WO2015107948A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2015107948A1
WO2015107948A1 PCT/JP2015/050225 JP2015050225W WO2015107948A1 WO 2015107948 A1 WO2015107948 A1 WO 2015107948A1 JP 2015050225 W JP2015050225 W JP 2015050225W WO 2015107948 A1 WO2015107948 A1 WO 2015107948A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
power supply
magnetic sensor
wiring
output
Prior art date
Application number
PCT/JP2015/050225
Other languages
French (fr)
Japanese (ja)
Inventor
清水 康弘
川浪 崇
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015557794A priority Critical patent/JPWO2015107948A1/en
Publication of WO2015107948A1 publication Critical patent/WO2015107948A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors

Definitions

  • the present invention relates to a magnetic sensor, for example, a magnetic sensor including a Wheatstone bridge circuit composed of four magnetoresistive elements.
  • Patent Document 1 discloses a configuration in which a signal between output terminals of a Wheatstone bridge circuit composed of four magnetoresistive elements is amplified by a differential amplifier circuit and output.
  • a magnetic sensor having a Wheatstone bridge circuit composed of four magnetoresistive elements includes a pair of power supply terminals to which a power supply voltage is applied, and a pair of output terminals for converting a magnetic field change into a voltage and outputting the voltage. Have.
  • the voltage (output voltage) at each output terminal is applied to the normal input terminal and the reverse input terminal of the differential amplifier circuit via a pair of signal wires.
  • a closed loop is formed by the pair of signal wirings between the pair of output terminals of the Wheatstone bridge circuit and the input terminal pair (normal input terminal and inverted input terminal) of the differential amplifier circuit. It will be.
  • a magnetic sensor includes a Wheatstone bridge circuit, a pair of power supply wirings, a pair of signal wirings, a pair of power supply pads, and a pair of output pads.
  • the Wheatstone bridge circuit includes a pair of power supply nodes, a pair of output nodes, and first to fourth magnetoresistive elements.
  • the first magnetoresistive element and the second magnetoresistive element are connected in series between the pair of power supply nodes via one of the pair of output nodes.
  • the third magnetoresistive element and the fourth magnetoresistive element are connected in series between the pair of power supply nodes via the other of the pair of output nodes.
  • the pair of power supply nodes are connected to the pair of power supply wirings through the pair of power supply pads.
  • the pair of output nodes are connected to the pair of signal lines through the pair of output pads.
  • the pair of signal wirings are arranged in parallel.
  • the present invention it is possible to realize a magnetic sensor in which induced electromotive force generated in the magnetic sensor is suppressed and measurement accuracy is ensured.
  • FIG. 1 is a circuit diagram illustrating a configuration of a magnetic sensor according to a first embodiment.
  • FIG. 3 is a layout diagram of the magnetic sensor according to the first embodiment.
  • 4 is a layout diagram of a magnetic sensor according to a comparative example of the magnetic sensor according to Embodiment 1.
  • FIG. 6 is a layout diagram of a magnetic sensor according to a first modification of the first embodiment.
  • FIG. 6 is a layout diagram of a magnetic sensor according to a second modification of the first embodiment.
  • FIG. 6 is a layout diagram of a magnetic sensor according to a third modification of the first embodiment.
  • FIG. 6 is a layout diagram of a magnetic sensor according to Embodiment 2.
  • FIG. 6 is a layout diagram of a magnetic sensor according to a modification of the second embodiment.
  • FIG. 6 is a layout diagram of a magnetic sensor according to a third embodiment.
  • FIG. 10 is a layout diagram of a magnetic sensor according to a modification of the third embodiment.
  • FIG. 3 is a circuit diagram illustrating a configuration of a current sensor circuit including the magnetic sensor according to the first embodiment. It is a perspective view explaining arrangement
  • FIG. 1 is a circuit diagram showing a configuration of a magnetic sensor 10 according to the first embodiment.
  • the magnetic sensor 10 includes magnetoresistive elements R1 to R4 constituting a Wheatstone bridge circuit.
  • One end of each of magnetoresistive element R1 and magnetoresistive element R3 is connected to power supply node Np1.
  • the other end of the magnetoresistive element R1 is connected to the output node No1.
  • the other end of the magnetoresistive element R3 is connected to the output node No2.
  • One end of each of magnetoresistive element R2 and magnetoresistive element R4 is connected to power supply node Np2.
  • the other end of the magnetoresistive element R2 is connected to the output node No1.
  • the other end of the magnetoresistive element R4 is connected to the output node No2.
  • the power supply node Np1 is connected to the power supply terminal VCC via the power supply wiring Lvcc.
  • the power supply node Np2 is connected to the power supply terminal GND through the power supply wiring Lgnd.
  • the power supply terminal VCC and the power supply terminal GND are connected to the positive electrode and the negative electrode of the DC power supply 3, respectively.
  • a constant current drive source may be used instead of the DC power supply 3.
  • the output node No1 is connected to the positive input of the differential amplifier circuit 2 through the signal line Lin1.
  • the output node No2 is connected to the negative input of the differential amplifier circuit 2 through the signal line Lin2.
  • the differential amplifier circuit 2 amplifies the voltage between the output node No1 and the output node No2, and generates a magnetic sensor output Vo.
  • the magnetic sensor 10 and the differential amplifier circuit 2 constitute a magnetic sensor circuit 100.
  • the output node No1 of the Wheatstone bridge circuit is connected to the positive input of the differential amplifier circuit 2 via the signal wiring Lin1.
  • the output node No2 of the Wheatstone bridge circuit is connected to the negative input of the differential amplifier circuit 2 through the signal line Lin2.
  • a closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2.
  • the time change of the magnetic flux density passing through the closed loop that is, the induced electromotive force generated with the time change of the magnetic field is superimposed on the input signal of the differential amplifier circuit 2 as noise, and the measurement accuracy of the magnetic sensor 10 is lowered.
  • the area of the closed loop mainly depends on the distance between the signal wiring Lin1 and the signal wiring Lin2. Therefore, in order to reduce the induced electromotive force, it is important to set the distance between the signal wiring Lin1 and the signal wiring Lin2 as short as possible.
  • FIG. 2 is a layout diagram of the magnetic sensor 10 according to the first embodiment.
  • the magnetic sensor 10 has a configuration in which the magnetoresistive elements R1 to R4 shown in FIG. 1 are formed on a semiconductor substrate SUB.
  • FIG. 2A is a plan view of the magnetic sensor 10.
  • FIG. 2B is a cross-sectional view of the magnetic sensor 10 taken along the line IIb-IIb in FIG. A plan view of the magnetic sensor 10 will be described with reference to FIG.
  • each of the magnetoresistive elements R1 to R4 has a structure having a magnetic film Mg and a barber pole-shaped electrode formed on the magnetic film Mg.
  • the magnetic film Mg include a film having a giant magnetoresistance (GMR) effect, a film having a tunnel magnetoresistance (TMR) effect, or an anisotropic magnetoresistance (AMR).
  • GMR giant magnetoresistance
  • TMR tunnel magnetoresistance
  • AMR anisotropic magnetoresistance
  • a film having an effect is applied.
  • a metal film such as aluminum is applied to the barber pole-shaped electrode.
  • the region of the magnetic film Mg in which the barber pole-shaped electrode is not formed corresponds to a configuration electrically connected in series by the barber pole-shaped electrode.
  • the surfaces of the magnetoresistive elements R1 to R4 are not shown, but are protected by a protective film, a silicone potting material, or a resin potting material.
  • a specific direction parallel to the paper surface is defined as the X direction
  • a direction parallel to the paper surface and orthogonal to the X direction is defined as the Y direction
  • a direction orthogonal to each of the X direction and the Y direction is defined as Z.
  • a plane parallel to the surface of the semiconductor substrate SUB is defined as an XY plane.
  • the magnetic sensor 10 an example in which the short side direction of each of the magnetoresistive elements R1 to R4 is arranged in the X direction and the long side direction is arranged in the Y direction is shown. In this case, the magnetosensitive elements R1 to R4 are set in the X direction, and the magnetic bias direction is set in the Y direction.
  • One end of the magnetoresistive element R1, one end of the magnetoresistive element R3, and the power supply pad Pp1 are connected to the power supply node Np1 through the metal wiring ML.
  • One end of the magnetoresistive element R2, one end of the magnetoresistive element R4, and the power supply pad Pp2 are connected to the power supply node Np2 through the metal wiring ML.
  • the other end of the magnetoresistive element R1, the other end of the magnetoresistive element R2, and the output pad Po1 are connected to the output node No1 via the metal wiring ML.
  • the other end of the magnetoresistive element R3, the other end of the magnetoresistive element R4, and the output pad Po2 are connected to the output node No2 via the metal wiring ML.
  • the magnetoresistive element R1 and the magnetoresistive element R2 are connected in series between the power supply node Np1 and the power supply node Np2 via the output node No1 and the metal wiring ML. Further, a magnetoresistive element R3 and a magnetoresistive element R4 are connected in series between the power supply node Np1 and the power supply node Np2 via the output node No2 and the metal wiring ML.
  • a region surrounded by the magnetoresistive elements R1 to R4 connected by the metal wiring ML is defined as a “bridge circuit internal region”.
  • the power supply pad Pp1, the power supply pad Pp2, and the output pad Po1 are disposed outside the bridge circuit internal region.
  • the output pad Po2 is disposed inside the bridge circuit internal region.
  • the signal wiring Lin1 and the signal wiring Lin2 are both on the side where the output pad Po1 is disposed with respect to the Wheatstone bridge circuit, and are disposed so as to extend in the Y direction.
  • the output pad Po1 and one end of the signal wiring Lin1 are connected by a bonding wire BW.
  • the output pad Po2 and one end of the signal wiring Lin2 are connected by the bonding wire BW.
  • the other ends of the signal line Lin1 and the signal line Lin2 are connected to the positive input and the negative input of the differential amplifier circuit 2, respectively.
  • the bonding wire BW constitutes a metal wiring.
  • the extending direction of the bonding wire BW connecting the output pad Po1 / Po2 and the signal wiring Lin1 / Lin2 is preferably the X direction, which is the magnetosensitive direction of the magnetoresistive elements R1 to R4. Moreover, it is preferable that the dimension of the bonding wire BW in the Z direction is small.
  • the wire bonding method ball bonding or wedge bonding is appropriately selected.
  • the method of electrically connecting the output pads Po1 / Po2 and the signal wirings Lin1 / Lin2 is not limited to wire bonding, and a method of fixing metal wiring by bump bonding or solder or conductive adhesive is also applicable. It is. Further, the shape of the bonding pad such as the output pad Po1 is not limited to a rectangle, and may be a polygon or a circle.
  • the signal wiring Lin1 and the signal wiring Lin2 are arranged in parallel at a predetermined interval D1.
  • the distance D1 is preferably as small as possible.
  • the minimum value of the processing dimension of the signal wiring Lin1 and the signal wiring Lin2 is applied.
  • the other wiring or electrode and the signal wiring Lin1 or signal It is preferable to set the distance between the signal line Lin1 and the signal line Lin2 short while appropriately maintaining the distance from the line Lin2.
  • One end of the power supply wiring Lvcc is connected to the power supply pad Pp1 by a bonding wire BW.
  • the other end of the power supply line Lvcc is connected to the positive electrode of the DC power supply 3 through a power supply terminal VCC (see FIG. 1).
  • One end of the power supply line Lgnd is connected to the power supply pad Pp2 by a bonding wire BW.
  • the other end of the power supply line Lgnd is connected to the negative electrode of the DC power supply 3 via a power supply terminal GND (see FIG. 1).
  • FIG. 2B shows a state in which the magnetoresistive element R1, the magnetoresistive element R3, the signal wiring Lin1, and the signal wiring Lin2 are formed on the semiconductor substrate SUB.
  • the magnetoresistive elements R1 to R4 and the like are insulated from the semiconductor substrate SUB by an insulating film (not shown) formed on the surface of the semiconductor substrate SUB.
  • the insulating film is made of, for example, silicon dioxide (SiO 2 ).
  • FIG. 2B a state in which a barber pole-shaped electrode is formed on the magnetic film Mg including the magnetoresistive element R1 and the magnetoresistive element R3 is shown in a simplified manner.
  • the signal wiring Lin1 and the signal wiring Lin2 are arranged on the left side of the magnetoresistive element R1 in the drawing, that is, on the side where the output pad Po1 is arranged.
  • the distance D1 between the signal wiring Lin1 and the signal wiring Lin2 is preferably set to the minimum value of wiring processing dimensions.
  • FIG. 2B which is a cross-sectional view taken along line IIb-IIb in FIG. 2A, the bonding wire BW is not shown, but the shape of the bonding wire BW will be described below.
  • the output pad Po2 is disposed between the magnetoresistive element R1 and the magnetoresistive element R3.
  • the output pad Po2 and the signal wiring Lin2 are connected to each other by a bonding wire BW having a loop height (dimension in the Z direction) that exceeds the magnetoresistive element R1.
  • the output pad Po1 and the signal line Lin1 arranged outside the bridge circuit internal region are connected to each other by the bonding wire BW.
  • a closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2.
  • the induced electromotive force generated in the closed loop is mainly determined by the area D1 between the signal wiring Lin1 and the signal wiring Lin2 and the opposing length, and the loop area of the bonding wire BW that connects the signal wiring Lin1 and the output pad Po1. And the loop area of the bonding wire BW connecting the signal line Lin2 and the output pad Po2.
  • the output pad Po2 is disposed inside the bridge circuit internal region, and the output pad Po1 is disposed on the left outer side in FIG. 2A of the bridge circuit internal region. . Since the signal wiring Lin1 and the signal wiring Lin2 are disposed adjacent to each other on the side where the output pad Po1 is disposed with respect to the Wheatstone bridge circuit, the signal wiring Lin1 and the signal wiring Lin2 are arranged in the Z direction passing between the signal wiring Lin1 and the signal wiring Lin2. Noise due to the magnetic field is reduced.
  • the direction of the bonding wire BW that connects the signal line Lin1 and the output pad Po1 and the direction of the bonding wire BW that connects the signal line Lin2 and the output pad Po2 are the magnetosensitive directions of the magnetoresistive elements R1 to R4.
  • the direction is set almost the same as the direction. Therefore, noise generated in the bonding wire BW due to the magnetic field in the X direction is also reduced.
  • the output pad Po2 Since the output pad Po2 is arranged inside the bridge circuit internal region, the loop of the bonding wire BW that connects the output pad Po2 and the signal wiring Lin2 as compared with the case where the output pad Po2 is arranged outside (right side) the bridge circuit internal region. The height can be lowered. As a result, noise generated in the bonding wire BW due to the magnetic field in the Y direction is also reduced.
  • a closed loop is formed by a pair of signal wirings connecting the output terminal of the Wheatstone bridge circuit and the input terminal of the differential amplifier circuit.
  • the induced electromotive force generated in the closed loop can be suppressed by appropriately setting the interval between the signal wiring Lin1 and the signal wiring Lin2, the loop direction or the loop height of the bonding wire BW.
  • FIG. 3 is a layout diagram of a magnetic sensor 10R according to a comparative example of the magnetic sensor 10 according to the first embodiment.
  • the magnetic sensor 10R in FIG. 3 corresponds to the magnetic sensor 10 in FIG. 2 in which the output pad Po2 is arranged on the right outer side in the drawing of the internal area of the bridge circuit, and the signal wiring Lin2 is also arranged on the output pad Po2 side. To do.
  • the output pad Po2 and the signal wiring Lin2 are arranged at positions facing the output pad Po1 and the signal wiring Lin1 across the magnetoresistive elements R1 to R4.
  • the distance D1R between the signal wiring Lin1 and the signal wiring Lin2 is increased by at least a distance corresponding to the arrangement region of the magnetoresistive elements R1 to R4, compared to the corresponding distance D1 in the magnetic sensor 10. Therefore, the induced electromotive force generated due to the magnetic field in the Z direction, that is, the noise is greatly increased as compared with the case of the magnetic sensor 10, so that the detection accuracy of the magnetic sensor 10R is greatly reduced.
  • FIG. 4 is a layout diagram of the magnetic sensor 11 according to the first modification of the first embodiment.
  • FIG. 4A is a plan view of the magnetic sensor 11.
  • FIG. 4B is a cross-sectional view of the magnetic sensor 11 taken along line IVb-IVb in FIG.
  • the magnetic sensor 11 shown in FIG. 4 includes the magnetoresistive elements R1 to R4, the power supply pads Pp1, the power supply pads Pp2, the output pads Po1, and the output pads Po2 in the magnetic sensor 10 shown in FIG.
  • the signal wiring Lin1, the signal wiring Lin2, the power supply wiring Lvcc, and the power supply wiring Lgnd correspond to those arranged on the wiring board PCB.
  • the wiring board PCB is, for example, a glass epoxy board.
  • the semiconductor substrate SUB on which the Wheatstone bridge circuit composed of the magnetoresistive elements R1 to R4 is formed is mounted on the wiring board PCB.
  • the output pad Po1 and the output pad Po2 arranged on the semiconductor substrate SUB are connected to the signal wiring Lin1 and the signal wiring Lin2 by the bonding wire BW, respectively.
  • the power supply pad Pp1 and the power supply pad Pp2 arranged on the semiconductor substrate SUB are also connected to the power supply line Lvcc and the power supply line Lgnd by bonding wires BW, respectively.
  • the stretching direction of the total four bonding wires BW is preferably aligned with the X direction, which is the magnetosensitive direction of the magnetoresistive elements R1 to R4.
  • the loop length and the loop height of the bonding wire BW connecting the output pad Po1 disposed on the semiconductor substrate SUB and the signal wiring Lin1 disposed on the wiring substrate PCB are as follows. It increases compared to the case of the magnetic sensor 10 according to the first embodiment. However, the semiconductor substrate SUB (not shown) on which the differential amplifier circuit 2 is formed and the semiconductor substrate SUB on which the Wheatstone bridge circuit composed of the magnetoresistive elements R1 to R4 is mounted are mounted on the same wiring board PCB. As a result, the magnetic sensor circuit 100 can be reduced in size.
  • the semiconductor substrate SUB on which the differential amplifier circuit 2 is disposed and the semiconductor substrate SUB on which the Wheatstone bridge circuit is formed are mounted adjacently on the wiring substrate PCB, so that the signal wiring Lin1 and the signal wiring Lin2 Since the wiring length becomes shorter, noise caused by the magnetic field in the Z direction is reduced.
  • FIG. 5 is a layout diagram of the magnetic sensor 12 according to the second modification of the first embodiment.
  • the magnetic sensor 12 of FIG. 5 corresponds to a configuration in which the interval between the power supply line Lvcc and the power supply line Lgnd is set to be the same as the interval D1 between the signal line Lin1 and the signal line Lin2 in the magnetic sensor 10 of FIG. .
  • the power supply wiring Lvcc is formed to extend in the Y direction, like the power supply wiring Lgnd.
  • One end of the power supply line Lvcc is connected to the power supply pad Pp1 by a bonding wire BW.
  • One end of the power supply line Lgnd is connected to the power supply pad Pp2 by a bonding wire BW.
  • the other end of the power supply line Lvcc is arranged so as to maintain a distance D1 from the other end of the power supply line Lgnd extending in the Y direction.
  • the other end of the power supply line Lvcc is connected to the positive electrode of the DC power supply 3 through a power supply terminal VCC (see FIG. 1).
  • the other end of the power supply line Lgnd is connected to the negative electrode of the DC power supply 3 via a power supply terminal GND (see FIG. 2).
  • a closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2.
  • the induced electromotive force generated in the closed loop due to the magnetic field in the Z direction is superimposed as noise on the input signal of the differential amplifier circuit 2 and also superimposed on the power supply voltage of the Wheatstone bridge circuit as noise.
  • the power supply voltage noise of the Wheatstone bridge circuit appears as noise in the output voltage of the Wheatstone bridge circuit and adversely affects the measurement accuracy of the magnetic sensor 12.
  • the magnetic sensor 12 can be further improved in accuracy.
  • the direction of the bonding wire BW connecting the power supply pad Pp1 and the power supply wiring Lvcc and the direction of the bonding wire BW connecting the power supply pad Pp2 and the power supply wiring Lgnd are both in the magnetosensitive direction of the magnetoresistive elements R1 to R4. It is preferable to set in the X direction.
  • the extending direction (negative Y direction) of the power supply wiring Lvcc and the power supply wiring Lgnd and the extending direction (positive Y direction) of the signal wiring Lin1 and the signal wiring Lin2 extend in directions opposite to each other.
  • the wiring may be arranged such that these directions are the same.
  • the power supply wiring Lvcc or the power supply wiring Lgcc and the power supply wiring Lvcc can be appropriately maintained while keeping the distance between the power supply wiring Lvcc and the other wiring.
  • a similar effect can be obtained by setting the distance from the power supply line Lgnd to be short.
  • FIG. 6 is a layout diagram of the magnetic sensor 13 according to the third modification of the first embodiment.
  • FIG. 6A is a plan view of the magnetic sensor 13.
  • FIG. 6B is a cross-sectional view of the magnetic sensor 13 taken along the line VIIb-VIIb in FIG.
  • the magnetic sensor 13 of FIG. 6 is the same as the magnetic sensor 11 of FIG. 4 except that the semiconductor substrate SUB includes the magnetoresistive elements R1 to R4, the power supply pad Pp1, the power supply pad Pp2, the output pad Po1, and the output pad Po2.
  • the semiconductor substrate SUB includes the magnetoresistive elements R1 to R4, the power supply pad Pp1, the power supply pad Pp2, the output pad Po1, and the output pad Po2.
  • this corresponds to a configuration mounted in a DIP (Dual Inline Package) type package instead of the wiring board PCB.
  • DIP Direct Inline Package
  • the semiconductor substrate SUB is mounted on the island of the lead frame LF.
  • the power supply pad Pp1, the power supply pad Pp2, the output pad Po1, and the output pad Po2, each of which is disposed on the semiconductor substrate SUB, correspond to the corresponding lead electrodes among the plurality of lead electrodes of the lead frame LF by the bonding wires BW. Connected with.
  • Each pad (power supply pad Pp1, power supply pad Pp2, output pad Po1, and output pad Po2) on the semiconductor substrate SUB is sealed with resin MLD.
  • Each of the pads is connected to a corresponding one of the power supply wiring Lvcc, the power supply wiring Lgnd, the signal wiring Lin1, and the signal wiring Lin2 arranged on the wiring board PCB via the corresponding lead electrode. ing.
  • the wiring pattern of the wiring substrate PCB on which the package is mounted is formed as close as possible to induce The influence of noise caused by the electromotive force is suppressed.
  • FIG. 7 is a layout diagram of the magnetic sensor 20 according to the second embodiment.
  • the magnetic sensor 20 of FIG. 7 has a configuration in which one of the power pad Pp1 and the power pad Pp2 is disposed in the bridge circuit internal region instead of one of the output pad Po1 and the output pad Po2. It corresponds to. Specifically, the power supply pad Pp2 is disposed inside the bridge circuit internal region, and the power supply pad Pp1, the output pad Po1, and the output pad Po2 are disposed outside the bridge circuit internal region.
  • One end of the signal wiring Lin1 and the output pad Po1 are connected to each other by a bonding wire BW. Similarly, one end of the signal line Lin2 and the output pad Po2 are connected to each other by a bonding wire BW.
  • the signal wiring Lin1 and the signal wiring Lin2 are arranged to face each other at a predetermined interval D1.
  • One end of the power supply line Lvcc and the power supply pad Pp1 are connected to each other by a bonding wire BW.
  • one end of the power supply line Lgnd and the power supply pad Pp2 are connected to each other by a bonding wire BW.
  • the power supply wiring Lvcc and the power supply wiring Lgnd are arranged to face each other with a predetermined distance D1.
  • the interval D1 is preferably set to the minimum value of the processing dimensions of the signal wiring Lin1 and the signal wiring Lin2.
  • the induced electromotive force caused by the magnetic field in the Z direction can be minimized by arranging the signal wiring Lin1 and the signal wiring Lin2 so as to face each other at the interval D1, and therefore the magnetic sensor 20 due to noise superimposed on the power supply voltage of the Wheatstone bridge circuit. Measurement accuracy degradation is suppressed.
  • FIG. 8 is a layout diagram of a magnetic sensor 21 according to a modification of the second embodiment.
  • FIG. 8A is a plan view of the magnetic sensor 21.
  • FIG. 8B is a cross-sectional view of the magnetic sensor 21 taken along line VIIIb-VIIIb of FIG.
  • the magnetic sensor 21 in FIG. 8 corresponds to a configuration in which the linear signal wiring Lin1 and the signal wiring Lin2 arranged opposite to each other in the magnetic sensor 11 in FIG. 4 are replaced with wirings that vertically cross each other.
  • the magnetic sensor 21 includes a semiconductor substrate SUB mounted on one surface of the wiring board PCB, a signal wiring Lin1 and a signal wiring Lin2 each formed on both surfaces (first and second surfaces) of the wiring board PCB, Each includes a power supply line Lvcc and a power supply line Lgnd arranged on one surface of the wiring board PCB.
  • magnetoresistive elements R1 to R4 constituting a Wheatstone bridge circuit, an output pad Po1 and an output pad Po2, and a power supply pad Pp1 and a power supply pad pp2 are arranged.
  • An output pad Po2 is disposed inside the bridge circuit internal region, and an output pad Po1 is disposed outside the bridge circuit internal region.
  • the signal wiring Lin1 and the signal wiring Lin2 are formed on the first surface (the surface in the positive Z direction) and the second surface (the surface in the negative Z direction) of the wiring board PCB so as to cross each other vertically. Yes.
  • the first surface and the second surface are opposed to each other.
  • the first portion L11 of the signal wiring Lin1 is formed on the first surface of the wiring board PCB, and is connected to the output pad Po1 by the bonding wire BW.
  • the first portion L21 of the signal wiring Lin2 is formed on the first surface of the wiring board PCB and is connected to the output pad Po2 by the bonding wire BW.
  • the direction of both the bonding wires BW is preferably set in the X direction, which is the magnetic sensitive direction of the magnetoresistive elements R1 to R4.
  • the first portion L11 of the signal wiring Lin1 connected to the output pad Po1 via the bonding wire BW is formed on the second surface of the wiring board PCB via the via VIA formed on the wiring board PCB. It is connected to one end of the second portion L12 of Lin1.
  • the first portion L11 of the signal wiring Lin1 is a rectangular pattern arranged in the Y-axis direction
  • the second portion L12 of the signal wiring Lin1 is a rectangular pattern inclined 45 degrees to the right, for example, with respect to the Y-axis direction. .
  • the first portion L21 of the signal wiring Lin2 connected to the output pad Po2 via the bonding wire BW is connected to the second portion L22 of the signal wiring Lin2 formed on the second surface of the wiring board PCB via the via VIA. Connected to one end.
  • the second portion L22 of the signal wiring Lin2 is a rectangular pattern inclined 45 degrees to the right with respect to the Y-axis direction
  • the first portion L21 of the signal wiring Lin2 is a rectangle inclined 45 degrees to the left with respect to the Y-axis direction. It is a pattern. Therefore, the second portion L22 of the signal wiring Lin2 formed on the second surface of the wiring board PCB and the first portion L21 of the signal wiring Lin2 formed on the first surface of the wiring board PCB are mutually in plan view. Arranged to intersect vertically.
  • the signal wiring Lin1 and the signal wiring Lin2 are alternately formed on the first surface and the second surface of the wiring board PCB so as to intersect each other in plan view.
  • the other end of the signal wiring Lin1 and the other end of the signal wiring Lin2 are formed on a surface (first surface) on which the power supply wiring Lvcc and the power supply wiring Lgnd are arranged.
  • FIG. 8B is a cross-sectional view of the magnetic sensor 21 taken along line VIIIb-VIIIb in FIG.
  • the magnetoresistive elements R1 to R4 constituting the Wheatstone bridge circuit, the output pad Po1, the output pad Po2, and the power supply pad Pp1 are formed on the first surface of the wiring board PCB.
  • the semiconductor substrate SUB on which the power supply pad Pp2 is disposed is mounted, and the signal wiring Lin1 and a part of the signal wiring Lin2 are formed.
  • the power supply wiring Lvcc and the power supply wiring Lgnd are disposed on the first surface of the wiring board PCB.
  • the signal wiring Lin1 and a part of the signal wiring Lin2 are formed via the via VIA.
  • the magnetic sensor 21 has a signal wiring Lin1 and a signal wiring Lin2.
  • the signal wiring Lin1 and the signal wiring Lin2 are alternately formed on the first surface and the second surface of the wiring board PCB, and are arranged so as to intersect in plan view. Since the signal wiring Lin1 and the signal wiring Lin2 have a twist structure, the induced electromotive force generated in these signal wirings due to the magnetic field is canceled out, so that the detection accuracy of the magnetic sensor 21 can be improved. .
  • the magnetic sensor 21 is such that a signal wiring pair having a twist structure is formed on a wiring board PCB having a pattern formed on both of two opposing surfaces.
  • a wiring board having a pattern formed on only one of the two surfaces may have a wiring pair having a similar twist structure.
  • the wirings formed on both of the two opposing surfaces are alternately connected by bonding wires, It is also possible to realize a twist structure.
  • the wiring may be connected so as to intersect with each other using solder, or a twisted metal lead wire may be mounted on the wiring board.
  • FIG. 9 is a layout diagram of the magnetic sensor 30 according to the third embodiment.
  • the magnetic sensor 30 in FIG. 9 corresponds to a configuration in which the magnetoresistive elements R1 to R4 in the magnetic sensor 10 in FIG. 2 are each formed by connecting three magnetoresistive elements R in a meander shape.
  • the configuration of the magnetoresistive element R is the same as that of the magnetoresistive element R1 of the magnetic sensor 10 of FIG.
  • the bridge circuit internal region corresponds to a region surrounded by a total of twelve magnetoresistive elements R connected by the metal wiring ML.
  • the output pad Po2 is disposed inside the bridge circuit internal region, and the output pad Po1, the power pad Pp1, and the power pad Pp2 are disposed outside the bridge circuit internal region.
  • the signal wiring Lin1 and the signal wiring Lin2 arranged in parallel with the minimum processing dimension are respectively connected to the output pad Po1 and the output pad Po2 via the bonding wire BW.
  • the power supply wiring Lvcc and the power supply wiring Lgnd are also connected to the power supply pad Pp1 and the power supply pad Pp2 through the bonding wires BW, respectively.
  • the magnetic sensor 30 by applying the above-described configuration also to a Wheatstone bridge circuit composed of meandering magnetoresistive elements, induction caused by the interval between the signal wiring Lin1 and the signal wiring Lin2 or the loop shape of the bonding wire BW. Since the electromotive force is suppressed, the detection accuracy of the magnetic sensor 30 can be improved.
  • FIG. 10 is a layout diagram of a magnetic sensor 31 according to a modification of the third embodiment.
  • the magnetic sensor 31 in FIG. 10 corresponds to a configuration in which the extending directions of the power supply wiring Lvcc and the power supply wiring Lgnd are set in opposite directions to the magnetic sensor 30 in FIG.
  • the signal wiring Lin1 and the signal wiring Lin2, and the power supply wiring Lvcc and the power supply wiring Lgnd are all extended in the same direction (positive Y direction).
  • the extending direction of the signal wiring Lin1 and the signal wiring Lin2 (positive Y direction) and the extending direction of the power supply wiring Lvcc and the power supply wiring Lgnd are set in opposite directions.
  • the difference between the magnetic sensor 30 and the magnetic sensor 31 is mainly that the semiconductor substrate SUB on which the magnetoresistive element R is formed, the differential amplifier circuit 2 connected to the signal wiring Lin1 and the signal wiring Lin2, the power supply wiring Lvcc and the power supply This is due to the arrangement relationship of the power supply circuit connected to the wiring Lgnd on the mounting substrate.
  • FIG. 11 is a circuit diagram illustrating a configuration of a current sensor circuit 200 including the magnetic sensor 10 according to the first embodiment.
  • current sensor circuit 200 amplifies the outputs of two magnetic sensor circuits 100 by differential amplifier circuit 2cs, and generates current sensor output VoC.
  • a DC power supply 3 is connected between the power supply terminal VCC and the power supply terminal GND of each magnetic sensor circuit 100.
  • FIG. 11 shows an example in which the magnetic sensor circuit 100 includes the magnetic sensor 10 and the differential amplifier circuit 2 according to the first embodiment, but the magnetic sensor 10 may be replaced with a magnetic sensor according to another embodiment. good.
  • FIG. 12 is a perspective view for explaining the arrangement of the magnetic sensor 10 included in the current sensor circuit 200 shown in FIG.
  • the two magnetic sensors 10 included in the current sensor circuit 200 of FIG. 11 are arranged so as to sandwich the conductor 4 through which the current to be measured flows.
  • the magnetic flux generated by the current flowing through the conductor 4 is generated in the magnetosensitive direction of the magnetoresistive elements R1 to R4 constituting the Wheatstone bridge circuit of the magnetic sensor 10.
  • the difference between the output voltages of the magnetic sensors 10 is amplified by a differential amplifier circuit 2cs (see FIG. 11) included in the current sensor circuit 200, and is output as a current sensor output VoC.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 A magnetic sensor (10) is provided with a Wheatstone bridge circuit, a pair of power source lines (Lvcc, Lgnd), a pair of signal lines (Lin1, Lin2), a pair of power source pads (Pp1, Pp2), and a pair of output pads (Po1, Po2). The Wheatstone bridge circuit includes a pair of power source nodes (Np1, Np2), a pair of output nodes (No1, No2), and magnetic resistance elements (R1-R4). The pair of signal lines (Lin1, Lin2) are arranged in parallel.

Description

磁気センサMagnetic sensor
 本発明は磁気センサに関し、たとえば、4個の磁気抵抗素子で構成されるホイートストンブリッジ回路を備える磁気センサに関する。 The present invention relates to a magnetic sensor, for example, a magnetic sensor including a Wheatstone bridge circuit composed of four magnetoresistive elements.
 4個の磁気抵抗素子で構成されるホイートストンブリッジ回路を備える磁気センサが良く知られている。たとえば特開平8-242027号公報(特許文献1)は、4個の磁気抵抗素子で構成されるホイートストンブリッジ回路の出力端子間の信号を差動増幅回路で増幅して出力する構成を開示する。 A magnetic sensor having a Wheatstone bridge circuit composed of four magnetoresistive elements is well known. For example, Japanese Patent Laid-Open No. 8-242427 (Patent Document 1) discloses a configuration in which a signal between output terminals of a Wheatstone bridge circuit composed of four magnetoresistive elements is amplified by a differential amplifier circuit and output.
特開平8-242027号公報Japanese Patent Laid-Open No. 8-242427
 4個の磁気抵抗素子で構成されるホイートストンブリッジ回路を備える磁気センサは、電源電圧が印加される1対の電源端子と、磁場の変化を電圧に変換して出力する1対の出力端子とを有する。各出力端子の電圧(出力電圧)は、1対の信号配線を介して、それぞれ、差動増幅回路の正転入力端子および反転入力端子に印加される。その結果、ホイートストンブリッジ回路の1対の出力端子と、差動増幅回路の入力端子対(正転入力端子および反転入力端子)との間には、上記1対の信号配線により閉ループが形成されることになる。磁場の変化により閉ループに誘起された誘導起電力は、ホイートストンブリッジ回路の出力電圧、すなわち、差動増幅回路の入力信号にノイズとして重畳し、磁気センサの測定精度低下を招く。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 A magnetic sensor having a Wheatstone bridge circuit composed of four magnetoresistive elements includes a pair of power supply terminals to which a power supply voltage is applied, and a pair of output terminals for converting a magnetic field change into a voltage and outputting the voltage. Have. The voltage (output voltage) at each output terminal is applied to the normal input terminal and the reverse input terminal of the differential amplifier circuit via a pair of signal wires. As a result, a closed loop is formed by the pair of signal wirings between the pair of output terminals of the Wheatstone bridge circuit and the input terminal pair (normal input terminal and inverted input terminal) of the differential amplifier circuit. It will be. The induced electromotive force induced in the closed loop due to the change in the magnetic field is superimposed as noise on the output voltage of the Wheatstone bridge circuit, that is, the input signal of the differential amplifier circuit, leading to a decrease in measurement accuracy of the magnetic sensor. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 本発明のある局面に従う磁気センサは、ホイートストンブリッジ回路と、1対の電源配線と、1対の信号配線と、1対の電源パッドと、1対の出力パッドとを備える。ホイートストンブリッジ回路は、1対の電源ノードと、1対の出力ノードと、第1磁気抵抗素子~第4磁気抵抗素子とを含む。第1磁気抵抗素子および第2磁気抵抗素子は、上記1対の電源ノード間に、上記1対の出力ノードの一方を介して、直列接続される。第3磁気抵抗素子および第4磁気抵抗素子は、上記1対の電源ノード間に、上記1対の出力ノードの他方を介して、直列接続される。上記1対の電源ノードは、上記1対の電源パッドを介して、上記1対の電源配線と接続される。上記1対の出力ノードは、上記1対の出力パッドを介して、上記1対の信号配線と接続される。上記1対の信号配線は、並列配置される。 A magnetic sensor according to an aspect of the present invention includes a Wheatstone bridge circuit, a pair of power supply wirings, a pair of signal wirings, a pair of power supply pads, and a pair of output pads. The Wheatstone bridge circuit includes a pair of power supply nodes, a pair of output nodes, and first to fourth magnetoresistive elements. The first magnetoresistive element and the second magnetoresistive element are connected in series between the pair of power supply nodes via one of the pair of output nodes. The third magnetoresistive element and the fourth magnetoresistive element are connected in series between the pair of power supply nodes via the other of the pair of output nodes. The pair of power supply nodes are connected to the pair of power supply wirings through the pair of power supply pads. The pair of output nodes are connected to the pair of signal lines through the pair of output pads. The pair of signal wirings are arranged in parallel.
 本発明によれば、磁気センサに発生する誘導起電力が抑制され、測定精度が確保された磁気センサを実現することが可能となる。 According to the present invention, it is possible to realize a magnetic sensor in which induced electromotive force generated in the magnetic sensor is suppressed and measurement accuracy is ensured.
実施の形態1に係る磁気センサの構成を示す回路図である。1 is a circuit diagram illustrating a configuration of a magnetic sensor according to a first embodiment. 実施の形態1に係る磁気センサのレイアウト図である。FIG. 3 is a layout diagram of the magnetic sensor according to the first embodiment. 実施の形態1に係る磁気センサの比較例に係る磁気センサのレイアウト図である。4 is a layout diagram of a magnetic sensor according to a comparative example of the magnetic sensor according to Embodiment 1. FIG. 実施の形態1の変形例1に係る磁気センサのレイアウト図である。6 is a layout diagram of a magnetic sensor according to a first modification of the first embodiment. FIG. 実施の形態1の変形例2に係る磁気センサのレイアウト図である。6 is a layout diagram of a magnetic sensor according to a second modification of the first embodiment. FIG. 実施の形態1の変形例3に係る磁気センサのレイアウト図である。6 is a layout diagram of a magnetic sensor according to a third modification of the first embodiment. FIG. 実施の形態2に係る磁気センサのレイアウト図である。6 is a layout diagram of a magnetic sensor according to Embodiment 2. FIG. 実施の形態2の変形例に係る磁気センサのレイアウト図である。6 is a layout diagram of a magnetic sensor according to a modification of the second embodiment. FIG. 実施の形態3に係る磁気センサのレイアウト図である。FIG. 6 is a layout diagram of a magnetic sensor according to a third embodiment. 実施の形態3の変形例に係る磁気センサのレイアウト図である。FIG. 10 is a layout diagram of a magnetic sensor according to a modification of the third embodiment. 実施の形態1に係る磁気センサを備える電流センサ回路の構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration of a current sensor circuit including the magnetic sensor according to the first embodiment. 図11に示される電流センサ回路が有する磁気センサの配置を説明する斜視図である。It is a perspective view explaining arrangement | positioning of the magnetic sensor which the current sensor circuit shown by FIG. 11 has.
 以下、図面を参照しつつ、実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the description of the embodiment, reference to the number, amount, and the like is not necessarily limited to the number, amount, and the like unless otherwise specified. In the drawings of the embodiments, the same reference numerals and reference numerals represent the same or corresponding parts. Further, in the description of the embodiments, the overlapping description may not be repeated for the portions with the same reference numerals and the like.
 <実施の形態1>
 図1は、実施の形態1に係る磁気センサ10の構成を示す回路図である。
<Embodiment 1>
FIG. 1 is a circuit diagram showing a configuration of a magnetic sensor 10 according to the first embodiment.
 図1を参照して、磁気センサ10は、ホイートストンブリッジ回路を構成する磁気抵抗素子R1~R4を有する。磁気抵抗素子R1および磁気抵抗素子R3の各々の一端は、電源ノードNp1と接続されている。磁気抵抗素子R1の他端は、出力ノードNo1と接続されている。磁気抵抗素子R3の他端は、出力ノードNo2と接続されている。磁気抵抗素子R2および磁気抵抗素子R4の各々の一端は、電源ノードNp2と接続されている。磁気抵抗素子R2の他端は、出力ノードNo1と接続されている。磁気抵抗素子R4の他端は、出力ノードNo2と接続されている。 Referring to FIG. 1, the magnetic sensor 10 includes magnetoresistive elements R1 to R4 constituting a Wheatstone bridge circuit. One end of each of magnetoresistive element R1 and magnetoresistive element R3 is connected to power supply node Np1. The other end of the magnetoresistive element R1 is connected to the output node No1. The other end of the magnetoresistive element R3 is connected to the output node No2. One end of each of magnetoresistive element R2 and magnetoresistive element R4 is connected to power supply node Np2. The other end of the magnetoresistive element R2 is connected to the output node No1. The other end of the magnetoresistive element R4 is connected to the output node No2.
 電源ノードNp1は、電源配線Lvccを介して電源端子VCCと接続されている。電源ノードNp2は、電源配線Lgndを介して電源端子GNDと接続されている。電源端子VCCおよび電源端子GNDは、それぞれ直流電源3の正極および負極と接続されている。なお、直流電源3に代えて定電流駆動源を用いても良い。出力ノードNo1は、信号配線Lin1を介して差動増幅回路2の正極入力と接続されている。出力ノードNo2は、信号配線Lin2を介して差動増幅回路2の負極入力と接続されている。差動増幅回路2は、出力ノードNo1と出力ノードNo2との間の電圧を増幅し、磁気センサ出力Voを生成する。 The power supply node Np1 is connected to the power supply terminal VCC via the power supply wiring Lvcc. The power supply node Np2 is connected to the power supply terminal GND through the power supply wiring Lgnd. The power supply terminal VCC and the power supply terminal GND are connected to the positive electrode and the negative electrode of the DC power supply 3, respectively. Note that a constant current drive source may be used instead of the DC power supply 3. The output node No1 is connected to the positive input of the differential amplifier circuit 2 through the signal line Lin1. The output node No2 is connected to the negative input of the differential amplifier circuit 2 through the signal line Lin2. The differential amplifier circuit 2 amplifies the voltage between the output node No1 and the output node No2, and generates a magnetic sensor output Vo.
 磁気センサ10および差動増幅回路2は、磁気センサ回路100を構成する。磁気センサ回路100において、上述の通り、ホイートストンブリッジ回路の出力ノードNo1は、信号配線Lin1を介して差動増幅回路2の正極入力と接続されている。ホイートストンブリッジ回路の出力ノードNo2は、信号配線Lin2を介して差動増幅回路2の負極入力と接続されている。その結果、ホイートストンブリッジ回路の出力ノードNo1および出力ノードNo2と、差動増幅回路2の正極入力および負極入力との間には、信号配線Lin1および信号配線Lin2により、閉ループが形成されている。 The magnetic sensor 10 and the differential amplifier circuit 2 constitute a magnetic sensor circuit 100. In the magnetic sensor circuit 100, as described above, the output node No1 of the Wheatstone bridge circuit is connected to the positive input of the differential amplifier circuit 2 via the signal wiring Lin1. The output node No2 of the Wheatstone bridge circuit is connected to the negative input of the differential amplifier circuit 2 through the signal line Lin2. As a result, a closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2.
 この閉ループを通過する磁束密度の時間変化、すなわち磁場の時間変化に伴い発生する誘導起電力は、差動増幅回路2の入力信号にノイズとして重畳し、磁気センサ10の測定精度を低下させる。閉ループの面積は、主に信号配線Lin1と信号配線Lin2との間の距離に依存する。したがって、誘導起電力を小さくするには、信号配線Lin1と信号配線Lin2との間の距離を極力短く設定することが重要となる。 The time change of the magnetic flux density passing through the closed loop, that is, the induced electromotive force generated with the time change of the magnetic field is superimposed on the input signal of the differential amplifier circuit 2 as noise, and the measurement accuracy of the magnetic sensor 10 is lowered. The area of the closed loop mainly depends on the distance between the signal wiring Lin1 and the signal wiring Lin2. Therefore, in order to reduce the induced electromotive force, it is important to set the distance between the signal wiring Lin1 and the signal wiring Lin2 as short as possible.
 図2は、実施の形態1に係る磁気センサ10のレイアウト図である。磁気センサ10は、半導体基板SUBに、図1に示される磁気抵抗素子R1~R4等が形成された構成を有する。図2(a)は、磁気センサ10の平面図である。図2(b)は、図2(a)のIIb-IIb線に沿う磁気センサ10の断面図である。図2(a)を参照して、磁気センサ10の平面図を説明する。 FIG. 2 is a layout diagram of the magnetic sensor 10 according to the first embodiment. The magnetic sensor 10 has a configuration in which the magnetoresistive elements R1 to R4 shown in FIG. 1 are formed on a semiconductor substrate SUB. FIG. 2A is a plan view of the magnetic sensor 10. FIG. 2B is a cross-sectional view of the magnetic sensor 10 taken along the line IIb-IIb in FIG. A plan view of the magnetic sensor 10 will be described with reference to FIG.
 (磁気抵抗素子およびホイートストンブリッジ回路の構成)
 磁気抵抗素子R1~R4は、一例として、磁性膜Mgと、磁性膜Mg上に形成されたバーバーポール形状の電極とを有する構造とする。磁性膜Mgには、たとえば、巨大磁気抵抗(GMR:Giant Magneto Resistance)効果を有する膜、トンネル磁気抵抗(TMR:Tunnel Magneto Resistance)効果を有する膜、または異方性磁気抵抗(AMR:Anisotropic Magneto Resistance)効果を有する膜が適用されている。バーバーポール形状の電極には、アルミニウム等の金属膜が適用されている。磁気抵抗素子R1~R4において、バーバーポール形状の電極が形成されていない磁性膜Mgの領域は、バーバーポール形状の電極によって電気的に直列接続された構成に相当する。磁気抵抗素子R1~R4の表面は、いずれも図示されていないが、保護膜、シリコーン系ポッティング材、または樹脂系ポッティング材により保護されている。
(Configuration of magnetoresistive element and Wheatstone bridge circuit)
For example, each of the magnetoresistive elements R1 to R4 has a structure having a magnetic film Mg and a barber pole-shaped electrode formed on the magnetic film Mg. Examples of the magnetic film Mg include a film having a giant magnetoresistance (GMR) effect, a film having a tunnel magnetoresistance (TMR) effect, or an anisotropic magnetoresistance (AMR). ) A film having an effect is applied. A metal film such as aluminum is applied to the barber pole-shaped electrode. In the magnetoresistive elements R1 to R4, the region of the magnetic film Mg in which the barber pole-shaped electrode is not formed corresponds to a configuration electrically connected in series by the barber pole-shaped electrode. The surfaces of the magnetoresistive elements R1 to R4 are not shown, but are protected by a protective film, a silicone potting material, or a resin potting material.
 図2(a)に示すように、紙面に平行な特定の方向をX方向とし、紙面に平行かつX方向と直交する方向をY方向とし、X方向およびY方向の各々と直交する方向をZ方向とする。半導体基板SUBの表面と平行な面をXY面とする。ここでは磁気センサ10として、各磁気抵抗素子R1~R4の短辺方向がX方向に配置され、長辺方向がY方向に配置された例を示す。この場合、磁気抵抗素子R1~R4の感磁方向はX方向であり、磁気バイアス方向はY方向に設定される。 As shown in FIG. 2A, a specific direction parallel to the paper surface is defined as the X direction, a direction parallel to the paper surface and orthogonal to the X direction is defined as the Y direction, and a direction orthogonal to each of the X direction and the Y direction is defined as Z. The direction. A plane parallel to the surface of the semiconductor substrate SUB is defined as an XY plane. Here, as the magnetic sensor 10, an example in which the short side direction of each of the magnetoresistive elements R1 to R4 is arranged in the X direction and the long side direction is arranged in the Y direction is shown. In this case, the magnetosensitive elements R1 to R4 are set in the X direction, and the magnetic bias direction is set in the Y direction.
 磁気抵抗素子R1の一端と、磁気抵抗素子R3の一端と、電源パッドPp1とは、金属配線MLを介して電源ノードNp1と接続されている。磁気抵抗素子R2の一端と、磁気抵抗素子R4の一端と、電源パッドPp2とは、金属配線MLを介して電源ノードNp2と接続されている。磁気抵抗素子R1の他端と、磁気抵抗素子R2の他端と、出力パッドPo1とは、金属配線MLを介して出力ノードNo1と接続されている。磁気抵抗素子R3の他端と、磁気抵抗素子R4の他端と、出力パッドPo2とは、金属配線MLを介して出力ノードNo2と接続されている。 One end of the magnetoresistive element R1, one end of the magnetoresistive element R3, and the power supply pad Pp1 are connected to the power supply node Np1 through the metal wiring ML. One end of the magnetoresistive element R2, one end of the magnetoresistive element R4, and the power supply pad Pp2 are connected to the power supply node Np2 through the metal wiring ML. The other end of the magnetoresistive element R1, the other end of the magnetoresistive element R2, and the output pad Po1 are connected to the output node No1 via the metal wiring ML. The other end of the magnetoresistive element R3, the other end of the magnetoresistive element R4, and the output pad Po2 are connected to the output node No2 via the metal wiring ML.
 (ブリッジ回路内部領域)
 上述の通り、電源ノードNp1と電源ノードNp2との間には、出力ノードNo1および金属配線MLを介して、磁気抵抗素子R1と磁気抵抗素子R2とが直列接続されている。さらに、電源ノードNp1と電源ノードNp2との間には、出力ノードNo2および金属配線MLを介して、磁気抵抗素子R3と磁気抵抗素子R4とが直列接続されている。以下、本明細書において、金属配線MLにより連結された磁気抵抗素子R1~R4によって囲まれた領域を「ブリッジ回路内部領域」と定義する。
(Bridge circuit internal area)
As described above, the magnetoresistive element R1 and the magnetoresistive element R2 are connected in series between the power supply node Np1 and the power supply node Np2 via the output node No1 and the metal wiring ML. Further, a magnetoresistive element R3 and a magnetoresistive element R4 are connected in series between the power supply node Np1 and the power supply node Np2 via the output node No2 and the metal wiring ML. Hereinafter, in this specification, a region surrounded by the magnetoresistive elements R1 to R4 connected by the metal wiring ML is defined as a “bridge circuit internal region”.
 (パッドと配線の配置)
 電源パッドPp1と、電源パッドPp2と、出力パッドPo1とは、ブリッジ回路内部領域の外側に配置されている。一方、出力パッドPo2は、ブリッジ回路内部領域の内側に配置されている。信号配線Lin1および信号配線Lin2は、いずれも、ホイートストンブリッジ回路に対して出力パッドPo1が配置される側であり、かつY方向に延伸するように配置されている。出力パッドPo1と信号配線Lin1の一端とは、ボンディングワイヤBWにより接続されている。出力パッドPo2と信号配線Lin2の一端とも、同様にボンディングワイヤBWにより接続されている。信号配線Lin1および信号配線Lin2の他端は、それぞれ、差動増幅回路2の正極入力および負極入力と接続されている。ボンディングワイヤBWは金属配線を構成する。
(Pad and wiring arrangement)
The power supply pad Pp1, the power supply pad Pp2, and the output pad Po1 are disposed outside the bridge circuit internal region. On the other hand, the output pad Po2 is disposed inside the bridge circuit internal region. The signal wiring Lin1 and the signal wiring Lin2 are both on the side where the output pad Po1 is disposed with respect to the Wheatstone bridge circuit, and are disposed so as to extend in the Y direction. The output pad Po1 and one end of the signal wiring Lin1 are connected by a bonding wire BW. Similarly, the output pad Po2 and one end of the signal wiring Lin2 are connected by the bonding wire BW. The other ends of the signal line Lin1 and the signal line Lin2 are connected to the positive input and the negative input of the differential amplifier circuit 2, respectively. The bonding wire BW constitutes a metal wiring.
 後述の通り、出力パッドPo1/Po2と信号配線Lin1/Lin2とを接続するボンディングワイヤBWの延伸する方向は、磁気抵抗素子R1~R4の感磁方向であるX方向であることが好ましい。また、ボンディングワイヤBWのZ方向の寸法は、小さいことが好ましい。ワイヤボンディングの方法としては、ボールボンディングまたはウェッジボンディングが適宜選択される。さらに、出力パッドPo1/Po2と信号配線Lin1/Lin2とを電気的に接続する方法は、ワイヤボンディングに限定されず、バンプボンディング、または半田もしくは導電性接着剤により金属配線を固定する方法も適用可能である。また、出力パッドPo1等のボンディングパッドの形状は、矩形に限定されず、多角形または円形でも良い。 As described later, the extending direction of the bonding wire BW connecting the output pad Po1 / Po2 and the signal wiring Lin1 / Lin2 is preferably the X direction, which is the magnetosensitive direction of the magnetoresistive elements R1 to R4. Moreover, it is preferable that the dimension of the bonding wire BW in the Z direction is small. As the wire bonding method, ball bonding or wedge bonding is appropriately selected. Further, the method of electrically connecting the output pads Po1 / Po2 and the signal wirings Lin1 / Lin2 is not limited to wire bonding, and a method of fixing metal wiring by bump bonding or solder or conductive adhesive is also applicable. It is. Further, the shape of the bonding pad such as the output pad Po1 is not limited to a rectangle, and may be a polygon or a circle.
 信号配線Lin1および信号配線Lin2は、所定の間隔D1で並行に配置されている。この間隔D1の値は極力小さくすることが好ましい。一例として、信号配線Lin1および信号配線Lin2の加工寸法の最小値が適用される。信号配線Lin1と信号配線Lin2との間に、所定の電圧が印可された状態またはフローティング状態に設定された別の配線または電極が配置される場合、それら別の配線または電極と信号配線Lin1または信号配線Lin2との距離を適宜保ちつつ、信号配線Lin1と信号配線Lin2との間の距離を短く設定することが好ましい。 The signal wiring Lin1 and the signal wiring Lin2 are arranged in parallel at a predetermined interval D1. The distance D1 is preferably as small as possible. As an example, the minimum value of the processing dimension of the signal wiring Lin1 and the signal wiring Lin2 is applied. When another wiring or electrode set in a state in which a predetermined voltage is applied or in a floating state is disposed between the signal wiring Lin1 and the signal wiring Lin2, the other wiring or electrode and the signal wiring Lin1 or signal It is preferable to set the distance between the signal line Lin1 and the signal line Lin2 short while appropriately maintaining the distance from the line Lin2.
 電源配線Lvccの一端は、ボンディングワイヤBWにより電源パッドPp1と接続されている。電源配線Lvccの他端は、電源端子VCC(図1参照)を介して直流電源3の正極と接続されている。電源配線Lgndの一端は、ボンディングワイヤBWにより電源パッドPp2と接続されている。電源配線Lgndの他端は、電源端子GND(図1参照)を介して直流電源3の負極と接続されている。 One end of the power supply wiring Lvcc is connected to the power supply pad Pp1 by a bonding wire BW. The other end of the power supply line Lvcc is connected to the positive electrode of the DC power supply 3 through a power supply terminal VCC (see FIG. 1). One end of the power supply line Lgnd is connected to the power supply pad Pp2 by a bonding wire BW. The other end of the power supply line Lgnd is connected to the negative electrode of the DC power supply 3 via a power supply terminal GND (see FIG. 1).
 図2(b)を参照して、磁気センサ10の断面図を説明する。図2(b)では、半導体基板SUBに磁気抵抗素子R1と、磁気抵抗素子R3と、信号配線Lin1と、信号配線Lin2とが形成されている様子が示されている。なお、磁気抵抗素子R1~R4等は、半導体基板SUBの表面に形成される絶縁膜(図示せず)により半導体基板SUBから絶縁されている。絶縁膜は、たとえば二酸化珪素(SiO)からなる。 With reference to FIG.2 (b), sectional drawing of the magnetic sensor 10 is demonstrated. FIG. 2B shows a state in which the magnetoresistive element R1, the magnetoresistive element R3, the signal wiring Lin1, and the signal wiring Lin2 are formed on the semiconductor substrate SUB. The magnetoresistive elements R1 to R4 and the like are insulated from the semiconductor substrate SUB by an insulating film (not shown) formed on the surface of the semiconductor substrate SUB. The insulating film is made of, for example, silicon dioxide (SiO 2 ).
 図2(b)では、磁気抵抗素子R1および磁気抵抗素子R3を含む磁性膜Mg上に、バーバーポール形状の電極が形成されている様子が簡略化されて示されている。磁気抵抗素子R1の図中左側、すなわち出力パッドPo1が配置される側に、信号配線Lin1および信号配線Lin2が配置されている。信号配線Lin1と信号配線Lin2との間隔D1は、配線加工寸法の最小値に設定することが好ましい。 In FIG. 2B, a state in which a barber pole-shaped electrode is formed on the magnetic film Mg including the magnetoresistive element R1 and the magnetoresistive element R3 is shown in a simplified manner. The signal wiring Lin1 and the signal wiring Lin2 are arranged on the left side of the magnetoresistive element R1 in the drawing, that is, on the side where the output pad Po1 is arranged. The distance D1 between the signal wiring Lin1 and the signal wiring Lin2 is preferably set to the minimum value of wiring processing dimensions.
 図2(a)のIIb-IIb線に沿う断面図である図2(b)ではボンディングワイヤBWは図示されていないが、以下にボンディングワイヤBWの形状を説明する。ブリッジ回路内部領域の内側において、出力パッドPo2は、磁気抵抗素子R1と磁気抵抗素子R3との間に配置されている。出力パッドPo2と信号配線Lin2とは、磁気抵抗素子R1を超える高さのループ高(Z方向の寸法)を有するボンディングワイヤBWにより互いに接続されている。ブリッジ回路内部領域の外側に配置された出力パッドPo1と信号配線Lin1とも同様に、ボンディングワイヤBWにより互いに接続されている。 In FIG. 2B, which is a cross-sectional view taken along line IIb-IIb in FIG. 2A, the bonding wire BW is not shown, but the shape of the bonding wire BW will be described below. Inside the bridge circuit internal region, the output pad Po2 is disposed between the magnetoresistive element R1 and the magnetoresistive element R3. The output pad Po2 and the signal wiring Lin2 are connected to each other by a bonding wire BW having a loop height (dimension in the Z direction) that exceeds the magnetoresistive element R1. Similarly, the output pad Po1 and the signal line Lin1 arranged outside the bridge circuit internal region are connected to each other by the bonding wire BW.
 (閉ループの誘導起電力の抑制効果)
 磁気センサ10における閉ループの誘導起電力の抑制効果について説明する。
(Suppression effect of closed-loop induced electromotive force)
The effect of suppressing the closed-loop induced electromotive force in the magnetic sensor 10 will be described.
 上述の通り、ホイートストンブリッジ回路の出力ノードNo1および出力ノードNo2と、差動増幅回路2の正極入力および負極入力との間には、信号配線Lin1および信号配線Lin2による閉ループが形成される。この閉ループに発生する誘導起電力は、主に、信号配線Lin1および信号配線Lin2の間隔D1と対向長とにより決定される面積、信号配線Lin1と出力パッドPo1とを接続するボンディングワイヤBWのループ面積、ならびに信号配線Lin2と出力パッドPo2とを接続するボンディングワイヤBWのループ面積に依存する。 As described above, a closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2. The induced electromotive force generated in the closed loop is mainly determined by the area D1 between the signal wiring Lin1 and the signal wiring Lin2 and the opposing length, and the loop area of the bonding wire BW that connects the signal wiring Lin1 and the output pad Po1. And the loop area of the bonding wire BW connecting the signal line Lin2 and the output pad Po2.
 実施の形態1に係る磁気センサ10において、出力パッドPo2は、ブリッジ回路内部領域の内側に配置され、出力パッドPo1は、ブリッジ回路内部領域の図2(a)にて左外側に配置されている。信号配線Lin1および信号配線Lin2は、ホイートストンブリッジ回路に対して出力パッドPo1が配置される側において、互いに隣接して配置されるため、信号配線Lin1と信号配線Lin2との間を通過するZ方向の磁場に起因するノイズが低減される。 In the magnetic sensor 10 according to the first embodiment, the output pad Po2 is disposed inside the bridge circuit internal region, and the output pad Po1 is disposed on the left outer side in FIG. 2A of the bridge circuit internal region. . Since the signal wiring Lin1 and the signal wiring Lin2 are disposed adjacent to each other on the side where the output pad Po1 is disposed with respect to the Wheatstone bridge circuit, the signal wiring Lin1 and the signal wiring Lin2 are arranged in the Z direction passing between the signal wiring Lin1 and the signal wiring Lin2. Noise due to the magnetic field is reduced.
 信号配線Lin1と出力パッドPo1とを接続するボンディングワイヤBWの方向と、信号配線Lin2と出力パッドPo2とを接続するボンディングワイヤBWの方向とは、磁気抵抗素子R1~R4の感磁方向であるX方向とほぼ同一方向に設定される。したがって、X方向の磁場に起因してボンディングワイヤBWに発生するノイズも低減される。 The direction of the bonding wire BW that connects the signal line Lin1 and the output pad Po1 and the direction of the bonding wire BW that connects the signal line Lin2 and the output pad Po2 are the magnetosensitive directions of the magnetoresistive elements R1 to R4. The direction is set almost the same as the direction. Therefore, noise generated in the bonding wire BW due to the magnetic field in the X direction is also reduced.
 出力パッドPo2は、ブリッジ回路内部領域の内側に配置されるため、ブリッジ回路内部領域の外側(右側)に配置される場合と比べて、出力パッドPo2および信号配線Lin2を接続するボンディングワイヤBWのループ高を低くすることができる。その結果、Y方向の磁場に起因してボンディングワイヤBWに発生するノイズも低減される。 Since the output pad Po2 is arranged inside the bridge circuit internal region, the loop of the bonding wire BW that connects the output pad Po2 and the signal wiring Lin2 as compared with the case where the output pad Po2 is arranged outside (right side) the bridge circuit internal region. The height can be lowered. As a result, noise generated in the bonding wire BW due to the magnetic field in the Y direction is also reduced.
 以上の通り、ホイートストンブリッジ回路の出力端子と差動増幅回路の入力端子との間を接続する1対の信号配線により閉ループが形成される。この閉ループに発生する誘導起電力は、信号配線Lin1と信号配線Lin2との間隔、ボンディングワイヤBWのループ方向またはループ高を適切に設定することで抑制可能である。閉ループに発生する誘導起電力を抑制することで、差動増幅回路2の入力信号に重畳するノイズが低減され、磁気センサ10の検出精度が向上する。 As described above, a closed loop is formed by a pair of signal wirings connecting the output terminal of the Wheatstone bridge circuit and the input terminal of the differential amplifier circuit. The induced electromotive force generated in the closed loop can be suppressed by appropriately setting the interval between the signal wiring Lin1 and the signal wiring Lin2, the loop direction or the loop height of the bonding wire BW. By suppressing the induced electromotive force generated in the closed loop, noise superimposed on the input signal of the differential amplifier circuit 2 is reduced, and the detection accuracy of the magnetic sensor 10 is improved.
 図3は、実施の形態1に係る磁気センサ10の比較例に係る磁気センサ10Rのレイアウト図である。 FIG. 3 is a layout diagram of a magnetic sensor 10R according to a comparative example of the magnetic sensor 10 according to the first embodiment.
 図3において、図2と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図3の磁気センサ10Rは、図2の磁気センサ10において、出力パッドPo2がブリッジ回路内部領域の図中右外側に配置されるとともに、信号配線Lin2も出力パッドPo2側に配置されたものに相当する。 In FIG. 3, those denoted by the same reference numerals as those in FIG. 2 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 10R in FIG. 3 corresponds to the magnetic sensor 10 in FIG. 2 in which the output pad Po2 is arranged on the right outer side in the drawing of the internal area of the bridge circuit, and the signal wiring Lin2 is also arranged on the output pad Po2 side. To do.
 磁気センサ10Rにおいて、出力パッドPo2および信号配線Lin2は、磁気抵抗素子R1~R4を挟んで、出力パッドPo1および信号配線Lin1と対向する位置に配置される。その結果、信号配線Lin1と信号配線Lin2との間隔D1Rは、磁気センサ10における対応する間隔D1と比べて、少なくとも磁気抵抗素子R1~R4の配置領域に相当する距離だけ増加する。したがって、Z方向の磁場に起因して発生する誘導起電力、すなわちノイズは、磁気センサ10の場合と比べて大幅に増加するので、磁気センサ10Rの検出精度を大幅に低下させる。 In the magnetic sensor 10R, the output pad Po2 and the signal wiring Lin2 are arranged at positions facing the output pad Po1 and the signal wiring Lin1 across the magnetoresistive elements R1 to R4. As a result, the distance D1R between the signal wiring Lin1 and the signal wiring Lin2 is increased by at least a distance corresponding to the arrangement region of the magnetoresistive elements R1 to R4, compared to the corresponding distance D1 in the magnetic sensor 10. Therefore, the induced electromotive force generated due to the magnetic field in the Z direction, that is, the noise is greatly increased as compared with the case of the magnetic sensor 10, so that the detection accuracy of the magnetic sensor 10R is greatly reduced.
 <実施の形態1の変形例1>
 図4は、実施の形態1の変形例1に係る磁気センサ11のレイアウト図である。
<Modification 1 of Embodiment 1>
FIG. 4 is a layout diagram of the magnetic sensor 11 according to the first modification of the first embodiment.
 図4(a)は、磁気センサ11の平面図である。図4(b)は、図4(a)のIVb-IVb線に沿う磁気センサ11の断面図である。 FIG. 4A is a plan view of the magnetic sensor 11. FIG. 4B is a cross-sectional view of the magnetic sensor 11 taken along line IVb-IVb in FIG.
 図4において、図2と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図4の磁気センサ11は、図2の磁気センサ10において、磁気抵抗素子R1~R4と、電源パッドPp1と、電源パッドPp2と、出力パッドPo1と、出力パッドPo2とが半導体基板SUBに配置される一方で、信号配線Lin1と、信号配線Lin2と、電源配線Lvccと、電源配線Lgndとは、配線基板PCBに配置されたものに相当する。配線基板PCBは、たとえばガラスエポキシ基板である。 In FIG. 4, components having the same reference numerals as those in FIG. 2 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 11 shown in FIG. 4 includes the magnetoresistive elements R1 to R4, the power supply pads Pp1, the power supply pads Pp2, the output pads Po1, and the output pads Po2 in the magnetic sensor 10 shown in FIG. On the other hand, the signal wiring Lin1, the signal wiring Lin2, the power supply wiring Lvcc, and the power supply wiring Lgnd correspond to those arranged on the wiring board PCB. The wiring board PCB is, for example, a glass epoxy board.
 図4(a)に示される通り、磁気抵抗素子R1~R4で構成されるホイートストンブリッジ回路が形成された半導体基板SUBは、配線基板PCBに搭載される。半導体基板SUBに配置された出力パッドPo1および出力パッドPo2は、それぞれ、信号配線Lin1および信号配線Lin2とボンディングワイヤBWにより接続される。同様に、半導体基板SUBに配置された電源パッドPp1および電源パッドPp2も、それぞれ、電源配線Lvccおよび電源配線LgndとボンディングワイヤBWにより接続される。計4本のボンディングワイヤBWの延伸方向は、磁気抵抗素子R1~R4の感磁方向であるX方向に揃えることが好ましい。 As shown in FIG. 4A, the semiconductor substrate SUB on which the Wheatstone bridge circuit composed of the magnetoresistive elements R1 to R4 is formed is mounted on the wiring board PCB. The output pad Po1 and the output pad Po2 arranged on the semiconductor substrate SUB are connected to the signal wiring Lin1 and the signal wiring Lin2 by the bonding wire BW, respectively. Similarly, the power supply pad Pp1 and the power supply pad Pp2 arranged on the semiconductor substrate SUB are also connected to the power supply line Lvcc and the power supply line Lgnd by bonding wires BW, respectively. The stretching direction of the total four bonding wires BW is preferably aligned with the X direction, which is the magnetosensitive direction of the magnetoresistive elements R1 to R4.
 図4(b)から理解される通り、半導体基板SUBに配置された出力パッドPo1と、配線基板PCBに配置された信号配線Lin1とを接続するボンディングワイヤBWのループ長およびループ高は、実施の形態1に係る磁気センサ10の場合と比べて増加する。しかしながら、差動増幅回路2が形成された半導体基板SUB(図示せず)と、磁気抵抗素子R1~R4で構成されるホイートストンブリッジ回路が配置された半導体基板SUBとが同一の配線基板PCBに搭載されることで、磁気センサ回路100の小型化が実現される。さらに、差動増幅回路2が配置された半導体基板SUBと、ホイートストンブリッジ回路が形成された半導体基板SUBとが配線基板PCB上で隣接して搭載されることで、信号配線Lin1および信号配線Lin2の配線長がより短くなるので、Z方向の磁場に起因するノイズが低減される。 As understood from FIG. 4B, the loop length and the loop height of the bonding wire BW connecting the output pad Po1 disposed on the semiconductor substrate SUB and the signal wiring Lin1 disposed on the wiring substrate PCB are as follows. It increases compared to the case of the magnetic sensor 10 according to the first embodiment. However, the semiconductor substrate SUB (not shown) on which the differential amplifier circuit 2 is formed and the semiconductor substrate SUB on which the Wheatstone bridge circuit composed of the magnetoresistive elements R1 to R4 is mounted are mounted on the same wiring board PCB. As a result, the magnetic sensor circuit 100 can be reduced in size. Furthermore, the semiconductor substrate SUB on which the differential amplifier circuit 2 is disposed and the semiconductor substrate SUB on which the Wheatstone bridge circuit is formed are mounted adjacently on the wiring substrate PCB, so that the signal wiring Lin1 and the signal wiring Lin2 Since the wiring length becomes shorter, noise caused by the magnetic field in the Z direction is reduced.
 <実施の形態1の変形例2>
 図5は、実施の形態1の変形例2に係る磁気センサ12のレイアウト図である。
<Modification 2 of Embodiment 1>
FIG. 5 is a layout diagram of the magnetic sensor 12 according to the second modification of the first embodiment.
 図5において、図2と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図5の磁気センサ12は、図2の磁気センサ10において、電源配線Lvccと電源配線Lgndとの間隔が、信号配線Lin1と信号配線Lin2との間隔D1と同じくなるように設定した構成に相当する。 In FIG. 5, those given the same reference numerals as those in FIG. 2 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 12 of FIG. 5 corresponds to a configuration in which the interval between the power supply line Lvcc and the power supply line Lgnd is set to be the same as the interval D1 between the signal line Lin1 and the signal line Lin2 in the magnetic sensor 10 of FIG. .
 図5に示される通り、電源配線Lvccは、電源配線Lgndと同様に、Y方向に延在するように形成される。電源配線Lvccの一端は、ボンディングワイヤBWにより電源パッドPp1と接続されている。電源配線Lgndの一端は、ボンディングワイヤBWにより電源パッドPp2と接続されている。電源配線Lvccの他端は、Y方向に延在する電源配線Lgndの他端と、間隔D1を保つように配置されている。電源配線Lvccの他端は、電源端子VCC(図1参照)を介して直流電源3の正極と接続されている。電源配線Lgndの他端は、電源端子GND(図2参照)を介して直流電源3の負極と接続されている。 As shown in FIG. 5, the power supply wiring Lvcc is formed to extend in the Y direction, like the power supply wiring Lgnd. One end of the power supply line Lvcc is connected to the power supply pad Pp1 by a bonding wire BW. One end of the power supply line Lgnd is connected to the power supply pad Pp2 by a bonding wire BW. The other end of the power supply line Lvcc is arranged so as to maintain a distance D1 from the other end of the power supply line Lgnd extending in the Y direction. The other end of the power supply line Lvcc is connected to the positive electrode of the DC power supply 3 through a power supply terminal VCC (see FIG. 1). The other end of the power supply line Lgnd is connected to the negative electrode of the DC power supply 3 via a power supply terminal GND (see FIG. 2).
 ホイートストンブリッジ回路の出力ノードNo1および出力ノードNo2と、差動増幅回路2の正極入力および負極入力との間には、信号配線Lin1および信号配線Lin2による閉ループが形成される。Z方向の磁場に起因して閉ループに発生する誘導起電力は、差動増幅回路2の入力信号にノイズとして重畳するとともに、ホイートストンブリッジ回路の電源電圧にノイズとして重畳する。ホイートストンブリッジ回路の電源電圧ノイズは、ホイートストンブリッジ回路の出力電圧にノイズとして現れ、磁気センサ12の測定精度に悪影響を与える。 A closed loop is formed by the signal wiring Lin1 and the signal wiring Lin2 between the output node No1 and the output node No2 of the Wheatstone bridge circuit and the positive input and the negative input of the differential amplifier circuit 2. The induced electromotive force generated in the closed loop due to the magnetic field in the Z direction is superimposed as noise on the input signal of the differential amplifier circuit 2 and also superimposed on the power supply voltage of the Wheatstone bridge circuit as noise. The power supply voltage noise of the Wheatstone bridge circuit appears as noise in the output voltage of the Wheatstone bridge circuit and adversely affects the measurement accuracy of the magnetic sensor 12.
 電源配線Lvccと電源配線Lgndとの間隔を、信号配線Lin1と信号配線Lin2との間隔D1と同程度に設定することで、磁気センサ12の更なる高精度化が実現される。なお、電源パッドPp1および電源配線Lvccを接続するボンディングワイヤBWの方向と、電源パッドPp2および電源配線Lgndを接続するボンディングワイヤBWの方向とは、いずれも、磁気抵抗素子R1~R4の感磁方向であるX方向に設定することが好ましい。 By setting the interval between the power supply line Lvcc and the power supply line Lgnd to be approximately the same as the interval D1 between the signal line Lin1 and the signal line Lin2, the magnetic sensor 12 can be further improved in accuracy. The direction of the bonding wire BW connecting the power supply pad Pp1 and the power supply wiring Lvcc and the direction of the bonding wire BW connecting the power supply pad Pp2 and the power supply wiring Lgnd are both in the magnetosensitive direction of the magnetoresistive elements R1 to R4. It is preferable to set in the X direction.
 図5において、電源配線Lvccおよび電源配線Lgndの延伸方向(負のY方向)と信号配線Lin1および信号配線Lin2の延伸方向(正のY方向)とは、互いに反対方向に延びているが、各配線は、これらの方向が同一方向となるように配置されても良い。また、電源配線Lvccと電源配線Lgndとの間に他の配線が配置されている場合であっても、電源配線Lvccまたは電源配線Lgndと他の配線との距離を適宜保ちつつ、電源配線Lvccと電源配線Lgndとの距離を短く設定することで、同様の効果が得られる。 In FIG. 5, the extending direction (negative Y direction) of the power supply wiring Lvcc and the power supply wiring Lgnd and the extending direction (positive Y direction) of the signal wiring Lin1 and the signal wiring Lin2 extend in directions opposite to each other. The wiring may be arranged such that these directions are the same. In addition, even when another wiring is arranged between the power supply wiring Lvcc and the power supply wiring Lgnd, the power supply wiring Lvcc or the power supply wiring Lgcc and the power supply wiring Lvcc can be appropriately maintained while keeping the distance between the power supply wiring Lvcc and the other wiring. A similar effect can be obtained by setting the distance from the power supply line Lgnd to be short.
 <実施の形態1の変形例3>
 図6は、実施の形態1の変形例3に係る磁気センサ13のレイアウト図である。図6(a)は、磁気センサ13の平面図である。図6(b)は、図6(a)のVIIb-VIIb線に沿う磁気センサ13の断面図である。
<Modification 3 of Embodiment 1>
FIG. 6 is a layout diagram of the magnetic sensor 13 according to the third modification of the first embodiment. FIG. 6A is a plan view of the magnetic sensor 13. FIG. 6B is a cross-sectional view of the magnetic sensor 13 taken along the line VIIb-VIIb in FIG.
 図6において、図4と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図6の磁気センサ13は、図4の磁気センサ11において、磁気抵抗素子R1~R4と、電源パッドPp1と、電源パッドPp2と、出力パッドPo1と、出力パッドPo2とが配置された半導体基板SUBが、配線基板PCBに代えてDIP(Dual Inline Package)型パッケージに搭載される構成に相当する。 In FIG. 6, those denoted by the same reference numerals as those in FIG. 4 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 13 of FIG. 6 is the same as the magnetic sensor 11 of FIG. 4 except that the semiconductor substrate SUB includes the magnetoresistive elements R1 to R4, the power supply pad Pp1, the power supply pad Pp2, the output pad Po1, and the output pad Po2. However, this corresponds to a configuration mounted in a DIP (Dual Inline Package) type package instead of the wiring board PCB.
 図6(a)に示される通り、半導体基板SUBは、リードフレームLFのアイランドに搭載される。各々が半導体基板SUBに配置された電源パッドPp1と、電源パッドPp2と、出力パッドPo1と、出力パッドPo2とは、ボンディングワイヤBWにより、リードフレームLFの複数のリード電極のうちの対応するリード電極と接続されている。半導体基板SUB上の各パッド(電源パッドPp1、電源パッドPp2、出力パッドPo1、および出力パッドPo2)は、樹脂MLDにより封止されている。上記各パッドは、対応するリード電極を介して、各々が配線基板PCBに配置された電源配線Lvccと、電源配線Lgndと、信号配線Lin1と、信号配線Lin2とのうちの対応する配線に接続されている。 As shown in FIG. 6A, the semiconductor substrate SUB is mounted on the island of the lead frame LF. The power supply pad Pp1, the power supply pad Pp2, the output pad Po1, and the output pad Po2, each of which is disposed on the semiconductor substrate SUB, correspond to the corresponding lead electrodes among the plurality of lead electrodes of the lead frame LF by the bonding wires BW. Connected with. Each pad (power supply pad Pp1, power supply pad Pp2, output pad Po1, and output pad Po2) on the semiconductor substrate SUB is sealed with resin MLD. Each of the pads is connected to a corresponding one of the power supply wiring Lvcc, the power supply wiring Lgnd, the signal wiring Lin1, and the signal wiring Lin2 arranged on the wiring board PCB via the corresponding lead electrode. ing.
 磁気抵抗素子R1~R4が配置された半導体基板SUBを一般的なパッケージに搭載した場合であっても、そのパッケージが搭載される配線基板PCBの配線パターンを極力隣接させて形成することで、誘導起電力に起因するノイズの影響が抑制される。 Even when the semiconductor substrate SUB on which the magnetoresistive elements R1 to R4 are arranged is mounted on a general package, the wiring pattern of the wiring substrate PCB on which the package is mounted is formed as close as possible to induce The influence of noise caused by the electromotive force is suppressed.
 <実施の形態2>
 図7は、実施の形態2に係る磁気センサ20のレイアウト図である。
<Embodiment 2>
FIG. 7 is a layout diagram of the magnetic sensor 20 according to the second embodiment.
 図7において、図2と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図7の磁気センサ20は、ブリッジ回路内部領域に、出力パッドPo1および出力パッドPo2のいずれか一方が配置されるのに代えて、電源パッドPp1および電源パッドPp2のいずれか一方が配置された構成に相当する。具体的には、電源パッドPp2がブリッジ回路内部領域の内側に配置され、電源パッドPp1、出力パッドPo1、および出力パッドPo2がブリッジ回路内部領域の外側に配置される。 In FIG. 7, those denoted by the same reference numerals as those in FIG. 2 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 20 of FIG. 7 has a configuration in which one of the power pad Pp1 and the power pad Pp2 is disposed in the bridge circuit internal region instead of one of the output pad Po1 and the output pad Po2. It corresponds to. Specifically, the power supply pad Pp2 is disposed inside the bridge circuit internal region, and the power supply pad Pp1, the output pad Po1, and the output pad Po2 are disposed outside the bridge circuit internal region.
 信号配線Lin1の一端と出力パッドPo1とは、ボンディングワイヤBWにより互いに接続されている。信号配線Lin2の一端と出力パッドPo2とも同様に、ボンディングワイヤBWにより互いに接続されている。信号配線Lin1と信号配線Lin2とは、所定の間隔D1で対向して配置されている。電源配線Lvccの一端と電源パッドPp1とは、ボンディングワイヤBWにより互いに接続されている。電源配線Lgndの一端と電源パッドPp2とも同様に、ボンディングワイヤBWにより互いに接続されている。電源配線Lvccと電源配線Lgndとは、所定の間隔D1で対向して配置されている。間隔D1は、信号配線Lin1および信号配線Lin2の加工寸法の最小値に設定することが好ましい。 One end of the signal wiring Lin1 and the output pad Po1 are connected to each other by a bonding wire BW. Similarly, one end of the signal line Lin2 and the output pad Po2 are connected to each other by a bonding wire BW. The signal wiring Lin1 and the signal wiring Lin2 are arranged to face each other at a predetermined interval D1. One end of the power supply line Lvcc and the power supply pad Pp1 are connected to each other by a bonding wire BW. Similarly, one end of the power supply line Lgnd and the power supply pad Pp2 are connected to each other by a bonding wire BW. The power supply wiring Lvcc and the power supply wiring Lgnd are arranged to face each other with a predetermined distance D1. The interval D1 is preferably set to the minimum value of the processing dimensions of the signal wiring Lin1 and the signal wiring Lin2.
 信号配線Lin1と信号配線Lin2とを間隔D1で対向配置させることで、Z方向の磁場に起因する誘導起電力は最小限に抑えられるので、ホイートストンブリッジ回路の電源電圧に重畳するノイズによる磁気センサ20の測定精度劣化が抑制される。 The induced electromotive force caused by the magnetic field in the Z direction can be minimized by arranging the signal wiring Lin1 and the signal wiring Lin2 so as to face each other at the interval D1, and therefore the magnetic sensor 20 due to noise superimposed on the power supply voltage of the Wheatstone bridge circuit. Measurement accuracy degradation is suppressed.
 <実施の形態2の変形例>
 図8は、実施の形態2の変形例に係る磁気センサ21のレイアウト図である。
<Modification of Embodiment 2>
FIG. 8 is a layout diagram of a magnetic sensor 21 according to a modification of the second embodiment.
 図8(a)は、磁気センサ21の平面図である。図8(b)は、図8(a)のVIIIb-VIIIb線に沿う磁気センサ21の断面図である。 FIG. 8A is a plan view of the magnetic sensor 21. FIG. 8B is a cross-sectional view of the magnetic sensor 21 taken along line VIIIb-VIIIb of FIG.
 図8において、図4と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図8の磁気センサ21は、図4の磁気センサ11において、互いに対向して配置された直線形状の信号配線Lin1および信号配線Lin2を、互いに上下に交差する配線に置き換えた構成に相当する。 In FIG. 8, those denoted by the same reference numerals as those in FIG. 4 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 21 in FIG. 8 corresponds to a configuration in which the linear signal wiring Lin1 and the signal wiring Lin2 arranged opposite to each other in the magnetic sensor 11 in FIG. 4 are replaced with wirings that vertically cross each other.
 図8(a)を参照して、磁気センサ21の平面図を説明する。磁気センサ21は、配線基板PCBの一方の面に搭載された半導体基板SUBと、各々が配線基板PCBの両面(第1および第2の面)に形成された信号配線Lin1および信号配線Lin2と、各々が配線基板PCBの一方の面に配置された電源配線Lvccおよび電源配線Lgndとを備える。半導体基板SUBには、ホイートストンブリッジ回路を構成する磁気抵抗素子R1~R4と、出力パッドPo1および出力パッドPo2と、電源パッドPp1および電源パッドpp2とが配置されている。ブリッジ回路内部領域の内側には、出力パッドPo2が配置され、ブリッジ回路内部領域の外側には、出力パッドPo1が配置されている。 A plan view of the magnetic sensor 21 will be described with reference to FIG. The magnetic sensor 21 includes a semiconductor substrate SUB mounted on one surface of the wiring board PCB, a signal wiring Lin1 and a signal wiring Lin2 each formed on both surfaces (first and second surfaces) of the wiring board PCB, Each includes a power supply line Lvcc and a power supply line Lgnd arranged on one surface of the wiring board PCB. On the semiconductor substrate SUB, magnetoresistive elements R1 to R4 constituting a Wheatstone bridge circuit, an output pad Po1 and an output pad Po2, and a power supply pad Pp1 and a power supply pad pp2 are arranged. An output pad Po2 is disposed inside the bridge circuit internal region, and an output pad Po1 is disposed outside the bridge circuit internal region.
 信号配線Lin1および信号配線Lin2は、互いに上下に交差するように、配線基板PCBの第1の面(正のZ方向の面)および第2の面(負のZ方向の面)に形成されている。第1の面と第2の面とは対向している。信号配線Lin1の第1部分L11は、配線基板PCBの第1の面に形成されるとともに、出力パッドPo1とボンディングワイヤBWにより接続されている。同様に、信号配線Lin2の第1部分L21は、配線基板PCBの第1の面に形成されるとともに、出力パッドPo2とボンディングワイヤBWにより接続されている。両ボンディングワイヤBWの方向は、磁気抵抗素子R1~R4の感磁方向であるX方向に設定することが好ましい。 The signal wiring Lin1 and the signal wiring Lin2 are formed on the first surface (the surface in the positive Z direction) and the second surface (the surface in the negative Z direction) of the wiring board PCB so as to cross each other vertically. Yes. The first surface and the second surface are opposed to each other. The first portion L11 of the signal wiring Lin1 is formed on the first surface of the wiring board PCB, and is connected to the output pad Po1 by the bonding wire BW. Similarly, the first portion L21 of the signal wiring Lin2 is formed on the first surface of the wiring board PCB and is connected to the output pad Po2 by the bonding wire BW. The direction of both the bonding wires BW is preferably set in the X direction, which is the magnetic sensitive direction of the magnetoresistive elements R1 to R4.
 ボンディングワイヤBWを介して出力パッドPo1と接続された信号配線Lin1の第1部分L11は、配線基板PCBに形成されたビアVIAを介して、配線基板PCBの第2の面に形成された信号配線Lin1の第2部分L12の一端と接続されている。信号配線Lin1の第1部分L11は、Y軸方向に配置された矩形パターンであり、信号配線Lin1の第2部分L12は、Y軸方向に対して、たとえば右へ45度傾けた矩形パターンである。 The first portion L11 of the signal wiring Lin1 connected to the output pad Po1 via the bonding wire BW is formed on the second surface of the wiring board PCB via the via VIA formed on the wiring board PCB. It is connected to one end of the second portion L12 of Lin1. The first portion L11 of the signal wiring Lin1 is a rectangular pattern arranged in the Y-axis direction, and the second portion L12 of the signal wiring Lin1 is a rectangular pattern inclined 45 degrees to the right, for example, with respect to the Y-axis direction. .
 ボンディングワイヤBWを介して出力パッドPo2と接続された信号配線Lin2の第1部分L21は、ビアVIAを介して、配線基板PCBの第2の面に形成された信号配線Lin2の第2部分L22の一端と接続されている。信号配線Lin2の第2部分L22は、Y軸方向に対して右へ45度傾けた矩形パターンであり、信号配線Lin2の第1部分L21は、Y軸方向に対して左へ45度傾けた矩形パターンである。したがって、配線基板PCBの第2の面に形成された信号配線Lin2の第2部分L22は、配線基板PCBの第1の面に形成された信号配線Lin2の第1部分L21と、平面視で互いに垂直に交差するように配置される。 The first portion L21 of the signal wiring Lin2 connected to the output pad Po2 via the bonding wire BW is connected to the second portion L22 of the signal wiring Lin2 formed on the second surface of the wiring board PCB via the via VIA. Connected to one end. The second portion L22 of the signal wiring Lin2 is a rectangular pattern inclined 45 degrees to the right with respect to the Y-axis direction, and the first portion L21 of the signal wiring Lin2 is a rectangle inclined 45 degrees to the left with respect to the Y-axis direction. It is a pattern. Therefore, the second portion L22 of the signal wiring Lin2 formed on the second surface of the wiring board PCB and the first portion L21 of the signal wiring Lin2 formed on the first surface of the wiring board PCB are mutually in plan view. Arranged to intersect vertically.
 以下、同様に、信号配線Lin1および信号配線Lin2は、配線基板PCBの第1の面および第2の面に交互に、平面視で互いに交差するように形成されている。信号配線Lin1の他端および信号配線Lin2の他端は、電源配線Lvccおよび電源配線Lgndが配置される面(第1の面)に形成されている。 Hereinafter, similarly, the signal wiring Lin1 and the signal wiring Lin2 are alternately formed on the first surface and the second surface of the wiring board PCB so as to intersect each other in plan view. The other end of the signal wiring Lin1 and the other end of the signal wiring Lin2 are formed on a surface (first surface) on which the power supply wiring Lvcc and the power supply wiring Lgnd are arranged.
 図8(b)は、図8(a)のVIIIb-VIIIb線に沿う磁気センサ21の断面図である。図8(b)を参照して、上述の通り、配線基板PCBの第1の面に、ホイートストンブリッジ回路を構成する磁気抵抗素子R1~R4と、出力パッドPo1および出力パッドPo2と、電源パッドPp1および電源パッドPp2とが配置された半導体基板SUBが搭載されるとともに、信号配線Lin1および信号配線Lin2の一部が形成された様子が示されている。なお、電源配線Lvccおよび電源配線Lgndは、配線基板PCBの第1の面に配置されている。配線基板PCBの第2の面には、ビアVIAを介して、信号配線Lin1および信号配線Lin2の一部が形成されている。 FIG. 8B is a cross-sectional view of the magnetic sensor 21 taken along line VIIIb-VIIIb in FIG. With reference to FIG. 8B, as described above, the magnetoresistive elements R1 to R4 constituting the Wheatstone bridge circuit, the output pad Po1, the output pad Po2, and the power supply pad Pp1 are formed on the first surface of the wiring board PCB. In addition, the semiconductor substrate SUB on which the power supply pad Pp2 is disposed is mounted, and the signal wiring Lin1 and a part of the signal wiring Lin2 are formed. The power supply wiring Lvcc and the power supply wiring Lgnd are disposed on the first surface of the wiring board PCB. On the second surface of the wiring board PCB, the signal wiring Lin1 and a part of the signal wiring Lin2 are formed via the via VIA.
 (効果)
 磁気センサ21の効果を説明する。
(effect)
The effect of the magnetic sensor 21 will be described.
 磁気センサ21は、信号配線Lin1および信号配線Lin2を有する。信号配線Lin1および信号配線Lin2は、配線基板PCBの第1の面および第2の面に交互に形成されるとともに、平面視で交差するように配置されている。信号配線Lin1および信号配線Lin2がツイスト構造を有することで、磁場に起因してこれらの信号配線に発生する誘導起電力が相殺されるので、磁気センサ21の検出精度を向上させることが可能となる。 The magnetic sensor 21 has a signal wiring Lin1 and a signal wiring Lin2. The signal wiring Lin1 and the signal wiring Lin2 are alternately formed on the first surface and the second surface of the wiring board PCB, and are arranged so as to intersect in plan view. Since the signal wiring Lin1 and the signal wiring Lin2 have a twist structure, the induced electromotive force generated in these signal wirings due to the magnetic field is canceled out, so that the detection accuracy of the magnetic sensor 21 can be improved. .
 なお、上述の説明では、磁気センサ21は、対向する2つの面の両方に形成されたパターンを有する配線基板PCB上にツイスト構造を有する信号配線対が形成されたものであるが、対向する2つの面の一方のみに形成されたパターンを有する配線基板において、同様のツイスト構造を有する配線対が形成されたものであってもよい。たとえば、対向する2つの面の両方に形成された配線がビアで接続されるのに代えて、対向する2つの面の一方のみに形成された配線がボンディングワイヤにより交互に接続されることで、ツイスト構造を実現することも可能である。さらに、ボンディングワイヤに代えて、半田を用いて配線が交差するように接続されたり、ツイストされた金属リード線が配線基板に搭載されたりしても良い。 In the above description, the magnetic sensor 21 is such that a signal wiring pair having a twist structure is formed on a wiring board PCB having a pattern formed on both of two opposing surfaces. A wiring board having a pattern formed on only one of the two surfaces may have a wiring pair having a similar twist structure. For example, instead of connecting the wirings formed on both of the two opposing surfaces with vias, the wirings formed on only one of the two opposing surfaces are alternately connected by bonding wires, It is also possible to realize a twist structure. Further, instead of the bonding wire, the wiring may be connected so as to intersect with each other using solder, or a twisted metal lead wire may be mounted on the wiring board.
 <実施の形態3>
 図9は、実施の形態3に係る磁気センサ30のレイアウト図である。
<Embodiment 3>
FIG. 9 is a layout diagram of the magnetic sensor 30 according to the third embodiment.
 図9において、図2と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図9の磁気センサ30は、図2の磁気センサ10において、磁気抵抗素子R1~R4が、それぞれ、3個の磁気抵抗素子Rがメアンダ状に接続されてなる構成に対応する。磁気抵抗素子Rの構成は、図2の磁気センサ10の磁気抵抗素子R1等と同一である。ブリッジ回路内部領域は、金属配線MLで連結された計12個の磁気抵抗素子Rで囲まれた領域に相当する。 In FIG. 9, those denoted by the same reference numerals as those in FIG. 2 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 30 in FIG. 9 corresponds to a configuration in which the magnetoresistive elements R1 to R4 in the magnetic sensor 10 in FIG. 2 are each formed by connecting three magnetoresistive elements R in a meander shape. The configuration of the magnetoresistive element R is the same as that of the magnetoresistive element R1 of the magnetic sensor 10 of FIG. The bridge circuit internal region corresponds to a region surrounded by a total of twelve magnetoresistive elements R connected by the metal wiring ML.
 ブリッジ回路内部領域の内側には、出力パッドPo2が配置され、ブリッジ回路内部領域の外側には、出力パッドPo1と、電源パッドPp1と、電源パッドPp2とが配置されている。最小加工寸法で並列配置された信号配線Lin1および信号配線Lin2は、ボンディングワイヤBWを介して、出力パッドPo1および出力パッドPo2とそれぞれ接続されている。同様に、電源配線Lvccおよび電源配線Lgndも、ボンディングワイヤBWを介して、電源パッドPp1および電源パッドPp2とそれぞれ接続されている。電源配線Lvccおよび電源配線Lgndも最小加工寸法で並列配置することで、磁気センサ30の検出精度がより向上する。 The output pad Po2 is disposed inside the bridge circuit internal region, and the output pad Po1, the power pad Pp1, and the power pad Pp2 are disposed outside the bridge circuit internal region. The signal wiring Lin1 and the signal wiring Lin2 arranged in parallel with the minimum processing dimension are respectively connected to the output pad Po1 and the output pad Po2 via the bonding wire BW. Similarly, the power supply wiring Lvcc and the power supply wiring Lgnd are also connected to the power supply pad Pp1 and the power supply pad Pp2 through the bonding wires BW, respectively. By arranging the power supply line Lvcc and the power supply line Lgnd in parallel with the minimum processing size, the detection accuracy of the magnetic sensor 30 is further improved.
 磁気センサ30によれば、メアンダ状の磁気抵抗素子からなるホイートストンブリッジ回路においても上述の構成を適用することで、信号配線Lin1および信号配線Lin2の間隔、またはボンディングワイヤBWのループ形状に起因する誘導起電力が抑制されるので、磁気センサ30の検出精度を向上させることが可能となる。 According to the magnetic sensor 30, by applying the above-described configuration also to a Wheatstone bridge circuit composed of meandering magnetoresistive elements, induction caused by the interval between the signal wiring Lin1 and the signal wiring Lin2 or the loop shape of the bonding wire BW. Since the electromotive force is suppressed, the detection accuracy of the magnetic sensor 30 can be improved.
 <実施の形態3の変形例>
 図10は、実施の形態3の変形例に係る磁気センサ31のレイアウト図である。
<Modification of Embodiment 3>
FIG. 10 is a layout diagram of a magnetic sensor 31 according to a modification of the third embodiment.
 図10において、図9と同一の符号が付されたものは同一の構成または機能を有するため、それらの重複説明は繰り返さない。図10の磁気センサ31は、図9の磁気センサ30において、電源配線Lvccおよび電源配線Lgndの延伸方向を、互いの逆方向に設定した構成に相当する。 In FIG. 10, the same reference numerals as those in FIG. 9 have the same configuration or function, and therefore, repeated description thereof will not be repeated. The magnetic sensor 31 in FIG. 10 corresponds to a configuration in which the extending directions of the power supply wiring Lvcc and the power supply wiring Lgnd are set in opposite directions to the magnetic sensor 30 in FIG.
 図9の磁気センサ30において、信号配線Lin1および信号配線Lin2と、電源配線Lvccおよび電源配線Lgndとは、いずれも同一方向(正のY方向)に延伸していた。それに対し、図10に示される磁気センサ31においては、信号配線Lin1および信号配線Lin2の延伸方向(正のY方向)と、電源配線Lvccおよび電源配線Lgndの延伸方向(負のY方向)とは、互いに逆向きに設定される。磁気センサ30および磁気センサ31の相違は、主に、磁気抵抗素子Rが形成される半導体基板SUBと、信号配線Lin1および信号配線Lin2と接続される差動増幅回路2と、電源配線Lvccおよび電源配線Lgndと接続される電源回路との、実装基板における配置関係に起因する。 In the magnetic sensor 30 of FIG. 9, the signal wiring Lin1 and the signal wiring Lin2, and the power supply wiring Lvcc and the power supply wiring Lgnd are all extended in the same direction (positive Y direction). On the other hand, in the magnetic sensor 31 shown in FIG. 10, the extending direction of the signal wiring Lin1 and the signal wiring Lin2 (positive Y direction) and the extending direction of the power supply wiring Lvcc and the power supply wiring Lgnd (negative Y direction) Are set in opposite directions. The difference between the magnetic sensor 30 and the magnetic sensor 31 is mainly that the semiconductor substrate SUB on which the magnetoresistive element R is formed, the differential amplifier circuit 2 connected to the signal wiring Lin1 and the signal wiring Lin2, the power supply wiring Lvcc and the power supply This is due to the arrangement relationship of the power supply circuit connected to the wiring Lgnd on the mounting substrate.
 <電流センサ>
 図11は、実施の形態1に係る磁気センサ10を備える電流センサ回路200の構成を示す回路図である。
<Current sensor>
FIG. 11 is a circuit diagram illustrating a configuration of a current sensor circuit 200 including the magnetic sensor 10 according to the first embodiment.
 図11を参照して、電流センサ回路200は、2つの磁気センサ回路100の出力を差動増幅回路2csで増幅し、電流センサ出力VoCを生成する。各磁気センサ回路100の電源端子VCCと電源端子GNDとの間には、直流電源3が接続されている。図11は、磁気センサ回路100が実施の形態1に係る磁気センサ10および差動増幅回路2により構成される例を示すが、磁気センサ10を他の実施の形態に係る磁気センサに置き換えても良い。 Referring to FIG. 11, current sensor circuit 200 amplifies the outputs of two magnetic sensor circuits 100 by differential amplifier circuit 2cs, and generates current sensor output VoC. A DC power supply 3 is connected between the power supply terminal VCC and the power supply terminal GND of each magnetic sensor circuit 100. FIG. 11 shows an example in which the magnetic sensor circuit 100 includes the magnetic sensor 10 and the differential amplifier circuit 2 according to the first embodiment, but the magnetic sensor 10 may be replaced with a magnetic sensor according to another embodiment. good.
 図12は、図11に示される電流センサ回路200が有する磁気センサ10の配置を説明する斜視図である。 FIG. 12 is a perspective view for explaining the arrangement of the magnetic sensor 10 included in the current sensor circuit 200 shown in FIG.
 図11および12を参照して、図11の電流センサ回路200が有する2つの磁気センサ10は、測定対象の電流が流れる導体4を間に挟むように配置される。導体4を流れる電流が生成する磁束は、磁気センサ10のホイートストンブリッジ回路を構成する磁気抵抗素子R1~R4の感磁方向に生成される。各磁気センサ10の出力電圧の差は、電流センサ回路200が有する差動増幅回路2cs(図11参照)で増幅され、電流センサ出力VoCとして出力される。 11 and 12, the two magnetic sensors 10 included in the current sensor circuit 200 of FIG. 11 are arranged so as to sandwich the conductor 4 through which the current to be measured flows. The magnetic flux generated by the current flowing through the conductor 4 is generated in the magnetosensitive direction of the magnetoresistive elements R1 to R4 constituting the Wheatstone bridge circuit of the magnetic sensor 10. The difference between the output voltages of the magnetic sensors 10 is amplified by a differential amplifier circuit 2cs (see FIG. 11) included in the current sensor circuit 200, and is output as a current sensor output VoC.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2,2cs 差動増幅回路、3 直流電源、4 導体、10,10R,11,12,13,14,20,21,30 磁気センサ、100 磁気センサ回路、200 電流センサ回路、BW ボンディングワイヤ、D1,D1R 間隔、GMR 巨大磁気抵抗効果、GND 電源端子、LF リードフレーム、Lgnd,Lvcc 電源配線、Lin1,Lin2 信号配線、Mg 磁性膜、ML 金属配線、MLD 樹脂、No1,No2 出力ノード、Np1,Np2 電源ノード、PCB 配線基板、Po1,Po2 出力パッド、Pp1,Pp2 電源パッド、R,R1~R4 磁気抵抗素子、SUB 半導体基板、TMR トンネル磁気抵抗効果、VCC 電源端子、VIA ビア、Vo 磁気センサ出力、VoC 電流センサ出力。 2, 2 cs differential amplifier circuit, 3 DC power supply, 4 conductors, 10, 10R, 11, 12, 13, 14, 20, 21, 30 magnetic sensor, 100 magnetic sensor circuit, 200 current sensor circuit, BW bonding wire, D1 , D1R interval, GMR giant magnetoresistive effect, GND power terminal, LF lead frame, Lgnd, Lvcc power wiring, Lin1, Lin2 signal wiring, Mg magnetic film, ML metal wiring, MLD resin, No1, No2 output node, Np1, Np2 Power node, PCB wiring board, Po1, Po2 output pad, Pp1, Pp2 power pad, R, R1-R4 magnetoresistive element, SUB semiconductor substrate, TMR tunnel magnetoresistive effect, VCC power terminal, VIA via, Vo magnetic sensor output, VoC current sensor Force.

Claims (8)

  1.  磁気センサであって、
     ホイートストンブリッジ回路と、
     1対の電源配線と、
     1対の信号配線と、
     1対の電源パッドと、
     1対の出力パッドとを備え、
     前記ホイートストンブリッジ回路は、
     1対の電源ノードと、
     1対の出力ノードと、
     前記1対の電源ノード間に、前記1対の出力ノードの一方を介して、直列接続された第1磁気抵抗素子および第2磁気抵抗素子と、
     前記1対の電源ノード間に、前記1対の出力ノードの他方を介して、直列接続された第3磁気抵抗素子および第4磁気抵抗素子とを含み、
     前記1対の電源ノードは、前記1対の電源パッドを介して、前記1対の電源配線と接続され、
     前記1対の出力ノードは、前記1対の出力パッドを介して、前記1対の信号配線と接続され、
     前記1対の信号配線は、並列配置される、磁気センサ。
    A magnetic sensor,
    Wheatstone bridge circuit,
    A pair of power wires,
    A pair of signal wires;
    A pair of power pads;
    A pair of output pads,
    The Wheatstone bridge circuit is
    A pair of power supply nodes;
    A pair of output nodes;
    A first magnetoresistive element and a second magnetoresistive element connected in series between the pair of power supply nodes via one of the pair of output nodes;
    A third magnetoresistive element and a fourth magnetoresistive element connected in series between the pair of power supply nodes via the other of the pair of output nodes;
    The pair of power supply nodes are connected to the pair of power supply wirings through the pair of power supply pads,
    The pair of output nodes are connected to the pair of signal wirings through the pair of output pads,
    The pair of signal wires are magnetic sensors arranged in parallel.
  2.  前記1対の出力パッドの一方は、前記第1磁気抵抗素子と、前記第2磁気抵抗素子と、前記第3磁気抵抗素子と、前記第4磁気抵抗素子とで囲まれるブリッジ回路内部領域に配置される、請求項1に記載の磁気センサ。 One of the pair of output pads is disposed in a bridge circuit internal region surrounded by the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element. The magnetic sensor according to claim 1.
  3.  前記1対の出力パッドの他方は、前記ブリッジ回路内部領域の外側に配置され、
     前記1対の信号配線は、前記ホイートストンブリッジ回路に対し、前記1対の出力パッドの他方が配置される側に配置される、請求項2に記載の磁気センサ。
    The other of the pair of output pads is disposed outside the bridge circuit internal region,
    3. The magnetic sensor according to claim 2, wherein the pair of signal wirings are disposed on a side where the other of the pair of output pads is disposed with respect to the Wheatstone bridge circuit.
  4.  前記1対の出力パッドの一方および前記1対の信号配線の一方は、第1金属配線で接続され、
     前記1対の出力パッドの他方および前記1対の信号配線の他方は、第2金属配線で接続される、請求項3記載の磁気センサ。
    One of the pair of output pads and one of the pair of signal wirings are connected by a first metal wiring,
    The magnetic sensor according to claim 3, wherein the other of the pair of output pads and the other of the pair of signal wirings are connected by a second metal wiring.
  5.  前記1対の信号配線は、ツイスト構造を有する、請求項3に記載の磁気センサ。 The magnetic sensor according to claim 3, wherein the pair of signal wirings have a twist structure.
  6.  前記第1磁気抵抗素子と、前記第2磁気抵抗素子と、前記第3磁気抵抗素子と、前記第4磁気抵抗素子とは、いずれも、メアンダ状の磁気抵抗素子で構成される、請求項1~請求項5のいずれか1項に記載の磁気センサ。 2. The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element are all composed of meandered magnetoresistive elements. The magnetic sensor according to any one of claims 5 to 6.
  7.  前記ホイートストンブリッジ回路と、前記1対の電源配線と、前記1対の信号配線と、前記1対の電源パッドと、前記1対の出力パッドとは、半導体基板に配置される、請求項1に記載の磁気センサ。 The Wheatstone bridge circuit, the pair of power supply wirings, the pair of signal wirings, the pair of power supply pads, and the pair of output pads are disposed on a semiconductor substrate. The magnetic sensor described.
  8.  前記ホイートストンブリッジ回路と、前記1対の電源パッドと、前記1対の出力パッドとは、半導体基板に配置され、
     前記1対の電源配線および前記1対の信号配線は、配線基板に配置され、
     前記配線基板には、前記半導体基板が搭載される、請求項1~請求項5のいずれか1項に記載の磁気センサ。
    The Wheatstone bridge circuit, the pair of power supply pads, and the pair of output pads are disposed on a semiconductor substrate,
    The pair of power supply wirings and the pair of signal wirings are arranged on a wiring board,
    The magnetic sensor according to any one of claims 1 to 5, wherein the semiconductor substrate is mounted on the wiring board.
PCT/JP2015/050225 2014-01-15 2015-01-07 Magnetic sensor WO2015107948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557794A JPWO2015107948A1 (en) 2014-01-15 2015-01-07 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005094 2014-01-15
JP2014005094 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107948A1 true WO2015107948A1 (en) 2015-07-23

Family

ID=53542838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050225 WO2015107948A1 (en) 2014-01-15 2015-01-07 Magnetic sensor

Country Status (2)

Country Link
JP (1) JPWO2015107948A1 (en)
WO (1) WO2015107948A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057291A1 (en) * 2015-10-01 2018-01-18 オリンパス株式会社 Image sensor, endoscope, and endoscope system
WO2019205775A1 (en) * 2018-04-27 2019-10-31 宁波希磁电子科技有限公司 Current sensor
US11131727B2 (en) 2019-03-11 2021-09-28 Tdk Corporation Magnetic sensor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885990A (en) * 1981-11-16 1983-05-23 Fujitsu Ltd Magnetic bubble memory device
JPH07190804A (en) * 1993-10-20 1995-07-28 Siemens Ag Magnetic-field measuring device having magnetoresistance type sensor
JPH10150148A (en) * 1996-09-18 1998-06-02 Denso Corp Semiconductor integrated circuit
JP2007057494A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Coil for detecting alternating current
JP2009192510A (en) * 2008-02-18 2009-08-27 Fujikura Ltd Magnetic field calibration method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085831A (en) * 1998-09-28 2001-09-07 추후 Quad-layer gmr sandwich

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885990A (en) * 1981-11-16 1983-05-23 Fujitsu Ltd Magnetic bubble memory device
JPH07190804A (en) * 1993-10-20 1995-07-28 Siemens Ag Magnetic-field measuring device having magnetoresistance type sensor
JPH10150148A (en) * 1996-09-18 1998-06-02 Denso Corp Semiconductor integrated circuit
JP2007057494A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Coil for detecting alternating current
JP2009192510A (en) * 2008-02-18 2009-08-27 Fujikura Ltd Magnetic field calibration method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057291A1 (en) * 2015-10-01 2018-01-18 オリンパス株式会社 Image sensor, endoscope, and endoscope system
US10456022B2 (en) 2015-10-01 2019-10-29 Olympus Corporation Imaging device, endoscope, and endoscope system
WO2019205775A1 (en) * 2018-04-27 2019-10-31 宁波希磁电子科技有限公司 Current sensor
US11131727B2 (en) 2019-03-11 2021-09-28 Tdk Corporation Magnetic sensor device
US11474168B2 (en) 2019-03-11 2022-10-18 Tdk Corporation Magnetic sensor device

Also Published As

Publication number Publication date
JPWO2015107948A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5902657B2 (en) Integrated sensor array
EP2682771B1 (en) Push-pull bridge magnetoresistance sensor
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
US9766304B2 (en) Integrated AMR magnetoresistor with a set/reset coil having a stretch positioned between a magnetoresistive strip and a concentrating region
CN105223523B (en) Magnetic sensor
KR20110020863A (en) Arrangements for a current sensing circuit and integrated current sensor
CN110741269B (en) Magnetic sensor and current sensor
WO2015107948A1 (en) Magnetic sensor
WO2015107949A1 (en) Magnetic sensor
JP6267613B2 (en) Magnetic sensor and current sensor including the magnetic sensor
US11474168B2 (en) Magnetic sensor device
JP5284024B2 (en) Magnetic sensor
JP2018194393A (en) Magnetic sensor
JP2016145745A (en) Magnetic sensor
JP5413866B2 (en) Current sensor with magnetic sensing element
US11874346B2 (en) Magnetic sensor
JP5504483B2 (en) Current sensor
JP2009281784A (en) Magnetometric sensor
JP6506604B2 (en) Magnetic sensor
JP7097671B2 (en) IC magnetic sensor and lead frame used for it
WO2013042336A1 (en) Magnetic sensor
JP2013205201A (en) Current sensor and current sensor package
US20230089851A1 (en) Magnetic sensor
WO2011111456A1 (en) Current measurement device
JP2016075620A (en) Physical quantity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737719

Country of ref document: EP

Kind code of ref document: A1