WO2015107993A1 - Diagnostic ultrasound apparatus and pulse wave measurement method - Google Patents

Diagnostic ultrasound apparatus and pulse wave measurement method Download PDF

Info

Publication number
WO2015107993A1
WO2015107993A1 PCT/JP2015/050497 JP2015050497W WO2015107993A1 WO 2015107993 A1 WO2015107993 A1 WO 2015107993A1 JP 2015050497 W JP2015050497 W JP 2015050497W WO 2015107993 A1 WO2015107993 A1 WO 2015107993A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
ultrasonic
blood vessel
diagnostic apparatus
measurement
Prior art date
Application number
PCT/JP2015/050497
Other languages
French (fr)
Japanese (ja)
Inventor
川畑 健一
吉川 秀樹
田中 智彦
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Publication of WO2015107993A1 publication Critical patent/WO2015107993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus.
  • the present invention relates to a technique for measuring and diagnosing the state of a specific part of a blood vessel using ultrasound.
  • the speed of the pulse wave that travels through the blood vessels is closely related to blood pressure, the degree of arteriosclerosis, etc., and accurate measurement of the pulse wave transmission speed is very important for health management and understanding the health status of patients. .
  • As a method of measuring the pulse wave transmission speed there is a method of measuring and calculating the time required for the pulse wave to reach the upper arm and ankle using a blood pressure cuff against an electrocardiogram. Based on the blood pressure ratio of the upper arm and ankle obtained by this method, CAVI (Cardio Angular Vascular Index), which is an index indicating the blood vessel-specific hardness independent of blood pressure, is calculated.
  • CAVI Cardio Angular Vascular Index
  • the pulse wave transmission speed required by this method is an average value over a long distance from the heart to the ankle, but in reality, changes in the inner diameter of the blood vessel and arteriosclerosis are localized in a part of the long path. In many cases.
  • a method using an ultrasonic diagnostic apparatus has also been proposed (Patent Document 1). In this method, ultrasonic pulses are transmitted toward two points along the direction of blood vessel travel, and a temporal change in the amount of tissue movement is detected from the ultrasonic signals reflected from these two points. The pulse wave transmission speed is calculated from the distance between the points.
  • Patent Document 1 has a drawback in that an error becomes larger than the conventional CAVI method because the pulse wave transmission speed is measured based on the measured pulse wave transmission time between two points.
  • errors can be reduced by increasing the number of measurements. In this case, however, the measurement time becomes longer, and the positional relationship between the ultrasound probe brought into contact with the living body and the living body, that is, the relationship between the blood vessels can be maintained. There is also a high probability that this will not occur, thereby causing an error.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus capable of obtaining pulse wave information with higher reliability with a relatively small number of measurements.
  • the present invention uses an echo signal obtained from a side closer to the ultrasonic probe and a side far from the ultrasonic probe when the ultrasonic beam is irradiated obliquely relative to the blood vessel in the living body, A plurality of measurement data with different pulse wave movement distances is acquired with a small number of measurements.
  • the ultrasonic diagnostic apparatus of the present invention uses an ultrasonic probe that transmits an ultrasonic beam into a living body and receives an echo signal from the living body, and an echo signal received by the ultrasonic probe.
  • a calculation unit that calculates biological information, and the calculation unit is close to the ultrasonic probe of the blood vessel when the ultrasonic beam is irradiated obliquely relative to the blood vessel in the living body.
  • an ultrasonic diagnostic apparatus capable of obtaining more reliable pulse wave information with a relatively small number of measurements.
  • FIG. 5 is a graph in which the pulse wave travel time is plotted against the pulse wave travel distance, where (a) is a pulse wave measurement of the first embodiment, (b) is a conventional pulse wave measurement, and (c) is a second implementation.
  • the ultrasonic diagnostic apparatus of the present embodiment includes an ultrasonic probe (1) that transmits an ultrasonic beam into a living body and receives an echo signal from the living body, and an echo that is received by the ultrasonic probe (1).
  • a calculation unit (4) that calculates biological information using the signal, and a display unit (6) that displays the biological information calculated by the calculation unit (4).
  • the calculation unit (4) includes a first echo signal reflected from a side of the blood vessel close to the ultrasonic probe (1) when the ultrasonic beam is irradiated relatively obliquely to the blood vessel in the living body.
  • a pulse wave measurement unit (40) for measuring a pulse wave moving in the blood vessel using the second echo signal reflected from the side of the blood vessel far from the ultrasonic probe (1).
  • the pulse wave measurement unit (40) uses temporal changes of the first echo signal and the second echo signal, and the distance in the blood vessel traveling direction between the side of the blood vessel close to the ultrasonic probe and the side far from the ultrasonic probe. And a pulse wave velocity calculating unit (45) for calculating the pulse wave propagation velocity.
  • the ultrasound probe (1) is an ultrasound probe that includes a plurality of arranged transducers and emits a plurality of ultrasound beams
  • the pulse wave measurement unit (40) includes a plurality of A pulse wave is measured using the first echo signal and the second echo signal generated corresponding to each of the ultrasonic beams.
  • the ultrasonic beam is oblique with respect to the blood vessel” means that the ultrasonic beam is directed in the blood vessel traveling direction when the ultrasonic beam is irradiated in a direction orthogonal to the blood vessel traveling direction. This means that the light is incident at an angle smaller than 90 °, and the angle formed between the probe surface and the ultrasonic beam is not synonymous.
  • pulse wave transmission speed is also simply referred to as “pulse wave speed”.
  • the ultrasonic diagnostic apparatus of the present embodiment has a plurality of transducers (not shown) arranged in a one-dimensional or two-dimensional direction, and transmits ultrasonic beams to a living body and reflected echoes from the living body.
  • a probe (ultrasonic probe) 1 that receives an ultrasonic signal, a transmitter 2 that drives a transducer of the probe 1 and transmits an ultrasonic beam from the probe 1, and an ultrasonic wave that the probe 1 receives
  • a receiving unit 3 that performs signal processing such as amplification and phasing on the signal
  • a calculation unit (pulse wave measurement unit) 4 that calculates information on the pulse wave using a signal output from the receiving unit 3, and a calculation unit 4
  • a display unit 6 for displaying the calculated pulse wave information and an input unit 7 for inputting conditions necessary for measurement, parameters necessary for calculation, and the like are provided.
  • the display unit 6 includes a display control unit 61 that controls a display image.
  • the probe 1 is, for example, an electronic scanning probe 1 that performs beam focusing by electronically switching a plurality of vibrators, and a known type such as a linear type, a convex type, or a sector type can be used.
  • the transmitter 2 includes an ultrasonic signal transmission circuit 21 that drives a plurality of transducers included in the probe 1 at a predetermined frequency, and a transmission signal transmitted from the ultrasonic signal transmission circuit with a predetermined delay with respect to the plurality of transducers.
  • a delay control unit (beamformer) 23 that supplies the signals in a related manner is provided, and the direction and depth (focus position) of the ultrasonic beam are adjusted by controlling the delay time given to each transducer. be able to.
  • the delay control unit 23 adjusts the direction and depth of the ultrasonic beam based on the designation of the region of interest and the beam angle input via the input unit 7.
  • the operator can set a region of interest including a blood vessel to be examined based on a B-mode image, and can set an angle with respect to the blood vessel as a beam angle.
  • the input unit 7 includes a frequency setting unit (not shown) for setting the frequency of the transmission signal and a gain setting unit (not shown) for setting the gain of the amplifier, a region of interest setting unit 71, an angle setting unit 72, a plurality of A beam interval setting unit 73 is provided for setting an interval (beam interval) between the ultrasonic beams.
  • the input unit 7 includes buttons, a keyboard, a trackball, and the like for performing various settings, and some of them can be configured with a touch panel.
  • the receiving unit 3 includes an amplifying unit 31 that amplifies a signal from each transducer, and a delay process that performs delay processing (phasing) corresponding to a delay time given to each transducer by the delay control unit 23 of the transmitting unit 2.
  • a unit 32, an apodization processing unit 33, an addition unit (not shown), and the like are provided.
  • the receiving unit 3 generates a reception signal corresponding to the transmission beam by the processing of these units.
  • the received signal is subjected to processing such as unnecessary wave component removal and spectrum calculation as necessary, and is then configured by the display control unit 61 into a display image in B mode, M mode, or Doppler mode.
  • elements included in a general ultrasonic diagnostic apparatus such as a B-mode processing unit, a DSC (Digital Scan Converter), and further a Doppler processing unit are signaled. You may provide as a process part.
  • the pulse wave measurement unit 40 includes a pulse wave arrival time calculation unit 41, a distance calculation unit 42, a pulse wave velocity calculation unit 45, and the like in order to calculate a pulse wave velocity.
  • measurement is performed in a mode in which the temporal position change of the reflection source is recorded, and the pulse wave arrival time calculation unit 41 determines the pulse wave arrival time based on the time change of the received signals from the plurality of reflection sources.
  • the distance calculation unit 42 calculates, for example, the moving distance of the pulse wave within the region of interest from the B mode image, specifically, the distance between a plurality of measurement points of the blood vessel.
  • the pulse wave velocity calculator 45 calculates the pulse wave velocity using the pulse wave arrival time calculated by the pulse wave arrival time calculator 41 and the distance calculated by the distance calculator 43.
  • FIG. 2 shows the operation procedure.
  • the operator sets a region of interest including a target blood vessel via the region of interest setting unit 71 of the input unit 7 (S201).
  • the region of interest can be set using the ultrasonic image (B mode image) displayed on the display unit 6 so that the target blood vessel is included in the region of interest.
  • the ultrasonic intensity and frequency are set in a range where an echo signal from the blood vessel wall can be measured.
  • the angle of the ultrasonic beam irradiated from the probe 1 with respect to the target blood vessel is set (S202).
  • the target blood vessel 300 is running substantially parallel to the body surface of the subject, the target blood vessel 300 is in contact with the body surface (skin) 305, The surface (the surface in contact with the body surface of the subject) is parallel to the target blood vessel 300, and the angle formed between the ultrasonic beams 310 and 320 irradiated perpendicularly from the surface of the probe 1 and the blood vessel 300 is about 90 °. .
  • the angles of the ultrasonic beams 310 and 320 irradiated from the probe 1 are adjusted so that the ultrasonic beams 310 and 320 are obliquely irradiated to the blood vessel 300. To.
  • the angle ⁇ formed between the ultrasonic beams 310 and 320 and the traveling direction of the blood vessel 300 differs depending on the thickness of the blood vessel 300, and the point A1 where the ultrasonic beam 310 hits the blood vessel wall 300-1 closer to the body surface and the body
  • the difference L in the blood vessel traveling direction from the point A2 where the ultrasonic beam 310 strikes on the blood vessel wall 300-2 far from the table is set to a predetermined value or more.
  • the traveling direction between the points A1 and A2 takes into account that the displacement of the blood vessel wall due to the pulse wave includes a frequency component of up to about 60 Hz and the arrival at a specific part is detected in phase. It is preferable that the difference in position is approximately 0.5 mm or more.
  • the angle ⁇ is preferably set so that L is 0.5 mm or more.
  • the points A1 and A2 are points (reflection sources) that generate reflected echoes, and are hereinafter referred to as measurement points.
  • the angle ⁇ is [Equation 1] ⁇ ⁇ arctan (D / L) (1) It becomes. Since the diameter D of the blood vessel can be grasped from the B-mode image, the angle can be determined using this value. Specifically, L (0.5 mm) may be set as a specified value, designation of a target blood vessel may be accepted when setting a region of interest, and the ultrasonic beam angle ⁇ may be automatically set. The operator may input the value of L and change it.
  • FIG. 3 shows a case where the blood vessel travels substantially parallel to the body surface, but the blood vessel 300 may travel diagonally in the depth direction with respect to the body surface 305 as shown in FIG.
  • the sum of the inclination angle ⁇ of the blood vessel 300 with respect to the body surface and the angle ⁇ between the target blood vessel 300 and the irradiation beam in the cross section where the blood vessel 300 travels is the angle ⁇ p of the ultrasonic beam with respect to the surface of the probe 1.
  • the angle ⁇ p of the ultrasonic beam may be set so that
  • the interval W0 between a plurality of, for example, two ultrasonic beams irradiated from the probe 1 is set (S203).
  • the interval between the ultrasonic beams is such that the interval W between the points where the two ultrasonic beams enter the blood vessel (A1 and B1 in FIG. 3) is twice or more than the interval L between the measurement point A1 and the measurement point A2. It is preferable to set so that.
  • the beam interval is substantially equal to the interval W between the points where the two ultrasonic beams are incident on the blood vessel.
  • the values L and W set in steps S202 and S203 are recorded in a memory (not shown) and used for calculation by the pulse wave velocity calculation unit 45.
  • the irradiation of the ultrasonic beam is started, and echo signals from the two ultrasonic beams are continuously received (S204).
  • the interval between the ultrasonic beams and the angle of the ultrasonic beam, that is, the irradiation direction, are controlled by a delay control unit 23 that controls the drive and delay relationship of the transducer of the probe 1.
  • FIG. 5 shows the time change of the received signal corresponding to one ultrasonic beam.
  • the horizontal axis represents depth
  • the vertical axis represents signal intensity.
  • the received signal has two peaks corresponding to the measurement points A1 and A2, and the respective peak positions are shifted in the horizontal axis direction due to the propagation of the pulse wave. That is, the position in the vibration direction changes.
  • the measurement point A1 and the measurement point A2 are at positions shifted in the traveling direction of the blood vessel, and the time at which the pulse wave propagates is different. For example, in FIG.
  • the pulse wave reaches the measurement point A2 when ⁇ t has elapsed from time t0, and the pulse wave has reached the measurement point A1 when 4 ⁇ t has elapsed from t0.
  • the pulse wave reaches the measurement point A2 when ⁇ t has elapsed from time t0, and the pulse wave has reached the measurement point A1 when 4 ⁇ t has elapsed from t0.
  • the pulse wave measurement unit 40 first determines the pulse wave propagation time of each measurement point A2, A1, B2, B1 using the received signal (S205).
  • the pulse wave transmission time is calculated, for example, by providing a spatial gate centering on the average position of each measurement point of the blood vessel, and setting the time when the position of the measurement point is shifted outward from the spatial gate as the pulse wave arrival time.
  • the movement time of the pulse wave moving between the measurement points is calculated (S206).
  • n 1, 2, 3... N (N is an integer of “number of measurement points ⁇ 1”, and when the number of measurement points is 4 as described above, Three speeds V1, V2 and V3 are calculated corresponding to three different distances, ie, distance L1 between A2 and A1, distance L2 between A2 and B2, and distance L3 between A2 and B1. , L2 and L3 are calculated by the distance calculation unit 42 using the blood vessel diameter D (obtained from the B-mode image), the set angle ⁇ of the ultrasonic beam, and the beam interval W.
  • the ultrasonic beam is a parallel beam.
  • a simple example in which a blood vessel runs parallel to the body surface is as follows.
  • the three velocities calculated in this way should be the same if the velocity of the pulse wave in the region of interest is uniform, but have some variation due to restrictions on device accuracy.
  • the average value of the multiple velocities obtained here may be obtained and used as the pulse wave velocity, or the relationship between Ln and tn may be approximated by a linear function, and the slope of the linear function may be used as the pulse wave velocity. Good. Since the pulse wave repeatedly appears, it is possible to improve the accuracy by adding the pulse wave velocity measured a plurality of times within a predetermined time.
  • the calculated pulse wave velocity is displayed on the display unit 6 (S208).
  • the display form of the pulse wave velocity on the display unit 6 can take various forms.
  • the pulse wave velocity may be displayed as a numerical value, or may be displayed as a relative evaluation with respect to a standard pulse wave velocity. It is also possible to display the pulse wave velocity in a superimposed manner or in parallel on the same screen as the ultrasonic image (B mode image).
  • FIG. 3A shows measurement points when the ultrasonic beam is irradiated obliquely to the blood vessel according to the present embodiment.
  • FIG. 6A is a diagram in which the pulse wave travel time obtained in the present embodiment is plotted against the travel distance, and the slope of the graph of FIG. 6A is the pulse wave velocity.
  • FIG. 3B shows a pulse wave measurement technique using a conventional ultrasonic diagnostic apparatus.
  • FIG. 6B is a diagram in which the pulse wave travel time obtained by the prior art is plotted against the travel distance.
  • the present embodiment information of a score three times that of the prior art can be obtained by the same single measurement, and the accuracy of the calculated pulse wave velocity can be improved.
  • the number of data points can be increased without increasing the measurement time, and the accuracy of the calculated pulse wave transmission speed can be increased.
  • the distance L1 between A2 and A1, the distance L2 between A2 and B2, and the distance L3 between A2 and B1 are obtained as the movement distance of the pulse wave, and the pulse wave velocity is calculated from these three distances.
  • three distances between A2 and A1, between A1 and B2, and between B2 and B1 may be used.
  • the number of calculated pulse wave velocities can be increased. , Can improve accuracy.
  • the pulse wave since the pulse wave is observed from the displacement of the blood vessel, it is not affected by the direction of the blood flow flowing through the blood vessel. That is, the present embodiment can be similarly applied to the case where the blood flow is directed in either direction.
  • the ultrasonic diagnostic apparatus of the present embodiment also irradiates a plurality of ultrasonic beams obliquely relative to the traveling direction of the blood vessel, as in the first embodiment. It is characterized in that the measurement is performed in a plurality of measurement modes with different beam intervals.
  • the ultrasonic diagnostic apparatus includes a control unit that controls driving of the ultrasonic probe, and the control unit has two measurement modes in which combinations of ultrasonic beams are different, the first measurement mode and the second measurement mode.
  • the measurement mode is provided.
  • the first measurement mode the first ultrasonic beam and the second ultrasonic beam separated from the first ultrasonic beam in the transducer arrangement direction are simultaneously irradiated.
  • the second measurement mode the first ultrasonic beam is irradiated with the first ultrasonic beam.
  • the ultrasonic beam and the third ultrasonic beam separated from the first ultrasonic beam in the direction of transducer arrangement are simultaneously irradiated.
  • the interval between the first ultrasonic beam and the third ultrasonic beam is different from the interval between the first ultrasonic beam and the second ultrasonic beam.
  • the pulse wave measurement unit measures a pulse wave by using a plurality of sets of first echo signals and second echo signals respectively measured in the first measurement mode and the second measurement mode.
  • a measurement mode having a wider width (interval) between beams is referred to as a wide mode
  • a measurement mode having a narrow width between beams is referred to as a narrow mode.
  • the control unit sets the distance between the first ultrasonic beam and the second ultrasonic beam to the ultrasonic probe of the blood vessel through which the same ultrasonic beam passes. It is set longer than the distance in the blood vessel traveling direction between the near side and the far side.
  • the ultrasonic diagnostic apparatus of the present embodiment includes an adjusting unit that adjusts the irradiation direction of the ultrasonic beam by the ultrasonic probe.
  • the adjusting means is, for example, a beam former that adjusts the direction of the ultrasonic beam emitted by each transducer of the ultrasonic probe.
  • the pulse wave measurement unit can include a determination unit (comparison unit) that determines the accuracy of the measured pulse wave information.
  • FIG. 7 the same elements as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the ultrasonic diagnostic apparatus of the present embodiment is substantially the same as the ultrasonic diagnostic apparatus of the first embodiment shown in FIG. 1, but includes a control unit 5 for operating the apparatus in a plurality of measurement modes. Is different.
  • the plurality of measurement modes are, for example, a wide mode and a narrow mode, and the control unit 5 sends commands to the transmission unit 2, the reception unit 3, and the calculation unit 4 so as to perform these two measurement modes in succession.
  • the input unit 7 is provided with a measurement mode selection unit 75 that selects measurement in a plurality of measurement modes.
  • the transmission unit 2 varies the beam intervals of the plurality of ultrasonic beams emitted from the probe 1 in the wide mode and the narrow mode according to the command from the control unit 5.
  • the beam intervals in the wide mode and the narrow mode may be set in advance, or may be set / changed by the operator via the input unit 7.
  • the receiving unit 3 sends the reception signal of each measurement mode to the calculation unit 4, and the calculation unit 4 calculates the pulse wave arrival time and the pulse wave velocity using the reception signals of both measurement modes.
  • the calculation unit 4 includes a first comparison unit 43 that compares measurement values in one measurement mode and a second comparison unit 44 that compares measurement values between measurement modes in order to continuously operate both measurement modes. ing. The comparison results of the first comparison unit 43 and the second comparison unit 44 are transferred to the control unit 5 and the display unit 6, whereby the measurement mode is switched or redone.
  • FIG. 8 shows an operation procedure.
  • the same steps as those in FIG. 2 are denoted by the corresponding reference numerals, and redundant description is omitted.
  • a region of interest is set (S201), and an irradiation angle of the ultrasonic beam with respect to the target blood vessel is set (S202).
  • the beam irradiation angle ⁇ with respect to the blood vessel is the blood vessel between the blood vessel position on the body surface side (measurement point A1) and the blood vessel position on the side far from the body surface (measurement point A2), as in the first embodiment. It is preferable that the position difference in the traveling direction is set to be a predetermined value (for example, 0.5 mm or more). If the above conditions are satisfied, the beam irradiation angle ⁇ may be the same or different between the wide mode and the narrow mode.
  • FIGS. 9A and 9B show the relationship between the two ultrasonic beams in the two measurement modes.
  • the angle between the sound beam and the blood vessel 300 is set to be the same as the angle when the blood vessel 300 is parallel to the body surface 305.
  • a point where one of the two ultrasonic beams 310 and 320 is incident on the side closer to the body surface of the blood vessel is A1
  • a point where the one is incident on the far side is A2.
  • B1 be the point where the other 320 of the sound beam is incident on the side closer to the body surface of the blood vessel
  • B2 be the point where it is incident on the far side.
  • the probe 1 is not moved while the two measurement modes are performed, and one of the ultrasonic beams 310 in the narrow mode shown in FIG. 9B is the same as the ultrasonic beam 310 in the wide mode and is a blood vessel.
  • the point where the other 330 of the ultrasonic beam is incident on the side close to the body surface of the blood vessel is C1
  • the point where the other 330 is incident on the far side is C2.
  • the beam interval W2 in the narrow mode (equal to the distance between A1 and C1 in the case of a parallel beam) is preferably larger than the distance L1 between the A1 and A2 blood vessels, and the beam interval W1 in the wide mode is the beam in the narrow mode. It is larger than the interval W2. That is, the beam interval is set so that L1 ⁇ W2 ⁇ W1. As an example, W2 is set to about twice L1, and W1 is set to about twice W2.
  • n is an integer of 1 or more
  • the measurement of transmitting and receiving the ultrasonic beams 310 and 320 is repeated n times for a predetermined time.
  • the interval and angle of the ultrasonic beam are controlled by the delay control unit 23 of the transmission unit 2 as in the first embodiment.
  • the calculation unit 4 inputs the reception signal continuously received by the reception unit 3 and calculates the pulse wave velocity (S803). This calculation is the same as in the first embodiment, and the pulse wave velocity is calculated using the three distances (A2-A1, A2-B2, A2-B1) calculated in advance.
  • the first comparison unit 43 obtains a deviation of the pulse wave velocity obtained by the n times of measurement and compares it with a preset threshold value (S804).
  • the threshold value is, for example, about 10% of the n measurement values.
  • the control unit 5 determines that the measurement is defective, and changes the beam angle and / or the beam interval to change the position of all or part of the measurement points. Change and measure again n times in wide mode.
  • the obtained deviation is smaller than a preset threshold value, it is determined that the measurement is good, and then the measurement shifts to the narrow mode (S805).
  • the ultrasonic beams 310 and 330 are transmitted / received for a preset number of times (m times: m is an integer of 1 or more).
  • the movement speed of the pulse wave is calculated using the reception signal obtained by each reception of m times (S806). This calculation is the same as in the first embodiment, and the pulse wave velocity is calculated using the three distances (A2-A1, A2-C2, A2-C1) calculated in advance.
  • the first comparison unit 43 obtains a deviation of the pulse wave velocity obtained by the m times of measurement and compares it with a preset threshold value (S807).
  • the obtained deviation is larger than a preset threshold value, it is determined that the measurement is defective, and the position of the measurement points C1 and C2, that is, the position of the ultrasonic beam 330 with respect to the ultrasonic beam 310 is changed and the narrow mode is again performed. To measure m times. If the obtained deviation is smaller than a preset threshold value, it is determined that the measurement is good, and the flow proceeds to pulse wave velocity calculation (S808). In step S808, the pulse wave velocity is calculated from the obtained wide mode and narrow mode data.
  • the n pulse wave velocities calculated in the wide mode and the m pulse wave velocities calculated in the narrow mode can be calculated as a pulse wave velocity by simple averaging or weighted averaging.
  • weighting one (for example, wide mode) may be weighted more heavily than the other (narrow mode), or may be set according to the number of repetitions (n, m).
  • the pulse wave velocities calculated in the wide mode or the two modes are averaged for each mode, and weighted and added according to each variance. Also good. Further, when obtaining the average value for each mode, the second comparison unit 44 can compare the results of the wide mode and the narrow mode, and in this case, a message prompting the display unit 6 to restart the measurement according to the comparison result. You may make it display.
  • the display of the finally calculated pulse wave moving speed on the display unit 6 in an arbitrary display form is the same as in the first embodiment (S208).
  • the number of measurements can be increased and obtained without changing the position of the probe 1 with respect to the subject (region of interest) by performing measurement in two modes with different beam intervals.
  • the accuracy of the pulse wave moving speed can be improved.
  • Measurement data corresponding to the present embodiment is shown in FIG. It can be seen that the number of data points is further increased compared to FIG.
  • the probe 1 has a function of making the interval between the ultrasonic beams variable. If not, two measurements can be performed using two probes with different beam intervals. Alternatively, two measurements can be performed using two probes, and the position of one probe can be fixed during the two measurements, and the position of the other probe (interval with respect to the fixed probe) can be varied. In any case, by using measurement data in which the irradiation angle of the ultrasonic beam is inclined with respect to the blood vessel, information on a plurality of pulse wave movement distances and arrival time difference information can be obtained for each measurement. The accuracy of pulse wave velocity measurement can be increased.
  • a comparison unit may be provided to determine the accuracy of the pulse wave information calculated by the pulse wave velocity calculation unit 45, and according to the result.
  • the beam interval W and the beam angle ⁇ may be adjusted.
  • the ultrasonic probe controls the angle of the ultrasonic beam by the transmitter 2 (delay controller 23) of the probe 1 as an adjustment unit that adjusts the irradiation direction of the ultrasonic beam.
  • the coupling material 10 that changes the angle of the probe 1 is employed between the probe 1 and the subject. Since other configurations are the same as those of the first or second embodiment, description thereof is omitted.
  • FIG. 10 shows the relationship between the probe 1 and the coupling material 10.
  • the coupling material 10 has a triangular shape when viewed from the side, and the bottom surface 10b that contacts the subject's skin and the top surface 10a that is fixed to the probe 1 have a predetermined angle ⁇ . ing.
  • the ultrasonic beam emitted perpendicularly from the probe surface is [90 ° - ⁇ ] with respect to the blood vessel 300 traveling substantially parallel to the body surface. Incident at an angle.
  • desired oblique irradiation can be achieved by using a coupling material having an inclination of [90 ° ⁇ ].
  • the range of the angle ⁇ depends on the target blood vessel diameter D, but since there is a certain tolerance, the effect of the present invention can be obtained even if the coupling material 10 having a fixed inclination is used. Obtainable.
  • the ultrasonic diagnostic apparatus of the present embodiment obtains information related to blood vessel properties other than pulse wave velocity from ultrasonic images obtained by ultrasonic imaging and measurement results of measurement devices other than ultrasonic measurement. It is characterized by having a function (normality calculation unit) for calculating the normality of the tissue using the pulse wave velocity and the characteristics relating to the blood vessel properties.
  • a function normality calculation unit
  • the calculation unit includes a vascular property calculation unit that calculates a blood vessel property using an echo signal received by the ultrasound probe, and the normality calculation unit relates to the vascular property calculated by the vascular property calculation unit.
  • the normality of the tissue is calculated using the information and the pulse wave information measured by the pulse wave measuring unit.
  • the normality calculation unit inputs blood pressure information and / or pulse wave information measured by the external measurement device, and uses information from the external measurement device and pulse wave information measured by the pulse wave measurement unit to Normality can be calculated.
  • the apparatus configuration relating to pulse wave velocity measurement can be the same as any one of the first to third embodiments.
  • description of overlapping elements will be omitted, and different points will be mainly described.
  • FIG. 11 shows a functional block diagram of the ultrasonic diagnostic apparatus of this embodiment.
  • the ultrasonic diagnostic apparatus of the present embodiment is characterized in that the calculation unit 4 includes a vascular property calculation unit 47, and the vascular property calculation unit 47 includes a measurement result of the external measurement device 9. Can be input directly from an external device or via the input unit 7.
  • the display unit 6 displays the blood vessel normality calculated by the blood vessel property calculating unit 47.
  • the calculation performed by the blood vessel property calculating unit 47 includes a function related to the shape such as the diameter of the blood vessel or the thickness of each film such as the inner membrane, the inner membrane, and the outer membrane of the blood vessel, and a function obtained from the change over time of the blood vessel wall.
  • An example of an index related to the function of a blood vessel is, for example, a stiffness parameter ( ⁇ parameter) obtained from a temporal variation of a blood vessel wall.
  • the ⁇ parameter is given by:
  • ⁇ ln (Ps / Pd) ⁇ / ( ⁇ D / Dd) (3)
  • Ps and Pd are systolic blood pressure (maximum blood pressure) and diastolic blood pressure (minimum blood pressure), respectively
  • ⁇ D is the difference between the maximum blood vessel diameter Ds (at the maximum blood pressure) and the minimum blood vessel diameter Dd (at the time of minimum blood pressure).
  • Ps and Pd may be input from the input unit 7 that have been measured in advance, or blood pressure measurement may be performed in parallel with the ultrasonic measurement, and the measurement result from the sphygmomanometer (measurement device 9) may be captured. Good. Ds and Dd can be measured from an ultrasonic image.
  • the blood vessel property calculating unit 47 may display the numerical value related to the calculated shape such as the blood vessel diameter and the function-related indicator on the display unit 6 together with the pulse wave velocity, or may display an indicator that combines the plurality of indicators and the pulse wave velocity. It is also possible to determine the normality of blood vessels based on the index and display the result.
  • both the local pulse wave velocity obtained in the present embodiment and the average pulse wave velocity of the whole body measured by the CAVI method are used to calculate blood vessels.
  • the degree of normality may be calculated.
  • the vascular property calculation unit 47 compares the average pulse wave velocity of the whole body with the local pulse wave velocity, determines that the arteriosclerosis is progressing in a region where the pulse wave velocity is high, and displays the result. To do.
  • the ultrasonic diagnostic apparatus of this embodiment is characterized by having a function of storing locally measured pulse wave velocities, and using a plurality of pulse wave velocities measured at different sites and at different times, the pulse wave It is characterized by providing speed change information and pulse wave velocity distribution.
  • the apparatus configuration relating to pulse wave velocity measurement can be the same as any one of the first to third embodiments.
  • description of overlapping elements will be omitted, and different points will be mainly described.
  • FIG. 12 shows a functional block diagram of the ultrasonic diagnostic apparatus of this embodiment.
  • the ultrasonic diagnostic apparatus of the present embodiment stores a result of calculating the pulse wave velocity of a predetermined part obtained by one or several measurements with respect to the apparatus of FIG. And a velocity distribution creating unit 48 for creating a pulse wave velocity distribution using a plurality of pulse wave velocity information stored in the storage unit 8.
  • a pulse wave velocity temporal information creating unit 49 may be provided.
  • the storage unit 8 includes information (subject ID, part, measurement time, etc.) attached to the data of one or more sets of measurement data performed on the same subject (region of interest). ).
  • the pulse wave velocity distribution creating unit 48 creates a pulse wave distribution based on the pulse wave velocities of a plurality of blood vessels (regions of interest) measured for the same subject.
  • the pulse wave distribution is created as a distribution map, for example.
  • the pulse wave velocity temporal information creation unit 49 creates a graph or the like showing long-term or short-term changes in pulse wave velocity in the same blood vessel of the same subject.
  • the distribution map created by the pulse wave velocity distribution creating unit 48 and the graph created by the pulse wave velocity temporal information creating unit 49 are displayed on the display unit 6 together with or independently of the ultrasonic image.
  • FIG. 13 shows the operation procedure.
  • a region of interest is set, and an angle of an ultrasonic beam with respect to a blood vessel included in the region of interest and an interval between a plurality of ultrasonic beams are set (S201 to S203).
  • measurement is started (S204).
  • the measurement is performed in two types of modes, the wide mode and the narrow mode, the measurement is performed in steps S801 to S807 in FIG. 8 to calculate the pulse wave velocity (S206, S808).
  • the calculated pulse wave velocity is recorded in the storage unit 8 in association with the set ROI (S1301).
  • blood pressure, a CAVI value, or the like is input from an external measurement device (FIG. 11), the information is recorded together.
  • a pulse wave velocity distribution is obtained (S1303).
  • the pulse wave velocity distribution may be displayed as a table of ROI and pulse wave velocity as it is, but a distribution map is created and displayed superimposed on the ultrasonic image or the whole body model image. (S1304).
  • the distribution chart can be created by, for example, relativizing the pulse wave velocity for each ROI based on the pulse wave velocity (average value of the whole body) obtained by the CAVI method and assigning a predetermined color or gradation to the relative value. By displaying such a distribution map, it is possible to confirm at a glance a portion where the pulse wave velocity is particularly fast or slow, and can provide information for diagnosis of arteriosclerosis or the like.
  • the example shown in FIG. 13 is a case where the pulse wave velocity data for each ROI is accumulated and the pulse wave velocity distribution is obtained.
  • the pulse wave velocity data measured over time for the same subject is accumulated, It is also possible to obtain data of changes in the pulse wave velocity of the subject over time (long-term or short-term changes).
  • Information indicating changes over time can be displayed on the display unit 6 in the same manner as the distribution chart. It is also possible to create or display other diagnostic information obtained by further processing this information.
  • the pulse wave velocity measured by the ultrasonic diagnostic apparatus is further increased by including the storage unit that records the pulse wave velocity for each measurement and the unit that tabulates the data accumulated in the storage unit. It can be provided in a form that is easy to use for diagnosis.
  • highly accurate pulse wave information can be obtained in a relatively short measurement time, and information effective for diagnosis of blood vessel normality can be provided.

Abstract

Provided is a diagnostic ultrasound apparatus capable of obtaining more reliable pulse wave information with a relatively small number of measurements. The calculation unit of the diagnostic ultrasound apparatus is provided with a pulse wave measurement unit for measuring pulse waves that move inside a blood vessel in a living body using echo signals that are reflected at two locations of the blood vessel wall when multiple ultrasound beams are irradiated at a slant relative to the blood vessel. The pulse wave measurement unit obtains, for the multiple ultrasound beams, the respective temporal changes of a first echo signal reflected from the side of the blood vessel that is closer to the probe and a second echo signal reflected from the side that is further from the probe and calculates the pulse wave velocity using the difference in time that changes arising from the pulse wave occur at the respective reflection origins (measurement points) and the distance between measurement points in the direction in which the blood vessel runs.

Description

超音波診断装置及び脈波計測方法Ultrasonic diagnostic apparatus and pulse wave measuring method
 本発明は、超音波診断装置に関する。特に、血管の特定部位の状態を超音波によって計測・診断する技術に関する。 The present invention relates to an ultrasonic diagnostic apparatus. In particular, the present invention relates to a technique for measuring and diagnosing the state of a specific part of a blood vessel using ultrasound.
 血管を伝わる脈波の速度は、血圧や動脈硬化の程度などと深く関わっており、脈波伝達速度を正確に計測することは、健康管理や患者の健康状態を知る上で非常に重要である。脈波伝達速度を計測する方法としては、血圧カフを用いて上腕と足首に脈波が到達する時間を心電図と対照して計測し、算出する方法がある。この方法で得られる上腕及び足首の血圧比をもとに、血圧に依存しない血管固有の硬さを示す指標であるCAVI(Cardio Ankle Vascular Index)などが算出される。 The speed of the pulse wave that travels through the blood vessels is closely related to blood pressure, the degree of arteriosclerosis, etc., and accurate measurement of the pulse wave transmission speed is very important for health management and understanding the health status of patients. . As a method of measuring the pulse wave transmission speed, there is a method of measuring and calculating the time required for the pulse wave to reach the upper arm and ankle using a blood pressure cuff against an electrocardiogram. Based on the blood pressure ratio of the upper arm and ankle obtained by this method, CAVI (Cardio Angular Vascular Index), which is an index indicating the blood vessel-specific hardness independent of blood pressure, is calculated.
 この方法(CAVI法)で求められる脈波伝達速度は、心臓から足首までの長い距離について平均的な値であるが、実際には血管内径変化や動脈硬化はその長い経路の一部で局所的に生じている場合が多い。局所的な血管性状の変化を把握する技術として超音波診断装置を利用した方法も提案されている(特許文献1)。この方法では、血管の走行方向に沿った二点に向けて超音波パルスを発信し、この二点から反射された超音波信号から組織の移動量の時間的変化を検出し、時間変化と二点間の距離とから脈波伝達速度を算出する。 The pulse wave transmission speed required by this method (CAVI method) is an average value over a long distance from the heart to the ankle, but in reality, changes in the inner diameter of the blood vessel and arteriosclerosis are localized in a part of the long path. In many cases. As a technique for grasping local changes in blood vessel properties, a method using an ultrasonic diagnostic apparatus has also been proposed (Patent Document 1). In this method, ultrasonic pulses are transmitted toward two points along the direction of blood vessel travel, and a temporal change in the amount of tissue movement is detected from the ultrasonic signals reflected from these two points. The pulse wave transmission speed is calculated from the distance between the points.
特開2005-52424号公報JP 2005-52424 A
 特許文献1に記載された技術では、計測した2点間の脈波伝達時間をもとに脈波伝達速度を計測するため、従来のCAVI法などに比べて誤差が大きくなるという欠点を有する。一般に誤差は計測回数を増やすことにより少なくすることができるが、その場合、計測時間が長くなり、生体に当接させた超音波探触子と生体との位置関係すなわち血管との関係を保てない可能性も高く、それにより誤差が生じる。 The technique described in Patent Document 1 has a drawback in that an error becomes larger than the conventional CAVI method because the pulse wave transmission speed is measured based on the measured pulse wave transmission time between two points. In general, errors can be reduced by increasing the number of measurements. In this case, however, the measurement time becomes longer, and the positional relationship between the ultrasound probe brought into contact with the living body and the living body, that is, the relationship between the blood vessels can be maintained. There is also a high probability that this will not occur, thereby causing an error.
 本発明は、比較的少ない計測回数で、より信頼性の高い脈波情報を得ることが可能な超音波診断装置を提供することを課題とする。 An object of the present invention is to provide an ultrasonic diagnostic apparatus capable of obtaining pulse wave information with higher reliability with a relatively small number of measurements.
 本発明は、生体内の血管に対し相対的に斜めに超音波ビームを照射したときに、血管の、超音波探触子に近い側と遠い側とから得られるエコー信号を利用することで、少ない計測回数で脈波移動距離が異なる複数の計測データを取得する。 The present invention uses an echo signal obtained from a side closer to the ultrasonic probe and a side far from the ultrasonic probe when the ultrasonic beam is irradiated obliquely relative to the blood vessel in the living body, A plurality of measurement data with different pulse wave movement distances is acquired with a small number of measurements.
 すなわち、本発明の超音波診断装置は、超音波ビームを生体内に送信するとともに生体からのエコー信号を受信する超音波探触子と、前記超音波探触子が受信したエコー信号を用いて、生体情報を計算する演算部と、を備え、前記演算部は、生体内の血管に対し相対的に斜めに超音波ビームを照射したときに、前記血管の、前記超音波探触子に近い側から反射した第1のエコー信号と、前記血管の、前記超音波探触子に遠い側から反射した第2のエコー信号とを用いて、血管内を移動する脈波を計測する脈波計測部を備えたことを特徴とする。 That is, the ultrasonic diagnostic apparatus of the present invention uses an ultrasonic probe that transmits an ultrasonic beam into a living body and receives an echo signal from the living body, and an echo signal received by the ultrasonic probe. A calculation unit that calculates biological information, and the calculation unit is close to the ultrasonic probe of the blood vessel when the ultrasonic beam is irradiated obliquely relative to the blood vessel in the living body. Pulse wave measurement for measuring a pulse wave moving in a blood vessel using a first echo signal reflected from the side and a second echo signal of the blood vessel reflected from the side far from the ultrasonic probe It has the part.
 本発明によれば、比較的少ない計測回数で、より信頼性の高い脈波情報を得ることが可能な超音波診断装置を提供することができる。 According to the present invention, it is possible to provide an ultrasonic diagnostic apparatus capable of obtaining more reliable pulse wave information with a relatively small number of measurements.
本発明の超音波診断装置の第一実施形態を示す機能ブロック図Functional block diagram showing a first embodiment of an ultrasonic diagnostic apparatus of the present invention 第一実施形態の脈波計測手順を示す図The figure which shows the pulse wave measurement procedure of 1st embodiment 血管に対する超音波ビームの角度を説明する図で、(a)は第一実施形態の脈波計測の場合、(b)は従来の脈波計測の場合を示す。It is a figure explaining the angle of the ultrasonic beam with respect to the blood vessel, (a) is the case of the pulse wave measurement of 1st embodiment, (b) shows the case of the conventional pulse wave measurement. 血管の走行方向が斜めの場合を示す図The figure which shows the case where the running direction of the blood vessel is diagonal 一つの超音波ビームに対するエコー信号の時間変化を示す図The figure which shows the time change of the echo signal with respect to one ultrasonic beam 脈波移動時間を脈波移動距離に対しプロットした図で、(a)は第一実施形態の脈波計測の場合、(b)は従来の脈波計測の場合、(c)は第二実施形態の脈波計測の場合を示す。FIG. 5 is a graph in which the pulse wave travel time is plotted against the pulse wave travel distance, where (a) is a pulse wave measurement of the first embodiment, (b) is a conventional pulse wave measurement, and (c) is a second implementation. The case of the pulse wave measurement of a form is shown. 本発明の超音波診断装置の第二実施形態を示す機能ブロック図Functional block diagram showing a second embodiment of the ultrasonic diagnostic apparatus of the present invention 第二実施形態の脈波計測手順を示す図The figure which shows the pulse wave measurement procedure of 2nd embodiment 第二実施形態におけるモード超音波ビームの方向を説明する図で、(a)は幅広モードの場合、(b)は幅狭モードの場合を示す。It is a figure explaining the direction of the mode ultrasonic beam in 2nd embodiment, (a) shows the case of wide mode, (b) shows the case of narrow mode. 第三実施形態の超音波診断装置の、超音波探触子とカップリング材との関係を示す図The figure which shows the relationship between an ultrasound probe and a coupling material of the ultrasound diagnosing device of 3rd embodiment. 本発明の超音波診断装置の第四実施形態を示す機能ブロック図Functional block diagram showing a fourth embodiment of the ultrasonic diagnostic apparatus of the present invention 本発明の超音波診断装置の第五実施形態を示す機能ブロック図Functional block diagram showing a fifth embodiment of the ultrasonic diagnostic apparatus of the present invention 第五実施形態の脈波計測手順を示す図The figure which shows the pulse wave measurement procedure of 5th embodiment
 本実施形態の超音波診断装置は、超音波ビームを生体内に送信するとともに生体からのエコー信号を受信する超音波探触子(1)と、超音波探触子(1)が受信したエコー信号を用いて、生体情報を計算する演算部(4)と、演算部(4)が計算した生体情報を表示する表示部(6)と、を備える。演算部(4)は、生体内の血管に対し相対的に斜めに超音波ビームを照射したときに、血管の、超音波探触子(1)に近い側から反射した第1のエコー信号と、血管の、超音波探触子(1)に遠い側から反射した第2のエコー信号とを用いて、血管内を移動する脈波を計測する脈波計測部(40)を備える。 The ultrasonic diagnostic apparatus of the present embodiment includes an ultrasonic probe (1) that transmits an ultrasonic beam into a living body and receives an echo signal from the living body, and an echo that is received by the ultrasonic probe (1). A calculation unit (4) that calculates biological information using the signal, and a display unit (6) that displays the biological information calculated by the calculation unit (4). The calculation unit (4) includes a first echo signal reflected from a side of the blood vessel close to the ultrasonic probe (1) when the ultrasonic beam is irradiated relatively obliquely to the blood vessel in the living body. A pulse wave measurement unit (40) for measuring a pulse wave moving in the blood vessel using the second echo signal reflected from the side of the blood vessel far from the ultrasonic probe (1).
 脈波計測部(40)は、第1のエコー信号及び第2のエコー信号の時間変化と、血管の、前記超音波探触子に近い側と遠い側との血管走行方向の距離とを用いて、脈波伝搬速度を算出する脈波速度算出部(45)を備える。 The pulse wave measurement unit (40) uses temporal changes of the first echo signal and the second echo signal, and the distance in the blood vessel traveling direction between the side of the blood vessel close to the ultrasonic probe and the side far from the ultrasonic probe. And a pulse wave velocity calculating unit (45) for calculating the pulse wave propagation velocity.
 本実施形態において、超音波探触子(1)は、配列した複数の振動子を備え、複数の超音波ビームを発する超音波探触子であり、脈波計測部(40)は、複数の超音波ビームの各々に対応して生じる第1のエコー信号と第2のエコー信号を用いて、脈波を計測する。 In this embodiment, the ultrasound probe (1) is an ultrasound probe that includes a plurality of arranged transducers and emits a plurality of ultrasound beams, and the pulse wave measurement unit (40) includes a plurality of A pulse wave is measured using the first echo signal and the second echo signal generated corresponding to each of the ultrasonic beams.
 なお「超音波ビームが血管に対し相対的に斜め」とは、血管の走行方向と直交する方向に超音波ビームが照射される場合を基準とした場合に、超音波ビームが血管の走行方向に対し90°よりも小さい角度を持って入射されることを意味し、プローブの表面と超音波ビームとのなす角度とは同義ではない。
 また以下の説明では、「脈波伝達速度」は単に「脈波速度」とも言う。
Note that “the ultrasonic beam is oblique with respect to the blood vessel” means that the ultrasonic beam is directed in the blood vessel traveling direction when the ultrasonic beam is irradiated in a direction orthogonal to the blood vessel traveling direction. This means that the light is incident at an angle smaller than 90 °, and the angle formed between the probe surface and the ultrasonic beam is not synonymous.
In the following description, “pulse wave transmission speed” is also simply referred to as “pulse wave speed”.
<第一実施形態>
 以下、図面を参照して、第一実施形態の超音波診断装置を説明する。
<First embodiment>
Hereinafter, the ultrasonic diagnostic apparatus of the first embodiment will be described with reference to the drawings.
 本実施形態の超音波診断装置は、図1に示すように、複数の振動子(不図示)を一次元或いは二次元方向に配列し、生体に対し超音波ビームの発信と生体からの反射エコーである超音波信号の受信を行うプローブ(超音波探触子)1と、プローブ1の振動子を駆動し、プローブ1から超音波ビームを発信させる発信部2と、プローブ1が受信した超音波信号に対し増幅、整相等の信号処理を行う受信部3と、受信部3から出力される信号を用いて脈波に関する情報を算出する演算部(脈波計測部)4と、演算部4で算出された脈波情報を表示する表示部6と、計測に必要な条件や演算に必要なパラメータなどを入力するための入力部7と、を備えている。表示部6は、表示画像を制御する表示制御部61を備えている。 As shown in FIG. 1, the ultrasonic diagnostic apparatus of the present embodiment has a plurality of transducers (not shown) arranged in a one-dimensional or two-dimensional direction, and transmits ultrasonic beams to a living body and reflected echoes from the living body. A probe (ultrasonic probe) 1 that receives an ultrasonic signal, a transmitter 2 that drives a transducer of the probe 1 and transmits an ultrasonic beam from the probe 1, and an ultrasonic wave that the probe 1 receives A receiving unit 3 that performs signal processing such as amplification and phasing on the signal, a calculation unit (pulse wave measurement unit) 4 that calculates information on the pulse wave using a signal output from the receiving unit 3, and a calculation unit 4 A display unit 6 for displaying the calculated pulse wave information and an input unit 7 for inputting conditions necessary for measurement, parameters necessary for calculation, and the like are provided. The display unit 6 includes a display control unit 61 that controls a display image.
 プローブ1は、例えば、複数の振動子を電子的に切り替えてビームフォーカシングを行う電子走査方式のプローブ1であり、リニア型、コンベックス型、セクタ型など公知のものを用いることができる。発信部2には、プローブ1に含まれる複数の振動子を所定の周波数で駆動する超音波信号発信回路21、超音波信号発信回路から発信される送信信号を複数の振動子に対し所定の遅延関係を持って供給する遅延制御部(ビームフォーマー)23が備えられており、各振動子に与えられる遅延時間を制御することにより、超音波ビームの方向や深度(フォーカス位置)等を調整することができる。 The probe 1 is, for example, an electronic scanning probe 1 that performs beam focusing by electronically switching a plurality of vibrators, and a known type such as a linear type, a convex type, or a sector type can be used. The transmitter 2 includes an ultrasonic signal transmission circuit 21 that drives a plurality of transducers included in the probe 1 at a predetermined frequency, and a transmission signal transmitted from the ultrasonic signal transmission circuit with a predetermined delay with respect to the plurality of transducers. A delay control unit (beamformer) 23 that supplies the signals in a related manner is provided, and the direction and depth (focus position) of the ultrasonic beam are adjusted by controlling the delay time given to each transducer. be able to.
 遅延制御部23は、入力部7を介して入力される関心領域の指定及びビーム角度に基づき、超音波ビームの方向や深度を調整する。操作者は、例えば、Bモード画像をもとに検査対象となる血管を含む関心領域を設定し、またその血管に対する角度をビーム角度として設定することができる。このため入力部7には、送信信号の周波数を設定する周波数設定部(不図示)や増幅器のゲインを設定するゲイン設定部(不図示)とともに、関心領域設定部71、角度設定部72、複数の超音波ビームの間隔(ビーム間隔)を設定するビーム間隔設定部73が備えられている。なお入力部7は、各種設定を行うためのボタンやキーボード、トラックボールなどを含み、その一部はタッチパネルで構成することができる。 The delay control unit 23 adjusts the direction and depth of the ultrasonic beam based on the designation of the region of interest and the beam angle input via the input unit 7. For example, the operator can set a region of interest including a blood vessel to be examined based on a B-mode image, and can set an angle with respect to the blood vessel as a beam angle. For this reason, the input unit 7 includes a frequency setting unit (not shown) for setting the frequency of the transmission signal and a gain setting unit (not shown) for setting the gain of the amplifier, a region of interest setting unit 71, an angle setting unit 72, a plurality of A beam interval setting unit 73 is provided for setting an interval (beam interval) between the ultrasonic beams. The input unit 7 includes buttons, a keyboard, a trackball, and the like for performing various settings, and some of them can be configured with a touch panel.
 受信部3には、各振動子からの信号を増幅する増幅部31、発信部2の遅延制御部23で各振動子に与えられた遅延時間に対応する遅延処理(整相)を行う遅延処理部32、アポダイゼーション処理部33、加算部(不図示)などが備えられている。受信部3は、これら各部の処理により、送信ビームに対応する受信信号を生成する。受信信号は、必要に応じて不要波成分除去、スペクトル演算等の処理を施された後、表示制御部61によりBモード、Mモード、或いはドプラーモードの表示画像に構成される。これら表示画像を作成するために、図1では示していないが、一般的な超音波診断装置が備える要素、例えば、Bモード処理部やDSC(Digital Scan Converter)やさらにはドプラー処理部などを信号処理部として備えていてもよい。 The receiving unit 3 includes an amplifying unit 31 that amplifies a signal from each transducer, and a delay process that performs delay processing (phasing) corresponding to a delay time given to each transducer by the delay control unit 23 of the transmitting unit 2. A unit 32, an apodization processing unit 33, an addition unit (not shown), and the like are provided. The receiving unit 3 generates a reception signal corresponding to the transmission beam by the processing of these units. The received signal is subjected to processing such as unnecessary wave component removal and spectrum calculation as necessary, and is then configured by the display control unit 61 into a display image in B mode, M mode, or Doppler mode. In order to create these display images, although not shown in FIG. 1, elements included in a general ultrasonic diagnostic apparatus, such as a B-mode processing unit, a DSC (Digital Scan Converter), and further a Doppler processing unit are signaled. You may provide as a process part.
 脈波計測部40は、脈波速度を算出するために、脈波到達時間演算部41、距離演算部42、脈波速度演算部45などを備えている。本実施形態では、反射源の時間的位置変化を記録するモードで計測が行われ、脈波到達時間演算部41は、複数の反射源からの受信信号の時間変化をもとに脈波到達時間を計算する。距離演算部42は、例えばBモード画像から関心領域内での脈波の移動距離、具体的には血管の複数の計測点間の距離を計算する。脈波速度演算部45は、脈波到達時間演算部41が計算した脈波到達時間と距離演算部43が計算した距離を用いて脈波速度を計算する。 The pulse wave measurement unit 40 includes a pulse wave arrival time calculation unit 41, a distance calculation unit 42, a pulse wave velocity calculation unit 45, and the like in order to calculate a pulse wave velocity. In the present embodiment, measurement is performed in a mode in which the temporal position change of the reflection source is recorded, and the pulse wave arrival time calculation unit 41 determines the pulse wave arrival time based on the time change of the received signals from the plurality of reflection sources. Calculate The distance calculation unit 42 calculates, for example, the moving distance of the pulse wave within the region of interest from the B mode image, specifically, the distance between a plurality of measurement points of the blood vessel. The pulse wave velocity calculator 45 calculates the pulse wave velocity using the pulse wave arrival time calculated by the pulse wave arrival time calculator 41 and the distance calculated by the distance calculator 43.
 次に上記構成を踏まえ、本実施形態の超音波診断装置の動作を、脈波計測部40の動作を中心に説明する。図2に動作の手順を示す。 Next, based on the above configuration, the operation of the ultrasonic diagnostic apparatus of the present embodiment will be described focusing on the operation of the pulse wave measurement unit 40. FIG. 2 shows the operation procedure.
 まず操作者が、入力部7の関心領域設定部71を介して、目的とする血管を含む関心領域を設定する(S201)。関心領域の設定は、表示部6に映し出された超音波画像(Bモード画像)を用いて、目的の血管が関心領域に含まれるように決定することができる。必要に応じて目的血管の描出能が良好となる計測条件を設定する。例えば、超音波強度および周波数を血管壁からのエコー信号を計測可能な範囲に設定する。 First, the operator sets a region of interest including a target blood vessel via the region of interest setting unit 71 of the input unit 7 (S201). The region of interest can be set using the ultrasonic image (B mode image) displayed on the display unit 6 so that the target blood vessel is included in the region of interest. If necessary, set the measurement conditions that allow the target blood vessel to be visualized well. For example, the ultrasonic intensity and frequency are set in a range where an echo signal from the blood vessel wall can be measured.
 次いで目的血管に対するプローブ1から照射される超音波ビームの角度を設定する(S202)。図3(b)に示すように、目的血管300が被検者の体表にほぼ平行に走行している場合、目的血管300はプローブ1を体表(皮膚)305に当接したとき、その表面(被検者の体表に当接する面)が目的血管300と平行であり、プローブ1表面から垂直に照射される超音波ビーム310、320と血管300とがなす角度は約90°である。本実施形態では、図3(a)に示すように、プローブ1から照射される超音波ビーム310、320の角度を調節し、超音波ビーム310、320が血管300に対し斜めに照射されるようにする。 Next, the angle of the ultrasonic beam irradiated from the probe 1 with respect to the target blood vessel is set (S202). As shown in FIG. 3B, when the target blood vessel 300 is running substantially parallel to the body surface of the subject, the target blood vessel 300 is in contact with the body surface (skin) 305, The surface (the surface in contact with the body surface of the subject) is parallel to the target blood vessel 300, and the angle formed between the ultrasonic beams 310 and 320 irradiated perpendicularly from the surface of the probe 1 and the blood vessel 300 is about 90 °. . In the present embodiment, as shown in FIG. 3A, the angles of the ultrasonic beams 310 and 320 irradiated from the probe 1 are adjusted so that the ultrasonic beams 310 and 320 are obliquely irradiated to the blood vessel 300. To.
 超音波ビーム310、320と血管300の走行方向とがなす角度θは、血管300の太さによって異なり、体表に近い方の血管壁300-1において超音波ビーム310が当たる点A1と、体表から遠い側の血管壁300-2において超音波ビーム310が当たる点A2との血管走行方向の位置の差Lが所定の値以上となるようにする。所定の値Lについては、脈波による血管壁の変位が最大60Hz程度までの周波数成分を含み、特定の部位への到達を位相で検出することを考慮すると、点A1と点A2との走行方向の位置の差が概ね0.5mm以上であることが好ましい。角度θはLが0.5mm以上となるように設定することが望ましい。なお点A1及び点A2は、反射エコーを生じる点(反射源)であり、以下、計測点という。 The angle θ formed between the ultrasonic beams 310 and 320 and the traveling direction of the blood vessel 300 differs depending on the thickness of the blood vessel 300, and the point A1 where the ultrasonic beam 310 hits the blood vessel wall 300-1 closer to the body surface and the body The difference L in the blood vessel traveling direction from the point A2 where the ultrasonic beam 310 strikes on the blood vessel wall 300-2 far from the table is set to a predetermined value or more. With respect to the predetermined value L, the traveling direction between the points A1 and A2 takes into account that the displacement of the blood vessel wall due to the pulse wave includes a frequency component of up to about 60 Hz and the arrival at a specific part is detected in phase. It is preferable that the difference in position is approximately 0.5 mm or more. The angle θ is preferably set so that L is 0.5 mm or more. The points A1 and A2 are points (reflection sources) that generate reflected echoes, and are hereinafter referred to as measurement points.
 具体的には血管の径D、計測点A1とA2との血管走行方向の位置の差(走行方向の距離)をLとすると、角度θは、
[数1]
   θ≧arctan(D/L)  (1)
となる。血管の径DはBモード像から把握することができるので、この値を用いて角度を決定することができる。具体的には、規定値としてL(0.5mm)を設定しておき、関心領域設定時に目的血管の指定を受け付け、自動的に超音波ビームの角度θを設定するようにしてもよい。また操作者がLの値を入力し変更可能にしてもよい。
Specifically, when the diameter D of the blood vessel and the difference in the position in the blood vessel traveling direction between the measurement points A1 and A2 (distance in the traveling direction) is L, the angle θ is
[Equation 1]
θ ≧ arctan (D / L) (1)
It becomes. Since the diameter D of the blood vessel can be grasped from the B-mode image, the angle can be determined using this value. Specifically, L (0.5 mm) may be set as a specified value, designation of a target blood vessel may be accepted when setting a region of interest, and the ultrasonic beam angle θ may be automatically set. The operator may input the value of L and change it.
 なお図3は血管が体表にほぼ平行に走行している場合であるが、図4に示すように、血管300が体表305に対し深度方向に斜めに走行している場合もあり得る。この場合には、血管300が走行する断面において体表に対する血管300の傾斜角度αと、目標とする血管300と照射ビームとの角度θとの和が超音波ビームのプローブ1の面に対する角度θpなるように、超音波ビームの角度θpを設定すればよい。 Note that FIG. 3 shows a case where the blood vessel travels substantially parallel to the body surface, but the blood vessel 300 may travel diagonally in the depth direction with respect to the body surface 305 as shown in FIG. In this case, the sum of the inclination angle α of the blood vessel 300 with respect to the body surface and the angle θ between the target blood vessel 300 and the irradiation beam in the cross section where the blood vessel 300 travels is the angle θp of the ultrasonic beam with respect to the surface of the probe 1. The angle θp of the ultrasonic beam may be set so that
 次にプローブ1から照射する複数本例えば2本の超音波ビームの間隔W0を設定する(S203)。以下、超音波ビームが2本の平行ビームである場合を例に説明する。超音波ビームの間隔は、2本の超音波ビームが血管に入射する点(図3のA1、B1)の間隔Wが、計測点A1と計測点A2との間隔Lの2倍か、それ以上となるように設定することが好ましい。なお図3に示すように、プローブ1がリニア型で2本の超音波ビームが平行ビームの場合には、ビーム間隔は、2本の超音波ビームが血管に入射する点の間隔Wとほぼ等しい。ステップS202及びS203で設定された値L、Wは、それぞれ図示しないメモリに記録され、脈波速度演算部45による演算に使用される。 Next, the interval W0 between a plurality of, for example, two ultrasonic beams irradiated from the probe 1 is set (S203). Hereinafter, a case where the ultrasonic beam is two parallel beams will be described as an example. The interval between the ultrasonic beams is such that the interval W between the points where the two ultrasonic beams enter the blood vessel (A1 and B1 in FIG. 3) is twice or more than the interval L between the measurement point A1 and the measurement point A2. It is preferable to set so that. As shown in FIG. 3, when the probe 1 is a linear type and the two ultrasonic beams are parallel beams, the beam interval is substantially equal to the interval W between the points where the two ultrasonic beams are incident on the blood vessel. . The values L and W set in steps S202 and S203 are recorded in a memory (not shown) and used for calculation by the pulse wave velocity calculation unit 45.
 このように超音波ビームの照射角度θ及び照射ビームの間隔Wを設定した後、超音波ビームの照射を開始し、2つの超音波ビームからのエコー信号を連続的に受信する(S204)。超音波ビームの間隔および超音波ビームの角度すなわち照射方向はプローブ1の振動子の駆動と遅延関係を制御する遅延制御部23によって制御される。 Thus, after setting the irradiation angle θ of the ultrasonic beam and the interval W between the irradiation beams, the irradiation of the ultrasonic beam is started, and echo signals from the two ultrasonic beams are continuously received (S204). The interval between the ultrasonic beams and the angle of the ultrasonic beam, that is, the irradiation direction, are controlled by a delay control unit 23 that controls the drive and delay relationship of the transducer of the probe 1.
 図5に、一つの超音波ビームに対応する受信信号の時間変化を示している。図5のグラフにおいて、横軸は深度、縦軸は信号強度である。図示するように、受信信号には、計測点A1及びA2に対応する二つのピークがあり、それぞれのピーク位置は脈波の伝搬により横軸方向にずれる。すなわち振動方向の位置が変化する。ここで超音波ビームが血管に対し斜めに入射しているので、計測点A1と計測点A2は血管の走行方向にずれた位置にあり、脈波の伝搬する時刻が異なる。例えば、図5では時刻t0からΔt経過した時点で計測点A2に脈波が到達し、t0から4Δt経過した時点で計測点A1に脈波が到達している。このように2つの超音波ビームからのエコー信号(受信信号)を連続的に取得することにより、図3(a)に示す4つの計測点A1、A2、B1、B2(走行方向の順でA2、A1、B2、B1)の深度方向の位置変化とそれが生じた時刻を求めることができる。 FIG. 5 shows the time change of the received signal corresponding to one ultrasonic beam. In the graph of FIG. 5, the horizontal axis represents depth, and the vertical axis represents signal intensity. As shown in the figure, the received signal has two peaks corresponding to the measurement points A1 and A2, and the respective peak positions are shifted in the horizontal axis direction due to the propagation of the pulse wave. That is, the position in the vibration direction changes. Here, since the ultrasonic beam is obliquely incident on the blood vessel, the measurement point A1 and the measurement point A2 are at positions shifted in the traveling direction of the blood vessel, and the time at which the pulse wave propagates is different. For example, in FIG. 5, the pulse wave reaches the measurement point A2 when Δt has elapsed from time t0, and the pulse wave has reached the measurement point A1 when 4Δt has elapsed from t0. Thus, by continuously acquiring echo signals (received signals) from two ultrasonic beams, four measurement points A1, A2, B1, B2 (A2 in the order of travel direction) shown in FIG. , A1, B2, B1), the position change in the depth direction and the time when it occurred can be obtained.
 脈波計測部40は、受信信号を用いて、まず各計測点A2、A1、B2、B1の脈波伝搬時刻を決定する(S205)。脈波伝達時刻の算出は、例えば、血管の各計測点の平均的な位置を中心とする空間ゲートを設け、計測点の位置が空間ゲートから外側にずれた時刻を脈波到達時間とする。各計測点の脈波到達時間を決定した後、計測点間を移動する脈波の移動時間を計算する(S206)。最後に各計測点間の距離Lnと、移動時間ΔTnを用いて、脈波の伝達速度Vnを算出する(S207)。
[数2]
   Vn=Ln÷ΔTn   (2)
The pulse wave measurement unit 40 first determines the pulse wave propagation time of each measurement point A2, A1, B2, B1 using the received signal (S205). The pulse wave transmission time is calculated, for example, by providing a spatial gate centering on the average position of each measurement point of the blood vessel, and setting the time when the position of the measurement point is shifted outward from the spatial gate as the pulse wave arrival time. After determining the pulse wave arrival time at each measurement point, the movement time of the pulse wave moving between the measurement points is calculated (S206). Finally, the pulse wave transmission speed Vn is calculated using the distance Ln between the measurement points and the movement time ΔTn (S207).
[Equation 2]
Vn = Ln ÷ ΔTn (2)
 式(2)において、下付き文字の「n」は、1,2,3・・・N(Nは「計測点数-1」の整数であり、上述のように計測点が4点の場合、3つの異なる距離すなわちA2-A1間の距離L1、A2-B2間の距離L2、A2-B1間の距離L3に対応して、3つの速度V1、V2、V3が算出される。3つの距離L1、L2、L3は、血管の径D(Bモード像から取得)、設定した超音波ビームの角度θ、ビーム間隔Wを用いて、距離演算部42が算出する。超音波ビームが平行ビームであって、血管が体表と平行に走行している単純な例では、次のとおりである。
 A2-A1間の距離L1は、L1=D÷tanθ
 A2-B1間の距離L2は、L2=L1+[A1-B1間距離]=L1+W
 A2-B2間の距離L3は、L3=L2+[B2-B1間距離]=L2+L1
In equation (2), the subscript “n” is 1, 2, 3... N (N is an integer of “number of measurement points−1”, and when the number of measurement points is 4 as described above, Three speeds V1, V2 and V3 are calculated corresponding to three different distances, ie, distance L1 between A2 and A1, distance L2 between A2 and B2, and distance L3 between A2 and B1. , L2 and L3 are calculated by the distance calculation unit 42 using the blood vessel diameter D (obtained from the B-mode image), the set angle θ of the ultrasonic beam, and the beam interval W. The ultrasonic beam is a parallel beam. A simple example in which a blood vessel runs parallel to the body surface is as follows.
The distance L1 between A2 and A1 is L1 = D ÷ tanθ
The distance L2 between A2 and B1 is L2 = L1 + [Distance between A1 and B1] = L1 + W
The distance L3 between A2 and B2 is L3 = L2 + [distance between B2 and B1] = L2 + L1.
 こうして算出される3つの速度は関心領域内での脈波の速度が均一であれば同じ値になるはずであるが、装置精度の制約からある程度のばらつきを持つ。そこで得られる複数(ここでは3つ)の速度の平均値を求め、それを脈波速度としてもよいし、Lnとtnの関係を一次関数で近似し、一次関数の傾きを脈波速度としてもよい。なお脈波は繰り返し現れるものであるから、所定の時間内で複数回計測した脈波速度を加算して精度を向上することも可能である。 The three velocities calculated in this way should be the same if the velocity of the pulse wave in the region of interest is uniform, but have some variation due to restrictions on device accuracy. The average value of the multiple velocities obtained here (three in this case) may be obtained and used as the pulse wave velocity, or the relationship between Ln and tn may be approximated by a linear function, and the slope of the linear function may be used as the pulse wave velocity. Good. Since the pulse wave repeatedly appears, it is possible to improve the accuracy by adding the pulse wave velocity measured a plurality of times within a predetermined time.
 算出された脈波速度は、表示部6に表示される(S208)。表示部6における脈波速度の表示形態は、種々の形態を取りえる。例えば脈波速度を数値で表示してもよいし、標準的な脈波速度に対する相対的な評価で表示してもよい。また脈波速度を超音波画像(Bモード像)と同一画面に重畳的に或いは並列に表示することも可能である。 The calculated pulse wave velocity is displayed on the display unit 6 (S208). The display form of the pulse wave velocity on the display unit 6 can take various forms. For example, the pulse wave velocity may be displayed as a numerical value, or may be displayed as a relative evaluation with respect to a standard pulse wave velocity. It is also possible to display the pulse wave velocity in a superimposed manner or in parallel on the same screen as the ultrasonic image (B mode image).
 従来技術に対する本実施形態の効果を、図3(a)、(b)及び図6を参照して説明する。図3(a)は本実施形態に従い超音波ビームを血管に対し斜めに照射した場合の計測点を示している。図6(a)は本実施形態で得られた脈波移動時間を移動距離に対しプロットした図であり、図6(a)のグラフの傾きが脈波速度となる。図3(b)は従来の超音波診断装置による脈波計測技術である。図6(b)は従来技術で得られた脈波移動時間を移動距離に対しプロットした図である。 The effect of this embodiment over the prior art will be described with reference to FIGS. 3 (a), 3 (b) and FIG. FIG. 3A shows measurement points when the ultrasonic beam is irradiated obliquely to the blood vessel according to the present embodiment. FIG. 6A is a diagram in which the pulse wave travel time obtained in the present embodiment is plotted against the travel distance, and the slope of the graph of FIG. 6A is the pulse wave velocity. FIG. 3B shows a pulse wave measurement technique using a conventional ultrasonic diagnostic apparatus. FIG. 6B is a diagram in which the pulse wave travel time obtained by the prior art is plotted against the travel distance.
 従来技術では、図3(b)に示すように、超音波ビームは血管300に対し直交して照射されるので、計測点はA1、A2、B1、B2の4点であるが、脈波は、血管の走行方向に対し直交する方向の血管の変位として観察されるので、計測点A1とA2、計測点B1とB2、ではそれぞれ脈波の到達時刻は等しい。従って、図6(b)からわかるように、1回の計測ではA1-B1間の距離とA1-B1間を移動する脈波の移動時間の一組の情報しか得られない。これはA2-B1間の距離とA2-B1間の脈波の移動時間を用いる情報と、A1-B1間の距離とA1-B1間の脈波の移動時間を用いる情報との独立性が低いためである。 In the prior art, as shown in FIG. 3B, since the ultrasonic beam is irradiated perpendicularly to the blood vessel 300, there are four measurement points A1, A2, B1, and B2, but the pulse wave is Since it is observed as the displacement of the blood vessel in the direction orthogonal to the traveling direction of the blood vessel, the arrival times of the pulse waves are the same at the measurement points A1 and A2 and the measurement points B1 and B2. Therefore, as can be seen from FIG. 6B, only one set of information can be obtained in one measurement, the distance between A1 and B1 and the travel time of the pulse wave moving between A1 and B1. This is low independence between the information using the distance between A2 and B1 and the pulse wave travel time between A2 and B1, and the information using the distance between A1 and B1 and the pulse wave travel time between A1 and B1. Because.
 これに対し、本実施形態では、同じ1回の計測で従来技術の3倍の点数の情報を得ることができ、算出される脈波速度の精度を向上することができる。このように、本実施形態では、従来の脈波伝達速度計算に必要な一組のデータを得るための計測と同じ計測時間で、より多くのデータを得ることを可能にする。これにより計測時間の長時間化を招くことなくデータ点数を増やし、算出される脈波伝達速度の精度を高めることができる。 On the other hand, in the present embodiment, information of a score three times that of the prior art can be obtained by the same single measurement, and the accuracy of the calculated pulse wave velocity can be improved. Thus, in the present embodiment, it is possible to obtain more data in the same measurement time as the measurement for obtaining a set of data necessary for conventional pulse wave transmission speed calculation. As a result, the number of data points can be increased without increasing the measurement time, and the accuracy of the calculated pulse wave transmission speed can be increased.
 また、前掲の例では、脈波の移動距離として、A2-A1間の距離L1、A2-B2間の距離L2、A2-B1間の距離L3を求め、これらの3つの距離から脈波速度を算出する場合を説明したが、例えばA2-A1間、A1-B2間、B2-B1間の3つの距離を用いてもよく、その場合にも算出される脈波速度の点数を増やすことができ、精度を向上できる。 In the above-mentioned example, the distance L1 between A2 and A1, the distance L2 between A2 and B2, and the distance L3 between A2 and B1 are obtained as the movement distance of the pulse wave, and the pulse wave velocity is calculated from these three distances. Although the case of calculation has been described, for example, three distances between A2 and A1, between A1 and B2, and between B2 and B1 may be used. In this case also, the number of calculated pulse wave velocities can be increased. , Can improve accuracy.
 なお本実施形態は、血管の変位から脈波を観察しているので、血管を流れる血流の方向の影響は受けない。つまり血流がどちらに向かっている場合にも、同様に本実施形態を適用することができる。 In this embodiment, since the pulse wave is observed from the displacement of the blood vessel, it is not affected by the direction of the blood flow flowing through the blood vessel. That is, the present embodiment can be similarly applied to the case where the blood flow is directed in either direction.
<第二実施形態>
 本実施形態の超音波診断装置も、血管の走行方向に対し相対的に斜めに複数本の超音波ビームを照射することは第一実施形態と同じであるが、本実施形態は、複数本のビーム間隔を異ならせた複数の計測モードで計測を行うことが特徴である。
<Second embodiment>
The ultrasonic diagnostic apparatus of the present embodiment also irradiates a plurality of ultrasonic beams obliquely relative to the traveling direction of the blood vessel, as in the first embodiment. It is characterized in that the measurement is performed in a plurality of measurement modes with different beam intervals.
 すなわち本実施形態の超音波診断装置は、超音波探触子の駆動を制御する制御部を備え、制御部は、超音波ビームの組み合わせが異なる2つの計測モード、第1の計測モードと第2の計測モードを備える。第1の計測モードでは、第1の超音波ビームと第1の超音波ビームから振動子配列方向に離れた第2の超音波ビームとを同時に照射し、第2の計測モードでは、第1の超音波ビームと第1の超音波ビームから振動子配列方向に離れた第3の超音波ビームとを同時に照射する。第1の超音波ビームと第3の超音波ビームとの間隔は、第1の超音波ビームと第2の超音波ビームとの間隔と異なる間隔である。脈波計測部は、これら第1の計測モード及び第2の計測モードにおいてそれぞれ計測された複数組の第1のエコー信号及び第2のエコー信号を用いて、脈波を計測する。なお第1の計測モード及び第2の計測モードのうち、ビーム間の幅(間隔)が広いほうの計測モードを幅広モード、ビーム間の幅が狭いほうの計測モードを幅狭モードと呼ぶ。 That is, the ultrasonic diagnostic apparatus according to the present embodiment includes a control unit that controls driving of the ultrasonic probe, and the control unit has two measurement modes in which combinations of ultrasonic beams are different, the first measurement mode and the second measurement mode. The measurement mode is provided. In the first measurement mode, the first ultrasonic beam and the second ultrasonic beam separated from the first ultrasonic beam in the transducer arrangement direction are simultaneously irradiated. In the second measurement mode, the first ultrasonic beam is irradiated with the first ultrasonic beam. The ultrasonic beam and the third ultrasonic beam separated from the first ultrasonic beam in the direction of transducer arrangement are simultaneously irradiated. The interval between the first ultrasonic beam and the third ultrasonic beam is different from the interval between the first ultrasonic beam and the second ultrasonic beam. The pulse wave measurement unit measures a pulse wave by using a plurality of sets of first echo signals and second echo signals respectively measured in the first measurement mode and the second measurement mode. Of the first measurement mode and the second measurement mode, a measurement mode having a wider width (interval) between beams is referred to as a wide mode, and a measurement mode having a narrow width between beams is referred to as a narrow mode.
 また本実施形態の超音波診断装置において、制御部は、第1の超音波ビームと第2の超音波ビームとの距離を、同一の超音波ビームが通過する血管の、超音波探触子に近い側と遠い側との血管走行方向の距離より長く設定する。 In the ultrasonic diagnostic apparatus of the present embodiment, the control unit sets the distance between the first ultrasonic beam and the second ultrasonic beam to the ultrasonic probe of the blood vessel through which the same ultrasonic beam passes. It is set longer than the distance in the blood vessel traveling direction between the near side and the far side.
 また本実施形態の超音波診断装置は、超音波探触子が超音波ビームの照射方向を調整する調整手段を備える。調整手段は、例えば、超音波探触子の各振動子によって発せられる超音波ビームの方向を調整するビームフォーマーである。 Also, the ultrasonic diagnostic apparatus of the present embodiment includes an adjusting unit that adjusts the irradiation direction of the ultrasonic beam by the ultrasonic probe. The adjusting means is, for example, a beam former that adjusts the direction of the ultrasonic beam emitted by each transducer of the ultrasonic probe.
 更に本実施形態の超音波診断装置は、脈波計測部が、計測した脈波情報の正確度を判定する判定部(比較部)を備えることができる。 Furthermore, in the ultrasonic diagnostic apparatus of the present embodiment, the pulse wave measurement unit can include a determination unit (comparison unit) that determines the accuracy of the measured pulse wave information.
 以下、図7~図9を参照して本実施形態を詳述する。なお図7において第一実施形態と同じ要素は同じ符号で示し重複する説明は省略する。 Hereinafter, this embodiment will be described in detail with reference to FIGS. In FIG. 7, the same elements as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態の超音波診断装置は、図1に示す第一実施形態の超音波診断装置とほぼ同様であるが、装置を複数の計測モードで動作させるための制御部5が備えられている点が異なる。複数の計測モードは、一例として、幅広モード及び幅狭モードであり、制御部5はこれら二つの計測モードを連続して行うように発信部2、受信部3及び演算部4に指令を送る。また入力部7は、複数の計測モードで計測することを選択する計測モード選択部75が設けられる。 The ultrasonic diagnostic apparatus of the present embodiment is substantially the same as the ultrasonic diagnostic apparatus of the first embodiment shown in FIG. 1, but includes a control unit 5 for operating the apparatus in a plurality of measurement modes. Is different. The plurality of measurement modes are, for example, a wide mode and a narrow mode, and the control unit 5 sends commands to the transmission unit 2, the reception unit 3, and the calculation unit 4 so as to perform these two measurement modes in succession. The input unit 7 is provided with a measurement mode selection unit 75 that selects measurement in a plurality of measurement modes.
 発信部2は、制御部5からの指令により、幅広モードと幅狭モードにおいて、それぞれプローブ1から発せられる複数の超音波ビームのビーム間隔を異ならせる。幅広モードと幅狭モードにおけるビーム間隔は、予め所定の間隔を設定しておいてもよいし、入力部7を介して操作者が設定・変更することも可能である。 The transmission unit 2 varies the beam intervals of the plurality of ultrasonic beams emitted from the probe 1 in the wide mode and the narrow mode according to the command from the control unit 5. The beam intervals in the wide mode and the narrow mode may be set in advance, or may be set / changed by the operator via the input unit 7.
 受信部3は、各計測モードの受信信号を演算部4に送り、演算部4は、両計測モードの受信信号を用いて脈波到達時間や脈波速度の計算を行う。また演算部4は、両計測モードを連続して動作させるために、一つの計測モードにおける計測値を比較する第1比較部43、計測モード間の計測値を比較する第2比較部44を備えている。第1比較部43、第2比較部44の比較結果は制御部5及び表示部6に渡され、これにより計測モードの切替や、やり直しが行われる。 The receiving unit 3 sends the reception signal of each measurement mode to the calculation unit 4, and the calculation unit 4 calculates the pulse wave arrival time and the pulse wave velocity using the reception signals of both measurement modes. In addition, the calculation unit 4 includes a first comparison unit 43 that compares measurement values in one measurement mode and a second comparison unit 44 that compares measurement values between measurement modes in order to continuously operate both measurement modes. ing. The comparison results of the first comparison unit 43 and the second comparison unit 44 are transferred to the control unit 5 and the display unit 6, whereby the measurement mode is switched or redone.
 上記構成を踏まえ、本実施形態の超音波診断装置の動作を説明する。図8に動作の手順を示す。図8において図2のステップと同じステップは対応する符号で示し、重複する説明を省略する。 Based on the above configuration, the operation of the ultrasonic diagnostic apparatus of this embodiment will be described. FIG. 8 shows an operation procedure. In FIG. 8, the same steps as those in FIG. 2 are denoted by the corresponding reference numerals, and redundant description is omitted.
 まず関心領域を設定し(S201)、目的血管に対する超音波ビームの照射角度を設定する(S202)。血管に対するビーム照射角度θは、第一実施形態と同様に、超音波ビームが照射される体表側の血管位置(計測点A1)と体表から遠い側の血管位置(計測点A2)との血管走行方向における位置の差が所定の値(例えば0.5mm以上)となるように設定することが好ましい。上記条件を満たせば、ビーム照射角度θは、幅広モードと幅狭モードとで同一でも異ならせてもよい。 First, a region of interest is set (S201), and an irradiation angle of the ultrasonic beam with respect to the target blood vessel is set (S202). The beam irradiation angle θ with respect to the blood vessel is the blood vessel between the blood vessel position on the body surface side (measurement point A1) and the blood vessel position on the side far from the body surface (measurement point A2), as in the first embodiment. It is preferable that the position difference in the traveling direction is set to be a predetermined value (for example, 0.5 mm or more). If the above conditions are satisfied, the beam irradiation angle θ may be the same or different between the wide mode and the narrow mode.
 次に幅広モード、幅狭モードのそれぞれについて、複数本例えば2本の超音波ビームのビーム間隔W1、W2を設定する(S801)。図9(a)、(b)に2つの計測モードにおける2本の超音波ビームの関係を示す。ここでも説明を簡単にするために、血管300が体表305に対しほぼ平行に走行している場合を示すが、血管300が体表305に対し角度を持って走行している場合にも超音波ビームと血管300との角度は、血管300が体表305と平行な場合の角度と同じになるように設定される。図9(a)に示す幅広モードにおいて、2本の超音波ビーム310、320の一方310が血管の体表に近い側に入射される点をA1、遠い側に入射される点をA2、超音波ビームの他方320が血管の体表に近い側に入射される点をB1、遠い側に入射される点をB2、とする。二つの計測モードが行われる間、プローブ1を移動させないことが前提であり、図9(b)に示す幅狭モードにおける超音波ビームの一方310は、幅広モードの超音波ビーム310と同じで血管の位置A1、A2に入射される。幅狭モードにおいて超音波ビームの他方330が血管の体表に近い側に入射される点をC1、遠い側に入射される点をC2、とする。 Next, for each of the wide mode and the narrow mode, beam intervals W1 and W2 of a plurality of, for example, two ultrasonic beams are set (S801). FIGS. 9A and 9B show the relationship between the two ultrasonic beams in the two measurement modes. Here, in order to simplify the description, the case where the blood vessel 300 is traveling substantially parallel to the body surface 305 is shown. The angle between the sound beam and the blood vessel 300 is set to be the same as the angle when the blood vessel 300 is parallel to the body surface 305. In the wide mode shown in FIG. 9A, a point where one of the two ultrasonic beams 310 and 320 is incident on the side closer to the body surface of the blood vessel is A1, and a point where the one is incident on the far side is A2. Let B1 be the point where the other 320 of the sound beam is incident on the side closer to the body surface of the blood vessel, and B2 be the point where it is incident on the far side. It is assumed that the probe 1 is not moved while the two measurement modes are performed, and one of the ultrasonic beams 310 in the narrow mode shown in FIG. 9B is the same as the ultrasonic beam 310 in the wide mode and is a blood vessel. Are incident on positions A1 and A2. In the narrow mode, the point where the other 330 of the ultrasonic beam is incident on the side close to the body surface of the blood vessel is C1, and the point where the other 330 is incident on the far side is C2.
 幅狭モードにおけるビーム間隔W2(平行ビームの場合、A1-C1間距離に等しい)は、A1-A2間血管走行方向距離L1より大きいことが好ましく、幅広モードにおけるビーム間隔W1は幅狭モードにおけるビーム間隔W2より大きい。すなわち、L1<W2<W1となるようにビーム間隔を設定する。一例としてW2はL1の約2倍、W1はW2の約2倍に設定する。 The beam interval W2 in the narrow mode (equal to the distance between A1 and C1 in the case of a parallel beam) is preferably larger than the distance L1 between the A1 and A2 blood vessels, and the beam interval W1 in the wide mode is the beam in the narrow mode. It is larger than the interval W2. That is, the beam interval is set so that L1 <W2 <W1. As an example, W2 is set to about twice L1, and W1 is set to about twice W2.
 こうして超音波ビーム角度及びビーム間隔を設定した後、まず幅広モードで所定の計測回数(n回:nは1以上の整数)の計測を開始する(S802)。すなわち所定時間、超音波ビーム310、320を送受信する計測をn回繰り返す。このとき超音波ビームの間隔や角度は発信部2の遅延制御部23によって制御されることは第一実施形態と同様である。 After setting the ultrasonic beam angle and the beam interval in this way, first, measurement is started a predetermined number of times (n times: n is an integer of 1 or more) in the wide mode (S802). That is, the measurement of transmitting and receiving the ultrasonic beams 310 and 320 is repeated n times for a predetermined time. At this time, the interval and angle of the ultrasonic beam are controlled by the delay control unit 23 of the transmission unit 2 as in the first embodiment.
 演算部4は受信部3が連続して受信した受信信号を入力し、脈波速度を算出する(S803)。この計算は第一実施形態と同様であり、予め算出された3つの計測点間距離(A2-A1、A2-B2、A2-B1)を用いて脈波速度を算出する。 The calculation unit 4 inputs the reception signal continuously received by the reception unit 3 and calculates the pulse wave velocity (S803). This calculation is the same as in the first embodiment, and the pulse wave velocity is calculated using the three distances (A2-A1, A2-B2, A2-B1) calculated in advance.
 計測がn回に達した段階で、第1比較部43においてn回の計測で得られた脈波速度の偏差を求め、予め設定された閾値と比較する(S804)。閾値は、例えばn回の計測値の10%程度とする。制御部5は、得られた偏差が予め設定された閾値よりも大きい場合には、測定不良と判断し、ビーム角度及び/又はビーム間隔を変更することによって計測点の全て又は一部の位置を変更して再度幅広モードでn回計測する。得られた偏差が予め設定された閾値よりも小さい場合には、測定良好と判断し、続いて幅狭モードでの計測に移行する(S805)。 When the measurement reaches n times, the first comparison unit 43 obtains a deviation of the pulse wave velocity obtained by the n times of measurement and compares it with a preset threshold value (S804). The threshold value is, for example, about 10% of the n measurement values. When the obtained deviation is larger than a preset threshold value, the control unit 5 determines that the measurement is defective, and changes the beam angle and / or the beam interval to change the position of all or part of the measurement points. Change and measure again n times in wide mode. When the obtained deviation is smaller than a preset threshold value, it is determined that the measurement is good, and then the measurement shifts to the narrow mode (S805).
 幅狭モードも予め設定された回数(m回:mは1以上の整数)、超音波ビーム310および330を送受信する。m回の各受信により得られた受信信号を用いて、脈波の移動速度を算出する(S806)。この計算は第一実施形態と同様であり、予め算出された3つの計測点間距離(A2-A1、A2-C2、A2-C1)を用いて脈波速度を算出する。計測がm回に達した段階で、第1比較部43においてm回の計測で得られた脈波速度の偏差を求め、予め設定された閾値と比較する(S807)。得られた偏差が予め設定された閾値よりも大きい場合には、測定不良と判断し、計測点C1、C2の位置すなわち超音波ビーム330の超音波ビーム310に対する位置を変更して再度幅狭モードでm回計測する。得られた偏差が予め設定された閾値よりも小さい場合には、測定良好と判断し、脈波速度計算(S808)に進む。S808では、得られた幅広モード及び幅狭モードのデータから脈波速度を算出する。 In the narrow mode, the ultrasonic beams 310 and 330 are transmitted / received for a preset number of times (m times: m is an integer of 1 or more). The movement speed of the pulse wave is calculated using the reception signal obtained by each reception of m times (S806). This calculation is the same as in the first embodiment, and the pulse wave velocity is calculated using the three distances (A2-A1, A2-C2, A2-C1) calculated in advance. When the measurement reaches m times, the first comparison unit 43 obtains a deviation of the pulse wave velocity obtained by the m times of measurement and compares it with a preset threshold value (S807). When the obtained deviation is larger than a preset threshold value, it is determined that the measurement is defective, and the position of the measurement points C1 and C2, that is, the position of the ultrasonic beam 330 with respect to the ultrasonic beam 310 is changed and the narrow mode is again performed. To measure m times. If the obtained deviation is smaller than a preset threshold value, it is determined that the measurement is good, and the flow proceeds to pulse wave velocity calculation (S808). In step S808, the pulse wave velocity is calculated from the obtained wide mode and narrow mode data.
 ステップS808では、幅広モードで算出されたn個の脈波速度と、幅狭モードで算出されたm個の脈波速度を単純平均或いは重み付け平均して脈波速度として算出することができる。重み付けする場合の重み付け係数は、一方(例えば幅広モード)を他方(幅狭モード)より重くしてもよいし、繰り返し回数(n、m)に応じて設定してもよい。 In step S808, the n pulse wave velocities calculated in the wide mode and the m pulse wave velocities calculated in the narrow mode can be calculated as a pulse wave velocity by simple averaging or weighted averaging. In the case of weighting, one (for example, wide mode) may be weighted more heavily than the other (narrow mode), or may be set according to the number of repetitions (n, m).
 また二つのモードで得られた脈波速度を一度に平均するのではなく、幅広モード或いは二つのモードで算出された脈波速度をモード毎に平均し、それぞれの分散に応じて重み付け加算してもよい。またモード毎に平均値を求める場合には、第2比較部44で幅広モードと幅狭モードの結果を比較することができ、この場合、比較結果によって表示部6に計測のやり直しを促すメッセージを表示するようにしてもよい。 Also, instead of averaging the pulse wave velocities obtained in the two modes at once, the pulse wave velocities calculated in the wide mode or the two modes are averaged for each mode, and weighted and added according to each variance. Also good. Further, when obtaining the average value for each mode, the second comparison unit 44 can compare the results of the wide mode and the narrow mode, and in this case, a message prompting the display unit 6 to restart the measurement according to the comparison result. You may make it display.
 最終的に算出された脈波移動速度を、表示部6に任意の表示形態で表示することは第一実施形態と同様である(S208)。 The display of the finally calculated pulse wave moving speed on the display unit 6 in an arbitrary display form is the same as in the first embodiment (S208).
 本実施形態によれば、ビーム間隔が異なる2つのモードで計測を行うことにより、被検者(関心領域)に対するプローブ1の位置を変化させるとなく、計測回数を増加することができ、得られる脈波移動速度の精度を向上することができる。本実施形態に対応する計測データを図6(c)に示す。図6(a)に比べさらにデータ点数が多くなっていることがわかる。 According to the present embodiment, the number of measurements can be increased and obtained without changing the position of the probe 1 with respect to the subject (region of interest) by performing measurement in two modes with different beam intervals. The accuracy of the pulse wave moving speed can be improved. Measurement data corresponding to the present embodiment is shown in FIG. It can be seen that the number of data points is further increased compared to FIG.
 なお第二実施形態では、プローブ1を動かさない前提で幅広モードと幅狭モードの計測を連続して行う場合を説明したが、例えば、プローブ1が超音波ビームの間隔を可変にする機能を有していない場合、ビーム間隔が異なる2つのプローブを用いて2回の計測を行うことも可能である。或いは二つのプローブを用い2回の計測を行い、2回の計測中に一つのプローブの位置は固定し、もう一つのプローブの位置(固定したプローブに対する間隔)を異ならせることも可能である。いずれの場合にも、超音波ビームの照射角度を血管に対し斜めにした計測データを用いることにより、1回の計測毎に複数の脈波移動距離の情報と到達時間差の情報を得ることができ、脈波速度計測の精度を高めることができる。 In the second embodiment, the case where the measurement in the wide mode and the narrow mode is continuously performed on the assumption that the probe 1 is not moved has been described. However, for example, the probe 1 has a function of making the interval between the ultrasonic beams variable. If not, two measurements can be performed using two probes with different beam intervals. Alternatively, two measurements can be performed using two probes, and the position of one probe can be fixed during the two measurements, and the position of the other probe (interval with respect to the fixed probe) can be varied. In any case, by using measurement data in which the irradiation angle of the ultrasonic beam is inclined with respect to the blood vessel, information on a plurality of pulse wave movement distances and arrival time difference information can be obtained for each measurement. The accuracy of pulse wave velocity measurement can be increased.
 また脈波情報の正確度を判定する判定部(比較部)を、複数の計測モード(幅広モードと幅狭モード)のそれぞれに設ける例を説明したが、一つの計測モードについて正確度を判定する場合もあり得る。例えば第一実施形態のように単一の計測モードの場合にも比較部を設けて、脈波速度演算部45が算出した脈波情報の正確度を判定してもよく、その結果に応じて、ビーム間隔Wやビーム角度θを調整してもよい。 Moreover, although the example provided with the determination part (comparison part) which determines the accuracy of pulse wave information in each of several measurement modes (wide mode and narrow mode) was demonstrated, accuracy is determined about one measurement mode There may be cases. For example, in the case of a single measurement mode as in the first embodiment, a comparison unit may be provided to determine the accuracy of the pulse wave information calculated by the pulse wave velocity calculation unit 45, and according to the result. The beam interval W and the beam angle θ may be adjusted.
<第三実施形態>
 第一及び第二実施形態では、超音波探触子が超音波ビームの照射方向を調整する調整手段として、超音波ビームの角度をプローブ1の発信部2(遅延制御部23)によって制御する場合を説明したが、本実施形態では、プローブ1と被検者との間にプローブ1の角度を変えるカップリング材10を採用する。その他の構成は第一又は第二実施形態と同様であるので説明を省略する。
<Third embodiment>
In the first and second embodiments, the ultrasonic probe controls the angle of the ultrasonic beam by the transmitter 2 (delay controller 23) of the probe 1 as an adjustment unit that adjusts the irradiation direction of the ultrasonic beam. In the present embodiment, the coupling material 10 that changes the angle of the probe 1 is employed between the probe 1 and the subject. Since other configurations are the same as those of the first or second embodiment, description thereof is omitted.
 図10にプローブ1とカップリング材10との関係を示す。図示するようにカップリング材10は、側面から見た形状が三角形であり、被検者の皮膚に当接される底面10bと、プローブ1に固定される上面10aとは所定の角度βを持っている。このようなカップリング材10をプローブ1の表面に固定した場合、プローブ表面から垂直に発せられる超音波ビームは、体表面にほぼ平行に走行する血管300に対して、[90°-β]の角度で入射する。従って血管に対する超音波ビームを角度θで斜めに照射して計測する場合、[90°-θ]の傾斜を持つカップリング材を用いることにより、所望の斜め照射を達成することができる。 FIG. 10 shows the relationship between the probe 1 and the coupling material 10. As shown in the figure, the coupling material 10 has a triangular shape when viewed from the side, and the bottom surface 10b that contacts the subject's skin and the top surface 10a that is fixed to the probe 1 have a predetermined angle β. ing. When such a coupling material 10 is fixed to the surface of the probe 1, the ultrasonic beam emitted perpendicularly from the probe surface is [90 ° -β] with respect to the blood vessel 300 traveling substantially parallel to the body surface. Incident at an angle. Therefore, in the case where measurement is performed by obliquely irradiating an ultrasonic beam with respect to a blood vessel at an angle θ, desired oblique irradiation can be achieved by using a coupling material having an inclination of [90 ° −θ].
 既に説明したように、角度θの範囲は目的とする血管の径Dに依存するが、ある程度の許容範囲があるので、傾斜が固定しているカップリング材10を用いても本発明の効果を得ることができる。 As already described, the range of the angle θ depends on the target blood vessel diameter D, but since there is a certain tolerance, the effect of the present invention can be obtained even if the coupling material 10 having a fixed inclination is used. Obtainable.
<第四実施形態>
 本実施形態の超音波診断装置は、脈波速度計測に加えて、超音波撮像により得られた超音波画像や超音波計測以外の計測装置の計測結果から脈波速度以外の血管性状に関する情報を得て、脈波速度と血管性状に関する特性とを用いて組織の正常度を算出する機能(正常度演算部)を備えることが特徴である。
<Fourth embodiment>
In addition to pulse wave velocity measurement, the ultrasonic diagnostic apparatus of the present embodiment obtains information related to blood vessel properties other than pulse wave velocity from ultrasonic images obtained by ultrasonic imaging and measurement results of measurement devices other than ultrasonic measurement. It is characterized by having a function (normality calculation unit) for calculating the normality of the tissue using the pulse wave velocity and the characteristics relating to the blood vessel properties.
 このため、演算部は、超音波探触子が受信したエコー信号を用いて、血管の性状を算出する血管性状演算部を備え、正常度演算部は、血管性状演算部が算出した血管性状に関する情報と、脈波計測部が計測した脈波情報を用いて、組織の正常度を算出する。また正常度演算部は、外部計測装置が計測した血圧情報及び/または脈波情報を入力し、外部計測装置からの情報と、脈波計測部が計測した脈波情報とを用いて、組織の正常度を算出することができる。
 本実施形態において脈波速度計測に関わる装置構成は、第一~第三実施形態のいずれか同様とすることができる。以下、第二実施形態の装置構成を基本として、重複する要素の説明は省略し、異なる点を中心に説明する。
For this reason, the calculation unit includes a vascular property calculation unit that calculates a blood vessel property using an echo signal received by the ultrasound probe, and the normality calculation unit relates to the vascular property calculated by the vascular property calculation unit. The normality of the tissue is calculated using the information and the pulse wave information measured by the pulse wave measuring unit. The normality calculation unit inputs blood pressure information and / or pulse wave information measured by the external measurement device, and uses information from the external measurement device and pulse wave information measured by the pulse wave measurement unit to Normality can be calculated.
In the present embodiment, the apparatus configuration relating to pulse wave velocity measurement can be the same as any one of the first to third embodiments. Hereinafter, on the basis of the apparatus configuration of the second embodiment, description of overlapping elements will be omitted, and different points will be mainly described.
 図11に本実施形態の超音波診断装置の機能ブロック図を示す。図11中、図1と同じ構成要素は同じ符号で示し、詳細な説明は省略する。図11に示すように、本実施形態の超音波診断装置は、演算部4が血管性状演算部47を備えることが特徴であり、血管性状演算部47には、外部の計測装置9の計測結果を外部装置から直接或いは入力部7を介して入力することができる。表示部6には、血管性状演算部47が算出した血管正常度が表示される。 FIG. 11 shows a functional block diagram of the ultrasonic diagnostic apparatus of this embodiment. In FIG. 11, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 11, the ultrasonic diagnostic apparatus of the present embodiment is characterized in that the calculation unit 4 includes a vascular property calculation unit 47, and the vascular property calculation unit 47 includes a measurement result of the external measurement device 9. Can be input directly from an external device or via the input unit 7. The display unit 6 displays the blood vessel normality calculated by the blood vessel property calculating unit 47.
 血管性状演算部47で行う演算としては、血管径あるいは血管の内膜、中膜、外膜等各膜の厚みなど形状に関するもの、血管壁の経時的変化から求められる機能に関するものが含まれる。血管の機能に関する指標の例としては、例えば血管壁の時間的変動から得られるスティフネスパラメータ(βパラメータ)などがある。βパラメータは、次式によって与えられる。 The calculation performed by the blood vessel property calculating unit 47 includes a function related to the shape such as the diameter of the blood vessel or the thickness of each film such as the inner membrane, the inner membrane, and the outer membrane of the blood vessel, and a function obtained from the change over time of the blood vessel wall. An example of an index related to the function of a blood vessel is, for example, a stiffness parameter (β parameter) obtained from a temporal variation of a blood vessel wall. The β parameter is given by:
[数3]
   β={ln(Ps/Pd)}/(ΔD/Dd)  (3)
 式中、Ps、Pdはそれぞれ収縮期血圧(最高血圧)、拡張期血圧(最低血圧)、ΔDは最大血管径Ds(最高血圧時)と最小血管径Dd(最小血圧時)との差である。Ps、Pdは予め計測していたものを入力部7から入力してもよいし、超音波計測と並行して血圧計測を行い、血圧計(計測装置9)からの計測結果を取りこむようにしてもよい。Ds、Ddは超音波画像から計測することができる。
[Equation 3]
β = {ln (Ps / Pd)} / (ΔD / Dd) (3)
In the formula, Ps and Pd are systolic blood pressure (maximum blood pressure) and diastolic blood pressure (minimum blood pressure), respectively, and ΔD is the difference between the maximum blood vessel diameter Ds (at the maximum blood pressure) and the minimum blood vessel diameter Dd (at the time of minimum blood pressure). . Ps and Pd may be input from the input unit 7 that have been measured in advance, or blood pressure measurement may be performed in parallel with the ultrasonic measurement, and the measurement result from the sphygmomanometer (measurement device 9) may be captured. Good. Ds and Dd can be measured from an ultrasonic image.
 血管性状演算部47は、計算した血管径等の形状に関する数値や機能に関する指標を、そのまま脈波速度とともに表示部6に表示してもよいし、複数の指標と脈波速度を総合した指標を設けて、その指標により血管正常度を判定し、結果を表示するようにしてもよい。 The blood vessel property calculating unit 47 may display the numerical value related to the calculated shape such as the blood vessel diameter and the function-related indicator on the display unit 6 together with the pulse wave velocity, or may display an indicator that combines the plurality of indicators and the pulse wave velocity. It is also possible to determine the normality of blood vessels based on the index and display the result.
 また超音波撮像と並行してCAVI法による計測を行い、本実施形態で得られる局所的な脈波速度とCAVI法で計測される全身の平均的な脈波速度双方の値を用いて、血管の正常度を算出してもよい。例えば、血管性状演算部47は、全身の平均的な脈波速度と局所的な脈波速度とを比較し、脈波速度が速い部位については動脈硬化が進んでいると判断し、結果を表示する。 In parallel with ultrasonic imaging, measurement by the CAVI method is performed, and both the local pulse wave velocity obtained in the present embodiment and the average pulse wave velocity of the whole body measured by the CAVI method are used to calculate blood vessels. The degree of normality may be calculated. For example, the vascular property calculation unit 47 compares the average pulse wave velocity of the whole body with the local pulse wave velocity, determines that the arteriosclerosis is progressing in a region where the pulse wave velocity is high, and displays the result. To do.
 本実施形態によれば、脈波速度に加えて、血管の性状に関する情報を併せて提供することができ、超音波診断装置による血管正常度の診断に資することができる。 According to this embodiment, in addition to the pulse wave velocity, it is possible to provide information related to the properties of the blood vessel, which can contribute to the diagnosis of blood vessel normality by the ultrasonic diagnostic apparatus.
<第五実施形態>
 本実施形態の超音波診断装置は、局所的に計測される脈波速度を格納する機能を備えることが特徴であり、異なる部位や異なる時間で計測した複数の脈波速度を用いて、脈波速度の時間変化情報や脈波速度の分布を提供することが特徴である。本実施形態において脈波速度計測に関わる装置構成は、第一~第三実施形態のいずれか同様とすることができる。以下、第二実施形態の装置構成を基本として、重複する要素の説明は省略し、異なる点を中心に説明する。
<Fifth embodiment>
The ultrasonic diagnostic apparatus of this embodiment is characterized by having a function of storing locally measured pulse wave velocities, and using a plurality of pulse wave velocities measured at different sites and at different times, the pulse wave It is characterized by providing speed change information and pulse wave velocity distribution. In the present embodiment, the apparatus configuration relating to pulse wave velocity measurement can be the same as any one of the first to third embodiments. Hereinafter, on the basis of the apparatus configuration of the second embodiment, description of overlapping elements will be omitted, and different points will be mainly described.
 図12に本実施形態の超音波診断装置の機能ブロック図を示す。図12中、図1と同じ構成要素は同じ符号で示し、詳細な説明は省略する。図12に示すように、本実施形態の超音波診断装置は、図1の装置に対し、1回又は数回の計測で得られた所定の部位の脈波速度を算出した結果を格納する記憶部8と、記憶部8に格納された複数の脈波速度情報を用いて脈波速度分布を作成する速度分布作成部48とが追加されている。速度分布作成部48に代えて或いは脈波速度分布作成部48に加えて、脈波速度経時情報作成部49を備えていてもよい。 FIG. 12 shows a functional block diagram of the ultrasonic diagnostic apparatus of this embodiment. In FIG. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 12, the ultrasonic diagnostic apparatus of the present embodiment stores a result of calculating the pulse wave velocity of a predetermined part obtained by one or several measurements with respect to the apparatus of FIG. And a velocity distribution creating unit 48 for creating a pulse wave velocity distribution using a plurality of pulse wave velocity information stored in the storage unit 8. Instead of the velocity distribution creating unit 48 or in addition to the pulse wave velocity distribution creating unit 48, a pulse wave velocity temporal information creating unit 49 may be provided.
 記憶部8は、同一の被検者(関心領域)に対し行われた1回または複数回からなる1セットの計測データを、そのデータに付帯する情報(被検者ID、部位、計測時間など)とともに記録するメモリである。脈波速度分布作成部48は、同一の被検者について計測された複数の血管(関心領域)の脈波速度をもとに脈波分布を作成する。脈波分布は例えば分布図として作成される。脈波速度経時情報作成部49は、同一の被検者の同一血管における脈波速度の長期的或いは短期的な変化を示すグラフ等を作成する。脈波速度分布作成部48が作成した分布図や脈波速度経時情報作成部49が作成したグラフは、超音波画像とともに或いは独立して表示部6に表示される。 The storage unit 8 includes information (subject ID, part, measurement time, etc.) attached to the data of one or more sets of measurement data performed on the same subject (region of interest). ). The pulse wave velocity distribution creating unit 48 creates a pulse wave distribution based on the pulse wave velocities of a plurality of blood vessels (regions of interest) measured for the same subject. The pulse wave distribution is created as a distribution map, for example. The pulse wave velocity temporal information creation unit 49 creates a graph or the like showing long-term or short-term changes in pulse wave velocity in the same blood vessel of the same subject. The distribution map created by the pulse wave velocity distribution creating unit 48 and the graph created by the pulse wave velocity temporal information creating unit 49 are displayed on the display unit 6 together with or independently of the ultrasonic image.
 次に上記構成を踏まえて本実施形態の超音波診断装置の動作手順を説明する。図13に動作手順を示す。図13のフローにおいて図2や図8と同じステップは対応する符号で示し説明を省略する。 Next, based on the above configuration, the operation procedure of the ultrasonic diagnostic apparatus of the present embodiment will be described. FIG. 13 shows the operation procedure. In the flow of FIG. 13, the same steps as those of FIG. 2 and FIG.
 まず関心領域(ROI)を設定し、関心領域に含まれる血管に対する超音波ビームの角度、複数の超音波ビームの間隔を設定する(S201~S203)。次いで計測を開始する(S204)。計測が幅広モードと幅狭モードの2種のモードで行う場合には、図8のステップS801~S807の手順で計測を行い、脈波速度を算出する(S206、S808)。算出した脈波速度を、設定したROIと関連付けて記憶部8に記録する(S1301)。このとき外部の計測装置(図11)から血圧やCAVI値などが入力されている場合には、それらの情報をともに記録する。 First, a region of interest (ROI) is set, and an angle of an ultrasonic beam with respect to a blood vessel included in the region of interest and an interval between a plurality of ultrasonic beams are set (S201 to S203). Next, measurement is started (S204). When the measurement is performed in two types of modes, the wide mode and the narrow mode, the measurement is performed in steps S801 to S807 in FIG. 8 to calculate the pulse wave velocity (S206, S808). The calculated pulse wave velocity is recorded in the storage unit 8 in association with the set ROI (S1301). At this time, when blood pressure, a CAVI value, or the like is input from an external measurement device (FIG. 11), the information is recorded together.
 その後、ROIを変更して、目的とするROIすべての計測が終了するまで上記ステップを繰り返す(S1302)。すべてのROIの計測が終了後、脈波速度分布を得る(S1303)。脈波速度分布は、そのままROIと脈波速度とをテーブルにしたものとして表示してもよいが、分布図を作成し、超音波画像上や全身モデル像の上に、重畳して表示してもよい(S1304)。分布図は、例えばCAVI法で得られる脈波速度(全身の平均値)等を基準として、ROI毎の脈波速度を相対化し、相対値に所定の色や階調を割当てることにより作成できる。このような分布図を表示することにより、特に脈波速度が速い部分或いは遅い部分を一目で確認することができ、動脈硬化等の診断に情報を提供することができる。 Thereafter, the ROI is changed, and the above steps are repeated until the measurement of all target ROIs is completed (S1302). After all ROI measurements are completed, a pulse wave velocity distribution is obtained (S1303). The pulse wave velocity distribution may be displayed as a table of ROI and pulse wave velocity as it is, but a distribution map is created and displayed superimposed on the ultrasonic image or the whole body model image. (S1304). The distribution chart can be created by, for example, relativizing the pulse wave velocity for each ROI based on the pulse wave velocity (average value of the whole body) obtained by the CAVI method and assigning a predetermined color or gradation to the relative value. By displaying such a distribution map, it is possible to confirm at a glance a portion where the pulse wave velocity is particularly fast or slow, and can provide information for diagnosis of arteriosclerosis or the like.
 図13に示す例は、ROI毎の脈波速度データを蓄積し、脈波速度分布を得る場合であるが、同一の被検者について時間を置いて計測した脈波速度データを蓄積し、当該被検者の脈波速度の経時的な変化(長期的或いは短期的な変化)のデータを得ることも可能である。経時的な変化を示す情報は、分布図と同様に表示部6に表示することができる。またこの情報をさらに加工した別の診断情報を作成したり、表示したりすることも可能である。 The example shown in FIG. 13 is a case where the pulse wave velocity data for each ROI is accumulated and the pulse wave velocity distribution is obtained. However, the pulse wave velocity data measured over time for the same subject is accumulated, It is also possible to obtain data of changes in the pulse wave velocity of the subject over time (long-term or short-term changes). Information indicating changes over time can be displayed on the display unit 6 in the same manner as the distribution chart. It is also possible to create or display other diagnostic information obtained by further processing this information.
 本実施形態によれば、計測毎の脈波速度を記録する記憶手段と記憶手段に蓄積されたデータを集計する手段とを備えたことにより、超音波診断装置で計測される脈波速度をさらに診断に利用しやすい形で提供することができる。 According to the present embodiment, the pulse wave velocity measured by the ultrasonic diagnostic apparatus is further increased by including the storage unit that records the pulse wave velocity for each measurement and the unit that tabulates the data accumulated in the storage unit. It can be provided in a form that is easy to use for diagnosis.
 以上、本発明の超音波診断装置の各実施形態を説明したが、これら実施形態は適宜組み合わせて実施することが可能であり、また従来の超音波診断装置が備える機能を追加したり適宜変更することも可能である。 As mentioned above, although each embodiment of the ultrasound diagnosing device of the present invention was described, these embodiments can be carried out in combination as appropriate, and the functions of the conventional ultrasound diagnosing device are added or changed appropriately. It is also possible.
 本発明によれば比較的短い計測時間で精度の高い脈波情報を得ることができ、血管の正常度の診断に有効な情報を提供できる。 According to the present invention, highly accurate pulse wave information can be obtained in a relatively short measurement time, and information effective for diagnosis of blood vessel normality can be provided.
1・・・プローブ、2・・・発信部、3・・・受信部、4・・・演算部、5・・・制御部、6・・・表示部、7・・・入力部、8・・・記憶部、9・・・外部計測装置、10・・・カップリング材、21・・・超音波信号発信回路、23・・・遅延制御部(ビームフォーマー)、31・・・増幅部、32・・・遅延処理部、33・・・アポダイゼーション処理部、40・・・脈波計測部、41・・・脈波到達時間演算部、42・・・距離演算部、43・・・第1比較部、44・・・第2比較部、45・・・脈波速度演算部、47・・・血管性状演算部、48・・・脈波速度分布作成部、49・・・脈波速度経時情報作成部。 DESCRIPTION OF SYMBOLS 1 ... Probe, 2 ... Transmission part, 3 ... Reception part, 4 ... Calculation part, 5 ... Control part, 6 ... Display part, 7 ... Input part, 8 * ..Storage unit, 9 ... external measuring device, 10 ... coupling material, 21 ... ultrasound signal transmission circuit, 23 ... delay control unit (beamformer), 31 ... amplification unit , 32 ... Delay processing section, 33 ... Apodization processing section, 40 ... Pulse wave measurement section, 41 ... Pulse wave arrival time calculation section, 42 ... Distance calculation section, 43 ... 1 comparison unit, 44 ... second comparison unit, 45 ... pulse wave velocity calculation unit, 47 ... blood vessel property calculation unit, 48 ... pulse wave velocity distribution creation unit, 49 ... pulse wave velocity Time information creation unit.

Claims (16)

  1.  超音波ビームを生体内に送信するとともに生体からのエコー信号を受信する超音波探触子と、
     前記超音波探触子が受信したエコー信号を用いて、生体情報を計算する演算部と、を備え
     前記演算部は、生体内の血管に対し相対的に斜めに超音波ビームを照射したときに、前記血管の、前記超音波探触子に近い側から反射した第1のエコー信号と、前記血管の、前記超音波探触子に遠い側から反射した第2のエコー信号とを用いて、血管内を移動する脈波を計測する脈波計測部を備えたことを特徴とする超音波診断装置。
    An ultrasonic probe that transmits an ultrasonic beam into a living body and receives an echo signal from the living body;
    A calculation unit that calculates biological information using an echo signal received by the ultrasonic probe, wherein the calculation unit irradiates the ultrasonic beam obliquely relative to a blood vessel in the living body. Using a first echo signal reflected from the side of the blood vessel close to the ultrasound probe and a second echo signal reflected from the side of the blood vessel far from the ultrasound probe, An ultrasonic diagnostic apparatus comprising a pulse wave measurement unit that measures a pulse wave moving in a blood vessel.
  2.  請求項1に記載の超音波診断装置であって、
     前記脈波計測部は、前記第1のエコー信号及び前記第2のエコー信号の時間変化と、前記血管の、前記超音波探触子に近い側と遠い側との血管走行方向の距離とを用いて、脈波伝搬速度を算出する脈波伝搬速度算出部を備えたことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The pulse wave measurement unit calculates a time change of the first echo signal and the second echo signal, and a distance in the blood vessel traveling direction between the side of the blood vessel close to the ultrasonic probe and the side far from the ultrasonic probe. An ultrasonic diagnostic apparatus comprising a pulse wave velocity calculation unit that calculates a pulse wave velocity using the pulse wave velocity.
  3.  請求項1に記載の超音波診断装置であって、
     前記超音波探触子は、配列した複数の振動子を備え、複数の超音波ビームを発する超音波探触子であり、
     前記脈波計測部は、複数の超音波ビームの各々に対応して生じる第1のエコー信号と第2のエコー信号を用いて、脈波を計測することを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic probe is an ultrasonic probe that includes a plurality of arranged transducers and emits a plurality of ultrasonic beams,
    The ultrasonic diagnostic apparatus, wherein the pulse wave measurement unit measures a pulse wave using a first echo signal and a second echo signal generated corresponding to each of a plurality of ultrasonic beams.
  4.  請求項3に記載の超音波診断装置であって、
     前記超音波探触子の駆動を制御する制御部を備え、
     前記制御部は、第1の超音波ビームと前記第1の超音波ビームから振動子配列方向に離れた第2の超音波ビームとを同時に照射する第1の計測モードと、前記第1の超音波ビームと前記第1の超音波ビームから振動子配列方向に離れた第3の超音波ビームとを同時に駆動する第2の計測モードとを備え、前記第1の超音波ビームと前記第2の超音波ビームとの間隔は、前記第1の超音波ビームと前記第3の超音波ビームとの間隔と異なり、
     前記脈波計測部は、前記第1の計測モード及び第2の計測モードにおいてそれぞれ計測された複数組の前記第1のエコー信号及び第2のエコー信号を用いて、脈波を計測することを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 3,
    A control unit for controlling the driving of the ultrasonic probe;
    The control unit simultaneously irradiates a first ultrasonic beam and a second ultrasonic beam separated from the first ultrasonic beam in a transducer arrangement direction, and the first ultrasonic beam. A second measurement mode for simultaneously driving a sound beam and a third ultrasonic beam separated from the first ultrasonic beam in the direction of transducer arrangement, and the first ultrasonic beam and the second ultrasonic beam. The interval between the ultrasonic beams is different from the interval between the first ultrasonic beam and the third ultrasonic beam.
    The pulse wave measurement unit measures a pulse wave using a plurality of sets of the first echo signal and the second echo signal respectively measured in the first measurement mode and the second measurement mode. A characteristic ultrasonic diagnostic apparatus.
  5.  請求項4に記載の超音波診断装置であって、
     前記制御部は、前記第1の超音波ビームと前記第2の超音波ビームとの間隔を、両ビームが通過する前記血管の2つの位置の間隔が、一つの超音波ビームが通過する前記血管の、前記超音波探触子に近い側と遠い側との血管走行方向の間隔より長くなるように設定することを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 4,
    The control unit is configured such that the interval between the first ultrasonic beam and the second ultrasonic beam is the interval between two positions of the blood vessel through which both beams pass, and the blood vessel through which one ultrasonic beam passes is provided. The ultrasonic diagnostic apparatus is set to be longer than the interval in the blood vessel traveling direction between the side closer to the ultrasonic probe and the side farther from the ultrasonic probe.
  6.  請求項1に記載の超音波診断装置であって、
     前記超音波探触子は、前記超音波ビームの照射方向を調整する調整手段を備えたことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein the ultrasonic probe includes an adjusting unit that adjusts an irradiation direction of the ultrasonic beam.
  7.  請求項6に記載の超音波診断装置であって、
     前記調整手段は、前記超音波探触子の、生体への接触面に着脱されるカップリング材であることを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The ultrasonic diagnostic apparatus according to claim 1, wherein the adjustment means is a coupling material attached to and detached from a contact surface of the ultrasonic probe with a living body.
  8.  請求項6に記載の超音波診断装置であって、
     前記調整手段は、前記超音波探触子の各振動子によって発せられる超音波ビームの方向を調整するビームフォーマーであることを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The ultrasonic diagnostic apparatus, wherein the adjusting means is a beam former that adjusts a direction of an ultrasonic beam emitted by each transducer of the ultrasonic probe.
  9.  請求項1に記載の超音波診断装置であって、
     前記脈波計測部は、計測した脈波情報の正確度を判定する判定部を備えたことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein the pulse wave measurement unit includes a determination unit that determines the accuracy of measured pulse wave information.
  10.  超音波ビームを生体内に送信するとともに生体からのエコー信号を受信する超音波探触子と、
     前記超音波探触子が受信したエコー信号を用いて、生体情報を計算する演算部と、
     前記演算部が計算した生体情報を表示する表示部と、を備え
     前記演算部は、生体内の血管に対し相対的に斜めに超音波ビームを照射したときに、前記血管の、前記超音波探触子に近い側から反射した第1のエコー信号と、前記血管の、前記超音波探触子に遠い側から反射した第2のエコー信号とを用いて、血管内を移動する脈波を計測する脈波計測部を備えたことを特徴とする超音波診断装置。
    An ultrasonic probe that transmits an ultrasonic beam into a living body and receives an echo signal from the living body;
    Using an echo signal received by the ultrasonic probe, a calculation unit that calculates biological information;
    A display unit that displays biological information calculated by the calculation unit, and the calculation unit irradiates the ultrasonic beam relatively obliquely with respect to the blood vessel in the living body. Using the first echo signal reflected from the side closer to the probe and the second echo signal reflected from the side of the blood vessel far from the ultrasonic probe, the pulse wave moving in the blood vessel is measured. An ultrasonic diagnostic apparatus comprising a pulse wave measurement unit that performs the above operation.
  11.  請求項10に記載の超音波診断装置であって、
     前記脈波計測部は、計測した脈波情報を用いて、組織の正常度を算出する正常度演算部を備え、前記正常度演算部が算出した正常度を前記表示部に表示させることを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 10,
    The pulse wave measurement unit includes a normality calculation unit that calculates the normality of the tissue using the measured pulse wave information, and displays the normality calculated by the normality calculation unit on the display unit. Ultrasonic diagnostic equipment.
  12.  請求項11に記載の超音波診断装置であって、
     前記演算部は、前記超音波探触子が受信したエコー信号を用いて、血管の性状を算出する血管性状演算部を備え、前記正常度演算部は、前記血管性状演算部が算出した血管性状に関する情報と、前記脈波計測部が計測した脈波情報を用いて、組織の正常度を算出することを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 11,
    The calculation unit includes a blood vessel property calculation unit that calculates a blood vessel property using an echo signal received by the ultrasound probe, and the normality calculation unit is a blood vessel property calculated by the blood vessel property calculation unit. An ultrasonic diagnostic apparatus characterized in that a normality level of a tissue is calculated using information related to information and pulse wave information measured by the pulse wave measurement unit.
  13.  請求項11に記載の超音波診断装置であって、
     前記正常度演算部は、外部計測装置が計測した血圧情報及び/または脈波情報を入力し、前記外部計測装置からの情報と、前記脈波計測部が計測した脈波情報とを用いて、組織の正常度を算出することを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 11,
    The normality calculation unit inputs blood pressure information and / or pulse wave information measured by an external measurement device, and uses information from the external measurement device and pulse wave information measured by the pulse wave measurement unit, An ultrasonic diagnostic apparatus characterized by calculating normality of a tissue.
  14.  請求項10に記載の超音波診断装置であって、
     前記脈波計測部が複数の部位について測定した脈波情報を記憶する記憶装置と、
     前記記憶装置に蓄積された複数の部位の脈波情報を用いて脈波速度の分布を作成し、前記表示部に表示させる脈波速度分布作成部と、をさらに備えことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 10,
    A storage device for storing pulse wave information measured by the pulse wave measurement unit for a plurality of sites;
    An ultrasonic wave further comprising: a pulse wave velocity distribution creating unit that creates a pulse wave velocity distribution using pulse wave information of a plurality of parts accumulated in the storage device and displays the pulse wave velocity distribution on the display unit Diagnostic device.
  15.  生体内の血管に、複数の超音波ビームを血管に対し斜めに照射し、一つの超音波ビームによって、深さ方向の位置が異なる一組の血管壁で発生する2つのエコー信号を用いて脈波を計測する方法であって、
     前記複数の超音波ビームの間隔を調整するステップ、
     前記血管に対する前記超音波ビームの角度を調整するステップ、
     前記複数の超音波ビームの各々について得られる2つのエコー信号の時間変化を用いて、脈波の伝搬距離と伝搬時間を算出し、超音波ビームの数の2倍の計測点数の脈波情報を取得するステップ、及び
     前記脈波情報を用いて脈波伝搬速度を算出するステップ
     を備えたことを特徴とする脈波計測方法。
    A blood vessel in a living body is irradiated with a plurality of ultrasonic beams obliquely with respect to the blood vessel, and a pulse is generated using two echo signals generated by a single ultrasonic beam at a pair of blood vessel walls having different positions in the depth direction. A method of measuring waves,
    Adjusting an interval between the plurality of ultrasonic beams;
    Adjusting the angle of the ultrasound beam relative to the blood vessel;
    Using the time change of two echo signals obtained for each of the plurality of ultrasonic beams, the propagation distance and propagation time of the pulse wave are calculated, and the pulse wave information of the number of measurement points twice the number of ultrasonic beams is obtained. A pulse wave measuring method comprising: a step of acquiring; and a step of calculating a pulse wave propagation velocity using the pulse wave information.
  16.  請求項15に記載の脈波計測方法であって、
     脈波情報を取得するステップは、複数の計測点の脈波情報を、伝搬距離と伝搬時間との関係を示すグラフにプロットするステップを含み、
     脈波伝搬速度を算出するステップは、グラフの傾きから前記脈波伝搬速度を算出することを特徴とする脈波計測方法。
    The pulse wave measuring method according to claim 15,
    The step of acquiring the pulse wave information includes the step of plotting the pulse wave information at a plurality of measurement points on a graph showing the relationship between the propagation distance and the propagation time,
    The step of calculating the pulse wave propagation velocity includes calculating the pulse wave propagation velocity from the slope of the graph.
PCT/JP2015/050497 2014-01-15 2015-01-09 Diagnostic ultrasound apparatus and pulse wave measurement method WO2015107993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005303 2014-01-15
JP2014005303A JP2017070317A (en) 2014-01-15 2014-01-15 Ultrasound diagnostic device and pulse wave measurement method

Publications (1)

Publication Number Publication Date
WO2015107993A1 true WO2015107993A1 (en) 2015-07-23

Family

ID=53542883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050497 WO2015107993A1 (en) 2014-01-15 2015-01-09 Diagnostic ultrasound apparatus and pulse wave measurement method

Country Status (2)

Country Link
JP (1) JP2017070317A (en)
WO (1) WO2015107993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210338193A1 (en) * 2018-08-21 2021-11-04 Koninklijke Philips N.V. Systems and method for performing pulse wave velocity measurements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221990B1 (en) * 2019-02-19 2021-03-02 서강대학교산학협력단 Method and apparatus of ultrasound imaging for local pulse wave velocity measurement
JP7457566B2 (en) 2020-04-30 2024-03-28 富士フイルムヘルスケア株式会社 Ultrasound diagnostic device, umbilical cord length measuring method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241288A (en) * 1994-03-04 1995-09-19 Hitachi Ltd Ultrasonic device
JP2003144395A (en) * 2001-11-09 2003-05-20 Fukuda Denshi Co Ltd Blood vessel endothelial function measuring instrument
JP2005034543A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Monitoring device for blood flow condition
JP2005052424A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic apparatus
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
WO2012086207A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Ultrasound diagnostic apparatus and ultrasound diagnostic apparatus control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241288A (en) * 1994-03-04 1995-09-19 Hitachi Ltd Ultrasonic device
JP2003144395A (en) * 2001-11-09 2003-05-20 Fukuda Denshi Co Ltd Blood vessel endothelial function measuring instrument
JP2005034543A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Monitoring device for blood flow condition
JP2005052424A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic apparatus
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
WO2012086207A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Ultrasound diagnostic apparatus and ultrasound diagnostic apparatus control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210338193A1 (en) * 2018-08-21 2021-11-04 Koninklijke Philips N.V. Systems and method for performing pulse wave velocity measurements
US11896422B2 (en) * 2018-08-21 2024-02-13 Koninklijke Philips N.V. Systems and method for performing pulse wave velocity measurements

Also Published As

Publication number Publication date
JP2017070317A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US8852102B2 (en) Ultrasound diagnostic apparatus and method of determining elasticity index reliability
JP5283888B2 (en) Ultrasonic diagnostic equipment
JP6139067B2 (en) Ultrasonic diagnostic equipment
WO2012081709A1 (en) Ultrasound diagnostic apparatus and control method therefor
KR20190088165A (en) Ultrasound probe and manufacturing method for the same
US20120245468A1 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
JP2015154883A (en) Ultrasonic measurement device and ultrasonic measurement method
WO2015107993A1 (en) Diagnostic ultrasound apparatus and pulse wave measurement method
JP2012192077A (en) Ultrasound diagnostic apparatus and ultrasound image generation method
JP2006115937A (en) Ultrasonic diagnostic apparatus
JP4918369B2 (en) Ultrasonic diagnostic equipment
JP5588924B2 (en) Ultrasonic diagnostic equipment
JP2012170467A (en) Ultrasound probe and ultrasound diagnostic apparatus
JP5281107B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image generation method
JP2009039277A (en) Ultrasonic diagnostic apparatus
KR20170045985A (en) Ultrasound imaging apparatus and controlling method for the same
JP5148203B2 (en) Ultrasonic diagnostic equipment
CN110494082B (en) Ultrasound elastography method and system
JP2012192133A (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5462474B2 (en) Ultrasonic diagnostic equipment
JP2015006260A (en) Ultrasonic diagnostic apparatus
KR20180096342A (en) Ultrasound probe and manufacturing method for the same
WO2019187647A1 (en) Ultrasonic diagnostic device and control method for ultrasonic diagnostic device
JP2008000214A (en) Ultrasonic diagnostic equipment and method for displaying ultrasonic diagnostic image
US20230240653A1 (en) An interventional device with an ultrasound transceiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP