WO2015107287A1 - Method for manufacturing an electrical conductor made of copper and carbon nanotubes - Google Patents
Method for manufacturing an electrical conductor made of copper and carbon nanotubes Download PDFInfo
- Publication number
- WO2015107287A1 WO2015107287A1 PCT/FR2015/050016 FR2015050016W WO2015107287A1 WO 2015107287 A1 WO2015107287 A1 WO 2015107287A1 FR 2015050016 W FR2015050016 W FR 2015050016W WO 2015107287 A1 WO2015107287 A1 WO 2015107287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- carbon nanotubes
- manufacturing
- solution
- powder
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/002—Carbon nanotubes
Definitions
- the present invention relates to a method of manufacturing an electrical conductor of copper and carbon nanotubes having improved electrical conductivity, and an electrical conductor obtained by this method.
- the usual conductors in this network are particularly wired conductors (cables) and flat conductors (bus-bus).
- the invention aims to overcome the disadvantages of the state of the art by proposing a method that significantly increases the electrical conductivity of copper.
- the method according to the invention proposes the development of a new material from copper powder and carbon nanotubes.
- a first aspect of the invention relates to a method of manufacturing an electrical conductor made of copper and carbon nanotubes from a powder of carbon nanotubes and a copper salt powder, the process comprising the following steps:
- This method makes it possible to obtain materials with a higher conductivity than copper, in particular thanks to the step of dispersing the carbon nanotubes in the solution and at the hot extrusion stage, which makes it possible to align the nanotubes in the sense of their greater conductivity, that is to say along the axis of extrusion.
- the method according to the invention may also have one or more of the following characteristics taken individually or in any technically possible combination.
- the method is preferably a method for manufacturing electrical conductors for a turbomachine, and more preferably wire conductors, or Flat conductors of the bar type.
- the carbon nanotubes may be multi-walled single wall. According to a preferred embodiment, the nanotubes are multi-walled.
- the process preferably uses multi-walled carbon nanotubes with between 10 and 20 walls.
- the carbon nanotubes each have a length of between 1 ⁇ and 20 ⁇ , and preferably between 1 ⁇ and 2 ⁇ , which makes it possible to significantly increase the electrical conductivity of the material obtained.
- the initial solution used is preferably an aqueous solution, and more preferably water, more preferably still distilled water.
- the step of dispersing the nanotubes preferably comprises one or more of the following sub-steps:
- Ultrasounds preferably have a frequency of 20 KHz.
- Ultrasounds preferably have a power of 1 W.ml -1 ;
- the method further comprises a heat treatment step between steps (c) and (d), for evaporating at least partially the water of the solution.
- the solution is preferably heated to a temperature of between 70 ° C. and 100 ° C. and preferentially between 90 ° C and 100 ° C, which allows to evaporate at least partially the solution, without damaging the nanotubes.
- the method further comprises a heat treatment step for removing the surfactant.
- This heat treatment step is preferably carried out at a temperature of between 200 ° C. and 300 ° C., which makes it possible to burn the surfactant and to evaporate the remainder of solution that has not been evaporated during the previous step.
- the method preferably comprises a grinding step of the copper oxide powder and carbon nanotubes obtained at the end of step (d), in order to dissociate the copper oxide grains from each other.
- the material obtained at the end of the process preferably comprises a volume fraction of carbon nanotubes of between 0.25 and 5% and preferably between 0.25% and 1.5%, and more preferably equal to 0.5%.
- the process further comprises, following step (e), a step (h) of adding a dendritic copper powder so as to obtain a mixture of copper powder and carbon nanotubes comprising a percentage by volume of carbon nanotubes of between 0.01 and 5%, and preferably of between 0.25% and 1, 5%, more preferably equal to 0.5%.
- the method further comprises, following step (h), a step of three-dimensional mixing of the powders, which makes it possible to obtain a homogeneous mixture between the carbon nanotubes and the copper.
- the method first comprises a step of adding a carbon nanotube powder, preferably multi-wall, in a solution.
- the nanotubes preferably comprise between 10 and 20 walls and they preferably measure between 1 ⁇ and 2 ⁇ .
- the solution is preferably an aqueous solution, and more preferably water, preferably distilled. In this embodiment, 80 mg of carbon nanotubes are added to 100 ml of distilled water.
- a surfactant for dispersing the nanotubes in water is also added to the solution.
- this surfactant is sodium dodecyl sulphate.
- the amount of sodium dodecyl sulphate added is substantially equal to 1 g.
- the solution is then subjected to ultrasound for a time of between 30 minutes and 1 hour 30 minutes, preferably equal to 1 hour, so as to disperse the nanotubes.
- These ultrasounds preferably have a frequency of 20 KHz and a power of 1 W.ml -1 .
- the process then comprises a step of adding a copper salt to the solution.
- This copper salt may be copper sulfate or copper acetate.
- the copper salt is copper nitrate trihydrate (Cu (NO 3 ) 2 , 3H 2 O).
- the method then comprises a heat treatment step for evaporating a large part of the water of the solution.
- the solution is preferably heated to a temperature between 90 ° C and 100 ° C, and preferably at 95 ° C for a time between 30 minutes and 1 h 30, preferably for one hour.
- the method then comprises a heat treatment step for removing the surfactant used.
- the surfactant used is sodium dodecyl sulphate
- the heat treatment is preferably carried out at a temperature of between 200 and 300 ° C., and more preferably at 250 ° C., for a time of between 30 minutes and 1 hour 30 minutes, and preferably equal to one hour.
- the process then comprises a heat treatment step for converting copper nitrate to copper oxide.
- the heat treatment is preferably carried out at a temperature between 300 ° C and 500 ° C, preferably equal to 400 ° C for a durationecomprise between 1 hour and three hours, preferably of the order of two hours.
- a composite powder composed of copper oxide and carbon nanotubes is obtained.
- This composite powder is then milled, for example in a mortar so as to obtain a homogeneous composite powder between the carbon nanotubes and the copper.
- the process then comprises a step of converting copper oxide to copper.
- the composite powder is subjected to a heat treatment to reduce the copper oxide copper. This reduction is carried out under a reducing atmosphere. This reduction is preferably carried out at a temperature substantially equal to 400 ° C. for two hours.
- a copper powder and carbon nanotubes are thus obtained.
- the mixture of copper powder and carbon nanotubes preferably comprises a volume fraction of between 0.25% and 5% and preferably between 0.25% and 1.5%. and more preferably equal to 0.5%. Depending on the amounts of powders added initially, the powder mixture can at this stage have the right volume fraction.
- the process may comprise at this stage a step of adding dendritic copper powder to the mixture so that the powder mixture comprises the desired volume fraction of carbon nanotubes.
- the method then comprises a step of mixing, preferably in the three dimensions of the space, the powder mixture. This mixing step is preferably carried out for a period of between 1 hour and three hours, preferably substantially equal to two hours.
- the method then comprises a step of densifying the powder mixture by pressing, preferably uni-axial, hot. During this step, the powder is preferably densified in a mold, under vacuum, at a temperature of between 600 ° C. and 700 ° C., preferably substantially equal to 650 ° C., for a period of between 10 and 30 minutes.
- a copper-carbon nanotube pellet is obtained.
- the method then comprises a hot extrusion step to obtain the desired shape for the conductor and to align the carbon nanotubes in their direction of greater electrical conductivity.
- the copper-carbon nanotube pellet is inserted into a die so as to be extruded into a blank wire at a temperature substantially equal to 400 ° C.
- the extrusion rate is preferably substantially equal to 1 mm per minute.
- the die has a section adapted according to the type of electrical conductor that one wants to obtain. Thus, when it is desired to obtain an electric wire, the die preferably has a cylindrical section.
- the wire has a diameter section of between 5 mm and 10 mm, preferably equal to 6 mm.
- the die preferably has a rectangular section.
- the method according to the invention thus makes it possible to obtain electrical conductors based on copper which have an electrical conductivity greater than that of copper.
- the conductors obtained for a composite material comprising copper and a volume fraction of 0.5% of carbon nanotubes with 10 to 20 walls and a length of between 1 ⁇ and 2 ⁇ have an electrical conductivity of 104% IACS (International Annealed Copper Standard), which corresponds to an electric conductivity of 6.031 S 10 7 m -1 or an electric resistivity of 1, 658 10 "8 ⁇ . ⁇ .
- the addition of carbon nanotubes inside a copper matrix allows to improve the electrical conductivity of copper.
- a first orientation of the carbon nanotubes within the matrix is observed, in the direction of their greater conductivity.
- the hot extrusion step reinforces this orientation in the direction parallel to the extrusion direction, which makes it possible to increase the electrical conductivity of the conductor obtained by this method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The invention relates to a method for manufacturing an electrical conductor from a carbon nanotube powder and a copper salt powder. The method comprises the following steps: - mixing the carbon nanotube powder in a solution; - dispersing the carbon nanotubes in the solution; - adding the copper salt to the solution; - heat treatment making it possible to convert the copper salt into copper oxide; - heat treatment making it possible to convert the copper oxide into copper; - densification by hot-pressing; and - hot extrusion.
Description
PROCEDE DE FABRICATION D'UN CONDUCTEUR ELECTRIQUE EN CUIVRE PROCESS FOR PRODUCING AN ELECTRIC COPPER CONDUCTOR
ET NANOTUBES DE CARBONE AND CARBON NANOTUBES
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un procédé de fabrication d'un conducteur électrique en cuivre et nanotubes de carbone présentant une conductivité électrique améliorée, ainsi qu'un conducteur électrique obtenu par ce procédé. The present invention relates to a method of manufacturing an electrical conductor of copper and carbon nanotubes having improved electrical conductivity, and an electrical conductor obtained by this method.
ETAT DE LA TECHNIQUE ANTERIEUR STATE OF THE PRIOR ART
Les bonnes propriétés aussi bien électriques, thermiques que mécaniques font du cuivre un élément largement répandu dans les domaines de l'aéronautique, de l'aérospatial et du ferroviaire. Actuellement, les systèmes électriques embarqués dans les avions sont principalement composés de cuivre dans des zones où l'environnement est sévère et d'aluminium dans le reste du véhicule. L'augmentation de la puissance électrique distribuée à bord des aéronefs, due à l'électrification des systèmes hydrauliques et pneumatiques, entraîne également un accroissement de la connectivité électrique. Cela a pour principal inconvénient une hausse de la masse du réseau de distribution électrique embarqué. Good electrical, thermal and mechanical properties make copper a widespread element in the fields of aeronautics, aerospace and rail. Currently, the electrical systems embedded in aircraft are mainly composed of copper in areas where the environment is severe and aluminum in the rest of the vehicle. The increase in electrical power distributed on board aircraft, due to the electrification of hydraulic and pneumatic systems, also leads to an increase in electrical connectivity. This has the main drawback of increasing the mass of the onboard electrical distribution network.
Pour diminuer la masse du réseau, il est possible d'améliorer la conductivité électrique des conducteurs ce qui permet alors, à courant et tension constante, de diminuer également la section des conducteurs. Les conducteurs usuels dans ce réseau sont particulièrement les conducteurs filaires (câbles) et les conducteurs plats (barre-bus). To reduce the mass of the network, it is possible to improve the electrical conductivity of the conductors which then allows, at current and constant voltage, to also reduce the cross section of the conductors. The usual conductors in this network are particularly wired conductors (cables) and flat conductors (bus-bus).
Différents procédés ont été proposés afin d'améliorer la conductivité électrique du cuivre. Toutefois, aucun des procédés de l'art antérieur ne permet réellement d'augmenter de manière significative la conductivité électrique du cuivre. Various methods have been proposed to improve the electrical conductivity of copper. However, none of the processes of the prior art actually makes it possible to significantly increase the electrical conductivity of copper.
EXPOSE DE L'INVENTION
L'invention vise à remédier aux inconvénients de l'état de la technique en proposant un procédé qui permet d'augmenter de manière significative la conductivité électrique du cuivre. SUMMARY OF THE INVENTION The invention aims to overcome the disadvantages of the state of the art by proposing a method that significantly increases the electrical conductivity of copper.
Pour ce faire, le procédé selon l'invention propose l'élaboration d'un nouveau matériau à partir de poudre de cuivre et de nanotubes de carbone. To do this, the method according to the invention proposes the development of a new material from copper powder and carbon nanotubes.
Plus précisément, un premier aspect de l'invention concerne un procédé de fabrication d'un conducteur électrique en cuivre et en nanotubes de carbone à partir d'une poudre de nanotubes de carbone et d'une poudre de sel de cuivre, le procédé comportant les étapes suivantes : More specifically, a first aspect of the invention relates to a method of manufacturing an electrical conductor made of copper and carbon nanotubes from a powder of carbon nanotubes and a copper salt powder, the process comprising the following steps:
(a) Mélange de la poudre de nanotubes de carbone dans une solution; (a) mixing the carbon nanotube powder in a solution;
(b) Dispersion des nanotubes de carbone dans la solution ; (b) Dispersion of carbon nanotubes in the solution;
- (c) Ajout du sel de cuivre à la solution ; (c) adding the copper salt to the solution;
(d) Traitement thermique permettant de transformer sel de cuivre en oxyde de cuivre; (d) heat treatment for converting copper salt to copper oxide;
(e) Traitement thermique permettant de transformer l'oxyde de cuivre en cuivre ; (e) heat treatment for converting copper oxide to copper;
- (f) Densification par pressage à chaud ; (f) densification by hot pressing;
(g) Extrusion à chaud. (g) Hot extrusion.
Ce procédé permet d'obtenir des matériaux de conductivité supérieure à celle du cuivre, notamment grâce à l'étape de dispersion des nanotubes de carbone dans la solution et à l'étape d'extrusion à chaud qui permet d'aligner les nanotubes dans le sens de leur plus grande conductivité, c'est-à-dire suivant l'axe d'extrusion. This method makes it possible to obtain materials with a higher conductivity than copper, in particular thanks to the step of dispersing the carbon nanotubes in the solution and at the hot extrusion stage, which makes it possible to align the nanotubes in the sense of their greater conductivity, that is to say along the axis of extrusion.
Le procédé selon l'invention peut également présenter une ou plusieurs des caractéristiques ci-après prises individuellement ou selon toutes les combinaisons techniquement possibles. The method according to the invention may also have one or more of the following characteristics taken individually or in any technically possible combination.
Le procédé est de préférence un procédé de fabrication de conducteurs électriques pour turbomachine, et plus préférentiellement de conducteurs filaires, ou de
conducteurs plats de type barres. The method is preferably a method for manufacturing electrical conductors for a turbomachine, and more preferably wire conductors, or Flat conductors of the bar type.
Selon différents modes de réalisation, les nanotubes de carbones peuvent être mono-paroi multi-parois. Selon un mode de réalisation préférentiel, les nanotubes sont multi-parois. According to various embodiments, the carbon nanotubes may be multi-walled single wall. According to a preferred embodiment, the nanotubes are multi-walled.
Afin d'obtenir des résultats optimisés, le procédé utilise de préférence des nanotubes de carbone multi-parois qui comportent entre 10 et 20 parois. Avantageusement, les nanotubes de carbone présentent chacun une longueur comprise entre 1 μιτι et 20 μιτι, et de préférence entre 1 μιτι et 2 μιη, ce qui permet d'augmenter de manière significative la conductivité électrique du matériau obtenu. In order to obtain optimized results, the process preferably uses multi-walled carbon nanotubes with between 10 and 20 walls. Advantageously, the carbon nanotubes each have a length of between 1 μιτι and 20 μιτι, and preferably between 1 μιτι and 2 μιη, which makes it possible to significantly increase the electrical conductivity of the material obtained.
La solution initiale utilisée est de préférence une solution aqueuse, et de manière plus préférentielle de l'eau, de manière plus préférentielle encore de l'eau distillée. The initial solution used is preferably an aqueous solution, and more preferably water, more preferably still distilled water.
Afin de disperser efficacement les nanotubes en solution sans les endommager, l'étape de dispersion des nanotubes comporte de préférence une ou plusieurs des sous étapes suivantes: In order to effectively disperse the nanotubes in solution without damaging them, the step of dispersing the nanotubes preferably comprises one or more of the following sub-steps:
- une étape de passage de la solution sous ultrasons, de préférence pendant un temps compris entre 30 minutes et 1 h30 de façon à disperser suffisamment les nanotubes sans les abîmer. Les ultra-sons présentent de préférence une fréquence de 20 KHz. Les ultra-sons présentent de préférence une puissance de 1 W.ml"1 ; a step of passing the solution under ultrasound, preferably for a time of between 30 minutes and 1 h 30 so as to sufficiently disperse the nanotubes without damaging them. Ultrasounds preferably have a frequency of 20 KHz. Ultrasounds preferably have a power of 1 W.ml -1 ;
- une étape d'ajout à la solution d'un tensioactif permettant de disperser les nanotubes de carbone en solution. Selon différents modes de réalisation, ce tensioactif peut être du dodécylsulfate de sodium ou du sodium dodecylbenzenesulfonate. Avantageusement, le procédé comporte en outre une étape de traitement thermique entre les étapes (c) et (d), permettant d'évaporer au moins partiellement l'eau de la solution. Lors de cette étape de traitement thermique, la solution est de préférence chauffée à une température comprise entre 70 ° C et 100 °C et préférentiellement
entre 90 ° C et 100° C, qui permet d'évaporer au moinspartiellement la solution, sans endommager les nanotubes. a step of adding to the solution a surfactant making it possible to disperse the carbon nanotubes in solution. According to various embodiments, this surfactant may be sodium dodecyl sulphate or sodium dodecylbenzenesulphonate. Advantageously, the method further comprises a heat treatment step between steps (c) and (d), for evaporating at least partially the water of the solution. During this heat treatment step, the solution is preferably heated to a temperature of between 70 ° C. and 100 ° C. and preferentially between 90 ° C and 100 ° C, which allows to evaporate at least partially the solution, without damaging the nanotubes.
Lorsque du tensioactif a été ajouté à la solution, le procédé comporte en outre une étape de traitement thermique permettant d'éliminer le tensioactif. Cette étape de traitement thermique est de préférence réalisée à une température comprise entre 200 ° C et 300 ° C, qui permet de brûler le tensioactif et d'évaporer le restant de solution qui n'aurait pas été évaporé lors de l'étape précédente. Suite à l'étape (d) de traitement thermique permettant de transformer le sel de cuivre en oxyde de cuivre, le procédé comporte de préférence une étape de broyage de la poudre d'oxyde de cuivre et de nanotubes de carbone obtenue à l'issue de l'étape (d), afin de dissocier les grains d'oxyde de cuivre les uns des autres. Le matériau obtenu à l'issue du procédé comporte de préférence une fraction volumique de nanotubes de carbone comprise entre 0,25 et 5% et préférentiellement comprise entre 0,25 % et 1 ,5 %, et plus préférentiellement égale à 0,5%, ce qui permet d'obtenir les meilleurs résultats possibles en terme de conductivité électrique. Lorsque les quantités de sel de cuivre et de nanotubes de carbone utilisés initialement par le procédé ne permettent pas directement d'obtenir cette fraction volumique, le procédé comporte en outre suite à l'étape (e), une étape (h) d'ajout d'une poudre de cuivre dendritique de façon à obtenir un mélange de poudre de cuivre et de nanotubes de carbone comportant un pourcentage volumique de nanotubes de carbone compris entre 0,01 et 5%, et préférentiellement compris entre 0,25 % et 1 ,5 %, plus préférentiellement égal à 0,5%. When surfactant has been added to the solution, the method further comprises a heat treatment step for removing the surfactant. This heat treatment step is preferably carried out at a temperature of between 200 ° C. and 300 ° C., which makes it possible to burn the surfactant and to evaporate the remainder of solution that has not been evaporated during the previous step. Following step (d) of heat treatment for transforming the copper salt into copper oxide, the method preferably comprises a grinding step of the copper oxide powder and carbon nanotubes obtained at the end of step (d), in order to dissociate the copper oxide grains from each other. The material obtained at the end of the process preferably comprises a volume fraction of carbon nanotubes of between 0.25 and 5% and preferably between 0.25% and 1.5%, and more preferably equal to 0.5%. , which makes it possible to obtain the best possible results in terms of electrical conductivity. When the amounts of copper salt and carbon nanotubes initially used by the process do not directly make it possible to obtain this volume fraction, the process further comprises, following step (e), a step (h) of adding a dendritic copper powder so as to obtain a mixture of copper powder and carbon nanotubes comprising a percentage by volume of carbon nanotubes of between 0.01 and 5%, and preferably of between 0.25% and 1, 5%, more preferably equal to 0.5%.
Avantageusement, le procédé comporte en outre, suite à l'étape (h), une étape de mélange tridimensionnel des poudres, ce qui permet l'obtention d'un mélange homogène entre les nanotubes de carbone et le cuivre. Advantageously, the method further comprises, following step (h), a step of three-dimensional mixing of the powders, which makes it possible to obtain a homogeneous mixture between the carbon nanotubes and the copper.
DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION
Le procédé comporte tout d'abord une étape d'ajout d'une poudre de nanotubes de carbone, de préférence multi-parois, dans une solution. Les nanotubes comportent de préférence entre 10 et 20 parois et ils mesurent de préférence entre 1 μιτι et 2 μιτι. La solution est de préférence une solution aqueuse, et de manière plus préférentielle de l'eau, de préférence distillée. Dans ce mode de réalisation, 80 mg de nanotubes de carbones sont ajoutés à 100 ml d'eau distillée. DETAILED DESCRIPTION OF AT LEAST ONE EMBODIMENT The method first comprises a step of adding a carbon nanotube powder, preferably multi-wall, in a solution. The nanotubes preferably comprise between 10 and 20 walls and they preferably measure between 1 μιτι and 2 μιτι. The solution is preferably an aqueous solution, and more preferably water, preferably distilled. In this embodiment, 80 mg of carbon nanotubes are added to 100 ml of distilled water.
Un tensioactif permettant de disperser les nanotubes dans l'eau est également ajouté à la solution. Dans ce mode de réalisation, ce tensioactif est du dodécylsulfate de sodium. La quantité de dodécylsulfate de sodium ajoutée est sensiblement égale à 1 g. A surfactant for dispersing the nanotubes in water is also added to the solution. In this embodiment, this surfactant is sodium dodecyl sulphate. The amount of sodium dodecyl sulphate added is substantially equal to 1 g.
La solution est ensuite soumise à des ultrasons pendant un temps compris entre 30 minutes et 1 h30, de préférence égal à 1 heure, de façon à disperser les nanotubes. Ces ultra-sons présentent de préférence une fréquence de 20 KHz et une puissance de 1 W.ml"1. The solution is then subjected to ultrasound for a time of between 30 minutes and 1 hour 30 minutes, preferably equal to 1 hour, so as to disperse the nanotubes. These ultrasounds preferably have a frequency of 20 KHz and a power of 1 W.ml -1 .
Le procédé comporte ensuite une étape d'ajout d'un sel de cuivre à la solution. Ce sel de cuivre peut être du sulfate de cuivre ou encore de l'acétate de cuivre. Selon un mode de réalisation préférentiel, le sel de cuivre est du nitrate de cuivre trihydrate (Cu(N03)2, 3 H20). The process then comprises a step of adding a copper salt to the solution. This copper salt may be copper sulfate or copper acetate. According to a preferred embodiment, the copper salt is copper nitrate trihydrate (Cu (NO 3 ) 2 , 3H 2 O).
Le procédé comporte ensuite une étape de traitement thermique permettant d'évaporer une grande partie de l'eau de la solution. Pour cela, la solution est de préférence chauffée à une température comprise entre 90 ° C et 100°C, et de préférence à 95 ° C pendant un temps compris entre 30 minutes et 1 h30, de préférence pendant une heure. The method then comprises a heat treatment step for evaporating a large part of the water of the solution. For this, the solution is preferably heated to a temperature between 90 ° C and 100 ° C, and preferably at 95 ° C for a time between 30 minutes and 1 h 30, preferably for one hour.
Le procédé comporte ensuite une étape de traitement thermique permettant d'éliminer le tensioactif utilisé. Lorsque le tensioactif utilisé est du dodécylsulfate de sodium, le traitement thermique est de préférence effectué à une température comprise entre 200 et 300 ° C, et de manière plus préférentielle à 250 ° C, pendant un temps compris entre 30 minutes et 1 h30, et de préférence égal à une heure.
Le procédé comporte ensuite une étape de traitement thermique permettant de transformer le nitrate de cuivre en oxyde de cuivre. Pour cela, le traitement thermique est de préférence effectué à une température comprise entre 300 ° C et 500 ° C, de préférence égal à 400 ° C pendant une duréecomprise entre 1 heure et trois heures, de préférence de l'ordre de deux heures. The method then comprises a heat treatment step for removing the surfactant used. When the surfactant used is sodium dodecyl sulphate, the heat treatment is preferably carried out at a temperature of between 200 and 300 ° C., and more preferably at 250 ° C., for a time of between 30 minutes and 1 hour 30 minutes, and preferably equal to one hour. The process then comprises a heat treatment step for converting copper nitrate to copper oxide. For this, the heat treatment is preferably carried out at a temperature between 300 ° C and 500 ° C, preferably equal to 400 ° C for a durationecomprise between 1 hour and three hours, preferably of the order of two hours.
On obtient à l'issue de cette étape une poudre composite composée d'oxyde de cuivre et de nanotubes de carbone. Cette poudre composite est ensuite broyée, par exemple dans un mortier de façon à obtenir une poudre composite homogène entre les nanotubes de carbone et le cuivre. At the end of this step, a composite powder composed of copper oxide and carbon nanotubes is obtained. This composite powder is then milled, for example in a mortar so as to obtain a homogeneous composite powder between the carbon nanotubes and the copper.
Le procédé comporte ensuite une étape de transformation de l'oxyde de cuivre en cuivre. Pour cela, la poudre composite est soumise à un traitement thermique permettant de réduire l'oxyde de cuivre en cuivre. Cette réduction est effectuée sous atmosphère réductrice. Cette réduction est de préférence effectuée à une température sensiblement égale à 400 °C pendant deux heures. On obtient ainsi à l'issue de cette étape une poudre de cuivre et de nanotubes de carbone. Afin d'améliorer les propriétés de conductivité électrique du cuivre, le mélange de poudre de cuivre et de nanotubes de carbone comporte de préférence une fraction volumique comprise entre 0, 25 et 5% et de préférence entre 0,25% et 1 ,5 %, et plus préférentiellement égale à 0,5%. En fonction des quantités de poudres ajoutées initialement, le mélange de poudre peut à ce stade comporter la bonne fraction volumique. Toutefois, si ce n'est pas le cas, le procédé peut comporter à ce stade une étape d'ajout de poudre de cuivre dendritique au mélange de façon à ce que le mélange de poudres comporte la faction volumique de nanotubes de carbone voulue. Le procédé comporte ensuite une étape de mélange, de préférence dans les trois dimensions de l'espace, du mélange de poudre. Cette étape de mélange est de préférence effectuée pendant une durée comprise entre 1 heure et trois heures, de préférence sensiblement égale à deux heures.
Le procédé comporte ensuite une étape de densification du mélange de poudres par pressage, de préférence uni-axial, à chaud. Lors de cette étape, la poudre est de préférence densifiée dans un moule, sous vide, à une température comprise entre 600 ° C et 700 ° C, de préférence sensiblement égale à650°C, pendant une durée comprise entre 10 et 30 minutes, de préférence sensiblement égale à 20 minutes, et sous une pression comprise entre 50 et 100 MPa, de préférence égale à 70 MPa. On obtient à l'issue de cette étape une pastille de cuivre-nanotube de carbone. Le procédé comporte ensuite une étape d'extrusion à chaud permettant d'obtenir la forme voulue pour le conducteur et permettant d'aligner les nanotubes de carbone dans leur sens de plus grande conductivité électrique. Pour cela, la pastille de cuivre- nanotube de carbone est insérée dans une filière afin d'être extrudée en fil ébauche à une température sensiblement égale à 400 °C. La vtesse d'extrusion est de préférence sensiblement égale à 1 mm par minute. La filière présente une section adaptée en fonction du type de conducteur électrique que l'on veut obtenir. Ainsi, lorsque l'on veut obtenir un fil électrique, la filière présente de préférence une section cylindrique. Selon un mode de réalisation préférentiel, le fil présente une section de diamètre compris entre 5 mm et 10mm, de préférence égale à 6 mm. Lorsque l'on veut obtenir un conducteur de type barre, la filière présente de préférence une section rectangulaire. Par ailleurs, dans le cas d'une barre, on pourra utiliser lors de l'étape de densification une matrice de la forme de la barre. The process then comprises a step of converting copper oxide to copper. For this, the composite powder is subjected to a heat treatment to reduce the copper oxide copper. This reduction is carried out under a reducing atmosphere. This reduction is preferably carried out at a temperature substantially equal to 400 ° C. for two hours. At the end of this step, a copper powder and carbon nanotubes are thus obtained. In order to improve the electrical conductivity properties of copper, the mixture of copper powder and carbon nanotubes preferably comprises a volume fraction of between 0.25% and 5% and preferably between 0.25% and 1.5%. and more preferably equal to 0.5%. Depending on the amounts of powders added initially, the powder mixture can at this stage have the right volume fraction. However, if this is not the case, the process may comprise at this stage a step of adding dendritic copper powder to the mixture so that the powder mixture comprises the desired volume fraction of carbon nanotubes. The method then comprises a step of mixing, preferably in the three dimensions of the space, the powder mixture. This mixing step is preferably carried out for a period of between 1 hour and three hours, preferably substantially equal to two hours. The method then comprises a step of densifying the powder mixture by pressing, preferably uni-axial, hot. During this step, the powder is preferably densified in a mold, under vacuum, at a temperature of between 600 ° C. and 700 ° C., preferably substantially equal to 650 ° C., for a period of between 10 and 30 minutes. preferably substantially equal to 20 minutes, and under a pressure of between 50 and 100 MPa, preferably equal to 70 MPa. At the end of this step, a copper-carbon nanotube pellet is obtained. The method then comprises a hot extrusion step to obtain the desired shape for the conductor and to align the carbon nanotubes in their direction of greater electrical conductivity. For this, the copper-carbon nanotube pellet is inserted into a die so as to be extruded into a blank wire at a temperature substantially equal to 400 ° C. The extrusion rate is preferably substantially equal to 1 mm per minute. The die has a section adapted according to the type of electrical conductor that one wants to obtain. Thus, when it is desired to obtain an electric wire, the die preferably has a cylindrical section. According to a preferred embodiment, the wire has a diameter section of between 5 mm and 10 mm, preferably equal to 6 mm. When one wants to obtain a conductor type bar, the die preferably has a rectangular section. Moreover, in the case of a bar, it will be possible to use during the densification step a matrix of the shape of the bar.
Le procédé selon l'invention permet donc d'obtenir des conducteurs électriques à base de cuivre qui présentent une conductivité électrique supérieure à celle du cuivre. En effet, les conducteurs obtenus pour un matériau composite comportant du cuivre et une fraction volumique de 0,5% de nanotubes de carbone de 10 à 20 parois et d'une longueur comprise entre 1 μιτι et 2 μιη présentent une conductivité électrique de 104% IACS (International Annealed Copper Standard), ce qui correspond à une conductivité électrique de 6,031 107 S. m-1 ou une résistivité électrique de 1 ,658 10"8 Ω.ιτι. The method according to the invention thus makes it possible to obtain electrical conductors based on copper which have an electrical conductivity greater than that of copper. Indeed, the conductors obtained for a composite material comprising copper and a volume fraction of 0.5% of carbon nanotubes with 10 to 20 walls and a length of between 1 μιτι and 2 μιη have an electrical conductivity of 104% IACS (International Annealed Copper Standard), which corresponds to an electric conductivity of 6.031 S 10 7 m -1 or an electric resistivity of 1, 658 10 "8 Ω.ιτι.
Ainsi, l'ajout de nanotube de carbone à l'intérieur d'une matrice de cuivre permet
d'améliorer la conductivité électrique du cuivre. Au cours de la densification uni- axiale à chaud, on observe une première orientation des nanotubes de carbone au sein de la matrice, dans le sens de leur plus grande conductivité. L'étape d'extrusion à chaud renforce cette orientation dans la direction parallèle à la direction d'extrusion, ce qui permet d'augmenter la conductivité électrique du conducteur obtenu par ce procédé. Thus, the addition of carbon nanotubes inside a copper matrix allows to improve the electrical conductivity of copper. During the unipolar hot densification, a first orientation of the carbon nanotubes within the matrix is observed, in the direction of their greater conductivity. The hot extrusion step reinforces this orientation in the direction parallel to the extrusion direction, which makes it possible to increase the electrical conductivity of the conductor obtained by this method.
Naturellement, l'invention n'est pas limitée aux modes de réalisation décrits en référence aux figures et des variantes pourraient être envisagées sans sortir du cadre de l'invention.
Naturally, the invention is not limited to the embodiments described with reference to the figures and variants could be envisaged without departing from the scope of the invention.
Claims
REVENDICATIONS
Procédé de fabrication d'un conducteur électrique en cuivre et en nanotubes de carbone à partir d'une poudre de nanotubes de carbone et d'une poudre de sel de cuivre, le procédé comportant les étapes suivantes : A method of manufacturing an electrical conductor made of copper and carbon nanotubes from a carbon nanotube powder and a copper salt powder, the method comprising the steps of:
(a) Mélange de la poudre de nanotubes de carbone dans une solution; (a) mixing the carbon nanotube powder in a solution;
(b) Dispersion des nanotubes de carbone dans la solution ; (b) Dispersion of carbon nanotubes in the solution;
(c) Ajout du sel de cuivre à la solution ; (c) Addition of the copper salt to the solution;
(d) Premier traitement thermique permettant de transformer le sel de cuivre en oxyde de cuivre; (d) First heat treatment for converting the copper salt to copper oxide;
(e) Deuxième traitement thermique permettant de transformer l'oxyde de cuivre en cuivre ; (e) Second heat treatment for converting copper oxide into copper;
(f) Densification par pressage à chaud ; (f) Densification by hot pressing;
(g) Extrusion à chaud. (g) Hot extrusion.
Procédé de fabrication selon la revendication précédente, dans lequel les nanotubes de carbone sont multi-parois. Manufacturing method according to the preceding claim, wherein the carbon nanotubes are multi-walled.
Procédé de fabrication selon la revendication 1 , dans lequel les nanotubes de carbone sont mono-paroi. The manufacturing method according to claim 1, wherein the carbon nanotubes are single-walled.
Procédé de fabrication selon l'une des revendications précédentes dans lequel les nanotubes de carbone présentent chacun une longueur comprise entre 1 μιτι et 20 μιτι. Manufacturing method according to one of the preceding claims wherein the carbon nanotubes each have a length between 1 μιτι and 20 μιτι.
Procédé de fabrication selon l'une des revendications précédentes, comportant en outre une étape de traitement thermique préalable entre les étapes (c) et (d), permettant d'évaporer au moins partiellement l'eau de la solution.
Procédé de fabrication selon l'une des revendications précédentes, dans lequel l'étape (b) de dispersion des nanotubes de carbone dans la solution comporte une étape de passage sous ultrasons. Manufacturing method according to one of the preceding claims, further comprising a prior heat treatment step between steps (c) and (d), for evaporating at least partially the water of the solution. Manufacturing method according to one of the preceding claims, wherein the step (b) of dispersion of the carbon nanotubes in the solution comprises a step of passing under ultrasound.
Procédé de fabrication selon l'une des revendications précédentes, dans lequel l'étape (b) de dispersion des nanotubes de carbone dans la solution comporte une étape d'ajout d'un tensioactif permettant de disperser les nanotubes de carbone en solution. Manufacturing method according to one of the preceding claims, wherein the step (b) for dispersing the carbon nanotubes in the solution comprises a step of adding a surfactant for dispersing the carbon nanotubes in solution.
Procédé de fabrication selon la revendication précédente, dans lequel le tensioactif est du dodécylsulfate de sodium Manufacturing method according to the preceding claim, wherein the surfactant is sodium dodecyl sulphate
Procédé de fabrication selon l'une des revendications 7 ou 8, comportant en outre une étape de traitement thermique permettant d'éliminer le tensioactif. Manufacturing method according to one of claims 7 or 8, further comprising a heat treatment step for removing the surfactant.
Procédé de fabrication selon l'une des revendications précédentes, comportant en outre, suite à l'étape (e), une étape (h) d'ajout d'une poudre de cuivre dendritique de façon à obtenir un mélange de poudre de cuivre et de nanotubes de carbone comportant un pourcentage volumique de nanotubes de carbone compris entre 0,01 et 5%, et de préférence compris entre 0,25% et 1 ,5%. Manufacturing method according to one of the preceding claims, further comprising, following step (e), a step (h) of adding a copper dendritic powder so as to obtain a mixture of copper powder and carbon nanotubes having a volume percentage of carbon nanotubes of between 0.01 and 5%, and preferably between 0.25% and 1.5%.
Procédé de fabrication selon la revendication précédente, comportant en outre, suite à l'étape (h) une étape de mélange tridimensionnel des poudres.
Manufacturing method according to the preceding claim, further comprising, following step (h) a step of three-dimensional mixing of the powders.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1450384 | 2014-01-17 | ||
FR1450384A FR3016727B1 (en) | 2014-01-17 | 2014-01-17 | METHOD FOR MANUFACTURING AN ELECTRIC COPPER CONDUCTOR AND CARBON NANOTUBES |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107287A1 true WO2015107287A1 (en) | 2015-07-23 |
Family
ID=51610176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/050016 WO2015107287A1 (en) | 2014-01-17 | 2015-01-06 | Method for manufacturing an electrical conductor made of copper and carbon nanotubes |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3016727B1 (en) |
WO (1) | WO2015107287A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106001152A (en) * | 2016-06-20 | 2016-10-12 | 昆明理工大学 | Carbon nanotube reinforced metal matrix composite material |
CN110534253A (en) * | 2018-05-25 | 2019-12-03 | 通用线缆技术公司 | Superconduction electric wire and forming method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10861616B2 (en) | 2018-07-23 | 2020-12-08 | General Cable Technologies Corporation | Cables exhibiting increased ampacity due to lower temperature coefficient of resistance |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030015062A1 (en) * | 1999-12-01 | 2003-01-23 | Dowa Mining Co., Ltd | Copper powder and process for producing copper powder |
US20100068089A1 (en) * | 2008-09-18 | 2010-03-18 | Nissei Plastic Industrial Co., Ltd. | Method for manufacturing composite metal alloy and method for manufacturing article from composite metal |
US20110005808A1 (en) * | 2009-07-10 | 2011-01-13 | Nanocomp Technologies, Inc. | Hybrid Conductors and Method of Making Same |
JP2013067854A (en) * | 2011-09-20 | 2013-04-18 | Pelnox Ltd | Copper composite particle, composite metallic copper particle, method for producing copper composite particle, metallic paste, article having metallic conductor and method for producing article having metallic conductor |
-
2014
- 2014-01-17 FR FR1450384A patent/FR3016727B1/en active Active
-
2015
- 2015-01-06 WO PCT/FR2015/050016 patent/WO2015107287A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030015062A1 (en) * | 1999-12-01 | 2003-01-23 | Dowa Mining Co., Ltd | Copper powder and process for producing copper powder |
US20100068089A1 (en) * | 2008-09-18 | 2010-03-18 | Nissei Plastic Industrial Co., Ltd. | Method for manufacturing composite metal alloy and method for manufacturing article from composite metal |
US20110005808A1 (en) * | 2009-07-10 | 2011-01-13 | Nanocomp Technologies, Inc. | Hybrid Conductors and Method of Making Same |
JP2013067854A (en) * | 2011-09-20 | 2013-04-18 | Pelnox Ltd | Copper composite particle, composite metallic copper particle, method for producing copper composite particle, metallic paste, article having metallic conductor and method for producing article having metallic conductor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106001152A (en) * | 2016-06-20 | 2016-10-12 | 昆明理工大学 | Carbon nanotube reinforced metal matrix composite material |
CN110534253A (en) * | 2018-05-25 | 2019-12-03 | 通用线缆技术公司 | Superconduction electric wire and forming method thereof |
CN110534253B (en) * | 2018-05-25 | 2022-04-22 | 通用线缆技术公司 | Superconducting wire and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
FR3016727B1 (en) | 2016-02-05 |
FR3016727A1 (en) | 2015-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2544891B1 (en) | Method for manufacturing a metal assembly | |
WO2015107287A1 (en) | Method for manufacturing an electrical conductor made of copper and carbon nanotubes | |
JP6390024B2 (en) | Carbon nanotube composite material and manufacturing method thereof | |
JP6411782B2 (en) | Method for manufacturing thermoelectric material | |
JPWO2005040066A1 (en) | Carbon nanotube-dispersed composite material, production method thereof, and application thereof | |
CN109694970B (en) | Aluminum-based composite material, electric wire using same, and method for producing aluminum-based composite material | |
JP6749087B2 (en) | Fastening member | |
Bi et al. | Dispersion and damage of carbon nanotubes in carbon nanotube/7055Al composites during high-energy ball milling process | |
CN110655413B (en) | Preparation method of isotropic graphite material | |
JP2015227498A (en) | Aluminum-based composite material and production method thereof | |
Yi et al. | Orientation control of carbon fibers and enhanced thermal/mechanical properties of hot-extruded carbon fibers/aluminum composites | |
Imai et al. | Microstructural and electrical properties of copper–titanium alloy dispersed with carbon nanotubes via powder metallurgy process | |
JP4593472B2 (en) | Method for producing carbon nanotube-dispersed composite material and application thereof | |
JP5508358B2 (en) | Rolled copper foil, method for producing the same, and lithium ion secondary battery negative electrode using the rolled copper foil | |
WO1986006871A1 (en) | New alloys having high electrical and mechanical performances, fabrication thereof and applications thereof, particularly in the electric, electronic and connectics fields | |
CN117604318A (en) | In-situ authigenic graphene/copper composite material with orientation double-peak structure and preparation method thereof | |
WO2016147301A1 (en) | Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device | |
EP3830309B1 (en) | Copper-silver composite material | |
JP5369444B2 (en) | GZO sintered body manufacturing method | |
EP2580795A1 (en) | Apparatus for making contact with a current source and current source with a metal-infiltrated ceramic | |
CN111331127A (en) | Preparation method of graphene/copper composite wire | |
WO2003039792A1 (en) | Method of producing metal/ceramic composite plates | |
JP2009013020A (en) | Manufacturing method of silicon carbide sintered compact | |
Lv et al. | The improvement of thermal conductivity in silica gel composite employing graphene nano-particles | |
FR3057571A1 (en) | ELECTRIC FIELD DISTRIBUTION MATERIAL, METHOD FOR MANUFACTURING SAME, AND DEVICE COMPRISING SUCH MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15702525 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15702525 Country of ref document: EP Kind code of ref document: A1 |