WO2015107736A1 - Optical device and manufacturing method therefor - Google Patents
Optical device and manufacturing method therefor Download PDFInfo
- Publication number
- WO2015107736A1 WO2015107736A1 PCT/JP2014/077422 JP2014077422W WO2015107736A1 WO 2015107736 A1 WO2015107736 A1 WO 2015107736A1 JP 2014077422 W JP2014077422 W JP 2014077422W WO 2015107736 A1 WO2015107736 A1 WO 2015107736A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- optical device
- light
- excitation light
- residual excitation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2558—Reinforcement of splice joint
Definitions
- the present invention relates to an optical device having a connection portion between optical fibers for transmitting laser light and a method for manufacturing the same.
- the double clad fiber has a core to which an active element such as a rare earth element is added, and has a first clad having a lower refractive index than the core around the core. Further, a second cladding having a lower refractive index than the first cladding is provided around the first cladding. Excitation light is introduced from the excitation light source into the first cladding around the core, and the signal light propagates in the core to which the active element is added. Thereby, the signal light is amplified in the double clad fiber, and then introduced into the single clad fiber that is fusion-spliced with the double clad fiber, and transmitted through the single clad fiber.
- an active element such as a rare earth element
- the residual excitation light remaining without being absorbed by the active element is also incident from the double clad fiber to the single clad fiber.
- the residual excitation light generates heat in the coating in the process of propagating through the clad of the single clad fiber. This heat degrades the coating and, in the worst case, can lead to breakage of the single clad fiber.
- Patent Documents 1 and 2 describe a technique in which residual excitation light is released outside the clad and is converted into heat in the vicinity of the fusion spliced portion between the optical fibers.
- the fusion-bonded portion between the double-clad fibers is disposed in a groove formed in the heat radiating plate in a state where the coating resin layer is peeled off, and the double-clad fiber is disposed in the groove.
- a transparent resin having a refractive index larger than that of the clad is filled, and the fusion splicing portion is covered with a transparent resin layer (filled resin layer).
- the residual excitation light leaks from the clad through the filling resin layer and is converted into heat in the heat sink.
- the coating resin layer of the single clad fiber is removed and exposed in the vicinity of the fusion spliced portion between the double clad fiber and the single clad fiber. Further, the exposed portion is covered with a resin layer (filled resin layer) having a refractive index larger than that of the cladding, and the resin is covered with an aluminum block. As a result, the residual excitation light leaks from the clad of the single clad fiber through the filling resin layer and is converted into heat in the heat sink.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2011-211220 (published on October 20, 2011)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-310277 (published on Dec. 25, 2008)”
- the above-described conventional configuration simply has a higher refractive index than the cladding of the optical fiber, and leaks residual excitation light from the cladding to the filling resin layer covering the cladding. For this reason, there is a problem that residual excitation light incident on the filling resin layer from the clad tends to concentrate on a part of the filling resin layer, and local deterioration of the filling resin layer occurs.
- a resin having a low light absorption rate transparent resin
- an optical device having high output residual excitation light because the light absorption rate cannot be reduced to zero. This local light absorption becomes a reliability bottleneck. This problem also applies to the leakage light of the signal light from the core.
- the present invention provides an optical device having a configuration in which residual excitation light incident from the optical fiber cladding and leakage light of signal light from the core are difficult to concentrate on a part of the resin layer covering the connection portion between the optical fibers, and the manufacturing thereof.
- the purpose is to provide a method.
- the optical device of the present invention includes a first optical fiber having a core coated with a clad, a second optical fiber having a core coated with a clad and connected to the first optical fiber at a connection portion, A connection that covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes dispersed particulate scatterers that scatter incident light from the connection portion and the vicinity region. And a partial resin layer.
- region vicinity contain the particle-like scatterer which scatters incident light are disperse
- connection part of the 1st optical fiber and the 2nd optical fiber when the axis gap of the core of the 1st optical fiber and the core of the 2nd optical fiber has arisen, the signal light transmitted in the core A part of the light becomes leaked light and enters the connecting portion resin layer from the core through the clad.
- residual pumping light propagating through the cladding of the first optical fiber (remaining pumping light used to amplify the signal light in the core) also enters the connecting portion resin layer.
- the leakage light and residual excitation light of the signal light incident on the connection portion resin layer are scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- connection resin layer may have a refractive index larger than that of the cladding of the first and second optical fibers.
- the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connecting portion resin layer larger than that of the first and second optical fibers. Incident.
- the residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- the leakage light of the signal light from the connection part enters the connection part resin layer through the clad through the core and the residual excitation light, and the scatterer is present in the connection part resin layer. Scatter in the layer.
- connection portion resin layer the residual excitation light and the leaked light of the signal light incident on the connection portion resin layer are scattered over a wide area in the connection portion resin layer and do not concentrate on a part of the connection portion resin layer.
- connection resin layer has a refractive index smaller than that of the cladding of the first and second optical fibers, and the scatterer is smaller than the cladding of the first and second optical fibers. It is good also as a structure with a large refractive index.
- the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connection resin layer that is smaller than the refractive index of the cladding of the first and second optical fibers. It is difficult to directly enter the layer.
- the refractive index of the scatterer is higher than the refractive index of the cladding of the first and second optical fibers, the residual excitation light easily enters the scatterer that is in contact with the outer peripheral surface of the cladding.
- the residual excitation light that has reached the connection resin layer enters the scatterer that is in contact with the outer peripheral surface of the clad while propagating through the clad, and is scattered in the connection resin layer by the scatterer.
- connection part resin layer has a scatterer in the connection part resin layer. Scatter in the resin layer.
- connection resin layer in a wide range in the axial direction of the first and second optical fibers, and are concentrated on a part of the connection resin layer. Is definitely avoided. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
- connection portion resin layer includes a first portion provided so as to cover the connection portion, and a side in a direction in which residual excitation light propagates to the first portion.
- a second portion provided adjacent to the portion, and the second portion may include more scatterers than the first portion.
- the intensity of the residual pumping light incident on the connection resin layer from the first or second optical fiber becomes stronger on the upstream side in the propagation direction of the residual pumping light propagating through the first optical fiber, and weaker on the downstream side in the propagation direction. Become. Therefore, when the content of the scatterer in the connection portion resin layer is uniform, the intensity of the residual excitation light scattered from the scatterer and emitted from the connection portion resin layer becomes stronger on the upstream side in the propagation direction, It becomes weak downstream in the propagation direction.
- connection portion resin layer when the intensity of the residual excitation light emitted from the connection portion resin layer is biased, for example, a part of the heat dissipation member that covers the outer periphery of the connection portion resin layer is locally heated, and the connection portion around the portion There may be a problem that the deterioration of the resin layer is promoted.
- the content of the scatterer in the connecting portion resin layer is decreased on the upstream side in the propagation direction and increased on the upstream side in the propagation direction. ing.
- the content of the scatterer in the connection resin is reduced in the first part where the stronger residual excitation light is incident, and is increased in the second part where the weaker residual excitation light is incident.
- the residual excitation light incident on the connection resin and propagating through the connection resin has a vector in the upstream to downstream direction. Therefore, in the second part having a higher content of scatterers than in the first part, the ratio of the residual excitation light converted in the vector direction (from upstream to downstream) is increased, and the residual excitation light directed outward is reduced. To increase. For this reason, the intensity
- the optical device may include a heat radiating member that covers at least a part of the outer periphery of the connection portion resin layer and converts the leakage light of the residual excitation light and the signal light into heat.
- the residual excitation light and the leaked light of the signal light reaching the heat radiating member from the connecting portion resin layer are converted into heat by the heat radiating member.
- the residual excitation light and the leaked light of the signal light are scattered in the connecting portion resin layer, so that local heat is not generated by being concentrated on a part of the heat dissipation member.
- fever of a heat radiating member arises and the situation where the connection part resin layer of the part deteriorates can be prevented.
- the optical device manufacturing method of the present invention includes a step of connecting a first optical fiber whose core is covered with a clad and a second optical fiber whose core is covered with a clad, and the first optical fiber. Covering the clad of the first and second optical fibers at a connection portion between the first optical fiber and the second optical fiber with a connection portion resin layer containing dispersed particulate scatterers that scatter incident light It is characterized by having.
- connection part resin layer containing the state which disperse
- the residual excitation light propagating through the cladding of the first optical fiber reaches the region where the connection resin layer is provided, it enters the connection resin layer from the cladding.
- the refractive index of the connecting portion resin layer is larger than the refractive index of the cladding, the residual excitation light is directly incident on the connecting portion resin layer, and the refractive index of the connecting portion resin layer is higher than the refractive index of the cladding. If it is smaller, the light enters the connecting portion resin layer through a scatterer in contact with the outer peripheral surface of the clad. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of the scatterer.
- connection portion when the axial deviation between the core of the first optical fiber and the core of the second optical fiber occurs, a part of the signal light transmitted through the core becomes leakage light, and the core In the same manner as the residual excitation light, it enters the connecting portion resin layer through the cladding. Similarly to the residual excitation light, the leakage light of the signal light is also scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- connection resin layer that covers the connection portions of the first and second optical fibers it is possible to prevent the connection resin layer that covers the connection portions of the first and second optical fibers from being deteriorated due to residual excitation light and signal light leakage light. Can be improved.
- FIG. 1A is a longitudinal sectional view showing an optical device according to an embodiment of the present invention.
- FIG. 1B is a graph showing an outline of the temperature distribution in the optical device shown in FIG.
- FIG. 2A is a longitudinal sectional view showing an optical device of a comparative example.
- FIG. 2B is a graph showing an outline of the temperature distribution in the optical device shown in FIG. It is a longitudinal cross-sectional view which shows the optical device of the modification of the optical device shown to (a) of FIG.
- FIG. 4A is a longitudinal sectional view showing an optical device according to another embodiment of the present invention.
- FIG. 4B is a graph showing an outline of the temperature distribution in the optical device shown in FIG.
- FIG. 1A is a longitudinal sectional view showing an optical device 1 according to an embodiment of the present invention.
- FIG. 1B is a graph showing an outline of the temperature distribution in the optical device 1 shown in FIG.
- the optical device 1 is provided with the 1st optical fiber 11 and the 2nd optical fiber 12, and these 1st optical fiber 11 and the 2nd optical fiber 12 are fusion splicing parts ( The connection part) 13 is fusion-spliced.
- the first optical fiber 11 has a core 21 at the center, the core 21 is covered with a clad 22, and the clad 22 is covered with a coating resin layer 23.
- the refractive index of the cladding 22 is smaller than the refractive index of the core 21, and the refractive index of the coating resin layer 23 is smaller than the refractive index of the cladding 22.
- the above-described residual excitation light 17 propagates in the cladding 22.
- the second optical fiber 12 has a core 31 at the center, the core 31 is covered with a clad 32, and the clad 32 is covered with a coating resin layer 33.
- the refractive index of the cladding 32 is smaller than the refractive index of the core 21, and the refractive index of the coating resin layer 23 is larger than the refractive index of the cladding 32.
- the coating resin layers 23 and 33 are peeled off at the fusion splicing portion 13 and the vicinity thereof to expose the clads 22 and 33, and these exposed portions are the connecting portion resin layers. 14 is covered.
- the connecting portion resin layer 14 is a high refractive index resin layer made of a resin having a higher refractive index than the clads 22 and 33.
- the connecting portion resin layer 14 includes a particulate filler (particulate scatterer) 15.
- the refractive index of the filler 15 may be larger or smaller than that of the connecting portion resin layer 14, but it is necessary that it be different from the refractive index of the connecting portion resin layer 14.
- the filler 15 is formed in a particulate form, and although the material is not particularly limited, it is desirable that the filler 15 be a material having a low absorptance with respect to a wavelength propagating through the core and the clad. For example, quartz, silica, alumina or the like can be used.
- the periphery of the connecting portion resin layer 14 is covered with a heat radiating frame (heat radiating member) 16.
- the heat dissipating frame 16 is made of a material having good thermal conductivity, for example, metal.
- the residual excitation light 17 is a low refractive index resin layer in which the coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Therefore, it is difficult to leak from the coating resin layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 enters the connection portion resin layer 14 mainly from the clad 22 where the coating resin layer 23 of the first optical fiber 11 is interrupted in the region where the connection portion resin layer 14 is provided.
- the residual excitation light 17 incident on the connecting portion resin layer 14 is absorbed by the connecting portion resin layer 14 and becomes heat.
- the propagation direction of the residual excitation light 17 incident on the connection portion resin layer 14 is randomized by the filler 15, local heat generation due to the concentration of the residual excitation light 17 in a part does not occur.
- the residual excitation light 17 that has reached the heat radiating frame 16 without being absorbed by the connecting portion resin layer 14 is concentrated on a part of the heat radiating frame 16 and is not converted into heat, so that The first and second optical fibers 11 and 12 are converted into heat in a wide range in the axial direction.
- the temperature distribution (solid line) in the heat dissipating frame 16 is flat and spread over a wide range, as shown in FIG.
- the temperature distribution indicated by a two-dot chain line in FIG. 1B is that of an optical device 101 of a comparative example described later.
- the fusion splicing portion 13 when an axial shift occurs between the core 21 of the first optical fiber 11 and the core 31 of the second optical fiber 12, one of the signal lights transmitted through the cores 21 and 31. The portion becomes leaked light and enters the connecting portion resin layer 14 from the cores 21 and 31 through the clads 22 and 32. Similarly to the residual excitation light 17, the leakage light of the signal light is scattered in the connection portion resin layer 14 due to the presence of the filler 15 in the connection portion resin layer 14, and the first and second in the heat dissipation frame 16. It is converted into heat in a wide range in the axial direction of the optical fibers 11 and 12.
- FIG. 2A is a longitudinal sectional view showing an optical device 101 of a comparative example.
- FIG. 2B is a graph showing an outline of the temperature distribution in the optical device 101 shown in FIG.
- the coating resin layers 23 and 33 of the first and second optical fibers 11 and 12 are formed at the fusion splicing portion 13 and the vicinity thereof.
- the clad 22 and 33 are exposed by peeling off. These exposed portions are covered with a connecting portion resin layer 111 made of a resin having a higher refractive index than the clads 22 and 33.
- the connecting portion resin layer 111 does not include the filler 15.
- the residual excitation light 17 that has entered the connection portion resin layer 111 is directly connected to the connection portion resin layer 111 because the connection portion resin layer 111 does not include the filler 15. Proceed inside. For this reason, the residual excitation light 17 is concentrated on a part of the heat dissipation frame 16 and converted into heat. Thereby, the temperature distribution in the heat radiating frame body 16 becomes steep in a part of the heat radiating frame body 16 as shown in FIG. Similarly, the temperature distribution due to the leakage light of the signal light from the fusion splicing portion 13 is also steep in a part of the heat radiating frame 16.
- the heat dissipating frame 16 generates heat locally, and the heat causes a part of the connecting portion resin layer 14 to deteriorate, and the reliability of the optical device 1 decreases.
- the first optical fiber 11 and the second optical fiber 12 may be a single clad fiber, a double clad fiber, a combination of the same kind of clad fibers among double or more clad fibers, or a combination of different kinds of clad fibers. . This also applies to the following embodiments.
- FIG. 3 is a longitudinal sectional view showing an optical device 2 which is a modification of the optical device 1 shown in FIG.
- the optical device of the present embodiment is the optical device 1 in which the connecting portion resin layer 14 is covered with the heat dissipation frame 16, but is not limited thereto, as shown in FIG. It is good also as the optical device 2 in which the connection part resin layer 14 is not covered with the thermal radiation frame 16.
- FIG. 1 is the optical device 1 in which the connecting portion resin layer 14 is covered with the heat dissipation frame 16, but is not limited thereto, as shown in FIG. It is good also as the optical device 2 in which the connection part resin layer 14 is not covered with the thermal radiation frame 16.
- connection resin layer 14 is a high-refractive index resin layer made of a resin having a higher refractive index than the clads 22 and 33, as in the optical device 1, and includes a filler 15.
- the residual excitation light 17 incident on the connection resin layer 14 is scattered in the connection resin layer 14 due to the presence of the filler 15. Further, due to the axial displacement of the cores 21 and 31 at the fusion splicing portion 13, the leakage of the signal light incident on the connection portion resin layer 14 from the fusion splicing portion 13 is also present due to the presence of the filler 15. Scatter in layer 14. The residual excitation light 17 scattered in the connecting portion resin layer 14 and the leaked light of the signal light are then emitted into the air.
- the connection portion resin layer 14 when the residual excitation light 17 or the signal light has a high intensity, if the residual excitation light 17 and the leakage light of the signal light incident on the connection resin layer 14 are concentrated on a part of the connection resin layer 14, the connection The partial resin layer 14 is easily heated and deteriorates. However, in the optical device 2, the residual excitation light 17 and the leaked light of the signal light incident on the connection portion resin layer 14 are scattered due to the presence of the filler 15, so that the deterioration of the connection portion resin layer 14 can be prevented. .
- FIG. 4A is a longitudinal sectional view showing the optical device 41 according to the embodiment of the present invention.
- FIG. 4B is a graph showing an outline of the temperature distribution in the optical device 41 shown in FIG.
- the optical device 41 includes a connecting portion resin layer 51 instead of the connecting portion resin layer 14 of the optical device 1 (see FIG. 1A).
- Other configurations are the same as those of the optical device 1.
- the connecting portion resin layer 51 is a low refractive index resin layer made of a resin having a refractive index smaller than that of the clads 22 and 33.
- the connection resin layer 51 includes a particulate filler (particulate scatterer) 52.
- the refractive index of the filler 52 is larger than the refractive indexes of the clads 22 and 33.
- the material of the filler 52 may be the same as that of the filler 15.
- the residual excitation light 17 is a low refractive index resin layer in which the coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Therefore, it is difficult to leak from the coating resin layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 reaches the connecting portion resin layer 51.
- the refractive index of the connecting portion resin layer 51 is smaller than the refractive index of the claddings 22 and 33
- the refractive index of the filler 52 is larger than the refractive index of the claddings 22 and 33. Therefore, although the residual excitation light 17 does not easily enter the connection portion resin layer 51, the residual excitation light 17 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33.
- the residual excitation light 17 that has reached the connecting portion resin layer 51 is incident on the filler 52 that is in contact with the outer peripheral surface of the cladding 22, 33 while propagating through the cladding 22, 33. It is scattered in the connection part resin layer 51. Therefore, the residual excitation light 17 incident on the connecting portion resin layer 51 via the filler 52 is concentrated on a part of the heat dissipation frame 16 and is not converted into heat, and the first and second light in the heat dissipation frame 16 It is converted into heat in a wide range in the axial direction of the fibers 11 and 12. As a result, as shown in FIG. 4B, the temperature distribution (solid line) in the heat dissipation frame 16 of the optical device 41 is flatter and wider than the case of the optical device 1 (dashed line). It becomes.
- the clad 22, 33 is also applied to the leakage light of the signal light from the fusion splicing portion 13 that is generated when the core 21 and the core 31 are misaligned in the splicing splicing portion 13. Is incident on the filler 52 that is in contact with the outer peripheral surface of the optical fiber, is scattered by the filler 52, and is converted into heat in a wide range in the axial direction of the first and second optical fibers 11 and 12 in the heat dissipation frame 16.
- FIG. 5 is a longitudinal sectional view showing an optical device 42 which is a modification of the optical device 41 shown in FIG.
- the optical device 42 may be an optical device 42 in which the connecting portion resin layer 51 is not covered with the heat dissipation frame 16, as in the optical device 2.
- the residual excitation light 17 that has reached the connecting portion resin layer 51 is incident on the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33. It is scattered in the connection part resin layer 51. Further, the leakage light of the signal light generated due to the axial deviation of the cores 21 and 31 at the fusion splicing portion 13 is also incident on the filler 52 in contact with the outer peripheral surfaces of the clads 22 and 33 and is connected by the filler 52. Scattered into the resin layer 51. The residual excitation light 17 and the leaked light of the signal light scattered in the connecting portion resin layer 51 are then emitted into the air.
- connection part resin layer 51 is a low refractive index resin layer including the filler 52 in the optical device 42
- the connection part resin layer 14 illustrated in FIG. 3 is a high refractive index resin layer including the filler 15.
- the optical device 2 it is possible to further promote the scattering of the residual excitation light 17 and the leakage light of the signal light in the connection portion resin layer 51.
- FIG. 6 is a longitudinal sectional view showing the optical device 43 according to the embodiment of the present invention.
- the optical device 43 includes a first resin layer (first portion) 53 and a second resin layer instead of the connection resin layer 14 of the optical device 1 (see FIG. 1A).
- (Second portion) 54 is provided.
- Other configurations are the same as those of the optical device 1.
- the first resin layer 53 is provided so as to cover the fusion splicing portion 13 and the vicinity thereof, and the second resin layer 54 is disposed on the side of the first resin layer 53 in the direction in which the residual excitation light 17 propagates. 53 is provided adjacent.
- the first and second resin layers 53 and 54 are low refractive index resin layers made of a resin having a smaller refractive index than the clads 22 and 33.
- the first and second resin layers 53 and 54 include a particulate filler (particulate scatterer) 52, and the second resin layer 54 includes more filler 52 than the first resin layer 53. Yes.
- the refractive index of the filler 52 is larger than the refractive indexes of the clads 22 and 33.
- the material of the filler 52 may be the same as that of the filler 15.
- the content of the filler 52 (% by weight in the connecting portion resin layer) is 10% for the first resin layer 53 and 20% for the second resin layer 54.
- the residual excitation light 17 is a low-refractive-index resin layer whose coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Propagates from the layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 reaches the first resin layer 53.
- the refractive index of the first and second resin layers 53 and 54 is smaller than the refractive index of the claddings 22 and 33
- the refractive index of the filler 52 is larger than the refractive index of the claddings 22 and 33. Therefore, although the residual excitation light 17 is difficult to enter the first and second resin layers 53 and 54, the residual excitation light 17 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33.
- the residual excitation light 17 that has reached the first resin layer 53 propagates through the portions of the claddings 22 and 33 that are covered by the first and second resin layers 53 and 54, while the outer periphery of the claddings 22 and 33.
- the light enters the filler 52 in contact with the surface and is scattered by the filler 52 into the first and second resin layers 53 and 54. Therefore, the residual excitation light 17 incident on the first and second resin layers 53 and 54 via the filler 52 is concentrated on a part of the heat dissipation frame 16 and is not converted into heat, and thus the light in the heat dissipation frame 16. It is converted into heat in a wide range in the axial direction of the fibers 11 and 12.
- the clad 22, 33 is also applied to the leakage light of the signal light from the fusion splicing portion 13 that is generated when the core 21 and the core 31 are misaligned in the splicing splicing portion 13. Is incident on the filler 52 in contact with the outer peripheral surface of the optical fiber 11 and is scattered by the filler 52 and converted into heat in a wide range in the axial direction of the optical fibers 11 and 12 in the heat dissipation frame 16.
- the structure provided with the 1st and 2nd resin layers 53 and 54 of this Embodiment is applicable also to the optical device of other Embodiment.
- FIG. 7 is a longitudinal sectional view showing an optical device 44 which is a modification of the optical device 43 shown in FIG.
- the optical device 43 may be an optical device 44 in which the first and second resin layers 53 and 54 are not covered with the heat dissipation frame 16, as in the optical device 42.
- the residual excitation light 17 that has reached the first resin layer 53 is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33 covered by the first resin layer 53.
- the filler 52 is incident on the filler 52 and scattered by the filler 52 into the first and second resin layers 53 and 54. Further, the leakage light of the signal light generated due to the axial deviation of the cores 21 and 31 at the fusion splicing portion 13 is also incident on the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33, and is Further, the light is scattered in the second resin layers 53 and 54.
- the residual excitation light 17 and the leaked light of the signal light scattered in the first and second resin layers 53 and 54 are then emitted into the air.
- the first resin layer 53 having a relatively small filler 52 content and the second resin layer 54 having a relatively large filler 52 content are adjacent to each other in the direction in which the residual excitation light 17 propagates. Therefore, the amount of residual excitation light 17 emitted from the first and second resin layers 53 and 54 can be made uniform as compared with the optical device 42. Thereby, a part of members arranged around the first and second resin layers 53 and 54 are locally heated, and the heat prevents the first and second resin layers 53 and 54 from being deteriorated. can do.
- FIG. 8 is a longitudinal sectional view showing the optical device 45 according to the embodiment of the present invention.
- the optical device 45 includes a heat radiating member 55 instead of the heat radiating frame 16 of the optical device 41 (see FIG. 4).
- Other configurations are the same as those of the optical device 41.
- the heat radiating member 55 provided in the optical device 45 has a structure in which, for example, the upper side portion of the heat radiating frame body 16 is removed and the upper portion of the connection portion resin layer 51 is opened.
- the residual excitation light 17 propagates through the cladding 22 without leaking from the coating resin layer 23 because the coating resin layer 23 is a low refractive index resin layer smaller than the refractive index of the cladding 22. . Thereafter, the residual excitation light 17 reaches the connecting portion resin layer 51.
- the residual excitation light 17 that has reached the connecting portion resin layer 51 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33. Scattered into the layer 51.
- a part of the residual excitation light 17 incident on the connecting portion resin layer 51 through the filler 52 is emitted into the air from the upper portion where the heat radiating member 55 does not exist, and the rest is converted into heat by the heat radiating member 55.
- the residual excitation light 17 is not concentrated on a part of the heat radiating member 55 and converted into heat, but is converted into heat in a wide range in the axial direction of the first and second optical fibers 11 and 12 in the heat radiating member 55. Converted. Thereby, the temperature distribution in the heat dissipation member 55 of the optical device 45 is flat and spread over a wide range.
- the leakage light of the signal light from the fusion splicing portion 13 that is generated when the cores 21 and 31 are misaligned is also partly radiating member, similar to the residual excitation light 17.
- the light is emitted from the upper portion where 55 does not exist into the air, and the remainder is converted into heat by the heat radiating member 55.
- the configuration of the present embodiment is applicable not only to the optical device 41 (see FIG. 4) but also to the optical device 1 (see (a) in FIG. 1) and the optical device 43 (see FIG. 6).
- the optical device of the present invention includes a first optical fiber having a core coated with a clad, a second optical fiber having a core coated with a clad and connected to the first optical fiber at a connection portion, A connection that covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes dispersed particulate scatterers that scatter incident light from the connection portion and the vicinity region. And a partial resin layer.
- region vicinity contain the particle-like scatterer which scatters incident light are disperse
- connection part of the 1st optical fiber and the 2nd optical fiber when the axis gap of the core of the 1st optical fiber and the core of the 2nd optical fiber has arisen, the signal light transmitted in the core A part of the light becomes leaked light and enters the connecting portion resin layer from the core through the clad.
- residual pumping light propagating through the cladding of the first optical fiber (remaining pumping light used to amplify the signal light in the core) also enters the connecting portion resin layer.
- the leakage light and residual excitation light of the signal light incident on the connection portion resin layer are scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- connection resin layer may have a refractive index larger than that of the cladding of the first and second optical fibers.
- the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connecting portion resin layer larger than that of the first and second optical fibers. Incident.
- the residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- the leakage light of the signal light from the connection part enters the connection part resin layer through the clad through the core and the residual excitation light, and the scatterer is present in the connection part resin layer. Scatter in the layer.
- connection portion resin layer the residual excitation light and the leaked light of the signal light incident on the connection portion resin layer are scattered over a wide area in the connection portion resin layer and do not concentrate on a part of the connection portion resin layer.
- connection resin layer has a refractive index smaller than that of the cladding of the first and second optical fibers, and the scatterer is smaller than the cladding of the first and second optical fibers. It is good also as a structure with a large refractive index.
- the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connection resin layer that is smaller than the refractive index of the cladding of the first and second optical fibers. It is difficult to directly enter the layer.
- the refractive index of the scatterer is higher than the refractive index of the cladding of the first and second optical fibers, the residual excitation light easily enters the scatterer that is in contact with the outer peripheral surface of the cladding.
- the residual excitation light that has reached the connection resin layer enters the scatterer that is in contact with the outer peripheral surface of the clad while propagating through the clad, and is scattered in the connection resin layer by the scatterer.
- connection part resin layer has a scatterer in the connection part resin layer. Scatter in the resin layer.
- connection resin layer in a wide range in the axial direction of the first and second optical fibers, and are concentrated on a part of the connection resin layer. Is definitely avoided. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
- connection portion resin layer includes a first portion provided so as to cover the connection portion, and a side in a direction in which residual excitation light propagates to the first portion.
- a second portion provided adjacent to the portion, and the second portion may include more scatterers than the first portion.
- the intensity of the residual pumping light incident on the connection resin layer from the first or second optical fiber becomes stronger on the upstream side in the propagation direction of the residual pumping light propagating through the first optical fiber, and weaker on the downstream side in the propagation direction. Become. Therefore, when the content of the scatterer in the connection portion resin layer is uniform, the intensity of the residual excitation light scattered from the scatterer and emitted from the connection portion resin layer becomes stronger on the upstream side in the propagation direction, It becomes weak downstream in the propagation direction.
- connection portion resin layer when the intensity of the residual excitation light emitted from the connection portion resin layer is biased, for example, a part of the heat dissipation member that covers the outer periphery of the connection portion resin layer is locally heated, and the connection portion around the portion There may be a problem that the deterioration of the resin layer is promoted.
- the content of the scatterer in the connecting portion resin layer is decreased on the upstream side in the propagation direction and increased on the upstream side in the propagation direction. ing.
- the content of the scatterer in the connection resin is reduced in the first part where the stronger residual excitation light is incident, and is increased in the second part where the weaker residual excitation light is incident.
- the residual excitation light incident on the connection resin and propagating through the connection resin has a vector in the upstream to downstream direction. Therefore, in the second part having a higher content of scatterers than in the first part, the ratio of the residual excitation light converted in the vector direction (from upstream to downstream) is increased, and the residual excitation light directed outward is reduced. To increase. For this reason, the intensity
- the optical device may include a heat radiating member that covers at least a part of the outer periphery of the connection portion resin layer and converts the leakage light of the residual excitation light and the signal light into heat.
- the residual excitation light and the leaked light of the signal light reaching the heat radiating member from the connecting portion resin layer are converted into heat by the heat radiating member.
- the residual excitation light and the leaked light of the signal light are scattered in the connecting portion resin layer, so that local heat is not generated by being concentrated on a part of the heat dissipation member.
- fever of a heat radiating member arises and the situation where the connection part resin layer of the part deteriorates can be prevented.
- the optical device manufacturing method of the present invention includes a step of connecting a first optical fiber whose core is covered with a clad and a second optical fiber whose core is covered with a clad, and the first optical fiber. Covering the clad of the first and second optical fibers at a connection portion between the first optical fiber and the second optical fiber with a connection portion resin layer containing dispersed particulate scatterers that scatter incident light It is the structure equipped with.
- connection part resin layer containing the state which disperse
- the residual excitation light propagating through the cladding of the first optical fiber reaches the region where the connection resin layer is provided, it enters the connection resin layer from the cladding.
- the refractive index of the connecting portion resin layer is larger than the refractive index of the cladding, the residual excitation light is directly incident on the connecting portion resin layer, and the refractive index of the connecting portion resin layer is higher than the refractive index of the cladding. If it is smaller, the light enters the connecting portion resin layer through a scatterer in contact with the outer peripheral surface of the clad. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of the scatterer.
- connection portion when the axial deviation between the core of the first optical fiber and the core of the second optical fiber occurs, a part of the signal light transmitted through the core becomes leakage light, and the core In the same manner as the residual excitation light, it enters the connecting portion resin layer through the cladding. Similarly to the residual excitation light, the leakage light of the signal light is also scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
- the present invention can be used in an apparatus that connects optical fibers and amplifies signal light by pumping light.
- Optical device 11 First optical fiber 12 Second optical fiber 13 Fusion splicing part (connecting part) 14 Connection part resin layer 15 Filler (scattering body) 16 Heat dissipation frame (heat dissipation member) 17 Residual excitation light 21 Core 22 Cladding 23 Coating resin layer 31 Core 32 Cladding 33 Coating resin layer 42 to 45 Optical device 51 Connection part resin layer 52 Filler 53 First resin layer (first part) 54 Second resin layer (second portion)
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
An optical device (1) comprises: a first optical fiber (11); a second optical fiber (12); and a connection-part resin layer (14) that covers cladding (22, 32) of a melt-fusion connection part (13) of the first and second optical fibers (11, 12), and that includes a filler (15) which scatters incident light.
Description
本発明は、レーザ光を伝送する光ファイバ同士の接続部を有する光デバイスおよびその製造方法に関する。
The present invention relates to an optical device having a connection portion between optical fibers for transmitting laser light and a method for manufacturing the same.
従来、レーザ光を伝送する光デバイスとしては、例えば特許文献1に示すように、ダブルクラッドファイバにおいて信号光を増幅し、増幅された信号光をシングルクラッドファイバ(シングルモードファイバ)にて伝送する形態のものが知られている。
2. Description of the Related Art Conventionally, as an optical device for transmitting laser light, for example, as shown in Patent Document 1, a signal light is amplified in a double clad fiber, and the amplified signal light is transmitted in a single clad fiber (single mode fiber). Things are known.
具体的には、上記光デバイスにおいて、ダブルクラッドファイバは、希土類元素などの活性元素が添加されたコアを有し、このコアの周りにコアよりも低屈折率の第1クラッドを有する。さらに、第1クラッドの周りに、第1クラッドよりも低屈折率の第2クラッドを有する。コアの周りの第1クラッドには励起光源から励起光が導入され、信号光は、活性元素が添加されているコア内を伝播する。これにより、信号光は、ダブルクラッドファイバにおいて増幅され、その後、ダブルクラッドファイバと融着接続されているシングルクラッドファイバに導入され、シングルクラッドファイバによって伝送される。
Specifically, in the above optical device, the double clad fiber has a core to which an active element such as a rare earth element is added, and has a first clad having a lower refractive index than the core around the core. Further, a second cladding having a lower refractive index than the first cladding is provided around the first cladding. Excitation light is introduced from the excitation light source into the first cladding around the core, and the signal light propagates in the core to which the active element is added. Thereby, the signal light is amplified in the double clad fiber, and then introduced into the single clad fiber that is fusion-spliced with the double clad fiber, and transmitted through the single clad fiber.
ここで、ダブルクラッドファイバからシングルクラッドファイバへは、信号光に加えて、活性元素に吸収されずに残った残留励起光も入射する。この場合、残留励起光は、シングルクラッドファイバのクラッドを伝播する過程で被覆を発熱させる。この熱により、被覆が劣化し、最悪の場合には、シングルクラッドファイバの破断に至る可能性がある。
Here, in addition to the signal light, the residual excitation light remaining without being absorbed by the active element is also incident from the double clad fiber to the single clad fiber. In this case, the residual excitation light generates heat in the coating in the process of propagating through the clad of the single clad fiber. This heat degrades the coating and, in the worst case, can lead to breakage of the single clad fiber.
また、ダブルクラッドファイバとシングルクラッドファイバとの融着接続部において、軸ズレが生じた場合には、増幅された信号光の一部は、コアからの漏洩光となってクラッドに入射する。この場合には、残留励起光に加えて信号光の漏洩光もクラッドを伝播するので、上記の問題はさらに顕著となる。このような問題は、ダブルクラッドファイバとシングルクラッドファイバとを接続した場合に限らず、それら以外の光ファイバ同士を接続した場合にも同様に起こり得る。
In addition, when axial misalignment occurs in the fusion spliced portion between the double clad fiber and the single clad fiber, a part of the amplified signal light enters the clad as leaked light from the core. In this case, since the leakage light of the signal light propagates through the clad in addition to the residual excitation light, the above problem becomes more remarkable. Such a problem is not limited to the case where the double-clad fiber and the single-clad fiber are connected, but can also occur when other optical fibers are connected.
上記のような問題に対し、特許文献1,2には、光ファイバ同士の融着接続部付近において、残留励起光をクラッド外へ逃がし、さらに熱に変換する技術が記載されている。具体的には、特許文献1に記載の構成では、放熱板に形成した溝に、ダブルクラッドファイバ同士の融着接続部を被覆樹脂層を剥がした状態で配置し、上記溝にダブルクラッドファイバのクラッドよりも屈折率が大きい透明樹脂を充填し、透明樹脂層(充填樹脂層)にて上記融着接続部を覆っている。これにより、残留励起光は、クラッドから充填樹脂層を介して漏出し、放熱板において熱に変換される。
In response to the above problems, Patent Documents 1 and 2 describe a technique in which residual excitation light is released outside the clad and is converted into heat in the vicinity of the fusion spliced portion between the optical fibers. Specifically, in the configuration described in Patent Document 1, the fusion-bonded portion between the double-clad fibers is disposed in a groove formed in the heat radiating plate in a state where the coating resin layer is peeled off, and the double-clad fiber is disposed in the groove. A transparent resin having a refractive index larger than that of the clad is filled, and the fusion splicing portion is covered with a transparent resin layer (filled resin layer). Thereby, the residual excitation light leaks from the clad through the filling resin layer and is converted into heat in the heat sink.
また、特許文献2に記載の構成では、ダブルクラッドファイバとシングルクラッドファイバとの融着接続部付近において、シングルクラッドファイバの被覆樹脂層を除去して露出させている。さらにその露出部分をクラッドの屈折率よりも大きい屈折率を有する樹脂層(充填樹脂層)にて被覆し、さらにその樹脂の周りをアルミブロックで覆っている。これにより、残留励起光は、シングルクラッドファイバのクラッドから充填樹脂層を介して漏出し、放熱板において熱に変換される。
Further, in the configuration described in Patent Document 2, the coating resin layer of the single clad fiber is removed and exposed in the vicinity of the fusion spliced portion between the double clad fiber and the single clad fiber. Further, the exposed portion is covered with a resin layer (filled resin layer) having a refractive index larger than that of the cladding, and the resin is covered with an aluminum block. As a result, the residual excitation light leaks from the clad of the single clad fiber through the filling resin layer and is converted into heat in the heat sink.
しかしながら、上記従来の構成は、光ファイバのクラッドよりも単に屈折率が大きく、クラッドを覆う充填樹脂層へ、クラッドから残留励起光を漏出させるものである。このため、クラッドから充填樹脂層へ入射する残留励起光が充填樹脂層の一部分に集中し易く、充填樹脂層の局所的な劣化が生じてしまうという問題点を有している。光吸収率の低い樹脂(透明な樹脂)を用いることは従来技術として知られているとおりであるが、光吸収率を0(ゼロ)にはできないため、高出力な残留励起光を有する光デバイスに関しては、この局所的な光吸収が信頼性のボトルネックとなる。この問題は、コアからの信号光の漏洩光についても同様である。
However, the above-described conventional configuration simply has a higher refractive index than the cladding of the optical fiber, and leaks residual excitation light from the cladding to the filling resin layer covering the cladding. For this reason, there is a problem that residual excitation light incident on the filling resin layer from the clad tends to concentrate on a part of the filling resin layer, and local deterioration of the filling resin layer occurs. Although it is known as a prior art to use a resin having a low light absorption rate (transparent resin), an optical device having high output residual excitation light because the light absorption rate cannot be reduced to zero. This local light absorption becomes a reliability bottleneck. This problem also applies to the leakage light of the signal light from the core.
したがって、本発明は、光ファイバ同士の接続部を覆う樹脂層の一部分に、光ファイバのクラッドから入射する残留励起光やコアからの信号光の漏洩光が集中し難い構成の光デバイスおよびその製造方法の提供を目的としている。
Therefore, the present invention provides an optical device having a configuration in which residual excitation light incident from the optical fiber cladding and leakage light of signal light from the core are difficult to concentrate on a part of the resin layer covering the connection portion between the optical fibers, and the manufacturing thereof. The purpose is to provide a method.
本発明の光デバイスは、コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆され、前記第1光ファイバと接続部にて接続された第2光ファイバと、前記接続部およびその近傍領域における前記第1および第2光ファイバの前記クラッドを覆うとともに、前記接続部およびその近傍領域からの入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層とを備えていることを特徴としている。
The optical device of the present invention includes a first optical fiber having a core coated with a clad, a second optical fiber having a core coated with a clad and connected to the first optical fiber at a connection portion, A connection that covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes dispersed particulate scatterers that scatter incident light from the connection portion and the vicinity region. And a partial resin layer.
上記の構成によれば、第1光ファイバと第2光ファイバとの接続部およびその近傍領域におけるクラッドは、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層にて覆われている。
According to said structure, the connection part resin layer in which the connection part of a 1st optical fiber and a 2nd optical fiber and the cladding in the area | region vicinity contain the particle-like scatterer which scatters incident light are disperse | distributed Covered with
ここで、第1光ファイバと第2光ファイバとの接続部において、第1光ファイバのコアと第2光ファイバのコアとの軸ずれが生じている場合、コア内を伝送されている信号光の一部は、漏洩光となって、コアからクラッドを介し、接続部樹脂層に入射する。また、第1光ファイバのクラッドを伝播する残留励起光(コア内の信号光の増幅に使用された励起光のうちの残ったもの)も、同様にして、接続部樹脂層に入射する。接続部樹脂層に入射した信号光の漏洩光および残留励起光は、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
Here, in the connection part of the 1st optical fiber and the 2nd optical fiber, when the axis gap of the core of the 1st optical fiber and the core of the 2nd optical fiber has arisen, the signal light transmitted in the core A part of the light becomes leaked light and enters the connecting portion resin layer from the core through the clad. Similarly, residual pumping light propagating through the cladding of the first optical fiber (remaining pumping light used to amplify the signal light in the core) also enters the connecting portion resin layer. The leakage light and residual excitation light of the signal light incident on the connection portion resin layer are scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
これにより、接続部樹脂層の一部分に集中して、残留励起光や信号光の漏洩光が進行する事態が回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を防止することができ、光デバイスの信頼性を向上することができる。
This avoids a situation in which the residual excitation light and the leakage light of the signal light proceed due to concentration on a part of the connecting portion resin layer. As a result, it is possible to prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きい構成としてもよい。
In the above optical device, the connection resin layer may have a refractive index larger than that of the cladding of the first and second optical fibers.
上記の構成によれば、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層の屈折率が第1および第2光ファイバの屈折率よりも大きいので、接続部樹脂層に入射する。そして、接続部樹脂層に入射した残留励起光は、接続部樹脂層内に散乱体が存在することにより、接続部樹脂層内おいて散乱する。また、接続部からの信号光の漏洩光は、コアからクラッドを介し、残留励起光と同様、接続部樹脂層に入射し、接続部樹脂層内に散乱体が存在することにより、接続部樹脂層内において散乱する。
According to the above configuration, for example, the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connecting portion resin layer larger than that of the first and second optical fibers. Incident. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer. In addition, the leakage light of the signal light from the connection part enters the connection part resin layer through the clad through the core and the residual excitation light, and the scatterer is present in the connection part resin layer. Scatter in the layer.
このように、接続部樹脂層に入射した残留励起光および信号光の漏洩光は、接続部樹脂層内の広い範囲に散乱し、接続部樹脂層の一部分に集中して進行することがない。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を確実に防止することができ、光デバイスの信頼性をさらに向上することができる。
Thus, the residual excitation light and the leaked light of the signal light incident on the connection portion resin layer are scattered over a wide area in the connection portion resin layer and do not concentrate on a part of the connection portion resin layer. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が小さく、かつ前記散乱体は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きい構成としてもよい。
In the above optical device, the connection resin layer has a refractive index smaller than that of the cladding of the first and second optical fibers, and the scatterer is smaller than the cladding of the first and second optical fibers. It is good also as a structure with a large refractive index.
上記の構成によれば、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層の屈折率が第1および第2光ファイバのクラッドの屈折率よりも小さいので、接続部樹脂層には直接的に入射し難い。しかしながら、残留励起光は、散乱体の屈折率が第1および第2光ファイバのクラッドの屈折率よりも大きいので、クラッドの外周面に接触している散乱体には容易に入射する。
According to the above configuration, for example, the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connection resin layer that is smaller than the refractive index of the cladding of the first and second optical fibers. It is difficult to directly enter the layer. However, since the refractive index of the scatterer is higher than the refractive index of the cladding of the first and second optical fibers, the residual excitation light easily enters the scatterer that is in contact with the outer peripheral surface of the cladding.
したがって、接続部樹脂層に達した残留励起光は、クラッド内を伝播しながら、クラッドの外周面に接触している散乱体に入射していき、散乱体によって接続部樹脂層内に散乱する。
Therefore, the residual excitation light that has reached the connection resin layer enters the scatterer that is in contact with the outer peripheral surface of the clad while propagating through the clad, and is scattered in the connection resin layer by the scatterer.
また、接続部からの信号光の漏洩光は、コアからクラッドを介し、残留励起光と同様にして、接続部樹脂層に入射し、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
In addition, the leakage light of the signal light from the connection part enters the connection part resin layer through the core through the cladding in the same manner as the residual excitation light, and the connection part resin layer has a scatterer in the connection part resin layer. Scatter in the resin layer.
これにより、残留励起光および信号光の漏洩光は、第1および第2光ファイバの軸方向の広い範囲にて接続部樹脂層に入射し、接続部樹脂層の一部分に集中して入射する事態が確実に回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を確実に防止することができ、光デバイスの信頼性をさらに向上することができる。
As a result, the residual excitation light and the leakage light of the signal light are incident on the connection resin layer in a wide range in the axial direction of the first and second optical fibers, and are concentrated on a part of the connection resin layer. Is definitely avoided. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記接続部を覆うように設けられた第1の部分と、前記第1の部分に対する残留励起光が伝播する方向の側に、前記第1の部分に隣接して設けられた第2の部分とを含み、前記第2の部分は、前記第1の部分よりも前記散乱体を多く含んでいる構成としてもよい。
In the above optical device, the connection portion resin layer includes a first portion provided so as to cover the connection portion, and a side in a direction in which residual excitation light propagates to the first portion. A second portion provided adjacent to the portion, and the second portion may include more scatterers than the first portion.
第1または第2光ファイバから接続部樹脂層に入射する残留励起光の強度は、第1光ファイバを伝播する残留励起光の伝播方向の上流側で強くなり、前記伝播方向の下流側で弱くなる。したがって、接続部樹脂層における散乱体の含有量が一様である場合、散乱体により散乱されて接続部樹脂層から出射する残留励起光の強度は、前記伝播方向の上流側で強くなり、前記伝播方向の下流側で弱くなる。このように、接続部樹脂層から出射される残留励起光の強度に偏りが生じると、例えば、接続部樹脂層の外周を覆う放熱部材の一部分が局所的に加熱され、当該部分周辺の接続部樹脂層の劣化が促進されるといった問題を生じ得る。
The intensity of the residual pumping light incident on the connection resin layer from the first or second optical fiber becomes stronger on the upstream side in the propagation direction of the residual pumping light propagating through the first optical fiber, and weaker on the downstream side in the propagation direction. Become. Therefore, when the content of the scatterer in the connection portion resin layer is uniform, the intensity of the residual excitation light scattered from the scatterer and emitted from the connection portion resin layer becomes stronger on the upstream side in the propagation direction, It becomes weak downstream in the propagation direction. In this way, when the intensity of the residual excitation light emitted from the connection portion resin layer is biased, for example, a part of the heat dissipation member that covers the outer periphery of the connection portion resin layer is locally heated, and the connection portion around the portion There may be a problem that the deterioration of the resin layer is promoted.
このような問題が生じることを回避するために、上記の構成においては、接続部樹脂層における散乱体の含有量を、前記伝播方向の上流側において少なくし、前記伝播方向の上流側において多くしている。換言すれば、接続部樹脂における散乱体の含有量を、より強い残留励起光が入射する第1の部分で少なくし、より弱い残留励起光が入射する第2の部分で多くしている。
In order to avoid such a problem, in the above configuration, the content of the scatterer in the connecting portion resin layer is decreased on the upstream side in the propagation direction and increased on the upstream side in the propagation direction. ing. In other words, the content of the scatterer in the connection resin is reduced in the first part where the stronger residual excitation light is incident, and is increased in the second part where the weaker residual excitation light is incident.
ここで、接続部樹脂に入射して接続部樹脂内を伝搬する残留励起光は、上流から下流方向のベクトルを有している。したがって、第1の部分よりも散乱体の含有量が多い第2の部分では、ベクトルの方向(上流から下流方向)が変換される残留励起光の割合が多くなり、外側に向かう残留励起光が増加する。このため、接続部樹脂層から出射される残留励起光の強度の偏りは、接続部樹脂層における散乱体の含有量が一様である場合と比べて小さくなる。その結果、例えば、接続部樹脂層の外周を覆う放熱部材の一部分が局所的に加熱され、当該部分周辺の接続部樹脂層の劣化が促進されるといった問題が生じ難くなる。
Here, the residual excitation light incident on the connection resin and propagating through the connection resin has a vector in the upstream to downstream direction. Therefore, in the second part having a higher content of scatterers than in the first part, the ratio of the residual excitation light converted in the vector direction (from upstream to downstream) is increased, and the residual excitation light directed outward is reduced. To increase. For this reason, the intensity | strength deviation of the residual excitation light radiate | emitted from a connection part resin layer becomes small compared with the case where content of the scatterer in a connection part resin layer is uniform. As a result, for example, a part of the heat radiating member covering the outer periphery of the connection portion resin layer is locally heated, and the problem that the deterioration of the connection portion resin layer around the portion is less likely to occur.
上記の光デバイスは、前記接続部樹脂層の外周の少なくとも一部を覆い、前記残留励起光および前記信号光の漏洩光を熱に変換する放熱部材を備えている構成としてもよい。
The optical device may include a heat radiating member that covers at least a part of the outer periphery of the connection portion resin layer and converts the leakage light of the residual excitation light and the signal light into heat.
上記の構成によれば、接続部樹脂層から放熱部材に達した残留励起光および信号光の漏洩光は、放熱部材によって熱に変換される。この場合、残留励起光および信号光の漏洩光は、接続部樹脂層内に散乱しているので、放熱部材の一部分に集中して局所的な発熱が生じることがない。これにより、放熱部材の局所的な発熱が生じてその部分の接続部樹脂層が劣化する事態を防止することができる。
According to the above configuration, the residual excitation light and the leaked light of the signal light reaching the heat radiating member from the connecting portion resin layer are converted into heat by the heat radiating member. In this case, the residual excitation light and the leaked light of the signal light are scattered in the connecting portion resin layer, so that local heat is not generated by being concentrated on a part of the heat dissipation member. Thereby, the local heat_generation | fever of a heat radiating member arises and the situation where the connection part resin layer of the part deteriorates can be prevented.
本発明の光デバイスの製造方法は、コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆されている第2光ファイバとを接続する工程と、前記第1光ファイバと前記第2光ファイバとの接続部における前記第1および前記第2光ファイバの前記クラッドを、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層により覆う工程とを備えていることを特徴としている。
The optical device manufacturing method of the present invention includes a step of connecting a first optical fiber whose core is covered with a clad and a second optical fiber whose core is covered with a clad, and the first optical fiber. Covering the clad of the first and second optical fibers at a connection portion between the first optical fiber and the second optical fiber with a connection portion resin layer containing dispersed particulate scatterers that scatter incident light It is characterized by having.
上記の構成によれば、第1光ファイバと第2光ファイバとの接続部におけるクラッドは、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層にて覆われる。
According to said structure, the clad in the connection part of a 1st optical fiber and a 2nd optical fiber is covered with the connection part resin layer containing the state which disperse | distributed the particulate scatterer which scatters incident light. .
したがって、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層が設けられている領域に達すると、クラッドから接続部樹脂層へ入射する。この場合、残留励起光は、接続部樹脂層の屈折率がクラッドの屈折率よりも大きければ、直接的に接続部樹脂層へ入射し、接続部樹脂層の屈折率がクラッドの屈折率よりも小さければ、クラッドの外周面に接触している散乱体を介して接続部樹脂層へ入射する。接続部樹脂層へ入射した残留励起光は、散乱体が存在することにより接続部樹脂層内において散乱する。
Therefore, for example, when the residual excitation light propagating through the cladding of the first optical fiber reaches the region where the connection resin layer is provided, it enters the connection resin layer from the cladding. In this case, if the refractive index of the connecting portion resin layer is larger than the refractive index of the cladding, the residual excitation light is directly incident on the connecting portion resin layer, and the refractive index of the connecting portion resin layer is higher than the refractive index of the cladding. If it is smaller, the light enters the connecting portion resin layer through a scatterer in contact with the outer peripheral surface of the clad. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of the scatterer.
また、接続部において、第1光ファイバのコアと第2光ファイバのコアとの軸ずれが生じている場合、コア内を伝送されている信号光の一部は、漏洩光となって、コアからクラッドを介し、残留励起光と同様にして、接続部樹脂層に入射する。この信号光の漏洩光についても、残留励起光と同様、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
In addition, in the connection portion, when the axial deviation between the core of the first optical fiber and the core of the second optical fiber occurs, a part of the signal light transmitted through the core becomes leakage light, and the core In the same manner as the residual excitation light, it enters the connecting portion resin layer through the cladding. Similarly to the residual excitation light, the leakage light of the signal light is also scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
これにより、接続部樹脂層の一部分に集中して、残留励起光や信号光の漏洩光が進行する事態が回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を防止することができ、光デバイスの信頼性を向上することができる。
This avoids a situation in which the residual excitation light and the leakage light of the signal light proceed due to concentration on a part of the connecting portion resin layer. As a result, it is possible to prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to improve the reliability of the optical device.
本発明の構成によれば、残留励起光や信号光の漏洩光によって、第1および第2光ファイバの接続部を覆う接続部樹脂層が劣化する事態を防止することができ、光デバイスの信頼性を向上することができる。
According to the configuration of the present invention, it is possible to prevent the connection resin layer that covers the connection portions of the first and second optical fibers from being deteriorated due to residual excitation light and signal light leakage light. Can be improved.
〔実施の形態1〕
本発明の実施の形態を図面に基づいて以下に説明する。 [Embodiment 1]
Embodiments of the present invention will be described below with reference to the drawings.
本発明の実施の形態を図面に基づいて以下に説明する。 [Embodiment 1]
Embodiments of the present invention will be described below with reference to the drawings.
(光デバイス1の構成)
図1の(a)は、本発明の実施の形態の光デバイス1を示す縦断面図である。図1の(b)は、図1の(a)に示した光デバイス1における温度分布の概要を示すグラフである。 (Configuration of optical device 1)
FIG. 1A is a longitudinal sectional view showing anoptical device 1 according to an embodiment of the present invention. FIG. 1B is a graph showing an outline of the temperature distribution in the optical device 1 shown in FIG.
図1の(a)は、本発明の実施の形態の光デバイス1を示す縦断面図である。図1の(b)は、図1の(a)に示した光デバイス1における温度分布の概要を示すグラフである。 (Configuration of optical device 1)
FIG. 1A is a longitudinal sectional view showing an
図1の(a)に示すように、光デバイス1は、第1光ファイバ11と第2光ファイバ12とを備え、これら第1光ファイバ11と第2光ファイバ12とが融着接続部(接続部)13において融着接続されている。
As shown to (a) of FIG. 1, the optical device 1 is provided with the 1st optical fiber 11 and the 2nd optical fiber 12, and these 1st optical fiber 11 and the 2nd optical fiber 12 are fusion splicing parts ( The connection part) 13 is fusion-spliced.
第1光ファイバ11は、中心部にコア21を有し、コア21の周りがクラッド22にて覆われ、クラッド22の周りが被覆樹脂層23にて覆われている。クラッド22の屈折率はコア21の屈折率よりも小さく、被覆樹脂層23の屈折率はクラッド22の屈折率よりも小さくなっている。クラッド22内には前述した残留励起光17が伝播する。
The first optical fiber 11 has a core 21 at the center, the core 21 is covered with a clad 22, and the clad 22 is covered with a coating resin layer 23. The refractive index of the cladding 22 is smaller than the refractive index of the core 21, and the refractive index of the coating resin layer 23 is smaller than the refractive index of the cladding 22. The above-described residual excitation light 17 propagates in the cladding 22.
第2光ファイバ12は、中心部にコア31を有し、コア31の周りがクラッド32にて覆われ、クラッド32の周りが被覆樹脂層33にて覆われている。クラッド32の屈折率はコア21の屈折率よりも小さく、被覆樹脂層23の屈折率はクラッド32の屈折率よりも大きくなっている。
The second optical fiber 12 has a core 31 at the center, the core 31 is covered with a clad 32, and the clad 32 is covered with a coating resin layer 33. The refractive index of the cladding 32 is smaller than the refractive index of the core 21, and the refractive index of the coating resin layer 23 is larger than the refractive index of the cladding 32.
第1および第2光ファイバ11,12は、融着接続部13およびその付近において、被覆樹脂層23,33が剥がされてクラッド22,33が露出しており、これら露出部分が接続部樹脂層14にて覆われている。接続部樹脂層14は、クラッド22,33よりも屈折率が大きい樹脂からなる高屈折率樹脂層である。
In the first and second optical fibers 11 and 12, the coating resin layers 23 and 33 are peeled off at the fusion splicing portion 13 and the vicinity thereof to expose the clads 22 and 33, and these exposed portions are the connecting portion resin layers. 14 is covered. The connecting portion resin layer 14 is a high refractive index resin layer made of a resin having a higher refractive index than the clads 22 and 33.
また、接続部樹脂層14は、粒子状のフィラー(粒子状の散乱体)15を含んでいる。本実施の形態において、フィラー15の屈折率は、接続部樹脂層14よりも大きくても小さくてもよいが、接続部樹脂層14の屈折率とは異なっていることが必要である。フィラー15は、粒子状に形成され、材質については特に限定されないものの、コアおよびクラッドを伝播する波長に対して吸収率が低い材料であることが望ましい。例えば石英、シリカあるいはアルミナ等を使用することができる。
Further, the connecting portion resin layer 14 includes a particulate filler (particulate scatterer) 15. In the present embodiment, the refractive index of the filler 15 may be larger or smaller than that of the connecting portion resin layer 14, but it is necessary that it be different from the refractive index of the connecting portion resin layer 14. The filler 15 is formed in a particulate form, and although the material is not particularly limited, it is desirable that the filler 15 be a material having a low absorptance with respect to a wavelength propagating through the core and the clad. For example, quartz, silica, alumina or the like can be used.
接続部樹脂層14の周りは放熱枠体(放熱部材)16にて覆われている。放熱枠体16は、熱伝導率が良好な材料、例えば金属にて形成されている。
The periphery of the connecting portion resin layer 14 is covered with a heat radiating frame (heat radiating member) 16. The heat dissipating frame 16 is made of a material having good thermal conductivity, for example, metal.
(光デバイス1の動作)
上記の構成において、第1光ファイバ11では、残留励起光17は、図1の(a)に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、接続部樹脂層14が設けられている領域において、主に第1光ファイバ11の被覆樹脂層23が途切れた位置のクラッド22から接続部樹脂層14へ入射する。 (Operation of optical device 1)
In the above configuration, in the firstoptical fiber 11, the residual excitation light 17 is a low refractive index resin layer in which the coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Therefore, it is difficult to leak from the coating resin layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 enters the connection portion resin layer 14 mainly from the clad 22 where the coating resin layer 23 of the first optical fiber 11 is interrupted in the region where the connection portion resin layer 14 is provided.
上記の構成において、第1光ファイバ11では、残留励起光17は、図1の(a)に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、接続部樹脂層14が設けられている領域において、主に第1光ファイバ11の被覆樹脂層23が途切れた位置のクラッド22から接続部樹脂層14へ入射する。 (Operation of optical device 1)
In the above configuration, in the first
次に、接続部樹脂層14へ入射した残留励起光17の一部は、接続部樹脂層14に吸収されて熱となる。この際、接続部樹脂層14へ入射した残留励起光17は、フィラー15によってその伝播方向がランダム化されているので、残留励起光17が一部分に集中することによる局所的な発熱は生じない。また、接続部樹脂層14に吸収されることなく放熱枠体16に達した残留励起光17は、放熱枠体16の一部分に集中して熱に変換されることなく、放熱枠体16における第1および第2光ファイバ11,12の軸方向の広い範囲にて熱に変換される。これにより、放熱枠体16における温度分布(実線)は、図1の(b)に示すように、平坦かつ広範囲に広がったものとなる。なお、図1の(b)に二点鎖線にて示す温度分布は、後述の比較例の光デバイス101のものである。
Next, a part of the residual excitation light 17 incident on the connecting portion resin layer 14 is absorbed by the connecting portion resin layer 14 and becomes heat. At this time, since the propagation direction of the residual excitation light 17 incident on the connection portion resin layer 14 is randomized by the filler 15, local heat generation due to the concentration of the residual excitation light 17 in a part does not occur. Further, the residual excitation light 17 that has reached the heat radiating frame 16 without being absorbed by the connecting portion resin layer 14 is concentrated on a part of the heat radiating frame 16 and is not converted into heat, so that The first and second optical fibers 11 and 12 are converted into heat in a wide range in the axial direction. As a result, the temperature distribution (solid line) in the heat dissipating frame 16 is flat and spread over a wide range, as shown in FIG. Note that the temperature distribution indicated by a two-dot chain line in FIG. 1B is that of an optical device 101 of a comparative example described later.
また、融着接続部13において、第1光ファイバ11のコア21と第2光ファイバ12のコア31との軸ずれが生じている場合、コア21,31内を伝送されている信号光の一部は、漏洩光となって、コア21,31からクラッド22,32を介して接続部樹脂層14に入射する。この信号光の漏洩光についても、残留励起光17と同様、接続部樹脂層14内にフィラー15が存在することにより接続部樹脂層14内において散乱し、放熱枠体16における第1および第2光ファイバ11,12の軸方向の広い範囲にて熱に変換される。
In addition, in the fusion splicing portion 13, when an axial shift occurs between the core 21 of the first optical fiber 11 and the core 31 of the second optical fiber 12, one of the signal lights transmitted through the cores 21 and 31. The portion becomes leaked light and enters the connecting portion resin layer 14 from the cores 21 and 31 through the clads 22 and 32. Similarly to the residual excitation light 17, the leakage light of the signal light is scattered in the connection portion resin layer 14 due to the presence of the filler 15 in the connection portion resin layer 14, and the first and second in the heat dissipation frame 16. It is converted into heat in a wide range in the axial direction of the optical fibers 11 and 12.
この結果、放熱枠体16が局所的に発熱してその熱により接続部樹脂層14の一部が劣化する事態を防止することができ、光デバイス1の信頼性を向上することができる。
As a result, it is possible to prevent the heat radiating frame 16 from generating heat locally and a part of the connecting portion resin layer 14 from being deteriorated by the heat, and the reliability of the optical device 1 can be improved.
(比較例)
次に、本実施の形態の光デバイス1に対する比較例について説明する。図2の(a)は、比較例の光デバイス101を示す縦断面図である。図2の(b)は、図2の(a)に示した光デバイス101における温度分布の概要を示すグラフである。 (Comparative example)
Next, a comparative example for theoptical device 1 of the present embodiment will be described. FIG. 2A is a longitudinal sectional view showing an optical device 101 of a comparative example. FIG. 2B is a graph showing an outline of the temperature distribution in the optical device 101 shown in FIG.
次に、本実施の形態の光デバイス1に対する比較例について説明する。図2の(a)は、比較例の光デバイス101を示す縦断面図である。図2の(b)は、図2の(a)に示した光デバイス101における温度分布の概要を示すグラフである。 (Comparative example)
Next, a comparative example for the
図2の(a)に示すように、光デバイス101は、光デバイス1と同様、融着接続部13およびその付近において、第1および第2光ファイバ11,12の被覆樹脂層23,33が剥がされてクラッド22,33が露出している。これら露出部分は、クラッド22,33よりも屈折率が大きい樹脂からなる接続部樹脂層111にて覆われている。ただし、接続部樹脂層111は、フィラー15を含んでいない。
As shown in FIG. 2A, in the optical device 101, as in the optical device 1, the coating resin layers 23 and 33 of the first and second optical fibers 11 and 12 are formed at the fusion splicing portion 13 and the vicinity thereof. The clad 22 and 33 are exposed by peeling off. These exposed portions are covered with a connecting portion resin layer 111 made of a resin having a higher refractive index than the clads 22 and 33. However, the connecting portion resin layer 111 does not include the filler 15.
光デバイス101では、光デバイス1の場合と同様にして接続部樹脂層111内に入射した残留励起光17は、接続部樹脂層111がフィラー15を含んでいないことにより、そのまま接続部樹脂層111内を進行する。このため、残留励起光17は放熱枠体16の一部分に集中して熱に変換される。これにより、放熱枠体16における温度分布は、図2の(b)に示すように、放熱枠体16の一部において急峻なものとなる。また、融着接続部13からの信号光の漏洩光による温度分布についても、同様に放熱枠体16の一部において急峻なものとなる。
In the optical device 101, as in the case of the optical device 1, the residual excitation light 17 that has entered the connection portion resin layer 111 is directly connected to the connection portion resin layer 111 because the connection portion resin layer 111 does not include the filler 15. Proceed inside. For this reason, the residual excitation light 17 is concentrated on a part of the heat dissipation frame 16 and converted into heat. Thereby, the temperature distribution in the heat radiating frame body 16 becomes steep in a part of the heat radiating frame body 16 as shown in FIG. Similarly, the temperature distribution due to the leakage light of the signal light from the fusion splicing portion 13 is also steep in a part of the heat radiating frame 16.
この結果、放熱枠体16が局所的に発熱し、その熱により接続部樹脂層14の一部が劣化し、光デバイス1の信頼性が低下する。
As a result, the heat dissipating frame 16 generates heat locally, and the heat causes a part of the connecting portion resin layer 14 to deteriorate, and the reliability of the optical device 1 decreases.
なお、本実施の形態では、第1光ファイバ11と第2光ファイバ12とがシングルクラッドファイバである場合について説明したが、これに限定されない。すなわち、第1光ファイバ11および第2光ファイバ12は、シングルクラッドファイバ、ダブルクラッドファイバ、ダブル以上のクラッドファイバのうちの同種のクラッドファイバの組み合わせ、あるいは異種のクラッドファイバの組み合わせであってもよい。この点は、以下の実施の形態においても同様である。
In addition, although this Embodiment demonstrated the case where the 1st optical fiber 11 and the 2nd optical fiber 12 were single clad fibers, it is not limited to this. That is, the first optical fiber 11 and the second optical fiber 12 may be a single clad fiber, a double clad fiber, a combination of the same kind of clad fibers among double or more clad fibers, or a combination of different kinds of clad fibers. . This also applies to the following embodiments.
(光デバイス1の変形例)
図3は、図1の(a)に示した光デバイス1の変形例の光デバイス2を示す縦断面図である。上記の説明では、本実施の形態の光デバイスは、接続部樹脂層14が放熱枠体16にて覆われている光デバイス1としたが、これに限定されず、図3に示すように、接続部樹脂層14が放熱枠体16に覆われていない光デバイス2としてもよい。 (Modification of optical device 1)
FIG. 3 is a longitudinal sectional view showing anoptical device 2 which is a modification of the optical device 1 shown in FIG. In the above description, the optical device of the present embodiment is the optical device 1 in which the connecting portion resin layer 14 is covered with the heat dissipation frame 16, but is not limited thereto, as shown in FIG. It is good also as the optical device 2 in which the connection part resin layer 14 is not covered with the thermal radiation frame 16. FIG.
図3は、図1の(a)に示した光デバイス1の変形例の光デバイス2を示す縦断面図である。上記の説明では、本実施の形態の光デバイスは、接続部樹脂層14が放熱枠体16にて覆われている光デバイス1としたが、これに限定されず、図3に示すように、接続部樹脂層14が放熱枠体16に覆われていない光デバイス2としてもよい。 (Modification of optical device 1)
FIG. 3 is a longitudinal sectional view showing an
光デバイス2において、接続部樹脂層14は、光デバイス1と同様、クラッド22,33よりも屈折率が大きい樹脂からなる高屈折率樹脂層であり、フィラー15を含んでいる。
In the optical device 2, the connection resin layer 14 is a high-refractive index resin layer made of a resin having a higher refractive index than the clads 22 and 33, as in the optical device 1, and includes a filler 15.
光デバイス2では、接続部樹脂層14へ入射した残留励起光17は、フィラー15が存在することにより接続部樹脂層14内において散乱する。また、融着接続部13でのコア21,31の軸ずれにより、融着接続部13から接続部樹脂層14に入射した信号光の漏洩光についても、フィラー15が存在することにより接続部樹脂層14内において散乱する。接続部樹脂層14内において散乱した残留励起光17および信号光の漏洩光は、その後、空気中へ出射する。
In the optical device 2, the residual excitation light 17 incident on the connection resin layer 14 is scattered in the connection resin layer 14 due to the presence of the filler 15. Further, due to the axial displacement of the cores 21 and 31 at the fusion splicing portion 13, the leakage of the signal light incident on the connection portion resin layer 14 from the fusion splicing portion 13 is also present due to the presence of the filler 15. Scatter in layer 14. The residual excitation light 17 scattered in the connecting portion resin layer 14 and the leaked light of the signal light are then emitted into the air.
ここで、残留励起光17または信号光が高強度のものである場合、接続部樹脂層14に入射した残留励起光17および信号光の漏洩光が接続部樹脂層14の一部分に集中すると、接続部樹脂層14が発熱して劣化し易くなる。しかしながら、光デバイス2では、接続部樹脂層14に入射した残留励起光17および信号光の漏洩光はフィラー15が存在することにより散乱するので、接続部樹脂層14の劣化を防止することができる。
Here, when the residual excitation light 17 or the signal light has a high intensity, if the residual excitation light 17 and the leakage light of the signal light incident on the connection resin layer 14 are concentrated on a part of the connection resin layer 14, the connection The partial resin layer 14 is easily heated and deteriorates. However, in the optical device 2, the residual excitation light 17 and the leaked light of the signal light incident on the connection portion resin layer 14 are scattered due to the presence of the filler 15, so that the deterioration of the connection portion resin layer 14 can be prevented. .
〔実施の形態2〕
本発明の他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 2]
Another embodiment of the present invention will be described below with reference to the drawings.
本発明の他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 2]
Another embodiment of the present invention will be described below with reference to the drawings.
(光デバイス41の構成)
図4の(a)は、本発明の実施の形態の光デバイス41を示す縦断面図である。図4の(b)は、図4の(a)に示した光デバイス41における温度分布の概要を示すグラフである。 (Configuration of optical device 41)
FIG. 4A is a longitudinal sectional view showing theoptical device 41 according to the embodiment of the present invention. FIG. 4B is a graph showing an outline of the temperature distribution in the optical device 41 shown in FIG.
図4の(a)は、本発明の実施の形態の光デバイス41を示す縦断面図である。図4の(b)は、図4の(a)に示した光デバイス41における温度分布の概要を示すグラフである。 (Configuration of optical device 41)
FIG. 4A is a longitudinal sectional view showing the
図4の(a)に示すように、光デバイス41は、光デバイス1(図1の(a)参照)の接続部樹脂層14に代えて、接続部樹脂層51を備えている。その他の構成は、光デバイス1と同様である。
As shown in FIG. 4A, the optical device 41 includes a connecting portion resin layer 51 instead of the connecting portion resin layer 14 of the optical device 1 (see FIG. 1A). Other configurations are the same as those of the optical device 1.
接続部樹脂層51は、クラッド22,33よりも屈折率が小さい樹脂からなる低屈折率樹脂層である。また、接続部樹脂層51は、粒子状のフィラー(粒子状の散乱体)52を含んでいる。フィラー52の屈折率は、クラッド22,33の屈折率よりも大きくなっている。フィラー52の材質はフィラー15と同様であってもよい。
The connecting portion resin layer 51 is a low refractive index resin layer made of a resin having a refractive index smaller than that of the clads 22 and 33. The connection resin layer 51 includes a particulate filler (particulate scatterer) 52. The refractive index of the filler 52 is larger than the refractive indexes of the clads 22 and 33. The material of the filler 52 may be the same as that of the filler 15.
(光デバイス41の動作)
上記の構成において、第1光ファイバ41では、残留励起光17は、図4の(a)に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、接続部樹脂層51に達する。 (Operation of optical device 41)
In the above configuration, in the firstoptical fiber 41, the residual excitation light 17 is a low refractive index resin layer in which the coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Therefore, it is difficult to leak from the coating resin layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 reaches the connecting portion resin layer 51.
上記の構成において、第1光ファイバ41では、残留励起光17は、図4の(a)に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、接続部樹脂層51に達する。 (Operation of optical device 41)
In the above configuration, in the first
ここで、接続部樹脂層51の屈折率はクラッド22,33の屈折率よりも小さいものの、フィラー52の屈折率はクラッド22,33の屈折率よりも大きい。したがって、残留励起光17は、接続部樹脂層51には入射し難いものの、クラッド22,33の外周面に接触しているフィラー52には入射する。
Here, although the refractive index of the connecting portion resin layer 51 is smaller than the refractive index of the claddings 22 and 33, the refractive index of the filler 52 is larger than the refractive index of the claddings 22 and 33. Therefore, although the residual excitation light 17 does not easily enter the connection portion resin layer 51, the residual excitation light 17 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33.
これにより、接続部樹脂層51に達した残留励起光17は、クラッド22,33内を伝播しながら、クラッド22,33の外周面に接触しているフィラー52に入射していき、フィラー52によって接続部樹脂層51内に散乱する。したがって、フィラー52を介して接続部樹脂層51に入射した残留励起光17は、放熱枠体16の一部分に集中して熱に変換されることなく、放熱枠体16における第1および第2光ファイバ11,12の軸方向の広い範囲にて熱に変換される。これにより、図4の(b)に示すように、光デバイス41の放熱枠体16における温度分布(実線)は、光デバイス1の場合(一点鎖線)よりも、さらに平坦かつ広範囲に広がったものとなる。
As a result, the residual excitation light 17 that has reached the connecting portion resin layer 51 is incident on the filler 52 that is in contact with the outer peripheral surface of the cladding 22, 33 while propagating through the cladding 22, 33. It is scattered in the connection part resin layer 51. Therefore, the residual excitation light 17 incident on the connecting portion resin layer 51 via the filler 52 is concentrated on a part of the heat dissipation frame 16 and is not converted into heat, and the first and second light in the heat dissipation frame 16 It is converted into heat in a wide range in the axial direction of the fibers 11 and 12. As a result, as shown in FIG. 4B, the temperature distribution (solid line) in the heat dissipation frame 16 of the optical device 41 is flatter and wider than the case of the optical device 1 (dashed line). It becomes.
また、融着接続部13において、コア21,コア31の軸ずれが生じている場合に生じる融着接続部13からの信号光の漏洩光についても、残留励起光17と同様、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって散乱し、放熱枠体16における第1および第2光ファイバ11,12の軸方向の広い範囲にて熱に変換される。
Similarly to the residual excitation light 17, the clad 22, 33 is also applied to the leakage light of the signal light from the fusion splicing portion 13 that is generated when the core 21 and the core 31 are misaligned in the splicing splicing portion 13. Is incident on the filler 52 that is in contact with the outer peripheral surface of the optical fiber, is scattered by the filler 52, and is converted into heat in a wide range in the axial direction of the first and second optical fibers 11 and 12 in the heat dissipation frame 16.
この結果、放熱枠体16が局所的に発熱してその熱により接続部樹脂層51の一部が劣化する事態をさらに確実に防止することができ、光デバイス41の信頼性をさらに向上することができる。
As a result, it is possible to more reliably prevent a situation in which the heat dissipation frame 16 generates heat locally and a part of the connecting portion resin layer 51 deteriorates due to the heat, and the reliability of the optical device 41 is further improved. Can do.
(光デバイス41の変形例)
図5は、図4に示した光デバイス41の変形例の光デバイス42を示す縦断面図である。光デバイス42は、図5に示すように、光デバイス2と同様、接続部樹脂層51が放熱枠体16に覆われていない光デバイス42としてもよい。 (Modification of optical device 41)
FIG. 5 is a longitudinal sectional view showing anoptical device 42 which is a modification of the optical device 41 shown in FIG. As shown in FIG. 5, the optical device 42 may be an optical device 42 in which the connecting portion resin layer 51 is not covered with the heat dissipation frame 16, as in the optical device 2.
図5は、図4に示した光デバイス41の変形例の光デバイス42を示す縦断面図である。光デバイス42は、図5に示すように、光デバイス2と同様、接続部樹脂層51が放熱枠体16に覆われていない光デバイス42としてもよい。 (Modification of optical device 41)
FIG. 5 is a longitudinal sectional view showing an
光デバイス42では、接続部樹脂層51に達した残留励起光17は、クラッド22,33内を伝播しながら、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって接続部樹脂層51内に散乱する。また、融着接続部13でのコア21,31の軸ずれにより生じた信号光の漏洩光についても、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって接続部樹脂層51内に散乱する。接続部樹脂層51内に散乱した残留励起光17および信号光の漏洩光は、その後、空気中へ出射する。
In the optical device 42, the residual excitation light 17 that has reached the connecting portion resin layer 51 is incident on the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33. It is scattered in the connection part resin layer 51. Further, the leakage light of the signal light generated due to the axial deviation of the cores 21 and 31 at the fusion splicing portion 13 is also incident on the filler 52 in contact with the outer peripheral surfaces of the clads 22 and 33 and is connected by the filler 52. Scattered into the resin layer 51. The residual excitation light 17 and the leaked light of the signal light scattered in the connecting portion resin layer 51 are then emitted into the air.
ここで、光デバイス42は、接続部樹脂層51がフィラー52を含む低屈折率樹脂層であるので、図3に示した、接続部樹脂層14がフィラー15を含む高屈折率樹脂層である光デバイス2と比較して、接続部樹脂層51での残留励起光17および信号光の漏洩光の散乱をさらに促進することができる。これにより、残留励起光17および信号光の漏洩光が一部分に集中することによる接続部樹脂層51の劣化を防止することができる。
Here, since the connection part resin layer 51 is a low refractive index resin layer including the filler 52 in the optical device 42, the connection part resin layer 14 illustrated in FIG. 3 is a high refractive index resin layer including the filler 15. Compared with the optical device 2, it is possible to further promote the scattering of the residual excitation light 17 and the leakage light of the signal light in the connection portion resin layer 51. Thereby, it is possible to prevent the deterioration of the connection portion resin layer 51 due to the concentration of the residual excitation light 17 and the leakage light of the signal light in a part.
〔実施の形態3〕
本発明のさらに他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 3]
Still another embodiment of the present invention will be described below with reference to the drawings.
本発明のさらに他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 3]
Still another embodiment of the present invention will be described below with reference to the drawings.
(光デバイス43の構成)
図6は、本発明の実施の形態の光デバイス43を示す縦断面図である。図6に示すように、光デバイス43は、光デバイス1(図1の(a)参照)の接続部樹脂層14に代えて、第1樹脂層(第1の部分)53および第2樹脂層(第2の部分)54を備えている。その他の構成は、光デバイス1と同様である。 (Configuration of optical device 43)
FIG. 6 is a longitudinal sectional view showing theoptical device 43 according to the embodiment of the present invention. As shown in FIG. 6, the optical device 43 includes a first resin layer (first portion) 53 and a second resin layer instead of the connection resin layer 14 of the optical device 1 (see FIG. 1A). (Second portion) 54 is provided. Other configurations are the same as those of the optical device 1.
図6は、本発明の実施の形態の光デバイス43を示す縦断面図である。図6に示すように、光デバイス43は、光デバイス1(図1の(a)参照)の接続部樹脂層14に代えて、第1樹脂層(第1の部分)53および第2樹脂層(第2の部分)54を備えている。その他の構成は、光デバイス1と同様である。 (Configuration of optical device 43)
FIG. 6 is a longitudinal sectional view showing the
第1樹脂層53は融着接続部13およびその近傍を覆うように設けられ、第2樹脂層54は、第1樹脂層53に対する残留励起光17が伝播する方向の側に、第1樹脂層53に隣接して設けられている。
The first resin layer 53 is provided so as to cover the fusion splicing portion 13 and the vicinity thereof, and the second resin layer 54 is disposed on the side of the first resin layer 53 in the direction in which the residual excitation light 17 propagates. 53 is provided adjacent.
第1および第2樹脂層53,54は、クラッド22,33よりも屈折率が小さい樹脂からなる低屈折率樹脂層である。また、第1および第2樹脂層53,54は、粒子状のフィラー(粒子状の散乱体)52を含んでおり、第2樹脂層54は第1樹脂層53よりもフィラー52を多く含んでいる。フィラー52の屈折率は、クラッド22,33の屈折率よりも大きくなっている。フィラー52の材質はフィラー15と同様であってもよい。フィラー52の含有量(接続部樹脂層における重量%)は、例えば、第1樹脂層53が10%、第2樹脂層54が20%となっている。
The first and second resin layers 53 and 54 are low refractive index resin layers made of a resin having a smaller refractive index than the clads 22 and 33. The first and second resin layers 53 and 54 include a particulate filler (particulate scatterer) 52, and the second resin layer 54 includes more filler 52 than the first resin layer 53. Yes. The refractive index of the filler 52 is larger than the refractive indexes of the clads 22 and 33. The material of the filler 52 may be the same as that of the filler 15. For example, the content of the filler 52 (% by weight in the connecting portion resin layer) is 10% for the first resin layer 53 and 20% for the second resin layer 54.
(光デバイス43の動作)
上記の構成において、第1光ファイバ43では、残留励起光17は、図4に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、第1樹脂層53に達する。 (Operation of optical device 43)
In the above configuration, in the firstoptical fiber 43, the residual excitation light 17 is a low-refractive-index resin layer whose coating resin layer 23 is smaller than the refractive index of the cladding 22, as shown in FIG. Propagates from the layer 23 and propagates in the cladding 22. Thereafter, the residual excitation light 17 reaches the first resin layer 53.
上記の構成において、第1光ファイバ43では、残留励起光17は、図4に示すように、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、第1樹脂層53に達する。 (Operation of optical device 43)
In the above configuration, in the first
ここで、第1および第2樹脂層53,54の屈折率はクラッド22,33の屈折率より小さいものの、フィラー52の屈折率はクラッド22,33の屈折率よりも大きい。したがって、残留励起光17は、第1および第2樹脂層53,54には入射し難いものの、クラッド22,33の外周面に接触しているフィラー52には入射する。
Here, although the refractive index of the first and second resin layers 53 and 54 is smaller than the refractive index of the claddings 22 and 33, the refractive index of the filler 52 is larger than the refractive index of the claddings 22 and 33. Therefore, although the residual excitation light 17 is difficult to enter the first and second resin layers 53 and 54, the residual excitation light 17 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33.
これにより、第1樹脂層53に達した残留励起光17は、第1および第2樹脂層53,54に覆われている部分のクラッド22,33内を伝播しながら、クラッド22,33の外周面に接触しているフィラー52に入射していき、フィラー52によって第1および第2樹脂層53,54内に散乱する。したがって、フィラー52を介して第1および第2樹脂層53,54に入射した残留励起光17は、放熱枠体16の一部分に集中して熱に変換されることなく、放熱枠体16における光ファイバ11,12の軸方向の広い範囲にて熱に変換される。
As a result, the residual excitation light 17 that has reached the first resin layer 53 propagates through the portions of the claddings 22 and 33 that are covered by the first and second resin layers 53 and 54, while the outer periphery of the claddings 22 and 33. The light enters the filler 52 in contact with the surface and is scattered by the filler 52 into the first and second resin layers 53 and 54. Therefore, the residual excitation light 17 incident on the first and second resin layers 53 and 54 via the filler 52 is concentrated on a part of the heat dissipation frame 16 and is not converted into heat, and thus the light in the heat dissipation frame 16. It is converted into heat in a wide range in the axial direction of the fibers 11 and 12.
ここで、残留励起光17は、一部が第1樹脂層53のフィラー52を介して第1樹脂層53に入射し、残りが第2樹脂層54のフィラー52を介して第2樹脂層54に入射する。この場合、第2樹脂層54は第1樹脂層53よりもフィラー52を多く含んでいるので、第1および第2樹脂層53,54から放熱枠体16に入射する残留励起光17の量は均等化され易い。これにより、光デバイス43の放熱枠体16における温度分布は、図4の(b)に示した光デバイス41の場合(実線)よりも、さらに平坦かつ広範囲に広がったものとなる。
Here, a part of the residual excitation light 17 enters the first resin layer 53 via the filler 52 of the first resin layer 53, and the remaining part of the residual excitation light 17 passes through the filler 52 of the second resin layer 54. Is incident on. In this case, since the second resin layer 54 contains more filler 52 than the first resin layer 53, the amount of residual excitation light 17 incident on the heat dissipation frame 16 from the first and second resin layers 53 and 54 is Easy to equalize. Thereby, the temperature distribution in the heat dissipation frame 16 of the optical device 43 becomes flatter and wider than the case of the optical device 41 shown in FIG. 4B (solid line).
また、融着接続部13において、コア21,コア31の軸ずれが生じている場合に生じる融着接続部13からの信号光の漏洩光についても、残留励起光17と同様、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって散乱し、放熱枠体16における光ファイバ11,12の軸方向の広い範囲にて熱に変換される。
Similarly to the residual excitation light 17, the clad 22, 33 is also applied to the leakage light of the signal light from the fusion splicing portion 13 that is generated when the core 21 and the core 31 are misaligned in the splicing splicing portion 13. Is incident on the filler 52 in contact with the outer peripheral surface of the optical fiber 11 and is scattered by the filler 52 and converted into heat in a wide range in the axial direction of the optical fibers 11 and 12 in the heat dissipation frame 16.
この結果、放熱枠体16が局所的に発熱してその熱により接続部樹脂層14の一部が劣化する事態をさらに確実に防止することができ、光デバイス43の信頼性をさらに向上することができる。
As a result, it is possible to more reliably prevent a situation where the heat radiating frame 16 generates heat locally and a part of the connecting portion resin layer 14 deteriorates due to the heat, thereby further improving the reliability of the optical device 43. Can do.
なお、本実施の形態の第1および第2樹脂層53,54を備えた構成は、他の実施の形態の光デバイスに対しても適用可能である。
In addition, the structure provided with the 1st and 2nd resin layers 53 and 54 of this Embodiment is applicable also to the optical device of other Embodiment.
(光デバイス43の変形例)
図7は、図6に示した光デバイス43の変形例の光デバイス44を示す縦断面図である。光デバイス43は、図7に示すように、光デバイス42と同様、第1および第2樹脂層53,54が放熱枠体16に覆われていない光デバイス44としてもよい。 (Modification of optical device 43)
FIG. 7 is a longitudinal sectional view showing anoptical device 44 which is a modification of the optical device 43 shown in FIG. As shown in FIG. 7, the optical device 43 may be an optical device 44 in which the first and second resin layers 53 and 54 are not covered with the heat dissipation frame 16, as in the optical device 42.
図7は、図6に示した光デバイス43の変形例の光デバイス44を示す縦断面図である。光デバイス43は、図7に示すように、光デバイス42と同様、第1および第2樹脂層53,54が放熱枠体16に覆われていない光デバイス44としてもよい。 (Modification of optical device 43)
FIG. 7 is a longitudinal sectional view showing an
光デバイス44では、第1樹脂層53に達した残留励起光17は、第1樹脂層53に覆われているクラッド22,33内を伝播しながら、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって第1および第2樹脂層53,54内に散乱する。また、融着接続部13でのコア21,31の軸ずれにより生じた信号光の漏洩光についても、クラッド22,33の外周面に接触しているフィラー52に入射し、フィラー52によって第1および第2樹脂層53,54内に散乱する。第1および第2樹脂層53,54内に散乱した残留励起光17および信号光の漏洩光は、その後、空気中へ出射する。
In the optical device 44, the residual excitation light 17 that has reached the first resin layer 53 is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33 covered by the first resin layer 53. The filler 52 is incident on the filler 52 and scattered by the filler 52 into the first and second resin layers 53 and 54. Further, the leakage light of the signal light generated due to the axial deviation of the cores 21 and 31 at the fusion splicing portion 13 is also incident on the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33, and is Further, the light is scattered in the second resin layers 53 and 54. The residual excitation light 17 and the leaked light of the signal light scattered in the first and second resin layers 53 and 54 are then emitted into the air.
ここで、光デバイス44は、相対的にフィラー52の含有量が少ない第1樹脂層53とフィラー52の含有量が多い第2樹脂層54とが、残留励起光17が伝播する方向に隣接して設けられているので、光デバイス42と比較して、第1および第2樹脂層53,54から出射される残留励起光17の量を均一化することができる。これにより、第1および第2樹脂層53,54の周囲に配置された部材の一部が局所的に加熱され、その熱により第1および第2樹脂層53,54の劣化が生じることを防止することができる。
Here, in the optical device 44, the first resin layer 53 having a relatively small filler 52 content and the second resin layer 54 having a relatively large filler 52 content are adjacent to each other in the direction in which the residual excitation light 17 propagates. Therefore, the amount of residual excitation light 17 emitted from the first and second resin layers 53 and 54 can be made uniform as compared with the optical device 42. Thereby, a part of members arranged around the first and second resin layers 53 and 54 are locally heated, and the heat prevents the first and second resin layers 53 and 54 from being deteriorated. can do.
〔実施の形態4〕
本発明のさらに他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 4]
Still another embodiment of the present invention will be described below with reference to the drawings.
本発明のさらに他の実施の形態を図面に基づいて以下に説明する。 [Embodiment 4]
Still another embodiment of the present invention will be described below with reference to the drawings.
(光デバイス45の構成)
図8は、本発明の実施の形態の光デバイス45を示す縦断面図である。図8に示すように、光デバイス45は、光デバイス41(図4参照)の放熱枠体16に代えて、放熱部材55を備えている。その他の構成は、光デバイス41と同様である。 (Configuration of optical device 45)
FIG. 8 is a longitudinal sectional view showing theoptical device 45 according to the embodiment of the present invention. As shown in FIG. 8, the optical device 45 includes a heat radiating member 55 instead of the heat radiating frame 16 of the optical device 41 (see FIG. 4). Other configurations are the same as those of the optical device 41.
図8は、本発明の実施の形態の光デバイス45を示す縦断面図である。図8に示すように、光デバイス45は、光デバイス41(図4参照)の放熱枠体16に代えて、放熱部材55を備えている。その他の構成は、光デバイス41と同様である。 (Configuration of optical device 45)
FIG. 8 is a longitudinal sectional view showing the
光デバイス45が備える放熱部材55は、放熱枠体16の例えば上辺部分を除去し、接続部樹脂層51の上方部分を開放した構造となっている。
The heat radiating member 55 provided in the optical device 45 has a structure in which, for example, the upper side portion of the heat radiating frame body 16 is removed and the upper portion of the connection portion resin layer 51 is opened.
第1光ファイバ45では、残留励起光17は、被覆樹脂層23がクラッド22の屈折率よりも小さい低屈折率樹脂層であることから、被覆樹脂層23から漏れ難く、クラッド22内を伝播する。その後、残留励起光17は、接続部樹脂層51に達する。接続部樹脂層51に達した残留励起光17は、クラッド22,33内を伝播しながら、クラッド22,33の外周面に接触しているフィラー52に入射していき、フィラー52によって接続部樹脂層51内に散乱する。
In the first optical fiber 45, the residual excitation light 17 propagates through the cladding 22 without leaking from the coating resin layer 23 because the coating resin layer 23 is a low refractive index resin layer smaller than the refractive index of the cladding 22. . Thereafter, the residual excitation light 17 reaches the connecting portion resin layer 51. The residual excitation light 17 that has reached the connecting portion resin layer 51 enters the filler 52 that is in contact with the outer peripheral surfaces of the claddings 22 and 33 while propagating through the claddings 22 and 33. Scattered into the layer 51.
フィラー52を介して接続部樹脂層51に入射した残留励起光17の一部は、放熱部材55が存在しない上部から空気中に出射し、残りは、放熱部材55によって熱に変換される。この場合、残留励起光17は、放熱部材55の一部分に集中して熱に変換されることなく、放熱部材55における第1および第2光ファイバ11,12の軸方向の広い範囲にて熱に変換される。これにより、光デバイス45の放熱部材55における温度分布は、平坦かつ広範囲に広がったものとなる。
A part of the residual excitation light 17 incident on the connecting portion resin layer 51 through the filler 52 is emitted into the air from the upper portion where the heat radiating member 55 does not exist, and the rest is converted into heat by the heat radiating member 55. In this case, the residual excitation light 17 is not concentrated on a part of the heat radiating member 55 and converted into heat, but is converted into heat in a wide range in the axial direction of the first and second optical fibers 11 and 12 in the heat radiating member 55. Converted. Thereby, the temperature distribution in the heat dissipation member 55 of the optical device 45 is flat and spread over a wide range.
また、融着接続部13において、コア21,31の軸ずれが生じている場合に生じる融着接続部13からの信号光の漏洩光についても、残留励起光17と同様、一部は放熱部材55が存在しない上部から空気中に出射し、残りは放熱部材55によって熱に変換される。この結果、放熱部材55が局所的に発熱してその熱により接続部樹脂層51の一部が劣化する事態をさらに確実に防止することができる。
In addition, in the fusion splicing portion 13, the leakage light of the signal light from the fusion splicing portion 13 that is generated when the cores 21 and 31 are misaligned is also partly radiating member, similar to the residual excitation light 17. The light is emitted from the upper portion where 55 does not exist into the air, and the remainder is converted into heat by the heat radiating member 55. As a result, it is possible to more reliably prevent the heat radiation member 55 from locally generating heat and causing a part of the connecting portion resin layer 51 to deteriorate due to the heat.
なお、本実施の形態の構成は、光デバイス41(図4参照)だけではなく、光デバイス1(図1の(a)参照)および光デバイス43(図6参照)にも適用可能である。
The configuration of the present embodiment is applicable not only to the optical device 41 (see FIG. 4) but also to the optical device 1 (see (a) in FIG. 1) and the optical device 43 (see FIG. 6).
〔まとめ〕
本発明の光デバイスは、コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆され、前記第1光ファイバと接続部にて接続された第2光ファイバと、前記接続部およびその近傍領域における前記第1および第2光ファイバの前記クラッドを覆うとともに、前記接続部およびその近傍領域からの入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層とを備えている構成である。 [Summary]
The optical device of the present invention includes a first optical fiber having a core coated with a clad, a second optical fiber having a core coated with a clad and connected to the first optical fiber at a connection portion, A connection that covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes dispersed particulate scatterers that scatter incident light from the connection portion and the vicinity region. And a partial resin layer.
本発明の光デバイスは、コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆され、前記第1光ファイバと接続部にて接続された第2光ファイバと、前記接続部およびその近傍領域における前記第1および第2光ファイバの前記クラッドを覆うとともに、前記接続部およびその近傍領域からの入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層とを備えている構成である。 [Summary]
The optical device of the present invention includes a first optical fiber having a core coated with a clad, a second optical fiber having a core coated with a clad and connected to the first optical fiber at a connection portion, A connection that covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes dispersed particulate scatterers that scatter incident light from the connection portion and the vicinity region. And a partial resin layer.
上記の構成によれば、第1光ファイバと第2光ファイバとの接続部およびその近傍領域におけるクラッドは、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層にて覆われている。
According to said structure, the connection part resin layer in which the connection part of a 1st optical fiber and a 2nd optical fiber and the cladding in the area | region vicinity contain the particle-like scatterer which scatters incident light are disperse | distributed Covered with
ここで、第1光ファイバと第2光ファイバとの接続部において、第1光ファイバのコアと第2光ファイバのコアとの軸ずれが生じている場合、コア内を伝送されている信号光の一部は、漏洩光となって、コアからクラッドを介し、接続部樹脂層に入射する。また、第1光ファイバのクラッドを伝播する残留励起光(コア内の信号光の増幅に使用された励起光のうちの残ったもの)も、同様にして、接続部樹脂層に入射する。接続部樹脂層に入射した信号光の漏洩光および残留励起光は、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
Here, in the connection part of the 1st optical fiber and the 2nd optical fiber, when the axis gap of the core of the 1st optical fiber and the core of the 2nd optical fiber has arisen, the signal light transmitted in the core A part of the light becomes leaked light and enters the connecting portion resin layer from the core through the clad. Similarly, residual pumping light propagating through the cladding of the first optical fiber (remaining pumping light used to amplify the signal light in the core) also enters the connecting portion resin layer. The leakage light and residual excitation light of the signal light incident on the connection portion resin layer are scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
これにより、接続部樹脂層の一部分に集中して、残留励起光や信号光の漏洩光が進行する事態が回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を防止することができ、光デバイスの信頼性を向上することができる。
This avoids a situation in which the residual excitation light and the leakage light of the signal light proceed due to concentration on a part of the connecting portion resin layer. As a result, it is possible to prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きい構成としてもよい。
In the above optical device, the connection resin layer may have a refractive index larger than that of the cladding of the first and second optical fibers.
上記の構成によれば、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層の屈折率が第1および第2光ファイバの屈折率よりも大きいので、接続部樹脂層に入射する。そして、接続部樹脂層に入射した残留励起光は、接続部樹脂層内に散乱体が存在することにより、接続部樹脂層内おいて散乱する。また、接続部からの信号光の漏洩光は、コアからクラッドを介し、残留励起光と同様、接続部樹脂層に入射し、接続部樹脂層内に散乱体が存在することにより、接続部樹脂層内において散乱する。
According to the above configuration, for example, the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connecting portion resin layer larger than that of the first and second optical fibers. Incident. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer. In addition, the leakage light of the signal light from the connection part enters the connection part resin layer through the clad through the core and the residual excitation light, and the scatterer is present in the connection part resin layer. Scatter in the layer.
このように、接続部樹脂層に入射した残留励起光および信号光の漏洩光は、接続部樹脂層内の広い範囲に散乱し、接続部樹脂層の一部分に集中して進行することがない。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を確実に防止することができ、光デバイスの信頼性をさらに向上することができる。
Thus, the residual excitation light and the leaked light of the signal light incident on the connection portion resin layer are scattered over a wide area in the connection portion resin layer and do not concentrate on a part of the connection portion resin layer. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が小さく、かつ前記散乱体は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きい構成としてもよい。
In the above optical device, the connection resin layer has a refractive index smaller than that of the cladding of the first and second optical fibers, and the scatterer is smaller than the cladding of the first and second optical fibers. It is good also as a structure with a large refractive index.
上記の構成によれば、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層の屈折率が第1および第2光ファイバのクラッドの屈折率よりも小さいので、接続部樹脂層には直接的に入射し難い。しかしながら、残留励起光は、散乱体の屈折率が第1および第2光ファイバのクラッドの屈折率よりも大きいので、クラッドの外周面に接触している散乱体には容易に入射する。
According to the above configuration, for example, the residual excitation light propagating through the cladding of the first optical fiber has a refractive index of the connection resin layer that is smaller than the refractive index of the cladding of the first and second optical fibers. It is difficult to directly enter the layer. However, since the refractive index of the scatterer is higher than the refractive index of the cladding of the first and second optical fibers, the residual excitation light easily enters the scatterer that is in contact with the outer peripheral surface of the cladding.
したがって、接続部樹脂層に達した残留励起光は、クラッド内を伝播しながら、クラッドの外周面に接触している散乱体に入射していき、散乱体によって接続部樹脂層内に散乱する。
Therefore, the residual excitation light that has reached the connection resin layer enters the scatterer that is in contact with the outer peripheral surface of the clad while propagating through the clad, and is scattered in the connection resin layer by the scatterer.
また、接続部からの信号光の漏洩光は、コアからクラッドを介し、残留励起光と同様にして、接続部樹脂層に入射し、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
In addition, the leakage light of the signal light from the connection part enters the connection part resin layer through the core through the cladding in the same manner as the residual excitation light, and the connection part resin layer has a scatterer in the connection part resin layer. Scatter in the resin layer.
これにより、残留励起光および信号光の漏洩光は、第1および第2光ファイバの軸方向の広い範囲にて接続部樹脂層に入射し、接続部樹脂層の一部分に集中して入射する事態が確実に回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を確実に防止することができ、光デバイスの信頼性をさらに向上することができる。
As a result, the residual excitation light and the leakage light of the signal light are incident on the connection resin layer in a wide range in the axial direction of the first and second optical fibers, and are concentrated on a part of the connection resin layer. Is definitely avoided. As a result, it is possible to reliably prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to further improve the reliability of the optical device.
上記の光デバイスにおいて、前記接続部樹脂層は、前記接続部を覆うように設けられた第1の部分と、前記第1の部分に対する残留励起光が伝播する方向の側に、前記第1の部分に隣接して設けられた第2の部分とを含み、前記第2の部分は、前記第1の部分よりも前記散乱体を多く含んでいる構成としてもよい。
In the above optical device, the connection portion resin layer includes a first portion provided so as to cover the connection portion, and a side in a direction in which residual excitation light propagates to the first portion. A second portion provided adjacent to the portion, and the second portion may include more scatterers than the first portion.
第1または第2光ファイバから接続部樹脂層に入射する残留励起光の強度は、第1光ファイバを伝播する残留励起光の伝播方向の上流側で強くなり、前記伝播方向の下流側で弱くなる。したがって、接続部樹脂層における散乱体の含有量が一様である場合、散乱体により散乱されて接続部樹脂層から出射する残留励起光の強度は、前記伝播方向の上流側で強くなり、前記伝播方向の下流側で弱くなる。このように、接続部樹脂層から出射される残留励起光の強度に偏りが生じると、例えば、接続部樹脂層の外周を覆う放熱部材の一部分が局所的に加熱され、当該部分周辺の接続部樹脂層の劣化が促進されるといった問題を生じ得る。
The intensity of the residual pumping light incident on the connection resin layer from the first or second optical fiber becomes stronger on the upstream side in the propagation direction of the residual pumping light propagating through the first optical fiber, and weaker on the downstream side in the propagation direction. Become. Therefore, when the content of the scatterer in the connection portion resin layer is uniform, the intensity of the residual excitation light scattered from the scatterer and emitted from the connection portion resin layer becomes stronger on the upstream side in the propagation direction, It becomes weak downstream in the propagation direction. In this way, when the intensity of the residual excitation light emitted from the connection portion resin layer is biased, for example, a part of the heat dissipation member that covers the outer periphery of the connection portion resin layer is locally heated, and the connection portion around the portion There may be a problem that the deterioration of the resin layer is promoted.
このような問題が生じることを回避するために、上記の構成においては、接続部樹脂層における散乱体の含有量を、前記伝播方向の上流側において少なくし、前記伝播方向の上流側において多くしている。換言すれば、接続部樹脂における散乱体の含有量を、より強い残留励起光が入射する第1の部分で少なくし、より弱い残留励起光が入射する第2の部分で多くしている。
In order to avoid such a problem, in the above configuration, the content of the scatterer in the connecting portion resin layer is decreased on the upstream side in the propagation direction and increased on the upstream side in the propagation direction. ing. In other words, the content of the scatterer in the connection resin is reduced in the first part where the stronger residual excitation light is incident, and is increased in the second part where the weaker residual excitation light is incident.
ここで、接続部樹脂に入射して接続部樹脂内を伝搬する残留励起光は、上流から下流方向のベクトルを有している。したがって、第1の部分よりも散乱体の含有量が多い第2の部分では、ベクトルの方向(上流から下流方向)が変換される残留励起光の割合が多くなり、外側に向かう残留励起光が増加する。このため、接続部樹脂層から出射される残留励起光の強度の偏りは、接続部樹脂層における散乱体の含有量が一様である場合と比べて小さくなる。その結果、例えば、接続部樹脂層の外周を覆う放熱部材の一部分が局所的に加熱され、当該部分周辺の接続部樹脂層の劣化が促進されるといった問題が生じ難くなる。
Here, the residual excitation light incident on the connection resin and propagating through the connection resin has a vector in the upstream to downstream direction. Therefore, in the second part having a higher content of scatterers than in the first part, the ratio of the residual excitation light converted in the vector direction (from upstream to downstream) is increased, and the residual excitation light directed outward is reduced. To increase. For this reason, the intensity | strength deviation of the residual excitation light radiate | emitted from a connection part resin layer becomes small compared with the case where content of the scatterer in a connection part resin layer is uniform. As a result, for example, a part of the heat radiating member covering the outer periphery of the connection portion resin layer is locally heated, and the problem that the deterioration of the connection portion resin layer around the portion is less likely to occur.
上記の光デバイスは、前記接続部樹脂層の外周の少なくとも一部を覆い、前記残留励起光および前記信号光の漏洩光を熱に変換する放熱部材を備えている構成としてもよい。
The optical device may include a heat radiating member that covers at least a part of the outer periphery of the connection portion resin layer and converts the leakage light of the residual excitation light and the signal light into heat.
上記の構成によれば、接続部樹脂層から放熱部材に達した残留励起光および信号光の漏洩光は、放熱部材によって熱に変換される。この場合、残留励起光および信号光の漏洩光は、接続部樹脂層内に散乱しているので、放熱部材の一部分に集中して局所的な発熱が生じることがない。これにより、放熱部材の局所的な発熱が生じてその部分の接続部樹脂層が劣化する事態を防止することができる。
According to the above configuration, the residual excitation light and the leaked light of the signal light reaching the heat radiating member from the connecting portion resin layer are converted into heat by the heat radiating member. In this case, the residual excitation light and the leaked light of the signal light are scattered in the connecting portion resin layer, so that local heat is not generated by being concentrated on a part of the heat dissipation member. Thereby, the local heat_generation | fever of a heat radiating member arises and the situation where the connection part resin layer of the part deteriorates can be prevented.
本発明の光デバイスの製造方法は、コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆されている第2光ファイバとを接続する工程と、前記第1光ファイバと前記第2光ファイバとの接続部における前記第1および前記第2光ファイバの前記クラッドを、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層により覆う工程とを備えている構成である。
The optical device manufacturing method of the present invention includes a step of connecting a first optical fiber whose core is covered with a clad and a second optical fiber whose core is covered with a clad, and the first optical fiber. Covering the clad of the first and second optical fibers at a connection portion between the first optical fiber and the second optical fiber with a connection portion resin layer containing dispersed particulate scatterers that scatter incident light It is the structure equipped with.
上記の構成によれば、第1光ファイバと第2光ファイバとの接続部におけるクラッドは、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層にて覆われる。
According to said structure, the clad in the connection part of a 1st optical fiber and a 2nd optical fiber is covered with the connection part resin layer containing the state which disperse | distributed the particulate scatterer which scatters incident light. .
したがって、例えば第1光ファイバのクラッドを伝播する残留励起光は、接続部樹脂層が設けられている領域に達すると、クラッドから接続部樹脂層へ入射する。この場合、残留励起光は、接続部樹脂層の屈折率がクラッドの屈折率よりも大きければ、直接的に接続部樹脂層へ入射し、接続部樹脂層の屈折率がクラッドの屈折率よりも小さければ、クラッドの外周面に接触している散乱体を介して接続部樹脂層へ入射する。接続部樹脂層へ入射した残留励起光は、散乱体が存在することにより接続部樹脂層内において散乱する。
Therefore, for example, when the residual excitation light propagating through the cladding of the first optical fiber reaches the region where the connection resin layer is provided, it enters the connection resin layer from the cladding. In this case, if the refractive index of the connecting portion resin layer is larger than the refractive index of the cladding, the residual excitation light is directly incident on the connecting portion resin layer, and the refractive index of the connecting portion resin layer is higher than the refractive index of the cladding. If it is smaller, the light enters the connecting portion resin layer through a scatterer in contact with the outer peripheral surface of the clad. The residual excitation light incident on the connection portion resin layer is scattered in the connection portion resin layer due to the presence of the scatterer.
また、接続部において、第1光ファイバのコアと第2光ファイバのコアとの軸ずれが生じている場合、コア内を伝送されている信号光の一部は、漏洩光となって、コアからクラッドを介し、残留励起光と同様にして、接続部樹脂層に入射する。この信号光の漏洩光についても、残留励起光と同様、接続部樹脂層内に散乱体が存在することにより接続部樹脂層内において散乱する。
In addition, in the connection portion, when the axial deviation between the core of the first optical fiber and the core of the second optical fiber occurs, a part of the signal light transmitted through the core becomes leakage light, and the core In the same manner as the residual excitation light, it enters the connecting portion resin layer through the cladding. Similarly to the residual excitation light, the leakage light of the signal light is also scattered in the connection portion resin layer due to the presence of a scatterer in the connection portion resin layer.
これにより、接続部樹脂層の一部分に集中して、残留励起光や信号光の漏洩光が進行する事態が回避される。この結果、これら残留励起光や信号光の漏洩光によって接続部樹脂層が劣化する事態を防止することができ、光デバイスの信頼性を向上することができる。
This avoids a situation in which the residual excitation light and the leakage light of the signal light proceed due to concentration on a part of the connecting portion resin layer. As a result, it is possible to prevent the connection portion resin layer from being deteriorated by the residual excitation light and the leakage light of the signal light, and to improve the reliability of the optical device.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、光ファイバ同士を接続し、励起光によって信号光を増幅する装置に利用することができる。
The present invention can be used in an apparatus that connects optical fibers and amplifies signal light by pumping light.
1~2 光デバイス
11 第1光ファイバ
12 第2光ファイバ
13 融着接続部(接続部)
14 接続部樹脂層
15 フィラー(散乱体)
16 放熱枠体(放熱部材)
17 残留励起光
21 コア
22 クラッド
23 被覆樹脂層
31 コア
32 クラッド
33 被覆樹脂層
42~45 光デバイス
51 接続部樹脂層
52 フィラー
53 第1樹脂層(第1の部分)
54 第2樹脂層(第2の部分) 1-2Optical device 11 First optical fiber 12 Second optical fiber 13 Fusion splicing part (connecting part)
14 Connectionpart resin layer 15 Filler (scattering body)
16 Heat dissipation frame (heat dissipation member)
17Residual excitation light 21 Core 22 Cladding 23 Coating resin layer 31 Core 32 Cladding 33 Coating resin layer
42 to 45Optical device 51 Connection part resin layer 52 Filler 53 First resin layer (first part)
54 Second resin layer (second portion)
11 第1光ファイバ
12 第2光ファイバ
13 融着接続部(接続部)
14 接続部樹脂層
15 フィラー(散乱体)
16 放熱枠体(放熱部材)
17 残留励起光
21 コア
22 クラッド
23 被覆樹脂層
31 コア
32 クラッド
33 被覆樹脂層
42~45 光デバイス
51 接続部樹脂層
52 フィラー
53 第1樹脂層(第1の部分)
54 第2樹脂層(第2の部分) 1-2
14 Connection
16 Heat dissipation frame (heat dissipation member)
17
42 to 45
54 Second resin layer (second portion)
Claims (6)
- コアがクラッドにて被覆されている第1光ファイバと、
コアがクラッドにて被覆され、前記第1光ファイバと接続部にて接続された第2光ファイバと、
前記接続部およびその近傍領域における前記第1および第2光ファイバの前記クラッドを覆うとともに、前記接続部およびその近傍領域からの入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層とを備えていることを特徴とする光デバイス。 A first optical fiber having a core coated with a cladding;
A second optical fiber having a core coated with a clad and connected to the first optical fiber at a connecting portion;
Covers the clad of the first and second optical fibers in the connection portion and the vicinity region thereof, and includes in a dispersed state a particulate scatterer that scatters incident light from the connection portion and the vicinity region. An optical device comprising a connecting portion resin layer. - 前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きいことを特徴とする請求項1に記載の光デバイス。 The optical device according to claim 1, wherein the connecting portion resin layer has a refractive index larger than that of the cladding of the first and second optical fibers.
- 前記接続部樹脂層は、前記第1および第2光ファイバの前記クラッドよりも屈折率が小さく、かつ前記散乱体は、前記第1および第2光ファイバの前記クラッドよりも屈折率が大きいことを特徴とする請求項1に記載の光デバイス。 The connecting portion resin layer has a refractive index smaller than that of the cladding of the first and second optical fibers, and the scatterer has a refractive index larger than that of the cladding of the first and second optical fibers. The optical device according to claim 1.
- 前記接続部樹脂層は、前記接続部を覆うように設けられた第1の部分と、前記第1の部分に対する残留励起光が伝播する方向の側に、前記第1の部分に隣接して設けられた第2の部分とを含み、前記第2の部分は、前記第1の部分よりも前記散乱体を多く含んでいることを特徴とする請求項1から3のいずれか1項に記載の光デバイス。 The connecting portion resin layer is provided adjacent to the first portion on the side of the first portion provided to cover the connecting portion and the direction in which residual excitation light propagates to the first portion. The second part includes a larger amount of the scatterer than the first part. 4. The second part according to claim 1, wherein the second part contains more scatterers than the first part. Optical device.
- 前記接続部樹脂層の外周の少なくとも一部を覆う放熱部材を備えていることを特徴とする請求項1から4のいずれか1項に記載の光デバイス。 The optical device according to any one of claims 1 to 4, further comprising a heat dissipation member that covers at least a part of the outer periphery of the connection portion resin layer.
- コアがクラッドにて被覆されている第1光ファイバと、コアがクラッドにて被覆されている第2光ファイバとを接続する工程と、
前記第1光ファイバと前記第2光ファイバとの接続部における前記第1および前記第2光ファイバの前記クラッドを、入射光を散乱させる粒子状の散乱体を分散させた状態にて含む接続部樹脂層により覆う工程とを備えていることを特徴とする光デバイスの製造方法。 Connecting a first optical fiber whose core is covered with a clad and a second optical fiber whose core is covered with a clad;
A connecting portion including the cladding of the first and second optical fibers in a connecting portion between the first optical fiber and the second optical fiber in a state where particulate scatterers that scatter incident light are dispersed. And a step of covering with a resin layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014005345A JP2015132773A (en) | 2014-01-15 | 2014-01-15 | Optical device and manufacturing method thereof |
JP2014-005345 | 2014-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107736A1 true WO2015107736A1 (en) | 2015-07-23 |
Family
ID=53542646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077422 WO2015107736A1 (en) | 2014-01-15 | 2014-10-15 | Optical device and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015132773A (en) |
WO (1) | WO2015107736A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020061456A (en) * | 2018-10-10 | 2020-04-16 | 株式会社フジクラ | Laser device, resin deterioration detection method, and optical power detection method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5848803B1 (en) * | 2014-07-01 | 2016-01-27 | 株式会社フジクラ | Optical device and optical module |
JP6718283B2 (en) * | 2016-04-01 | 2020-07-08 | 株式会社フジクラ | Optical fiber connection |
CN105739014A (en) * | 2016-04-13 | 2016-07-06 | 昆山华辰光电科技有限公司 | Novel high power optical fiber mode stripper and preparation method thereof |
JP2018098307A (en) * | 2016-12-09 | 2018-06-21 | 株式会社フジクラ | Fiber laser device |
JP6653407B1 (en) * | 2019-03-28 | 2020-02-26 | 株式会社フジクラ | Surplus light removing fiber, method of manufacturing surplus light removing fiber, and fiber laser device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521058A (en) * | 1978-07-31 | 1980-02-14 | Fujitsu Ltd | Glass fiber for optical transmission |
JP2000131530A (en) * | 1998-10-28 | 2000-05-12 | Minnesota Mining & Mfg Co <3M> | Optical fiber and its production |
JP2001021722A (en) * | 1999-07-06 | 2001-01-26 | Hitachi Cable Ltd | Synthetic resin light emitting cable |
JP2009175612A (en) * | 2008-01-28 | 2009-08-06 | Sumiden Opcom Ltd | Optical connector |
JP2010211074A (en) * | 2009-03-11 | 2010-09-24 | Furukawa Electric Co Ltd:The | Optical connector and assembling wedge |
JP2012513612A (en) * | 2008-12-23 | 2012-06-14 | トゥルンプ・レーザー・ゲーエムベーハー・ウント・コンパニー・カーゲー | Splice connection between two optical fibers and a method of making such a splice connection |
WO2013001734A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Fiber laser |
JP5378861B2 (en) * | 2009-03-31 | 2013-12-25 | 古河電気工業株式会社 | Optical fiber laser |
-
2014
- 2014-01-15 JP JP2014005345A patent/JP2015132773A/en active Pending
- 2014-10-15 WO PCT/JP2014/077422 patent/WO2015107736A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521058A (en) * | 1978-07-31 | 1980-02-14 | Fujitsu Ltd | Glass fiber for optical transmission |
JP2000131530A (en) * | 1998-10-28 | 2000-05-12 | Minnesota Mining & Mfg Co <3M> | Optical fiber and its production |
JP2001021722A (en) * | 1999-07-06 | 2001-01-26 | Hitachi Cable Ltd | Synthetic resin light emitting cable |
JP2009175612A (en) * | 2008-01-28 | 2009-08-06 | Sumiden Opcom Ltd | Optical connector |
JP2012513612A (en) * | 2008-12-23 | 2012-06-14 | トゥルンプ・レーザー・ゲーエムベーハー・ウント・コンパニー・カーゲー | Splice connection between two optical fibers and a method of making such a splice connection |
JP2010211074A (en) * | 2009-03-11 | 2010-09-24 | Furukawa Electric Co Ltd:The | Optical connector and assembling wedge |
JP5378861B2 (en) * | 2009-03-31 | 2013-12-25 | 古河電気工業株式会社 | Optical fiber laser |
WO2013001734A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Fiber laser |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020061456A (en) * | 2018-10-10 | 2020-04-16 | 株式会社フジクラ | Laser device, resin deterioration detection method, and optical power detection method |
WO2020075486A1 (en) * | 2018-10-10 | 2020-04-16 | 株式会社フジクラ | Laser device, resin degradation detection method, and optical power detection method |
CN112534659A (en) * | 2018-10-10 | 2021-03-19 | 株式会社藤仓 | Laser device, resin deterioration detection method, and optical power detection method |
Also Published As
Publication number | Publication date |
---|---|
JP2015132773A (en) | 2015-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015107736A1 (en) | Optical device and manufacturing method therefor | |
JP5865413B2 (en) | Energy dissipation package for high power optical fiber member and packaging method | |
JP6585678B2 (en) | Waveguide device for illumination system | |
US9136663B2 (en) | Fiber-optic system and method for manufacturing same | |
JP5265211B2 (en) | Optical fiber configuration for dissipating stray light | |
JP5814315B2 (en) | Optical combiner and laser device using the same | |
JP6748036B2 (en) | Fiber optic device that dissipates heat with high power | |
JP5648131B2 (en) | Packaged optical fiber component and manufacturing method thereof | |
JP6356856B1 (en) | Clad mode light removal structure and laser device | |
JP2008310277A (en) | Optical fiber fusion splice structure | |
JP2010181574A (en) | Method and apparatus for light filtering of double clad fiber | |
US20090190884A1 (en) | Optical fiber part and laser processing machine | |
TWI693436B (en) | Resin optical waveguide | |
US10833470B2 (en) | Optical fiber and fiber laser | |
US9257810B2 (en) | Optical device and fiber laser device | |
JP2008198637A (en) | Termination structure of optical fiber for propagating high-intensity light, optical amplifier and fiber laser | |
US10120115B2 (en) | Illumination device | |
US10574022B2 (en) | Optical component, fiber laser unit, and fiber laser system | |
US20220413219A1 (en) | Optical coupler and light output device | |
US11139632B2 (en) | Optical module and light output device | |
WO2016002374A1 (en) | Optical device, and optical module | |
WO2020195411A1 (en) | Excess light removing fiber, excess light removing fiber manufacturing method, and fiber laser device | |
JP5579207B2 (en) | Optical fiber movement regulation structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14878545 Country of ref document: EP Kind code of ref document: A1 |