WO2015107615A1 - 昇圧システム、及び気体の昇圧方法 - Google Patents

昇圧システム、及び気体の昇圧方法 Download PDF

Info

Publication number
WO2015107615A1
WO2015107615A1 PCT/JP2014/050420 JP2014050420W WO2015107615A1 WO 2015107615 A1 WO2015107615 A1 WO 2015107615A1 JP 2014050420 W JP2014050420 W JP 2014050420W WO 2015107615 A1 WO2015107615 A1 WO 2015107615A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
unit
cooling
target
supercritical fluid
Prior art date
Application number
PCT/JP2014/050420
Other languages
English (en)
French (fr)
Inventor
英樹 永尾
直人 米村
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to CN201480029920.4A priority Critical patent/CN105392556B/zh
Priority to US14/897,273 priority patent/US10570927B2/en
Priority to JP2015557604A priority patent/JP6086998B2/ja
Priority to PCT/JP2014/050420 priority patent/WO2015107615A1/ja
Priority to EP14878877.1A priority patent/EP2990102A4/en
Publication of WO2015107615A1 publication Critical patent/WO2015107615A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • F04D29/5833Cooling at least part of the working fluid in a heat exchanger flow schemes and regulation thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5866Cooling at last part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/80Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/80Quasi-closed internal or closed external carbon dioxide refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a boosting system for boosting a gas and a boosting method.
  • the pressure boosting system is a device that boosts a target gas to a target pressure.
  • problems such as global warming have become apparent due to an increase in carbon dioxide emissions known as greenhouse gases.
  • exhaust gas from thermal power plants contains a large amount of carbon dioxide. After separating and recovering this carbon dioxide, it is pressurized by a booster system and stored in the ground or on the bottom of the sea.
  • a technique for reducing carbon dioxide in the inside is known.
  • carbon dioxide is sequentially compressed by a multi-stage compressor, and the carbon dioxide that has reached a supercritical pressure / temperature state is cooled by an aftercooler for transportation and storage. Obtaining carbon dioxide with optimal target temperature and pressure.
  • Patent Document 1 discloses a pressure increasing system (carbon dioxide liquefaction apparatus) that does not use the above-described aftercooler.
  • a compressor is provided on the front stage side and a pump is provided on the rear stage side to sequentially compress carbon dioxide.
  • the carbon dioxide liquefaction is made efficient by using the cold heat of the carbon dioxide that has been pressurized by the pump to become a supercritical liquid state.
  • gas carbon dioxide
  • the compressor is less than the critical pressure by the compressor.
  • the pressure is increased to only the pressure of the liquid, cooled and liquefied, and introduced into the pump. For this reason, the amount of cold energy required for liquefaction is very large and low, and a large amount of power is required for the external refrigeration cycle. For this reason, there is room for improvement in the overall operation efficiency.
  • a compressor having a drive unit using an expensive variable speed motor that can change the output is used to adjust the target temperature and pressure, or a high pressure is provided at the compressor outlet. It is necessary to provide a pressure regulator with pressure resistance.
  • the present invention provides a boosting system and a gas boosting method capable of improving the operation efficiency and adjusting the target temperature and pressure.
  • a pressurization system is a pressurization system that pressurizes a target gas to a pressure higher than a target pressure higher than the critical pressure, and compresses the target gas to an intermediate pressure that is higher than the critical pressure and lower than the target pressure.
  • a compression section that generates a supercritical fluid
  • a cooling section that generates an intermediate supercritical pressure liquid by cooling the intermediate supercritical fluid generated in the compression section to near the critical temperature, and an intermediate supercritical pressure generated in the cooling section
  • a pump unit that raises the liquid to a pressure equal to or higher than the target pressure; and a cooling temperature adjusting unit that adjusts the temperature of the intermediate supercritical pressure liquid generated by the cooling unit upstream of the pump unit using a cooling medium.
  • the compression at the front stage side is performed by the compression section, and the pressure increase by the pumping of the intermediate supercritical fluid at the rear stage side at a higher pressure is performed by the pump section, so that the pressure exceeds the target pressure.
  • Pressure liquid can be obtained.
  • a compressor is applied to the portion that is at a high pressure on the rear side, a large number of high-pressure gas seals and a compressor casing that supports high pressure are required.
  • the intermediate supercritical fluid that has been brought into a pressure state higher than the critical pressure by the compression section is cooled to an intermediate supercritical pressure liquid, so compared with the case of cooling in a state below the critical pressure. It is possible to liquefy while keeping the amount of heat required for cooling extremely small.
  • the temperature of the intermediate supercritical pressure liquid generated in the cooling unit can be adjusted by the cooling temperature adjusting unit provided upstream of the pump unit.
  • the pressure of the target supercritical fluid finally generated can be adjusted by adjusting the temperature of the intermediate supercritical pressure liquid generated in the cooling unit. Can be adjusted.
  • the pressurization system further includes a heating unit that heats the intermediate supercritical pressure liquid pressurized by the pump unit to near the critical temperature to generate a target supercritical fluid
  • the cooling unit includes a heating unit. It is good also as a structure which has a main cooling part which performs heat exchange between parts and cools an intermediate
  • the compression at the front stage side is performed by the compression section, and the pressure increase by the pumping of the intermediate supercritical fluid at the rear stage side at a higher pressure is performed by the pump section, so that the pressure exceeds the target pressure.
  • Pressure liquid can be obtained.
  • a supercritical fluid having a target pressure and temperature can be obtained by finally heating to a critical temperature or higher by the heating unit.
  • the main cooling unit in the cooling unit cools the intermediate supercritical fluid compressed in the compression unit to generate an intermediate supercritical pressure liquid, and allows the intermediate supercritical pressure liquid to be introduced into the pump unit.
  • the intermediate supercritical pressure liquid is heated more efficiently to the critical temperature or higher to achieve the target pressure and temperature.
  • the supercritical fluid target supercritical fluid
  • the cooling temperature adjusting unit in the above aspect may be configured to extract a part of the intermediate supercritical fluid generated in the compression unit and use it as a cooling medium.
  • the boosting system may be configured such that the cooling temperature adjusting unit in the above-described aspect adjusts the flow rate of the cooling medium supplied to the cooling unit.
  • the temperature and pressure of the intermediate supercritical fluid generated in the cooling section can be adjusted to desired values by adjusting the flow rate of the cooling medium.
  • a pressure detection unit that detects the pressure of the target supercritical fluid
  • a flow rate adjustment unit that adjusts the flow rate of the cooling medium
  • a pressure detection unit And a control unit that adjusts the flow rate of the cooling medium based on the detected value detected by the control unit, the control unit determining whether the detected value belongs to a predetermined pressure range, and a determination result of the determining unit It is good also as a structure which has a flow volume determination part which determines the flow volume adjusted with a flow volume adjustment part based on this.
  • the determination unit determines whether the target supercritical pressure fluid pressure detected by the pressure detection unit belongs to a predetermined pressure range, and the flow rate determination unit determines the determination.
  • the flow rate of the cooling medium supplied to the main cooling unit can be determined based on the above. In other words, when the target pressure of the supercritical pressure fluid deviates from a predetermined desired pressure, the flow rate determination unit adjusts the flow rate of the cooling medium based on the determination result of the determination unit. Thereby, the pressure of the target supercritical pressure fluid can be maintained more stably.
  • a gas pressurization method is a gas pressurization method for boosting a target gas to a pressure equal to or higher than a target pressure higher than the critical pressure, and the target gas is increased to an intermediate pressure equal to or higher than the critical pressure and lower than the target pressure.
  • Compressed to produce an intermediate supercritical fluid by compression cooled to produce an intermediate supercritical fluid by cooling the intermediate supercritical fluid produced in the compression step to near the critical temperature, and produced in the cooling step
  • a cooling temperature adjustment step for adjusting the temperature of the intermediate supercritical pressure liquid, and a pump step for raising the intermediate supercritical pressure liquid generated in the cooling step to a pressure equal to or higher than the target pressure.
  • the intermediate supercritical fluid can be efficiently cooled by the intermediate supercritical pressure liquid, the low temperature liquid, the external cooling medium, or the like. Furthermore, in the cooling temperature adjustment process, the pressure of the target supercritical pressure fluid is adjusted with the pump rotation speed of the pump unit kept constant by adjusting the temperature of the intermediate supercritical pressure liquid generated in the cooling process. can do.
  • the compressor and the pump unit are combined, and the intermediate supercritical fluid is cooled in the cooling unit in a pressure state equal to or higher than the critical pressure, thereby further reducing the power.
  • Efficiency can be improved.
  • the cooling temperature adjustment unit can adjust the pressure of the target supercritical fluid by adjusting the temperature of the intermediate supercritical fluid generated in the cooling unit.
  • FIG. 1 is a system diagram showing an outline of a boost system according to an embodiment of the present invention.
  • FIG. 5 is a Ph diagram showing the state of carbon dioxide in the boosting system according to the embodiment of the present invention. It is a principal part enlarged view which shows the structure of a temperature cooling part regarding the pressure
  • FIG. 6 is a QH diagram showing a change in performance characteristics of the pump unit according to the state of the fluid introduced into the pump unit, with respect to the pressure boosting system according to the embodiment of the present invention. It is a diagram showing the performance characteristic according to the IGV opening degree of a compression part, and the flow volume of the fluid introduce
  • the pressure boosting system 1 is a geared compressor incorporating a pump that boosts the gas of carbon dioxide F as a target gas to a predetermined pressure and temperature so that it can be stored in the ground or on the seabed. It has become.
  • the geared compressor is a multi-shaft multi-stage compressor in which a plurality of impellers are linked via gears.
  • the boosting system 1 includes a compression unit 2 that takes in and compresses carbon dioxide F that is a target gas, and a pump unit 3 that is provided on the rear stage side of the compression unit 2 and boosts the carbon dioxide F.
  • the cooling unit 4 is provided between the compression unit 2 and the pump unit 3.
  • the pressure increasing system 1 includes a heating unit 5 that heats the carbon dioxide F that has been boosted by the pump unit 3, and an extractor pressure reducing unit 6 that is provided between the cooling unit 4 and the pump unit 3 to extract the carbon dioxide F. And a bypass channel 7 for returning the carbon dioxide F from the extractor decompression unit 6 to the compression unit 2.
  • the pressure increasing system 1 includes a pressure detection unit P that detects the pressure of the carbon dioxide F heated by the heating unit 5, and a liquid extraction pressure reducing unit according to the pressure value of the carbon dioxide F detected by the pressure detection unit P. And a cooling temperature adjusting unit 9 that adjusts the flow rate of the carbon dioxide F taken out by 6.
  • the compression unit 2 includes a plurality of impellers 10 provided in multiple stages (six stages in the present embodiment), a plurality of intermediate coolers 20 provided one by one between the impellers 10 and between the cooling units 4. Have Then, the compression unit 2 generates the intermediate supercritical fluid F1 by compressing the captured carbon dioxide F as the introduced gas F0 to a pressure state of an intermediate pressure that is equal to or higher than the critical pressure and repeatedly lower than the target pressure while repeating compression and cooling. To do.
  • the critical pressure of carbon dioxide F is 7.4 [MPa].
  • As the target pressure for example, 15 [MPa] is set as a value higher than the critical pressure.
  • the intermediate pressure of the intermediate supercritical fluid F1 generated in the compression unit 2 for example, 10 [MPa] is set.
  • these pressure values are appropriately determined according to the critical pressure of the target gas, and are not uniquely limited by the present embodiment.
  • paragraph compression impeller 12 which were provided in order toward the downstream from the upstream side into which carbon dioxide F is taken in and distribute
  • the cooling unit 4 is connected to the downstream side of the sixth intermediate cooler 26 by a pipe 8 l, and cools the intermediate supercritical fluid F ⁇ b> 1 generated from the six-stage compression impeller 16 serving as the final stage of the compression unit 2 to near the critical temperature. Then, it is liquefied to generate an intermediate supercritical pressure liquid F2.
  • the cooling unit 4 includes a precooling unit 29 that precools the intermediate supercritical fluid F1 generated in the compression unit 2, and further cools the intermediate supercritical fluid F1 that has been cooled by the precooling unit 29 to generate an intermediate supercritical pressure. And a main cooling unit 28 that generates the liquid F2.
  • the precooling unit 29 is a heat exchanger that precools the intermediate supercritical fluid F ⁇ b> 1 with the external cooling medium W.
  • the main cooling unit 28 introduces the low-temperature liquid F5 from the extractor decompression unit 6 described later, and cools the intermediate supercritical fluid F1 using this as a cooling medium. And in this embodiment, between the main cooling part 28 and the heating part 5, the heating in the heating part 5 is performed by the heat obtained by cooling the intermediate supercritical fluid F1 in the main cooling part 28, One heat exchanger is constituted.
  • the cooling medium of the main cooling unit 28 is the low-temperature liquid F5 from the extraction liquid decompression unit 6.
  • the main cooling unit 28 is precooled by the precooling unit 29. It is possible to reduce the amount of cold heat required in 28.
  • the cooling capacity of the precooling unit 29 varies depending on the temperature and flow rate of the external cooling medium W taken from the outside by the precooling unit 29.
  • the intermediate supercritical fluid F1 generated in the compression unit 2 is cooled only to the sixth intermediate cooler 26 without using the precooling unit 29, and then cooled to the transition region to the liquid.
  • the intermediate supercritical pressure liquid F2 is produced by liquefaction.
  • the intermediate supercritical fluid F1 when cooled to near the critical temperature by the cooling unit 4, it is preferably cooled to a temperature that is ⁇ 20 [° C.] of the critical temperature, and more preferably ⁇ 15 [° C.] of the critical temperature. Most preferably, it is cooled to a temperature that becomes ⁇ 10 [° C.] of the critical temperature.
  • the pump unit 3 is connected to the downstream side of the cooling unit 4 by a pipe line 8m, and introduces the intermediate supercritical pressure liquid F2 generated through the cooling unit 4 to increase the pressure to a target pressure state.
  • a liquid F3 is generated.
  • the pump unit 3 has a two-stage configuration including a single-stage pump impeller 31 and a two-stage pump impeller 32.
  • the heating unit 5 is connected to the downstream side of the pump unit 3 by a pipe line 8n, introduces the target pressure liquid F3 from the pump unit 3, and exceeds the target temperature above the critical temperature (31.1 [° C.]). A critical fluid F4 is generated.
  • the heating unit 5 constitutes a heat exchanger together with the main cooling unit 28 of the cooling unit 4. That is, in the heating unit 5, the target pressure liquid F3 is heated by the condensation heat obtained by cooling the intermediate supercritical fluid F1 in the main cooling unit 28 by exchanging heat with the main cooling unit 28. Do.
  • a pipe line 8 p is provided on the downstream side of the heating unit 5.
  • the target supercritical fluid F4 generated by the heating unit 5 flows through the pipe line 8p.
  • the downstream side of the pipe line 8p is connected to an external facility (not shown), and the target supercritical fluid F4 is taken out.
  • a pressure detector P is provided in the middle of the pipe line 8p.
  • the pressure detection unit P includes a pressure measurement unit that measures the pressure value of the target supercritical fluid F4 that flows through the pipe line 8p, and a unit that transmits the pressure value to the outside as an electrical signal.
  • a known pressure sensor module or the like is employed as the pressure detection unit P.
  • the extraction liquid decompression unit 6 is provided between the main cooling unit 28 and the pump unit 3, and is mainly cooled by the low temperature liquid F5 obtained by extracting a part of the intermediate supercritical pressure liquid F2 from the main cooling unit 28.
  • the intermediate supercritical fluid F1 is cooled in the section 28 and the low-temperature liquid F5 itself is heated.
  • the extraction liquid decompression unit 6 includes a branch line 41 having one end connected to the pipe line 8m so as to branch from the pipe line 8m between the main cooling unit 28 and the pump unit 3.
  • the other end of the branch pipe 41 is connected, and a heat exchanging unit 42 that exchanges heat with the main cooling unit 28 is provided.
  • a flow rate adjusting unit 92 described later is provided in the middle of the branch pipe 41.
  • the flow rate adjusting unit 92 is a valve unit capable of adjusting the opening degree. In the present embodiment, for example, a flow rate adjustment valve is employed as the valve portion.
  • the cooling temperature adjustment unit 9 includes a control unit 91 that is electrically connected to the pressure detection unit P, and a flow rate adjustment unit 92 that is electrically connected to the control unit 91 via a control signal line 93.
  • the flow rate adjusting unit 92 depressurizes the intermediate supercritical pressure liquid F2 extracted by adjusting the opening degree by the Joule-Thompson effect to generate the low temperature liquid F5.
  • the opening degree of the flow rate adjusting unit 92 is adjusted by the control unit 91.
  • the control unit 91 includes a determination unit 91a connected to the pressure detection unit P, and a flow rate determination unit 91b connected to the determination unit 91a.
  • the determination unit 91a is electrically connected to the pressure detection unit P and performs a determination process as to whether or not the detection value detected by the pressure detection unit P belongs to a predetermined pressure range set in advance.
  • the predetermined pressure range is a numerical range including the target pressure of the target supercritical fluid F4 generated by the pressure increasing system 1, and is input to the determination unit 91a via an input unit (not shown). Memorized and retained.
  • the determination unit 91a calculates a difference amount between the stored predetermined pressure range and the detection value of the pressure detection unit P.
  • the difference amount which is the determination result by the determination unit 91a, is transmitted to the subsequent flow rate determination unit 91b.
  • the flow rate determination unit 91b calculates a degree of opening of the flow rate adjustment unit 92 by performing a predetermined calculation based on the difference amount of the pressure value input from the determination unit 91a. More specifically, first, the difference amount of the pressure value and the increase / decrease amount of the flow rate required to eliminate the difference amount are derived from a predetermined relational expression. This relational expression is obtained empirically by the performance requirements of the booster system 1 and the like.
  • the flow rate determination unit 91b calculates the opening degree of the flow rate adjustment unit 92 based on the increase / decrease amount of the flow rate derived by the relational expression.
  • the relationship between the increase / decrease amount of the flow rate and the opening degree of the flow rate adjustment unit 92 is determined by the performance requirements of the valve unit used as the flow rate adjustment unit 92.
  • the control unit 91 determines the opening degree of the flow rate adjustment unit 92.
  • the flow rate determining unit 91 b transmits instruction information related to the increase / decrease of the opening degree to the flow rate adjusting unit 92.
  • the flow rate adjusting unit 92 (flow rate adjusting valve) to which the instruction information from the flow rate determining unit 91b is input adjusts the opening according to the instruction information.
  • the bypass flow path 7 returns the low-temperature liquid F5 from the extraction / decompression unit 6 to the upstream side of the six-stage compression impeller 16 of the compression unit 2. That is, the bypass flow path 7 has one end connected to the heat exchanging section 42 of the extractor decompression section 6 and the other end connected to a pipe line 8j between the six-stage compression impeller 16 and the fifth intermediate cooler 25. ing.
  • the state change of the carbon dioxide F (a method for boosting the carbon dioxide F) will be described.
  • the introduced gas F0 (state S1a) introduced into the single-stage compression impeller 11 is compressed by the single-stage compression impeller 11 and at a higher pressure and a higher temperature than the state S1a, as shown by the solid line arrow in FIG. S1b.
  • the first intermediate cooler 21 is cooled at an equal pressure to be in a state S2a.
  • the intermediate supercritical fluid F1 in the state S7b is introduced into the precooling section 29.
  • the temperature of the intermediate supercritical fluid F1 can be further lowered in the isobaric state to lower the temperature of the intermediate supercritical fluid F1 (cooling step), but the precooling unit 29 is not used in this embodiment.
  • the intermediate supercritical fluid F1 is cooled at the same pressure by the main cooling unit 28 while maintaining the supercritical pressure, and the intermediate supercritical fluid F1 is changed to the intermediate supercritical pressure liquid F2 in a state S8a below the critical temperature. Then, it is introduced into the pump unit 3 (cooling step).
  • the intermediate supercritical pressure liquid F2 in the state S8a is boosted to a target pressure that can be stored in the ground or on the seabed, and the temperature rises to increase the target pressure liquid F3 in the state S8b. (Pump process). Thereafter, the target pressure liquid F3 is heated by the heating unit 5 to raise the temperature at an equal pressure to a critical temperature or higher, and the final state S9 in which the carbon dioxide F can be stored in the ground or on the seabed. To do.
  • a part of the intermediate supercritical pressure liquid F2 that has entered the state S8a in the main cooling unit 28 is extracted by adjusting the opening degree of the flow rate adjusting unit 92 of the cooling temperature adjusting unit 9.
  • the amount of the intermediate supercritical pressure liquid F2 extracted is adjusted according to the opening degree of the flow rate adjusting unit 92.
  • the extracted intermediate supercritical pressure liquid F2 is depressurized to become the low temperature liquid F5 in the state S10.
  • the pressure of the low temperature liquid F5 in this state S10 is a pressure corresponding to the pressure upstream of the six-stage compression impeller 16 and downstream of the fifth intermediate cooler 25.
  • the low-temperature liquid F5 is heated by exchanging heat with the cooling unit 4 and is vaporized while being in an isobaric state, and becomes a gas or a supercritical fluid in the state S6a on the upstream side of the six-stage compression impeller 16.
  • This gas or supercritical fluid is returned to the upstream side of the six-stage compression impeller 16 by the bypass flow path 7 and mixed into the intermediate supercritical fluid F1 flowing through the compression section 2.
  • the compression of the carbon dioxide F at the front stage is performed by the compression unit 2, and the boosting at the rear stage having a higher pressure is performed by the pump unit 3, thereby the target pressure liquid F3.
  • the target supercritical fluid F4 that can be stored in the ground or on the seabed can be obtained by finally heating to a critical temperature or higher by the heating unit 5.
  • the pump unit 3 is employed on the high pressure side. Since the pump unit 3 pressurizes the liquid, it is very advantageous to easily seal the target fluid when the pressure is increased to a high pressure state (about 15 to 60 [MPa]). The cost increase can be avoided and the problems of reliability and operation efficiency can be solved.
  • the cooling in the sixth intermediate cooler 26 is performed in the state S7a in order to avoid compression in the transition region where the characteristics become unstable.
  • the supercritical fluid after pressurization is in a higher temperature than the target supercritical fluid F4. Therefore, in order to obtain the target supercritical fluid F4, an aftercooler or the like that performs cooling after compression is further required.
  • the above-mentioned aftercooler is not necessary, and the power for operating the aftercooler can be reduced.
  • the intermediate supercritical fluid F ⁇ b> 1 that has reached the critical pressure or higher by the compression unit 2 is cooled to be an intermediate supercritical pressure liquid F ⁇ b> 2.
  • the isotherm rises so as to be substantially parallel to the vertical axis (pressure), and the interval between the isotherms is narrow.
  • the isotherm is substantially parallel to the horizontal axis (enthalpy) and the interval between the isotherms is widened. Therefore, in the transition region, when the carbon dioxide F changes its state in an isobaric state, a larger enthalpy change occurs with a smaller temperature change.
  • the amount of heat required for the cooling is kept small compared with the case of cooling in the state of less than the critical pressure.
  • the supercritical fluid F1 can be liquefied.
  • the intermediate supercritical fluid F1 is first cooled to the transition region by water cooling only by the sixth intermediate cooler 26.
  • the intermediate supercritical fluid F1 is in a state near the critical pressure and the critical temperature, as described above, a larger enthalpy change occurs with a small temperature change, and a large amount necessary for liquefaction of the intermediate supercritical fluid F1 with only water cooling. The amount of cold in the part can be obtained.
  • the inside of the pipe line 8m through which the intermediate supercritical pressure liquid F2 flows is in an isobaric state. Therefore, the density and temperature of the intermediate supercritical pressure liquid F2 are in inverse proportion to each other according to the opening degree of the flow rate adjustment unit 92 of the cooling temperature adjustment unit 9. More specifically, when the opening of the flow rate adjusting unit 92 is adjusted by the control unit 91 to increase, the density of the intermediate supercritical pressure liquid F2 increases, while the temperature decreases. On the other hand, when the opening degree of the flow rate adjusting unit 92 is adjusted to be reduced, the density of the intermediate supercritical pressure liquid F2 decreases, but the temperature increases.
  • FIG. 4 is a QH diagram showing the relationship between the pressure difference (lift) between the inlet and outlet of the pump unit 3 and the flow rate.
  • the QH curve of the intermediate supercritical fluid F2 in the state S8x has a lower head as a whole than the QH curve of the intermediate supercritical fluid F2 in the state S8a. That is, as the temperature of the intermediate supercritical pressure liquid F2 increases and the density decreases, the pressure of the target pressure liquid F3 generated by the pump unit 3 decreases and becomes the state S8y in FIG.
  • the target pressure liquid F31 in the state S8y is introduced into the heating unit 5 and heated in the isobaric state to become the target supercritical fluid F4 in the state S9x.
  • the temperature of the intermediate supercritical pressure liquid F2 introduced into the pump unit 3 the pressure of the target supercritical fluid F4 finally obtained without changing the pump rotational speed or the like of the pump unit 3 is obtained.
  • (Target pressure) can be adjusted.
  • the pressure of the finally obtained target supercritical fluid F4 can be adjusted to a constant target pressure. Therefore, a target pressure can be obtained without providing a variable speed motor or the like in the pump unit 3.
  • the pressure of the target supercritical fluid F4 is detected at any time by the pressure detector P provided in the middle of the pipe line 8p.
  • the detected pressure value is input to the control unit 91 of the cooling temperature adjustment unit 9.
  • the control part 91 determines the opening degree of the flow volume adjustment part 92 through a predetermined calculation, and performs the adjustment.
  • the above-described operation is autonomously executed by the cooling temperature adjustment unit 9 and the pressure detection unit P. Therefore, even when the pressure of the target supercritical fluid F4 varies due to disturbance factors or the like, the opening degree of the flow rate adjusting unit 92 is autonomously adjusted according to the variation, and the target supercritical fluid F4 The pressure is corrected towards a predetermined desired target pressure. Thereby, the pressure of the target supercritical fluid F4 can be supplied in a stabilized state.
  • cooling temperature adjusting unit 9 since the cooling temperature adjusting unit 9 is provided, it is not necessary to provide a control valve or the like corresponding to a high pressure load as the flow rate adjusting unit 92. Therefore, cost can be reduced. Furthermore, the pressure loss generated in the flow rate adjustment unit 92 when using a high-pressure valve can be reduced.
  • the cooling medium of the main cooling unit 28 is the low-temperature liquid F5 from the extraction decompression unit 6.
  • the pre-cooling unit 29 performs pre-cooling. By cooling, it becomes possible to reduce the amount of cold heat required in the main cooling unit 28. For example, in this case, the cooling from the state S7b to the state S7c is cooled by the pre-cooling unit 29, and the cooling from the state S7c to the state S8a is performed by the main cooling unit 28.
  • the main cooling unit 28 can be sufficiently cooled. Therefore, since the flow rate of the low-temperature liquid F5 returned to the compression unit 2 via the bypass flow path 7 can be reduced, the power in the compression unit 2 can be reduced, leading to further improvement in operation efficiency.
  • the cooling medium of the main cooling unit 28 is the low-temperature liquid F5
  • the cooling heat of the intermediate supercritical pressure liquid F2 itself introduced into the pump unit 3 is effectively used, that is, from the intermediate supercritical fluid F1 to the intermediate supercritical fluid F1.
  • the intermediate supercritical pressure liquid F2 to be introduced into the pump unit 3 can be reliably generated without separately installing a condenser necessary for generating the critical pressure liquid F2.
  • the intermediate supercritical fluid F1 compressed by the compression unit 2 is cooled to generate an intermediate supercritical fluid F2, and the intermediate supercritical fluid F2 can be introduced into the pump unit 3.
  • the intermediate supercritical fluid F2 can be heated to a critical temperature or higher by exchanging heat with the heating unit 5 for the heat recovered during the cooling of the intermediate supercritical fluid F1.
  • the extracted intermediate supercritical pressure liquid F2 is not discharged to the outside, so that the efficiency of the entire booster system 1 can be further improved.
  • an unillustrated IGV Inlet Guide Vane
  • the IGV is a throttle valve that is provided in the middle of the pipe and can adjust the opening. As the opening degree of the IGV is reduced, the flow rate of the introduced gas F0 introduced into the compression unit 2 can be reduced.
  • the IGV is preferably provided at the introduction portion of the one-stage compression impeller 11.
  • FIG. 5 is a diagram showing performance characteristics according to changes in the IGV opening of the compression unit 2.
  • the flow rate of the fluid introduced into the compression unit 2 decreases as the IGV opening decreases from 100%, which is in the fully open state, to 90% and 80%.
  • the higher the discharge pressure of the compression unit 2 the higher the value of the critical flow rate that reaches the surge limit.
  • two operation states of a discharge pressure H3 and a discharge pressure H4 lower than the discharge pressure H3 are shown.
  • the discharge pressure H3 the surge limit is reached at a flow rate of 80%, but in the case of the discharge pressure H4, the flow rate reaching the surge limit is expanded to 70%.
  • the discharge pressure of the compression unit 2 that is, the intermediate amount generated in the compression unit 2.
  • the pressure of the supercritical fluid F1 can be reduced. That is, the allowable flow rate range (operating range) can be expanded as the discharge pressure is reduced by reducing the opening of the IGV.
  • a geared compressor is used for the compression unit 2
  • the compressor used for the compression unit 2 is not limited to a geared compressor, and other types of compressors are employed. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

対象気体を臨界圧より高い目標圧以上の圧力まで昇圧する昇圧システムであって、臨界圧以上、目標圧未満の中間圧まで対象気体を圧縮して中間超臨界流体を生成する圧縮部と、圧縮部で生成された中間超臨界流体を臨界温度近傍まで冷却して中間超臨界圧液体を生成する冷却部と、冷却部で生成された中間超臨界圧液体を目標圧以上の圧力まで昇圧するポンプ部と、ポンプの上流にて冷却部で生成された中間超臨界圧液体の温度を調整する冷却温度調整部とを備える。

Description

昇圧システム、及び気体の昇圧方法
 本発明は、気体の昇圧を行う昇圧システム、及び昇圧方法に関する。
 昇圧システムは、対象となる気体を目標圧力まで昇圧する装置である。
 ここで近年、温室効果ガスとして知られる二酸化炭素の排出量増大によって地球温暖化等の問題が顕在化してきている。特に火力発電所の排気ガスには大量の二酸化炭素が含まれており、この二酸化炭素を分離・回収した後に、昇圧システムによって昇圧し、陸上の地中や海底の地中へ貯留することで大気中の二酸化炭素を低減する技術が知られている。
 このような昇圧システムにおいては、多段に構成された圧縮機によって順次二酸化炭素の圧縮を行い、超臨界圧力・温度以上の状態となった二酸化炭素をアフタークーラによって冷却することで、輸送・貯留に最適な目標温度・圧力の二酸化炭素を得ている。
 しかし、このような気体状態で昇圧する圧縮機のみのシステムでは目標温度・圧力の二酸化炭素を得るために超高圧大容量のアフタークーラが必要となり、超高圧圧縮域となることで昇圧システム全体の運転効率や信頼性が低下してしまう。
 ここで、例えば特許文献1には、上記アフタークーラを用いていない昇圧システム(二酸化炭素液化装置)が開示されている。この昇圧システムにおいては、前方段側に圧縮機を、後方段側にポンプを設けて順次二酸化炭素の圧縮を行う。また、二酸化炭素が圧縮機からポンプへ導入される際には、ポンプで昇圧されて超臨界圧の液体状態となった二酸化炭素の冷熱を利用して二酸化炭素の液化を効率化している。
特開2010-266154号公報
 しかしながら、上記特許文献1の昇圧システムでは、圧縮機とポンプとを組み合わせたことでアフタークーラが不要となり、動力低減を図ることができているものの、圧縮機で気体(二酸化炭素)を臨界圧力未満の圧力までしか昇圧させずに冷却して液化し、ポンプへ導入している。このため、液化に要する冷熱量が非常に大きくかつ低温となっており、外部冷凍サイクルには大きな動力が必要となっている。このため、全体としての運転効率に改善の余地がある。
 さらに、特許文献1の昇圧システムでは、目標温度・圧力を調節するために、出力を変えることができる高価な可変速モータを用いた駆動部を有する圧縮機を用いたり、又は圧縮機出口に高耐圧仕様の圧力調整弁を設けたりする必要がある。
 本発明は、運転効率を向上するとともに、目標温度・圧力を調節することができる昇圧システム、及び気体の昇圧方法を提供する。
 本発明の一態様に係る昇圧システムは、対象気体を臨界圧より高い目標圧以上の圧力まで昇圧する昇圧システムであって、臨界圧以上、目標圧未満の中間圧まで対象気体を圧縮して中間超臨界流体を生成する圧縮部と、圧縮部で生成された中間超臨界流体を臨界温度近傍まで冷却して中間超臨界圧液体を生成する冷却部と、冷却部で生成された中間超臨界圧液体を目標圧以上の圧力まで昇圧するポンプ部と、ポンプ部の上流にて冷却部で生成された中間超臨界圧液体の温度を冷却媒体によって調整する冷却温度調整部と、を備える。
 このような昇圧システムによれば、前方段側での圧縮を圧縮部で行い、より高圧となっている後方段側での中間超臨界流体の圧送による昇圧をポンプ部で行って目標圧以上の圧力の液体を得ることができる。即ち、後段側で高圧となっている部分にも、仮に圧縮機を適用して加圧した場合には、高圧ガスシールや高圧に対応した圧縮機ケーシングが多数必要となるが、後段側でポンプ部を採用したことで、これら高圧対応が不要となるためコスト低減や信頼性向上が可能となり、加圧後の超臨界流体を冷却するアフタークーラも不要となり、動力低減が可能となる。
 ここで、冷却部では、圧縮部によって臨界圧以上の圧力状態となった中間超臨界流体を冷却して中間超臨界圧液体とするため、臨界圧未満の状態で冷却を行う場合と比較して、冷却に要する熱量を著しく小さく抑えながら液化させることが可能となる。
 加えて、ポンプ部の上流に設けられた冷却温度調整部によって、冷却部で生成される中間超臨界圧液体の温度を調整することができる。これにより、ポンプ部のポンプ回転数が一定の状態であっても、冷却部で生成される中間超臨界圧液体の温度を調整することで、最終的に生成される目標超臨界流体の圧力を調整することができる。
 さらに、本発明の一態様に係る昇圧システムは、ポンプ部で昇圧された中間超臨界圧液体を臨界温度近傍まで加熱して目標超臨界流体を生成する加熱部をさらに備え、冷却部は、加熱部との間で熱交換を行って中間超臨界流体を冷却する主冷却部を有する構成としてもよい。
 このような昇圧システムによれば、前方段側での圧縮を圧縮部で行い、より高圧となっている後方段側での中間超臨界流体の圧送による昇圧をポンプ部で行って目標圧以上の圧力の液体を得ることができる。その後、加熱部によって最終的に臨界温度以上まで加熱することで目標とする圧力、温度の超臨界流体を得ることができる。
 また、冷却部における主冷却部によって、圧縮部で圧縮された中間超臨界流体を冷却して中間超臨界圧液体を生成し、この中間超臨界圧液体をポンプ部へ導入可能とするとともに、中間超臨界流体の冷却の際に回収した熱を利用して加熱部との間で熱交換を行うことで、より効率良く臨界温度以上まで中間超臨界圧液体を加熱して目標とする圧力、温度の超臨界流体(目標超臨界流体)を得ることができる。
 さらに、本発明の一態様に係る昇圧システムでは、上述の態様における冷却温度調整部は、圧縮部で生成された中間超臨界流体の一部を抽液して冷却媒体として用いる構成としてもよい。
 このように構成することで、ポンプ部へ導入される中間超臨界圧液体自身の冷熱を有効に利用することができるため、中間超臨界流体から中間超臨界圧液体を生成するために必要な凝縮器を別途設置することなく、ポンプ部へ導入する中間超臨界圧液体を確実に生成できる。
 また、本発明の一態様に係る昇圧システムは、上述の態様における冷却温度調整部が、冷却部へ供給する冷却媒体の流量を調整する構成としてもよい。
 このような昇圧システムによれば、冷却媒体の流量を調整することで、冷却部で生成される中間超臨界流体の温度、圧力を所望の値に調整することができる。
 さらに、本発明の一態様に係る昇圧システムでは、上述の態様における昇圧システムにおいて、目標超臨界流体の圧力を検出する圧力検出部と、冷却媒体の流量を調整する流量調整部と、圧力検出部が検出した検出値に基づいて冷却媒体の流量を調整する制御部とを備え、制御部は検出値が予め定められた圧力範囲に属するか否かを判定する判定部と、判定部の判定結果に基づいて流量調整部で調整する流量を決定する流量決定部とを有する構成としてもよい。
 このように構成することで、圧力検出部によって検出された目標とする超臨界圧流体の圧力が、予め定められた圧力範囲に属するか否かを判定部によって判定し、流量決定部は該判定に基づいて主冷却部に供給される冷却媒体の流量を決定することができる。
 換言すると、目標とする超臨界圧流体の圧力が予め定められた所望の圧力から逸脱している場合には、流量決定部は判定部の判定結果に基づいて冷却媒体の流量を調整する。これにより、目標超臨界圧流体の圧力をより安定的に維持することができる。
 本発明の一態様に係る気体の昇圧方法は、対象気体を臨界圧より高い目標圧以上の圧力まで昇圧する気体の昇圧方法であって、臨界圧以上、目標圧未満の中間圧まで対象気体を圧縮して中間超臨界流体を生成する圧縮工程と、圧縮工程で生成された中間超臨界流体を臨界温度近傍まで冷却して中間超臨界圧液体を生成する冷却工程と、冷却工程で生成された中間超臨界圧液体の温度を調整する冷却温度調整工程と、冷却工程で生成された中間超臨界圧液体を前記目標圧以上の圧力まで昇圧するポンプ工程とを備え、冷却工程では、ポンプ工程で昇圧された中間超臨界圧液体と、ポンプ工程開始前で中間超臨界圧液体を抽液して臨界圧近傍まで減圧して生成された低温液体と、外部冷却媒体とのうちの少なくとも一つを冷却媒体として利用して中間超臨界流体を冷却する。
 このような気体の昇圧方法によれば、圧縮工程の後にポンプ工程を備えることで、仮に圧縮工程のみで目標圧以上の圧力まで気体の昇圧を行う場合と比較して高圧対応が不要となるためコスト低減が可能となり、昇圧後の超臨界流体を冷却するアフタークーラも不要となるため動力低減が可能となる。また、冷却工程で臨界圧以上の圧力状態となった中間超臨界流体を冷却して中間超臨界圧液体とするため、臨界圧未満の状態で冷却を行う場合と比較して、冷却に要する熱量を著しく小さく抑えながら液化させることが可能となる。さらに冷却工程では、中間超臨界圧液体、低温液体、外部冷却媒体等によって、中間超臨界流体を効率的に冷却できる。さらに、冷却温度調整工程では、冷却工程で生成された中間超臨界圧液体の温度を調整することで、ポンプ部のポンプ回転数を一定に保った状態で、目標超臨界圧流体の圧力を調整することができる。
 本発明の昇圧システム及び気体の昇圧方法によれば、圧縮部とポンプ部とを組み合わせ、冷却部で臨界圧以上の圧力状態で中間超臨界流体を冷却することで、動力をさらに低減して運転効率の向上が可能である。
 さらに、冷却温度調整部が、冷却部で生成される中間超臨界流体の温度を調整することで、目標超臨界流体の圧力を調整することができる。
本発明の実施形態に係る昇圧システムの概略を示す系統図である。 本発明の実施形態に係る昇圧システムに関し、二酸化炭素の状態を示すP-h線図である。 本発明の実施形態に係る昇圧システムに関し、温度冷却部の構成を示す要部拡大図である。 本発明の実施形態に係る昇圧システムに関し、ポンプ部に導入される流体の状態に応じたポンプ部の性能特性の変化を表すQ-H線図である。 本発明の実施形態に係る昇圧システムに関し、圧縮部のIGV開度と、圧縮部に導入される流体の流量に応じた性能特性を表す線図である。
 以下、本発明の実施形態に係る昇圧システム1について説明する。本実施形態では、昇圧システム1は陸上の地中や海底の地中へ貯留可能となるように対象気体として二酸化炭素Fの気体を所定の圧力、温度まで昇圧するポンプを組込んだギアド圧縮機となっている。
 なお、ギアド圧縮機は、複数のインペラを、歯車を介して連動させた多軸多段構成の圧縮機である。
 図1に示すように、昇圧システム1は、対象気体である二酸化炭素Fを取り込んで圧縮する圧縮部2と、圧縮部2の後方段側に設けられて二酸化炭素Fを昇圧するポンプ部3と、圧縮部2とポンプ部3との間に設けられた冷却部4とを備えている。
 さらに、この昇圧システム1は、ポンプ部3で昇圧された二酸化炭素Fを加熱する加熱部5と、冷却部4とポンプ部3との間に設けられて二酸化炭素Fを取り出す抽液減圧部6と、抽液減圧部6からの二酸化炭素Fを圧縮部2に返送するバイパス流路7と、を備えている。
 加えて、この昇圧システム1は、加熱部5によって加熱された二酸化炭素Fの圧力を検出する圧力検出部Pと、圧力検出部Pが検出した二酸化炭素Fの圧力値に応じて抽液減圧部6によって取り出される二酸化炭素Fの流量を調整する冷却温度調整部9と、を備えている。
 圧縮部2は、多段(本実施形態では6段)に設けられた複数のインペラ10と、インペラ10同士の間及び冷却部4との間に一つずつ設けられた複数の中間冷却器20とを有する。そして、圧縮部2は、取り込んだ二酸化炭素Fを導入気体F0として圧縮と冷却を繰り返しながら臨界圧以上であって、目標圧未満の中間圧の圧力状態まで圧縮して中間超臨界流体F1を生成する。二酸化炭素Fの臨界圧は7.4[MPa]である。目標圧としては、当該臨界圧よりも高い値として、例えば15[MPa]が設定される。また、圧縮部2で生成される中間超臨界流体F1の中間圧としては、例えば10[MPa]が設定される。しかしながら、これらの圧力値は、対象気体の臨界圧に応じて適宜決定されるものであって、本実施形態によって一義的には限定されない。
 ここで、圧縮部2においては、二酸化炭素Fが取り込まれて流通する上流側から下流側に向かって順に設けられた一段圧縮インペラ11と、第一中間冷却器21と、二段圧縮インペラ12と、第二中間冷却器22と、三段圧縮インペラ13と、第三中間冷却器23と、四段圧縮インペラ14と、第四中間冷却器24と、五段圧縮インペラ15と、第五中間冷却器25と、六段圧縮インペラ16と、第六中間冷却器26とによって構成され、これらが管路8a、8b、8c、8d、8e、8f、8g、8h、8i、8j、8k、8l、8m、8nによって互いに接続されている。
 冷却部4は、第六中間冷却器26の下流側に管路8lによって接続され、圧縮部2の最終段となる六段圧縮インペラ16から生成された中間超臨界流体F1を臨界温度近傍まで冷却して液化し、中間超臨界圧液体F2を生成する。
 この冷却部4は、圧縮部2で生成された中間超臨界流体F1を予冷却する予冷却部29と、予冷却部29で冷却された中間超臨界流体F1をさらに冷却して中間超臨界圧液体F2を生成する主冷却部28とを有している。
 予冷却部29は、外部冷却媒体Wによって中間超臨界流体F1を予冷却する熱交換器である。
 主冷却部28は、後述する抽液減圧部6からの低温液体F5を導入し、これを冷却媒体として中間超臨界流体F1の冷却を行う。そして、本実施形態で主冷却部28と加熱部5との間については、主冷却部28で中間超臨界流体F1を冷却することで得られる熱により加熱部5での加熱を行っており、一つの熱交換器を構成している。
 主冷却部28の冷却媒体は抽液減圧部6からの低温液体F5であるが、外部より適当な冷却媒体Wが得られる場合には、予冷却部29によって予冷却することで、主冷却部28で必要となる冷熱量の低減が可能となる。予冷却部29の冷却能力は、予冷却部29で外部から取り込む外部冷却媒体Wの温度及び流量等によって異なる。本実施形態では予冷却部29を利用することなく第六中間冷却器26のみで圧縮部2で生成された中間超臨界流体F1が液体への遷移領域まで冷却され、その後、主冷却部28によって液化されて中間超臨界圧液体F2が生成されている。
 また、冷却部4で中間超臨界流体F1を臨界温度近傍まで冷却する際には、好ましくは臨界温度の±20[℃]となる温度まで冷却し、より好ましくは臨界温度の±15[℃]となる温度まで冷却し、臨界温度の±10[℃]となる温度まで冷却することが最も好ましい。
 ポンプ部3は、冷却部4の下流側に管路8mによって接続され、冷却部4を通過して生成された中間超臨界圧液体F2を導入して目標圧の圧力状態まで昇圧し、目標圧液体F3を生成する。本実施形態では、このポンプ部3は、一段ポンプインペラ31及び二段ポンプインペラ32からなる二段構成となっている。
 加熱部5は、ポンプ部3の下流側に管路8nによって接続されて設けられ、ポンプ部3からの目標圧液体F3を導入して、臨界温度(31.1[℃])以上の目標超臨界流体F4を生成する。上記のとおり、加熱部5は、冷却部4の主冷却部28とともに熱交換器を構成している。
 即ち、この加熱部5では、主冷却部28との間での熱交換を行うことにより、主冷却部28で中間超臨界流体F1を冷却して得た凝縮熱によって目標圧液体F3の加熱を行う。
 さらに、加熱部5の下流側には、管路8pが設けられている。管路8pには、加熱部5にて生成された目標超臨界流体F4が流通する。管路8pの下流側は不図示の外部設備に接続されて目標超臨界流体F4が取り出される。
 管路8pの中途位置には、圧力検出部Pが設けられている。圧力検出部Pは、管路8pを流通する目標超臨界流体F4の圧力値を計測する圧力計測手段と、その圧力値を外部に電気信号として送信する手段とを有している。圧力検出部Pとしては、例えば公知の圧力センサーモジュール等が採用される。
 抽液減圧部6は、主冷却部28とポンプ部3との間に設けられ、主冷却部28からの中間超臨界圧液体F2の一部を抽液して得た低温液体F5によって主冷却部28での中間超臨界流体F1の冷却を行うとともに低温液体F5自身が加熱される。
 具体的にはこの抽液減圧部6は、主冷却部28とポンプ部3との間の管路8mから分岐するように、一端がこの管路8mに接続された分岐管路41と、この分岐管路41の他端が接続されて主冷却部28との間で熱交換を行う熱交換部42と、を有している。さらに、分岐管路41の中途位置には、後述の流量調整部92が設けられている。流量調整部92は、その開度を調節することが可能な弁部である。本実施形態では、弁部として例えば流量調節弁が採用される。
 冷却温度調整部9は、圧力検出部Pに電気的に接続された制御部91と、制御信号線93によって制御部91と電気的に接続された流量調整部92と、を有している。
 流量調整部92は、開度を調節することによって抽液した中間超臨界圧液体F2に対してジュールトムソン効果による減圧を行い、低温液体F5を生成する。ここで、上述の流量調整部92の開度は、制御部91によって調節される。
 制御部91は、例えば図3に示すように、圧力検出部Pに接続される判定部91aと、判定部91aに接続される流量決定部91bと、を有している。
 判定部91aは、圧力検出部Pに電気的に接続されるとともに、圧力検出部Pが検出した検出値が予め設定された所定の圧力範囲に属するか否かの判定処理を行う。この所定の圧力範囲は、昇圧システム1によって生成される目標超臨界流体F4の目標圧を含む数値範囲であって、不図示の入力手段を介して判定部91aに入力され、判定部91にて記憶、保持される。
 判定部91aは、記憶された所定の圧力範囲と、圧力検出部Pの検出値との差分量を算出する。判定部91aによる判定結果である差分量は、後続の流量決定部91bに伝達される。
 流量決定部91bは、判定部91aから入力された圧力値の差分量に基づいて所定の演算を行い、流量調整部92の開度を算出する。より詳細には、まず、圧力値の差分量と、その差分量を解消するために必要となる流量の増減量を所定の関係式から導出する。なお、この関係式は昇圧システム1の性能要件等によって経験的に求められるものである。
 続いて、流量決定部91bは、該関係式によって導出された流量の増減量に基づいて、流量調整部92の開度を算出する。なお、流量の増減量と、流量調整部92の開度との関係は、流量調整部92として用いられる弁部の性能要件等によって決定されるものである。
 このようにして、制御部91は流量調整部92の開度を決定する。その後、流量決定部91bは流量調整部92に開度の増減に係る指示情報を伝達する。流量決定部91bからの指示情報が入力された流量調整部92(流量調節弁)はその指示情報に従って開度を調整する。
 バイパス流路7は、抽液減圧部6からの低温液体F5を圧縮部2の六段圧縮インペラ16の上流側に返送する。即ち、このバイパス流路7は、一端が抽液減圧部6の熱交換部42に接続され、他端が六段圧縮インペラ16と第五中間冷却器25との間の管路8jに接続されている。
 次に、図2のP-h線図を参照して、二酸化炭素Fの状態変化の様子(二酸化炭素Fの昇圧方法)について説明する。
 圧縮部2において、一段圧縮インペラ11に導入された導入気体F0(状態S1a)は、図2の実線の矢印に示すように、一段圧縮インペラ11によって圧縮されて状態S1aよりも高圧で高温の状態S1bとなる。その後、第一中間冷却器21によって等圧で冷却されて状態S2aとなる。そしてこのように圧縮と冷却を繰り返して、状態S2b→状態S3a→状態S3b→状態S4a→状態S4b→状態S5a→状態S5b→状態S6a→状態S6b→状態S7a→状態S7bと状態変化し、臨界圧以上の圧力の中間超臨界流体F1の状態となる(圧縮工程)。
 その後、状態S7bとなった中間超臨界流体F1は予冷却部29へ導入される。予冷却部29では等圧状態でさらに冷却されて中間超臨界流体F1の温度を下げることができる(冷却工程)が、本実施例では予冷却部29は利用していない。
 中間超臨界流体F1は、主冷却部28によって超臨界圧のまま等圧で冷却されて、臨界温度以下の状態S8aとなって中間超臨界流体F1は中間超臨界圧液体F2へと相変化して、ポンプ部3へ導入される(冷却工程)。
 ポンプ部3では、状態S8aの中間超臨界圧液体F2が、陸上の地中や海底の地中へ貯留可能となる目標圧まで昇圧されるとともに、温度が上昇して状態S8bの目標圧液体F3となる(ポンプ工程)。その後、この目標圧液体F3を加熱部5によって加熱することで、臨界温度以上まで等圧で昇温し、二酸化炭素Fを陸上の地中や海底の地中へ貯留可能となる最終状態S9とする。
 ここで、主冷却部28で状態S8aとなった中間超臨界圧液体F2の一部が冷却温度調整部9の流量調整部92の開度を調整することで抽液される。このとき、中間超臨界圧液体F2の抽液される量は、流量調整部92の開度に応じて調整される。抽液された中間超臨界圧液体F2は減圧され、状態S10の低温液体F5となる。この状態S10における低温液体F5の圧力は、六段圧縮インペラ16の上流側であって第五中間冷却器25の下流側の圧力に相当する圧力とされている。
 また、この低温液体F5は冷却部4との間で熱交換することで加熱されて等圧状態のまま気化し、六段圧縮インペラ16の上流側における状態S6aの気体又は超臨界流体となる。この気体または超臨界流体がバイパス流路7によって六段圧縮インペラ16の上流側へ返送され、圧縮部2を流通する中間超臨界流体F1に混入される。
 このような昇圧システム1によると、まず前方段での二酸化炭素Fの圧縮を圧縮部2で行い、より高圧となっている後方段での昇圧をポンプ部3で行うことで、目標圧液体F3を生成し、その後、加熱部5によって最終的に臨界温度以上まで加熱することで陸上の地中や海底の地中へ貯留可能となる目標超臨界流体F4を得ることができる。
 ここで、仮に高圧となっている後段側の部分にも圧縮部2と同様のインペラを適用した場合には、高圧ガスシールや高圧に対応した圧縮機ケーシングが多数必要となってしまい、信頼性が低下するとともにコストアップしてしまう問題がある。また、このような高圧状態に対応するためにはインペラの軸径を大きくしたり、インペラの回転数を低減したりするなどの対応が必要となり、信頼性と運転効率の低下の問題がある。
 この点、本実施形態では高圧側でポンプ部3を採用している。ポンプ部3では液体を昇圧するため、高圧状態(約15~60[MPa])まで昇圧するに際して、対象となる流体をシールすることが容易であることから非常に有利であり、上述のようなコストアップを回避でき、また信頼性と運転効率の問題も解消できる。
 さらに、仮に高圧となる後段側にも圧縮部2と同様のインペラを適用した場合には、特性が不安定となる遷移域での圧縮をさけるべく第六中間冷却器26での冷却は状態S7a止まりとなり、昇圧後の超臨界流体は目標超臨界流体F4に比べて温度が高い状態となる。従って目標超臨界流体F4を得るためには、圧縮後の冷却を行うアフタークーラ等がさらに必要となる。
 この点についても、本実施形態では上記アフタークーラ等は不要であり、このアフタークーラを作動するための動力を低減できる。
 また冷却部4では、圧縮部2によって臨界圧以上の状態となった中間超臨界流体F1を冷却して中間超臨界圧液体F2とする。
 ここで、図2に示すP-h線図によると、臨界圧力未満では等温線が縦軸(圧力)に略平行となるように立ち上がるとともに、等温線同士の間隔が狭くなっている。一方で、臨界圧以上であって臨界温度付近の遷移領域では、等温線は横軸(エンタルピー)に略平行となるとともに等温線同士の間隔が広くなっている。従って遷移領域では、二酸化炭素Fが等圧状態で状態変化する際に、より小さな温度変化でより大きなエンタルピー変化が生じることとなる。
 よって、本実施形態のように臨界圧以上の状態で中間超臨界流体F1を冷却する場合には、臨界圧未満の状態で冷却を行う場合と比較して、冷却に要する熱量を小さく抑えながら中間超臨界流体F1の液化が可能となる。
 また、中間超臨界流体F1は、まず第六中間冷却器26のみによって水冷で遷移領域まで冷却される。ここで、中間超臨界流体F1は臨界圧、臨界温度付近の状態にあるため、上述したように小さな温度変化でより大きなエンタルピー変化が生じ、水冷のみで中間超臨界流体F1の液化に必要な大部分の冷熱量を得ることができる。
 さらに、中間超臨界圧液体F2が流れる管路8mの内部は等圧状態である。したがって、冷却温度調整部9の流量調整部92の開度に応じて、中間超臨界圧液体F2の密度と温度とは互いに反比例の関係にある。より詳細には、制御部91によって流量調整部92の開度が大きくなる方向に調節された場合、中間超臨界圧液体F2の密度が上がるが、一方で温度は下がる。反対に、流量調整部92の開度が小さくなる方向に調節された場合、中間超臨界圧液体F2の密度は下がるが、一方で温度は上がる。
 したがって、例えば流量調整部92の開度が小さくなる方向に調節された場合、ポンプ部3に導入される状態S8aにおける中間超臨界圧液体F2の温度は上昇し、密度は低下し、状態S8xとなる。
 ここで、図4はポンプ部3の入口-出口の圧力差(揚程)と、流量の関係を表すQ-H線図である。図4に示すように、状態S8xにおける中間超臨界圧液体F2のQ-H曲線は、状態S8aにおける中間超臨界圧液体F2のQ-H曲線に比べて全体に揚程が小さくなる。すなわち、中間超臨界圧液体F2の温度が上昇し、密度が低下するにつれて、ポンプ部3で生成される目標圧液体F3の圧力は低下して、図2の状態S8yとなる。
 状態S8yの目標圧液体F31は、加熱部5に導入されて等圧状態で加熱されて、状態S9xの目標超臨界流体F4となる。
 このように、ポンプ部3に導入される中間超臨界圧液体F2の温度を調節することで、ポンプ部3のポンプ回転数等を変えることなく、最終的に得られる目標超臨界流体F4の圧力(目標圧)を調節することができる。
 さらに、図4に示すように、流量が小さい条件においても、ポンプ部3に導入される中間超臨界圧液体F2の温度を調節することで、ポンプ部3のポンプ回転数等を変えることなく、最終的に得られる目標超臨界流体F4の圧力を一定の目標圧に調節することができる。
 したがって、ポンプ部3に例えば可変速モータ等を設けることなく、目標の圧力を得ることができる。
 さらに、本実施形態では、目標超臨界流体F4の圧力は、管路8pの中途位置に設けられた圧力検出部Pで随時検出される。検出された圧力値は冷却温度調整部9の制御部91に入力される。制御部91は、所定の演算を経て流量調整部92の開度を決定し、調整を行う。上述の動作は冷却温度調整部9と圧力検出部Pとによって自律的に実行されるものである。したがって、外乱要因等によって目標超臨界流体F4の圧力に変動が生じた場合であっても、その変動に応じて流量調整部92の開度が自律的に調節されて、目標超臨界流体F4の圧力は予め定められた所望の目標圧に向けて是正される。これにより、目標超臨界流体F4の圧力を安定化した状態で供給することができる。
 また、冷却温度調整部9が設けられていることから、流量調整部92として例えば高圧負荷に対応する制御弁等を設ける必要がなくなる。したがって、コストを低減することができる。さらに、高圧弁を用いた場合に流量調整部92において生じる圧力損失を低減することができる。
 なお、本実施形態では、主冷却部28の冷却媒体は抽液減圧部6からの低温液体F5であるが、外部より適当な外部冷却媒体Wが得られる場合には、予冷却部29によって予冷却することで、主冷却部28で必要となる冷熱量の低減が可能となる。例えばこの場合、状態S7bから状態S7cまでの冷却を予冷却部29で冷却し、状態S7cから状態S8aまでの冷却を主冷却部28で行うこととなる。
 従って、このような予冷却部29によって低温液体F5の流量を低減したとしても主冷却部28での冷却を十分に行うことができる。よって、バイパス流路7を介して圧縮部2へ返送される低温液体F5の流量を低減できるため、圧縮部2での動力低減も可能となり、さらなる運転効率の向上につながる。
 さらに、この主冷却部28の冷却媒体は低温液体F5であるため、ポンプ部3へ導入される中間超臨界圧液体F2自身の冷熱を有効に利用して、即ち中間超臨界流体F1から中間超臨界圧液体F2を生成するために必要な凝縮器を別途設置することなく、ポンプ部3へ導入する中間超臨界圧液体F2を確実に生成可能である。
 また、主冷却部28では、圧縮部2で圧縮された中間超臨界流体F1を冷却して中間超臨界圧液体F2を生成し、ポンプ部3へ中間超臨界圧液体F2を導入可能とするとともに、中間超臨界流体F1の冷却の際に回収した熱について、加熱部5との間で熱交換を行うことで臨界温度以上まで中間超臨界圧液体F2を加熱することができる。
 また、冷却部4での中間超臨界流体F1の冷却、加熱部5での目標圧液体F3の加熱では、臨界圧以上の高圧状態で熱交換が行われるため、熱交換部分をコンパクト化可能であるため、システム全体としてコンパクト化を図ることができる。
 そして、バイパス流路7を設けたことで、抽液された中間超臨界圧液体F2を外部へ排出することがなくなるため、昇圧システム1全体の効率をより向上させることができる。
 さらに、図4に示すように、ポンプ部3に導入される流体の流量が少ないほど、ポンプ部3の揚程は向上する傾向にある。したがって、小流量下ではポンプ部3における揚程量が向上する分だけ、圧縮部2に要求される圧縮量が下がる。これにより、圧縮部2に導入される導入気体F0の流量を下げることで、圧縮部2で生成される中間超臨界流体F1の圧力を下げることができる。
 ここで、圧縮部2に導入される導入気体F0の流量を調節する手段としては、例えば不図示のIGV(Inlet Guide Vane)等が採用される。IGVは、管路の中途に設けられ、開度を調整することが可能な絞り弁である。IGVの開度を小さくするにしたがって、圧縮部2に導入される導入気体F0の流量を小さくすることができる。なお、IGVは一段圧縮インペラ11の導入部に設けられることが好ましい。
 図5は、圧縮部2のIGV開度の変化に応じた性能特性を示す線図である。図5から読み取れるように、IGV開度が全開状態である100%から90%、80%と下がるにしたがって、圧縮部2に導入される流体の流量が下がる。ここで、圧縮部2の吐出圧力が高いほど、サージ限界に達する限界流量の値が高くなる。図5の例では、吐出圧力H3と、吐出圧力H3よりも低い吐出圧力H4の2つの運転状態を示している。吐出圧力H3の場合は、流量80%でサージ限界に達するが、吐出圧力H4の場合は、サージ限界に達する流量が70%にまで拡大される。したがって、小流量下ではポンプ部3における揚程量が向上する分だけ、圧縮部2に要求される圧縮量を下げることができるので、圧縮部2の吐出圧力、すなわち圧縮部2で生成される中間超臨界流体F1の圧力を下げることができる。
 すなわち、IGVの開度を小さくすることで吐出圧力を低くするにしたがって、許容される流量範囲(運転範囲)を拡大することができる。
 これにより、昇圧システム1で得られる目標超臨界流体F4の圧力範囲を広くすることができる。
 なお、上述の実施形態では、圧縮部2にギアド圧縮機を用いた例を説明したが、圧縮部2に用いられる圧縮機はギアド圧縮機に限定されず、他の方式の圧縮機を採用してもよい。
1…昇圧システム 2…圧縮部 3…ポンプ部 4…冷却部 5…加熱部 6…抽液減圧部 7…バイパス流路 8a、8b、8c、8d、8e、8f、8g、8h、8i、8j、8k、8l、8m、8n、8p…管路 9…冷却温度調整部 11…一段圧縮インペラ 12…二段圧縮インペラ 13…三段圧縮インペラ 14…四段圧縮インペラ 15…五段圧縮インペラ 16…六段圧縮インペラ 20…中間冷却器 21…第一中間冷却器 22…第二中間冷却器 23…第三中間冷却器 24…第四中間冷却器 25…第五中間冷却器 26…第六中間冷却器 F…二酸化炭素(対象気体) F0…導入気体 F1…中間超臨界流体 F2…中間超臨界圧液体 F3…目標圧液体 F4…目標超臨界流体 F5…低温液体 W…外部冷却媒体 28…主冷却部 29…予冷却部 31…一段ポンプインペラ 32…二段ポンプインペラ 41…分岐管路 42…熱交換部 91…制御部 91a…判定部 91b…流量決定部 92…流量調整部 93…制御信号線

Claims (7)

  1.  対象気体を臨界圧より高い目標圧以上の圧力まで昇圧する昇圧システムであって、
     臨界圧以上、目標圧未満の中間圧まで前記対象気体を圧縮して中間超臨界流体を生成する圧縮部と、
     前記圧縮部で生成された前記中間超臨界流体を臨界温度近傍まで冷却して中間超臨界圧液体を生成する冷却部と、
     前記冷却部で生成された前記中間超臨界圧液体を前記目標圧以上の圧力まで昇圧するポンプ部と、
     前記ポンプ部の上流にて前記冷却部で生成された前記中間超臨界圧液体の温度を冷却媒体によって調整する冷却温度調整部と、を備える昇圧システム。
  2.  前記ポンプ部で昇圧された前記中間超臨界圧液体を臨界温度近傍まで加熱して目標超臨界流体を生成する加熱部をさらに備え、
     前記冷却部は、前記加熱部との間で熱交換を行って前記中間超臨界流体を冷却する主冷却部を有する請求項1に記載の昇圧システム。
  3.  前記冷却温度調整部は、前記圧縮部で生成された前記中間超臨界流体の一部を抽液して前記冷却媒体として用いる請求項1又は2に記載の昇圧システム。
  4.  前記冷却温度調整部は、前記冷却部へ供給する前記冷却媒体の流量を調整する請求項1から3のいずれか一項に記載の昇圧システム。
  5.  前記目標超臨界流体の圧力を検出する圧力検出部を備え、
     前記冷却温度調整部は、前記冷却部へ供給する前記冷却媒体の流量を調整する流量調整部と、
     前記圧力検出部が検出した検出値に基づいて前記流量調整部を制御する制御部とを有し、
     前記制御部は、前記検出値が予め定められた圧力範囲に属するか否かを判定する判定部と、
     前記判定部の判定結果に基づいて、前記流量調整部で調整する流量を決定する流量決定部と、
    を有する請求項2に記載の昇圧システム。
  6.  前記冷却温度調整部は、前記圧縮部で生成された前記中間超臨界流体の一部を抽液して前記冷却媒体として用いる請求項5に記載の昇圧システム。
  7.  対象気体を臨界圧より高い目標圧以上の圧力まで昇圧する気体の昇圧方法であって、
     臨界圧以上、目標圧未満の中間圧まで前記対象気体を圧縮して中間超臨界流体を生成する圧縮工程と、
     前記圧縮工程で生成された前記中間超臨界流体を臨界温度近傍まで冷却して中間超臨界圧液体を生成する冷却工程と、
     前記冷却工程で生成された前記中間超臨界圧液体の温度を調整する冷却温度調整工程と、
     前記冷却工程で生成された前記中間超臨界圧液体を前記目標圧以上の圧力まで昇圧するポンプ工程とを備え、
     前記冷却工程では、前記ポンプ工程で昇圧された前記中間超臨界圧液体と、前記ポンプ工程の開始前で前記中間超臨界圧液体を抽液して臨界圧近傍まで減圧して生成された低温液体と、外部冷却媒体とのうちの少なくとも一つを冷却媒体として利用して中間超臨界流体を冷却する気体の昇圧方法。
PCT/JP2014/050420 2014-01-14 2014-01-14 昇圧システム、及び気体の昇圧方法 WO2015107615A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480029920.4A CN105392556B (zh) 2014-01-14 2014-01-14 升压系统及气体的升压方法
US14/897,273 US10570927B2 (en) 2014-01-14 2014-01-14 Boosting system, and boosting method of gas
JP2015557604A JP6086998B2 (ja) 2014-01-14 2014-01-14 昇圧システム、及び気体の昇圧方法
PCT/JP2014/050420 WO2015107615A1 (ja) 2014-01-14 2014-01-14 昇圧システム、及び気体の昇圧方法
EP14878877.1A EP2990102A4 (en) 2014-01-14 2014-01-14 PRESSURE INCREASE SYSTEM, AND METHOD FOR INCREASING GAS BODY PRESSURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050420 WO2015107615A1 (ja) 2014-01-14 2014-01-14 昇圧システム、及び気体の昇圧方法

Publications (1)

Publication Number Publication Date
WO2015107615A1 true WO2015107615A1 (ja) 2015-07-23

Family

ID=53542540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050420 WO2015107615A1 (ja) 2014-01-14 2014-01-14 昇圧システム、及び気体の昇圧方法

Country Status (5)

Country Link
US (1) US10570927B2 (ja)
EP (1) EP2990102A4 (ja)
JP (1) JP6086998B2 (ja)
CN (1) CN105392556B (ja)
WO (1) WO2015107615A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170648B1 (ja) * 2016-09-14 2017-07-26 三菱重工コンプレッサ株式会社 昇圧システム、及び気体の昇圧方法
WO2017138486A1 (ja) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 昇圧システム
JPWO2017138036A1 (ja) * 2016-02-09 2018-09-20 三菱重工コンプレッサ株式会社 昇圧システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619462B2 (en) * 2016-06-18 2020-04-14 Encline Artificial Lift Technologies LLC Compressor for gas lift operations, and method for injecting a compressible gas mixture
JP6741565B2 (ja) * 2016-12-08 2020-08-19 川崎重工業株式会社 原料ガス液化装置及びその制御方法
US20190162469A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
US20190162468A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
CN108999728A (zh) * 2018-01-02 2018-12-14 上海齐耀动力技术有限公司 基于超临界压缩高压天然气发动机燃料的供给系统及方法
FR3099151B1 (fr) * 2019-07-24 2021-06-18 Air Liquide Appareil de compression et de separation et procede de compression

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222194A (ja) * 1987-06-02 1989-09-05 Union Carbide Corp 液体寒剤の製造方法
JP2010266154A (ja) 2009-05-15 2010-11-25 Ebara Corp 二酸化炭素液化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100936B2 (ja) 1985-03-29 1994-12-12 三菱電機株式会社 圧送給水装置
JP3303101B2 (ja) 1992-03-30 2002-07-15 日本酸素株式会社 超臨界ガスの液化方法及び装置
GB2416389B (en) 2004-07-16 2007-01-10 Statoil Asa LCD liquefaction process
JP4932886B2 (ja) 2009-09-30 2012-05-16 三菱重工コンプレッサ株式会社 ガス処理装置
IT1398142B1 (it) 2010-02-17 2013-02-14 Nuovo Pignone Spa Sistema singolo con compressore e pompa integrati e metodo.
EP2476476B1 (en) 2011-01-14 2018-05-30 General Electric Technology GmbH Compression of a carbon dioxide containing fluid
FR2972792B1 (fr) 2011-03-16 2017-12-01 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de liquefaction de co2
EP2896453B1 (en) 2012-09-13 2018-11-07 Mitsubishi Heavy Industries Compressor Corporation Compressing system, and gas compressing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222194A (ja) * 1987-06-02 1989-09-05 Union Carbide Corp 液体寒剤の製造方法
JP2010266154A (ja) 2009-05-15 2010-11-25 Ebara Corp 二酸化炭素液化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI FUNAKOSHI: "Cho Rinkai CO2 Injection Pump", INDUSTRIAL MACHINERY, 20 August 2013 (2013-08-20), pages 21 - 22 *
See also references of EP2990102A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138486A1 (ja) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 昇圧システム
US10935031B2 (en) 2016-02-08 2021-03-02 Mitsubishi Heavy Industries Compressor Corporation Booster system
JPWO2017138036A1 (ja) * 2016-02-09 2018-09-20 三菱重工コンプレッサ株式会社 昇圧システム
US20180363976A1 (en) * 2016-02-09 2018-12-20 Mitsubishi Heavy Industries Compressor Corporation Booster system
US11022369B2 (en) 2016-02-09 2021-06-01 Mitsubishi Heavy Industries Compressor Corporation Booster system
JP6170648B1 (ja) * 2016-09-14 2017-07-26 三菱重工コンプレッサ株式会社 昇圧システム、及び気体の昇圧方法
WO2018051428A1 (ja) * 2016-09-14 2018-03-22 三菱重工コンプレッサ株式会社 昇圧システム、及び気体の昇圧方法
US10190600B2 (en) 2016-09-14 2019-01-29 Mitsubishi Heavy Industries Compressor Corporation Pressure increasing system and method of increasing gas pressure

Also Published As

Publication number Publication date
US10570927B2 (en) 2020-02-25
JPWO2015107615A1 (ja) 2017-03-23
EP2990102A1 (en) 2016-03-02
EP2990102A4 (en) 2016-08-31
JP6086998B2 (ja) 2017-03-01
US20160123351A1 (en) 2016-05-05
CN105392556A (zh) 2016-03-09
CN105392556B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6086998B2 (ja) 昇圧システム、及び気体の昇圧方法
JP5826265B2 (ja) 昇圧システム、及び気体の昇圧方法
US20210164729A1 (en) Apparatus and Process for Liquefying Gases
JP6537639B2 (ja) 昇圧システム
KR101669729B1 (ko) Lng냉열이용 팽창기체 흡입식 공기액화장치
JP6170648B1 (ja) 昇圧システム、及び気体の昇圧方法
JP6570457B2 (ja) 昇圧システム
US20190145703A1 (en) Mehod for gradual sealing of a gas
US20220042741A1 (en) Gas Compression Process
RU2780120C1 (ru) Криогенная система ожижения водорода, получаемого преимущественно на АЭС
WO2016177879A1 (en) Method and apparatus for compressor system pressurization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029920.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015557604

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014878877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14897273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE