WO2015107686A1 - Power generation device and system, and optical communication method in power generation device - Google Patents

Power generation device and system, and optical communication method in power generation device Download PDF

Info

Publication number
WO2015107686A1
WO2015107686A1 PCT/JP2014/050916 JP2014050916W WO2015107686A1 WO 2015107686 A1 WO2015107686 A1 WO 2015107686A1 JP 2014050916 W JP2014050916 W JP 2014050916W WO 2015107686 A1 WO2015107686 A1 WO 2015107686A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
power
signal
fixed body
signals
Prior art date
Application number
PCT/JP2014/050916
Other languages
French (fr)
Japanese (ja)
Inventor
博史 篠田
崇秀 寺田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/050916 priority Critical patent/WO2015107686A1/en
Publication of WO2015107686A1 publication Critical patent/WO2015107686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Definitions

  • the present invention relates to a power generation apparatus and system, and an optical communication method in the power generation apparatus, and more particularly, to a power generation apparatus and system including an optical communication device that transmits and receives signals between a rotating body and a fixed body, and an optical communication method in the power generation apparatus.
  • the present invention can be used, for example, in a rotating electrical machine of a power generation system such as wind power, hydraulic power, thermal power, and lift.
  • FIG. 19 a conventional wind power generation system 101 using an AC excitation generator (DFG: Double-Fed Generator) shown in FIG. 19 will be described as an example.
  • This system includes a blade 62 that rotates by receiving wind, a generator 65 that sends generated power to an electric power system 68, and a power converter 13 that excites a rotor 63 of the generator 65 at a variable frequency. Excitation power to the generator 65 is supplied by bringing the brush 66 into physical contact with the rotor 63.
  • the power converter 13 is composed of, for example, a power device that operates at several kV, and a control signal from the controller 16 is sent via an insulating element 67 such as a photocoupler.
  • this control signal is also generated by the controller 16 based on the sensor signal from the power converter 13 and the like, and the insulating element 67 is similarly used for transmitting the sensor signal.
  • the power converter 13 is a two-phase three-phase inverter, the power converter 13 is composed of twelve power devices (two per unit x three phases x two systems). In the power converter 13, the power supplied from the system is AC / DC converted by the six power devices in accordance with the control signal, and further DC / AC converted by the six power devices to be controlled by the rotor of the main generator. Supply power.
  • the power converter 13 excites the rotor 63 according to the slip which is the difference between the rotational frequency of the slip frequency generator and the system frequency via the brush 66, thereby rotating in synchronization with the frequency of the stator 64. Control to generate a magnetic field.
  • the frequency control of the power converter 13 enables variable speed operation with respect to wind speed fluctuations, and wind energy in a wide wind speed range can be converted into electric power.
  • This system is a variable speed hydraulic power generation system that has a technical track record, and the capacity of the power converter 13 necessary for variable speed operation may be about 30% of the capacity of the rotating machine, so that the power conversion loss is small.
  • a highly efficient and low-cost power generation system can be realized.
  • the power supply to the rotor 63 requires the brush 66, and due to wear of the brush 66, replacement and removal of wear debris are required in about one year.
  • Patent Document 1 describes an AC excitation generator that does not use a brush for the purpose of providing a rotating electrical machine that can improve power generation efficiency while facilitating maintenance.
  • a rotary exciter and a power converter are provided coaxially with an AC excitation generator, the power of the system is rectified to DC, the stator of the rotary exciter is energized, and the rotor is powered by the principle of a synchronous generator. After the power is supplied, the power converter converts the voltage and frequency to the rotor of the AC excitation synchronous generator so that the power generation operation is performed.
  • the power converter since the power converter is attached to the rotor, the power converter rotates as the rotor rotates.
  • This power converter needs to be controlled according to the rotation of the windmill, but it is described that control signal transmission by optical communication is used in order to receive a control signal brushlessly.
  • the details of the optical communication technology of the rotating body are disclosed in Patent Document 2, for example.
  • the light emitting / receiving section of the first communication module provided in the first rotating body is composed of light emitting elements and light receiving elements arranged alternately on a circumference around the rotation axis.
  • the light emitting / receiving portions of the second communication module provided in the second rotating body having the same rotating shaft as the first rotating body are also alternately arranged on the circumference around the rotating shaft.
  • the light receiving element and is arranged to face the light emitting / receiving part of the first communication module.
  • the plurality of light emitting elements of the first communication module all flash simultaneously according to the signal to be transmitted, and this signal is detected by the plurality of light receiving elements of the second communication module.
  • the detected signals are mixed and output by the mixing unit. It is described that the above configuration can realize bi-directional communication between two communication modules stably even during rotation.
  • Patent Document 3 describes a rotating electrical machine system or a wind power generation system that can improve power generation efficiency while facilitating maintenance.
  • optical communication used as a non-contact communication means with a power converter generally has a narrow communicable area because the signal linearity is strong.
  • the optical communication technique described in Patent Document 2 corresponds to one-to-one communication between a transmission unit and a reception unit, and a controller and a plurality of power devices (and sensors) necessary for the power converter described above. It cannot be applied to 1-to-N communication with the network.
  • the power converter described above is composed of N high-voltage power devices, and these power devices are turned on and off at each timing. Therefore, since insulation is indispensable between the power devices, one-to-N communication is required.
  • a control signal is generated from various sensing information such as the voltage and current of the power converter. Therefore, it is necessary to exchange the control signal and sensing information by two-way communication. It is said.
  • the present invention provides one-to-N bidirectional communication or one-way communication between a communication device attached to a fixed body and a plurality of communication devices attached to a rotating body.
  • the purpose is to carry out communication stably and continuously even during rotation.
  • a power generator A stationary body for transmitting the electric power generated by the rotational energy to the power system; A rotating body for rotating around a rotating shaft attached to the fixed body; A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power.
  • the power converter controls the plurality of power devices by the control signal from the controller, and converts the voltage and frequency based on the power supplied from the power system to the rotating body.
  • a body transmission circuit An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the downstream signals of the plurality of power devices
  • a plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal;
  • a fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
  • a power generation device including a transmitter is provided.
  • a power generation system A main generator having a stationary body for transmitting electric power generated by rotational energy to an electric power system, and a rotational body for rotating about a rotation shaft attached to the stationary body;
  • An auxiliary generator having an auxiliary fixed body, an auxiliary rotating body having a rotation axis common to the rotating body, and A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power.
  • a controller for generating a control signal for outputting the control signal to the power converter By supplying the power of the power system to the auxiliary stationary body of the auxiliary generator, power is supplied to the rotor winding of the auxiliary rotor, and the power converter is supplied from the controller.
  • the plurality of power devices are controlled by the control signal, and voltage and frequency converted based on the power supplied from the power system are supplied to the rotating body to synchronize the generated power with the power system.
  • a plurality of light emitting elements for stationary bodies A fixed signal for multiplexing a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and for simultaneously flashing the plurality of fixed body light emitting elements.
  • a body transmission circuit An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the plurality of power devices is converted to each of the downstream signals.
  • a plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal; A plurality of stationary light receiving elements; A fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
  • Rotating body light emitting element, and a plurality of rotating body light emitting elements that generate the upstream signal which is a sensing signal obtained from each of the plurality of sensors, to emit light from the rotating body light emitting element
  • a power generation system including a transmitter is provided.
  • the power generator is A stationary body for transmitting the electric power generated by the rotational energy to the power system; A rotating body for rotating around a rotating shaft attached to the fixed body; A plurality of sensors for measuring the current value of each phase of the inverter and the voltage value of the inverter, and a power converter having a plurality of power devices constituting the inverter, Based on the current value and voltage value information obtained from the plurality of sensors of the power converter by the controller, the current corresponding to the slip frequency is supplied to the rotor to synchronize the generated power with the power system.
  • the power converter controls the plurality of power devices according to the control signal from the controller, and supplies the rotating body with power converted in voltage and frequency based on the power supplied from the power system, Synchronize generated power with the power system,
  • the fixed body transmission circuit multiplexes a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and the plurality of fixed body light emitting elements are simultaneously transmitted.
  • Blink The downlink signal is extracted from the multiplexed downlink signal input from the electrically isolated rotor light receiving element by each of the rotor reception circuits of the plurality of rotor receivers.
  • the fixed body receiving circuit separates a plurality of uplink signals obtained by multiplexing a plurality of uplink signals respectively received by the plurality of fixed body light receiving elements into a plurality of the uplink signals and outputs the signals to the controller,
  • Each of the rotating body transmitter circuits of the plurality of rotating body transmitters generates the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to cause the rotating body light emitting element to emit light.
  • one-to-N bidirectional communication or one-way communication between a single communication device attached to a fixed body and a plurality of communication devices attached to a rotating body is insulated. Sometimes it can be carried out stably and continuously.
  • FIG. 1 is a block diagram showing a configuration of an optical communication apparatus according to Embodiment 1.
  • FIG. FIG. 4 is a perspective view of the fixed body 17 according to the first embodiment when viewed from a length direction of a rotating shaft 18.
  • 4 is a perspective view of the rotating body 19 according to the first embodiment when viewed from a length direction of a rotating shaft 18.
  • FIG. FIG. 6 is a cross-sectional view of the fixed body 17 and the rotating body 19 on the A1-A1 ′ plane according to the first embodiment.
  • FIG. 4 is a developed view of a curved surface of a cylinder having the circumferences Xa and Xb and a distance Da according to the first embodiment.
  • 3 is a configuration diagram of a fixed body transceiver 5 according to Embodiment 1.
  • FIG. 1 is a block diagram showing a configuration of an optical communication apparatus according to Embodiment 1.
  • FIG. FIG. 4 is a perspective view of the fixed body 17 according to the first embodiment when viewed from
  • FIG. 2 is a configuration diagram of a rotating body receiver 8 and a rotating body transmitter 11 according to Embodiment 1.
  • FIG. It is a modification of geometric arrangement of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body.
  • 4 is a modification of the geometric arrangement of LEDs and photodiodes mounted on a rotating body according to the first embodiment. It is a modification of geometric arrangement of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body. 4 is a modification of the geometric arrangement of LEDs and photodiodes mounted on a rotating body according to the first embodiment.
  • FIG. 3 is a configuration diagram of a rotating body transceiver 61 in which a rotating body transmitter and a rotating body receiver according to Embodiment 1 are integrated.
  • 1 is a configuration diagram of a wind power generation system 102 using an optical communication device according to Embodiment 1.
  • FIG. 6 is a block diagram showing a configuration of an optical communication apparatus according to Embodiment 2.
  • FIG. 6 is a modification of the optical communication device according to the second embodiment. It is a block diagram of the conventional wind power generation system 101 using an alternating current excitation generator. It is explanatory drawing of the circuit regarding the power device and sensor of the power converter.
  • the number of elements when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
  • the constituent elements including element steps and the like
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • An example of a typical example of the present embodiment is as follows.
  • a plurality of downstream signals are transmitted from the transmitter / receiver for fixed body to the transmitter / receiver for rotary body using light between the transmitter / receiver for rotary bodies, and the fixed body is transmitted from the transmitter / receiver for rotary bodies.
  • an optical communication apparatus that performs bidirectional communication by transmitting a plurality of upstream signals to a transceiver for transmitting and receiving
  • the transceiver for stationary body multiplexes a plurality of stationary body light emitting elements and a plurality of downstream signals to multiplex downstream
  • a fixed body multiplexing means for generating a signal, a plurality of fixed body light receiving elements, a plurality of fixed body separation means for separating a plurality of upstream signals from multiplexed upstream signals into a plurality of upstream signals
  • the rotating body transceiver is electrically Insulated, at least one rotating body light receiving element, a rotating body separating means for separating the multiple downstream signals input from the rotating body light receiving element into the downstream signals, at least one rotating body light emitting element, And rotator multiplexing means for multiplexing the uplink signal to generate a multiplexed uplink signal.
  • FIG. 16 is a configuration diagram of a wind power generation system 102 using the optical communication device according to the present embodiment.
  • Patent Document 3 For a known power generation system, for example, Patent Document 3 can be referred to.
  • a main generator 80 having a rotor 78 and a stator 79 is connected to an auxiliary generator 71 including a rotor 69 and a stator 70 via a power converter 13.
  • the electric power of the electric power system 68 is energized to the stator 70 of the auxiliary generator 71, and the electric power is supplied to the rotor 69 by the principle of the synchronous generator.
  • the rotor 78 and the rotor 69 have a common shaft as a rotation axis.
  • the stator 79 winding of the main generator 80 and the stator 70 winding of the auxiliary generator 71 are connected to the power system 68. Since an alternating current having a commercial frequency flows through the electric power system 68, the voltage changes with time, and the rotor 69 of the auxiliary generator 71 for excitation rotates, so that the winding of the rotor 69 is reduced. An induced current corresponding to the rotational speed is generated.
  • the exciting current of the main generator 80 can be passed through the rotor 78 by the induced current generated by the rotation of the rotor 69. Further, in order to generate predetermined power constantly, even when the rotor 79 of the main generator 80 is rotating at a speed different from the synchronous speed, the rotating magnetic field generated by the rotor 78 of the main generator 80 is generated. Is required to be equal to the system frequency. System synchronization of the rotational speed of the rotating magnetic field can be realized by supplying a current corresponding to a slip frequency from the rotor 69 of the auxiliary generator 71 to the rotor 78 of the main generator 80 through the power converter 13.
  • the power supplied from the system is AC / DC converted by the power device in accordance with a control signal from the controller 16, and further DC / AC converted by another power device.
  • the controller 16 controls the power device by a control signal generated based on the above-described information such as current value and voltage value obtained from a plurality of sensors.
  • the power converter 13 supplies the electric power obtained by converting the voltage and frequency to the rotor 78 of the main generator 80 to perform the power generation operation.
  • system synchronization of the rotational speed of the rotating magnetic field is realized, whereby the wind energy received by the blade 62 is converted into electric energy and transmitted to the power system 68.
  • the power converter 13 since the power converter 13 is attached to the rotors 69 and 78, the power converter 13 rotates as the rotor rotates. Since this power converter 13 needs to be controlled in accordance with the rotation of the blade 62, the control signal is received from the controller 16 in a brushless manner via the fixed body transceiver 5 and the rotating body receiver 8. . Furthermore, since a control signal is generated from various sensing information on the rotor side, sensing information from the sensor in the power converter 13 is not transmitted via the transmitter 11 for the rotator and the transceiver 5 for the fixed body. The contact is received by the controller 16.
  • the power converter 13 may be provided with a breaker in parallel.
  • the power converter 13 can be protected from excessive electric power applied at the time of a system failure.
  • this embodiment can be applied to a system to which a speed increaser is added. Also, by installing a plurality of fixed body transceivers 5, a rotating body receiver 8, and a rotating body receiver 11 in parallel, or by installing a plurality of respective transmission circuits and reception circuits in parallel. A more reliable wind power generation system can be realized.
  • FIG. 1 is a block diagram illustrating a configuration of an optical communication apparatus.
  • the optical communication apparatus includes a fixed body transceiver 5 attached to a fixed body, a plurality of rotating body transmitters 11 and a plurality of rotating body receivers 8 attached to the rotating body, and is attached to the fixed body. It is used for bidirectional non-contact communication between the controller 16 and the power converter 13 attached to the rotating body.
  • the power converter 13 includes a plurality of power devices and a plurality of sensors.
  • FIG. 20 is an explanatory diagram of a circuit related to the power device and the sensor of the power converter 13.
  • the power converter 13 is a two-phase three-phase inverter, and thus is configured with twelve power devices (two per unit x three phases x two systems).
  • the controller 16 controls the power device 12 by a control signal generated based on the information such as the current value and voltage value obtained from the plurality of sensors 14.
  • Each power device operates with a voltage of several kV, for example, and turns on and off at each timing.
  • the power device 12 includes a driver circuit.
  • the fixed body transceiver 5 includes a transmission unit having a plurality of fixed body LEDs 2 and a fixed body transmission circuit 1, and a reception unit having a plurality of fixed body photodiodes 4 and a fixed body reception circuit 3.
  • the plurality of rotating body receivers 8 include a rotating body photodiode 7 and a rotating body receiving circuit 6, and are insulated between the rotating body receivers 8.
  • the plurality of rotating body transmitters 11 include a rotating body LED 10 and a rotating body transmission circuit 9. When the sensor 14 itself is an insulating type, it is not necessary to secure insulation between the plurality of rotating body transmitters 11.
  • the fixed body transmission circuit 1 up-converts a plurality of control signals input from the controller 16 and converts them into high-frequency control signals. Thereafter, a plurality of high-frequency control signals are synthesized, and the plurality of fixed body LEDs 2 are simultaneously flashed in synchronization with the signals. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
  • the internal configuration of the fixed body transmission circuit 1 will be described later.
  • the high-frequency control signal emitted from the fixed body LED 2 is received by a plurality of rotating body photodiodes 7 that are rotating.
  • the received high-frequency control signal is input to the rotating body receiving circuit 6, and only the unique signal of each power device 12 is extracted by a filter, re-converted into a control signal, and input to the power device 12 via the drive circuit. Is done.
  • the internal configuration of the rotor receiving circuit 6 will be described later.
  • sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are A / D converted and input to the rotating body transmission circuit 9 and up-converted to high-frequency sensing signals. In synchronization with this signal, the rotating body LED 10 blinks.
  • the internal configuration of the rotor transmitting circuit 9 will be described later.
  • the high-frequency sensing signal emitted from the rotating body LED 10 is received by a plurality of fixed body photodiodes 4.
  • the plurality of received high-frequency sensing signals are input to the fixed body receiving circuit 3 and synthesized.
  • the high-frequency sensing signal is distributed again by the fixed body receiving circuit 3, separated into high-frequency sensing signals for each sensor by a filter, reconverted into a sensing signal, and input to the controller 16.
  • the controller 16 generates a control signal based on the obtained information such as current value and voltage value.
  • the internal configuration of the fixed body receiving circuit 3 will be described later.
  • the fixed body transmitting circuit 1, the fixed body receiving circuit 3, the rotating body transmitting circuit 9, the rotating body receiving circuit 6 and the like be packaged with a material having a shielding effect against electromagnetic waves and magnetic fields.
  • insulation is indispensable between the rotating body receivers 8 connected to each power device 12, and they are separated by at least the minimum creepage distance determined by safety standards (for example, JISC1010-1).
  • This is to prevent the occurrence of so-called creeping discharge, in which a dendritic discharge path is formed along the surface of the dielectric by corona discharge or spark discharge in the case where there are two electrodes at the boundary between the gas and the dielectric. Is the standard.
  • creeping discharge is an important design item because it occurs at a shorter electrode distance and lower applied voltage than space discharge.
  • the number of power receivers 8 to be controlled is the same as the number of power devices to be controlled, but the number of fixed body LEDs 2 is not necessarily the same. Can do. The same applies to the fixed body photodiode 4. Moreover, it is also possible to reduce the number of transmitters 11 for rotating bodies by collectively sending sensing signals from one transmitter.
  • the cylindrical rotating body is supported by a rotating shaft in a hollow cylindrical fixed body, and is rotated by a motor around the rotating shaft.
  • the fixed body LED, the fixed body photodiode, the rotating body LED, and the rotating body photodiode are all four, but the present embodiment is not limited thereto. As described above.
  • FIG. 2 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18.
  • the fixed body LEDs 2 and the fixed body photodiodes 4 are alternately concentrically arranged at equal intervals with a distance r from the center of the rotation shaft 18 as a radius. These are in a positional relationship facing the rotating body photodiode and the rotating body LED.
  • the radius r should be small from the viewpoint of reducing the centrifugal load and reducing the optical signal propagation loss, but it is necessary to care for the influence of light reflection on the rotation axis.
  • FIG. 3 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18.
  • the rotating body LED 10 and the rotating body photodiode 7 are shown.
  • the rotating body LEDs 10 and the rotating body photodiodes 7 are alternately arranged concentrically and at equal intervals with a distance r from the center of the rotating shaft 18 as a radius.
  • the state rotated by the rotation angle ⁇ is indicated by a solid line
  • the state before the rotation (rotation angle zero) is indicated by a dotted line.
  • FIG. 4 shows a cross-sectional view of the fixed body 17 and the rotating body 19 on the A1-A1 ′ plane shown in FIGS.
  • the fixed body LED 2 and the rotating body photodiode 7 are disposed to face each other with a distance Da.
  • the absolute value of the optical signal propagation loss can be reduced as the distance Da is smaller, the amount of fluctuation tends to increase. Therefore, it is necessary to take measures such as reducing the installation radius r described above.
  • FIG. 5 is a developed view of a curved surface of a cylinder having the circumferences Xa and Xb shown in FIGS. 2 and 3 and the distance Da shown in FIG. 4 at a height.
  • the fixed body LED 2 has an irradiation region 20 having a beam half width ⁇ . Since each irradiation region is set to be in contact, it can be seen that even if the rotating body photodiode 7 is rotated, it always falls within the irradiation region 20 and the direct wave is covered.
  • N fixed body LEDs expressed by the following equation (1).
  • the distance r can be reduced to such an extent that the light propagation characteristics are not significantly deteriorated due to the influence of the rotating shaft 18.
  • the beam half-value width ⁇ is large, there is a possibility that the fixed body LED 2 directly leaks into the fixed body photodiode.
  • it is effective to install a light shielding plate between the fixed body LED 2 and the fixed body photodiode within a range where the beam half width ⁇ is not shielded.
  • this measure is also effective for ensuring isolation between the rotating body LED and the rotating body photodiode.
  • the fixed body LED 2 may irradiate the beam only in the vicinity of the circumference indicated by Xb, thereby suppressing the light propagation loss.
  • it is effective to attach a cylindrical lens to the fixed body LED 2. This technique is effective not only for fixed body LEDs but also for rotating body LEDs.
  • a lens can be attached to each to suppress signal intensity fluctuations due to rotation, and communication quality can be kept constant. It is also effective to adjust the gain of the amplifier in the receiving circuit according to the signal strength in order to suppress fluctuations in the signal strength. Since the fluctuation of the signal intensity is periodic depending on the rotation angle, the rotation angle is measured with a rotary encoder attached to the rotating body or fixed body, and the gain of the amplifier is adjusted according to the rotation angle information. May be.
  • FIG. 6 is a configuration diagram of the fixed body transceiver 5 according to the present embodiment.
  • the fixed body transmission circuit 1 includes an oscillator 40, a high frequency switch 41, a signal synthesizer 42, and a driver IC group 43.
  • the plurality of oscillators 40 are provided corresponding to each of the plurality of fixed body LEDs 2.
  • Each of the plurality of oscillators 40 has a unique oscillation frequency, and these oscillation frequencies are so-called carrier frequencies, which are separated by a predetermined separation frequency or more. This separation frequency is set by the frequency characteristic of a band-pass filter described later that extracts only the frequency component of the control signal.
  • the output of the oscillator 40 is turned on / off by the high frequency switch 41 according to the frequency of the control signal from the controller, and converted into a high frequency control signal. By doing so, it is determined as Low when communication is interrupted, so that a fail-safe function is realized.
  • a plurality of high-frequency control signals converted in the same manner are input to the driver IC 43 group.
  • the driver IC group 43 includes a plurality of driver ICs having a function of adjusting current values to be output to the plurality of fixed body LEDs 2 connected to the signal synthesizer 42.
  • the fixed body LEDs 2 can be flashed simultaneously. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
  • the stationary reception circuit 3 includes a transimpedance amplifier 44, a signal synthesis distributor 45, a bandpass filter 46, a detector 47, and a comparator 48.
  • the plurality of band pass filters 46, the detectors 47, and the comparators 48 are provided corresponding to the plurality of fixed body photodiodes 4, respectively.
  • High-frequency sensing signals from the rotating body received by the plurality of fixed body photodiodes 4 are first converted from current signals to voltage signals by the transimpedance amplifier 44.
  • the converted high-frequency sensing signals are synthesized by the signal synthesis / distributor 45.
  • This high frequency sensing signal is distributed again by the signal synthesis distributor 45.
  • the redistributed high-frequency sensing signal is separated into high-frequency sensing signals for each sensor by the band-pass filter 46, envelope detected by the detector 47, and reconverted to the sensing signal. Thereafter, the sensing signal is determined to be High / Low by the comparator 48 and input to the controller.
  • FIG. 7 is a configuration diagram of the rotating body receiver 8 and the rotating body transmitter 11 in the present embodiment.
  • the rotating body receiving circuit 6 includes a transimpedance amplifier 49, a band pass filter 50, a detector 51, and a comparator 52.
  • the high-frequency control signal from the stationary body received by the rotating body photodiode 7 is first converted from a current signal to a voltage signal by the transimpedance amplifier 49.
  • the plurality of high-frequency control signals thus converted are classified into high-frequency control signals for each power device by the band-pass filter 50, envelope detection is performed by the detector 51, and the signals are reconverted into control signals. Thereafter, the control signal is determined to be High / Low by the comparator 52 and input to each power device.
  • the rotating body transmission circuit 9 includes an oscillator 55, a high-frequency switch 54, and a driver IC 53.
  • Each of the plurality of oscillators 55 has a specific oscillation frequency, and is different from the oscillation frequency of the oscillator of the above-described stationary body transmission circuit, and is separated by a predetermined separation frequency or more.
  • the output of the oscillator 55 is turned on / off by the high frequency switch 54 according to the frequency of the sensing signal from the sensor, and converted into a high frequency sensing signal.
  • the sensing signal from each sensor 14 is a digital signal of a current value and a power supply value.
  • the measured value is converted to A / A by the sensor 14 or the transmitter 11 for a rotating body or other circuits. What is necessary is just to comprise so that D conversion may be carried out.
  • the converted high frequency sensing signal is input to the driver IC 53.
  • the driver IC 53 has a role of controlling a current output to the rotating body LED 10 and can blink the rotating body LED 10 in response to a high frequency sensing signal.
  • FIG. 8 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18.
  • the fixed body LEDs 2 are arranged at equal intervals on a circumference having a radius r1 from the center of the rotating shaft 18.
  • the fixed body photodiodes 4 are arranged at equal intervals on a circumference having a radius of the distance r2. Further, both have an angle difference of 45 degrees around the rotation shaft 18.
  • FIG. 9 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18.
  • the rotating body LEDs 7 are arranged at equal intervals on the circumference with the radius r2 from the center of the rotating shaft 18 so as to face the fixed body side, and the rotating body photodiode 10 has a circumference with the distance r1 as the radius. It is equally spaced above. Further, both have an angle difference of 45 degrees around the rotation shaft 18.
  • the state rotated by the rotation angle ⁇ is indicated by a solid line
  • the state before the rotation (rotation angle zero) is indicated by a dotted line. Mounting closer to the rotation axis reduces the centrifugal load and optical signal propagation loss, but it is necessary to consider the effect of light reflection on the rotation axis.
  • FIG. 10 and FIG. 11 are also modifications of the geometrical arrangement of LEDs and photodiodes mounted on the fixed body and the rotating body in the present embodiment.
  • FIG. 10 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18.
  • the fixed body LEDs 2 are arranged at equal intervals on the circumference around the rotation shaft 18.
  • the fixed body photodiode groups 21 are arranged at equal intervals on a circumference having a radius different from that of the fixed body LED 2 as a set of three photodiodes (sub light receiving elements).
  • FIG. 11 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18.
  • the rotating body LED 10 is disposed so as to face the fixed body photodiode group, and the rotating body photodiode group 22 is disposed so as to face the fixed body LED.
  • the fixed body LED 2 and the fixed body photodiode 4 are arranged at equiangular intervals on the curved surface portion of the fixed body 17, and the rotating body LED 10 and the rotating body photodiode 7 are arranged at equiangular intervals on the curved surface portion of the rotating shaft 18.
  • the LED and the photodiode can be arranged in a space-saving manner and can solve the problem of the arrangement space of the parts such as the motor in the fixed body and heat radiation.
  • the fixed body LED 2 and the rotating body photodiode 7 are installed on the same plane, and the fixed body photodiode 4 and the rotating body LED 10 are installed on the same plane (not shown).
  • the isolation between the fixed body LED 2 and the fixed body photodiode 4 and the isolation between the rotary body LED 10 and the rotary body photodiode 7 are improved. It becomes possible to make it.
  • FIG. 14 is a modification of the transceiver 5 for fixed body in the present embodiment.
  • a significant difference from the fixed body transceiver 5 described in FIG. 6 is that the received high-frequency sensing signal is once converted to an intermediate frequency. By doing so, the frequency selectivity by a filter can be improved and the sensing signal can be easily extracted.
  • the fixed body transmission circuit 1 includes an oscillator 40, a high frequency switch 41, a signal synthesizer 42, and a driver IC group 43.
  • Each of the plurality of oscillators 40 has a specific oscillation frequency and is separated by a predetermined separation frequency or more. This separation frequency is set by a frequency characteristic of a low-pass filter described later that extracts only the frequency component of the control signal.
  • the output of the oscillator 40 is turned on / off by the high frequency switch 41 according to the frequency of the control signal from the controller, and converted into a high frequency control signal.
  • a plurality of high-frequency control signals converted in the same manner are input to the driver IC 43 group.
  • the driver IC group 43 includes a plurality of driver ICs having a function of controlling currents output to the plurality of fixed body LEDs 2 connected to the signal synthesizer 42.
  • the fixed body LEDs 2 can be flashed simultaneously. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
  • the oscillator 40 outputs a signal not only to the high frequency switch 41 but also to the mixer 56 of the fixed body receiving circuit 3.
  • the fixed body receiving circuit 3 includes a transimpedance amplifier 44, a signal synthesis distributor 45, a mixer 56, a low-pass filter 57, a detector 47, and a comparator 48.
  • High-frequency sensing signals from the rotating body received by the plurality of fixed body photodiodes 4 are first converted from current signals to voltage signals by the transimpedance amplifier 44.
  • the converted high-frequency sensing signals are synthesized by the signal synthesis / distributor 45.
  • This signal synthesis high-frequency sensing signals from a plurality of sensors can be received over a wide range, and stable reception can be realized even during rotation. This high frequency sensing signal is distributed again by the signal synthesis distributor 45.
  • the redistributed high frequency sensing signal is mixed with the output from the oscillator 40 by the mixer 56 and converted to an intermediate frequency. From this signal, a sensing signal having an intermediate frequency for each sensor is extracted by the low-pass filter 57, envelope detection is performed by the detector 47, and the sensor signal is reconverted into a sensing signal. Thereafter, the sensing signal is determined to be High / Low by the comparator 48 and input to the controller.
  • FIG. 15 is a configuration diagram of a transmitter / receiver 61 for a rotating body in which a transmitter for a rotating body and a receiver for a rotating body are integrated in the present embodiment.
  • a significant difference from the set of the rotator transmitter 11 and the rotator receiver 8 described in FIG. 7 is that the received high-frequency control signal is once converted to an intermediate frequency. By doing so, the frequency selectivity by a filter can be improved and extraction of a control signal can be facilitated.
  • the transmitting / receiving circuit 60 for a rotating body includes a receiving circuit 6 for a rotating body and a transmitting circuit 9 for a rotating body.
  • the rotating body receiving circuit 6 includes a transimpedance amplifier 49, a mixer 58, a low-pass filter 59, a detector 51, and a comparator 52.
  • the rotating body transmission circuit 9 includes an oscillator 55, a high frequency switch 54, and a driver IC 53.
  • the high-frequency control signal from the stationary body received by the rotating body photodiode 7 is first converted from a current signal to a voltage signal by the transimpedance amplifier 49.
  • the plurality of converted high frequency control signals are mixed with the output from the oscillator 55 by the mixer 58 and converted to an intermediate frequency.
  • a control signal having an intermediate frequency for each power device is extracted by the low-pass filter 59, envelope detection is performed by the detector 51, and the signal is reconverted into a control signal. Thereafter, the control signal is determined as High / Low by the comparator 52 and is input to the power device. Note that it is assumed that the envelope detection by the detector 51 has variations in detection timing when the converted intermediate frequency is not sufficiently large compared to the frequency of the control signal.
  • the oscillator 55 oscillates at a frequency twice that required for the mixer input, divides the frequency by 2, and generates two local signals with a phase difference of 90 degrees.
  • the sensing signal (digital measurement value) from the sensor is converted into a high frequency sensing signal by turning on and off the high frequency switch 54 connected to the oscillator 55.
  • Each of the plurality of oscillators 55 has a specific oscillation frequency, and is different from the oscillation frequency of the oscillator of the above-described stationary body transmission circuit, and is separated by a predetermined separation frequency or more. An example of setting each oscillation frequency will be described later.
  • the converted high frequency sensing signal is input to the driver IC 53.
  • the driver IC 53 has a role of controlling a current output to the rotating body LED 10 and can blink the rotating body LED 10 in response to a high frequency sensing signal.
  • the fixed body transceiver 5 shown in FIG. 7 is used in combination with the rotating body receiver 8 and the rotating body transmitter 11, or the rotating body circular transceiver 61 shown in FIG. 15 and the fixed body transceiver 5 shown in FIG. 6. May be used in combination.
  • the load resistance depends on the gain setting of the transimpedance amplifier at the subsequent stage.
  • the frequencies of the twelve oscillators of the fixed body transmission circuit are set apart by 800, 950, 1100, ..., 2450 kHz and 150 kHz, respectively.
  • the twelve oscillators of the rotor transmitter are set apart from each other by 150 kHz as in 850, 1000, 1150,.
  • the intermediate frequency signal mixed at a frequency of 950 kHz is 50, 100, 200, 350,. The signal can be extracted.
  • each signal can be extracted with the same low-pass filter setting.
  • a plurality of signals can be bidirectionally communicated simultaneously. Note that even when the number of control signals and the number of sensing signals are different, the oscillator can be used only for the local input of the mixer.
  • the optical communication apparatus has both 1-to-N communication between one communication device attached to the fixed body and a plurality of communication devices attached to the rotating body and insulated from each other.
  • Direction communication can be performed stably and continuously even during rotation.
  • communication is performed between the fixed body and the rotating body using light, so that the communication quality is highly resistant to switching noise of the inverter and electromagnetic field noise such as magnetic field noise from the motor. can do.
  • FIG. 17 is a block diagram showing the configuration of the optical communication apparatus.
  • the optical communication apparatus includes a fixed body transceiver 30 attached to a fixed body, a plurality of rotating body transmitters and a plurality of rotating body receivers attached to the rotating body, and a controller 16 attached to the fixed body. And a two-way non-contact communication between the power converter 13 attached to the rotating body.
  • the power converter 13 has a plurality of power devices and a plurality of sensors.
  • the controller 16 controls the power device 12 by a control signal generated based on information such as the current value and voltage value obtained from the plurality of sensors 14.
  • the power device 12 includes a driver circuit.
  • the fixed body transceiver 30 includes a plurality of fixed body laser diode groups 24, a plurality of lenses 25, a transmission unit having a fixed body transmission circuit 23, a plurality of fixed body photodiodes 27, a plurality of optical filters 28, A plurality of lenses 29, and a receiver having a fixed body receiving circuit 26.
  • the plurality of rotating body receivers 35 include a rotating body photodiode 32, an optical filter 33, a lens 34, and a rotating body receiving circuit 31, and are insulated between the respective rotating body receivers.
  • the plurality of rotating body transmitters 39 include a rotating body laser diode 37, a lens 38, and a rotating body transmission circuit 36.
  • the control signal specific to each power device is input from the controller 16 to the fixed body transmission circuit 23 by the number of power devices.
  • the fixed body transmission circuit 23 distributes these control signals to a plurality of fixed body laser diode groups 24, and simultaneously flashes the plurality of fixed body laser diode groups 24 in synchronization with the signals. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
  • the lens 25 is attached to the laser diode group 24 for the fixed body.
  • the fixed body laser diode group 24 includes laser diodes having different emission wavelengths corresponding to the number of control signals, and the control signals do not interfere with each other.
  • the control signal emitted from the fixed body laser diode group 24 is received by the rotating plurality of rotating body photodiodes 32 via the lens 34 and the optical filter 33.
  • the lens 34 is used to concentrate light from the laser diode group 24 for the fixed body.
  • the optical filter 33 is a filter that extracts only a specific wavelength, and can extract only a control signal unique to each power device. This control signal is input to the power device 12 via the drive circuit.
  • sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are input to the rotating body transmission circuit 36.
  • the rotating body transmitting circuit 36 blinks the stationary body laser diode 37 in synchronization with the sensing signal.
  • the light emission wavelength of the fixed body laser diode 37 is different from that of the above-described fixed body laser diode group 24, and it is assumed that the wavelengths are so far apart that it is not necessary to consider interference.
  • the lens 38 is attached to the rotating body laser diode 38 in order to give an appropriate beam half-value width to the output from the laser diode.
  • the sensing signal emitted from the rotating body laser diode 37 is received by the fixed body photodiode group 27 via the lens 29 and the demultiplexer 28.
  • the wavelength of the sensing signal input to the demultiplexer 28 is one of the emission wavelengths of the plurality of rotating body laser diodes 37 or a combination thereof.
  • the demultiplexer 28 has a function of separating these wavelengths and outputting them to the fixed body photodiode group 27.
  • the stationary body receiving circuit 26 synthesizes the sensing signals of these separated wavelengths. By this signal synthesis, sensing signals from the plurality of sensors 14 can be received over a wide range, and stable reception can be realized even during rotation.
  • the synthesized sensing signal is divided into sensing signals corresponding to the respective sensors by the stationary body receiving circuit 26, and is input to the controller 16.
  • the controller 16 controls the information such as the obtained current value and voltage value downward. A signal is generated.
  • FIG. 18 shows a modification of the optical communication apparatus according to the present embodiment.
  • the fixed body transceiver 30 is different from the optical communication apparatus described above.
  • the fixed body transceiver 30 includes a plurality of lenses 25, a plurality of optical fibers 75 and 77, an optical fiber distributor 76, a multiplexer 74, a plurality of fixed body laser diode groups 73, and a fixed body transmission circuit 72.
  • the fixed body transmitting circuit 72 receives as many control signals as the number of power devices from the controller 16.
  • the fixed body transmission circuit 72 causes the control signals and the laser diodes of the fixed body laser diode group 73 to correspond one-to-one to blink simultaneously.
  • the fixed body laser diode group 73 is composed of laser diodes having different emission wavelengths corresponding to the number of control signals, and the respective control signals do not interfere with each other.
  • These control signals having different wavelengths are input to the multiplexer 74, combined, and input to one optical fiber 75.
  • These combined control signals are distributed to a plurality of optical fibers 77 by the optical fiber distributor 76, and are irradiated to the rotating body side with an appropriate beam half width by the lens 25.
  • Control signals emitted from the plurality of optical fibers are received by the rotating photodiodes 32 for the rotating body through the lens 34 and the optical filter 33.
  • the lens 34 is used to concentrate light from the laser diode group 24 for the fixed body.
  • the optical filter 33 is a filter that extracts only a specific wavelength, and can extract only a control signal unique to each power device. This control signal is input to the power device 12 via the drive circuit.
  • the plurality of fixed-body laser diode groups 73 and the multiplexer 74 can be configured more simply by using a modulator integrated laser in which these functions are integrated.
  • sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are input to the rotating body transmission circuit 36.
  • the rotating body transmitting circuit 36 blinks the stationary body laser diode 37 in synchronization with the sensing signal.
  • the light emission wavelength of the fixed body laser diode 37 is different from that of the above-described fixed body laser diode group 73, and it is assumed that the wavelengths are so far apart that it is not necessary to consider interference.
  • the lens 38 is attached to the rotating body laser diode 38 in order to give an appropriate beam half-value width to the output from the laser diode.
  • the sensing signal irradiated from the rotating body laser diode 37 is input to the plurality of optical fibers 86 through the plurality of lenses 29.
  • the input sensing signals are combined by the optical fiber combiner 85 and output to one optical fiber 84.
  • This sensing signal is received by the fixed body photodiode group 82 via the demultiplexer 83.
  • the wavelength of the sensing signal input to the demultiplexer 83 is a combination of the emission wavelengths of the plurality of rotating body laser diodes 37.
  • the demultiplexer 83 has a function of separating these wavelengths and outputting them to the fixed body photodiode group 82. These sensing signals are input to the controller 16 via the stationary body receiving circuit 81, and the controller 16 generates a control signal based on the obtained information such as current value and voltage value.
  • the optical communication apparatus has both 1-to-N communication between one communication device attached to the fixed body and a plurality of communication devices attached to the rotating body and insulated from each other. Direction communication can be performed stably and continuously even during rotation.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To stably and continuously perform, even during rotation, one-to-N bidirectional communication or one-way communication between one communication device attached to a static object and a plurality of communication devices attached to a rotary object and isolated from each other. [Solution] A rotary object communication device comprises a static object and a substantially columnar rotary object that rotates about the rotational axis attached to the static object. The rotary object communication device uses light between one static object transceiver (5) installed in the static object and a plurality of rotary object transceivers (61) installed in the rotary object to perform bidirectional optical communication without a brush, in such a way that: a plurality of downstream signals are transmitted from the static object transceiver (5) to a plurality of rotary object receivers (8); and a plurality of upstream signals are transmitted from a plurality of rotary object transmitters (11) to the static object transceiver (5).

Description

発電装置及びシステム、発電装置における光通信方法Power generation apparatus and system, and optical communication method in power generation apparatus
 本発明は、発電装置及びシステム、発電装置における光通信方法に係り、特に、回転体と固定体の間で信号を送受する光通信器を備えた発電装置及びシステム、発電装置における光通信方法に関する。本発明は、例えば、風力、水力、火力、揚力等の発電システムの回転電機に用いることができる。 The present invention relates to a power generation apparatus and system, and an optical communication method in the power generation apparatus, and more particularly, to a power generation apparatus and system including an optical communication device that transmits and receives signals between a rotating body and a fixed body, and an optical communication method in the power generation apparatus. . The present invention can be used, for example, in a rotating electrical machine of a power generation system such as wind power, hydraulic power, thermal power, and lift.
 再生可能エネルギー利用への取組みは、地球温暖化の原因物質の一つであるCO2の排出量削減やエネルギーの安定的供給に向けて年々活発化している。特に、風力発電は環境適合性や採算性の観点から注目されており、その中でも、大規模化、風量安定化のため、今後洋上風車の導入量が増加すると予測されている。
 しかし、陸上風車に比べ、洋上風車はメンテナンスコストが増大するという課題がある。
Efforts to use renewable energy are increasing year by year for reducing CO2 emissions, one of the causative agents of global warming, and for stable energy supply. In particular, wind power generation is attracting attention from the viewpoints of environmental compatibility and profitability. Among them, the introduction of offshore wind turbines is expected to increase in the future in order to increase the scale and stabilize the air volume.
However, the offshore wind turbine has a problem that the maintenance cost increases compared to the onshore wind turbine.
 以下に、図19に示す、交流励磁発電機(DFG:Double‐Fed Generator)を用いた従来の風力発電システム101を例にとって説明する。このシステムは、風を受けて回転するブレード62と、電力系統68に発電電力を送る発電機65と、発電機65の回転子63を可変周波数で励磁する電力変換器13を備える。発電機65への励磁用電力は、回転子63にブラシ66を物理的に接触させて供給されている。電力変換器13は、例えば、数kVで動作するパワーデバイスで構成されており、これらへのコントローラ16からの制御信号はフォトカプラ等の絶縁素子67を介して送られる。また、この制御信号も電力変換器13等からのセンサ信号を元にコントローラ16で生成されており、センサ信号の伝送にも同様に絶縁素子67が用いられている。なお、電力変換器13は2系統の3相インバータであるため、12個のパワーデバイスで構成される(1相当り2個×3相×2系統)。電力変換器13では、制御信号に従い、系統から供給された電力を6個のパワーデバイスによりAC/DC変換し、さらに6個のパワーデバイスによりDC/AC変換して主発電器の回転子に制御用電力を供給する。 Hereinafter, a conventional wind power generation system 101 using an AC excitation generator (DFG: Double-Fed Generator) shown in FIG. 19 will be described as an example. This system includes a blade 62 that rotates by receiving wind, a generator 65 that sends generated power to an electric power system 68, and a power converter 13 that excites a rotor 63 of the generator 65 at a variable frequency. Excitation power to the generator 65 is supplied by bringing the brush 66 into physical contact with the rotor 63. The power converter 13 is composed of, for example, a power device that operates at several kV, and a control signal from the controller 16 is sent via an insulating element 67 such as a photocoupler. Further, this control signal is also generated by the controller 16 based on the sensor signal from the power converter 13 and the like, and the insulating element 67 is similarly used for transmitting the sensor signal. Since the power converter 13 is a two-phase three-phase inverter, the power converter 13 is composed of twelve power devices (two per unit x three phases x two systems). In the power converter 13, the power supplied from the system is AC / DC converted by the six power devices in accordance with the control signal, and further DC / AC converted by the six power devices to be controlled by the rotor of the main generator. Supply power.
 風力発電システム101では、可変速する発電機の固定子64から系統の周波数の電力を供給する。そのため、電力変換器13により、ブラシ66を介してすべり周波数発電機の回転周波数と系統の周波数の差であるすべりに応じて回転子63を励磁することで、固定子64の周波数と同期した回転磁界を発生するように制御する。このように、電力変換器13の周波数制御によって、風速変動に対する可変速運転が可能になり、広風速域の風エネルギーを電力に変換することができる。このシステムは可変速水力発電システムで技術的に実績のあるシステムであり、可変速運転に必要な電力変換器13の容量が回転機容量の例えば30%程度で良いことから、電力変換損失が小さく高効率、低コストな発電システムを実現することができる。しかし、回転子63への給電にはブラシ66が必要であり、ブラシ66の摩耗により約1年程度で交換および磨耗くずの除去作業が必要となる。 In the wind power generation system 101, electric power having a system frequency is supplied from a stator 64 of a variable speed generator. Therefore, the power converter 13 excites the rotor 63 according to the slip which is the difference between the rotational frequency of the slip frequency generator and the system frequency via the brush 66, thereby rotating in synchronization with the frequency of the stator 64. Control to generate a magnetic field. Thus, the frequency control of the power converter 13 enables variable speed operation with respect to wind speed fluctuations, and wind energy in a wide wind speed range can be converted into electric power. This system is a variable speed hydraulic power generation system that has a technical track record, and the capacity of the power converter 13 necessary for variable speed operation may be about 30% of the capacity of the rotating machine, so that the power conversion loss is small. A highly efficient and low-cost power generation system can be realized. However, the power supply to the rotor 63 requires the brush 66, and due to wear of the brush 66, replacement and removal of wear debris are required in about one year.
 例えば、特許文献1では、メンテナンスを容易にしつつ発電効率向上可能な回転電機等を提供することを目的として、ブラシを用いない交流励磁発電機が記載されている。
 この公報では、交流励磁発電機と同軸に回転励磁機と電力変換器を設け、系統の電力を直流に整流し、回転励磁機の固定子に通電させ、同期発電機の原理により回転子に電力を供給した後、電力変換器により、電圧及び周波数を変換した電力を交流励磁同期発電機の回転子に電力を供給し、発電運転を行うように構成することが開示されている。この構成によると、電力変換器は回転子に取り付けられるため、回転子の回転にともない、電力変換器は回転する。この電力変換器は風車の回転に応じた制御が必要となるが、ブラシレスに制御信号を受信するため、光通信による制御信号伝送を用いることが記載されている。
For example, Patent Document 1 describes an AC excitation generator that does not use a brush for the purpose of providing a rotating electrical machine that can improve power generation efficiency while facilitating maintenance.
In this publication, a rotary exciter and a power converter are provided coaxially with an AC excitation generator, the power of the system is rectified to DC, the stator of the rotary exciter is energized, and the rotor is powered by the principle of a synchronous generator. After the power is supplied, the power converter converts the voltage and frequency to the rotor of the AC excitation synchronous generator so that the power generation operation is performed. According to this configuration, since the power converter is attached to the rotor, the power converter rotates as the rotor rotates. This power converter needs to be controlled according to the rotation of the windmill, but it is described that control signal transmission by optical communication is used in order to receive a control signal brushlessly.
 回転体の光通信技術について、例えば、特許文献2にその詳細が開示されている。第1の回転体に設けた第1の通信モジュールの発光受光部は、回転軸を中心とする円周上に交互に配置された発光素子と受光素子にて構成される。第1の回転体と回転軸を同じとする第2の回転体に設けた第2の通信モジュールの発光受光部も同様に、回転軸を中心とする円周上に交互に配置された発光素子と受光素子にて構成され、第1の通信モジュールの発光受光部に対向して配置される。第1の通信モジュールの複数の発光素子は、送信すべき信号に応じて全て同時に点滅し、この信号は第2の通信モジュールの複数の受光素子で検出される。検出された各信号は混合部にて混合されて出力される。以上の構成により、回転中においても安定して二つの通信モジュール間の双方向通信が実現できることが記載されている。 The details of the optical communication technology of the rotating body are disclosed in Patent Document 2, for example. The light emitting / receiving section of the first communication module provided in the first rotating body is composed of light emitting elements and light receiving elements arranged alternately on a circumference around the rotation axis. Similarly, the light emitting / receiving portions of the second communication module provided in the second rotating body having the same rotating shaft as the first rotating body are also alternately arranged on the circumference around the rotating shaft. And the light receiving element, and is arranged to face the light emitting / receiving part of the first communication module. The plurality of light emitting elements of the first communication module all flash simultaneously according to the signal to be transmitted, and this signal is detected by the plurality of light receiving elements of the second communication module. The detected signals are mixed and output by the mixing unit. It is described that the above configuration can realize bi-directional communication between two communication modules stably even during rotation.
 また、特許文献3には、メンテナンスを容易にしつつ発電効率向上可能な回転電機システムまたは風力発電システムが記載されている。 Patent Document 3 describes a rotating electrical machine system or a wind power generation system that can improve power generation efficiency while facilitating maintenance.
特開2002-136191号公報JP 2002-136191 A 特開2010-074253号公報JP 2010-074253 A 特開2013-110801号公報JP 2013-110801 A
 特許文献1記載の交流励磁発電機において、電力変換器との非接触な通信手段として用いている光通信は、一般的に信号の直進性が強いため通信可能領域が狭い。回転時にも安定的に連続通信を行うには、特許文献2記載のような光通信技術を適用する必要があるかもしれない。 In the AC excitation generator described in Patent Document 1, optical communication used as a non-contact communication means with a power converter generally has a narrow communicable area because the signal linearity is strong. In order to perform continuous communication stably even during rotation, it may be necessary to apply an optical communication technique as described in Patent Document 2.
 しかし、特許文献2記載の光通信技術は、送信部と受信部との間における1対1の通信に対応するものであり、上述の電力変換器に必要なコントローラと複数のパワーデバイス(及びセンサ)との間における1対Nの通信には適用できない。上述の電力変換器はN個の高電圧パワーデバイスから構成されており、これらのパワーデバイスは各々のタイミングでオンオフする。したがって、各パワーデバイス間では絶縁が不可欠であるため、1対Nの通信が求められる。さらに、ブラシレスの交流励磁発電機では、電力変換器の電圧や電流など様々なセンシング情報から制御信号が生成されるため、制御信号とセンシング情報を双方向通信によりやりとりすることも上述と併せて必要とされる。 However, the optical communication technique described in Patent Document 2 corresponds to one-to-one communication between a transmission unit and a reception unit, and a controller and a plurality of power devices (and sensors) necessary for the power converter described above. It cannot be applied to 1-to-N communication with the network. The power converter described above is composed of N high-voltage power devices, and these power devices are turned on and off at each timing. Therefore, since insulation is indispensable between the power devices, one-to-N communication is required. Furthermore, in a brushless AC excitation generator, a control signal is generated from various sensing information such as the voltage and current of the power converter. Therefore, it is necessary to exchange the control signal and sensing information by two-way communication. It is said.
 本発明は、以上の点に鑑み、固定体に取り付けられた一つの通信器と、回転体に取付けられた互いに絶縁された複数の通信器との間の1対Nの双方向通信又は片方向通信を、回転時にも安定して連続的に行うことを目的とする。 In view of the above points, the present invention provides one-to-N bidirectional communication or one-way communication between a communication device attached to a fixed body and a plurality of communication devices attached to a rotating body. The purpose is to carry out communication stably and continuously even during rotation.
 本発明の第1の解決手段によると、
 発電装置であって、
 回転エネルギーにより発生された電力を電力系統に送電するための固定体と、
 前記固定体に取付けられた回転軸を中心に回転するための回転体と、
 インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と、
 前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力するコントローラと、
を備えることにより、前記電力変換器が、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
 さらに、
 複数の固定体用発光素子と、
 前記コントローラからの前記複数のパワーデバイスの各々を制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、前記複数の固定体用発光素子を一斉に点滅させるための固定体用送信回路と、
 電気的に絶縁された回転体用受光素子と、前記回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々の前記制御信号として前記電力変換器に出力する回転体用受信回路を有する複数の回転体用受信器と、
 複数の固定体用受光素子と、
 前記複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力する固定体用受信回路と、
 回転体用発光素子と、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して前記回転体用発光素子を発光する回転体用送信回路を有する複数の回転体用送信器と
を備えた発電装置が提供される。
According to the first solution of the present invention,
A power generator,
A stationary body for transmitting the electric power generated by the rotational energy to the power system;
A rotating body for rotating around a rotating shaft attached to the fixed body;
A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and
Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power. A controller for generating a control signal for outputting the control signal to the power converter;
The power converter controls the plurality of power devices by the control signal from the controller, and converts the voltage and frequency based on the power supplied from the power system to the rotating body. To synchronize the generated power with the power system,
further,
A plurality of light emitting elements for stationary bodies;
A fixed signal for multiplexing a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and for simultaneously flashing the plurality of fixed body light emitting elements. A body transmission circuit;
An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the downstream signals of the plurality of power devices A plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal;
A plurality of stationary light receiving elements;
A fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
Rotating body light emitting element, and a plurality of rotating body light emitting elements that generate the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to emit light from the rotating body light emitting element A power generation device including a transmitter is provided.
 本発明の第2の解決手段によると、
 発電システムであって、
 回転エネルギーにより発生された電力を電力系統に送電するための固定体と、前記固定体に取付けられた回転軸を中心に回転するための回転体とを有する主発電機と、
 補助固定体と、前記回転体と共通の回転軸を有する補助回転体と有する補助発電機と、
 インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と、
 前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力するコントローラと、
を備えることにより、電力系統の電力が前記補助発電機の前記補助固定体に通電されることで、前記補助回転体の回転子巻線に電力が供給され、前記電力変換器が、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
 さらに、
 複数の固定体用発光素子と、
 前記コントローラからの前記複数のパワーデバイスの各々を制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、前記複数の固定体用発光素子を一斉に点滅させるための固定体用送信回路と、
 電気的に絶縁された回転体用受光素子と、前記回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々を前記制御信号として前記電力変換器に出力する回転体用受信回路を有する複数の回転体用受信器と、
 複数の固定体用受光素子と、
 前記複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力する固定体用受信回路と、
 回転体用発光素子と、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して前記回転体用発光素子を発光する回転体用送信回路を有する複数の回転体用送信器と
を備えた発電システムが提供される。
According to the second solution of the present invention,
A power generation system,
A main generator having a stationary body for transmitting electric power generated by rotational energy to an electric power system, and a rotational body for rotating about a rotation shaft attached to the stationary body;
An auxiliary generator having an auxiliary fixed body, an auxiliary rotating body having a rotation axis common to the rotating body, and
A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and
Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power. A controller for generating a control signal for outputting the control signal to the power converter;
By supplying the power of the power system to the auxiliary stationary body of the auxiliary generator, power is supplied to the rotor winding of the auxiliary rotor, and the power converter is supplied from the controller. The plurality of power devices are controlled by the control signal, and voltage and frequency converted based on the power supplied from the power system are supplied to the rotating body to synchronize the generated power with the power system. Realized,
further,
A plurality of light emitting elements for stationary bodies;
A fixed signal for multiplexing a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and for simultaneously flashing the plurality of fixed body light emitting elements. A body transmission circuit;
An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the plurality of power devices is converted to each of the downstream signals. A plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal;
A plurality of stationary light receiving elements;
A fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
Rotating body light emitting element, and a plurality of rotating body light emitting elements that generate the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to emit light from the rotating body light emitting element A power generation system including a transmitter is provided.
 本発明の第3の解決手段によると、
 発電装置における光通信方法であって、
 前記発電装置は、
 回転エネルギーにより発生された電力を電力系統に送電するための固定体と、
 前記固定体に取付けられた回転軸を中心に回転するための回転体と、
 インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と
を備え、
 コントローラにより、前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力し、
 前記電力変換器により、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
 固定体用送信回路により、前記コントローラからの前記複数のパワーデバイスの各々を
制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、複数の固定体用発光素子を一斉に点滅させ、
 複数の回転体用受信器の各々の回転体用受信回路により、電気的に絶縁された回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々の前記制御信号として前記電力変換器に出力し、
 固定体用受信回路により、複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力し、
 複数の回転体用送信器の各々の回転体用送信回路により、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して回転体用発光素子を発光させる
ことを特徴とする発電装置における光通信方法が提供される。
According to the third solution of the present invention,
An optical communication method in a power generation device,
The power generator is
A stationary body for transmitting the electric power generated by the rotational energy to the power system;
A rotating body for rotating around a rotating shaft attached to the fixed body;
A plurality of sensors for measuring the current value of each phase of the inverter and the voltage value of the inverter, and a power converter having a plurality of power devices constituting the inverter,
Based on the current value and voltage value information obtained from the plurality of sensors of the power converter by the controller, the current corresponding to the slip frequency is supplied to the rotor to synchronize the generated power with the power system. Generating a control signal for realizing the above, and outputting the control signal to the power converter,
The power converter controls the plurality of power devices according to the control signal from the controller, and supplies the rotating body with power converted in voltage and frequency based on the power supplied from the power system, Synchronize generated power with the power system,
The fixed body transmission circuit multiplexes a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and the plurality of fixed body light emitting elements are simultaneously transmitted. Blink
The downlink signal is extracted from the multiplexed downlink signal input from the electrically isolated rotor light receiving element by each of the rotor reception circuits of the plurality of rotor receivers. Output to the power converter as the control signal of each of the plurality of power devices,
The fixed body receiving circuit separates a plurality of uplink signals obtained by multiplexing a plurality of uplink signals respectively received by the plurality of fixed body light receiving elements into a plurality of the uplink signals and outputs the signals to the controller,
Each of the rotating body transmitter circuits of the plurality of rotating body transmitters generates the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to cause the rotating body light emitting element to emit light. An optical communication method in the power generation apparatus is provided.
 本発明によれば、固定体に取り付けられた一つの通信器と、回転体に取付けられた互いに絶縁された複数の通信器との間の1対Nの双方向通信又は片方向通信を、回転時にも安定して連続的に行うことができる。 According to the present invention, one-to-N bidirectional communication or one-way communication between a single communication device attached to a fixed body and a plurality of communication devices attached to a rotating body is insulated. Sometimes it can be carried out stably and continuously.
実施の形態1に係る光通信装置の構成を示すブロック図である。1 is a block diagram showing a configuration of an optical communication apparatus according to Embodiment 1. FIG. 実施の形態1に係り、回転軸18の長さ方向から固定体17を見た透視図である。FIG. 4 is a perspective view of the fixed body 17 according to the first embodiment when viewed from a length direction of a rotating shaft 18. 実施の形態1に係り、回転軸18の長さ方向から回転体19を見た透視図である。4 is a perspective view of the rotating body 19 according to the first embodiment when viewed from a length direction of a rotating shaft 18. FIG. 実施の形態1に係り、固定体17および回転体19のA1-A1’面での断面図である。FIG. 6 is a cross-sectional view of the fixed body 17 and the rotating body 19 on the A1-A1 ′ plane according to the first embodiment. 実施の形態1に係り、円周Xa、Xbと、距離Daを高さに持つ円柱の曲面を展開した図である。FIG. 4 is a developed view of a curved surface of a cylinder having the circumferences Xa and Xb and a distance Da according to the first embodiment. 実施の形態1に係る固定体用送受信器5の構成図である。3 is a configuration diagram of a fixed body transceiver 5 according to Embodiment 1. FIG. 実施の形態1に係る回転体用受信器8および回転体用送信器11の構成図である。2 is a configuration diagram of a rotating body receiver 8 and a rotating body transmitter 11 according to Embodiment 1. FIG. 実施の形態1に係り、固定体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。It is a modification of geometric arrangement of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body. 実施の形態1に係り、回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。4 is a modification of the geometric arrangement of LEDs and photodiodes mounted on a rotating body according to the first embodiment. 実施の形態1に係り、固定体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。It is a modification of geometric arrangement of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body. 実施の形態1に係り、回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。4 is a modification of the geometric arrangement of LEDs and photodiodes mounted on a rotating body according to the first embodiment. 実施の形態1に係り、固定体および回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。It is a modification of geometric arrangement | positioning of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body and a rotary body. 実施の形態1に係り、固定体および回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。It is a modification of geometric arrangement | positioning of LED and a photodiode which concern on Embodiment 1 and are mounted in a fixed body and a rotary body. 実施の形態1に係る固定体用送受信器5の変形例である。5 is a modified example of the stationary body transceiver 5 according to the first embodiment. 実施の形態1に係る回転体用送信器と回転体用受信器を一体化した回転体用送受信器61の構成図である。FIG. 3 is a configuration diagram of a rotating body transceiver 61 in which a rotating body transmitter and a rotating body receiver according to Embodiment 1 are integrated. 実施の形態1に係る光通信装置を用いた風力発電システム102の構成図である。1 is a configuration diagram of a wind power generation system 102 using an optical communication device according to Embodiment 1. FIG. 実施の形態2に係る光通信装置の構成を示すブロック図である。6 is a block diagram showing a configuration of an optical communication apparatus according to Embodiment 2. FIG. 実施の形態2に係る光通信装置の変形例である。6 is a modification of the optical communication device according to the second embodiment. 交流励磁発電機を用いた従来の風力発電システム101の構成図である。It is a block diagram of the conventional wind power generation system 101 using an alternating current excitation generator. 電力変換器13のパワーデバイスおよびセンサに関する回路の説明図である。It is explanatory drawing of the circuit regarding the power device and sensor of the power converter.
A.概要
 
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
A. Overview
In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。 In all the drawings for explaining the following embodiments, those having the same function are denoted by the same reference numerals in principle, and the repeated explanation thereof is omitted.
 本実施の形態の代表的なものの一例を示せば、次のとおりである。
 固定体と、前記固定体に取付けられた回転軸を中心に回転する略円柱形状の回転体を備え、前記固定体に設置された一つの固定体用送受信器と、前記回転体に設置された複数の回転体用送受信器との間で、光を利用して、前記固定体用送受信器から前記回転体用送受信器に複数の下り信号を伝送させ、前記回転体用送受信器から前記固定体用送受信器に複数の上り信号を伝送させて、双方向通信を行う光通信装置において、前記固定体用送受信器は、複数の固定体用発光素子、複数の前記下り信号を多重化して多重下り信号を生成する固定体用多重化手段、複数の固定体用受光素子、複数の前記上り信号が多重化された多重上り信号から複数の前記上り信号に分別する固定体用分別手段を備え、複数の前記回転体用送受信器はそれぞれ電気的に絶縁され、少なくとも一つの回転体用受光素子、前記回転体用受光素子から入力された前記多重下り信号から前記下り信号に分別する回転体用分別手段、少なくとも一つの回転体用発光素子、複数の前記上り信号を多重化して多重上り信号を生成する回転体用多重化手段とを備えることを特徴とする。
An example of a typical example of the present embodiment is as follows.
A fixed body, and a substantially cylindrical rotating body that rotates about a rotating shaft attached to the fixed body, and is mounted on the rotating body, and one fixed body transceiver installed on the fixed body A plurality of downstream signals are transmitted from the transmitter / receiver for fixed body to the transmitter / receiver for rotary body using light between the transmitter / receiver for rotary bodies, and the fixed body is transmitted from the transmitter / receiver for rotary bodies. In an optical communication apparatus that performs bidirectional communication by transmitting a plurality of upstream signals to a transceiver for transmitting and receiving, the transceiver for stationary body multiplexes a plurality of stationary body light emitting elements and a plurality of downstream signals to multiplex downstream A fixed body multiplexing means for generating a signal, a plurality of fixed body light receiving elements, a plurality of fixed body separation means for separating a plurality of upstream signals from multiplexed upstream signals into a plurality of upstream signals, The rotating body transceiver is electrically Insulated, at least one rotating body light receiving element, a rotating body separating means for separating the multiple downstream signals input from the rotating body light receiving element into the downstream signals, at least one rotating body light emitting element, And rotator multiplexing means for multiplexing the uplink signal to generate a multiplexed uplink signal.
B.実施の形態
 
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 
B. Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1)発電システム
 
 以下、一例として風力発電に用いる場合について説明するが、本発明及び/又は本実施の形態は、これに限らず、水力、火力、揚力等の適宜の発電システムに適用することができる。
(1) Power generation system
Hereinafter, although the case where it uses for wind power generation as an example is demonstrated, this invention and / or this Embodiment are not restricted to this, It can apply to appropriate power generation systems, such as a hydropower, a thermal power, and a lift.
 図16は、本実施の形態にかかる光通信装置を用いた風力発電システム102の構成図である。なお、公知の発電システムについては、例えば特許文献3等を参照することができる。
 回転子78と固定子79を有する主発電機80が電力変換器13を介して、回転子69と固定子70から成る補助発電機71に接続されている。電力系統68の電力が補助発電機71の固定子70に通電され、同期発電機の原理により回転子69に電力が供給される。回転子78及び回転子69は、共通のシャフトを回転軸としている。同一のシャフトで回転することにより、同一軸上・同一速度で回転することが担保され、各回転子78、69に配置された電力変換器13が両者に対して相対的に回転しない。主発電機80の固定子79巻線と補助発電機71の固定子70巻線は電力系統68と接続されている。電力系統68は商用周波数をもった交流電流が流れていることから、電圧が時間的に変化し、励磁用の補助発電機71の回転子69が回転することにより、回転子69の巻線内には回転速度に応じた誘導電流が発生する。回転子69の回転により発生した誘導電流により、主発電機80の励磁電流を回転子78に流すことができる。また、所定の電力を定常的に発電するためには、主発電機80の回転子79が同期速度と異なる回転数で回転している場合でも、主発電機80の回転子78の生ずる回転磁界の回転速度は、系統周波数に等しくなることが求められている。回転磁界の回転数の系統同期化は、補助発電機71の回転子69から、すべり周波数相当の電流を、電力変換器13を通じて主発電機80の回転子78に供給することで実現できる。電力変換器13ではコントローラ16からの制御信号に従い、系統から供給された電力をパワーデバイスによりAC/DC変換し、さらに他のパワーデバイスによりDC/AC変換する。コントローラ16は、複数のセンサから得られた上述の電流値、電圧値等の情報を基に生成された制御信号により、パワーデバイスを制御する。その後、電力変換器13が、電圧、周波数を変換した電力を主発電機80の回転子78に電力を供給し、発電運転を行う。こうして、回転磁界の回転数の系統同期化が実現され、これにより、ブレード62が受けた風のエネルギーを風力発電システム102が電気エネルギーに変換し、電力系統68に送電することができる。
FIG. 16 is a configuration diagram of a wind power generation system 102 using the optical communication device according to the present embodiment. For a known power generation system, for example, Patent Document 3 can be referred to.
A main generator 80 having a rotor 78 and a stator 79 is connected to an auxiliary generator 71 including a rotor 69 and a stator 70 via a power converter 13. The electric power of the electric power system 68 is energized to the stator 70 of the auxiliary generator 71, and the electric power is supplied to the rotor 69 by the principle of the synchronous generator. The rotor 78 and the rotor 69 have a common shaft as a rotation axis. By rotating with the same shaft, it is guaranteed to rotate on the same axis and at the same speed, and the power converters 13 arranged in the rotors 78 and 69 do not rotate relative to both. The stator 79 winding of the main generator 80 and the stator 70 winding of the auxiliary generator 71 are connected to the power system 68. Since an alternating current having a commercial frequency flows through the electric power system 68, the voltage changes with time, and the rotor 69 of the auxiliary generator 71 for excitation rotates, so that the winding of the rotor 69 is reduced. An induced current corresponding to the rotational speed is generated. The exciting current of the main generator 80 can be passed through the rotor 78 by the induced current generated by the rotation of the rotor 69. Further, in order to generate predetermined power constantly, even when the rotor 79 of the main generator 80 is rotating at a speed different from the synchronous speed, the rotating magnetic field generated by the rotor 78 of the main generator 80 is generated. Is required to be equal to the system frequency. System synchronization of the rotational speed of the rotating magnetic field can be realized by supplying a current corresponding to a slip frequency from the rotor 69 of the auxiliary generator 71 to the rotor 78 of the main generator 80 through the power converter 13. In the power converter 13, the power supplied from the system is AC / DC converted by the power device in accordance with a control signal from the controller 16, and further DC / AC converted by another power device. The controller 16 controls the power device by a control signal generated based on the above-described information such as current value and voltage value obtained from a plurality of sensors. After that, the power converter 13 supplies the electric power obtained by converting the voltage and frequency to the rotor 78 of the main generator 80 to perform the power generation operation. Thus, system synchronization of the rotational speed of the rotating magnetic field is realized, whereby the wind energy received by the blade 62 is converted into electric energy and transmitted to the power system 68.
 この構成において、電力変換器13は回転子69、78に取り付けられるため、回転子の回転にともない、電力変換器13は回転する。この電力変換器13はブレード62の回転に応じた制御が必要となるため、固定体用送受信器5、回転体用受信器8を介することで、コントローラ16よりブラシレスに制御信号を受信している。さらに、回転子側の様々なセンシング情報から制御信号が生成されるため、電力変換器13内のセンサからのセンシング情報を、回転体用送信器11、固定体用送受信器5を介して、非接触にコントローラ16で受信している。なお、電力変換器13には並列に遮断機を設けても良い。これにより、系統故障時に加わる過大な電力から、電力変換器13を保護できる。また、本実施の形態は、増速機を付加したシステムへの適用も可能である。また、固定体用送受信器5、回転体用受信器8、回転体用受信器11を並列に複数個を設置することや、それぞれの送信回路や受信回路を並列に複数個を設置することにより、より高信頼な風力発電システムを実現できる。 In this configuration, since the power converter 13 is attached to the rotors 69 and 78, the power converter 13 rotates as the rotor rotates. Since this power converter 13 needs to be controlled in accordance with the rotation of the blade 62, the control signal is received from the controller 16 in a brushless manner via the fixed body transceiver 5 and the rotating body receiver 8. . Furthermore, since a control signal is generated from various sensing information on the rotor side, sensing information from the sensor in the power converter 13 is not transmitted via the transmitter 11 for the rotator and the transceiver 5 for the fixed body. The contact is received by the controller 16. The power converter 13 may be provided with a breaker in parallel. Thereby, the power converter 13 can be protected from excessive electric power applied at the time of a system failure. In addition, this embodiment can be applied to a system to which a speed increaser is added. Also, by installing a plurality of fixed body transceivers 5, a rotating body receiver 8, and a rotating body receiver 11 in parallel, or by installing a plurality of respective transmission circuits and reception circuits in parallel. A more reliable wind power generation system can be realized.
(2)光通信装置
 
 以下、本発明の実施の形態1に係る光通信装置を図1~図16を用いて説明する。
 図1は、光通信装置の構成を示すブロック図である。光通信装置は、固定体に取り付けられた固定体用送受信器5、回転体に取り付けられた複数の回転体用送信器11および複数の回転体用受信器8を備え、固定体に取り付けられたコントローラ16と、回転体に取り付けられた電力変換器13との間の双方向の非接触通信に用いられる。電力変換器13は複数個のパワーデバイスおよび複数個のセンサを備える。
(2) Optical communication device
Hereinafter, an optical communication apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram illustrating a configuration of an optical communication apparatus. The optical communication apparatus includes a fixed body transceiver 5 attached to a fixed body, a plurality of rotating body transmitters 11 and a plurality of rotating body receivers 8 attached to the rotating body, and is attached to the fixed body. It is used for bidirectional non-contact communication between the controller 16 and the power converter 13 attached to the rotating body. The power converter 13 includes a plurality of power devices and a plurality of sensors.
 図20に、電力変換器13のパワーデバイスおよびセンサに関する回路の説明図を示す。図示のように、例えば、風力発電システムでは、電力変換器13は2系統の3相インバータであるため、12個のパワーデバイスで構成される(1相当り2個×3相×2系統)。また、3相の各電流値を2系統分(3×2個)、及び、インバータの電圧値(1個)をセンシングするため、7個のセンサが必要となる。コントローラ16は、複数のセンサ14から得られた上述の電流値、電圧値等の情報を基に生成された制御信号により、パワーデバイス12を制御する。各パワーデバイスは、例えば、数kVの電圧で動作し、各々のタイミングでオンオフする。したがって、各パワーデバイス間(特に同相のパワーデバイス12間)で短絡させないためには、それぞれの間で絶縁の確保が必要となる。なお、図示していないが、パワーデバイス12にはドライバ回路も含まれる。固定体用送受信器5は、複数の固定体用LED2と固定体用送信回路1を有する送信部と、複数の固定体用フォトダイオード4と固定体用受信回路3を有する受信部を備える。複数の回転体用受信器8は、回転体用フォトダイオード7と回転体用受信回路6を有し、各回転体用受信器8の間で絶縁される。複数の回転体用送信器11は、回転体用LED10と回転体用送信回路9を備える。センサ14自身が絶縁型のものである場合は、複数の回転体用送信器11の間の絶縁確保の必要性が無くてもよい。 FIG. 20 is an explanatory diagram of a circuit related to the power device and the sensor of the power converter 13. As shown in the figure, for example, in the wind power generation system, the power converter 13 is a two-phase three-phase inverter, and thus is configured with twelve power devices (two per unit x three phases x two systems). Moreover, in order to sense the current values of the three phases for two systems (3 × 2) and the voltage value of the inverter (one), seven sensors are required. The controller 16 controls the power device 12 by a control signal generated based on the information such as the current value and voltage value obtained from the plurality of sensors 14. Each power device operates with a voltage of several kV, for example, and turns on and off at each timing. Therefore, in order to prevent a short circuit between the power devices (particularly between the power devices 12 having the same phase), it is necessary to ensure insulation between the power devices. Although not shown, the power device 12 includes a driver circuit. The fixed body transceiver 5 includes a transmission unit having a plurality of fixed body LEDs 2 and a fixed body transmission circuit 1, and a reception unit having a plurality of fixed body photodiodes 4 and a fixed body reception circuit 3. The plurality of rotating body receivers 8 include a rotating body photodiode 7 and a rotating body receiving circuit 6, and are insulated between the rotating body receivers 8. The plurality of rotating body transmitters 11 include a rotating body LED 10 and a rotating body transmission circuit 9. When the sensor 14 itself is an insulating type, it is not necessary to secure insulation between the plurality of rotating body transmitters 11.
 固定体用送信回路1は、コントローラ16から入力された複数の制御信号をアップコンバートし、高周波制御信号に変換する。その後、複数の高周波制御信号を合成し、この信号に同期させて、複数の固定体用LED2を一斉に点滅させる。一斉に点滅させることで、広範囲に信号を行き渡らせることができ、回転時においても安定した送信が実現できる。
 固定体用送信回路1の内部構成については後述する。固定体用LED2から照射された高周波制御信号は、回転中の複数の回転体用フォトダイオード7で受信される。受信された高周波制御信号は回転体用受信回路6に入力され、各パワーデバイス12の固有の信号のみをフィルタによって抽出され、制御信号に再変換されて、ドライブ回路を介してパワーデバイス12に入力される。回転体用受信回路6の内部構成については後述する。
The fixed body transmission circuit 1 up-converts a plurality of control signals input from the controller 16 and converts them into high-frequency control signals. Thereafter, a plurality of high-frequency control signals are synthesized, and the plurality of fixed body LEDs 2 are simultaneously flashed in synchronization with the signals. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
The internal configuration of the fixed body transmission circuit 1 will be described later. The high-frequency control signal emitted from the fixed body LED 2 is received by a plurality of rotating body photodiodes 7 that are rotating. The received high-frequency control signal is input to the rotating body receiving circuit 6, and only the unique signal of each power device 12 is extracted by a filter, re-converted into a control signal, and input to the power device 12 via the drive circuit. Is done. The internal configuration of the rotor receiving circuit 6 will be described later.
 一方、複数のセンサ14から得られた電流値、電圧値等のセンシング信号は、A/D変換されて回転体用送信回路9に入力され、高周波センシング信号にアップコンバートされる。この信号に同期して、回転体用LED10は点滅する。回転体用送信回路9の内部構成については後述する。回転体用LED10から照射された高周波センシング信号は、複数の固定体用フォトダイオード4で受信される。受信された複数の高周波センシング信号は、固定体用受信回路3に入力され、合成される。この信号合成により、複数のセンサ14からの高周波センシング信号を広範囲に受け取ることができ、回転時においても安定した受信が実現できる。この高周波センシング信号は、固定体用受信回路3により、再度分配され、フィルタにてセンサ毎の高周波センシング信号に分別され、センシング信号に再変換されて、コントローラ16に入力される。コントローラ16では、得られた電流値、電圧値等の情報を下に制御信号が生成される。固定体用受信回路3の内部構成については後述する。 On the other hand, sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are A / D converted and input to the rotating body transmission circuit 9 and up-converted to high-frequency sensing signals. In synchronization with this signal, the rotating body LED 10 blinks. The internal configuration of the rotor transmitting circuit 9 will be described later. The high-frequency sensing signal emitted from the rotating body LED 10 is received by a plurality of fixed body photodiodes 4. The plurality of received high-frequency sensing signals are input to the fixed body receiving circuit 3 and synthesized. By this signal synthesis, high-frequency sensing signals from a plurality of sensors 14 can be received over a wide range, and stable reception can be realized even during rotation. The high-frequency sensing signal is distributed again by the fixed body receiving circuit 3, separated into high-frequency sensing signals for each sensor by a filter, reconverted into a sensing signal, and input to the controller 16. The controller 16 generates a control signal based on the obtained information such as current value and voltage value. The internal configuration of the fixed body receiving circuit 3 will be described later.
 また、発電機内は500MHz程度までの周波数領域を持つインバータのスイッチングノイズや、モータから磁界ノイズが存在し、通信品質に大きく影響する。したがって、固定体送信回路1、固定体用受信回路3、回転体用送信回路9、回転体用受信回路6等はそれぞれ電磁波や磁界に対してシールド効果のある材料でパッケージングすることが望ましい。 Also, in the generator, there are switching noise of the inverter having a frequency range up to about 500 MHz and magnetic field noise from the motor, which greatly affects the communication quality. Therefore, it is desirable that the fixed body transmitting circuit 1, the fixed body receiving circuit 3, the rotating body transmitting circuit 9, the rotating body receiving circuit 6 and the like be packaged with a material having a shielding effect against electromagnetic waves and magnetic fields.
 また、各パワーデバイス12に接続された回転体用受信器8の間には絶縁が不可欠であり、安全規格(例えば、JISC1010-1)で決められている最小沿面距離以上離している。これは、気体と誘電体の境界に2つの電極があるケースにおいて、コロナ放電あるいは火花放電によって誘電体の表面に沿って樹枝状の放電路が形成される、いわゆる沿面放電の発生を防止するための規格である。一般的に沿面放電は空間放電よりも短い電極間距離、低い印加電圧で発生するため、重要な設計項目である。 In addition, insulation is indispensable between the rotating body receivers 8 connected to each power device 12, and they are separated by at least the minimum creepage distance determined by safety standards (for example, JISC1010-1). This is to prevent the occurrence of so-called creeping discharge, in which a dendritic discharge path is formed along the surface of the dielectric by corona discharge or spark discharge in the case where there are two electrodes at the boundary between the gas and the dielectric. Is the standard. In general, creeping discharge is an important design item because it occurs at a shorter electrode distance and lower applied voltage than space discharge.
 なお、回転体用受信器8は、制御すべきパワーデバイスの数だけ必要になるが、固定体用LED2は必ずしも同数必要ではなく、回転中の回転体用フォトダイオードをカバーできる範囲で増減させることができる。固定体用フォトダイオード4についても同様である。また、センシング信号をまとめて一つの送信器から送ることにより、回転体用送信器11の数を少なくすることも可能である。 Note that the number of power receivers 8 to be controlled is the same as the number of power devices to be controlled, but the number of fixed body LEDs 2 is not necessarily the same. Can do. The same applies to the fixed body photodiode 4. Moreover, it is also possible to reduce the number of transmitters 11 for rotating bodies by collectively sending sensing signals from one transmitter.
(3)LED及びフォトダイオードの配置
 
 次に、図2~図4を用いて、固定体および回転体に実装されるLED、フォトダイオードの幾何的な配置について説明する。円柱形状をした回転体は、中空円筒形状をした固定体内に回転軸に支えられて、回転軸を中心にモータによって回転される。ここでは、理解を容易にするため、固定体用LED、固定体用フォトダイオード、回転体用LED、回転体用フォトダイオードを全て4個として説明するが、本実施の形態がそれに限定しないことは上述の通りである。
(3) Arrangement of LED and photodiode
Next, the geometrical arrangement of the LEDs and photodiodes mounted on the fixed body and the rotating body will be described with reference to FIGS. The cylindrical rotating body is supported by a rotating shaft in a hollow cylindrical fixed body, and is rotated by a motor around the rotating shaft. Here, in order to facilitate understanding, the description will be made assuming that the fixed body LED, the fixed body photodiode, the rotating body LED, and the rotating body photodiode are all four, but the present embodiment is not limited thereto. As described above.
 図2は、回転軸18の長さ方向から固定体17を見た透視図である。説明の簡素化のため、固定体用LED2、固定体用フォトダイオード4のみを図示している。固定体用LED2、固定体用フォトダイオード4は回転軸18の中心からの距離rを半径として交互に同心円かつ等間隔配置されている。これらは回転体用フォトダイオード、回転体用LEDと対向する位置関係にある。遠心加重の軽減、光信号伝搬損失の軽減の観点から半径rは小さいほうが良いが、回転軸での光反射の影響をケアする必要がある。 FIG. 2 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18. For simplicity of explanation, only the fixed body LED 2 and the fixed body photodiode 4 are shown. The fixed body LEDs 2 and the fixed body photodiodes 4 are alternately concentrically arranged at equal intervals with a distance r from the center of the rotation shaft 18 as a radius. These are in a positional relationship facing the rotating body photodiode and the rotating body LED. The radius r should be small from the viewpoint of reducing the centrifugal load and reducing the optical signal propagation loss, but it is necessary to care for the influence of light reflection on the rotation axis.
 図3は、回転軸18の長さ方向から回転体19を見た透視図である。説明の簡素化のため、回転体用LED10、回転体用フォトダイオード7のみを図示している。固定体側と同様に、回転体用LED10、回転体用フォトダイオード7は回転軸18の中心からの距離rを半径として交互に同心円かつ等間隔配置されている。図では、回転角αだけ回転させた状態を実線で、回転前(回転角ゼロ)の状態を点線で示している。 FIG. 3 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18. For simplicity of explanation, only the rotating body LED 10 and the rotating body photodiode 7 are shown. Similarly to the fixed body side, the rotating body LEDs 10 and the rotating body photodiodes 7 are alternately arranged concentrically and at equal intervals with a distance r from the center of the rotating shaft 18 as a radius. In the figure, the state rotated by the rotation angle α is indicated by a solid line, and the state before the rotation (rotation angle zero) is indicated by a dotted line.
 図4に、固定体17および回転体19の、図2、図3記載のA1-A1’面での断面図を示す。固定体用LED2と回転体用フォトダイオード7は距離Da離れて対向して設置されている。距離Daが小さい方が光信号伝搬損失の絶対値は低減できるが、変動量は大きくなる傾向があるため、前述した設置半径rを小さくする等の対策が必要となる。 FIG. 4 shows a cross-sectional view of the fixed body 17 and the rotating body 19 on the A1-A1 ′ plane shown in FIGS. The fixed body LED 2 and the rotating body photodiode 7 are disposed to face each other with a distance Da. Although the absolute value of the optical signal propagation loss can be reduced as the distance Da is smaller, the amount of fluctuation tends to increase. Therefore, it is necessary to take measures such as reducing the installation radius r described above.
 図5は、図2、図3記載の円周Xa、Xbと、図4記載の距離Daを高さに持つ円柱の曲面を展開した図である。図の簡素化のため、回転体用フォトダイオードは一つのみ記載されている。固定体用LED2はビーム半値幅θの照射領域20を有している。各照射領域を接するように設定しているので、回転体用フォトダイオード7が回転しても常に照射領域20内に収まり、直接波に関してはカバーされることが分かる。固定体用LEDによって全円周をカバーするには、数1で表されるN個の固定体用LEDがあればよい。
Figure JPOXMLDOC01-appb-M000001
FIG. 5 is a developed view of a curved surface of a cylinder having the circumferences Xa and Xb shown in FIGS. 2 and 3 and the distance Da shown in FIG. 4 at a height. For simplification of the drawing, only one rotating body photodiode is shown. The fixed body LED 2 has an irradiation region 20 having a beam half width θ. Since each irradiation region is set to be in contact, it can be seen that even if the rotating body photodiode 7 is rotated, it always falls within the irradiation region 20 and the direct wave is covered. In order to cover the entire circumference with the fixed body LEDs, it is only necessary to have N fixed body LEDs expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 なお、遠心加重軽減のため、回転軸18の影響により光伝搬特性が著しく劣化しない程度に距離rを小さくできる。また、ビーム半値幅θが大きい場合、固定体用LED2から固定体用フォトダイオードに直接漏れ込む可能性がある。この対策としては、ビーム半値幅θを遮蔽しない範囲で固定体用LED2と固定体用フォトダイオードの間に遮光板を設置することが有効である。もちろん、この対策は回転体用LEDと回転体用フォトダイオードのアイソレーション確保にも有効であることはいうまでもない。また、固定体用LED2は、Xbで示す円周上近傍にのみビームを照射すればよく、そうすることで光伝搬損失を抑えることができる。例えば、シリンドリカルレンズを固定体用LED2に取り付けることが有効である。この手法は、固定体用LEDのみならず回転体用LEDにも有効である。 In order to reduce the centrifugal load, the distance r can be reduced to such an extent that the light propagation characteristics are not significantly deteriorated due to the influence of the rotating shaft 18. Further, when the beam half-value width θ is large, there is a possibility that the fixed body LED 2 directly leaks into the fixed body photodiode. As a countermeasure, it is effective to install a light shielding plate between the fixed body LED 2 and the fixed body photodiode within a range where the beam half width θ is not shielded. Of course, it goes without saying that this measure is also effective for ensuring isolation between the rotating body LED and the rotating body photodiode. Further, the fixed body LED 2 may irradiate the beam only in the vicinity of the circumference indicated by Xb, thereby suppressing the light propagation loss. For example, it is effective to attach a cylindrical lens to the fixed body LED 2. This technique is effective not only for fixed body LEDs but also for rotating body LEDs.
 また、LEDやフォトダイオードには指向性があるが、それぞれにレンズを取り付け、回転による信号強度変動を抑えることができ、通信品質を一定に維持できる。また、信号強度の変動抑制のため、受信回路内のアンプのゲインを信号強度によって調整することも有効である。信号強度の変動は、回転角による周期的なものであるので、回転体もしくは固定体に取り付けられたロータリーエンコーダで回転角を計測して、その回転角情報に対応してアンプのゲインを調整してもよい。 Also, although LEDs and photodiodes have directivity, a lens can be attached to each to suppress signal intensity fluctuations due to rotation, and communication quality can be kept constant. It is also effective to adjust the gain of the amplifier in the receiving circuit according to the signal strength in order to suppress fluctuations in the signal strength. Since the fluctuation of the signal intensity is periodic depending on the rotation angle, the rotation angle is measured with a rotary encoder attached to the rotating body or fixed body, and the gain of the amplifier is adjusted according to the rotation angle information. May be.
 図6は、本実施の形態における固定体用送受信器5の構成図である。固定体用送信回路1は、発振器40、高周波スイッチ41、信号合成器42、ドライバIC群43を備える。複数の発振器40は複数の固定体用LED2のそれぞれに対応して設けられる。複数の発振器40はそれぞれ固有の発振周波数を持ち、これらの発振周波数はいわゆるキャリア周波数であり、所定の離隔周波数以上離れている。この離隔周波数は、制御信号の周波数成分だけを取り出す、後述のバンドパスフィルタの周波数特性によって設定される。発振器40の出力は、高周波スイッチ41により、コントローラからの制御信号の周波数によってオンオフされ、高周波制御信号に変換される。こうすることで、通信が途絶えた場合にLowと判定されるため、フェールセーフ機能が実現される。同様に変換された、複数の高周波制御信号はドライバIC43群に入力される。ドライバIC群43は、信号合成器42に接続された複数の固定体用LED2へ出力する電流値を調整する機能を持つ複数のドライバICによって構成されており、高周波制御信号に対応して、複数の固定体用LED2を一斉に点滅させることができる。一斉に点滅させることで、広範囲に信号を行き渡らせることができ、回転時においても安定した送信が実現できる。 FIG. 6 is a configuration diagram of the fixed body transceiver 5 according to the present embodiment. The fixed body transmission circuit 1 includes an oscillator 40, a high frequency switch 41, a signal synthesizer 42, and a driver IC group 43. The plurality of oscillators 40 are provided corresponding to each of the plurality of fixed body LEDs 2. Each of the plurality of oscillators 40 has a unique oscillation frequency, and these oscillation frequencies are so-called carrier frequencies, which are separated by a predetermined separation frequency or more. This separation frequency is set by the frequency characteristic of a band-pass filter described later that extracts only the frequency component of the control signal. The output of the oscillator 40 is turned on / off by the high frequency switch 41 according to the frequency of the control signal from the controller, and converted into a high frequency control signal. By doing so, it is determined as Low when communication is interrupted, so that a fail-safe function is realized. A plurality of high-frequency control signals converted in the same manner are input to the driver IC 43 group. The driver IC group 43 includes a plurality of driver ICs having a function of adjusting current values to be output to the plurality of fixed body LEDs 2 connected to the signal synthesizer 42. The fixed body LEDs 2 can be flashed simultaneously. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation.
 一方、固定体用受信回路3は、トランスインピーダンスアンプ44、信号合成分配器45、バンドパスフィルタ46、ディテクタ47、コンパレータ48を備える。複数のバンドパスフィルタ46、ディテクタ47、コンパレータ48は、複数の固定体用フォトダイオード4のそれぞれに対応して設けられる。複数の固定体用フォトダイオード4で受信された回転体からの高周波センシング信号は、まずトランスインピーダンスアンプ44にて電流信号から電圧信号に変換される。この変換された複数の高周波センシング信号は、信号合成分配器45にて合成される。この信号合成により、複数のセンサからの高周波センシング信号を広範囲に受け取ることができ、回転時においても安定した受信が実現できる。この高周波センシング信号は、信号合成分配器45にて再度分配される。再分配された高周波センシング信号はバンドパスフィルタ46にてセンサ毎の高周波センシング信号に分別され、ディテクタ47にて包絡線検波されセンシング信号に再変換される。その後、センシング信号は、コンパレータ48にてHigh/Low判定されて、コントローラに入力される。 On the other hand, the stationary reception circuit 3 includes a transimpedance amplifier 44, a signal synthesis distributor 45, a bandpass filter 46, a detector 47, and a comparator 48. The plurality of band pass filters 46, the detectors 47, and the comparators 48 are provided corresponding to the plurality of fixed body photodiodes 4, respectively. High-frequency sensing signals from the rotating body received by the plurality of fixed body photodiodes 4 are first converted from current signals to voltage signals by the transimpedance amplifier 44. The converted high-frequency sensing signals are synthesized by the signal synthesis / distributor 45. By this signal synthesis, high-frequency sensing signals from a plurality of sensors can be received over a wide range, and stable reception can be realized even during rotation. This high frequency sensing signal is distributed again by the signal synthesis distributor 45. The redistributed high-frequency sensing signal is separated into high-frequency sensing signals for each sensor by the band-pass filter 46, envelope detected by the detector 47, and reconverted to the sensing signal. Thereafter, the sensing signal is determined to be High / Low by the comparator 48 and input to the controller.
 図7は、本実施の形態における回転体用受信器8および回転体用送信器11の構成図である。回転体用受信回路6は、トランスインピーダンスアンプ49、バンドパスフィルタ50、ディテクタ51、コンパレータ52を備える。回転体用フォトダイオード7で受信された固定体からの高周波制御信号は、まずトランスインピーダンスアンプ49にて電流信号から電圧信号に変換される。この変換された複数の高周波制御信号は、バンドパスフィルタ50にてパワーデバイス毎の高周波制御信号に分別され、ディテクタ51にて包絡線検波され制御信号に再変換される。その後、制御信号は、コンパレータ52にてHigh/Low判定されて、各パワーデバイスに入力される。 FIG. 7 is a configuration diagram of the rotating body receiver 8 and the rotating body transmitter 11 in the present embodiment. The rotating body receiving circuit 6 includes a transimpedance amplifier 49, a band pass filter 50, a detector 51, and a comparator 52. The high-frequency control signal from the stationary body received by the rotating body photodiode 7 is first converted from a current signal to a voltage signal by the transimpedance amplifier 49. The plurality of high-frequency control signals thus converted are classified into high-frequency control signals for each power device by the band-pass filter 50, envelope detection is performed by the detector 51, and the signals are reconverted into control signals. Thereafter, the control signal is determined to be High / Low by the comparator 52 and input to each power device.
 一方、回転体用送信回路9は、発振器55、高周波スイッチ54、ドライバIC53を備える。複数の発振器55はそれぞれ固有の発振周波数を持ち、前述の固定体用送信回路の発振器の発振周波数とも異なり、所定の離隔周波数以上離れている。発振器55の出力は、高周波スイッチ54により、センサからのセンシング信号の周波数によってオンオフされ、高周波センシング信号に変換される。なお、この例では、各センサ14からのセンシング信号は、電流値及び電源値のデジタル信号であり、例えば、センサ14内部又は回転体用送信器11又は他の回路等によって、測定値をA/D変換するように構成すればよい。変換された高周波センシング信号はドライバIC53に入力される。ドライバIC53は、回転体用LED10へ出力する電流を制御する役割を持っており、高周波センシング信号に対応して、回転体用LED10を点滅させることができる。 On the other hand, the rotating body transmission circuit 9 includes an oscillator 55, a high-frequency switch 54, and a driver IC 53. Each of the plurality of oscillators 55 has a specific oscillation frequency, and is different from the oscillation frequency of the oscillator of the above-described stationary body transmission circuit, and is separated by a predetermined separation frequency or more. The output of the oscillator 55 is turned on / off by the high frequency switch 54 according to the frequency of the sensing signal from the sensor, and converted into a high frequency sensing signal. In this example, the sensing signal from each sensor 14 is a digital signal of a current value and a power supply value. For example, the measured value is converted to A / A by the sensor 14 or the transmitter 11 for a rotating body or other circuits. What is necessary is just to comprise so that D conversion may be carried out. The converted high frequency sensing signal is input to the driver IC 53. The driver IC 53 has a role of controlling a current output to the rotating body LED 10 and can blink the rotating body LED 10 in response to a high frequency sensing signal.
(4)変形例
 
 図8、図9を用いて、本実施の形態における固定体および回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例について説明する。ここでは、理解を容易にするため、固定体用LED、固定体用フォトダイオード、回転体用LED、回転体用フォトダイオードを全て4個として説明するが、本実施の形態はそれに限定するものではない。
(4) Modification
A modification of the geometric arrangement of the LEDs and photodiodes mounted on the fixed body and the rotating body in this embodiment will be described with reference to FIGS. Here, in order to facilitate understanding, the description will be made assuming that the fixed body LED, the fixed body photodiode, the rotating body LED, and the rotating body photodiode are all four, but this embodiment is not limited thereto. Absent.
 図8は、回転軸18の長さ方向から固定体17を見た透視図である。説明の簡素化のため、固定体用LED2、固定体用フォトダイオード4のみを図示している。固定体用LED2は回転軸18の中心からの距離r1を半径とした円周上に等間隔配置されている。また、固定体用フォトダイオード4は距離r2を半径とした円周上に等間隔配置されている。また、両者は回転軸18を中心に45度の角度差が付いている。このように固定体用LED2と固定体用フォトダイオード4の距離を離すことで、両者間のアイソレーションを向上させることは、高い通信品質を実現することに貢献できる。 FIG. 8 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18. For simplicity of explanation, only the fixed body LED 2 and the fixed body photodiode 4 are shown. The fixed body LEDs 2 are arranged at equal intervals on a circumference having a radius r1 from the center of the rotating shaft 18. Further, the fixed body photodiodes 4 are arranged at equal intervals on a circumference having a radius of the distance r2. Further, both have an angle difference of 45 degrees around the rotation shaft 18. Thus, by separating the fixed body LED 2 and the fixed body photodiode 4 from each other and improving the isolation between them, it is possible to contribute to realizing high communication quality.
 図9は、回転軸18の長さ方向から回転体19を見た透視図である。説明の簡素化のため、回転体用LED10、回転体用フォトダイオード7のみを図示している。固定体側と対向するように、回転体用LED7は回転軸18の中心からの距離r2を半径とした円周上に等間隔配置され、回転体用フォトダイオード10は距離r1を半径とした円周上に等間隔配置されている。また、両者は回転軸18を中心に45度の角度差が付いている。図では、回転角αだけ回転させた状態を実線で、回転前(回転角ゼロ)の状態を点線で示している。より回転軸近くに実装した方が、遠心加重の軽減、光信号伝搬損失の軽減がなされるが、回転軸での光反射の影響を考慮する必要がある。 FIG. 9 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18. For simplicity of explanation, only the rotating body LED 10 and the rotating body photodiode 7 are shown. The rotating body LEDs 7 are arranged at equal intervals on the circumference with the radius r2 from the center of the rotating shaft 18 so as to face the fixed body side, and the rotating body photodiode 10 has a circumference with the distance r1 as the radius. It is equally spaced above. Further, both have an angle difference of 45 degrees around the rotation shaft 18. In the figure, the state rotated by the rotation angle α is indicated by a solid line, and the state before the rotation (rotation angle zero) is indicated by a dotted line. Mounting closer to the rotation axis reduces the centrifugal load and optical signal propagation loss, but it is necessary to consider the effect of light reflection on the rotation axis.
 同様に、図10、図11も本実施の形態における固定体および回転体に実装されるLED、フォトダイオードの幾何的な配置の変形例である。ここでは、理解を容易にするため、固定体用LED、回転体用LEDをそれぞれ4個、固定体用フォトダイオード、回転体用フォトダイオードをそれぞれ12個として説明する。図10は、回転軸18の長さ方向から固定体17を見た透視図である。説明の簡素化のため、固定体用LED2、固定体用フォトダイオード群21のみを図示している。固定体用LED2は回転軸18を中心とした円周上に等間隔配置されている。また、固定体用フォトダイオード群21は固定体用LED2とは異なる半径の円周上にフォトダイオード3個(サブ受光素子)をセットとして等間隔配置されている。図11は、回転軸18の長さ方向から回転体19を見た透視図である。回転体用LED10は固定体用フォトダイオード群と対向するように配置され、回転体用フォトダイオード群22は固定体用LEDと対向するように配置されている。3個のフォトダイオード(サブ受光素子)の出力を適宜の合成部により合成してトランスインピーダンスアンプに入力することで、フォトダイオードの受光面積を1/3に縮小しても感度を維持することができる。したがって、本変形例によれば、受光面積縮小によりフォトダイオードの応答速度を向上させ、高速通信や低遅延通信を実現することができる。 Similarly, FIG. 10 and FIG. 11 are also modifications of the geometrical arrangement of LEDs and photodiodes mounted on the fixed body and the rotating body in the present embodiment. Here, in order to facilitate understanding, description will be made assuming that four LEDs for fixed bodies and four LEDs for rotating bodies are provided, photodiodes for fixed bodies and twelve photodiodes for rotating bodies are provided. FIG. 10 is a perspective view of the fixed body 17 viewed from the length direction of the rotating shaft 18. For simplicity of explanation, only the fixed body LED 2 and the fixed body photodiode group 21 are shown. The fixed body LEDs 2 are arranged at equal intervals on the circumference around the rotation shaft 18. The fixed body photodiode groups 21 are arranged at equal intervals on a circumference having a radius different from that of the fixed body LED 2 as a set of three photodiodes (sub light receiving elements). FIG. 11 is a perspective view of the rotating body 19 viewed from the length direction of the rotating shaft 18. The rotating body LED 10 is disposed so as to face the fixed body photodiode group, and the rotating body photodiode group 22 is disposed so as to face the fixed body LED. By combining the outputs of the three photodiodes (sub-light-receiving elements) with an appropriate combining unit and inputting them to the transimpedance amplifier, the sensitivity can be maintained even if the light receiving area of the photodiodes is reduced to 1/3. it can. Therefore, according to this modification, the response speed of the photodiode can be improved by reducing the light receiving area, and high-speed communication and low-delay communication can be realized.
 本実施の形態では、円柱形状の回転体、固定体の平面部分にLED、フォトダイオードを配置して説明したが、図12のように円柱の曲面に取り付けることも可能である。固定体用LED2、固定体用フォトダイオード4は固定体17の曲面部分に等角度間隔で配置され、回転体用LED10、回転体用フォトダイオード7は回転軸18の曲面部分に等角度間隔で配置されている。LED、フォトダイオードを省スペースに配置でき、固定体内のモータ等の部品の配置スペースや放熱の問題を解決しうる手段である。図13もLED、フォトダイオードの設置例である。固定体用LED2および回転体用フォトダイオード7を同一面内に設置し、固定体用フォトダイオード4および回転体用LED10を上記面と異なる同一面に設置する(図示せず)。この二つの面の距離を離すことにより、固定体用LED2、固定体用フォトダイオード4との間のアイソレーション、および、回転体用LED10、回転体用フォトダイオード7との間のアイソレーションを向上させることが可能となる。 In the present embodiment, the description has been made by arranging the LED and the photodiode on the planar portion of the cylindrical rotating body and the stationary body, but it is also possible to attach the curved surface of the cylindrical body as shown in FIG. The fixed body LED 2 and the fixed body photodiode 4 are arranged at equiangular intervals on the curved surface portion of the fixed body 17, and the rotating body LED 10 and the rotating body photodiode 7 are arranged at equiangular intervals on the curved surface portion of the rotating shaft 18. Has been. The LED and the photodiode can be arranged in a space-saving manner and can solve the problem of the arrangement space of the parts such as the motor in the fixed body and heat radiation. FIG. 13 is also an installation example of LEDs and photodiodes. The fixed body LED 2 and the rotating body photodiode 7 are installed on the same plane, and the fixed body photodiode 4 and the rotating body LED 10 are installed on the same plane (not shown). By separating the distance between the two surfaces, the isolation between the fixed body LED 2 and the fixed body photodiode 4 and the isolation between the rotary body LED 10 and the rotary body photodiode 7 are improved. It becomes possible to make it.
 図14は、本実施の形態における固定体用送受信器5の変形例である。図6で説明した固定体用送受信器5と大きく異なるのは、受信した高周波センシング信号を一旦中間周波数に変換している点である。そうすることで、フィルタによる周波数選択性を向上させ、センシング信号の抽出を容易にすることができる。固定体用送信回路1は、発振器40、高周波スイッチ41、信号合成器42、ドライバIC群43を備える。複数の発振器40はそれぞれ固有の発振周波数を持ち、所定の離隔周波数以上離れている。この離隔周波数は、制御信号の周波数成分だけを取り出す、後述のローパスフィルタの周波数特性によって設定される。なお、各発振周波数の設定例については後述する。発振器40の出力は、高周波スイッチ41により、コントローラからの制御信号の周波数によってオンオフされ、高周波制御信号に変換される。同様に変換された、複数の高周波制御信号はドライバIC43群に入力される。ドライバIC群43は、信号合成器42に接続された複数の固定体用LED2へ出力する電流を制御する機能を持つ複数のドライバICによって構成されており、高周波制御信号に対応して、複数の固定体用LED2を一斉に点滅させることができる。一斉に点滅させることで、広範囲に信号を行き渡らせることができ、回転時においても安定した送信が実現できる。また、発振器40は、高周波スイッチ41だけでなく、固定体用受信回路3のミキサ56にも信号を出力する。 FIG. 14 is a modification of the transceiver 5 for fixed body in the present embodiment. A significant difference from the fixed body transceiver 5 described in FIG. 6 is that the received high-frequency sensing signal is once converted to an intermediate frequency. By doing so, the frequency selectivity by a filter can be improved and the sensing signal can be easily extracted. The fixed body transmission circuit 1 includes an oscillator 40, a high frequency switch 41, a signal synthesizer 42, and a driver IC group 43. Each of the plurality of oscillators 40 has a specific oscillation frequency and is separated by a predetermined separation frequency or more. This separation frequency is set by a frequency characteristic of a low-pass filter described later that extracts only the frequency component of the control signal. An example of setting each oscillation frequency will be described later. The output of the oscillator 40 is turned on / off by the high frequency switch 41 according to the frequency of the control signal from the controller, and converted into a high frequency control signal. A plurality of high-frequency control signals converted in the same manner are input to the driver IC 43 group. The driver IC group 43 includes a plurality of driver ICs having a function of controlling currents output to the plurality of fixed body LEDs 2 connected to the signal synthesizer 42. The fixed body LEDs 2 can be flashed simultaneously. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation. In addition, the oscillator 40 outputs a signal not only to the high frequency switch 41 but also to the mixer 56 of the fixed body receiving circuit 3.
 一方、固定体用受信回路3は、トランスインピーダンスアンプ44、信号合成分配器45、ミキサ56、ローパスフィルタ57、ディテクタ47、コンパレータ48を備える。複数の固定体用フォトダイオード4で受信された回転体からの高周波センシング信号は、まずトランスインピーダンスアンプ44にて電流信号から電圧信号に変換される。この変換された複数の高周波センシング信号は、信号合成分配器45にて合成される。この信号合成により、複数のセンサからの高周波センシング信号を広範囲に受け取ることができ、回転時においても安定した受信が実現できる。この高周波センシング信号は、信号合成分配器45にて再度分配される。再分配された高周波センシング信号はミキサ56にて、発振器40からの出力とミキシングされて中間周波数に変換される。この信号から、ローパスフィルタ57にてセンサ毎の中間周波数のセンシング信号が抽出され、ディテクタ47にて包絡線検波されセンシング信号に再変換される。その後、センシング信号は、コンパレータ48にてHigh/Low判定されて、コントローラに入力される。 On the other hand, the fixed body receiving circuit 3 includes a transimpedance amplifier 44, a signal synthesis distributor 45, a mixer 56, a low-pass filter 57, a detector 47, and a comparator 48. High-frequency sensing signals from the rotating body received by the plurality of fixed body photodiodes 4 are first converted from current signals to voltage signals by the transimpedance amplifier 44. The converted high-frequency sensing signals are synthesized by the signal synthesis / distributor 45. By this signal synthesis, high-frequency sensing signals from a plurality of sensors can be received over a wide range, and stable reception can be realized even during rotation. This high frequency sensing signal is distributed again by the signal synthesis distributor 45. The redistributed high frequency sensing signal is mixed with the output from the oscillator 40 by the mixer 56 and converted to an intermediate frequency. From this signal, a sensing signal having an intermediate frequency for each sensor is extracted by the low-pass filter 57, envelope detection is performed by the detector 47, and the sensor signal is reconverted into a sensing signal. Thereafter, the sensing signal is determined to be High / Low by the comparator 48 and input to the controller.
 図15は、本実施の形態における回転体用送信器と回転体用受信器を一体化した回転体用送受信器61の構成図である。図7で説明した回転体用送信器11と回転体用受信器8のセットと大きく異なるのは、受信した高周波制御信号を一旦中間周波数に変換している点である。そうすることで、フィルタによる周波数選択性を向上させ、制御信号の抽出を容易にすることができる。回転体用送受信回路60は、回転体用受信回路6、回転体用送信回路9を備える。回転体用受信回路6は、トランスインピーダンスアンプ49、ミキサ58、ローパスフィルタ59、ディテクタ51、コンパレータ52を有する。回転体用送信回路9は、発振器55、高周波スイッチ54、ドライバIC53を有する。回転体用フォトダイオード7で受信された固定体からの高周波制御信号は、まずトランスインピーダンスアンプ49にて電流信号から電圧信号に変換される。この変換された複数の高周波制御信号は、ミキサ58にて、発振器55からの出力とミキシングされて中間周波数に変換される。この信号から、ローパスフィルタ59にてパワーデバイス毎の中間周波数の制御信号が抽出され、ディテクタ51にて包絡線検波され制御信号に再変換される。その後、制御信号は、コンパレータ52にてHigh/Low判定されて、パワーデバイスに入力される。なお、ディテクタ51による包絡線検波は、制御信号の周波数に比べて変換された中間周波数が十分に大きくない場合、検波のタイミングにバラツキを持つことが想定される。それに対しては、発振器55をミキサ入力に必要な2倍の周波数で発振させ、2分周させて90度の位相差を付けた二つのローカル信号を生成し、ミキサ58およびローパスフィルタ59を2個並列に配置し、このミキサ58に上記ローカル信号を入力させ、ローパスフィルタ59からの出力信号を合成させてディテクタ51に入力させることが有効である。また、2個並列に配置する部品をミキサ58、ローパスフィルタ59に加え、ディテクタ51およびコンパレータ52も加え、コンパレータ52からの出力信号をOR回路等で合成させることも有効である。これらの対策により、検波タイミングのバラツキを抑えることができる。 FIG. 15 is a configuration diagram of a transmitter / receiver 61 for a rotating body in which a transmitter for a rotating body and a receiver for a rotating body are integrated in the present embodiment. A significant difference from the set of the rotator transmitter 11 and the rotator receiver 8 described in FIG. 7 is that the received high-frequency control signal is once converted to an intermediate frequency. By doing so, the frequency selectivity by a filter can be improved and extraction of a control signal can be facilitated. The transmitting / receiving circuit 60 for a rotating body includes a receiving circuit 6 for a rotating body and a transmitting circuit 9 for a rotating body. The rotating body receiving circuit 6 includes a transimpedance amplifier 49, a mixer 58, a low-pass filter 59, a detector 51, and a comparator 52. The rotating body transmission circuit 9 includes an oscillator 55, a high frequency switch 54, and a driver IC 53. The high-frequency control signal from the stationary body received by the rotating body photodiode 7 is first converted from a current signal to a voltage signal by the transimpedance amplifier 49. The plurality of converted high frequency control signals are mixed with the output from the oscillator 55 by the mixer 58 and converted to an intermediate frequency. From this signal, a control signal having an intermediate frequency for each power device is extracted by the low-pass filter 59, envelope detection is performed by the detector 51, and the signal is reconverted into a control signal. Thereafter, the control signal is determined as High / Low by the comparator 52 and is input to the power device. Note that it is assumed that the envelope detection by the detector 51 has variations in detection timing when the converted intermediate frequency is not sufficiently large compared to the frequency of the control signal. In response to this, the oscillator 55 oscillates at a frequency twice that required for the mixer input, divides the frequency by 2, and generates two local signals with a phase difference of 90 degrees. It is effective to arrange them in parallel, to input the local signal to the mixer 58, and to combine the output signal from the low-pass filter 59 and input it to the detector 51. It is also effective to add two components arranged in parallel to the mixer 58 and the low-pass filter 59, add a detector 51 and a comparator 52, and synthesize an output signal from the comparator 52 with an OR circuit or the like. These measures can suppress variations in detection timing.
 一方、センサからのセンシング信号(デジタル測定値)は、発振器55に接続された高周波スイッチ54をオンオフさせることで、高周波センシング信号に変換される。複数の発振器55はそれぞれ固有の発振周波数を持ち、前述の固定体用送信回路の発振器の発振周波数とも異なり、所定の離隔周波数以上離れている。なお、各発振周波数の設定例については後述する。変換された高周波センシング信号はドライバIC53に入力される。ドライバIC53は、回転体用LED10へ出力する電流を制御する役割を持っており、高周波センシング信号に対応して、回転体用LED10を点滅させることができる。 On the other hand, the sensing signal (digital measurement value) from the sensor is converted into a high frequency sensing signal by turning on and off the high frequency switch 54 connected to the oscillator 55. Each of the plurality of oscillators 55 has a specific oscillation frequency, and is different from the oscillation frequency of the oscillator of the above-described stationary body transmission circuit, and is separated by a predetermined separation frequency or more. An example of setting each oscillation frequency will be described later. The converted high frequency sensing signal is input to the driver IC 53. The driver IC 53 has a role of controlling a current output to the rotating body LED 10 and can blink the rotating body LED 10 in response to a high frequency sensing signal.
 なお、図14に示した固定体用送受信器5と、図15に示した回転体円送受信器61とを組み合わせて用いることの他に、図14に示した固定体用送受信器5と、図7に示した回転体用受信器8及び回転体用送信器11とを組み合わせて用いること、又は、図15に示した回転体円送受信器61と図6に示した固定体用送受信器5とを組み合わせて用いるようにしてもよい。 In addition to the combined use of the fixed body transceiver 5 shown in FIG. 14 and the rotating body circular transceiver 61 shown in FIG. 15, the fixed body transceiver 5 shown in FIG. 7 is used in combination with the rotating body receiver 8 and the rotating body transmitter 11, or the rotating body circular transceiver 61 shown in FIG. 15 and the fixed body transceiver 5 shown in FIG. 6. May be used in combination.
(5)各発振器の周波数設定の例
 
 次に、各発振器の周波数設定の例について説明する。理解を容易にするため、一例として、パワーデバイス、センサが同数であり、各12個のケースについて説明する。また、最大周波数を2500kHzとして説明する。実際には、最大周波数は、フォトダイオードの上昇時間等の特性(応答時間等)に依存し、この上昇時間はフォトダイオードの端子間容量と負荷抵抗のCR時定数によって決まり、端子間容量はフォトダイオードの受光面積に依存する。つまり、光伝搬損失を小さくするためフォトダイオードの受光面積を大きくすると、フォトダイオードの上昇時間が大きくなり、高い周波数は選択できなくなる。また、負荷抵抗は、後段のトランスインピーダンスアンプのゲイン設定に依存する。固定体用送信回路の12個の発振器の周波数はそれぞれ800、950、1100、・・・、2450kHzと150kHz離隔して設定する。一方、回転体用送信器の12個の発振器はそれぞれ850、1000、1150、・・・、2500kHzと同じく150kHz離隔して設定する。例えば、950kHzの周波数でミキシングされた中間周波数の信号は50、100、200、350、・・・、1550kHzとなり、ローパスフィルタのカットオフ周波数を50kHz+α(信号周波数、例えば2kHz)と設定することで、信号が抽出できるようになる。他のミキサの出力に関しても、同じローパスフィルタの設定で各信号が抽出できる。以上のように設定することで、複数の信号を同時に双方向に通信できる。なお、制御信号とセンシング信号の数が異なる場合についても、発振器を、ミキサのローカル入力のためにのみ使うことで対応可能である。
(5) Examples of frequency settings for each oscillator
Next, an example of setting the frequency of each oscillator will be described. In order to facilitate understanding, as an example, the number of power devices and sensors is the same, and 12 cases each will be described. The description will be made assuming that the maximum frequency is 2500 kHz. Actually, the maximum frequency depends on characteristics such as the rise time of the photodiode (response time, etc.), and this rise time is determined by the capacitance between the terminals of the photodiode and the CR time constant of the load resistance. Depends on the light receiving area of the diode. That is, if the light receiving area of the photodiode is increased in order to reduce the light propagation loss, the rising time of the photodiode increases, and a high frequency cannot be selected. The load resistance depends on the gain setting of the transimpedance amplifier at the subsequent stage. The frequencies of the twelve oscillators of the fixed body transmission circuit are set apart by 800, 950, 1100, ..., 2450 kHz and 150 kHz, respectively. On the other hand, the twelve oscillators of the rotor transmitter are set apart from each other by 150 kHz as in 850, 1000, 1150,. For example, the intermediate frequency signal mixed at a frequency of 950 kHz is 50, 100, 200, 350,. The signal can be extracted. As for the output of other mixers, each signal can be extracted with the same low-pass filter setting. By setting as described above, a plurality of signals can be bidirectionally communicated simultaneously. Note that even when the number of control signals and the number of sensing signals are different, the oscillator can be used only for the local input of the mixer.
 以上のように本実施の形態に係る光通信装置は、固定体に取り付けられた一つの通信器と、回転体に取付けられた互いに絶縁された複数の通信器との間の1対Nの双方向通信を、回転時にも安定して連続的に行うことができる。 As described above, the optical communication apparatus according to the present embodiment has both 1-to-N communication between one communication device attached to the fixed body and a plurality of communication devices attached to the rotating body and insulated from each other. Direction communication can be performed stably and continuously even during rotation.
 また、本実施の形態を風力発電システムに適用することで、メンテナンスを容易にしつつ発電効率向上可能なブラシを用いない風力発電システムを実現できる。 Also, by applying this embodiment to a wind power generation system, it is possible to realize a wind power generation system that does not use a brush that can improve power generation efficiency while facilitating maintenance.
 また、本実施の形態によれば、固定体と回転体の間を光を用いて通信しているため、インバータのスイッチングノイズや、モータから磁界ノイズ等の電磁界ノイズに対する通信品質の耐性を大きくすることができる。 In addition, according to the present embodiment, communication is performed between the fixed body and the rotating body using light, so that the communication quality is highly resistant to switching noise of the inverter and electromagnetic field noise such as magnetic field noise from the motor. can do.
 以下、本発明の実施の形態2に係る光通信装置を図17~図18を用いて説明する。図17は光通信装置の構成を示すブロック図である。光通信装置は、固定体に取り付けられた固定体用送受信器30、回転体に取り付けられた複数の回転体用送信器および複数の回転体用受信器を備え、固定体に取り付けられたコントローラ16と、回転体に取り付けられた電力変換器13との間の双方向の非接触通信に用いられる。電力変換器13は複数個のパワーデバイスおよび複数個のセンサを有する。コントローラ16は、複数のセンサ14から得られた上述の電流値、電圧値等の情報を下に生成された制御信号により、パワーデバイス12を制御する。各パワーデバイスは例えば数kVの電圧で動作し、各々のタイミングでオンオフする。したがって、各パワーデバイス間で短絡させないためには、それぞれの間で絶縁の確保が必要となる。なお、図示していないが、パワーデバイス12にはドライバ回路も含まれる。固定体用送受信器30は、複数の固定体用レーザダイオード群24、複数のレンズ25、固定体用送信回路23を有する送信部と、複数の固定体用フォトダイオード27と複数の光学フィルタ28、複数のレンズ29、固定体用受信回路26を有する受信部とを備える。複数の回転体用受信器35は、回転体用フォトダイオード32、光学フィルタ33、レンズ34、回転体用受信回路31を有し、各回転体用受信器の間で絶縁される。複数の回転体用送信器39は、回転体用レーザダイオード37、レンズ38、回転体用送信回路36を有する。センサ14自身が絶縁型のものである場合は、複数の回転体用送信器39の間の絶縁確保の必要性が無い。 Hereinafter, an optical communication apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 17 is a block diagram showing the configuration of the optical communication apparatus. The optical communication apparatus includes a fixed body transceiver 30 attached to a fixed body, a plurality of rotating body transmitters and a plurality of rotating body receivers attached to the rotating body, and a controller 16 attached to the fixed body. And a two-way non-contact communication between the power converter 13 attached to the rotating body. The power converter 13 has a plurality of power devices and a plurality of sensors. The controller 16 controls the power device 12 by a control signal generated based on information such as the current value and voltage value obtained from the plurality of sensors 14. Each power device operates with a voltage of several kV, for example, and is turned on and off at each timing. Therefore, in order to prevent a short circuit between the power devices, it is necessary to ensure insulation between the power devices. Although not shown, the power device 12 includes a driver circuit. The fixed body transceiver 30 includes a plurality of fixed body laser diode groups 24, a plurality of lenses 25, a transmission unit having a fixed body transmission circuit 23, a plurality of fixed body photodiodes 27, a plurality of optical filters 28, A plurality of lenses 29, and a receiver having a fixed body receiving circuit 26. The plurality of rotating body receivers 35 include a rotating body photodiode 32, an optical filter 33, a lens 34, and a rotating body receiving circuit 31, and are insulated between the respective rotating body receivers. The plurality of rotating body transmitters 39 include a rotating body laser diode 37, a lens 38, and a rotating body transmission circuit 36. When the sensor 14 itself is an insulating type, there is no need to ensure insulation between the plurality of transmitters 39 for the rotating body.
 固定体用送信回路23には、コントローラ16から各パワーデバイス固有の制御信号がパワーデバイス数だけ入力される。固定体用送信回路23は、これらの制御信号を複数の固定体用レーザダイオード群24に分配し、その信号に同期させて複数の固定体用レーザダイオード群24を一斉に点滅させる。一斉に点滅させることで、広範囲に信号を行き渡らせることができ、回転時においても安定した送信が実現できる。このレーザダイオードからの出力に適切なビーム半値幅を持たせるため、レンズ25を固定体用レーザダイオード群24に取り付けている。固定体用レーザダイオード群24は、制御信号の個数分の、発光波長の異なるレーザダイオードで構成されており、それぞれの制御信号が干渉することは無い。固定体用レーザダイオード群24から照射された制御信号は、回転中の複数の回転体用フォトダイオード32に、レンズ34、光学フィルタ33を介して受信される。レンズ34は、固定体用レーザダイオード群24から光を集中させるために用いる。光学フィルタ33は、特定の波長のみを取り出すフィルタであり、各パワーデバイス固有の制御信号のみを抽出することができる。この制御信号がドライブ回路を介してパワーデバイス12に入力される。 The control signal specific to each power device is input from the controller 16 to the fixed body transmission circuit 23 by the number of power devices. The fixed body transmission circuit 23 distributes these control signals to a plurality of fixed body laser diode groups 24, and simultaneously flashes the plurality of fixed body laser diode groups 24 in synchronization with the signals. By flashing all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation. In order to give an appropriate beam half-value width to the output from the laser diode, the lens 25 is attached to the laser diode group 24 for the fixed body. The fixed body laser diode group 24 includes laser diodes having different emission wavelengths corresponding to the number of control signals, and the control signals do not interfere with each other. The control signal emitted from the fixed body laser diode group 24 is received by the rotating plurality of rotating body photodiodes 32 via the lens 34 and the optical filter 33. The lens 34 is used to concentrate light from the laser diode group 24 for the fixed body. The optical filter 33 is a filter that extracts only a specific wavelength, and can extract only a control signal unique to each power device. This control signal is input to the power device 12 via the drive circuit.
 一方、複数のセンサ14から得られた電流値、電圧値等のセンシング信号は、回転体用送信回路36に入力される。回転体用送信回路36は、このセンシング信号に同期させて固定体用レーザダイオード37を点滅させる。この固定体用レーザダイオード37の発光波長は、前述の固定体用レーザダイオード群24と異なり、干渉を考慮する必要がないほど、各波長が離れているとする。レーザダイオードからの出力に適切なビーム半値幅を持たせるため、レンズ38を回転体用レーザダイオード38に取り付けている。回転体用レーザダイオード37から照射されたセンシング信号は、レンズ29、デマルチプレクサ28を介して固定体用フォトダイオード群27で受信される。デマルチプレクサ28に入力されるセンシング信号の波長は、複数の回転体用レーザダイオード37の発光波長のいずれかもしくはその合成である。デマルチプレクサ28は、これらの波長を分別し、固定体用フォトダイオード群27に出力する機能を持つ。固定体用受信回路26では、これらの分別された波長のセンシング信号がそれぞれ合成される。この信号合成により、複数のセンサ14からのセンシング信号を広範囲に受け取ることができ、回転時においても安定した受信が実現できる。合成されたセンシング信号は固定体用受信回路26により、各センサに対応するセンシング信号に分割され、コントローラ16に入力され、コントローラ16では、得られた電流値、電圧値等の情報を下に制御信号が生成される。 On the other hand, sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are input to the rotating body transmission circuit 36. The rotating body transmitting circuit 36 blinks the stationary body laser diode 37 in synchronization with the sensing signal. The light emission wavelength of the fixed body laser diode 37 is different from that of the above-described fixed body laser diode group 24, and it is assumed that the wavelengths are so far apart that it is not necessary to consider interference. The lens 38 is attached to the rotating body laser diode 38 in order to give an appropriate beam half-value width to the output from the laser diode. The sensing signal emitted from the rotating body laser diode 37 is received by the fixed body photodiode group 27 via the lens 29 and the demultiplexer 28. The wavelength of the sensing signal input to the demultiplexer 28 is one of the emission wavelengths of the plurality of rotating body laser diodes 37 or a combination thereof. The demultiplexer 28 has a function of separating these wavelengths and outputting them to the fixed body photodiode group 27. The stationary body receiving circuit 26 synthesizes the sensing signals of these separated wavelengths. By this signal synthesis, sensing signals from the plurality of sensors 14 can be received over a wide range, and stable reception can be realized even during rotation. The synthesized sensing signal is divided into sensing signals corresponding to the respective sensors by the stationary body receiving circuit 26, and is input to the controller 16. The controller 16 controls the information such as the obtained current value and voltage value downward. A signal is generated.
 図18は、本実施の形態に係る光通信装置の変形例である。上述した光通信装置とは、特に、固定体用送受信器30が異なる。固定体用送受信器30は、複数のレンズ25、複数の光ファイバ75、77、光ファイバ分配器76、マルチプレクサ74、複数の固定体用レーザダイオード群73、固定体用送信回路72を有する送信部と、複数のレンズ29、複数の光ファイバ84、86、光ファイバ合成器85、デマルチプレクサ83、複数の固定体用フォトダイオード群82、固定体用受信回路81を有する受信部とを備える。 FIG. 18 shows a modification of the optical communication apparatus according to the present embodiment. In particular, the fixed body transceiver 30 is different from the optical communication apparatus described above. The fixed body transceiver 30 includes a plurality of lenses 25, a plurality of optical fibers 75 and 77, an optical fiber distributor 76, a multiplexer 74, a plurality of fixed body laser diode groups 73, and a fixed body transmission circuit 72. A plurality of lenses 29, a plurality of optical fibers 84 and 86, an optical fiber synthesizer 85, a demultiplexer 83, a plurality of fixed body photodiode groups 82, and a receiver having a fixed body reception circuit 81.
 固定体用送信回路72には、コントローラ16から各パワーデバイス固有の制御信号がパワーデバイス数だけ入力される。固定体用送信回路72は、各制御信号と固定体用レーザダイオード群73の各レーザダイオードを1対1対応させて、一斉に点滅させる。固定体用レーザダイオード群73は、制御信号の個数分の、発光波長の異なるレーザダイオードで構成されており、それぞれの制御信号が干渉することは無い。これらの波長の異なる制御信号は、マルチプレクサ74に入力され、合成されて一つの光ファイバ75に入力される。これらの合成された制御信号は、光ファイバ分配器76で複数の光ファイバ77に分配され、レンズ25によって適切なビーム半値幅を持たせて、回転体側に照射される。一斉に点滅させた制御信号を分配することで、広範囲に信号を行き渡らせることができ、回転時においても安定した送信が実現できる。複数の光ファイバから照射された制御信号は、回転中の複数の回転体用フォトダイオード32に、レンズ34、光学フィルタ33を介して受信される。レンズ34は、固定体用レーザダイオード群24から光を集中させるために用いる。光学フィルタ33は、特定の波長のみを取り出すフィルタであり、各パワーデバイス固有の制御信号のみを抽出することができる。この制御信号がドライブ回路を介してパワーデバイス12に入力される。ここで、複数の固定体用レーザダイオード群73、マルチプレクサ74は、これらの機能を集積した変調器集積レーザを用いて、より簡素な構成にすることも可能である。 The fixed body transmitting circuit 72 receives as many control signals as the number of power devices from the controller 16. The fixed body transmission circuit 72 causes the control signals and the laser diodes of the fixed body laser diode group 73 to correspond one-to-one to blink simultaneously. The fixed body laser diode group 73 is composed of laser diodes having different emission wavelengths corresponding to the number of control signals, and the respective control signals do not interfere with each other. These control signals having different wavelengths are input to the multiplexer 74, combined, and input to one optical fiber 75. These combined control signals are distributed to a plurality of optical fibers 77 by the optical fiber distributor 76, and are irradiated to the rotating body side with an appropriate beam half width by the lens 25. By distributing control signals that are flashed all at once, signals can be distributed over a wide range, and stable transmission can be realized even during rotation. Control signals emitted from the plurality of optical fibers are received by the rotating photodiodes 32 for the rotating body through the lens 34 and the optical filter 33. The lens 34 is used to concentrate light from the laser diode group 24 for the fixed body. The optical filter 33 is a filter that extracts only a specific wavelength, and can extract only a control signal unique to each power device. This control signal is input to the power device 12 via the drive circuit. Here, the plurality of fixed-body laser diode groups 73 and the multiplexer 74 can be configured more simply by using a modulator integrated laser in which these functions are integrated.
 一方、複数のセンサ14から得られた電流値、電圧値等のセンシング信号は、回転体用送信回路36に入力される。回転体用送信回路36は、このセンシング信号に同期させて固定体用レーザダイオード37を点滅させる。この固定体用レーザダイオード37の発光波長は、前述の固定体用レーザダイオード群73と異なり、干渉を考慮する必要がないほど、各波長が離れているとする。レーザダイオードからの出力に適切なビーム半値幅を持たせるため、レンズ38を回転体用レーザダイオード38に取り付けている。 On the other hand, sensing signals such as current values and voltage values obtained from the plurality of sensors 14 are input to the rotating body transmission circuit 36. The rotating body transmitting circuit 36 blinks the stationary body laser diode 37 in synchronization with the sensing signal. The light emission wavelength of the fixed body laser diode 37 is different from that of the above-described fixed body laser diode group 73, and it is assumed that the wavelengths are so far apart that it is not necessary to consider interference. The lens 38 is attached to the rotating body laser diode 38 in order to give an appropriate beam half-value width to the output from the laser diode.
 回転体用レーザダイオード37から照射されたセンシング信号は、複数のレンズ29を介して複数の光ファイバ86に入力される。入力されたセンシング信号は、光ファイバ合成器85で合成され、一つの光ファイバ84に出力される。このセンシング信号は、デマルチプレクサ83を介して固定体用フォトダイオード群82で受信される。デマルチプレクサ83に入力されるセンシング信号の波長は、複数の回転体用レーザダイオード37の発光波長の合成である。この信号合成により、複数のセンサ14からのセンシング信号を広範囲に受け取ることができ、回転時においても安定した受信が実現できる。デマルチプレクサ83は、これらの波長を分別し、固定体用フォトダイオード群82に出力する機能を持つ。これらのセンシング信号は固定体用受信回路81を介してコントローラ16に入力され、コントローラ16では、得られた電流値、電圧値等の情報を下に制御信号が生成される。 The sensing signal irradiated from the rotating body laser diode 37 is input to the plurality of optical fibers 86 through the plurality of lenses 29. The input sensing signals are combined by the optical fiber combiner 85 and output to one optical fiber 84. This sensing signal is received by the fixed body photodiode group 82 via the demultiplexer 83. The wavelength of the sensing signal input to the demultiplexer 83 is a combination of the emission wavelengths of the plurality of rotating body laser diodes 37. By this signal synthesis, sensing signals from the plurality of sensors 14 can be received over a wide range, and stable reception can be realized even during rotation. The demultiplexer 83 has a function of separating these wavelengths and outputting them to the fixed body photodiode group 82. These sensing signals are input to the controller 16 via the stationary body receiving circuit 81, and the controller 16 generates a control signal based on the obtained information such as current value and voltage value.
C.実施の形態の効果
 
 以上のように本実施の形態に係る光通信装置は、固定体に取り付けられた一つの通信器と、回転体に取付けられた互いに絶縁された複数の通信器との間の1対Nの双方向通信を、回転時にも安定して連続的に行うことができる。
C. Effects of the embodiment
As described above, the optical communication apparatus according to the present embodiment has both 1-to-N communication between one communication device attached to the fixed body and a plurality of communication devices attached to the rotating body and insulated from each other. Direction communication can be performed stably and continuously even during rotation.
 また、応答速度の速く、集光度の高いレーザダイオードを用いた構成であるので、より高速に低遅延な通信を実現することができる。 In addition, since it has a configuration using a laser diode with a high response speed and a high degree of condensing, it is possible to realize a communication with higher speed and lower delay.
D.付記
 
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成例の一部を、同じ実施例の他の構成例または他の実施例の構成例に置き換えることが可能であり、また、ある実施例の構成例に、同じ実施例の他の構成例または他の実施例の構成例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
D. Appendix
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of a configuration example of a certain embodiment can be replaced with another configuration example of the same embodiment or a configuration example of another embodiment, and the configuration example of a certain embodiment can be replaced with the same embodiment. It is also possible to add configurations of other configuration examples or configuration examples of other embodiments. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1       :固定体用送信回路
2       :固定体用LED
3       :固定体用受信回路
4       :固定体用フォトダイオード
5       :固定体用送受信器
6       :回転体用受信回路
7       :回転体用フォトダイオード
8       :回転体用受信器
9       :回転体用送信回路
10      :回転体用LED
11      :回転体用送信器
12      :パワーデバイス
13      :電力変換器
14      :センサ
16      :コントローラ
17      :固定体
18      :回転軸
19      :回転体
20      :照射領域
21      :固定体用フォトダイオード群
22      :回転体用フォトダイオード群
23      :固定体用送信回路
24      :固定体用レーザダイオード群
25      :レンズ
26      :固定体用受信回路
27      :固定体用フォトダイオード群
28      :デマルチプレクサ
29      :レンズ
30      :固定体用送受信器
31      :回転体用受信回路
32      :回転体用フォトダイオード
33      :光学フィルタ
34      :レンズ
35      :回転体用受信器
36      :回転体用送信回路
37      :回転体用レーザダイオード
38      :レンズ
39      :回転体用送信器
40      :発振器
41      :高周波スイッチ
42      :信号合成器
43      :ドライバIC群
44      :トランスインピーダンスアンプ
45      :信号合成分配器
46      :バンドパスフィルタ
47      :ディテクタ
48      :コンパレータ
49      :トランスインピーダンスアンプ
50      :バンドパスフィルタ
51      :ディテクタ
52      :コンパレータ
53      :ドライバIC群
54      :高周波スイッチ
55      :発振器
56      :ミキサ
57      :ローパスフィルタ
58      :ミキサ
59      :ローパスフィルタ
60      :回転体用送受信回路
61      :回転体用送受信器
62      :ブレード
63      :回転子
64      :固定子
65      :発電機
66      :ブラシ
67      :絶縁素子
68      :電力系統
69      :回転子
70      :固定子
71      :補助発電機
72      :固定体用送信回路
73      :固定体用レーザダイオード群
74      :マルチプレクサ
75      :光ファイバ
76      :光ファイバ分配器
77      :光ファイバ
78      :回転子
79      :固定子
80      :主発電機
81      :固定体用受信回路
82      :固定体用フォトダイオード群
83      :デマルチプレクサ
84      :光ファイバ
85      :光ファイバ合成器
86      :光ファイバ
101     :風力発電システム
102     :風力発電システム
1: Transmission circuit for stationary body 2: LED for stationary body
3: Fixed body receiving circuit 4: Fixed body photodiode 5: Fixed body transceiver 6: Rotating body receiving circuit 7: Rotating body photodiode 8: Rotating body receiver 9: Rotating body transmitting circuit 10 : LED for rotating body
11: Transmitter for rotating body 12: Power device 13: Power converter 14: Sensor 16: Controller 17: Fixed body 18: Rotating shaft 19: Rotating body 20: Irradiation area 21: Photodiode group 22 for stationary body: Rotating body Photodiode group 23: Stationary transmitter circuit 24: Stationary laser diode group 25: Lens 26: Stationary receiver circuit 27: Stationary photodiode group 28: Demultiplexer 29: Lens 30: Stationary transmission / reception Device 31: Receiving circuit for rotating body 32: Photodiode for rotating body 33: Optical filter 34: Lens 35: Receiver for rotating body 36: Transmitting circuit for rotating body 37: Laser diode for rotating body 38: Lens 39: Rotating body Transmitter 40: Oscillator 41: High frequency switch 42: Signal synthesizer 43: Driver IC group 44: Transimpedance amplifier 45: Signal synthesizer / distributor 46: Bandpass filter 47: Detector 48: Comparator 49: Transimpedance amplifier 50: Bandpass Filter 51: Detector 52: Comparator 53: Driver IC group 54: High frequency switch 55: Oscillator 56: Mixer 57: Low pass filter 58: Mixer 59: Low pass filter 60: Transmitter / receiver circuit 61 for rotating body: Transmitter / receiver 62 for rotating body: Blade 63: Rotor 64: Stator 65: Generator 66: Brush 67: Insulating element 68: Power system 69: Rotation 70: Stator 71: Auxiliary generator 72: Transmitter for fixed body 73: Laser diode group for fixed body 74: Multiplexer 75: Optical fiber 76: Optical fiber distributor 77: Optical fiber 78: Rotor 79: Stator 80 : Main generator 81: Receiving circuit 82 for stationary body: Photodiode group 83 for stationary body: Demultiplexer 84: Optical fiber 85: Optical fiber combiner 86: Optical fiber 101: Wind power generation system 102: Wind power generation system

Claims (14)

  1.  発電装置であって、
     回転エネルギーにより発生された電力を電力系統に送電するための固定体と、
     前記固定体に取付けられた回転軸を中心に回転するための回転体と、
     インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と、
     前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力するコントローラと、
    を備えることにより、前記電力変換器が、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
     さらに、
     複数の固定体用発光素子と、
     前記コントローラからの前記複数のパワーデバイスの各々を制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、前記複数の固定体用発光素子を一斉に点滅させるための固定体用送信回路と、
     電気的に絶縁された回転体用受光素子と、前記回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々の前記制御信号として前記電力変換器に出力する回転体用受信回路を有する複数の回転体用受信器と、
     複数の固定体用受光素子と、
     前記複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力する固定体用受信回路と、
     回転体用発光素子と、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して前記回転体用発光素子を発光する回転体用送信回路を有する複数の回転体用送信器と
    を備えた発電装置。
    A power generator,
    A stationary body for transmitting the electric power generated by the rotational energy to the power system;
    A rotating body for rotating around a rotating shaft attached to the fixed body;
    A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and
    Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power. A controller for generating a control signal for outputting the control signal to the power converter;
    The power converter controls the plurality of power devices by the control signal from the controller, and converts the voltage and frequency based on the power supplied from the power system to the rotating body. To synchronize the generated power with the power system,
    further,
    A plurality of light emitting elements for stationary bodies;
    A fixed signal for multiplexing a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and for simultaneously flashing the plurality of fixed body light emitting elements. A body transmission circuit;
    An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the downstream signals of the plurality of power devices A plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal;
    A plurality of stationary light receiving elements;
    A fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
    Rotating body light emitting element, and a plurality of rotating body light emitting elements that generate the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to emit light from the rotating body light emitting element A power generation device including a transmitter.
  2.  請求項1に記載された発電装置において、
     前記固定体用送信回路は、
     前記複数のパワーデバイスに1対1に対応し、予め定められた離隔周波数以上離れた固有の発振周波数をそれぞれ発生する複数の固定体用発振器と、
     前記複数の固定体用発振器の各々の出力を、前記コントローラからの各々の前記制御信号によってオンオフすることで高周波信号に変換して各々の前記下り信号を出力する複数の固定体用高周波スイッチと、
     前記複数の固定体用高周波スイッチからの複数の前記下り信号を多重して前記多重下り信号を生成し、前記多重下り信号を前記複数の固定体用発光素子に一斉に分配する信号合成器と
    を備え、
     
     前記固定体用受信回路は、
     複数の前記上り信号を選択的に抽出する複数の周波数フィルタと、
     前記複数の固定体用受光素子が受信した前記多重上り信号を合成して、前記複数の周波数フィルタに分配する信号合成分配器と
    を備えた
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    The fixed body transmitting circuit is:
    A plurality of fixed-unit oscillators that respectively correspond to the plurality of power devices and generate unique oscillation frequencies separated by a predetermined separation frequency or more;
    A plurality of fixed body high-frequency switches that convert each output of the plurality of fixed body oscillators to a high-frequency signal by turning on and off each of the control signals from the controller and output each downstream signal;
    A signal synthesizer that multiplexes the plurality of downlink signals from the plurality of fixed-body high-frequency switches to generate the multiplexed downlink signal, and distributes the multiplexed downlink signals to the plurality of fixed-body light-emitting elements simultaneously; Prepared,

    The stationary body receiving circuit is:
    A plurality of frequency filters for selectively extracting a plurality of the upstream signals;
    A power generation device comprising: a signal synthesis distributor that synthesizes the multiplexed uplink signals received by the plurality of fixed body light receiving elements and distributes the multiplexed uplink signals to the plurality of frequency filters.
  3.  請求項2に記載された発電装置において、
     前記回転体用送信回路は、
     前記複数のセンサに1対1に対応し、予め定められた離隔周波数以上離れた固有の発振周波数をそれぞれ発生する複数の回転体用発振器と、
     前記回転体用発振器の各々の出力を、前記センサからのデジタル・センシング信号によってオンオフし、高周波センシング信号に変換して前記上り信号を生成し、前記上り信号を前記回転体用発光素子に出力するための回転体用高周波スイッチと
    を備え、
     
     前記回転体用受信回路は、
     前記多重下り信号から、特定の前記下り信号を選択的に抽出する周波数フィルタ
    を備えた
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 2,
    The transmission circuit for the rotator is
    A plurality of oscillators for rotating bodies that respectively correspond to the plurality of sensors and generate unique oscillation frequencies separated by a predetermined separation frequency or more;
    Each output of the oscillator for rotating body is turned on / off by a digital sensing signal from the sensor, converted to a high frequency sensing signal to generate the upstream signal, and the upstream signal is output to the light emitting element for the rotating body. And a high frequency switch for a rotating body for

    The rotating body receiving circuit includes:
    A power generation apparatus comprising: a frequency filter that selectively extracts a specific downlink signal from the multiplexed downlink signal.
  4.  請求項2に記載された発電装置において、
     前記固定体用受信回路は、
     前記信号合成分配器により分配された各々の前記上り信号を、前記複数の固定体用発振器の各々からの出力とミキシングして中間周波数信号に変換する複数の固定体用ミキサ
    を備え、
     前記複数の固定体用ミキサのそれぞれから出力された中間周波数信号から、前記センサ毎のセンシング信号を抽出することを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 2,
    The stationary body receiving circuit is:
    Each of the upstream signals distributed by the signal combiner / distributor includes a plurality of fixed-body mixers that mix the output from each of the plurality of fixed-body oscillators and convert it to an intermediate frequency signal,
    A power generation apparatus that extracts a sensing signal for each of the sensors from an intermediate frequency signal output from each of the plurality of fixed body mixers.
  5.  請求項3に記載された発電装置において、
     前記回転体用受信回路は、前記多重上り信号を、前記回転体用送信回路の前記回転体用発信器からの出力とミキシングして中間周波数信号に変換する回転体用ミキサ
    を備え、
     前記回転体用ミキサから出力された中間周波数信号から、前記制御信号を抽出することを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 3,
    The rotating body receiving circuit includes a rotating body mixer that mixes the multiplexed upstream signal with an output from the rotating body transmitter of the rotating body transmission circuit and converts it into an intermediate frequency signal,
    The power generation apparatus, wherein the control signal is extracted from an intermediate frequency signal output from the rotating body mixer.
  6.  請求項1に記載された発電装置において、
     前記複数の固定体用発光素子の各々は、前記制御信号の個数分の、発光波長の異なる発光素子部を含む発光素子群で構成され、
     前記固定体用送信回路は、
     前記コントローラから前記複数のパワーデバイスの各々の前記制御信号により複数の固定体用発光素子の前記発光素子群を一斉に点滅させ、
     
     前記複数の固定体用受光素子の各々は、センサ信号の個数分の、受光波長の異なる受光素子部を含む受光素子群で構成され、デマルチプレクサにより前記下り信号の各々の波長を分別し、各々の前記受光素子部に入力し、
     前記固定体用受信回路は、前記複数の固定体用受光素子の各々により受信した前記多重上り信号から、分別された波長のセンシング信号をそれぞれ合成した後、前記複数のセンサの各々のセンシング信号である複数の前記上り信号を選択的に抽出し、
     
     前記回転体用発光素子は、前記複数のセンサに1対1に対応し、干渉を考慮する必要がないほど各波長が離れている発光波長をそれぞれ発生し、
     前記回転体用送信器は、前記回転体用発光素子から前記下り信号を出力し、
     
     前記回転体用受信器は、前記多重下り信号から、前記下り信号を選択的に抽出する光学フィルタを備えた
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    Each of the plurality of fixed body light-emitting elements is composed of a light-emitting element group including light-emitting element portions having different emission wavelengths corresponding to the number of the control signals,
    The fixed body transmitting circuit is:
    Flashing the light emitting element group of a plurality of fixed body light emitting elements all at once by the control signal of each of the plurality of power devices from the controller,

    Each of the plurality of fixed body light receiving elements is constituted by a light receiving element group including light receiving element portions having different light receiving wavelengths, corresponding to the number of sensor signals, and each wavelength of the downstream signal is separated by a demultiplexer, To the light receiving element section of
    The fixed body receiving circuit synthesizes a sensing signal having a separated wavelength from the multiplexed uplink signal received by each of the plurality of fixed body light receiving elements, and then uses the sensing signal of each of the plurality of sensors. Selectively extracting a plurality of the upstream signals;

    The light emitting element for a rotating body has a one-to-one correspondence with the plurality of sensors, and generates light emission wavelengths that are separated from each other such that interference does not need to be considered,
    The rotating body transmitter outputs the downstream signal from the rotating body light emitting element,

    The rotating body receiver includes an optical filter that selectively extracts the downlink signal from the multiplexed downlink signal.
  7.  請求項1に記載された発電装置において、
     前記複数の固定体用発光素子は、前記制御信号の個数分の、発光波長の異なる発光素子部を含むひとつの発光素子群で構成され、
     前記固定体用送信回路は、
     前記発光素子群による波長の異なる前記制御信号を合成して第1の光ファイバに入力するマルチプレクサと、
     前記マルチプレクサで合成された前記制御信号を分配して、複数の第2の光ファイバから前記多重下り信号を出力する光ファイバ分配器と
    を備え、
     
     前記複数の固定体用受光素子は、センサ信号の個数分の、受光波長の異なる受光素子部を含むひとつの受光素子群で構成され、
     前記複数の回転体用発光素子の各々からの前記上り信号をそれぞれ受信する複数の第3の光ファイバと、
     前記複数の第3の光ファイバの各々からのセンシング信号を合成して第4の光ファイバに出力する光ファイバ合成器と、
     合成された前記多重上り信号の波長を分別し、前記固定体用受光素子の各々の前記受光素子部に入力するデマルチプレクサと
    を備え、
     前記固定体用受信回路は、前記複数のセンサの各々のセンシング信号である複数の前記上り信号を出力し、
     
     前記回転体用発光素子は、前記複数のセンサに1対1に対応し、干渉を考慮する必要がないほど各波長が離れている発光波長をそれぞれ発生し、
     前記回転体用送信器は、前記回転体用発光素子から前記下り信号を出力し、
     
     前記回転体用受信器は、前記多重下り信号から、前記下り信号を選択的に抽出する光学フィルタを備えた
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    The plurality of fixed body light-emitting elements are composed of one light-emitting element group including light-emitting element portions having different emission wavelengths, corresponding to the number of the control signals.
    The fixed body transmitting circuit is:
    A multiplexer that synthesizes the control signals having different wavelengths by the light emitting element group and inputs them to the first optical fiber;
    An optical fiber distributor that distributes the control signal synthesized by the multiplexer and outputs the multiplexed downlink signal from a plurality of second optical fibers;

    The plurality of fixed body light receiving elements are composed of one light receiving element group including light receiving element portions having different light receiving wavelengths, corresponding to the number of sensor signals.
    A plurality of third optical fibers each receiving the upstream signal from each of the plurality of rotating body light emitting elements;
    An optical fiber synthesizer that synthesizes sensing signals from each of the plurality of third optical fibers and outputs them to a fourth optical fiber;
    A demultiplexer that separates wavelengths of the multiplexed uplink signals that are combined, and that is input to each of the light receiving element portions of the light receiving element for the fixed body,
    The stationary body receiving circuit outputs the plurality of upstream signals that are the sensing signals of the plurality of sensors,

    The light emitting element for a rotating body has a one-to-one correspondence with the plurality of sensors, and generates light emission wavelengths that are separated from each other such that interference does not need to be considered,
    The rotating body transmitter outputs the downstream signal from the rotating body light emitting element,

    The rotating body receiver includes an optical filter that selectively extracts the downlink signal from the multiplexed downlink signal.
  8.  請求項1に記載された発電装置において、
     前記固定体用発光素子及び前記固定体用受光素子がそれぞれ、回転軸を中心に半径の異なる円周上に配置され、
     前記回転体用発光素子は、前記固定体用受光素子と対向して略同一半径の円周上に配置され、
     前記回転体用受光素子は、前記固定体用発光素子と対向して略同一半径の円周上に配置される
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    The fixed body light-emitting element and the fixed body light-receiving element are each arranged on a circumference having different radii around a rotation axis,
    The rotating body light emitting element is disposed on a circumference of substantially the same radius facing the stationary body light receiving element,
    The power generator according to claim 1, wherein the rotating body light receiving element is disposed on a circumference having substantially the same radius so as to face the fixed body light emitting element.
  9.  請求項1に記載された発電装置において、
     前記固定体用発光素子および前記回転体用受光素子が回転軸方向と鉛直な同一面上に配置され、
     前記固定体用受光素子および前記回転体用発光素子が回転軸方向と鉛直な同一面上に配置される
    ことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    The light emitting element for fixed body and the light receiving element for rotating body are arranged on the same plane perpendicular to the rotation axis direction,
    The power generator according to claim 1, wherein the light receiving element for fixed body and the light emitting element for rotating body are arranged on the same plane perpendicular to the rotation axis direction.
  10.  請求項1に記載された発電装置において、
     前記固定体用受光素子または前記回転体用受光素子の少なくとも一方が、複数のサブ受光素子を有し、前記サブ受光素子からの出力を合成する合成部を備えたことを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    At least one of the light receiving element for a fixed body or the light receiving element for a rotating body has a plurality of sub light receiving elements, and includes a combining unit that combines outputs from the sub light receiving elements.
  11.  請求項1に記載された発電装置において、
     前記固定体用送受信器または前記回転体用送受信器の少なくとも一方が、受信強度の増減に応じてアンプのゲインを減増することを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    At least one of the transmitter / receiver for the fixed body and the transmitter / receiver for the rotating body decreases the gain of the amplifier in accordance with increase / decrease in reception intensity.
  12.  請求項1に記載された発電装置において、
     前記固定体用送受信器または前記回転体用送受信器の少なくとも一方が、前記回転体の回転角の情報に基づき、アンプのゲインを減増することを特徴とする発電装置。
    In the electric power generating apparatus described in Claim 1,
    At least one of the transmitter / receiver for the fixed body and the transmitter / receiver for the rotating body reduces the gain of the amplifier based on information on the rotation angle of the rotating body.
  13.  発電システムであって、
     回転エネルギーにより発生された電力を電力系統に送電するための固定体と、前記固定体に取付けられた回転軸を中心に回転するための回転体とを有する主発電機と、
     補助固定体と、前記回転体と共通の回転軸を有する補助回転体と有する補助発電機と、
     インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と、
     前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力するコントローラと、
    を備えることにより、電力系統の電力が前記補助発電機の前記補助固定体に通電されることで、前記補助回転体の回転子巻線に電力が供給され、前記電力変換器が、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
     さらに、
     複数の固定体用発光素子と、
     前記コントローラからの前記複数のパワーデバイスの各々を制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、前記複数の固定体用発光素子を一斉に点滅させるための固定体用送信回路と、
     電気的に絶縁された回転体用受光素子と、前記回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々を前記制御信号として前記電力変換器に出力する回転体用受信回路を有する複数の回転体用受信器と、
     複数の固定体用受光素子と、
     前記複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力する固定体用受信回路と、
     回転体用発光素子と、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して前記回転体用発光素子を発光する回転体用送信回路を有する複数の回転体用送信器と
    を備えた発電システム。
    A power generation system,
    A main generator having a stationary body for transmitting electric power generated by rotational energy to an electric power system, and a rotational body for rotating about a rotation shaft attached to the stationary body;
    An auxiliary generator having an auxiliary fixed body, an auxiliary rotating body having a rotation axis common to the rotating body, and
    A plurality of sensors for measuring a current value of each phase of the inverter and a voltage value of the inverter, a power converter having a plurality of power devices constituting the inverter, and
    Based on the current value and voltage value information obtained from the plurality of sensors of the power converter, a current corresponding to a slip frequency is supplied to the rotor to realize synchronization with the power system of the generated power. A controller for generating a control signal for outputting the control signal to the power converter;
    By supplying the power of the power system to the auxiliary stationary body of the auxiliary generator, power is supplied to the rotor winding of the auxiliary rotor, and the power converter is supplied from the controller. The plurality of power devices are controlled by the control signal, and voltage and frequency converted based on the power supplied from the power system are supplied to the rotating body to synchronize the generated power with the power system. Realized,
    further,
    A plurality of light emitting elements for stationary bodies;
    A fixed signal for multiplexing a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and for simultaneously flashing the plurality of fixed body light emitting elements. A body transmission circuit;
    An electrically isolated light receiving element for a rotating body, and extracting the downstream signal from the multiplexed downstream signal input from the light receiving element for the rotating body, and each of the plurality of power devices is converted to each of the downstream signals. A plurality of rotating body receivers having a rotating body receiving circuit that outputs to the power converter as a control signal;
    A plurality of stationary light receiving elements;
    A fixed body receiving circuit that separates a plurality of upstream signals obtained by multiplexing the plurality of upstream signals received by the plurality of stationary body light receiving elements, and outputs the upstream signals to the controller.
    Rotating body light emitting element, and a plurality of rotating body light emitting elements that generate the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to emit light from the rotating body light emitting element A power generation system including a transmitter.
  14.  発電装置における光通信方法であって、
     前記発電装置は、
     回転エネルギーにより発生された電力を電力系統に送電するための固定体と、
     前記固定体に取付けられた回転軸を中心に回転するための回転体と、
     インバータの各相の電流値とインバータの電圧値を測定する複数のセンサと、インバータを構成する複数のパワーデバイスを有する電力変換器と
    を備え、
     コントローラにより、前記電力変換器の前記複数のセンサから得られた電流値及び電圧値の情報を基に、すべり周波数相当の電流を前記回転子に供給することで発生電力の電力系統との同期化を実現するための制御信号を生成し、前記制御信号を前記電力変換器に出力し、
     前記電力変換器により、前記コントローラからの前記制御信号により前記複数のパワーデバイスを制御して、電力系統から供給された電力を元に電圧及び周波数を変換した電力を前記回転体に供給して、発生電力の電力系統との同期化を実現し、
     固定体用送信回路により、前記コントローラからの前記複数のパワーデバイスの各々を
    制御する前記制御信号である複数の下り信号を多重化して多重下り信号を生成し、複数の固定体用発光素子を一斉に点滅させ、
     複数の回転体用受信器の各々の回転体用受信回路により、電気的に絶縁された回転体用受光素子から入力された前記多重下り信号から前記下り信号を抽出し、各々の前記下り信号を前記複数のパワーデバイスの各々の前記制御信号として前記電力変換器に出力し、
     固定体用受信回路により、複数の固定体用受光素子がそれぞれ受信した複数の上り信号を多重化した多重上り信号から複数の前記上り信号に分別して前記コントローラに出力し、
     複数の回転体用送信器の各々の回転体用送信回路により、前記複数のセンサの各々から得られたセンシング信号である前記上り信号をそれぞれ生成して回転体用発光素子を発光させる
    ことを特徴とする発電装置における光通信方法。

     
    An optical communication method in a power generation device,
    The power generator is
    A stationary body for transmitting the electric power generated by the rotational energy to the power system;
    A rotating body for rotating around a rotating shaft attached to the fixed body;
    A plurality of sensors for measuring the current value of each phase of the inverter and the voltage value of the inverter, and a power converter having a plurality of power devices constituting the inverter,
    Based on the current value and voltage value information obtained from the plurality of sensors of the power converter by the controller, the current corresponding to the slip frequency is supplied to the rotor to synchronize the generated power with the power system. Generating a control signal for realizing the above, and outputting the control signal to the power converter,
    The power converter controls the plurality of power devices according to the control signal from the controller, and supplies the rotating body with power converted in voltage and frequency based on the power supplied from the power system, Synchronize generated power with the power system,
    The fixed body transmission circuit multiplexes a plurality of downlink signals, which are the control signals for controlling each of the plurality of power devices from the controller, to generate a multiplexed downlink signal, and the plurality of fixed body light emitting elements are simultaneously transmitted. Blink
    The downlink signal is extracted from the multiplexed downlink signal input from the electrically isolated rotor light receiving element by each of the rotor reception circuits of the plurality of rotor receivers. Output to the power converter as the control signal of each of the plurality of power devices,
    The fixed body receiving circuit separates a plurality of uplink signals obtained by multiplexing a plurality of uplink signals respectively received by the plurality of fixed body light receiving elements into a plurality of the uplink signals and outputs the signals to the controller,
    Each of the rotating body transmitter circuits of the plurality of rotating body transmitters generates the upstream signal, which is a sensing signal obtained from each of the plurality of sensors, to cause the rotating body light emitting element to emit light. An optical communication method in the power generator.

PCT/JP2014/050916 2014-01-20 2014-01-20 Power generation device and system, and optical communication method in power generation device WO2015107686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050916 WO2015107686A1 (en) 2014-01-20 2014-01-20 Power generation device and system, and optical communication method in power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050916 WO2015107686A1 (en) 2014-01-20 2014-01-20 Power generation device and system, and optical communication method in power generation device

Publications (1)

Publication Number Publication Date
WO2015107686A1 true WO2015107686A1 (en) 2015-07-23

Family

ID=53542604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050916 WO2015107686A1 (en) 2014-01-20 2014-01-20 Power generation device and system, and optical communication method in power generation device

Country Status (1)

Country Link
WO (1) WO2015107686A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068549A1 (en) * 2017-07-03 2019-01-04 Universite De Picardie Jules Verne WIRELESS OPTICAL COMMUNICATION SYSTEM BETWEEN A ROTATING ELEMENT AND A FIXED ELEMENT.
ES2956290R1 (en) * 2021-04-01 2024-03-12 Envision Energy Co Ltd Optical Coupling Contactless Communication Slip Ring for Wind Turbine
WO2024052145A1 (en) * 2022-09-09 2024-03-14 Signify Holding B.V. A holder for an optical transmitter to provide an optical beam cut

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112900A (en) * 1980-02-11 1981-09-05 Toshiba Corp Exciting device of brushless synchronous machine
JPH07297789A (en) * 1994-04-26 1995-11-10 Fuji Electric Co Ltd Optical transmission system telemeter for rotating machine
JP2002136191A (en) * 2000-10-23 2002-05-10 Kobe Steel Ltd Secondary exciter of generator motor
JP2006014505A (en) * 2004-06-25 2006-01-12 Ntt Data Ex Techno Corp Generator
JP2006217684A (en) * 2005-02-01 2006-08-17 Ntt Data Ex Techno Corp Generator
JP2010074253A (en) * 2008-09-16 2010-04-02 Taiyo Yuden Co Ltd Bidirectional optical communication device
WO2013002306A1 (en) * 2011-06-30 2013-01-03 株式会社Quan Japan Electric power converter
JP2013110801A (en) * 2011-11-18 2013-06-06 Hitachi Ltd Rotary electric machine system and wind power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112900A (en) * 1980-02-11 1981-09-05 Toshiba Corp Exciting device of brushless synchronous machine
JPH07297789A (en) * 1994-04-26 1995-11-10 Fuji Electric Co Ltd Optical transmission system telemeter for rotating machine
JP2002136191A (en) * 2000-10-23 2002-05-10 Kobe Steel Ltd Secondary exciter of generator motor
JP2006014505A (en) * 2004-06-25 2006-01-12 Ntt Data Ex Techno Corp Generator
JP2006217684A (en) * 2005-02-01 2006-08-17 Ntt Data Ex Techno Corp Generator
JP2010074253A (en) * 2008-09-16 2010-04-02 Taiyo Yuden Co Ltd Bidirectional optical communication device
WO2013002306A1 (en) * 2011-06-30 2013-01-03 株式会社Quan Japan Electric power converter
JP2013110801A (en) * 2011-11-18 2013-06-06 Hitachi Ltd Rotary electric machine system and wind power generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068549A1 (en) * 2017-07-03 2019-01-04 Universite De Picardie Jules Verne WIRELESS OPTICAL COMMUNICATION SYSTEM BETWEEN A ROTATING ELEMENT AND A FIXED ELEMENT.
WO2019008263A1 (en) * 2017-07-03 2019-01-10 Mersen France Amiens Sas Wireless optical communication system between a rotating element and a fixed element
CN111066262A (en) * 2017-07-03 2020-04-24 美尔森法国亚眠公司 Wireless optical communication system between rotating element and fixed element
US20200162161A1 (en) * 2017-07-03 2020-05-21 Mersen France Amiens Sas Wireless optical communication system between a rotating element and a fixed element
US10992380B2 (en) 2017-07-03 2021-04-27 Mersen France Amiens Sas Wireless optical communication system between a rotating element and a fixed element
CN111066262B (en) * 2017-07-03 2023-10-13 美尔森法国亚眠公司 Wireless optical communication system between rotary element and fixed element
ES2956290R1 (en) * 2021-04-01 2024-03-12 Envision Energy Co Ltd Optical Coupling Contactless Communication Slip Ring for Wind Turbine
WO2024052145A1 (en) * 2022-09-09 2024-03-14 Signify Holding B.V. A holder for an optical transmitter to provide an optical beam cut

Similar Documents

Publication Publication Date Title
US9484793B2 (en) Electrical rotating machine system or wind turbine system
JP5766645B2 (en) Voltage applying device, rotating device and voltage applying method
US8628042B2 (en) Electrical power supply and control device for equipment of a rotor, and an aircraft fitted with such a device
WO2015107686A1 (en) Power generation device and system, and optical communication method in power generation device
WO2014118901A1 (en) Communication apparatus using radio waves between rotor and stator
AU2013307405B2 (en) Wind farm with DC voltage network
US9422919B2 (en) Redundant pitch system
US9002265B2 (en) Method, system and apparatus for galvanic isolation of gate-controlled devices
JP2022547710A (en) Data link for resonant inductive wireless charging
US9548691B1 (en) Variable speed constant frequency power generator including permanent magnet exciter
RU2650490C2 (en) Electrical power supply system comprising asynchronous machine and engine fitted with such electrical power supply system
JP6370386B2 (en) Power plant equipment
CN108711952A (en) The passive cutting magnetic induction line electricity getting device of contactless electromagnetic type and method
CN101247064B (en) Brushless ac excitation speed-changing same-frequency generator
JP2016149709A (en) Radio communication system and power generation system
GB2526213A (en) Rotating electrical machine system and wind power generation system
US20220337244A1 (en) Optical power for electronic switches
US10914283B2 (en) Electrical recombination
JP2006245179A (en) Optical frequency stabilizer
KR101417509B1 (en) Synchronous generator system haing dual rotor
WO2016002030A1 (en) Power conversion device, power generation system, and wireless communication method in power conversion device
JP2017212827A (en) Radio communication device and power generation system
WO2012127334A1 (en) Device for remote controlling an energy generator plant and generator comprising the device
CN116914997A (en) Friction-free conductive slip ring system
US20190301469A1 (en) Device and method for driving a vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP