene copolymer, and adhesive emulsions. These adhesive binders may be used alone or in combination of two or more. The mass ratio between the hydrophilic fiber and the adhesive binder is preferably within the range of 50/50 to 99/1, more preferably within the range of 70/30 to 95/5, and within the range of 80/20 to 95/5. Is more preferable.
 吸収体における、吸水性樹脂粒子/吸水剤及び水不溶性無機粒子の含有量(コア濃度)は20~100質量%の範囲であることが好ましい。すなわち、本発明の好適な一実施形態は、吸水性樹脂粒子/吸水剤と、水不溶性無機粒子と、パルプと、を混合して吸収体を製造する工程を有し、吸収体中の吸水性樹脂粒子/吸水剤及び水不溶性無機粒子の合計量(コア濃度)が、好ましくは20~100質量%である吸収性物品の製造方法である。より好ましくは25質量%以上、更に好ましくは30質量%以上である。かような範囲にあることで、吸収体の吸収性能及び流動特性が維持される。また、吸収体において、吸水性樹脂粒子/吸水剤及び水不溶性無機粒子の含有量(コア濃度)の上限は、好ましくは100質量%であるが、例えば、上記親水性繊維を含む場合には、上限は90質量%以下であることが好ましく、80質量%以下であることが好ましい。また、上記範囲内において、吸水性樹脂粒子100質量%に対する水不溶性無機粒子の割合としては、0.01質量%以上10質量%未満である。かような範囲にあることで、吸収性物品の吸収量がより向上し、また、吸収量及び戻り量のバランスに優れたものとなる。吸収性物品の戻り量低減の観点からは、吸水性樹脂粒子100質量%に対する水不溶性無機粒子の含有量は1~5質量%であることが好ましく、1~3質量%であることがより好ましい。また、上記範囲内において、吸収体における水不溶性無機粒子の量は、特に限定されるものではないが、通常0.1~10質量%程度であり、吸収性物品の吸収量がより向上し、戻り量がより少なくなるため、0.1~5質量%であることが好ましい。 The content (core concentration) of the water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles in the absorber is preferably in the range of 20 to 100% by mass. That is, a preferred embodiment of the present invention includes a step of producing an absorbent body by mixing water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles, and pulp. In the method for producing an absorbent article, the total amount (core concentration) of the resin particles / water-absorbing agent and water-insoluble inorganic particles is preferably 20 to 100% by mass. More preferably, it is 25 mass% or more, More preferably, it is 30 mass% or more. By being in such a range, the absorption performance and flow characteristics of the absorber are maintained. Further, in the absorbent body, the upper limit of the content (core concentration) of the water-absorbing resin particles / water-absorbing agent and water-insoluble inorganic particles is preferably 100% by mass, for example, when the hydrophilic fibers are included, The upper limit is preferably 90% by mass or less, and preferably 80% by mass or less. Further, within the above range, the ratio of the water-insoluble inorganic particles to 100% by mass of the water-absorbent resin particles is 0.01% by mass or more and less than 10% by mass. By being in such a range, the absorption amount of the absorbent article is further improved, and the balance between the absorption amount and the return amount is excellent. From the viewpoint of reducing the return amount of the absorbent article, the content of the water-insoluble inorganic particles with respect to 100% by mass of the water-absorbent resin particles is preferably 1 to 5% by mass, and more preferably 1 to 3% by mass. . Further, within the above range, the amount of the water-insoluble inorganic particles in the absorbent body is not particularly limited, but is usually about 0.1 to 10% by mass, and the absorption amount of the absorbent article is further improved. Since the amount of return becomes smaller, it is preferably 0.1 to 5% by mass.
 かかる吸収体の製造方法は特に限定されないが、例えば、吸水性樹脂粒子/吸水剤、水不溶性無機粒子及び親水性繊維を、ミキサー等の混合機を用いて乾式混合し、得られた混合物を、例えば、空気抄造等によってウェブ状に成形した後、必要により圧縮成形して製造する方法が挙げられる。かかる吸収体は、密度0.001~0.50g/cm、より好ましくは0.001~0.05g/cm、坪量0.01~0.20g/cm、より好ましくは0.01~0.15g/cmの範囲に圧縮成形されることが好ましい。 The method for producing such an absorber is not particularly limited. For example, water-absorbing resin particles / water-absorbing agent, water-insoluble inorganic particles and hydrophilic fibers are dry-mixed using a mixer such as a mixer, and the resulting mixture is For example, after forming into a web form by air papermaking etc., the method of compressing and manufacturing as needed is mentioned. An absorbent body has a density 0.001 ~ 0.50g / cm 3, more preferably 0.001 ~ 0.05g / cm 3, a basis weight of 0.01 ~ 0.20 g / cm 2, more preferably 0.01 It is preferably compression molded in a range of ˜0.15 g / cm 2 .
 更に、最終的な吸収性物品を製造する方法としては、特に限定されないが、例えば、吸収体を液透過性を有する基材(表面シート)と液不透過性を有する基材(背面シート)でサンドイッチして、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することで、吸収性物品、例えば、紙オムツや生理用ナプキンとすればよい。 Furthermore, the method for producing the final absorbent article is not particularly limited. For example, the absorbent body is composed of a liquid-permeable base material (surface sheet) and a liquid-impermeable base material (back sheet). It is sufficient to make an absorbent article, for example, a paper diaper or a sanitary napkin, by sandwiching, and if necessary, equipped with an elastic member, a diffusion layer, an adhesive tape or the like.
 〔4〕吸水性樹脂粒子及び吸水剤の物性
 (4-1)AAP(加圧下吸水倍率)
 吸水性樹脂粒子及び吸水剤は、所定のAAPを有することが好ましい。上記重合後の表面架橋を達成手段の一例として、2.06kPaの加圧下での0.9質量%の塩化ナトリウム水溶液に対する吸水倍率(AAP)は、好ましくは20g/g以上、より好ましくは25g/g以上、更に好ましくは30g/g以上である。なお、AAPは高いほど好ましいが、他の物性(例えば、CRC)とのバランスの観点から、上限として、好ましくは50g/g以下、より好ましくは40g/g以下、更に好ましくは35g/g以下、特に好ましくは33g/g以下とされる。また、AAPは、表面架橋、CRCで制御することができる。
[4] Physical properties of water-absorbing resin particles and water-absorbing agent (4-1) AAP (water absorption capacity under pressure)
The water-absorbent resin particles and the water-absorbing agent preferably have a predetermined AAP. As an example of means for achieving the surface cross-linking after polymerization, the water absorption capacity (AAP) with respect to a 0.9% by mass sodium chloride aqueous solution under a pressure of 2.06 kPa is preferably 20 g / g or more, more preferably 25 g / g. g or more, more preferably 30 g / g or more. In addition, although AAP is so preferable that it is high, from a viewpoint of balance with other physical properties (for example, CRC), as an upper limit, Preferably it is 50 g / g or less, More preferably, it is 40 g / g or less, More preferably, it is 35 g / g or less, Most preferably, it is 33 g / g or less. AAP can be controlled by surface crosslinking and CRC.
 具体的には、本発明の吸水性樹脂粒子及び吸水剤は、2.06kPaの加圧下での0.9質量%の塩化ナトリウム水溶液に対する吸水倍率(AAP)が20g/g以上であることが好ましい。 Specifically, the water-absorbing resin particles and the water-absorbing agent of the present invention preferably have a water absorption capacity (AAP) of 20 g / g or more with respect to a 0.9% by mass sodium chloride aqueous solution under a pressure of 2.06 kPa. .
 (4-2)CRC(無加圧下吸水倍率)
 吸水性樹脂粒子及び吸水剤の無加圧下吸水倍率(CRC)は、好ましくは25g/g以上、より好ましくは30g/g以上、更に好ましくは33g/g以上である。無加圧下吸水倍率が低いと紙オムツ等の吸収性物品に使用する場合の効率が悪くなる。なお、CRCは高いほど好ましいが、他の物性(例えば、AAP)とのバランスの観点から、上限として、好ましくは60g/g以下、より好ましくは50g/g以下、更に好ましくは45g/g以下とされる。また、CRCは、重合時又は表面架橋での架橋密度で制御することができる。
(4-2) CRC (absorption capacity under no pressure)
The water absorption capacity (CRC) of the water-absorbing resin particles and the water-absorbing agent is preferably 25 g / g or more, more preferably 30 g / g or more, and still more preferably 33 g / g or more. If the water absorption capacity under no pressure is low, the efficiency when used for absorbent articles such as paper diapers is deteriorated. In addition, although CRC is so preferable that it is high, from a viewpoint of balance with other physical properties (for example, AAP), as an upper limit, Preferably it is 60 g / g or less, More preferably, it is 50 g / g or less, More preferably, it is 45 g / g or less. Is done. The CRC can be controlled by the crosslinking density during polymerization or surface crosslinking.
 (4-3)固形分
 吸水性樹脂粒子及び吸水剤の固形分は、実施例に記載の方法により算出される値であり、好ましくは85~99質量%、より好ましくは88~98質量%、更に好ましくは90~95質量%である。固形分が85重量%未満の場合、無加圧下吸水倍率や加圧下吸水倍率が低下するため、好ましくない。固形分が98重量%より高い場合、搬送等による機械的ダメージによる加圧下吸水倍率の低下が大きいため、好ましくない。
(4-3) Solid Content The solid content of the water-absorbent resin particles and the water-absorbing agent is a value calculated by the method described in the examples, preferably 85 to 99% by mass, more preferably 88 to 98% by mass, More preferably, it is 90 to 95% by mass. When the solid content is less than 85% by weight, the water absorption capacity under no pressure and the water absorption capacity under pressure are lowered, which is not preferable. When the solid content is higher than 98% by weight, the reduction in water absorption under pressure due to mechanical damage due to conveyance or the like is large, which is not preferable.
 (4-4)粒度
 本発明で用いられる、吸水性樹脂粒子(特に表面架橋工程前)や得られる吸水剤の粒子径や粒度分布に特に制限は無いが、最後の表面架橋剤を添加・混合した後に整粒し、下記範囲(篩分級で規定)とすることが好ましい。
(4-4) Particle size Although there is no particular limitation on the particle size and particle size distribution of the water-absorbent resin particles (particularly before the surface cross-linking step) and the water-absorbing agent used in the present invention, the final surface cross-linking agent is added and mixed After sizing, it is preferable to adjust the size within the following range (specified by sieve classification).
 粒子径の上限は1mm未満の粒子であり、更に下記粒子径として吸水性樹脂粒子や吸水剤を得ることが好ましい。1mm以上の粒子、特に850μm以上の粒子を多く含むと、該粗大粒子が特に薄型の吸収性物品に用いる際に、装着者への不快感をもたらすばかりでなく、吸収性物品を構成する水不透過性材料、いわゆるバックシートを擦過傷により破損し、実使用において、尿等の漏洩を招く恐れがあるため好ましくない。よって、850μm以上の粒子は少ない方が好ましく、0~5質量%であることが好ましく、0~3質量%がより好ましく、0~1質量%が更に好ましく、実質的に含まないことが特に好ましい。 The upper limit of the particle diameter is less than 1 mm, and it is preferable to obtain water-absorbing resin particles and a water-absorbing agent with the following particle diameter. When a large amount of particles of 1 mm or more, particularly 850 μm or more, the coarse particles not only cause discomfort to the wearer when used in a thin absorbent article, but also the water content of the absorbent article. A permeable material, a so-called back sheet, is damaged due to scratches, which may cause leakage of urine or the like in actual use, which is not preferable. Therefore, it is preferable that the number of particles of 850 μm or more is smaller, preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 1% by mass, and particularly preferably substantially free of particles. .
 一方、微粒子側は、粒子径150μm未満の粒子の割合は0~3質量%であることが好ましく、0~2質量%であることがより好ましく、0~1.5質量%であることが更に好ましい。吸水性樹脂粒子や吸水剤の微粒子が多いと、粉塵増加や吸湿流動性の低下、AAPや通液性等の物性低下を招く傾向になる。 On the other hand, on the fine particle side, the proportion of particles having a particle diameter of less than 150 μm is preferably 0 to 3% by mass, more preferably 0 to 2% by mass, and further preferably 0 to 1.5% by mass. preferable. When there are many water-absorbing resin particles and water-absorbing agent fine particles, dust tends to increase, moisture-absorbing fluidity decreases, and physical properties such as AAP and liquid permeability tend to decrease.
 更に、上記の範囲を維持しながら、吸水性樹脂粒子や吸水剤の前記粒度分布は、150μm以上850μm未満の範囲内に、95質量%以上含まれるのが好ましく、98質量%以上含まれるのがより好ましく、99質量%以上含まれるのが更に好ましく、実質的に全量が該範囲内に含まれるのが最も好ましい。 Furthermore, while maintaining the above range, the particle size distribution of the water-absorbent resin particles and the water-absorbing agent is preferably included in a range of 150 μm or more and less than 850 μm, and preferably 95% by mass or more, and 98% by mass or more. More preferably, 99% by mass or more is further included, and it is most preferable that substantially the entire amount is included in the range.
 また、本発明で上記工程を経て吸水性樹脂粒子や吸水剤は、標準篩分級で規定される質量平均粒子径(D50)が600μm以下であることが好ましく、性能を向上させるために550~200μmの範囲であることがより好ましく、500~250μmの範囲であることが更に好ましく、450~300μmの範囲であることが最も好ましい。また、粒子径が300μm未満の粒子の割合が、10質量%以上であることが好ましく、10~50質量%の範囲であることがより好ましく、10~30質量%の範囲であることが更に好ましい。 In the present invention, the water-absorbent resin particles and the water-absorbing agent that have undergone the above-described steps preferably have a mass average particle diameter (D50) defined by standard sieve classification of 600 μm or less, and 550 to 200 μm for improving performance. Is more preferably in the range of 500 to 250 μm, and most preferably in the range of 450 to 300 μm. The proportion of particles having a particle size of less than 300 μm is preferably 10% by mass or more, more preferably in the range of 10 to 50% by mass, and still more preferably in the range of 10 to 30% by mass. .
 粒度は粉砕や分級(表面架橋工程前及び/又は表面架橋工程後)、又は造粒や前記微粉回収工程等を施すことで適宜制御することができる。 The particle size can be appropriately controlled by performing pulverization and classification (before and / or after the surface cross-linking step), granulation, the fine powder collecting step, and the like.
 これらの範囲を逸脱した場合には、所望の吸水倍率を維持した上で優れた通液性を有するバランスの良い吸水性樹脂粒子や吸水剤を得ることができないことがある。特に、粒子径150μm未満の粒子は、通液性を低下させるだけでなく、吸水性樹脂粒子や吸水剤を原料として用いる吸収性物品の製造作業環境において、発塵等による悪影響を及ぼす恐れがあるため、できるだけ少ない方が好ましい。 When deviating from these ranges, it may not be possible to obtain well-balanced water-absorbing resin particles and water-absorbing agents having excellent liquid permeability while maintaining a desired water absorption ratio. In particular, particles having a particle size of less than 150 μm not only lower the liquid permeability, but may have an adverse effect due to dust generation or the like in the manufacturing work environment of absorbent articles using water-absorbent resin particles or water-absorbing agents as raw materials. Therefore, it is preferable that the amount be as small as possible.
 (4-5)形状
 吸水性樹脂粒子や吸水剤の形状は、特に限定されず、シート状、繊維状、粉末状、ゲル状等が挙げられるが、上記粒度の粉末状、更には不定形の粒子状であることが好ましい。ここで、上記「不定形」とは、含水ゲル又は乾燥重合体を粉砕して得られる粒子の形状を指す。なお、該粒子は造粒物でもよく、一次粒子でもよい。
(4-5) Shape The shape of the water-absorbing resin particles and the water-absorbing agent is not particularly limited, and examples thereof include a sheet shape, a fiber shape, a powder shape, a gel shape, and the like. It is preferably in the form of particles. Here, the “indefinite shape” refers to the shape of particles obtained by pulverizing a hydrogel or a dry polymer. The particles may be a granulated product or primary particles.
 〔5〕実施例
 以下、実施例に従って発明を説明するが、本発明は実施例に限定され解釈されるものではない。また、本発明の特許請求の範囲や実施例に記載の諸物性は、以下の測定法(5-1)~(5-5)に従って求めた。なお、特に断りのない限り、各実施例での各工程は実質常圧(大気圧の±5%以内、更に好ましくは±1%以内)で行われ、同一工程では意図的な加圧又は減圧による圧力変化は加えずに実施した。
[5] Examples Hereinafter, the present invention will be described according to examples. However, the present invention is not limited to the examples and should not be construed. Various physical properties described in claims and examples of the present invention were determined according to the following measuring methods (5-1) to (5-5). Unless otherwise specified, each step in each example is performed at a substantially normal pressure (within ± 5% of atmospheric pressure, more preferably within ± 1%). In the same step, intentional pressurization or depressurization is performed. It was carried out without adding a pressure change due to.
 (5-1)CRC(無加圧下吸水倍率)
 吸水性樹脂粒子及び吸水剤のCRC(無加圧下吸水倍率)は、ERT441.2-0.2に従い、0.90質量%塩化ナトリウム水溶液(以下、「生理食塩水」と称する場合がある)に対する無加圧下で30分の吸水倍率(CRC)(単位;g/g)を求めた。
(5-1) CRC (Water absorption capacity without pressure)
The CRC of the water-absorbing resin particles and the water-absorbing agent is based on ERT441.2-0.2 and is 0.90% by mass sodium chloride aqueous solution (hereinafter sometimes referred to as “physiological saline”). The water absorption capacity (CRC) (unit: g / g) for 30 minutes was determined under no pressure.
 (5-2)AAP(加圧下吸水倍率)
 吸水性樹脂粒子及び吸水剤のAAP(加圧下吸水倍率)は、ERT442.2-02に準じて行った。
(5-2) AAP (Water absorption capacity under pressure)
AAP (water absorption capacity under pressure) of the water-absorbent resin particles and the water-absorbing agent was performed according to ERT442.2-02.
 即ち、吸水性樹脂粒子又は吸水剤0.900g(質量W3[g])を測定装置に投入し、測定装置一式の質量(W4[g])を測定した。次に、0.90質量%塩化ナトリウム水溶液を2.06kPaの加圧下で該吸水性樹脂粒子又は吸水剤に吸収させた。1時間経過後、測定装置一式の質量(W5[g])を測定した。得られたW3[g]、W4[g]、W5[g]から次式1にしたがって、AAP(加圧下吸水倍率)を算出した。 That is, 0.900 g (mass W3 [g]) of water-absorbing resin particles or water-absorbing agent was put into a measuring apparatus, and the mass of the measuring apparatus set (W4 [g]) was measured. Next, a 0.90 mass% sodium chloride aqueous solution was absorbed into the water absorbent resin particles or the water absorbent under a pressure of 2.06 kPa. After 1 hour, the mass (W5 [g]) of the measuring device set was measured. From the obtained W3 [g], W4 [g], and W5 [g], AAP (water absorption capacity under pressure) was calculated according to the following formula 1.
 (式1) AAP(g/g)=(W5-W4)/W3
 (5-3)2000μm篩通過率
 吸水性樹脂粒子又は吸水剤(以下、(5-3)及び(5-4)においては、「粉体」と称する)を2000μmの目開きを有するJIS標準篩(JIS Z8801-1(2000))上に落とし、篩上に残った粉体と篩を通過した粉体の量を記録し、粉体全量100質量%に対する篩を通過した粉体の割合を求め、2000μm篩通過率(単位;質量%)とした。
(Formula 1) AAP (g / g) = (W5-W4) / W3
(5-3) 2000 μm sieve passage rate Water-absorbent resin particles or water-absorbing agent (hereinafter referred to as “powder” in (5-3) and (5-4)) is a JIS standard sieve having an opening of 2000 μm (JIS Z8801-1 (2000)), record the amount of powder remaining on the sieve and the amount of powder that has passed through the sieve, and determine the ratio of the powder that has passed through the sieve to the total mass of 100% by mass. , 2000 μm sieve passage rate (unit: mass%).
 (5-4)吸湿後の2000μm篩透過率
 約30gの粉体をキャビネ判SUSバット(大きさ;170mm×210mm×30mm)に均一に広げ、ESPEC社製小型環境試験機SH-641を用いて、温度25℃、相対湿度90%RHの条件下で、30分間吸湿させた。
(5-4) Permeability of 2000 μm sieve after moisture absorption About 30 g of powder is spread evenly on a cabinet-size SUS bat (size: 170 mm × 210 mm × 30 mm), and using a small environment tester SH-641 manufactured by ESPEC And 30 minutes at a temperature of 25 ° C. and a relative humidity of 90% RH.
 得られた吸湿した粉体を2000μmの目開きを有するJIS標準篩(JIS Z8801-1(2000))上に落とし、篩上に残った粉体と篩を通過した粉体の量を記録し、粉体全量100質量%に対する篩を通過した粉体の割合を求め、吸湿後の2000μm篩通過率(単位;質量%)とした。 The obtained moisture-absorbed powder is dropped onto a JIS standard sieve (JIS Z8801-1 (2000)) having an opening of 2000 μm, and the amount of powder remaining on the sieve and the powder passing through the sieve is recorded. The ratio of the powder that passed through the sieve with respect to 100% by mass of the total amount of the powder was determined and used as the passing rate of 2000 μm sieve after moisture absorption (unit: mass%).
 [製造例1]
 中和率75モル%のアクリル酸ナトリウム水溶液5500g(単量体濃度35質量%)に、内部架橋剤としてトリメチロールプロパントリアクリレート(分子量296)0.38g(0.006モル%対単量体)を溶解し、単量体水溶液(a)を調製した後、窒素ガス雰囲気下で30分間脱気した。
[Production Example 1]
5500 g of sodium acrylate aqueous solution with a neutralization rate of 75 mol% (monomer concentration 35 mass%) and 0.38 g of trimethylolpropane triacrylate (molecular weight 296) as an internal crosslinking agent (0.006 mol% to monomer) Was dissolved to prepare a monomer aqueous solution (a), followed by deaeration for 30 minutes in a nitrogen gas atmosphere.
 次に、内容積10Lのシグマ型羽根を2本有する双腕型のジャケット付きステンレス製ニーダーに蓋を付けた反応器に、上記単量体水溶液(a)を投入し、液温を30℃に保ちながら反応器内に窒素ガスを吹き込み、系内の溶存酸素が1ppm以下となるように窒素置換した。 Next, the monomer aqueous solution (a) is charged into a reactor having a lid on a double-armed jacketed stainless steel kneader having two sigma type blades with an internal volume of 10 L, and the liquid temperature is set to 30 ° C. While maintaining, nitrogen gas was blown into the reactor, and nitrogen substitution was performed so that the dissolved oxygen in the system was 1 ppm or less.
 続いて、10質量%の過硫酸ナトリウム水溶液24.6g及び0.2質量%のL-アスコルビン酸水溶液21.8gをそれぞれ別個に、上記単量体水溶液(a)を攪拌させながら添加したところ、約1分後に重合が開始した。そして、生成した含水ゲル状架橋重合体(a)をゲル粉砕しながら30~90℃で重合し、重合開始から60分経過後に含水ゲル状架橋重合体(a)を反応器から取り出した。なお、得られた含水ゲル状架橋重合体(a)は、その径が約5mmに細粒化されていた。 Subsequently, 24.6 g of a 10% by mass sodium persulfate aqueous solution and 21.8 g of a 0.2% by mass L-ascorbic acid aqueous solution were separately added while stirring the monomer aqueous solution (a). Polymerization started after about 1 minute. The resulting hydrogel crosslinked polymer (a) was polymerized at 30 to 90 ° C. while pulverizing the gel, and after 60 minutes from the start of polymerization, the hydrogel crosslinked polymer (a) was taken out from the reactor. The obtained hydrogel crosslinked polymer (a) had a diameter of about 5 mm.
 上記細粒化された含水ゲル状架橋重合体(a)を、目開き300μm(50メッシュ)の金網上に広げ180℃で45分間熱風乾燥した後、ロールミルで粉砕し、更に目開きが850μmと150μmのJIS標準篩で分級した。この一連の操作により、不定形破砕状の吸水性樹脂(固形分4.0質量%)である吸水性樹脂粒子(a)を得た。なお、吸水性樹脂粒子(a)のCRC(無加圧下吸水倍率)は53.0g/gであった。 The finely divided hydrogel crosslinked polymer (a) is spread on a wire mesh having an opening of 300 μm (50 mesh), dried with hot air at 180 ° C. for 45 minutes, pulverized with a roll mill, and further has an opening of 850 μm. Classification was performed with a 150 μm JIS standard sieve. By this series of operations, water-absorbing resin particles (a) which are irregularly crushed water-absorbing resins (solid content: 4.0% by mass) were obtained. The water-absorbent resin particles (a) had a CRC (water absorption capacity under no pressure) of 53.0 g / g.
 次に、吸水性樹脂粒子(a)をドイツ・レーディゲ社製回転ミキサーに移し、吸水性樹脂粒子(a)100質量部に対して、エチレングリコールジグリシジルエーテル(商品名;デナコールEX-810/ナガセケムテックス社製)0.025質量部、エチレンカーボネート(融点36℃)0.3質量部、1,2-プロパンジオール(融点-59℃)0.5質量部、及び水3.0質量部からなる表面架橋剤水溶液(a)を均一に混合し、175℃で40分間加熱処理を行った。その後、目開きが850μmのJIS標準篩を通過させることで整粒し、表面が架橋された吸水性樹脂粒子(表面架橋吸水性樹脂)(a-1)を得た。吸水性樹脂粒子(a-1)は、不定形であり、粒子径が150μm以上850μm未満である粒子の割合が95質量%以上であった。 Next, the water-absorbent resin particles (a) were transferred to a rotary mixer manufactured by Ledige, Germany, and 100 parts by mass of the water-absorbent resin particles (a) were mixed with ethylene glycol diglycidyl ether (trade name; Denacol EX-810 / Nagase). From Chemtex Co., Ltd.) 0.025 parts by mass, ethylene carbonate (melting point 36 ° C.) 0.3 parts by mass, 1,2-propanediol (melting point −59 ° C.) 0.5 parts by mass, and water 3.0 parts by mass The resulting surface cross-linking agent aqueous solution (a) was uniformly mixed and heat-treated at 175 ° C. for 40 minutes. Thereafter, the particle size was adjusted by passing through a JIS standard sieve having an opening of 850 μm to obtain water-absorbing resin particles (surface-crosslinked water-absorbing resin) (a-1) having a cross-linked surface. The water-absorbent resin particles (a-1) were indefinite, and the proportion of particles having a particle size of 150 μm or more and less than 850 μm was 95% by mass or more.
 [製造例2]
 断熱材である発泡スチロールで覆われた、内径80mm、容量1リットルのポリプロピレン製容器に、アクリル酸291g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)0.32g(アクリル酸に対し0.015モル%)、1.0質量%のジエチレントリアミン5酢酸・5ナトリウム水溶液1.80g、及び1質量%のイルガキュア(登録商標)184のアクリル酸溶液3.60gを混合した溶液(I)を投入した。別途、48.5質量%の水酸化ナトリウム水溶液247gと50℃に調温したイオン交換水255gとを混合した溶液(II)を作製した。続いて、長さ5cmのマグネチックスターラーを用いて800r.p.m.で攪拌した溶液(I)に、溶液(II)をすばやく加え混合することで単量体水溶液(b)を得た。単量体水溶液(b)は、中和熱と溶解熱により、液温が約100℃まで上昇した。なお、アクリル酸の中和率は、73.5モル%であった。
[Production Example 2]
291 g of acrylic acid and 0.32 g of polyethylene glycol diacrylate (molecular weight 523) as an internal cross-linking agent in a polypropylene container having an inner diameter of 80 mm and a capacity of 1 liter covered with polystyrene foam as a heat insulating material (0.015 mol relative to acrylic acid) %), 1.80 g of 1.0% by mass of diethylenetriaminepentaacetic acid / pentasodium aqueous solution, and 1.60 g of acrylic acid solution of 1% by mass of Irgacure (registered trademark) 184 were added. Separately, a solution (II) was prepared by mixing 247 g of a 48.5 mass% aqueous sodium hydroxide solution and 255 g of ion-exchanged water adjusted to 50 ° C. Subsequently, using a magnetic stirrer having a length of 5 cm, 800 r. p. m. The monomer aqueous solution (b) was obtained by quickly adding and mixing the solution (II) to the solution (I) stirred in step (b). The aqueous monomer solution (b) rose to about 100 ° C. due to heat of neutralization and heat of dissolution. The neutralization rate of acrylic acid was 73.5 mol%.
 次に、単量体水溶液(b)に3質量%の過硫酸ナトリウム水溶液1.8gを加え、約1秒間攪拌した後すぐに、内面にテフロン(登録商標)を貼り付けたステンレス製バット型容器中に開放系で注いだ。また、ステンレス製バット型容器に単量体水溶液を注ぎ込むと同時に紫外線を照射した。 Next, after adding 1.8 g of a 3 mass% sodium persulfate aqueous solution to the monomer aqueous solution (b) and stirring for about 1 second, a stainless steel bat-type container with Teflon (registered trademark) attached to the inner surface immediately Poured in an open system. In addition, the monomer aqueous solution was poured into a stainless bat-shaped container and simultaneously irradiated with ultraviolet rays.
 上記単量体水溶液(b)がバット型容器に注がれて間もなく重合が開始(重合開始時の温度98℃)し、重合は約1分以内にピーク温度となった。3分後、紫外線の照射を停止し、含水ゲル状架橋重合体(b)を取り出した。なお、これら一連の操作は大気中に開放された系で行った。 Polymerization started soon after the monomer aqueous solution (b) was poured into the vat-shaped container (the temperature at the start of polymerization was 98 ° C.), and the polymerization reached a peak temperature within about 1 minute. After 3 minutes, the irradiation of ultraviolet rays was stopped, and the hydrogel crosslinked polymer (b) was taken out. These series of operations were performed in a system open to the atmosphere.
 得られた含水ゲル状架橋重合体(b)を、ミートチョッパー(MEAT-CHOPPER TYPE:12VR-400KSOX 飯塚工業株式会社、ダイス孔径:6.4mm、孔数:38、ダイス厚み:8mm)によりゲル粉砕し、細分化された粒子状含水ゲル(b)を得た(質量平均粒子径;1000μm)。 The obtained hydrogel crosslinked polymer (b) was gel pulverized with a meat chopper (MEAT-CHOPER TYPE: 12VR-400KSOX Iizuka Kogyo Co., Ltd., die hole diameter: 6.4 mm, hole number: 38, die thickness: 8 mm). As a result, a finely divided particulate hydrous gel (b) was obtained (mass average particle diameter; 1000 μm).
 この細分化された粒子状含水ゲル(b)を50メッシュ(目開き300μm)の金網上に広げ、180℃で熱風乾燥を行い、乾燥重合体(b)をロールミルで粉砕し、更に目開き850μmと目開き150μmのJIS標準篩で分級することにより、不定形破砕状の吸水性樹脂(固形分96質量%)である吸水性樹脂粒子(b)を得た。なお、吸水性樹脂粒子(b)のCRC(無加圧下吸水倍率)は47.3g/gであった。 This finely divided particulate hydrous gel (b) is spread on a 50 mesh (mesh opening 300 μm) wire mesh, dried with hot air at 180 ° C., the dried polymer (b) is pulverized with a roll mill, and further opened with a mesh opening 850 μm. And a JIS standard sieve having a mesh size of 150 μm, water-absorbent resin particles (b) which are irregularly crushed water-absorbent resins (solid content 96 mass%) were obtained. The water absorbent resin particles (b) had a CRC (water absorption capacity under no pressure) of 47.3 g / g.
 次に、上記吸水性樹脂粒子(b)をドイツ・レーディゲ社製回転ミキサーに移し、吸水性樹脂粒子(b)100質量部に対して、エチレングリコールジグリシジルエーテル0.015質量部、プロピレングリコール1.0質量部、及び水3.0質量部からなる表面架橋剤水溶液(b)を均一に混合し、100℃で45分間加熱処理を行った。その後、目開きが850μmのJIS標準篩を通過させることで整粒し、表面が架橋された吸水性樹脂粒子(表面架橋吸水性樹脂)(b-1)を得た。吸水性樹脂粒子(b-1)は、不定形であり、粒子径が150μm以上850μm未満である粒子の割合が95質量%以上であった。 Next, the water-absorbent resin particles (b) were transferred to a rotary mixer manufactured by Ledige, Germany, and 0.015 parts by mass of ethylene glycol diglycidyl ether and propylene glycol 1 with respect to 100 parts by mass of the water-absorbent resin particles (b). A surface cross-linking agent aqueous solution (b) consisting of 0.0 part by mass and 3.0 parts by mass of water was uniformly mixed and heat-treated at 100 ° C. for 45 minutes. Thereafter, the particle size was adjusted by passing through a JIS standard sieve having an opening of 850 μm to obtain water-absorbing resin particles (surface-crosslinked water-absorbing resin) (b-1) having a cross-linked surface. The water-absorbent resin particles (b-1) were indefinite, and the proportion of particles having a particle diameter of 150 μm or more and less than 850 μm was 95% by mass or more.
 [比較例1-1]
 上記製造例1で得られた吸水性樹脂粒子(a-1)をそのまま用いた。
[Comparative Example 1-1]
The water absorbent resin particles (a-1) obtained in Production Example 1 were used as they were.
 また、製造例1記載の吸水性樹脂粒子(a-1)を下記条件により吸湿処理を行った。即ち、約30gの吸水性樹脂粒子(a-1)をキャビネ判SUSバット(大きさ;170mm×210mm×30mm)に均一に広げ、ESPEC社製小型環境試験機SH-641を用いて、温度25℃、相対湿度90%RHの条件下、30分間吸湿させた。吸湿後の吸水性樹脂粒子(a-1)を用いて、2000μm篩通過率を測定した。吸水性樹脂粒子(a-1)の諸物性及び吸湿処理後の2000μm篩通過率を表1に示した。 Further, the water absorbent resin particles (a-1) described in Production Example 1 were subjected to moisture absorption treatment under the following conditions. That is, about 30 g of the water-absorbing resin particles (a-1) were uniformly spread on a cabinet-size SUS bat (size: 170 mm × 210 mm × 30 mm), and the temperature was set at 25 ° C. using a small environmental tester SH-641 manufactured by ESPEC. Moisture absorption was performed for 30 minutes under the conditions of ° C. and relative humidity of 90% RH. Using the water-absorbent resin particles (a-1) after moisture absorption, the passing rate of 2000 μm sieve was measured. Table 1 shows the physical properties of the water-absorbent resin particles (a-1) and the passing rate of 2000 μm after the moisture absorption treatment.
 [比較例1-2]
 上記製造例2で得られた吸水性樹脂粒子(b-1)をそのまま用いた。
[Comparative Example 1-2]
The water absorbent resin particles (b-1) obtained in Production Example 2 were used as they were.
 また、製造例2記載の吸水性樹脂粒子(b-1)に対して、比較例1-1と同様の吸湿処理を行った。吸湿後の吸水性樹脂粒子(b-1)を用いて、2000μm篩通過率を測定した。吸水性樹脂粒子(b-1)の諸物性及び吸湿処理後の2000μm篩通過率を表1に示した。 Further, the water absorption resin particles (b-1) described in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1. Using the water-absorbent resin particles (b-1) after moisture absorption, the passing rate of 2000 μm sieve was measured. Table 1 shows the physical properties of the water-absorbent resin particles (b-1) and the passing rate of 2000 μm after the moisture absorption treatment.
 [実施例1-1]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製、MgAl(OH)16CO・4HO[一般式(1)のx=0.25、m=0.50]、体積平均粒子径0.5μm)0.1質量部を225gのマヨネーズ瓶に加え、東洋精機製作所製試験用分散機にて3分間混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した(2000μm篩通過粒子の物性は表1の吸湿・水不溶性無機粒子添加後物性の欄)。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性(CRC、AAP)を表1の吸湿前諸物性の欄に示した。
[Example 1-1]
100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles. −6, manufactured by Kyowa Chemical Industry Co., Ltd., Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O [x = 0.25, m = 0.50 of the general formula (1)], volume average particle size 0. 5 μm) 0.1 part by mass was added to a 225 g mayonnaise bottle and mixed for 3 minutes with a test disperser manufactured by Toyo Seiki Seisakusho. Table 1 shows the 2000 µm sieve passing rate of the obtained mixture and the physical properties of the 2000 µm sieve passing particles (the physical properties of the 2000 µm sieve passing particles are the columns of physical properties after addition of moisture-absorbing / water-insoluble inorganic particles in Table 1). The physical properties (CRC, AAP) of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the physical properties before moisture absorption column of Table 1.
 [実施例1-2]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製)1.0質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-2]
100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles. -6, manufactured by Kyowa Chemical Industry Co., Ltd.) 1.0 part by mass was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-3]
 製造例2で得た吸水性樹脂粒子(b-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてシリカ(製品名;アエロジル200CF、日本アエロジル株式会社製)0.3質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例2で得た吸水性樹脂粒子(b-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-3]
100 parts by weight of the water-absorbent resin particles (b-1) obtained in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and silica (product name: Aerosil 200CF, 0.3 parts by mass of Nippon Aerosil Co., Ltd. was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (b-1) obtained in Production Example 2 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-4]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてリン酸三カルシウム(和光純薬工業株式会社製、CAS No.7758-87-4)1.0質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-4]
100 parts by mass of the water-absorbing resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and tricalcium phosphate (Wako Pure Chemical Industries) as water-insoluble inorganic particles. 1.0 part by mass of Kogyo Co., Ltd., CAS No. 7758-87-4) was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-5]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてハイドロタルサイト(製品名;HT-1-NC、堺化学工業株式会社製、化学式MgAl(OH)12CO・3HO[一般式(1)のx=0.33、m=0.5]、体積平均粒子径0.58μm))0.4質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-5]
100 parts by mass of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: HT) as water-insoluble inorganic particles. -1-NC, manufactured by Sakai Chemical Industry Co., Ltd., chemical formula Mg 4 Al 2 (OH) 12 CO 3 .3H 2 O [x = 0.33 of general formula (1), m = 0.5], volume average particle 0.48 parts by mass was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-6]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてハイドロタルサイト(製品名;DHT-4H、協和化学工業株式会社製、化学式Mg4.5Al(OH)13CO・3.5HO[一般式(1)のx=0.31、m=0.54]、体積平均粒子径0.4μm))0.4質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-6]
100 parts by weight of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: DHT) as water-insoluble inorganic particles. -4H, manufactured by Kyowa chemical industry Co., Ltd., the chemical formula Mg 4.5 Al 2 (OH) 13 CO 3 · 3.5H 2 O [ general formula (1) x = 0.31, m = 0.54], the volume 0.4 parts by mass of average particle diameter 0.4 μm)) was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-7]
 製造例1で得た吸水性樹脂粒子(a-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてハイドロタルサイト(製品名;HT-P、堺化学工業株式会社製、化学式Mg4.5Al(OH)13CO・3.5HO[一般式(1)のx=0.69、m=0.54]、体積平均粒子径0.45μm)0.3質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(a-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-7]
100 parts by mass of the water-absorbent resin particles (a-1) obtained in Production Example 1 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and hydrotalcite (product name: HT) as water-insoluble inorganic particles. -P, Sakai chemical Industry Co., Ltd., the chemical formula Mg 4.5 Al 2 (OH) 13 CO 3 · 3.5H 2 O [x = 0.69 in the general formula (1), m = 0.54] , the volume 0.3 parts by mass) (average particle size 0.45 μm) was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water-absorbent resin particles (a-1) obtained in Production Example 1 are shown in the column of physical properties before moisture absorption in Table 1.
 [実施例1-8]
 製造例2で得た吸水性樹脂粒子(b-1)に対して比較例1-1と同様の吸湿処理を行った粒子100質量部、及び水不溶性無機粒子としてタルク(製品名;SG-2000、日本タルク株式会社製)0.5質量部を実施例1-1と同様にして混合した。得られた混合物の2000μm篩通過率、及び2000μm篩通過粒子の物性を表1に示した。また、製造例1で得た吸水性樹脂粒子(b-1)の諸物性を表1の吸湿前諸物性の欄に示した。
[Example 1-8]
100 parts by weight of the water-absorbent resin particles (b-1) obtained in Production Example 2 were subjected to the same moisture absorption treatment as in Comparative Example 1-1, and talc (product name: SG-2000) as water-insoluble inorganic particles. (Manufactured by Nippon Talc Co., Ltd.) was mixed in the same manner as in Example 1-1. Table 1 shows the 2000 µm sieve passage rate of the obtained mixture and the physical properties of the 2000 µm sieve passed particles. The physical properties of the water absorbent resin particles (b-1) obtained in Production Example 1 are shown in the physical properties before moisture absorption column of Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果より、水不溶性無機粒子を吸水性樹脂粒子に添加した実施例1-1~8では、水不溶性無機粒子を添加しない比較例1-1及び比較例1-2と比較して、篩透過率が高く、吸湿による粒子の凝集を抑制し、すなわち、流動性が回復していることがわかる。 From the above results, in Examples 1-1 to 8 in which water-insoluble inorganic particles were added to the water-absorbent resin particles, compared with Comparative Examples 1-1 and 1-2 in which no water-insoluble inorganic particles were added, the sieve permeation It can be seen that the rate is high and aggregation of particles due to moisture absorption is suppressed, that is, fluidity is restored.
 [実施例2-1]
 木材粉砕パルプ40.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)58.2質量部と、ハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製)1.8質量部とを下記(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-1)及び(b-1)を得た。モデル吸収体(a-1)を用いてトータル戻り量評価を、モデル吸収体(b-1)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。なお、モデル吸収体a及びbの坪量及び密度は同じである。
[Example 2-1]
40.0 parts by mass of pulverized wood pulp, 58.2 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 1 .8 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b, to obtain Model Absorbers (a-1) and (b-1). The total return amount was evaluated using the model absorber (a-1), and the absorption amount was evaluated using the model absorber (b-1). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1. The basis weight and density of the model absorbers a and b are the same.
 (吸収体の作製)
 (1)モデル吸収体a
 木材粉砕パルプと、吸水性樹脂粒子と、水不溶性無機粒子とを、吸水紙を載せた400メッシュ(目開き38μm)のワイヤースクリーン上に、バッチ型空気抄造装置を用いて120mm×400mmのウェブに空気抄造した。なお、坪量は、空気抄造時間によって調整した。その後、該ウェブを圧力下でプレスし、100mm×100mmの大きさに切りだして成形することにより、モデル吸収体aを得た。
(Production of absorber)
(1) Model absorber a
A pulverized wood pulp, water-absorbing resin particles, and water-insoluble inorganic particles are placed on a 120 mm × 400 mm web on a 400 mesh (38 μm mesh) wire screen on which water-absorbing paper is placed, using a batch type air paper making device. Air paper making. The basis weight was adjusted by the air papermaking time. Thereafter, the web was pressed under pressure, cut into a size of 100 mm × 100 mm, and molded to obtain a model absorbent body a.
 なお、実施例及び比較例において、木材粉砕パルプの組成比が40質量部の場合にはパルプ質量が1.58gで、木材粉砕パルプの組成比が60質量部の場合にはパルプ質量が3.56gで、更に吸水性樹脂粒子及び水不溶性無機粒子を所定の割合となるように混合した。 In Examples and Comparative Examples, when the composition ratio of the pulverized wood pulp is 40 parts by mass, the pulp mass is 1.58 g, and when the composition ratio of the pulverized wood pulp is 60 parts by mass, the pulp mass is 3. At 56 g, water-absorbing resin particles and water-insoluble inorganic particles were further mixed at a predetermined ratio.
 (2)モデル吸収体b
 木材粉砕パルプと、吸水性樹脂粒子と、水不溶性無機粒子とを、吸水紙を載せた400メッシュ(目開き38μm)のワイヤースクリーン上に、バッチ型空気抄造装置を用いて120mm×400mmの大きさのウェブに空気抄造した。なお、坪量は、空気抄造時間によって調整した。その後、該ウェブを圧力下でプレスし、34mm×100mmの大きさに切りだして成形することにより、モデル吸収体bを得た。
(2) Model absorber b
The size of 120 mm x 400 mm using a batch type air paper-making device on a 400 mesh (38 μm mesh) wire screen on which water-absorbing paper is loaded with pulverized wood pulp, water-absorbing resin particles, and water-insoluble inorganic particles. Air made on the web. The basis weight was adjusted by the air papermaking time. Thereafter, the web was pressed under pressure, cut into a size of 34 mm × 100 mm, and molded to obtain a model absorber b.
 なお、実施例及び比較例において、木材粉砕パルプの組成比が40質量部の場合にはパルプ質量が0.53gで、木材粉砕パルプの組成比が60質量部の場合にはパルプ質量が1.19gで、更に吸水性樹脂粒子及び水不溶性無機粒子を所定の割合となるように混合した。 In Examples and Comparative Examples, when the composition ratio of the pulverized wood pulp is 40 parts by mass, the pulp mass is 0.53 g, and when the composition ratio of the pulverized wood pulp is 60 parts by mass, the pulp mass is 1. At 19 g, water-absorbing resin particles and water-insoluble inorganic particles were further mixed at a predetermined ratio.
 [実施例2-2]
 木材粉砕パルプ40.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)59.4質量部と、ハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製)0.6重量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-2)及び(b-2)を得た。モデル吸収体(a-2)を用いてトータル戻り量評価を、モデル吸収体(b-2)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。
[Example 2-2]
40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 0 .6 parts by weight were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-2) and (b-2). The total return amount was evaluated using the model absorber (a-2), and the absorption amount was evaluated using the model absorber (b-2). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
 [実施例2-3]
 木材粉砕パルプ60.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)39.6質量部と、ハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製)0.4質量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-3)及び(b-3)を得た。モデル吸収体(a-3)を用いてトータル戻り量評価を、モデル吸収体(b-3)を用いて吸収量評価を実施した。得られた評価結果を表3-2に示した。また、モデル吸収体の坪量及び密度を表3-1に示した。
[Example 2-3]
60.0 parts by mass of pulverized wood pulp, 39.6 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 0 .4 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-3) and (b-3). The total return amount was evaluated using the model absorber (a-3), and the absorption amount was evaluated using the model absorber (b-3). The obtained evaluation results are shown in Table 3-2. The basis weight and density of the model absorbent are shown in Table 3-1.
 [実施例2-4]
 木材粉砕パルプ40.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)59.4質量部と、リン酸三カルシウム(和光純薬株式会社製、CAS No.7758-87-4)0.6質量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-4)及び(b-4)を得た。モデル吸収体(a-4)を用いてトータル戻り量評価を、モデル吸収体(b-4)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。
[Example 2-4]
40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, tricalcium phosphate (manufactured by Wako Pure Chemical Industries, Ltd., CAS No. 7758-87-) 4) 0.6 parts by mass were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-4) and (b-4) . The total return amount was evaluated using the model absorber (a-4), and the absorption amount was evaluated using the model absorber (b-4). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
 [実施例2-5]
 木材粉砕パルプ60.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)39.6質量部と、シリカ(製品名;アエロジル200CF、日本アエロジル株式会社製)0.4質量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-5)及び(b-5)を得た。モデル吸収体(a-5)を用いてトータル戻り量評価を、モデル吸収体(b-5)を用いて吸収量評価を実施した。得られた評価結果を表3-2に示した。また、モデル吸収体の坪量及び密度を表3-1に示した。
[Example 2-5]
60.0 parts by mass of pulverized wood pulp, 39.6 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and 0.4 parts by mass of silica (product name: Aerosil 200CF, manufactured by Nippon Aerosil Co., Ltd.) Were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-5) and (b-5). The total return amount was evaluated using the model absorber (a-5), and the absorption amount was evaluated using the model absorber (b-5). The obtained evaluation results are shown in Table 3-2. The basis weight and density of the model absorbent are shown in Table 3-1.
 [実施例2-6]
 木材粉砕パルプ40.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)59.4質量部と、シリカ(製品名;アエロジル200CF、日本アエロジル株式会社製)0.6質量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-6)及び(b-6)を得た。モデル吸収体(a-6)を用いてトータル戻り量評価を、モデル吸収体(b-6)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。
[Example 2-6]
40.0 parts by mass of pulverized wood pulp, 59.4 parts by mass of the water-absorbent resin particles (b-1) described in Production Example 2, and 0.6 parts by mass of silica (product name: Aerosil 200CF, manufactured by Nippon Aerosil Co., Ltd.) Were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-6) and (b-6). The total return amount was evaluated using the model absorber (a-6), and the absorption amount was evaluated using the model absorber (b-6). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
 [比較例2-1]
 木材粉砕パルプ40.0質量部と、製造例2記載の吸水性樹脂粒子(b-1)54.0重量部と、ハイドロタルサイト(製品名;DHT-6、協和化学工業株式会社製)6.0重量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-7)及び(b-7)を得た。モデル吸収体(a-7)を用いてトータル戻り量評価を、モデル吸収体(b-7)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。
[Comparative Example 2-1]
40.0 parts by weight of pulverized wood pulp, 54.0 parts by weight of the water-absorbent resin particles (b-1) described in Production Example 2, and hydrotalcite (product name: DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) 6 0.0 parts by weight were molded by the method described in (1) Model Absorber a and (2) Model Absorber b to obtain Model Absorbers (a-7) and (b-7). The total return amount was evaluated using the model absorber (a-7), and the absorption amount was evaluated using the model absorber (b-7). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
 [比較例2-2]
 木材粉砕パルプ40.0重量部と、製造例2記載の吸水性樹脂粒子(b-1)60.0重量部とを(1)モデル吸収体a、及び(2)モデル吸収体bに記載の方法で成形し、モデル吸収体(a-8)及び(b-8)を得た。モデル吸収体(a-8)を用いてトータル戻り量評価を、モデル吸収体(b-8)を用いて吸収量評価を実施した。得られた評価結果を表2-2に示した。また、モデル吸収体の坪量及び密度を表2-1に示した。
[Comparative Example 2-2]
40.0 parts by weight of pulverized wood pulp and 60.0 parts by weight of water-absorbent resin particles (b-1) described in Production Example 2 are described in (1) Model Absorber a and (2) Model Absorber b. Molded by the method, model absorbers (a-8) and (b-8) were obtained. The total return amount was evaluated using the model absorber (a-8), and the absorption amount was evaluated using the model absorber (b-8). The obtained evaluation results are shown in Table 2-2. The basis weight and density of the model absorbent are shown in Table 2-1.
 (5-5)吸収体の性能評価
 (a)トータル戻り量(Re-Wet)
 上記モデル吸収体aに液不透過性のバックシート及びサイドギャザーとしてポリエチレン製シートを、液透過性のトップシートとして吸水紙を備え、紙オムツ型モデル吸収体とし、この上に内径28mm、高さ100mmの円筒を中心部に備えた100mm×100mmの装置を載せ、更にモデル吸収体に21g/cm(2.1kPa)の荷重を加えるように錘を均等に載せた。次いで、該円筒内に25±3℃に調温したテスト液25mlを素早く(一気に)注いだ。テスト液を注いで10分後、上記モデル吸収体から錘及び装置を外して、ろ紙(製造元:ADVANTEC、FILTER PAPER、No.2、55mm)約5g(17枚)を小数点以下2桁まで秤量して重量を記録(W1[g])し、モデル吸収体の中心にのせ、ろ紙全面に49g/cm(4.8kPa)の荷重がかかるように錘を均等に載せ、2分間放置した。放置後、モデル吸収体からろ紙及び荷重を外し、ろ紙の重量を小数点以下2桁まで記録(W2[g])し、以下の式(2)にしたがってろ紙の重量変化からろ紙が吸収した液量を算出し、これを1回目の戻り量(g)とした。
(5-5) Absorber performance evaluation (a) Total return (Re-Wet)
The model absorbent body a is provided with a liquid-impermeable back sheet and a polyethylene sheet as a side gather, water-absorbing paper is used as a liquid-permeable top sheet, and is a paper diaper-type model absorbent having an inner diameter of 28 mm and a height. A 100 mm × 100 mm device having a 100 mm cylinder at the center was placed, and weights were evenly placed so as to apply a load of 21 g / cm 2 (2.1 kPa) to the model absorber. Next, 25 ml of the test liquid adjusted to 25 ± 3 ° C. was quickly poured into the cylinder. Ten minutes after pouring the test liquid, remove the weight and device from the model absorber, and weigh about 5 g (17 sheets) of filter paper (manufacturer: ADVANTEC, FILTER PAPER, No. 2, 55 mm) to the second decimal place. The weight was recorded (W1 [g]), placed on the center of the model absorber, and a weight was evenly placed on the entire filter paper so that a load of 49 g / cm 2 (4.8 kPa) was applied, and left for 2 minutes. After leaving, remove the filter paper and the load from the model absorber, record the weight of the filter paper to 2 digits after the decimal point (W2 [g]), and the amount of liquid absorbed by the filter paper from the change in the weight of the filter paper according to the following formula (2) Was calculated as the first return amount (g).
 式(2) 戻り量[g]=W2-W1
 その後、上記測定に用いたモデル吸収体を用いて、同様の液注入操作と戻り量測定操作を2回引き続いて繰り返し、2回目の戻り量(g)及び3回目の戻り量(g)を測定し、3回の戻り量の合計をトータル戻り量とした。
Expression (2) Return amount [g] = W2−W1
Thereafter, using the model absorber used in the above measurement, the same liquid injection operation and return amount measurement operation were repeated twice, and the second return amount (g) and the third return amount (g) were measured. The total of the three return amounts was taken as the total return amount.
 なお、戻り量の測定に用いるろ紙は2回目は約8g(27枚)、3回目は約10g(33枚)とし、それぞれ小数点以下2桁まで秤量して用いた。また、テスト液は0.9質量%塩化ナトリウム水溶液とした。 In addition, the filter paper used for the measurement of the return amount was about 8 g (27 sheets) for the second time, and about 10 g (33 sheets) for the third time. The test solution was a 0.9% by mass sodium chloride aqueous solution.
 (b)吸収量
 予め総重量(W3’[g])を測定した上記モデル吸収体bを、不織布製の袋(大きさ:74mm×140mm、製造元:南国パルプ工業株式会社、紙名:ヒートロンペーパー、品種:GSP-22)に入れヒートシール(シール内側部分(有効部分)の大きさ:64mm×130mm)した後、25±3℃に調温したテスト液1L中に水平に浸漬した。浸漬してから30分経過後、当該袋の短辺(74mm)一辺の両端を持って引き上げ、該一辺を弛みがないように固定して10分間吊り下げて水切りし、袋の重量(W4’[g])を測定した。
(B) Absorption amount The model absorbent body b, whose total weight (W3 ′ [g]) was measured in advance, was obtained by using a non-woven bag (size: 74 mm × 140 mm, manufacturer: Nankoku Pulp Co., Ltd., paper name: Heaton It was put into paper, product type: GSP-22, and heat-sealed (size of seal inner part (effective part): 64 mm × 130 mm), and then immersed horizontally in 1 L of test liquid adjusted to 25 ± 3 ° C. 30 minutes after soaking, lift the bag by holding both sides of the short side (74mm), fix the one side so that it does not sag, hang it for 10 minutes, drain the bag (W4 ' [G]) was measured.
 同様の操作を、モデル吸収体を入れずに行い、その時の袋の重量(W5’[g])を測定した。次式(3)にしたがってモデル吸収体の吸収量[g]を算出した。なお、テスト液は0.9質量%塩化ナトリウム水溶液とした。 The same operation was performed without inserting the model absorber, and the weight of the bag at that time (W5 ′ [g]) was measured. The absorption amount [g] of the model absorber was calculated according to the following formula (3). The test solution was a 0.9 mass% sodium chloride aqueous solution.
 式(3):吸収量[g]=W4’-W3’-W5’ Formula (3): Absorption amount [g] = W4′−W3′−W5 ′
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記結果より、実施例2-1~2-6に記載の吸収性物品は、比較例2-1及び2-2に記載の吸収性物品と比較して吸収量の高いものであった。また、実施例2-1~2-6に記載の吸収性物品は、吸収量と戻り量とのバランスに優れたものであった。 From the above results, the absorbent articles described in Examples 2-1 to 2-6 had a higher absorption amount than the absorbent articles described in Comparative Examples 2-1 and 2-2. In addition, the absorbent articles described in Examples 2-1 to 2-6 were excellent in the balance between the absorption amount and the return amount.
 本出願は、2014年1月15日に出願された日本特許出願番号2014-5502号及び2014年4月2日に出願された日本特許出願番号2014-76414号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2014-5502 filed on January 15, 2014 and Japanese Patent Application No. 2014-76414 filed on April 2, 2014. , Referenced and incorporated in its entirety.

Claims (10)

  1.  少なくとも吸水性樹脂粒子と水不溶性無機粒子とを含む、吸収性物品の製造方法であって、
     前記吸水性樹脂粒子と前記水不溶性無機粒子とを、前記吸水性樹脂粒子100質量%に対する前記水不溶性無機粒子の割合が、0.01質量%以上10質量%未満となるように混合する工程を有することを特徴とする、吸収性物品の製造方法。
    A method for producing an absorbent article comprising at least water absorbent resin particles and water-insoluble inorganic particles,
    Mixing the water-absorbent resin particles and the water-insoluble inorganic particles so that a ratio of the water-insoluble inorganic particles to 100% by mass of the water-absorbent resin particles is 0.01% by mass or more and less than 10% by mass. A method for producing an absorbent article, comprising:
  2.  前記水不溶性無機粒子の体積平均粒子径が、10μm以下である、請求項1に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 1, wherein the volume average particle diameter of the water-insoluble inorganic particles is 10 µm or less.
  3.  前記水不溶性無機粒子が、多元金属化合物、リン酸三カルシウム、及び二酸化ケイ素から選ばれる少なくとも一種を含む、請求項1又は2に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 1 or 2, wherein the water-insoluble inorganic particles include at least one selected from a multi-component metal compound, tricalcium phosphate, and silicon dioxide.
  4.  前記多元金属化合物の体積平均粒子径が、2μm以下である、請求項3に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 3, wherein the multi-element metal compound has a volume average particle diameter of 2 µm or less.
  5.  前記吸水性樹脂粒子と、前記水不溶性無機粒子と、親水性繊維と、を混合して吸収体を製造する工程を有する、請求項1~4のいずれか1項に記載の吸収性物品の製造方法。 The production of the absorbent article according to any one of claims 1 to 4, further comprising a step of producing an absorbent body by mixing the water-absorbent resin particles, the water-insoluble inorganic particles, and hydrophilic fibers. Method.
  6.  2000μmの篩通過率が50質量%以下である、前記吸水性樹脂粒子を含む吸水剤と、水不溶性無機粒子と、を混合する、請求項1~5のいずれか1項に記載の吸収性物品の製造方法。 The absorbent article according to any one of claims 1 to 5, wherein a water-absorbing agent containing the water-absorbing resin particles having a sieve passage rate of 2000 µm or less is mixed with water-insoluble inorganic particles. Manufacturing method.
  7.  前記吸水性樹脂粒子100質量%に対する前記水不溶性無機粒子の割合が、0.1~5質量%である、請求項6に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 6, wherein a ratio of the water-insoluble inorganic particles to 100% by mass of the water-absorbent resin particles is 0.1 to 5% by mass.
  8.  前記吸水性樹脂粒子と、前記水不溶性無機粒子と、パルプと、を混合して吸収体を製造する工程を有し、前記吸収体中の前記吸水性樹脂粒子と前記水不溶性無機粒子の合計量(コア濃度)が20~100質量%である、請求項1~6のいずれか1項に記載の吸収性物品の製造方法。 It has the process of manufacturing the absorber by mixing the water-absorbent resin particles, the water-insoluble inorganic particles, and pulp, and the total amount of the water-absorbent resin particles and the water-insoluble inorganic particles in the absorber The method for producing an absorbent article according to any one of claims 1 to 6, wherein (core concentration) is 20 to 100% by mass.
  9.  前記吸水性樹脂粒子100質量%に対する前記水不溶性無機粒子の割合が、0.5質量%以上10質量%未満である、請求項8に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 8, wherein a ratio of the water-insoluble inorganic particles to 100% by mass of the water-absorbent resin particles is 0.5% by mass or more and less than 10% by mass.
  10.  前記吸収体中の前記水不溶性無機粒子の量が、0.1~5質量%である、請求項8又は9に記載の吸収性物品の製造方法。 The method for producing an absorbent article according to claim 8 or 9, wherein the amount of the water-insoluble inorganic particles in the absorber is 0.1 to 5% by mass.
PCT/JP2015/050841 2014-01-15 2015-01-14 Process for producing absobent article WO2015108084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580004876.6A CN105916475B (en) 2014-01-15 2015-01-14 Method for manufacturing absorbent article
JP2015557855A JP6327571B2 (en) 2014-01-15 2015-01-14 Method for manufacturing absorbent article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014005502 2014-01-15
JP2014-005502 2014-01-15
JP2014-076414 2014-04-02
JP2014076414 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015108084A1 true WO2015108084A1 (en) 2015-07-23

Family

ID=53542970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050841 WO2015108084A1 (en) 2014-01-15 2015-01-14 Process for producing absobent article

Country Status (3)

Country Link
JP (1) JP6327571B2 (en)
CN (1) CN105916475B (en)
WO (1) WO2015108084A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170604A1 (en) * 2016-03-28 2019-02-28 株式会社日本触媒 Method for producing water-absorbing agent
WO2019069463A1 (en) * 2017-10-06 2019-04-11 ユニ・チャーム株式会社 Disposable diaper for low-body-weight infant
KR20190112361A (en) * 2018-03-26 2019-10-07 김민영 Dehumidifying agent, Method for manufacturing Dehumidifying agent
JPWO2019098244A1 (en) * 2017-11-16 2020-12-10 株式会社日本触媒 Water absorbent and absorbent articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976841A (en) * 2018-08-01 2018-12-11 安徽富瑞雪化工科技股份有限公司 A method of improving super absorbent resin powder flowbility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284927A (en) * 1989-04-26 1990-11-22 Nippon Synthetic Chem Ind Co Ltd:The Granulation of highly water-absorbing resin
JPH09183856A (en) * 1995-11-02 1997-07-15 Nippon Shokubai Co Ltd Water-absorbing resin and absorbing material and its production
WO2008120742A1 (en) * 2007-03-29 2008-10-09 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
WO2011040530A1 (en) * 2009-09-30 2011-04-07 株式会社日本触媒 Particulate water absorbent and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510562B1 (en) * 2002-06-06 2016-11-16 Nippon Shokubai Co., Ltd. Water absorbing agent composition and method for production thereof and, absorbing material and absorbent article
JP4799855B2 (en) * 2003-12-12 2011-10-26 株式会社日本触媒 Water-absorbing agent and method for producing the same, and absorbent body and absorbent article using the same
EP2289982B1 (en) * 2006-03-27 2018-05-23 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin composition
JP5730013B2 (en) * 2008-04-25 2015-06-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin and method for producing the same
AU2009332225B2 (en) * 2008-12-26 2013-07-04 San-Dia Polymers, Ltd. Absorbent Resin Particle, Process For Producing The Same, Absorber Containing The Same, And Absorbent Article
WO2012043821A1 (en) * 2010-09-30 2012-04-05 株式会社日本触媒 Particulate water absorbent and production method for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284927A (en) * 1989-04-26 1990-11-22 Nippon Synthetic Chem Ind Co Ltd:The Granulation of highly water-absorbing resin
JPH09183856A (en) * 1995-11-02 1997-07-15 Nippon Shokubai Co Ltd Water-absorbing resin and absorbing material and its production
WO2008120742A1 (en) * 2007-03-29 2008-10-09 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
WO2011040530A1 (en) * 2009-09-30 2011-04-07 株式会社日本触媒 Particulate water absorbent and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170604A1 (en) * 2016-03-28 2019-02-28 株式会社日本触媒 Method for producing water-absorbing agent
US11224857B2 (en) 2016-03-28 2022-01-18 Nippon Shokubai Co., Ltd. Method for manufacturing water absorbing agent
WO2019069463A1 (en) * 2017-10-06 2019-04-11 ユニ・チャーム株式会社 Disposable diaper for low-body-weight infant
JPWO2019098244A1 (en) * 2017-11-16 2020-12-10 株式会社日本触媒 Water absorbent and absorbent articles
US11607667B2 (en) 2017-11-16 2023-03-21 Nippon Shokubai Co., Ltd. Absorption agent and absorbent article
KR20190112361A (en) * 2018-03-26 2019-10-07 김민영 Dehumidifying agent, Method for manufacturing Dehumidifying agent
KR102080643B1 (en) * 2018-03-26 2020-04-23 김민영 Dehumidifying agent, Method for manufacturing Dehumidifying agent

Also Published As

Publication number Publication date
JP6327571B2 (en) 2018-05-23
JPWO2015108084A1 (en) 2017-03-23
CN105916475A (en) 2016-08-31
CN105916475B (en) 2020-12-18

Similar Documents

Publication Publication Date Title
JP5996664B2 (en) Dust reducing agent comprising multi-component metal compound, water-absorbing agent containing multi-component metal compound, and method for producing the same
JP6385993B2 (en) Polyacrylic acid (salt) water-absorbing agent
JP5914677B2 (en) Method for producing polyacrylic acid (salt) water absorbent and water absorbent
US10207250B2 (en) Poly(meth)acrylic acid (salt)-based particulate absorbent
JP5451173B2 (en) Water-absorbing agent and sanitary material
JP5706351B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
JP6286533B2 (en) Particulate water-absorbing agent and method for producing the same
JP5952431B2 (en) Water-absorbing resin material and method for producing the same
JP6327571B2 (en) Method for manufacturing absorbent article
EP1512417B1 (en) Particulate water-absorbent resin composition
WO2009113678A1 (en) Method for production of particulate water absorbent comprising water-absorbable resin as main ingredient
WO2015093594A1 (en) Polyacrylic acid (salt) water absorbent, and method for producing same
WO2018155591A1 (en) Water absorbent sheet, elongated water absorbent sheet, and absorbent article
JP2005113117A (en) Water-absorptive resin composition and its production process
JP6351218B2 (en) Water absorbing agent and method for producing the same
JP7309255B2 (en) Method for producing super absorbent polymer
JP2007321008A (en) Method for producing modified water-absorbing resin
KR20210041070A (en) Method for producing water absorbent resin powder and water absorbent resin powder
WO2021201177A1 (en) Particulate water-absorbing agent
JP2007321007A (en) Method for producing modified water-absorbing resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737069

Country of ref document: EP

Kind code of ref document: A1