WO2015107938A1 - Microstructure and manufacturing method thereof, and composition for manufacture of microstructure - Google Patents

Microstructure and manufacturing method thereof, and composition for manufacture of microstructure Download PDF

Info

Publication number
WO2015107938A1
WO2015107938A1 PCT/JP2015/050145 JP2015050145W WO2015107938A1 WO 2015107938 A1 WO2015107938 A1 WO 2015107938A1 JP 2015050145 W JP2015050145 W JP 2015050145W WO 2015107938 A1 WO2015107938 A1 WO 2015107938A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound film
microstructure
laser
fine particles
producing
Prior art date
Application number
PCT/JP2015/050145
Other languages
French (fr)
Japanese (ja)
Inventor
金子 直人
章広 柴田
眞哉 鈴木
恭子 櫻井
常元 厨川
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2015107938A1 publication Critical patent/WO2015107938A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less

Definitions

  • the present invention relates to a fine structure having a fine structure formed on its surface, a method for producing the same, and a composition for producing a fine structure.
  • a method of forming a nanoscale fine concavo-convex structure on a substrate such as a metal surface or a semiconductor surface by irradiation with a short pulse laser using a laser beam has been proposed (for example, see Patent Documents 1 to 3 and Non-Patent Documents 1 and 2).
  • a surface wave is generated by irradiating the substrate with the laser beam, and the surface wave and the laser beam are caused to interfere with each other, thereby forming the fine concavo-convex structure having a wavelength of light. Can be formed.
  • the surface absorbs laser light, thereby generating an electron density distribution and generating surface plasmons having a period of about the wavelength.
  • a Coulomb explosion occurs at a location where the electron density is high, and a fine periodic structure is formed in the metal material.
  • a material that transmits laser such as glass other than metal or semiconductor is used as a base material, surface waves are not generated from the base material. There is a problem that an uneven structure cannot be formed.
  • a polysilazane added with a photopolymerization initiator is irradiated with light in a pattern and cured to obtain a cured film having a desired pattern (for example, a patent) Reference 6).
  • this method has a problem that a resist material must be applied in order to cure the polysilazane by irradiating the excimer laser.
  • it is not a method for forming the fine concavo-convex structure on the surface of the substrate itself, and it is not always appropriate to use the excimer laser in order to form the fine concavo-convex structure on the surface of the substrate. There is no such thing. Since the excimer laser irradiates continuous light, no pulse is generated, and vibration of electrons cannot be generated. Therefore, there is a problem that it is difficult to efficiently form a pattern on the polysilazane. .
  • a material layer that absorbs the laser beam is formed under the polysilazane layer that does not absorb the laser beam, and the material layer includes the above-described material layer.
  • There is a method of performing laser processing on the polysilazane layer by ablating the polysilazane layer in contact with the material layer irradiated with the laser beam by irradiating the laser beam see, for example, Patent Document 7.
  • the presence of the material layer is necessary, and an extra layer for one layer must be included on the substrate. There's a problem.
  • This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, a fine structure having a fine structure such as a nanoscale uneven structure on the surface, and the fine structure can be produced efficiently and accurately with as little energy as possible by using an appropriate laser. It is an object of the present invention to provide a method for producing a microstructure, and a composition for producing a microstructure suitable for use in the microstructure and the method for producing the microstructure.
  • the manufacturing method of the fine structure characterized by including a processing process.
  • a Si compound film containing the Si compound and the conductive fine particles is formed on the substrate.
  • the Si compound film is irradiated with a short pulse laser to process the Si compound film.
  • the processing step when the Si compound film is irradiated with the short pulse laser, electrons move in position by the Si compound in the Si compound film or the conductive fine particles, and the short pulse laser is irradiated. When not, electrons try to return to the original position by the Si compound in the Si compound film or the conductive fine particles. By repeating the repetition at an extremely short period, effective vibration of electrons can be caused. Due to the vibration of the electrons, a surface wave is generated, and the surface wave and the short pulse laser interfere with each other to perform processing. Further, since the laser applied to the Si compound film is a short pulse, strong energy can be applied, so that the Si compound film can be processed. The fine structure can be manufactured easily and efficiently by the processing step.
  • ⁇ 2> The method for producing a microstructure according to ⁇ 1>, wherein a pulse width in the short pulse laser is 0.01 ps to 100 ps.
  • ⁇ 3> The method for producing a microstructure according to any one of ⁇ 1> to ⁇ 2>, wherein the Si compound is polysilazane.
  • ⁇ 4> The method for producing a microstructure according to any one of ⁇ 1> to ⁇ 3>, wherein the conductivity of the conductive fine particles is greater than 2.5 ⁇ 10 ⁇ 4 [S / m].
  • ⁇ 5> The method for producing a microstructure according to any one of ⁇ 1> to ⁇ 4>, wherein an average particle diameter of the conductive fine particles in the Si compound film is 1,000 nm or less.
  • ⁇ 6> The method for producing a microstructure according to any one of ⁇ 1> to ⁇ 5>, wherein the wavelength of the short pulse laser is 266 nm to 1,570 nm.
  • ⁇ 7> A microstructure produced by the method for producing a microstructure according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> A composition for producing a fine structure, which is used in the method for producing a fine structure according to any one of ⁇ 1> to ⁇ 6> and contains a Si compound and conductive fine particles. is there.
  • the conventional problems can be solved, and a fine structure having a fine structure such as a nanoscale uneven structure on the surface, and the fine structure using an appropriate laser, It is possible to provide a method for producing a fine structure that can be produced efficiently and accurately with as little energy as possible, and a fine structure and a composition for producing a fine structure suitable for use in the production method.
  • FIG. 1 is a schematic diagram of an example of a laser irradiation apparatus that irradiates a short pulse laser used in the present invention.
  • FIG. 2 is an SEM photograph after the microstructure formation is continued in Example 5 of the present invention.
  • FIG. 3 is a SEM photograph after the fine structure formation is continued in Example 8 of the present invention.
  • the microstructure manufacturing method of the present invention includes at least a Si compound film forming step and a processing step, and further includes other steps as necessary.
  • the microstructure of the present invention is a microstructure manufactured by the method for manufacturing a microstructure of the present invention.
  • the Si compound film forming step is a step of forming a Si compound film containing a Si compound and conductive fine particles on a base material.
  • Base material There is no restriction
  • the ceramics there is no restriction
  • the metal oxide is not particularly limited and may be appropriately selected depending on the purpose, for example, silica (SiO 2), alumina (Al 2 O 3), zirconia (ZrO 2), titania (TiO 2) Etc.
  • silica SiO 2
  • alumina Al 2 O 3
  • zirconia ZrO 2
  • titania TiO 2 Etc.
  • a gallium nitride GaN
  • the carbide is not particularly limited and may be appropriately selected depending on the purpose, for example, silicon carbide (SiC), boron carbide (B 4 C), and the like calcium carbide (CaC 2).
  • the boride not be particularly limited and may be appropriately selected depending on the purpose, for example, aluminum boride (AlB 2), and the like magnesium diboride (MgB 2).
  • AlB 2 aluminum boride
  • MgB 2 magnesium diboride
  • limiting in particular as said metal According to the objective, it can select suitably, For example, stainless steel, iron, copper, titanium, platinum, gold
  • the material illustrated above may be used individually by 1 type, 2 or more types may be used together, and what was synthesize
  • the Si compound film contains at least the Si compound and the conductive fine particles, and further contains other components as necessary. However, the Si compound film does not contain a resist material.
  • the Si compound film can be suitably formed by the microstructure manufacturing composition of the present invention.
  • composition for microstructure production contains at least the Si compound and the conductive fine particles, and further contains other components as necessary.
  • the Si compound is not particularly limited as long as it contains Si, and can be appropriately selected according to the purpose. However, it can be converted into glass by applying light or heat energy, or A material that can be converted into glass by reacting with oxygen or a substance having an oxygen atom is preferable, and examples thereof include polysilazane and polysiloxane. Among these, polysilazane is preferable and perhydropolysilazane (PHPS) is more preferable in terms of conversion to glass having excellent optical properties.
  • PHPS perhydropolysilazane
  • As said Si compound what was illustrated above may be used individually by 1 type, 2 or more types may be used together, and what was synthesize
  • the Si compound film can be converted into glass, but the Si compound film can be completely converted into glass by further performing a baking process described later. Can do. Since the glass has excellent optical characteristics, it has an advantage that it can be applied to an optical member such as a windshield of an automobile and a surface glass of a heat absorption tube of solar thermal power generation.
  • the conductive fine particles are not particularly limited, and the material, shape, size, structure, and the like can be appropriately selected depending on the purpose.
  • the material is preferably a transition metal or the like.
  • the conductivity in the present invention means having a conductivity higher than that of Si.
  • the conductivity of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably more than 2.5 ⁇ 10 ⁇ 4 [S / m], and 1 ⁇ 10 6. [S / m] or more is more preferable.
  • transition metal there is no restriction
  • the shape of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include spherical shapes, wire shapes, needle shapes, and irregular shapes.
  • an average particle diameter of the said electroconductive fine particle there is no restriction
  • the method for measuring the average particle diameter of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the dynamic light scattering method, laser diffraction method, image imaging method, gravity precipitation method Etc.
  • the said electroconductive fine particles there is no restriction
  • the content of the conductive fine particles in the Si compound film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01% by mass to 10% by mass, preferably 0.04% by mass. More preferably, 1% by mass.
  • the content of the conductive fine particles in the Si compound film is less than 0.01% by mass, the number of times of irradiation with the short pulse laser cannot be reduced.
  • the content exceeds 10% by mass, coloring from the conductive fine particles and Haze may occur.
  • the method of forming the Si compound film include a method of applying a composition for manufacturing a microstructure containing the Si compound, the conductive fine particles, and the solvent on the substrate.
  • the method for applying the composition for producing a microstructure on the substrate is not particularly limited and can be selected according to the purpose. For example, a roll coating method, a spray coating method, a coating method. , Spin coating method, bar coating method, curtain coating method, die coating method, dip coating method and the like.
  • the average thickness of the Si compound film is not particularly limited and can be selected according to the purpose, but is preferably 100 nm to 5 ⁇ m. If the average thickness is less than 100 nm, it is difficult to form a fine periodic structure on the surface, and if it exceeds 5 ⁇ m, cracks may occur when the Si compound film is converted to glass.
  • the method for measuring the average thickness is not particularly limited and can be selected according to the purpose. For example, reflectance spectroscopy, interference interval method, frequency analysis method, stylus method, cross-sectional SEM observation, cross-sectional TEM observation Etc.
  • the processing step is a step of processing the Si compound film by irradiating the Si compound film with a short pulse laser.
  • the short pulse laser means a pulse laser having a short emission time (interval) (several picoseconds to several femtoseconds).
  • a laser irradiation apparatus is generally used.
  • a periodic structure having a predetermined wavelength size or a size smaller than the predetermined wavelength can be formed in the laser irradiation region.
  • the Si compound film When the Si compound film is irradiated with the short pulse laser, electrons move in the Si compound in the Si compound film or the conductive fine particles, and when the short pulse laser is not irradiated, The electrons try to return to the original position by the Si compound in the Si compound film or the conductive fine particles. By repeating this, vibration of electrons can be caused. Due to the vibration of the electrons, a surface wave is generated, and the surface wave and the short pulse laser interfere with each other to perform processing. Further, since the laser applied to the Si compound film is a short pulse, strong energy can be applied, so that the Si compound film can be processed. In the present invention, a commercially available product can be used as the laser irradiation device.
  • the laser body 1 emits laser light that is directly polarized in the vertical direction (sometimes referred to as laser light), and rotates the polarization direction using a wave plate 2 ( ⁇ / 2 wave plate). Direct polarization in the desired direction can be obtained. Further, circularly polarized light can be obtained by using a ⁇ / 4 wavelength plate instead of the ⁇ / 2 wavelength plate. Further, in the present apparatus, a part of the laser beam is extracted using the aperture 3 having a square opening.
  • the intensity distribution of the laser beam is a Gaussian distribution, and the laser beam having a uniform in-plane intensity distribution is obtained by using only the vicinity of the center.
  • a desired beam size can be obtained by narrowing down the laser beam using two orthogonal cylindrical lenses 4. The laser beam having a desired beam size is applied to the sample 5 on the linear stage 6.
  • the control factor of the short pulse laser is not particularly limited and can be selected according to the purpose. Examples thereof include wavelength, fluence, number of irradiation pulses, pulse width, beam spot, and the like.
  • the wavelength is not particularly limited and can be appropriately selected from a range of 266 nm to 1,570 nm according to a desired periodic structure.
  • a wavelength in the range of 266 nm to 800 nm is preferable. More preferably, the wavelength is in the range of 390 nm to 800 nm.
  • the wavelength of the short pulse laser can take a value appropriately selected according to a desired periodic structure such as 800 nm, 400 nm, and 266 nm.
  • the fluence is energy density E / S (J / cm 2 ) obtained by dividing the energy E (J) per pulse of the laser by the irradiation sectional area S (cm 2 ).
  • Range of predetermined fluence varies depending on the material, 0.01J / cm 2 ⁇ 1.0J / cm 2 is preferred.
  • the value of the fluence is less than 0.01 J / cm 2, may be unable to form a fine structure, exceeding 1.0 J / cm 2, sometimes the fine structure disappears.
  • n 1 / f (1)
  • the pulse width is not particularly limited and may be appropriately selected depending on the intended purpose. However, a shorter one is preferable, and 0.01 picosecond (ps) to 100 picosecond (ps) is preferable. If the pulse width value is less than 0.01 picosecond (ps), a fine structure may not be formed, and if it exceeds 100 picosecond (ps), a fine structure may not be formed.
  • the beam spot preferably has a quadrangular shape.
  • the beam spot can be shaped by using, for example, an aperture or a cylindrical lens. Further, it is preferable that the intensity distribution of the laser beam in the beam spot is as uniform as possible.
  • the beam spot diameter is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 30 ⁇ m to 500 ⁇ m.
  • the firing step is a step of firing the Si compound film after irradiating the Si compound film with a short pulse laser.
  • the firing step is performed when the Si compound film is completely converted into glass.
  • the firing temperature in the firing step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 200 ° C. to 1,600 ° C.
  • microstructures-- The use of the microstructure of the present invention is not particularly limited and can be appropriately selected according to the purpose.
  • the substrate is glass, it can be suitably used as an optical member.
  • Preferred examples include a windshield of a car and a surface glass of a heat absorption tube of solar power generation.
  • a Si compound film is formed on a substrate and irradiated with a short pulse laser. Thereafter, the microstructure was subjected to surface observation and elemental analysis using a field emission scanning electron microscope (FESEM: Field Emission-Scanning Electron Microscope, Hitachi S-4700 type).
  • FESEM Field Emission-Scanning Electron Microscope, Hitachi S-4700 type
  • Example 1 Perhydropolysilazane (trade name: Aquamica NN120, manufactured by Clariant) as the Si compound 99.96 parts by mass (excluding the solvent component) and gold particles (product name: AuDT, manufactured by Tanaka Kikinzoku Co., Ltd.), (Average particle diameter; 3 nm) 0.04 parts by mass was mixed to prepare a composition for producing a fine structure.
  • a plate-like glass (S9112, manufactured by Matsunami Glass Co., Ltd.) is used as the substrate, and the fine structure manufacturing composition is applied onto the substrate using a bar coater, and the average thickness is 1,500 nm. A compound film was formed.
  • the Si compound film was irradiated with a short pulse laser from the Si compound film side under the following irradiation conditions.
  • the average thickness of the Si compound film was measured using a film thickness measurement system (F20, manufactured by Filmetrics).
  • F20 film thickness measurement system
  • IFRIT manufactured by Cyber Laser
  • Fluence 0.12 J / cm 2
  • Pulse width 200 fs
  • Frequency 1kHz
  • Wavelength 390 nm
  • Beam spot 300 ⁇ m ⁇ 120 ⁇ m
  • Example 1 is the same as Example 1 except that the type of conductive fine particles in the Si compound film, the content of the conductive fine particles, and the average particle diameter of the conductive fine particles are changed as shown in Table 1. A fine structure was manufactured and the same evaluation as in Example 1 was performed. The results are shown in Table 1. Moreover, the SEM photograph after continuing formation of a fine structure in Example 5 and 8 is shown to FIG. 2 and 3, respectively.
  • Example 1 (Comparative Example 1) In Example 1, except that no Si compound film was formed on the substrate, the substrate was irradiated with a short pulse laser in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 (Comparative Example 2) In Example 1, a fine structure was produced in the same manner as in Example 1 except that the conductive fine particles were not used, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 the fine structure was produced in the same manner as in Example 2 except that the type of fine particles and the content of the fine particles were changed as shown in Table 1, and the same evaluation as in Example 2 was performed. went. The results are shown in Table 1.
  • Au (3 nm): AuDT, manufactured by Tanaka Kikinzoku Co., Ltd. (conductive fine particles; 48.78 ⁇ 10 6 [S / m]) Au (75 nm): Gold, manufactured by Iritech Co. (conductive fine particles; 48.78 ⁇ 10 6 [S / m]) Ag: Silver, manufactured by Iritech (conductive fine particles; 25 ⁇ 10 6 [S / m]) Pd: Palladium fine particles, manufactured by QuantumSphere Inc. (conductive fine particles; 10 ⁇ 10 6 [S / m]) Cu: Copper, manufactured by Iritech Co.
  • Si Silicon, manufactured by Iritech (non-conductive fine particles; 2.5 ⁇ 10 ⁇ 4 [S / m])
  • TiO 2 Super Titania F-6, manufactured by Showa Denko KK (non-conductive fine particles; 10 ⁇ 12 [S / m]) SiO 2 : AEROSIL RX200; manufactured by Nippon Aerosil Co., Ltd. (non-conductive fine particles; 10 ⁇ 14 [S / m])
  • the necessary number of irradiation pulses could be reduced.
  • the material of the conductive fine particles with respect to the Si compound is Au, Ag, or Cu
  • the necessary number of pulses can be reduced as compared with the case of Pd. This is because the conductivity of Au (48.78 ⁇ 10 6 [S / m]), Ag (25 ⁇ 10 6 [S / m]), Cu (64.5 ⁇ 10 6 [S / m]) This is considered to be because it is larger than that of Pd (10 ⁇ 10 6 [S / m]).
  • no fine structure was formed even when the number of irradiation pulses was 4,000.
  • the fine structure manufacturing method of the present invention is capable of manufacturing a fine structure efficiently and accurately with as little energy as possible by using an appropriate laser. Therefore, the surface of an automobile windshield or solar power generation heat absorption tube It can use suitably for manufacture of microstructures, such as optical members like glass.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This method of manufacturing a microstructure is characterized by involving a Si compound film forming step for formation, on a substrate, of a Si compound film that contains an Si compound and conductive particles, and a processing step for processing the Si compound film by irradiation of the Si compound film with a short-pulse laser.

Description

微細構造体及びその製造方法、並びに微細構造体製造用組成物Fine structure and method for producing the same, and composition for producing fine structure
 本発明は、表面に微細な構造が形成された微細構造体及びその製造方法並びに微細構造体製造用組成物に関する。 The present invention relates to a fine structure having a fine structure formed on its surface, a method for producing the same, and a composition for producing a fine structure.
 従来、ナノ構造の加工方法として、短パルスレーザーの照射によって金属表面や半導体表面などの基材上に、レーザー光を用いて、ナノスケールの微細な凹凸構造を形成する方法が提案されている(例えば、特許文献1~3及び非特許文献1~2参照)。この方法においては、前記レーザー光を前記基材上に照射することにより、表面波を発生させ、この表面波と前記レーザー光とを干渉させることにより、光の波長程度の前記微細な凹凸構造を形成することができる。例えば、金属材料に短パルスレーザーを照射すると、表面がレーザー光を吸収することにより、電子の粗密分布が生じ、波長程度の周期をもつ表面プラズモンが発生する。そして、電子密度が高くなった箇所でクーロン爆発が起こり、金属材料に微細な周期構造が形成される。
 しかし、この方法において、金属、半導体以外の、ガラス等のレーザーを透過するような材料を基材として用いた場合に、基材から表面波が発生しないため、前記レーザー光を用いても、微細な凹凸構造を形成することができないという問題がある。
Conventionally, as a nanostructure processing method, a method of forming a nanoscale fine concavo-convex structure on a substrate such as a metal surface or a semiconductor surface by irradiation with a short pulse laser using a laser beam has been proposed ( For example, see Patent Documents 1 to 3 and Non-Patent Documents 1 and 2). In this method, a surface wave is generated by irradiating the substrate with the laser beam, and the surface wave and the laser beam are caused to interfere with each other, thereby forming the fine concavo-convex structure having a wavelength of light. Can be formed. For example, when a metal material is irradiated with a short pulse laser, the surface absorbs laser light, thereby generating an electron density distribution and generating surface plasmons having a period of about the wavelength. A Coulomb explosion occurs at a location where the electron density is high, and a fine periodic structure is formed in the metal material.
However, in this method, when a material that transmits laser such as glass other than metal or semiconductor is used as a base material, surface waves are not generated from the base material. There is a problem that an uneven structure cannot be formed.
 そこで、金属、半導体以外の、ガラス等のレーザーを透過するような材料を前記基材とし、レーザー光を用いても、前記微細な凹凸構造を形成することができる方法が提案されている。 Therefore, there has been proposed a method capable of forming the fine concavo-convex structure even when a laser beam is used as a base material made of a material such as glass other than metal and semiconductor.
 第1の方法としては、前記基材の表面に微細なレジストパターンを形成し、エッチング処理等を行うリソグラフィ法がある(例えば、特許文献4参照)。
 しかし、このリソグラフィ法の場合、前記レジストパターンを前記基材上の所望の位置にかつ所望のサイズに形成することが容易ではなく、ナノスケールの微細な凹凸構造を精度良く形成することが難しいという問題がある。
As a first method, there is a lithography method in which a fine resist pattern is formed on the surface of the substrate and an etching process or the like is performed (see, for example, Patent Document 4).
However, in the case of this lithography method, it is not easy to form the resist pattern at a desired position and a desired size on the substrate, and it is difficult to accurately form a nanoscale fine uneven structure. There's a problem.
 第2の方法としては、前記基材の表面に顔料を付着させ、該基材の表面に穴を形成する方法がある(例えば、特許文献5参照)。
 しかし、この方法の場合、前記顔料を除去する必要があり、加工時間が長くなり、ナノスケールの微細な凹凸構造を効率良く形成することが難しいという問題がある。
As a second method, there is a method in which a pigment is attached to the surface of the base material to form holes in the surface of the base material (see, for example, Patent Document 5).
However, in the case of this method, it is necessary to remove the pigment, the processing time becomes long, and it is difficult to efficiently form a nanoscale fine uneven structure.
 第3の方法としては、エキシマレーザーを用いることで、光重合開始剤を添加したポリシラザンに光照射をパターン状に行って硬化させ、所望のパターン状の硬化膜を得る方法がある(例えば、特許文献6参照)。
 しかし、この方法の場合、前記エキシマレーザーを照射することにより、前記ポリシラザンを硬化させるためには、レジスト材料を塗布しなければならないという問題がある。また、そもそも基材自体の表面に前記微細な凹凸構造を形成する方法ではない上、前記基材の表面に前記微細な凹凸構造を形成するためには、前記エキシマレーザーを用いることが必ずしも適当であるとはいえない。前記エキシマレーザーは連続光を照射するものであるため、パルスが発生せず、電子の振動を起こすことができず、それゆえ、前記ポリシラザンに対するパターンの形成を効率良く行うことが難しいという問題もある。
As a third method, by using an excimer laser, a polysilazane added with a photopolymerization initiator is irradiated with light in a pattern and cured to obtain a cured film having a desired pattern (for example, a patent) Reference 6).
However, this method has a problem that a resist material must be applied in order to cure the polysilazane by irradiating the excimer laser. In addition, it is not a method for forming the fine concavo-convex structure on the surface of the substrate itself, and it is not always appropriate to use the excimer laser in order to form the fine concavo-convex structure on the surface of the substrate. There is no such thing. Since the excimer laser irradiates continuous light, no pulse is generated, and vibration of electrons cannot be generated. Therefore, there is a problem that it is difficult to efficiently form a pattern on the polysilazane. .
 第4の方法としては、ポリシラザン層にレーザー光を用いた加工を行うために、該レーザー光を吸収しない前記ポリシラザン層の下に前記レーザー光を吸収する材料層を形成し、該材料層に前記レーザー光を照射することにより、該レーザー光が照射された前記材料層に接する前記ポリシラザン層をアブレーションさせて、該ポリシラザン層をレーザー加工する方法がある(例えば、特許文献7参照)。
 しかし、この方法の場合、前記ポリシラザン層をアブレーションさせて、レーザー加工を行うためには、前記材料層の存在が必要となり、基材の上に1層分の余分な層を含まなければならないという問題がある。
As a fourth method, in order to perform processing using a laser beam on the polysilazane layer, a material layer that absorbs the laser beam is formed under the polysilazane layer that does not absorb the laser beam, and the material layer includes the above-described material layer. There is a method of performing laser processing on the polysilazane layer by ablating the polysilazane layer in contact with the material layer irradiated with the laser beam by irradiating the laser beam (see, for example, Patent Document 7).
However, in this method, in order to ablate the polysilazane layer and perform laser processing, the presence of the material layer is necessary, and an extra layer for one layer must be included on the substrate. There's a problem.
 したがって、ナノスケールの凹凸構造を有する微細構造体を、適当なレーザーを用いることで、効率良くかつ精度良く製造することができる技術の開発が求められているのが現状である。 Therefore, there is a demand for the development of a technology that can efficiently and accurately manufacture a fine structure having a nanoscale uneven structure by using an appropriate laser.
特開2006-235195号公報JP 2006-235195 A 特開2010-152296号公報JP 2010-152296 A 特開2003-211400号公報JP 2003-211400 A 特開2006-346748号公報JP 2006-346748 A 特開2002-028799号公報JP 2002-028799 A 特開平11-92666号公報Japanese Patent Laid-Open No. 11-92666 特開2008-114250号公報JP 2008-114250 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、表面にナノスケールの凹凸構造等の微細構造を有する微細構造体、及び該微細構造体を、適当なレーザーを用いることで、極力少ないエネルギーで効率良くかつ精度良く製造可能な微細構造体の製造方法、並びに該微細構造体及びその製造方法に用いるのに好適な微細構造体製造用組成物を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, a fine structure having a fine structure such as a nanoscale uneven structure on the surface, and the fine structure can be produced efficiently and accurately with as little energy as possible by using an appropriate laser. It is an object of the present invention to provide a method for producing a microstructure, and a composition for producing a microstructure suitable for use in the microstructure and the method for producing the microstructure.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基材上に、Si化合物と導電性微粒子とを含有するSi化合物膜を形成するSi化合物膜形成工程と、前記Si化合物膜に短パルスレーザーを照射し、前記Si化合物膜を加工する加工工程とを含むことを特徴とする微細構造体の製造方法である。
 本発明の微細構造体の製造方法では、前記Si化合物膜形成工程において、前記基材上に、前記Si化合物と前記導電性微粒子とを含有するSi化合物膜が形成される。そして、前記加工工程において、前記Si化合物膜に短パルスレーザーが照射され、前記Si化合物膜が加工される。前記加工工程において、前記Si化合物膜に前記短パルスレーザーが照射されている時に、前記Si化合物膜中の前記Si化合物、もしくは前記導電性微粒子で電子が位置移動し、前記短パルスレーザーが照射されていない時に、前記Si化合物膜中の前記Si化合物、もしくは前記導電性微粒子で電子が元の位置に戻ろうとする。その繰り返しが極めて短い周期で行われることにより、効果的な電子の振動を起こすことができる。この電子の振動により、表面波が生じ、該表面波と前記短パルスレーザーとが干渉することより加工が行われる。また、前記Si化合物膜に照射するレーザーが短パルスであることにより、強いエネルギーを与えることができるため、前記Si化合物膜が加工されうる。前記加工工程により、簡便かつ効率的に、前記微細構造体を製造することができる。
 <2> 短パルスレーザーにおけるパルス幅が、0.01ps~100psである前記<1>に記載の微細構造体の製造方法である。
 <3> Si化合物が、ポリシラザンである前記<1>から<2>のいずれかに記載の微細構造体の製造方法である。
 <4> 導電性微粒子の導電率が、2.5×10-4[S/m]超である前記<1>から<3>のいずれかに記載の微細構造体の製造方法である。
 <5> Si化合物膜における、導電性微粒子の平均粒子径が、1,000nm以下である前記<1>から<4>のいずれかに記載の微細構造体の製造方法である。
 <6> 短パルスレーザーの波長が、266nm~1,570nmである前記<1>から<5>のいずれかに記載の微細構造体の製造方法である。
 <7> 前記<1>から<6>のいずれかに記載の微細構造体の製造方法により製造されたことを特徴とする微細構造体である。
 <8> 前記<1>から<6>のいずれかに記載の微細構造体の製造方法に用いられ、Si化合物と導電性微粒子とを含有することを特徴とする微細構造体製造用組成物である。
Means for solving the problems are as follows. That is,
<1> A Si compound film forming step for forming a Si compound film containing a Si compound and conductive fine particles on a substrate; and the Si compound film is irradiated with a short pulse laser to process the Si compound film. The manufacturing method of the fine structure characterized by including a processing process.
In the microstructure manufacturing method of the present invention, in the Si compound film forming step, a Si compound film containing the Si compound and the conductive fine particles is formed on the substrate. In the processing step, the Si compound film is irradiated with a short pulse laser to process the Si compound film. In the processing step, when the Si compound film is irradiated with the short pulse laser, electrons move in position by the Si compound in the Si compound film or the conductive fine particles, and the short pulse laser is irradiated. When not, electrons try to return to the original position by the Si compound in the Si compound film or the conductive fine particles. By repeating the repetition at an extremely short period, effective vibration of electrons can be caused. Due to the vibration of the electrons, a surface wave is generated, and the surface wave and the short pulse laser interfere with each other to perform processing. Further, since the laser applied to the Si compound film is a short pulse, strong energy can be applied, so that the Si compound film can be processed. The fine structure can be manufactured easily and efficiently by the processing step.
<2> The method for producing a microstructure according to <1>, wherein a pulse width in the short pulse laser is 0.01 ps to 100 ps.
<3> The method for producing a microstructure according to any one of <1> to <2>, wherein the Si compound is polysilazane.
<4> The method for producing a microstructure according to any one of <1> to <3>, wherein the conductivity of the conductive fine particles is greater than 2.5 × 10 −4 [S / m].
<5> The method for producing a microstructure according to any one of <1> to <4>, wherein an average particle diameter of the conductive fine particles in the Si compound film is 1,000 nm or less.
<6> The method for producing a microstructure according to any one of <1> to <5>, wherein the wavelength of the short pulse laser is 266 nm to 1,570 nm.
<7> A microstructure produced by the method for producing a microstructure according to any one of <1> to <6>.
<8> A composition for producing a fine structure, which is used in the method for producing a fine structure according to any one of <1> to <6> and contains a Si compound and conductive fine particles. is there.
 本発明によると、従来における前記諸問題を解決することができ、表面にナノスケールの凹凸構造等の微細構造を有する微細構造体、及び、該微細構造体を、適当なレーザーを用いることで、極力少ないエネルギーで効率良くかつ精度良く製造可能な微細構造体の製造方法、並びに該微細構造体及びその製造方法に用いるのに好適な微細構造体製造用組成物を提供することができる。 According to the present invention, the conventional problems can be solved, and a fine structure having a fine structure such as a nanoscale uneven structure on the surface, and the fine structure using an appropriate laser, It is possible to provide a method for producing a fine structure that can be produced efficiently and accurately with as little energy as possible, and a fine structure and a composition for producing a fine structure suitable for use in the production method.
図1は、本発明に用いられる、短パルスレーザーを照射するレーザー照射装置の一例の概略図である。FIG. 1 is a schematic diagram of an example of a laser irradiation apparatus that irradiates a short pulse laser used in the present invention. 図2は、本発明の実施例5において微細構造形成を続けた後のSEM写真である。FIG. 2 is an SEM photograph after the microstructure formation is continued in Example 5 of the present invention. 図3は、本発明の実施例8において微細構造形成を続けた後のSEM写真である。FIG. 3 is a SEM photograph after the fine structure formation is continued in Example 8 of the present invention.
(微細構造体及びその製造方法、並びに微細構造体製造用組成物)
 本発明の微細構造体の製造方法は、Si化合物膜形成工程と、加工工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 本発明の微細構造体は、本発明の前記微細構造体の製造方法により製造された微細構造体である。
(Fine structure and method for producing the same, and composition for producing fine structure)
The microstructure manufacturing method of the present invention includes at least a Si compound film forming step and a processing step, and further includes other steps as necessary.
The microstructure of the present invention is a microstructure manufactured by the method for manufacturing a microstructure of the present invention.
<Si化合物膜形成工程>
 前記Si化合物膜形成工程は、基材上に、Si化合物と導電性微粒子とを含有するSi化合物膜を形成する工程である。
<Si compound film formation process>
The Si compound film forming step is a step of forming a Si compound film containing a Si compound and conductive fine particles on a base material.
<<基材>>
 前記基材としては、特に制限はなく、その材質、形状、構造、大きさなどは、目的に応じて適宜選択することができる。
 前記基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、セラミックス、金属、半導体、DLC(ダイアモンドライクカーボン)などが挙げられる。
<< Base material >>
There is no restriction | limiting in particular as said base material, The material, a shape, a structure, a magnitude | size etc. can be suitably selected according to the objective.
There is no restriction | limiting in particular as a material of the said base material, According to the objective, it can select suitably, For example, ceramics, a metal, a semiconductor, DLC (diamond like carbon) etc. are mentioned.
 前記セラミックスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス、金属酸化物、金属窒化物、炭化物、ホウ化物などが挙げられる。
 前記ガラスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、青板ガラス、白板ガラス、石英ガラスなどが挙げられる。これらの中でも、耐熱温度という点で石英ガラスが好ましい。また、前記ガラスを基材として用いることにより、前記ガラスの透明性が高いという性質から、自動車のフロントガラス、太陽熱発電の熱吸収管の表面ガラスのような光学部材などに適用できるという利点がある。
 前記金属酸化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)などが挙げられる。
 前記金属窒化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガリウムナイトライド(GaN)などが挙げられる。
 前記炭化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、炭化ケイ素(SiC)、炭化ホウ素(BC)、炭化カルシウム(CaC)などが挙げられる。
 前記ホウ化物としては、特に制限することはなく、目的に応じて適宜選択することができ、例えば、ホウ化アルミニウム(AlB)、ホウ化マグネシウム(MgB)などが挙げられる。
 前記金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレス鋼、鉄、銅、チタン、白金、金、銀、ニッケル、クロム、パラジウムなどが挙げられる。
 また、前記基材としては、上記例示した材質を、1種単独で使用してもよいし、2種以上を併用してもよく、また、適宜合成したものであってもよいし、市販品であってもよい。
There is no restriction | limiting in particular as said ceramics, According to the objective, it can select suitably, For example, glass, a metal oxide, a metal nitride, a carbide | carbonized_material, a boride etc. are mentioned.
There is no restriction | limiting in particular as said glass, According to the objective, it can select suitably, For example, blue plate glass, white plate glass, quartz glass etc. are mentioned. Among these, quartz glass is preferable in terms of heat resistance temperature. Further, the use of the glass as a base material has the advantage that the glass can be applied to an optical member such as a windshield of an automobile and a surface glass of a heat absorption tube of solar thermal power generation because of the high transparency of the glass. .
The metal oxide is not particularly limited and may be appropriately selected depending on the purpose, for example, silica (SiO 2), alumina (Al 2 O 3), zirconia (ZrO 2), titania (TiO 2) Etc.
There is no restriction | limiting in particular as said metal nitride, According to the objective, it can select suitably, For example, a gallium nitride (GaN) etc. are mentioned.
As the carbide is not particularly limited and may be appropriately selected depending on the purpose, for example, silicon carbide (SiC), boron carbide (B 4 C), and the like calcium carbide (CaC 2).
As the boride not be particularly limited and may be appropriately selected depending on the purpose, for example, aluminum boride (AlB 2), and the like magnesium diboride (MgB 2).
There is no restriction | limiting in particular as said metal, According to the objective, it can select suitably, For example, stainless steel, iron, copper, titanium, platinum, gold | metal | money, silver, nickel, chromium, palladium etc. are mentioned.
Moreover, as said base material, the material illustrated above may be used individually by 1 type, 2 or more types may be used together, and what was synthesize | combined suitably may be used, and it is a commercial item. It may be.
 前記基材の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、板状、球面状などが挙げられる。
 前記基材の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単一構造、複数の材料で構成されている構造などが挙げられる。
 前記複数の材料で構成されている構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単層、積層、混合層などが挙げられる。
 前記基材の大きさとしては、特に制限はなく、例えば、自動車のフロントガラスなどの微細構造体の用途における大きさに合わせて、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as a shape of the said base material, According to the objective, it can select suitably, For example, plate shape, spherical shape, etc. are mentioned.
There is no restriction | limiting in particular as a structure of the said base material, According to the objective, it can select suitably, For example, the structure comprised by the single structure and the some material etc. are mentioned.
There is no restriction | limiting in particular as a structure comprised by the said several material, According to the objective, it can select suitably, For example, a single layer, laminated | stacked, a mixed layer etc. are mentioned.
There is no restriction | limiting in particular as a magnitude | size of the said base material, For example, according to the objective, it can select suitably according to the magnitude | size in the use of fine structures, such as a windshield of a motor vehicle.
<<Si化合物膜>>
 前記Si化合物膜は、前記Si化合物と前記導電性微粒子とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。ただし、前記Si化合物膜はレジスト材料を含んでいないものとする。
 前記Si化合物膜は、本発明の微細構造体製造用組成物により、好適に形成することができる。
<< Si compound film >>
The Si compound film contains at least the Si compound and the conductive fine particles, and further contains other components as necessary. However, the Si compound film does not contain a resist material.
The Si compound film can be suitably formed by the microstructure manufacturing composition of the present invention.
<<微細構造体製造用組成物>>
 前記微細構造体製造用組成物は、前記Si化合物と前記導電性微粒子とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
<< Composition for microstructure production >>
The composition for producing a fine structure contains at least the Si compound and the conductive fine particles, and further contains other components as necessary.
--Si化合物--
 前記Si化合物としては、Siを含むものであれば、特に制限はなく、目的に応じて適宜選択することができるが、光や熱のエネルギーを付与することにより、ガラスに転化しうる材料、もしくは、酸素や酸素原子を持つ物質と反応することにより、ガラスに転化しうる材料であるのが好ましく、例えば、ポリシラザン、ポリシロキサンなどが好適に挙げられる。これらの中でも、優れた光学特性のガラスに転化する点で、ポリシラザンが好ましく、パーヒドロポリシラザン(PHPS)がより好ましい。
 前記Si化合物としては、上記例示したものを、1種単独で使用してもよいし、2種以上を併用してもよく、また、適宜合成したものであってもよいし、市販品であってもよい。
--Si compound--
The Si compound is not particularly limited as long as it contains Si, and can be appropriately selected according to the purpose. However, it can be converted into glass by applying light or heat energy, or A material that can be converted into glass by reacting with oxygen or a substance having an oxygen atom is preferable, and examples thereof include polysilazane and polysiloxane. Among these, polysilazane is preferable and perhydropolysilazane (PHPS) is more preferable in terms of conversion to glass having excellent optical properties.
As said Si compound, what was illustrated above may be used individually by 1 type, 2 or more types may be used together, and what was synthesize | combined suitably may be used, and it may be a commercial item. May be.
 なお、前記エネルギーを前記Si化合物に付与する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、レーザーを照射する方法、焼成する方法などが挙げられる。
 前記レーザーを照射するエネルギーの大きさによっては、前記Si化合物膜をガラスに転化することができるが、更に後述の焼成工程を行うことにより、前記Si化合物膜のガラスへの転化を完全に行うことができる。
 前記ガラスは光学特性に優れるため、自動車のフロントガラス、太陽熱発電の熱吸収管の表面ガラスのような光学部材などに適用できるという利点がある。
In addition, there is no restriction | limiting in particular as a method to provide the said energy to the said Si compound, According to the objective, it can select suitably, For example, the method of irradiating a laser, the method of baking, etc. are mentioned.
Depending on the energy of the laser irradiation, the Si compound film can be converted into glass, but the Si compound film can be completely converted into glass by further performing a baking process described later. Can do.
Since the glass has excellent optical characteristics, it has an advantage that it can be applied to an optical member such as a windshield of an automobile and a surface glass of a heat absorption tube of solar thermal power generation.
--導電性微粒子--
 前記導電性微粒子としては、特に制限はなく、その材質、形状、大きさ、構造などは、目的に応じて適宜選択することができ、例えば、前記材質としては、遷移金属などが好適に挙げられる。
 本発明における導電性とは、Siの導電率よりも高い導電率をもつことを言う。前記導電性微粒子の導電率としては、特に制限はなく、目的に応じて適宜選択することができるが、2.5×10-4[S/m]超であることが好ましく、1×10[S/m]以上がより好ましい。
--Conductive fine particles--
The conductive fine particles are not particularly limited, and the material, shape, size, structure, and the like can be appropriately selected depending on the purpose. For example, the material is preferably a transition metal or the like. .
The conductivity in the present invention means having a conductivity higher than that of Si. The conductivity of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably more than 2.5 × 10 −4 [S / m], and 1 × 10 6. [S / m] or more is more preferable.
 前記遷移金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Au、Ag、Cu、Pd、Pt、Ni、Ti、Cr、Phなどが挙げられる。
 また、前記導電性微粒子の材質としては、上記例示したものを、1種単独で使用してもよいし、2種以上を併用してもよく、また適宜合成したものであってもよいし、市販品であってもよい。
There is no restriction | limiting in particular as said transition metal, According to the objective, it can select suitably, For example, Au, Ag, Cu, Pd, Pt, Ni, Ti, Cr, Ph etc. are mentioned.
Further, as the material of the conductive fine particles, those exemplified above may be used alone, in combination of two or more, or may be appropriately synthesized, Commercial products may be used.
 前記導電性微粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球形、ワイヤー状、針状、不定形などが挙げられる。 The shape of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include spherical shapes, wire shapes, needle shapes, and irregular shapes.
 前記導電性微粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1,000nm以下が好ましく、200nm以下がより好ましく、150nm以下が特に好ましい。
 前記導電性微粒子の平均粒子径が150nmを超えると、前記微細構造体が形成されにくいことがある。
 前記導電性微粒子の平均粒子径の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、動的光散乱法、レーザー回析法、画像イメージング法、重力沈殿法などが挙げられる。
There is no restriction | limiting in particular as an average particle diameter of the said electroconductive fine particle, Although it can select suitably according to the objective, 1,000 nm or less is preferable, 200 nm or less is more preferable, 150 nm or less is especially preferable.
When the average particle diameter of the conductive fine particles exceeds 150 nm, the fine structure may be difficult to be formed.
The method for measuring the average particle diameter of the conductive fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the dynamic light scattering method, laser diffraction method, image imaging method, gravity precipitation method Etc.
 前記導電性微粒子の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単一部材で形成されていてもよいし、2種以上の部材で形成されていてもよく、後者の場合としては、例えば、コアシェル構造などであってもよい。 There is no restriction | limiting in particular as a structure of the said electroconductive fine particles, According to the objective, it can select suitably, For example, it may be formed with the single member and may be formed with 2 or more types of members. In the latter case, for example, a core-shell structure may be used.
 前記Si化合物膜における、前記導電性微粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01質量%~10質量%が好ましく、0.04質量%~1質量%がより好ましい。
 前記Si化合物膜における前記導電性微粒子の含有量が、0.01質量%未満であると、前記短パルスレーザーの照射回数が減らせず、10質量%を超えると、前記導電性微粒子由来の着色及びヘイズが生じることがある。
The content of the conductive fine particles in the Si compound film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01% by mass to 10% by mass, preferably 0.04% by mass. More preferably, 1% by mass.
When the content of the conductive fine particles in the Si compound film is less than 0.01% by mass, the number of times of irradiation with the short pulse laser cannot be reduced. When the content exceeds 10% by mass, coloring from the conductive fine particles and Haze may occur.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、溶媒などが挙げられる。
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機溶媒などが挙げられる。
 前記有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、キシレン、ジブチルエーテル、ジメチルエーテル、ジエチルエーテルなどが挙げられる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a solvent etc. are mentioned.
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, an organic solvent etc. are mentioned.
There is no restriction | limiting in particular as said organic solvent, According to the objective, it can select suitably, For example, xylene, dibutyl ether, dimethyl ether, diethyl ether etc. are mentioned.
--Si化合物膜の形成--
 前記Si化合物膜の形成方法としては、例えば、前記Si化合物と前記導電性微粒子と前記溶媒とを含有する微細構造体製造用組成物を、前記基材上に塗布する方法などが挙げられる。
 また、前記基材上に前記微細構造体製造用組成物を塗布する方法としては、特に制限はなく、目的に応じて選択することができ、例えば、ロールコート法、スプレーコート法、塗り込み法、スピンコート法、バーコート法、カーテンコート法、ダイコート法、ディップコート法などが挙げられる。
--Formation of Si compound film--
Examples of the method of forming the Si compound film include a method of applying a composition for manufacturing a microstructure containing the Si compound, the conductive fine particles, and the solvent on the substrate.
Moreover, the method for applying the composition for producing a microstructure on the substrate is not particularly limited and can be selected according to the purpose. For example, a roll coating method, a spray coating method, a coating method. , Spin coating method, bar coating method, curtain coating method, die coating method, dip coating method and the like.
--Si化合物膜の平均厚み--
 前記Si化合物膜の平均厚みとしては、特に制限はなく、目的に応じて選択することができるが、100nm~5μmが好ましい。
 前記平均厚みが、100nm未満であると、表面に微細な周期構造を形成することが困難となり、5μmを超えると、前記Si化合物膜がガラスに転化した際に割れが発生することがある。
 前記平均厚みの測定方法としては、特に制限はなく、目的に応じて選択することができ、例えば、反射率分光法、干渉間隔法、周波数解析法、触針法、断面SEM観察、断面TEM観察などが挙げられる。
--Average thickness of Si compound film--
The average thickness of the Si compound film is not particularly limited and can be selected according to the purpose, but is preferably 100 nm to 5 μm.
If the average thickness is less than 100 nm, it is difficult to form a fine periodic structure on the surface, and if it exceeds 5 μm, cracks may occur when the Si compound film is converted to glass.
The method for measuring the average thickness is not particularly limited and can be selected according to the purpose. For example, reflectance spectroscopy, interference interval method, frequency analysis method, stylus method, cross-sectional SEM observation, cross-sectional TEM observation Etc.
<加工工程>
 前記加工工程は、前記Si化合物膜に短パルスレーザーを照射し、前記Si化合物膜を加工する工程である。
<Processing process>
The processing step is a step of processing the Si compound film by irradiating the Si compound film with a short pulse laser.
<<短パルスレーザー>>
 前記短パルスレーザーは、パルスレーザーの中でも、特に発光時間(間隔)の短いもの(数ピコ秒~数フェムト秒)をいう。
 前記短パルスレーザーを照射するためには、一般的にレーザー照射装置が用いられる。前記レーザー照射装置を用いて、所定波長の短パルスレーザーを前記Si化合物膜に照射することにより、レーザー照射領域にその所定波長サイズ、もしくは所定波長より小さいサイズの周期構造を形成することができる。
 前記Si化合物膜に前記短パルスレーザーが照射されている時に、前記Si化合物膜中の前記Si化合物、もしくは前記導電性微粒子で電子が位置移動し、前記短パルスレーザーが照射されていない時に、前記Si化合物膜中の前記Si化合物、もしくは前記導電性微粒子で電子が元の位置に戻ろうとする。その繰り返しにより、電子の振動を起こすことができる。この電子の振動により、表面波が生じ、該表面波と前記短パルスレーザーとが干渉することより加工が行われる。また、前記Si化合物膜に照射するレーザーが短パルスであることにより、強いエネルギーを与えることができるため、前記Si化合物膜が加工されうる。
 なお、本発明においては、前記レーザー照射装置として、市販品のものを使用することができる。
<< Short pulse laser >>
The short pulse laser means a pulse laser having a short emission time (interval) (several picoseconds to several femtoseconds).
In order to irradiate the short pulse laser, a laser irradiation apparatus is generally used. By irradiating the Si compound film with a short pulse laser having a predetermined wavelength using the laser irradiation apparatus, a periodic structure having a predetermined wavelength size or a size smaller than the predetermined wavelength can be formed in the laser irradiation region.
When the Si compound film is irradiated with the short pulse laser, electrons move in the Si compound in the Si compound film or the conductive fine particles, and when the short pulse laser is not irradiated, The electrons try to return to the original position by the Si compound in the Si compound film or the conductive fine particles. By repeating this, vibration of electrons can be caused. Due to the vibration of the electrons, a surface wave is generated, and the surface wave and the short pulse laser interfere with each other to perform processing. Further, since the laser applied to the Si compound film is a short pulse, strong energy can be applied, so that the Si compound film can be processed.
In the present invention, a commercially available product can be used as the laser irradiation device.
-レーザー照射装置-
 前記短パルスレーザーを射出するレーザー照射装置の概略を図1に示す。レーザー本体1は、例えば、垂直方向に直接偏光したレーザー光(レーザー光と称することがある)を射出し、波長板2(λ/2波長板)を用いて、偏光方向を回転させることで、所望の方向の直接偏光を得ることができる。また、λ/2波長板の代替でλ/4波長板を用いることで、円偏光を得ることができる。また、本装置では、四角形の開口を有するアパチャー3を用いて、前記レーザー光の一部を取り出す。これは、前記レーザー光の強度分布がガウス分布となっているので、その中央付近のみを用いることで、面内強度分布の均一な前記レーザー光を得るようにしている。また、本装置では、直交させた2枚のシリンドリカルレンズ4を用いて、前記レーザー光を絞ることにより、所望のビームサイズとすることができる。所望のビームサイズの前記レーザー光は、リニアステージ6上のサンプル5に照射される。
-Laser irradiation device-
An outline of a laser irradiation apparatus for emitting the short pulse laser is shown in FIG. For example, the laser body 1 emits laser light that is directly polarized in the vertical direction (sometimes referred to as laser light), and rotates the polarization direction using a wave plate 2 (λ / 2 wave plate). Direct polarization in the desired direction can be obtained. Further, circularly polarized light can be obtained by using a λ / 4 wavelength plate instead of the λ / 2 wavelength plate. Further, in the present apparatus, a part of the laser beam is extracted using the aperture 3 having a square opening. This is because the intensity distribution of the laser beam is a Gaussian distribution, and the laser beam having a uniform in-plane intensity distribution is obtained by using only the vicinity of the center. Further, in this apparatus, a desired beam size can be obtained by narrowing down the laser beam using two orthogonal cylindrical lenses 4. The laser beam having a desired beam size is applied to the sample 5 on the linear stage 6.
 前記短パルスレーザーの制御因子としては、特に制限はなく、目的に応じて選択することができ、例えば、波長、フルーエンス、照射パルス数、パルス幅、ビームスポットなどが挙げられる。 The control factor of the short pulse laser is not particularly limited and can be selected according to the purpose. Examples thereof include wavelength, fluence, number of irradiation pulses, pulse width, beam spot, and the like.
-波長-
 前記波長としては、特に制限はなく、所望の周期構造に応じて266nm~1,570nmの範囲から適宜選択することができる。好ましくは266nm~800nmの範囲の波長である。更に好ましくは390nm~800nmの範囲の波長である。例えば、前記短パルスレーザーの波長は、800nm、400nm、266nmなどの所望の周期構造に応じて適宜選択された値をとることができる。
-wavelength-
The wavelength is not particularly limited and can be appropriately selected from a range of 266 nm to 1,570 nm according to a desired periodic structure. A wavelength in the range of 266 nm to 800 nm is preferable. More preferably, the wavelength is in the range of 390 nm to 800 nm. For example, the wavelength of the short pulse laser can take a value appropriately selected according to a desired periodic structure such as 800 nm, 400 nm, and 266 nm.
-フルーエンス-
 前記フルーエンス(fluence)とは、レーザーの1パルス当たりのエネルギーE(J)を照射断面積S(cm)で割ったエネルギー密度E/S(J/cm)である。所定のフルーエンスの範囲は、材料によって異なるが、0.01J/cm~1.0J/cmが好ましい。
 前記フルーエンスの値が、0.01J/cm未満であると、微細構造を形成できないことがあり、1.0J/cmを超えると、微細構造が消えてしまうことがある。
-Fluence-
The fluence is energy density E / S (J / cm 2 ) obtained by dividing the energy E (J) per pulse of the laser by the irradiation sectional area S (cm 2 ). Range of predetermined fluence varies depending on the material, 0.01J / cm 2 ~ 1.0J / cm 2 is preferred.
The value of the fluence is less than 0.01 J / cm 2, may be unable to form a fine structure, exceeding 1.0 J / cm 2, sometimes the fine structure disappears.
-照射パルス数-
 前記照射パルス数は、フルーエンスや周期構造の加工深さによるが、加工時間を短くするために、できる限り少ない方が好ましい。
 本発明の実施例において、必要な前記照射パルス数は、パルス周波数で制御しているため、とびとびの値をとる。なお、前記照射パルス数n(回)は、前記パルス周波数f(Hz)を用いて以下の式(1)で表すことができる。
  n=1/f  ・・・(1)
-Number of irradiation pulses-
The number of irradiation pulses depends on the fluence and the processing depth of the periodic structure, but is preferably as small as possible in order to shorten the processing time.
In the embodiment of the present invention, since the necessary number of irradiation pulses is controlled by the pulse frequency, it takes a discrete value. In addition, the said irradiation pulse number n (times) can be represented by the following formula | equation (1) using the said pulse frequency f (Hz).
n = 1 / f (1)
-パルス幅-
 前記パルス幅としては、特に制限はなく、目的に応じて適宜選択することができるが、短い方が好ましく、0.01ピコ秒(ps)~100ピコ秒(ps)が好ましい。
 前記パルス幅の値が、0.01ピコ秒(ps)未満であると、微細構造が形成されないことがあり、100ピコ秒(ps)を超えると、微細構造が形成されないことがある。
-pulse width-
The pulse width is not particularly limited and may be appropriately selected depending on the intended purpose. However, a shorter one is preferable, and 0.01 picosecond (ps) to 100 picosecond (ps) is preferable.
If the pulse width value is less than 0.01 picosecond (ps), a fine structure may not be formed, and if it exceeds 100 picosecond (ps), a fine structure may not be formed.
-ビームスポット-
 前記ビームスポットの形状は、四角形であることが好ましい。前記ビームスポットの整形は、例えば、アパチャーやシリンドリカルレンズ等によって行うことが可能である。また、ビームスポットにおけるレーザー光の強度分布は、できるだけ均一であることが好ましい。
 また、前記ビームスポット径としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、30μm~500μmが好ましい。
-Beam spot-
The beam spot preferably has a quadrangular shape. The beam spot can be shaped by using, for example, an aperture or a cylindrical lens. Further, it is preferable that the intensity distribution of the laser beam in the beam spot is as uniform as possible.
The beam spot diameter is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 30 μm to 500 μm.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、洗浄工程、焼成工程、酸化処理工程などが挙げられる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, a washing | cleaning process, a baking process, an oxidation treatment process, etc. are mentioned.
<<焼成工程>>
 前記焼成工程は、前記Si化合物膜に短パルスレーザーを照射した後、前記Si化合物膜を焼成する工程である。
 前記焼成工程は、前記Si化合物膜をガラスへと完全に転化する際に行われる。
 前記焼成工程における焼成温度としては、特に制限はなく、目的に応じて適宜選択することができるが、200℃~1,600℃が好ましい。
 前記焼成工程における焼成時間としては、特に制限はなく、目的に応じて適宜選択することができるが、一般には、Si化合物膜を完全にガラス化できる程度の時間が好ましい。
<< Baking process >>
The firing step is a step of firing the Si compound film after irradiating the Si compound film with a short pulse laser.
The firing step is performed when the Si compound film is completely converted into glass.
The firing temperature in the firing step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 200 ° C. to 1,600 ° C.
There is no restriction | limiting in particular as baking time in the said baking process, Although it can select suitably according to the objective, Generally the time of the grade which can fully vitrify Si compound film is preferable.
--微細構造体の用途--
 本発明の微細構造体の用途としては、特に制限はなく、目的に応じて適宜選択することができ、前記基材がガラスである場合には、光学部材として好適に使用することができ、例えば、自動車のフロントガラス、太陽熱発電の熱吸収管の表面ガラスなどが好適に挙げられる。
--- Applications of microstructures--
The use of the microstructure of the present invention is not particularly limited and can be appropriately selected according to the purpose. When the substrate is glass, it can be suitably used as an optical member. Preferred examples include a windshield of a car and a surface glass of a heat absorption tube of solar power generation.
 以下、本発明の実施例について詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.
 本実施例では、基材上にSi化合物膜を形成し、短パルスレーザーを照射する。その後、微細構造体を電界放射型走査型電子顕微鏡(FESEM:Field Emission-Scanning Electron Microscope、日立製作所製S-4700型)を用いて、表面観察及び元素分析を行った。 In this embodiment, a Si compound film is formed on a substrate and irradiated with a short pulse laser. Thereafter, the microstructure was subjected to surface observation and elemental analysis using a field emission scanning electron microscope (FESEM: Field Emission-Scanning Electron Microscope, Hitachi S-4700 type).
(実施例1)
 前記Si化合物としてのパーヒドロポリシラザン(商品名:アクアミカNN120、クラリアント社製)99.96質量部(溶媒分を除く)と前記導電性微粒子としての金粒子(製品名:AuDT、田中貴金属社製、平均粒子径;3nm)0.04質量部とを混合して、微細構造体製造用組成物を調製した。
 前記基材として板状のガラス(S9112、松浪硝子社製)を用い、前記基材上に前記微細構造体製造用組成物をバーコーターを用いて塗布し、平均厚みが1,500nmであるSi化合物膜を形成した。その後、前記Si化合物膜に前記Si化合物膜側から短パルスレーザーを下記の照射条件で照射した。
 なお、前記Si化合物膜の平均厚みは、膜厚測定システム(F20、フィルメトリクス社製)を用いて測定した。
<照射条件>
  装置        :IFRIT(サイバーレーザー社製)
  フルーエンス    :0.12J/cm
  パルス幅      :200fs
  周波数       :1kHz
  波長        :390nm
  ビームスポット   :300μm×120μm
Example 1
Perhydropolysilazane (trade name: Aquamica NN120, manufactured by Clariant) as the Si compound 99.96 parts by mass (excluding the solvent component) and gold particles (product name: AuDT, manufactured by Tanaka Kikinzoku Co., Ltd.), (Average particle diameter; 3 nm) 0.04 parts by mass was mixed to prepare a composition for producing a fine structure.
A plate-like glass (S9112, manufactured by Matsunami Glass Co., Ltd.) is used as the substrate, and the fine structure manufacturing composition is applied onto the substrate using a bar coater, and the average thickness is 1,500 nm. A compound film was formed. Thereafter, the Si compound film was irradiated with a short pulse laser from the Si compound film side under the following irradiation conditions.
The average thickness of the Si compound film was measured using a film thickness measurement system (F20, manufactured by Filmetrics).
<Irradiation conditions>
Device: IFRIT (manufactured by Cyber Laser)
Fluence: 0.12 J / cm 2
Pulse width: 200 fs
Frequency: 1kHz
Wavelength: 390 nm
Beam spot: 300 μm × 120 μm
<評価>
<<微細構造の形成に必要な照射パルス数>>
 照射パルス数は、パルス周波数で制御している。そのため、照射パルス数は、所定の回数で行った。本実施例における照射パルス数は8回、16回、33回、66回、125回、250回、500回、1,000回、2,000回、4,000回で行った。
 上記照射パルス数の照射を行った後にSEM観察を行い、平均最大径が150nm~500nmの微細構造が観察された最小の照射パルス数を、必要な照射パルス数とした。結果を表1に示した。
<Evaluation>
<< Number of irradiation pulses necessary for formation of fine structure >>
The number of irradiation pulses is controlled by the pulse frequency. Therefore, the number of irradiation pulses was performed a predetermined number of times. The number of irradiation pulses in this example was 8, 16, 33, 66, 125, 250, 500, 1,000, 2,000, and 4,000.
SEM observation was performed after irradiation with the number of irradiation pulses described above, and the minimum number of irradiation pulses in which a fine structure with an average maximum diameter of 150 nm to 500 nm was observed was defined as the necessary number of irradiation pulses. The results are shown in Table 1.
<<外観着色>>
 必要な照射パルス数の短パルスレーザーを照射した後の、Si化合物膜の外観着色を、目視により観察した。結果を表1に示した。
<< Appearance coloring >>
The appearance coloring of the Si compound film after irradiation with a short pulse laser having the required number of irradiation pulses was visually observed. The results are shown in Table 1.
(実施例2~21)
 実施例1において、Si化合物膜における導電性微粒子の種類、前記導電性微粒子の含有量、及び前記導電性微粒子の平均粒子径を表1に記載の通りに変更した以外は、実施例1と同様に微細構造体の製造を行い、実施例1と同様の評価を行った。結果を表1に示した。また、実施例5、及び8において微細構造の形成を続けた後のSEM写真をそれぞれ図2、及び3に示す。
(Examples 2 to 21)
Example 1 is the same as Example 1 except that the type of conductive fine particles in the Si compound film, the content of the conductive fine particles, and the average particle diameter of the conductive fine particles are changed as shown in Table 1. A fine structure was manufactured and the same evaluation as in Example 1 was performed. The results are shown in Table 1. Moreover, the SEM photograph after continuing formation of a fine structure in Example 5 and 8 is shown to FIG. 2 and 3, respectively.
(比較例1)
 実施例1において、基材上にSi化合物膜を形成しなかった以外は、実施例1と同様にして、前記基材に短パルスレーザーを照射し、実施例1と同様に評価を行った。結果を表1に示した。
(Comparative Example 1)
In Example 1, except that no Si compound film was formed on the substrate, the substrate was irradiated with a short pulse laser in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 実施例1において、前記導電性微粒子を用いなかった以外は、実施例1と同様にして、微細構造体の製造を行い、実施例1と同様に評価を行った。結果を表1に示した。
(Comparative Example 2)
In Example 1, a fine structure was produced in the same manner as in Example 1 except that the conductive fine particles were not used, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3~6)
 実施例2において、微粒子の種類、及び前記微粒子の含有量を表1に記載の通りに変更した以外は、実施例2と同様に微細構造体の製造を行い、実施例2と同様の評価を行った。結果を表1に示した。
(Comparative Examples 3 to 6)
In Example 2, the fine structure was produced in the same manner as in Example 2 except that the type of fine particles and the content of the fine particles were changed as shown in Table 1, and the same evaluation as in Example 2 was performed. went. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 以下に実施例、及び比較例で用いた微粒子の製品名及び製造会社名を記す。
Au(3nm):AuDT、田中貴金属社製(導電性微粒子;48.78×10[S/m])
Au(75nm):金、イオリテック社製(導電性微粒子;48.78×10[S/m])
Ag:銀、イオリテック社製(導電性微粒子;25×10[S/m])
Pd:パラジウム微粒子、QuantumSphereInc社製(導電性微粒子;10×10[S/m])
Cu:銅、イオリテック社製(導電性微粒子;64.5×10[S/m])
Si:シリコン、イオリテック社製(非導電性微粒子;2.5×10-4[S/m])
TiO:スーパータイタニアF-6、昭和電工社製(非導電性微粒子;10-12[S/m])
SiO:AEROSIL RX200;日本アエロジル社製(非導電性微粒子;10-14[S/m])
Figure JPOXMLDOC01-appb-T000001
The product names and manufacturing company names of the fine particles used in the examples and comparative examples are described below.
Au (3 nm): AuDT, manufactured by Tanaka Kikinzoku Co., Ltd. (conductive fine particles; 48.78 × 10 6 [S / m])
Au (75 nm): Gold, manufactured by Iritech Co. (conductive fine particles; 48.78 × 10 6 [S / m])
Ag: Silver, manufactured by Iritech (conductive fine particles; 25 × 10 6 [S / m])
Pd: Palladium fine particles, manufactured by QuantumSphere Inc. (conductive fine particles; 10 × 10 6 [S / m])
Cu: Copper, manufactured by Iritech Co. (conductive fine particles; 64.5 × 10 6 [S / m])
Si: Silicon, manufactured by Iritech (non-conductive fine particles; 2.5 × 10 −4 [S / m])
TiO 2 : Super Titania F-6, manufactured by Showa Denko KK (non-conductive fine particles; 10 −12 [S / m])
SiO 2 : AEROSIL RX200; manufactured by Nippon Aerosil Co., Ltd. (non-conductive fine particles; 10 −14 [S / m])
 パーヒドロポリシラザンに前記導電性微粒子を加えることで、必要な照射パルス数を減らすことができた。
 また、前記Si化合物に対する前記導電性微粒子の材質が、Au、Ag、Cuの場合では、Pdの場合よりも必要なパルス数を減らすことができた。この理由は、Au(48.78×10[S/m])、Ag(25×10[S/m])、Cu(64.5×10[S/m])の導電率がPd(10×10[S/m])のそれよりも大きいためであると考えられる。
 比較例1は照射パルス数が4,000でも微細構造体が形成されなかった。
By adding the conductive fine particles to perhydropolysilazane, the necessary number of irradiation pulses could be reduced.
In addition, when the material of the conductive fine particles with respect to the Si compound is Au, Ag, or Cu, the necessary number of pulses can be reduced as compared with the case of Pd. This is because the conductivity of Au (48.78 × 10 6 [S / m]), Ag (25 × 10 6 [S / m]), Cu (64.5 × 10 6 [S / m]) This is considered to be because it is larger than that of Pd (10 × 10 6 [S / m]).
In Comparative Example 1, no fine structure was formed even when the number of irradiation pulses was 4,000.
 本発明の微細構造体の製造方法は、適当なレーザーを用いることで、極力少ないエネルギーで効率良くかつ精度良く微細構造体を製造可能なため、自動車のフロントガラス、太陽熱発電の熱吸収管の表面ガラスのような光学部材などの微細構造体の製造に好適に用いることができる。 The fine structure manufacturing method of the present invention is capable of manufacturing a fine structure efficiently and accurately with as little energy as possible by using an appropriate laser. Therefore, the surface of an automobile windshield or solar power generation heat absorption tube It can use suitably for manufacture of microstructures, such as optical members like glass.
  1 レーザー本体
  2 波長板
  3 アパチャー
  4 シリンドリカルレンズ
  5 サンプル
  6 リニアステージ
1 Laser body 2 Wave plate 3 Aperture 4 Cylindrical lens 5 Sample 6 Linear stage

Claims (8)

  1.  基材上に、Si化合物と導電性微粒子とを含有するSi化合物膜を形成するSi化合物膜形成工程と、前記Si化合物膜に短パルスレーザーを照射し、前記Si化合物膜を加工する加工工程とを含むことを特徴とする微細構造体の製造方法。 A Si compound film forming step of forming a Si compound film containing a Si compound and conductive fine particles on a substrate; a processing step of irradiating the Si compound film with a short pulse laser to process the Si compound film; The manufacturing method of the fine structure characterized by including.
  2.  短パルスレーザーにおけるパルス幅が、0.01ps~100psである請求項1に記載の微細構造体の製造方法。 The method for producing a fine structure according to claim 1, wherein the pulse width of the short pulse laser is 0.01 ps to 100 ps.
  3.  Si化合物が、ポリシラザンである請求項1から2のいずれかに記載の微細構造体の製造方法。 The method for producing a fine structure according to any one of claims 1 to 2, wherein the Si compound is polysilazane.
  4.  導電性微粒子の導電率が、2.5×10-4[S/m]超である請求項1から3のいずれかに記載の微細構造体の製造方法。 The method for producing a microstructure according to any one of claims 1 to 3, wherein the conductivity of the conductive fine particles is more than 2.5 × 10 -4 [S / m].
  5.  Si化合物膜における、導電性微粒子の平均粒子径が、1,000nm以下である請求項1から4のいずれかに記載の微細構造体の製造方法。 The method for producing a fine structure according to any one of claims 1 to 4, wherein the average particle diameter of the conductive fine particles in the Si compound film is 1,000 nm or less.
  6.  短パルスレーザーの波長が、266nm~1,570nmである請求項1から5のいずれかに記載の微細構造体の製造方法。 6. The method for producing a fine structure according to claim 1, wherein the wavelength of the short pulse laser is 266 nm to 1,570 nm.
  7.  請求項1から6のいずれかに記載の微細構造体の製造方法により製造されたことを特徴とする微細構造体。 A microstructure produced by the method for producing a microstructure according to any one of claims 1 to 6.
  8.  請求項1から6のいずれかに記載の微細構造体の製造方法に用いられ、Si化合物と導電性微粒子とを含有することを特徴とする微細構造体製造用組成物。 A composition for producing a fine structure, which is used in the method for producing a fine structure according to any one of claims 1 to 6 and contains a Si compound and conductive fine particles.
PCT/JP2015/050145 2014-01-16 2015-01-06 Microstructure and manufacturing method thereof, and composition for manufacture of microstructure WO2015107938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005756 2014-01-16
JP2014005756A JP2015134360A (en) 2014-01-16 2014-01-16 Microstructure, manufacturing method of the same, and composition for manufacturing microstructure

Publications (1)

Publication Number Publication Date
WO2015107938A1 true WO2015107938A1 (en) 2015-07-23

Family

ID=53542828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050145 WO2015107938A1 (en) 2014-01-16 2015-01-06 Microstructure and manufacturing method thereof, and composition for manufacture of microstructure

Country Status (2)

Country Link
JP (1) JP2015134360A (en)
WO (1) WO2015107938A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798454B (en) * 2016-04-29 2017-09-12 西安交通大学 A kind of method that utilization nanosecond laser induction crackle prepares micron and nanometer composite structure
JP7407615B2 (en) * 2020-02-20 2024-01-04 日鉄ステンレス株式会社 Stainless steel, contact parts, and stainless steel manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562840A (en) * 1995-01-23 1996-10-08 Xerox Corporation Substrate reclaim method
JP2000079686A (en) * 1998-06-18 2000-03-21 Seiko Epson Corp Piezoelectric thin film element, original disc for producing piezoelectric thin film element ink jet recording head, and production thereof
JP2003277612A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Polymer composition and method for forming pattern
JP2011143615A (en) * 2010-01-14 2011-07-28 Asahi Kasei E-Materials Corp Method for manufacturing three-dimensional structure, and three-dimensional structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562840A (en) * 1995-01-23 1996-10-08 Xerox Corporation Substrate reclaim method
JP2000079686A (en) * 1998-06-18 2000-03-21 Seiko Epson Corp Piezoelectric thin film element, original disc for producing piezoelectric thin film element ink jet recording head, and production thereof
JP2003277612A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Polymer composition and method for forming pattern
JP2011143615A (en) * 2010-01-14 2011-07-28 Asahi Kasei E-Materials Corp Method for manufacturing three-dimensional structure, and three-dimensional structure

Also Published As

Publication number Publication date
JP2015134360A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
Allahyari et al. Laser surface texturing of copper and variation of the wetting response with the laser pulse fluence
Milles et al. Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology
Ruffino et al. Controlled dewetting as fabrication and patterning strategy for metal nanostructures
Lang et al. High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min− 1 Fabrication Speed Barrier
Shi et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films
Ruffino et al. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation
Li et al. Morphology and composition on Al surface irradiated by femtosecond laser pulses
Lopez‐Santos et al. Anisotropic resistivity surfaces produced in ITO films by laser‐induced nanoscale self‐organization
Kunz et al. Large-area fabrication of low-and high-spatial-frequency laser-induced periodic surface structures on carbon fibers
Chen et al. Superhydrophobic micro-nano structures on silicone rubber by nanosecond laser processing
Kopani et al. Effect of etching time on structure of p-type porous silicon
Rajab et al. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air
RU2544892C1 (en) Method of producing micro- and nanostructures of surface of materials
WO2015107938A1 (en) Microstructure and manufacturing method thereof, and composition for manufacture of microstructure
Broadhead et al. Fabrication of gold–silicon nanostructured surfaces with reactive laser ablation in liquid
Gaudiuso et al. Tailoring the wettability of surface-textured copper using sub-THz bursts of femtosecond laser pulses
Hopp et al. Production of nanostructures on bulk metal samples by laser ablation for fabrication of low-reflective surfaces
JP6745318B2 (en) Fine structure, method for producing the same, and composition for producing fine structure
Lopez-Quintas et al. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide
Csontos et al. Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses
Frascaroli et al. Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO2 substrates
Piatkowski et al. Simultaneous Carburization, Oxidation, and Nitridation of Titanium Surface Using Ablation by Femtosecond Laser in n‐Heptane
Reinhardt et al. Free Form Growth of Carbon Nanotube Microarchitectures on Stainless Steel Controlled via Laser‐Stimulated Catalyst Formation
WO2015079860A1 (en) Microstructure, method for producing same, and composition for producing microstructure
Schröder et al. Heating influence on hierarchical structures fabricated by direct laser interference patterning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737307

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737307

Country of ref document: EP

Kind code of ref document: A1