WO2015107244A1 - Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos - Google Patents

Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos Download PDF

Info

Publication number
WO2015107244A1
WO2015107244A1 PCT/ES2015/070016 ES2015070016W WO2015107244A1 WO 2015107244 A1 WO2015107244 A1 WO 2015107244A1 ES 2015070016 W ES2015070016 W ES 2015070016W WO 2015107244 A1 WO2015107244 A1 WO 2015107244A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposomes
composition
polyunsaturated fatty
treatment
fatty acids
Prior art date
Application number
PCT/ES2015/070016
Other languages
English (en)
French (fr)
Inventor
Fernando Moreno Egea
Sebastián CERDÁN GARCÍA ESTELLER
Daniel Calle Hernandez
Original Assignee
Soluciones Nanotecnológicas, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soluciones Nanotecnológicas, S.L. filed Critical Soluciones Nanotecnológicas, S.L.
Priority to ES201690033A priority Critical patent/ES2579912B1/es
Publication of WO2015107244A1 publication Critical patent/WO2015107244A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/232Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • compositions containing liposomes, long-chain omega-3 polyunsaturated fatty acids and superparamagnetic nanoparticles and their use in the treatment of malignant tumors
  • the invention falls within the field of nanomedicine, in the treatment of diseases and in particular in the preparation and characterization of compositions containing a combination of cadena-3 long chain polyunsaturated fatty acids, superparamagnetic nanoparticles and liposomes and their use for the treatment of malignant tumors and in particular for the treatment of tumors with poor prognosis such as gliomas.
  • malignant brain tumors There are numerous forms of cancer that affect humans, but taking into account their poor prognosis and the notable deterioration in the quality of life of patients, one of the most serious is constituted by malignant brain tumors. In the United States alone, 15,000 to 20,000 people are diagnosed each year with malignant brain tumors (18.7 cases per 100,000 inhabitants), of which 80% are gliomas. Gliomas are the most frequent and devastating incurable brain tumors.
  • astrocytomas oligodendrogliomas and oligoastrocytomas, (Groot et al; 201 1, Doblas et al; 2010, Chen et al; 2012) depending on their cellular origin.
  • astrocytomas represented in increasing degree of mortality such as, grade I (pyrocytic astracytoma), grade II (low grade astrocytomas), grade III (high grade astrocytomas) or grade IV (glioblastoma multiforme) .
  • GMB gliobalstoma multiforme
  • malignant gliomas are incurable at the moment, different therapeutic strategies are used to prolong and improve the quality of life of patients (Stupp et al; 2010).
  • Possible treatments of these malignant tumors consist of surgical removal, chemotherapy and radiotherapy. Although surgical removal of tumors is the most effective technique in all cases, radiotherapy and chemotherapy are also used to complement it, especially when surgery is impracticable due to the location of the lesion.
  • temozolamide a second generation alkylating agent, permeable to the blood brain barrier, which has demonstrated efficacy against some gliomas.
  • a complementary and sometimes even alternative agent is Irinotecan, a topoisomerase I inhibitor, an enzyme crucial for DNA replication, (Vredenburg et al; 2009).
  • Angiogenic therapies may also be advantageous, particularly those that use monoclonal antibodies against endothelial vascular growth factors (VGEF) (Bevacuzimab) (Ferrara et al; 2004). Unfortunately, many patients develop resistance against these drugs, resulting in uncontrolled growth of the tumor, with fatal consequences.
  • VGEF endothelial vascular growth factors
  • the poor prognosis of this type of tumors is mainly due to the invasion capacity of the brain structures surrounding the tumor cells, which makes their complete resection very difficult (Wang et al; 2012). .
  • diagnosis and treatment including those based on the expression and transport of genes to induce cell death, inhibition of tumor angiogenesis (Castro et al; 201 1), or Using new radiation modalities such as proton beam treatments (Hauskwal et al; 2012), the average survival in patients diagnosed with GBM is only 15 months (Auffinger et al; 2013).
  • Liposomes described in the early sixties by Alee D. Bangham (Bangham and Horne, 1964; Horne et al; 1963; Bangham et al; 1962), are nanometric-sized vesicles formed by one or more phospholipid bilayers, with a aqueous environment inside (lumen). There are different types of liposomes depending on their size and the number of bilayers.
  • liposomes can be classified into; Small size unilamellar vesicles, (Small Unilammellar Vesicles, SUV), large size unilamellar vesicles (Large Unilammellar Vesicles, LUV) and large size multilamellar vesicles (Large Multilammellar Vesicles, LMV) (Lasic, 1988).
  • Small size unilamellar vesicles Small size unilamellar vesicles, (Small Unilammellar Vesicles, SUV), large size unilamellar vesicles (Large Unilammellar Vesicles, LUV) and large size multilamellar vesicles (Large Multilammellar Vesicles, LMV) (Lasic, 1988).
  • liposomes to transport drugs has been investigated in depth (Park et al; 2004), given its versatility to transport both water-soluble drugs in its lumen, as well as fat-soluble drugs, inserted into its membrane.
  • selective peptides, proteins or antibodies can be placed on its membrane making it possible to direct liposomes against specific molecular cells or targets (Leserman et al; 1980).
  • liposomal addressing a passive one; in which liposomes accumulate in the pathological region due to the increase in capillary permeability (Enhanced Permeability Retention, EPR), and an active one; by modifying the liposome to include on its surface a molecule that recognizes a specific target in the tissue.
  • EPR Enhanced Permeability Retention
  • the EPR effect can be facilitated by using liposomes coated with polyethylene glycol (PEG) polymers linked to phosphatidylethanolamine.
  • PEG polyethylene glycol
  • liposomes with PEG more effectively resist opsonization (absorption and transport into the cell interior) and manifest a significantly longer residence time in the blood, and can also be modified conveniently with specific molecules capable of recognizing target tissues.
  • liposomes containing arginine-glycine-aspartic acid peptides that recognize overexpressed alpha (v) beta (iii) integrin in tumor neoangiogenic capillaries stand out. (Torchilin, 2005).
  • liposomes in drug transport (Torchilin, 2005) show that many of the uses include intravenous transport of anticancer drugs, such as doxorubicin or nucleic acid fragments.
  • patent application EP069724 describes liposomes containing less than 100 nm, phosphatidylcholine, phosphatidylglycerol and cyclosporine to reduce multiple drug resistance and the growth of cancer cells.
  • EP2433619 describes a process for producing liposomes loaded or not with 7- -hydroxy-cholesteryl-3--oleate (7- ⁇ - ⁇ ) to treat anaplastic astracytomas or glioblastomas.
  • Patent application US201200521 15 claims liposomes of less than 200 nm directed to tumors, which preferably carry blue imipramine to gliomas.
  • the use of liposomes in cancer is not only limited to treatment but also to its diagnosis.
  • patent application EP2520281 describes the use of liposomes labeled with peptides directed at the interleukin-4 receptor, for the diagnosis and treatment of cancer.
  • Compositions with liposomes have previously been used to increase the contrast in MRI images.
  • Patent application EP2578237 describes a composition of liposomes containing a contrast agent to diagnose ischemia.
  • US201 10158903 also describes multifunctional liposomes containing radioactive nucleotides for imaging, and also transporting doxorubicin for the treatment of cancer.
  • Liu et al. Liu et al. (Liu et al; 201 1) investigated the use of nanoliposomes encapsulating medium chain fatty acids (MCFA) to reduce the storage of dietary fat (Dora, 201 1). ⁇ -3 fatty acids have also been encapsulated in liposomes (Lasic, 1988) to mask their taste and smell among others.
  • MCFA medium chain fatty acids
  • US201 patent application 10274746 describes therapeutic liposomes containing Ci 6 -C 2 2 fatty acid esters, in which the fatty acids can be in some cases ⁇ -3 and ⁇ -6, as well as the methods to obtain them and their uses. In particular its use in subjects, to transport an active compound that can be a nutraceutical and / or a drug with a synergistic effect.
  • ⁇ -3 polyunsaturated fatty acids have also been described. Its use as antitumor adjuvant agents has been proposed (Merendino et al; 2013). In particular, it has been established that ⁇ -3 polyunsaturated fatty acids decrease the expression of ras and bcl-2 oncogenes and that docosahexanoic acid (DHA) has important effects on brain metabolism, improving brain function in the disease of Alzheimer's (Quinn et al; 2010). It has also been described that icosapentaenoic acid (EPA) inhibits the production of interleukin-6 in C6 glioma cells, thus interfering with the pro-inflammatory response necessary for tumor growth. (Kawasima et al; 2008).
  • EPA icosapentaenoic acid
  • nanotechnology is traditionally used to describe materials with a size below 100 nm.
  • Superparamagnetic nanoparticles are typically formed by two components, a core, which consists of an iron oxide nanoparticle (usually magnetite with a size less than 30 nm), a coating (an organic or inorganic polymer, or a metal) that provides biocompatibility and favorable interactions with the biological system, this surface can be functionalized to perform the desired function in vivo.
  • a core which consists of an iron oxide nanoparticle (usually magnetite with a size less than 30 nm)
  • a coating an organic or inorganic polymer, or a metal
  • these nanoparticles have been widely used in experimentation, in in vivo applications in MRI, immunoassays, tissue repair, hyperthermia, as well as in the transport of drugs including the treatment of gliomas (Auffinger et al; 2013).
  • Each specific application of superparamagnetic nanoparticles requires that they have specific properties.
  • nanoparticles in biomedical applications require compatibility with biological tissues and uniform physical and chemical properties (Gupta and Gupta, 2006).
  • the use of superparamagnetic nanoparticles for the treatment of tumors requires that the surface of the nanoparticle be able to bind or adsorb drugs to effectively transport them to the diseased tissue (Jong and Borm, 2008).
  • Magnetic nanoparticles coated with an appropriate surface can form a homogeneous suspension when dispersed in suitable solvents. Under these conditions, these nanoparticles may be useful as contrast agents in MRI (Gupta and Gupta, 2005). In addition to biocompatibility, nanoparticles used as a contrast agent must also have high magnetic saturation values, adequate values of ⁇ , T 2 or T 2 “and a narrow size distribution.
  • Superparamagnetic nanoparticles have been developed for the treatment of cancer by hyperthermia (MHT) (Hayashi et al; 2013; Silva et al; 201 1) and for their diagnosis, as a contrast agent in MRI. But as far as we know, superparamagnetic nanoparticles have never been used directly, by themselves, to kill tumor cells.
  • MHT hyperthermia
  • Liposomes have been compared with free nanoparticles (Alphandary et al; 2000) because both are nanometric in size and can be functionalized on the surface (Malam et al; 2009). Magnetite nanoparticles have been encapsulated in liposomes (magnetoliposomes) (De Cuyper and Joniau, 1988) which has allowed their detection in vivo, using MRI techniques. In this sense, liposomes have had considerable interest as therapeutic agents (combining therapy and diagnosis) since they can simultaneously transport lipid or water soluble drugs and agents suitable for visualization in vivo (Al-Jamal and Kostarelos, 201 1).
  • Liposomes are structures that can be prepared so that they contain in their lumen in addition to the drug, a large variety of imaging indicators that can be radioactive, fluorescent or superparamagnetic. This would allow to directly visualize, in a non-invasive way, the presence of liposomes with the drug in the lesions. This strategy is known as image-guided drug transport, and. It represents a very promising approach to the diagnosis and simultaneous treatment of diseases.
  • the present invention is based on the surprising discovery that the combination of liposomes, ⁇ -3 polyunsaturated fatty acids (such as EPA and DHA in ethyl ester form), and superparamagnetic nanoparticles in a composition in a pharmacologically acceptable medium decreases the growth of malignant tumors . Producing a synergy between these components, which stimulates the regression of gliomas.
  • ⁇ -3 polyunsaturated fatty acids such as EPA and DHA in ethyl ester form
  • composition can be administered to a subject in the necessary amount by intravenous injection and / or infusion. Additionally, the composition of the invention allows the progression of tumors to be measured by T 2- weighted MRI, due to the properties of the superparamagnetic nanoparticles contained in the composition.
  • composition of the invention and its use in the treatment of malignant tumors and particularly gliomas is a significant discovery, even more if one considers that currently the average life expectancy of patients is 15 months from Your diagnosis Brief description of the figures
  • Figure 1 Preparation of compositions containing liposomes, compositions containing liposomes and 80% EPA-EE, and compositions containing liposomes and Nanotex.
  • Figure 2. Upper panels: Determination of the size of liposomes, using DLS (Dynamic Light Scattering) (A) compositions containing liposomes, (B) compositions containing liposomes and 80% EPA-EE. Lower panels: Determination of the size by TEM (Transmission Electron Microscopy) of (C) compositions containing liposomes stained with uranyl acetate, (D) nanoparticles Nanotex and (E) compositions containing liposomes and Nanotex.
  • DLS Dynamic Light Scattering
  • C Transmission Electron Microscopy
  • FIG. 3 Representative images of T 2- weighted MRIs of the evolution of gliomas in mice (A) treated with a liposome-containing composition, (B) a liposome-containing composition and 80% EPA-EE and (C) a composition It contains liposomes and Nanotex.
  • FIG. 4 Representative images of T 2- weighted MRI of the evolution of gliomas in mice (A) treated with a composition containing liposomes and Nanotex and (B) treated with a composition containing liposomes, 80% EPA-EE and Nanotex .
  • compositions containing liposomes, long chain ⁇ -3 polyunsaturated fatty acids and superparamagnetic nanoparticles in a pharmacologically acceptable medium is useful for the treatment of malignant tumors, and more specifically is useful for the treatment of gliomas, a type of tumors whose prognosis is currently, dire.
  • a first aspect of the invention is a composition containing at least one liposome, a long chain ⁇ -3 polyunsaturated fatty acid and a superparamagnetic nanoparticle.
  • the composition may also comprise a pharmacologically acceptable medium among other components.
  • liposomes refers to nanometer-sized vesicles formed by a phospholipid bilayer (unilamellar liposomes) with a homogeneous size distribution.
  • composition of the invention in which the liposomes are unilamellar with a homogeneous size distribution and an average diameter of 200 nm.
  • Liposomes formed by one or more lipid bilayers, with an aqueous environment inside, have been widely described in the state of the art, and can be prepared by a variety of methods accessible to one skilled in the art.
  • a common protocol for obtaining liposomes is to dissolve the desired amount of phospholipids in an organic solvent and evaporate that solvent to obtain a thin layer of phospholipids. This layer is subsequently hydrated with an aqueous buffer and the compound to be encapsulated in the liposomes.
  • the liposomes obtained with this technique are quite heterogeneous (multilamellar and of different sizes) and several extrusion steps are needed through controlled pore membranes, to obtain liposomes with a bilayer and a homogeneous size distribution (Torchilin et al; 2003).
  • the size distribution of the liposomes can also be modified by controlling agitation during the lipid hydration process or by adding detergents as described in US Pat. No. 5,534,499 or using various techniques such as filters with different pore size.
  • long chain ⁇ -3 polyunsaturated fatty acids refers to fatty acids with a chain of at least 13 carbon atoms and two or more double bonds, where the first double bond is Locate between the third and fourth carbon atoms counting from the final methyl chain.
  • EPA and DHA Two ins-3 long-chain polyunsaturated fatty acids of particular relevance, essential in mammals, are EPA and DHA.
  • the intake of EPA and DHA occurs primarily through the consumption of fish with significant levels of these fatty acids, and / or through of dietary supplementation with oils containing long chain ins-3 polyunsaturated fatty acids.
  • the long-chain ⁇ -3 fatty acids that are generally used in dietary supplements are mostly extracted from fish.
  • the oils with EPA and DHA can also be extracted from other organisms such as krill, squid, algae, fungi, protozoa and in the future of transgenic plants.
  • EPA and DHA are mainly found as triglycerides.
  • EPA and DHA in the form of natural esters can be transformed into other chemical forms such as ethyl esters, or free acids among others using methods described in the state of the art such as chemical processes, including transesterification of triglycerides with ethanol or enzymatic processes with reactions enzymatic transesterification.
  • Oils containing larga-3 long chain polyunsaturated fatty acids can be concentrated and fractionated into specific compounds, such as EPA and / or DHA, selectively, by separation and extraction methods widely described in the state of the art and accessible to an expert in the field.
  • the methods previously described in the state of the art for obtaining, fractioning and concentrating long chain ⁇ -3 polyunsaturated fatty acids, and in particular EPA and / or DHA, are separation methods, distillation and extraction technologies as well as fractionation technologies by chromatography, including those that employ C0 2 under supercritical conditions such as extraction solvent or mobile phase. All of them can be used to obtain the long chain ins-3 polyunsaturated fatty acids of the composition of the invention.
  • the long chain 3-3 polyunsaturated fatty acids of the composition of the invention contain at least EPA and / or DHA.
  • Long chain ⁇ -3 polyunsaturated fatty acids, and in particular EPA and DHA are naturally found in esterified form as triglycerides and phospholipids. These Compounds can be concentrated and then transformed into, for example, free fatty acids, or remodeling triglycerides to phospholipids.
  • the long chain ⁇ -3 polyunsaturated fatty acids, and in particular the EPA and DHA are in ethyl ester form in the composition.
  • At least 80% of the long chain ⁇ -3 polyunsaturated fatty acids of the composition is EPA in ethyl ester form.
  • the term "superparamagnetic nanoparticles” refers to nano-sized particles formed by an iron oxide nanoparticle, coated by an organic, inorganic polymer or a metal to prevent aggregation of the particles and provide them with biocompatibility, and that can be subsequently functionalized.
  • the superparamagnetic nanoparticles of the composition comprise an iron oxide nanoparticle, smaller than 20 nm in size, consisting of magnetite and covered by a polyacrylic acid (PAA) polymer.
  • PAA polyacrylic acid
  • Patent application CA2781329 describes a method for obtaining dispersions of magnetic nanoparticles, which consists in reacting an aqueous solution containing a polymer with a carboxyl group, at a temperature between 90 and 100 2 C, in a nitrogen atmosphere with a salt solution of di and trivalent iron and an alkaline solution. After precipitation of the nanoparticles by adding ethanol, the supernatant is removed and dissolved in water and the solution is subjected to dialysis. This method is accessible to a person skilled in the art and can be used to synthesize the superparamagnetic nanoparticles of the invention.
  • the superparamagnetic nanoparticles of the composition of the invention can be used as a contrast agent to enhance the T 2- weighted MRI image.
  • MRI is a technology based on nuclear magnetic resonance, useful for diagnostic imaging in medicine, which provides anatomical information.
  • Soft tissue images can be obtained by MRI directly with high resolution.
  • contrast agents are generally used to enhance the intensity of MRI images.
  • contrast agents that are used to highlight the visibility of the internal body structures of animals and humans.
  • gadolinium (III) based contrast agents such as Magnevist or Omniscam.
  • Superparamagnetic nanoparticles have also been widely studied for use as a contrast agent, primarily in the detection and study of liver cancer progression. Examples of contrasts based on superparamagnetic nanoparticles are Endorem and Resovist. To use these nanoparticles as a contrast agent, not only do they need to be safe and biocompatible, but they must also have a high degree of relaxation to effectively reduce T 2 (Hayashi et al; 2013).
  • the properties of the superparamagnetic nanoparticles of the invention, together with the other components, allow the simultaneous use of the composition to treat tumors with a relatively high spatial resolution of the tumor and which allows the use of other additional contrasts such as those based on gadolinium.
  • Another aspect of the invention is a method for measuring tumor progression using the composition of the invention by weighted MRI T 2, characterized you as superparamagnetic nanoparticles of the composition are used to increase the image contrast.
  • a fluorescent substance such as rhodamine
  • a fluorescent substance can be added to obtain fluorescence images combined with those of MRI, which opens up new pathways for a therapeutic agent using multimodal detection images combining MRI and fluorescence.
  • pharmaceutically acceptable medium refers to those compounds, materials, compositions, supplements, formulations, and / or doses that, according to the scope of medical knowledge, are suitable for use in tissues of humans and animals, without excessive toxicity, irritation, allergic reactions or other toxic complications compensated with a reasonable risk / benefit ratio.
  • composition of the invention has a synergistic behavior in the treatment of malignant tumors and more specifically in the treatment of gliomas, as can be seen in Figure 4, which demonstrates a surprising almost total regression of the tumor.
  • Another aspect of the invention is a method for treating malignant tumors comprising administering the therapeutically effective dose to a subject, of a composition comprising at least one liposome, a long chain ins-3 polyunsaturated fatty acid and a superparamagnetic nanoparticle and a medium pharmacologically acceptable.
  • the term “subject” refers to animals, including mammals, and preferably humans.
  • the terms “administer”, “administering”, “administration” refer to directly administering the composition to a subject, with an effective amount of the composition for the subject's body.
  • the term "effective amount” refers to an amount suitable to cure or at least partially stop the symptoms or condition of the disease and its complications.
  • the amount of the effective composition for its use will depend on the condition or disease to be treated, as well as the severity of the symptoms, and depending on the characteristics of the subject, such as his age, weight and his general state of health.
  • the composition can be administered by various forms, including but not limited to intravenous injection and / or infusion.
  • Another aspect of the invention is a method of administering to a subject the composition of the invention by intravenous injection and / or infusion to treat malignant tumors, and in a particular embodiment of the invention, to treat gliomas.
  • the composition may contain other ingredients.
  • stabilizers including antioxidants, non-steroidal anti-inflammatories, vitamins, flavonoids, minerals, trace elements, lycopene, bioactive proteins and peptides, oligosaccharides, glucosinolates, and extracts of plants among others.
  • composition containing liposomes is obtained by a method of lipid hydration and extrusion. For this, 20 mg of egg yolk L-a-phosphatidylcholine (Avanti).
  • the liposome suspension is extruded eleven times (Northern Lipids, Burnaby, CAN), through a 200 nm membrane (Whatman, GE Healthcare, Fairfield, Connecticut, USA) keeping the temperature at 50 2 C.
  • composition containing superparamagnetic liposomes and nanoparticles consisting of magnetite (0.5 mg Fe / ml) coated with polyacrylic acid, hereinafter referred to as "Nanotex", is obtained using the same synthesis method as for the composition that only has liposomes (A) with the addition of the nanoparticles together with the hydration buffer.
  • composition containing long chain ⁇ -3 polyunsaturated fatty acids and liposomes consisting of a refined ⁇ -3 oil, obtained from Peruvian anchovy, containing approximately 80% EPA in the form of ethyl ester, hereinafter referred to as 80% EPA-EE, and obtained by the same method as composition (A) by adding the ⁇ -3 oil in the hydration buffer (0.1 v / v).
  • compositions contain homogeneous liposomes obtained and stored at 4 2 C before further use.
  • the lipid layer that accumulates over time on the surface of the composition, as a lipid layer, and that is associated with the non-encapsulated ⁇ -3 oil, is removed from the composition by aspiration before use.
  • the size of (A) the composition containing liposomes, (B) the composition containing liposomes and 80% EPA-EE is determined by Dynamic Light Scattering (DLS, DynaPro MS / X (Wyatt Inc., Dernbach, DE).
  • Figure 2 upper panel, shows the size distribution of the liposomes.
  • the size of the composition (E) containing liposomes and Nanotex cannot be measured by the DLS technique due to the high refractivity of the nanoparticles.These measurements are performed by microscopy Transmission Electronics (TEM) Additionally, TEM measurements of (D) a solution containing only Nanotex, and (C) a composition containing liposomes stained with uranyl acetate are presented to make them observable by TEM.
  • TEM microscopy Transmission Electronics
  • FIG 2 upper panel shows the results of the measurements of the compositions (A) and (B) by DLS.
  • the composition (A) containing liposomes shows a diameter of 200 nm, which corresponds to the size of the filter used in extrusion.
  • Composition (B) containing liposomes and 80% EPA-EE shows in addition to the expected size of 200 nm liposomes, larger particles, approximately 7000 nm, indicated by the black arrow in Figure 2, upper panel. These larger particles accumulate over time at the top forming a lipid layer and correspond to 80% EPA-EE. This lipid layer is easily removed by aspiration before use.
  • Example 2 Measures of water relaxivity. Determination of the values of Ti and T 2 .
  • the values of the relaxation times Ti and T 2 of two different compositions containing liposomes or liposomes and Nanotex are determined. Different concentrations of both are prepared to determine the relationship between the concentration and the values of relaxivity, by dilutions of the original liposome or liposome suspensions and Nanotex (0.5 mg Fe / ml) at 50% and 25% (v / v).
  • the Ti and T 2 values of the samples are measured at 37 2 C using the Carr-Purcell-Meiboom-Gill (CPMG) sequence in a Bruker Minispec 1.5 Tesla (Bruker BIOSPIN, Ettlingen, DE).
  • CPMG Carr-Purcell-Meiboom-Gill
  • compositions containing liposomes and Nanotex show a significantly lower value than compositions containing only liposomes, over the entire concentration range investigated.
  • Table 2 shows that compositions containing liposomes and Nanotex show relaxation values a thousand times lower than compositions containing only liposomes.
  • a suitable glioblastoma model is developed in the present study by stereotactic implantation of approximately 10 6 C6 glioma cells in the caudate nucleus of adult CD1 mice (30-35 g body weight). At 15 days after tumor implantation, it has proliferated significantly. Mice survive approximately 3 weeks after implantation of tumor cells.
  • glioma growth in vivo after implantation in the mouse brain is followed by MRI, obtaining images weighted in Ti and T 2 periodically. All MRI measurements are performed using a 7 Tesla horizontal (16 cm diameter) magnetic field controlled from a Bruker Avance III radio frequency console, operating with Linux Paravision V software. Images weighted in Ti are obtained using a Multi Slice sequence Multi Echo (MSME) after administration of 100 microliters of Gd (III) DPTA (0.1 M) to increase the contrast of the images weighted in T ⁇ Las T 2 weighted images are taken using a fast acquisition sequence with contrast enhancement (RARE). Data comparison is performed using the mean values and the standard deviation. Weighted images are used to measure the size of glioma, while T 2 weighted images are used to distinguish between edema and glioma.
  • MSME Multi Slice sequence Multi Echo
  • RARE fast acquisition sequence with contrast enhancement
  • Group 1 (mice 1 and 2) is treated with compositions containing only liposomes
  • Group 2 (mice 3 and 4) is treated with compositions containing liposomes and Nanotex
  • Group 3 (mice 5 and 6) receives a treatment with a composition containing liposomes and 80% EPA-EE. All treatments are administered intravenously, by injection into the tail vein (a single dose of 100 microl) 15 days after implantation of the C6 glioma cells in the caudate nucleus of the brain.
  • compositions used, as well as their synthesis are those described in Example 1.
  • the size of the tumors is obtained by MRI images weighted on TV. T 2 images are used to distinguish between tumor and edema, in case of doubt.
  • the results obtained are shown in Table 3.
  • Mice treated with liposomes without long chain ins-3 polyunsaturated fatty acids show a continuous increase in glioma size.
  • Mice treated with compositions containing liposomes and 80% EPA-EE show a decrease in tumor size 15 days after treatment administration. In mice treated with compositions with liposomes and superparamagnetic nanoparticles, an evident decrease in tumor size is also observed after 15 days of the administration of treatment, very close to complete remission.
  • mice showed an overall improved appearance and showed obvious recovery symptoms, without hemiplegic or paraplegic lateralization and without alterations in hair color and density (which is not occurs in mice of Group 1).
  • Table 3 Tumor growth in the different groups of mice.
  • Figure 3 shows representative images of T 2- weighted MRI, of the evolution of gliomas in mice treated with (A) a composition containing liposomes, (B) a composition containing liposomes and 80% EPA-EE, and (C ) a composition that contains liposomes and Nanotex.
  • Example 3.2 Evaluation of the effect of compositions with liposomes, compositions with liposomes and superparamagnetic nanoparticles, and compositions with liposomes, Superparamagnetic nanoparticles and long chain ⁇ -3 polyunsaturated fatty acids
  • mice Two treatments are performed in mice in order to compare the efficacy of the treatment with the composition containing only superparamagnetic liposomes and nanoparticles and with the composition containing the three components, both performed 15 days after implantation of the C6 glioma cell tumor as It has already been explained above.
  • Group 1 receives a composition containing liposomes, the Nanotex superparamagnetic nanoparticle and long chain ⁇ -3 polyunsaturated fatty acids consisting of 80% EPA-EE, and Group 2 (mice 3 and 4) receive a composition that contains only liposomes and Nanotex.
  • the treatments, in both cases are administered intravenously by injection into the tail vein (a single dose of 100 microliters). Table 4 shows the results obtained.
  • the composition containing the combination of liposomes with Nanotex and 80% EPA-EE induces a large decrease in glioma size, just 6 days after administration.
  • the tumor regression is surprisingly almost complete. More specifically, measures of tumor size reduction exceed 90% of their initial size.
  • These mice also have a behavior and regression symptoms very close to their full recovery, without hair loss or color alterations, and without symptoms of hemiplegia or hemiparesis.
  • the gliomas are still increasing in size and no regression is still observed, maintaining all symptoms of malignant evolution, including alterations in color of hair, hemiplegia and hemiparesis.
  • Figure 4 shows representative results of T 2- weighted MRI of glioma evolution in mice treated with liposomes and superparamagnetic nanoparticles (Above, group 2, mouse 3) and the composition containing liposomes, superparamagnetic nanoparticles and 80% EPA-EE ( below, Group 1 mouse 2).
  • Bangham AD Horne RW, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope, Journal of Mol. Biol., 1964, 8 (5), 660-668. Horne RW, Bangham AD, Whittaker VP, Negatively stained lipoprotein membranes, Nature, 1963, 200, 1340.
  • Bangham AD Horne RW, Glauert AM, Dingle JT, Lucy JA, Action of saponin on biological cell membranes, Nature, 1962, 196, 952-955.
  • Torchilin VP Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery, 2005, 4, 145-160.
  • EP0697214 Liposomal cyclosporin pharmaceutical formulations.
  • EP2520281 Target-aiming drug delivery system for diagnosis and treatment of cancer containing liposome labeled with peptides which specifically targets interleukin-4 receptors, and manufacturing method thereof.
  • US201 10158903 One pot processes of preparing multifunctional liposome drug for imaging, delivery and targeting in cancer diagnosis and therapy.
  • WO2000000189 Method for reducing the damaging effects of radiation therapy on animal skin and mucosa.
  • US20130197087A1 Composition comprising a combination of DHA and EPA for administration prior to commencement of chemotherapy.

Abstract

Se describe la preparación, caracterización y evaluación in vivo de composiciones que contienen liposomas, ácidos grasos poliinsaturados ω-3 de cadena larga y nanopartículas superparamagnéticas, en el tratamiento de tumores malignos, y más concretamente en el tratamiento de gliomas y el efecto de reducción y/o remisión que producen en dichos tumores. Así mismo se describe el uso de la composición de la invención como agente de contraste en imagen MRI ponderada en T2, para el seguimiento de la evolución del tumor.

Description

Título
Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos
Campo de la invención
La invención se encuadra en el campo de la nanomedicina, en el tratamiento de enfermedades y de forma particular en la preparación y caracterización de composiciones que contienen una combinación de ácidos grasos poliinsaturados ω-3 de cadena larga, nanopartículas superparamagnéticas y liposomas y su uso para el tratamiento de tumores malignos y de forma particular para el tratamiento de tumores con mal pronóstico como los gliomas.
Antecedentes de la invención
Existen numerosas formas de cáncer que afectan a los seres humanos, pero teniendo en cuenta su mal pronóstico y el notable deterioro de la calidad de vida de los pacientes, uno de las más graves está constituido por los tumores cerebrales malignos. Solo en los Estados Unidos, cada año se diagnostican entre 15.000 y 20.000 personas con tumores cerebrales malignos (18.7 casos por cada 100.000 habitantes), de ellos, el 80% son gliomas. Los gliomas son los tumores cerebrales incurables más frecuentes y devastadores. Se originan a partir de la transformación de células gliales y (Lopez-Larrubia et al; 201 1 ), y según la clasificación de la Organización Mundial de la Salud de 2007, se clasifican en; astrocitomas, oligodendrogliomas y oligoastrocitomas, (Groot et al; 201 1 , Doblas et al; 2010, Chen et al; 2012) en función de su origen celular. Entre ellos, el tipo más común son los astrocitomas, representados en grado creciente de mortalidad como, grado I (astracitoma pilocitico), grado II (astrocitomas de bajo grado), grado III (astrocitomas de alto grado) o grado IV (glioblastoma multiforme). Mientras que los astracitomas de bajo grado presentan una supervivencia cercana a los 5 años, los grados altos, en particular el gliobalstoma multiforme (GMB), el tipo más agresivo de glioma que representa aproximadamente el 50% de los gliomas, presenta un tiempo de supervivencia muy bajo, tan solo el 5% a los 3 años.
Aunque los gliomas malignos son incurables por el momento, se emplean diferentes estrategias terapéuticas para prolongar y mejorar la calidad de vida de los pacientes (Stupp et al; 2010). Los posibles tratamientos de esos tumores malignos consisten en la eliminación quirúrgica, quimioterapia y radioterapia. Aunque la eliminación quirúrgica de los tumores es la técnica más efectiva en todos los casos, la radioterapia y la quimioterapia se usan también para complementarla, sobre todo cuando cirugía es impracticable debido a la localización de la lesión.
La quimioterapia que se usa habitualmente, está basada en la temozolamida (Friedman et al; 2000), un agente alquilante de segunda generación, permeable a la barrera hematoencefálica, que ha demostrado eficacia contra algunos gliomas. Un agente complementario y a veces incluso alternativo es el Irinotecan, un inhibidor de la topoisomerasa I, una enzima crucial para la replicación del ADN, (Vredenburg et al; 2009). Las terapias angiogénicas también pueden resultar ventajosas, en particular aquellas que utilizan anticuerpos monoclonales frente a los factores de crecimiento vascular endotelial (VGEF) (Bevacuzimab) (Ferrara et al; 2004). Desafortunadamente, muchos pacientes desarrollan resistencia contra esos fármacos, originado un crecimiento incontrolado del tumor, con consecuencias fatales.
El mal pronóstico de este tipo de tumores se debe principalmente a la capacidad de invasión de las estructuras cerebrales que rodean las células tumorales, lo que hace muy difícil su completa resección (Wang et al; 2012). . A pesar de los avances en el diagnóstico y en el tratamiento, incluyendo los que se basan en la expresión y el transporte de genes para inducir la muerte celular, la inhibición de la angiogénesis del tumor (Castro et al; 201 1 ), o el uso de nuevas modalidades de radiación como los tratamientos de haces de protones (Hauskwal et al; 2012), la media de supervivencia en pacientes diagnostícaos con GBM es de tan solo 15 meses (Auffinger et al; 2013). En vista del desfavorable pronóstico, resulta esencial actualmente, desarrollar nuevos tratamientos que mejoren el pronóstico y aumenten el tiempo de supervivencia medio de los pacientes diagnosticados con un glioma.
En este sentido, el desarrollo de nuevas terapias y formulaciones farmacéuticas que mejoren el tratamiento de los gliomas, representa un importante reto científico y tecnológico. En particular, se considera ahora que la combinación de agentes terapéuticos con agentes de imagen, mediante nuevas aproximaciones nanotecnológicas, podría proporcionar importantes progresos en el tratamiento de los gliomas. Existen varias partículas de tamaño nanométrico, orgánicas e inorgánicas, que han sido ampliamente estudiadas debido a su utilidad en el tratamiento de tumores; liposomas, micelas, nanopartículas poliméricas, dendrímeros, nanopartículas de óxido de hierro y nanopartículas de oro (Kim et al; 2010). Además las nanopartículas superparamagnéticas de óxido de hierro también se han usado en imagen cerebral de tumores mediante Imagen por Resonancia Magnética (MRI), debido a que resultan captadas por los macrófagos que rodean el tumor, delimitándole (Valable et al; 2008).
Los liposomas, descritos a principios de los sesenta por Alee D. Bangham (Bangham and Horne, 1964; Horne et al; 1963; Bangham et al; 1962), son vesículas de tamaño nanométrico formadas por una o más bicapas de fosfolípidos, con un ambiente acuoso en su interior (lumen). Existen diferentes tipos de liposomas dependiendo de su tamaño y del número de bicapas. En general, los liposomas se pueden clasificar en; vesículas unilamelares de tamaño pequeño, (Small Unilammellar Vesicles, SUV), vesículas unilamelares de tamaño grande (Large Unilammellar Vesicles, LUV) y vesículas multilamelares de tamaño grande (Large Multilammellar Vesicles, LMV) (Lasic, 1988).
Se ha investigado en profundidad la utilización de liposomas para transportar fármacos (Park et al; 2004), dada su versatilidad para transportar a la vez, tanto fármacos hidrosolubles en su lumen, como fármacos liposolubles, insertados en su membrana. Además se pueden colocar péptidos selectivos, proteínas o anticuerpos, en su membrana haciendo posible dirigir los liposomas contra células o dianas moleculares específicas (Leserman et al; 1980). Existen distintos mecanismos de direccionamiento liposomal,uno pasivo; en el que los liposomas se acumulan en la región patológica debido al incremento en la permeabilidad capilar (Enhanced Permeability Retention, EPR), y uno activo; mediante la modificación del liposoma para incluir en su superficie una molécula que reconozca una diana específica en el tejido. El efecto EPR puede facilitar empleando liposomas recubiertos de polímeros de polietilenglicol (PEG) unidos a fosfatidiletanolamina. Se sabe que los liposomas con PEG resisten más eficazmente a la opsonización (absorción y transporte al interior celular) y manifiestan un tiempo de permanencia en la sangre significativamente mayor, pudiendo además modificarse a conveniencia con moléculas específicas capaces de reconocer tejidos diana. Como ejemplo, destacan los liposomas que contienen péptidos arginina-glicina-acido aspártico que reconocen la integrina alfa (v) beta (iii) sobreexpresada en los capilares neoangiogénicos tumorales. (Torchilin, 2005). Una revisión reciente del uso de los liposomas en el transporte de fármacos (Torchilin, 2005), muestra que muchos de los usos incluyen el transporte intravenoso de drogas anticancerígenas, como la doxorrubicina o de fragmentos de ácidos nucleicos. Por ejemplo, la solicitud de patente EP069724 describe liposomas de menos de 100 nm que contienen, fosfatidilcolina, fosfatidilglicerol y ciclosporina para reducir la resistencia múltiple a fármacos y el crecimiento de las células cancerosas. EP2433619 describe un proceso para producir liposomas cargados o no con 7- -hydroxi-colesteril-3- -oleato (7-β-ΟΗΟΟΕ) para tratar astracitomas anaplásicos o glioblastomas. La solicitud de patente US201200521 15 reivindica liposomas de menos de 200 nm dirigidos a los tumores, que llevan preferentemente imipramina azul a los gliomas. Pero el uso de los liposomas en cáncer no solo se limita al tratamiento sino también a su diagnóstico. Así por ejemplo en la solicitud de patente EP2520281 se describe el uso de liposomas marcados con péptidos dirigidos al receptor de interleukina-4, para el diagnóstico y tratamiento del cáncer. Se han utilizado anteriormente composiciones con liposomas para aumentar el contraste en imágenes de MRI. La solicitud de patente EP2578237 describe una composición de liposomas que contienen un agente de contraste para diagnosticar isquemia. En la solicitud de patente US201 10158903 también se describen liposomas multifuncionales que contienen nucleótidos radioactivos para imagen, y que además transportan doxorrubicina para el tratamiento del cáncer.
También se han desarrollado aplicaciones cosméticas para los liposomas (Mezei, and Gulasekharam, 1980) o nutracéuticas (Mozafari et al; 2008), por ejemplo para aumentar la biodisponibilidad de algunos nutrientes imitando los propios mecanismos fisiológicos empleados en la absorción de grasas y aceites mediante la incorporación de estos nutrientes en liposomas de tamaño nanométrico. En este sentido Liu y colaboradores (Liu et al; 201 1 ) investigaron el uso de nanoliposomas encapsulando ácidos grasos de cadena media (MCFA) para disminuir el almacenamiento de grasa de la dieta (Dora, 201 1 ). También se han encapsulado ácidos grasos ω-3 en liposomas (Lasic, 1988) para enmascarar su sabor y olor entre otros.
La solicitud de patente US201 10274746 describe liposomas terapéuticos que contienen ésteres de ácidos grasos Ci6-C22, en los que los ácidos grasos pueden ser en algún caso ω-3 y ω-6, así como los métodos para obtenerlos y sus usos. En particular su uso en sujetos, para transportar un compuesto activo que puede ser un nutracéutico y/o un fármaco con un efecto sinérgico.
Se ha descrito también el uso de los ácidos grasos poliinsaturados ω-3 de cadena larga en el tratamiento de tumores. Se ha propuesto su uso como agentes adjuvantes antitumorales (Merendino et al; 2013). En particular, se ha podido establecer que los ácidos grasos poliinsaturados ω-3 disminuyen la expresión de los oncogenes ras y bcl-2 y que el ácido docosahexanoico (DHA) tiene importantes efectos en el metabolismo cerebral, mejorando el funcionamiento cerebral en la enfermedad de Alzheimer (Quinn et al; 2010). También se ha descrito que el ácido icosapentaenoico (EPA) inhibe la producción de interleukina-6 en células de glioma C6, interfiriendo de esta forma en la respuesta pro-inflamatoria necesaria para que el crecimiento tumoral. (Kawasima et al; 2008).
Por otro lado, se ha descrito que la utilización de EPA en forma de ácido graso libre (con una pureza de al menos el 80%), reduce la proliferación celular en pacientes con historial de pólipos colorrectales (WO2006067498). Otras aplicaciones del EPA y DHA relacionadas con los tumores, previamente descritas incluyen su combinación con sustancias quimioterapéuticas para reducir sus efectos secundarios (US20130197087A1 ), o reducir el daño en los tejidos, en la piel y las mucosas en animales en tratamiento de radioterapia (WO2000000189).
Por contra, otras muchas revisiones sistemáticas han puesto en duda la premisa de que los aceites de pescado ω-3 en la dieta son útiles para reducir diferentes tumores, reavivando el debate acerca del rol de los ácidos grasos poliinsaturados ω-3 como nutrientes quimio protectores.
El término "nanotecnología" se usa tradicionalmente para describir materiales con un tamaño por debajo de los 100 nm.
Las nanopartículas superparamagnéticas están formadas típicamente por dos componentes, un núcleo, que consiste en una nanopartícula de óxido de hierro (generalmente magnetita con un tamaño inferior a 30 nm), un recubrimiento (un polímero orgánico o inorgánico, o un metal) que proporciona biocompatibilidad e interacciones favorables con el sistema biológico, esta superficie puede funcionalizarse de forma que realice la función deseada in vivo. Estas nanopartículas han sido ampliamente utilizadas en experimentación, en aplicaciones in vivo en MRI, inmunoensayos, reparación de tejidos, hipertermia, así como en el transporte de fármacos incluyendo el tratamiento de gliomas (Auffinger et al; 2013). Cada aplicación concreta de las nanopartículas superparamagnéticas requiere que estas tengan unas propiedades específicas. El uso de estas nanopartículas en aplicaciones biomédicas requiere compatibilidad con los tejidos biológicos y unas propiedades físicas y químicas uniformes (Gupta and Gupta, 2006). El uso de nanopartículas superparamagnéticas para el tratamiento de tumores requiere que la superficie de la nanopartícula sea capaz de unirse o adsorber los fármacos para transportarlos de forma efectiva hasta el tejido enfermo (Jong and Borm, 2008).
Las nanopartículas magnéticas cubiertas con una superficie apropiada pueden formar una suspensión homogénea al dispersarse en solventes adecuados. En estas condiciones esas nanopartículas pueden ser útiles como agentes de contraste en MRI (Gupta and Gupta, 2005). Además de biocompatibilidad, las nanopartículas que se usan como agente de contraste deben también tener valores de saturación magnética altos, valores adecuados de ΤΊ, T2 o T2« y una estrecha distribución de tamaños.
Se han desarrollado nanopartículas superparamagnéticas para el tratamiento del cáncer mediante hipertermia (MHT) (Hayashi et al; 2013; Silva et al; 201 1 ) y para su diagnóstico, como agente de contraste en MRI. Pero hasta donde conocemos, nunca se han usado las nanopartículas superparamagnéticas directamente, por si solas, para matar células tumorales.
Se ha comparado los liposomas con las nanopartículas libres (Alphandary et al; 2000) debido a que ambos tienen tamaño nanométrico y pueden ser funcionalizados en la superficie (Malam et al; 2009). Se han encapsulado nanopartículas de magnetita en liposomas (magnetoliposomas) (De Cuyper and Joniau, 1988) lo que ha permitido su detección in vivo, mediante técnicas de MRI. En este sentido, los liposomas han tenido considerable interés como agentes teragnósticos (combinando terapia y diagnóstico) ya que pueden simultáneamente transportar fármacos solubles en lípidos o en agua y agentes adecuados para la visualización in vivo (Al- Jamal and Kostarelos, 201 1 ).
Los liposomas son estructuras que pueden prepararse de forma que contengan en su lumen además del fármaco, una gran variedad de indicadores de imagen que pueden ser radioactivos, fluorescentes o superparamagnéticos. Esto permitiría visualizar directamente, de forma no invasiva, la presencia de los liposomas con el fármaco en las lesiones. Esta estrategia se conoce con el nombre de transporte de fármacos guiada por imagen, y. representa una aproximación muy prometedora para el diagnóstico y tratamiento simultáneo de enfermedades.
En vista de lo anteriormente expuesto, resulta evidente que existen diferentes aproximaciones para el tratamiento y visualización potencial de gliomas, usando nanopartículas y liposomas, así como en el uso de las nanopartículas (mediante hipertermia) y los ácidos grasos ω-3 para matar células tumorales. Sin embargo, la combinación de ácidos grasos poliinsaturados ω-3 de cadena larga, liposomas y nanopartículas superparamagnéticas para el tratamiento y la obtención de imágenes de tumores malignos y más concretamente gliomas, no ha sido descrita previamente. Además, hasta donde conocemos, no se ha logrado por el momento ningún tratamiento que mejore el pronóstico de los pacientes con gliomas, aumentando su expectativa de vida y su calidad.
Descripción breve de la invención
La presente invención se basa en el sorprendente descubrimiento de que la combinación de liposomas, ácidos grasos poliinsaturados ω-3 (como EPA y DHA en forma etil éster), y nanopartículas superparamagnéticas en una composición en un medio farmacológicamente aceptable disminuye el crecimiento de tumores malignos. Produciéndose una sinergia entre estos componentes, que estimula la regresión de gliomas.
Esta composición puede administrarse a un sujeto en la cantidad necesaria mediante inyección intravenosa y/o infusión. Adicionalmente, la composición de la invención permite la medida de la progresión de los tumores mediante MRI ponderada en T2, debido a las propiedades de las nanopartículas superparamagnéticas que contiene la composición.
Anticipándose al estado del arte, la composición de la invención y su uso en el tratamiento de tumores malignos y particularmente gliomas es un descubrimiento significativo, más aun si se tiene en cuenta que actualmente la esperanza de vida media de los pacientes es de 15 meses desde su diagnóstico. Breve descripción de las figuras
Figura 1 . Preparación de composiciones que contienen liposomas, composiciones que contienen liposomas y 80% EPA-EE, y composiciones que contienen liposomas y Nanotex. Figura 2. Paneles superiores: Determinación del tamaño de los liposomas, mediante DLS (Dynamic Light Scattering) (A) composiciones que contienen liposomas, (B) composiciones que contienen liposomas y 80% EPA-EE. Paneles inferiores: Determinación del tamaño mediante TEM (Transmission Electron Microscopy) de (C) composiciones que contienen liposomas teñidas con acetato de uranilo, (D) nanopartículas Nanotex y (E) composiciones que contienen liposomas y Nanotex.
Figura 3. Imágenes representativas de MRI ponderadas en T2 de la evolución de los gliomas en ratones (A) tratados con una composición que contiene liposomas, (B) una composición que contiene liposomas y 80% EPA-EE y (C) una composición que contiene liposomas y Nanotex.
Figura 4. Imágenes representativas de MRI ponderadas en T2 de la evolución de los gliomas en ratones (A) tratados con una composición que contiene liposomas y Nanotex y (B) tratados con una composición que contiene liposomas, 80% EPA-EE y Nanotex. Descripción detallada de la invención
Se ha descubierto que una composición que contiene liposomas, ácidos grasos poliinsaturados ω-3 de cadena larga y nanopartículas superparamagnéticas en un medio farmacológicamente aceptable es útil para el tratamiento de tumores malignos, y más concretamente es útil para el tratamiento de gliomas, un tipo de tumores cuyo pronóstico es actualmente, funesto.
Un primer aspecto de la invención es una composición que contiene al menos un liposoma, un ácido graso poliinsaturado ω-3 de cadena larga y una nanopartícula superparamagnética. La composición además puede comprender un medio farmacológicamente aceptable entre otros componentes.
Los términos, "un", "uno", "una" tal y como se usan en la presente invención, no denotan una limitación de cantidad, sino que denotan la presencia de al menos uno de los elementos. Tal y como se usa en la invención, el término "liposomas" se refiere a vesículas de tamaño nanométrico formadas por una bicapa de fosfolípidos (liposomas unilamelares) con una distribución de tamaño homogénea. Otro aspecto de la invención es, la composición de la invención, en la que los liposomas son unilamelares con una distribución de tamaños homogénea y un diámetro medio de 200 nm.
Los liposomas, formados por una o más bicapas lipídicas, con un ambiente acuoso en su interior, han sido ampliamente descritos en el estado del arte, y pueden prepararse mediante una variedad de métodos accesibles para un experto en la materia. Un protocolo habitual para obtener los liposomas consiste en disolver la cantidad deseada de fosfolípidos en un solvente orgánico y evaporar ese solvente para obtener una capa delgada de fosfolípidos. Esta capa se hidrata posteriormente con un tampón acuoso y el compuesto que se desee encapsular en los liposomas. Los liposomas que se obtienen con esta técnica son bastante heterogéneos (multilamelares y de diferentes tamaños) y se necesitan varios pasos de extrusión a través de membranas de poro controlado, para obtener liposomas con una bicapa y una distribución de tamaños homogénea (Torchilin et al; 2003). La distribución de tamaños de los liposomas también puede modificarse controlando la agitación durante el proceso de hidratación de los lípidos o mediante la adición de detergentes como se describe en la patente US5,534,499 o usando diversas técnicas como filtros con diferente tamaño de poro.
Los métodos de síntesis de liposomas unilamelares con una distribución de tamaños deseada están descritos previamente en el estado del arte, y son bien conocidos para un experto en la materia que puede emplearlos para obtener los liposomas de la composición de la invención.
El término "ácidos grasos poliinsaturados ω-3 de cadena larga" tal y como se usa en la presente invención se refiere a ácidos grasos con una cadena de al menos 13 átomos de carbono y dos o más dobles enlaces, donde el primer doble enlace se localiza entre el tercer y cuarto átomo de carbono contando desde el metilo final de la cadena.
Dos ácidos grasos poliinsaturados ω-3 de cadena larga de particular relevancia, esenciales en los mamíferos, son el EPA y DHA. La ingesta de EPA y DHA se produce fundamentalmente a través del consumo de pescado con niveles significativos de estos ácidos grasos, y/o a través de la suplementación en la dieta con aceites que contengan ácidos grasos poliinsaturados ω-3 de cadena larga.
Los ácidos grasos ω-3 de cadena larga que se usan generalmente en suplementos dietéticos se extraen en su mayoría del pescado. Los aceites con EPA y DHA además pueden extraerse de otros organismos como el kril, calamares, algas, hongos, protozoos y en un futuro de plantas transgénicas. En el aceite de pescado el EPA y DHA se encuentran principalmente como triglicéridos. El EPA y DHA en forma de esteres naturales pueden transformarse en otras formas químicas como etil ásteres, o ácidos libres entre otros empleando métodos descritos en el estado del arte como pueden ser procesos químicos, incluyendo la transesterificacion de triglicéridos con etanol o procesos enzimáticos con reacciones enzimáticas de transesterificacion. Los aceites que contienen los ácidos grasos poliinsaturados ω-3 de cadena larga, pueden concentrarse y fraccionarse en compuestos específicos, como por ejemplo EPA y/o DHA, de forma selectiva, mediante métodos de separación y extracción ampliamente descritos en el estado del arte y accesibles para un experto en la materia.
La suplementación con aceites que contienen ácidos grasos poliinsaturados ω-3 de cadena larga tiene efectos beneficiosos en el perfil de lípidos en sangre, la formación de citoquinas, el balance oxidantes-antioxidantes, el tono simpático y parasimpático y la síntesis de los vasodilatadores prostaglandinas y óxido nítrico (Soumia et al; 2013), entre otras.
Los métodos previamente descritos en el estado del arte para obtener, fraccionar y concentrar ácidos grasos poliinsaturados ω-3 de cadena larga, y en particular EPA y/o DHA, son métodos de separación, tecnologías de destilación y extracción así como tecnologías de fraccionamiento mediante cromatografía, incluyendo aquellas que emplean C02 en condiciones supercríticas como solvente de extracción o fase móvil. Todos ellos pueden usarse para obtener los ácidos grasos poliinsaturados ω-3 de cadena larga de la composición de la invención.
En una realización particular los ácidos grasos poliinsaturados ω-3 de cadena larga de la composición de la invención contienen al menos EPA y/o DHA.
Los ácidos grasos poliinsaturados ω-3 de cadena larga, y en particular el EPA y DHA se encuentran de forma natural en forma esterificada como triglicéridos y fosfolípidos. Estos compuestos pueden concentrarse y después transformarse en, por ejemplo ácidos grasos libres, o remodelar los triglicéridos a fosfolípidos. En una realización preferida de la invención, los ácidos grasos poliinsaturados ω-3 de cadena larga, y en particular el EPA y DHA están en forma etil éster en la composición.
En una realización particular al menos el 80% de los ácido grasos poliinsaturados ω-3 de cadena larga de la composición es EPA en forma etil éster.
Tal y como se usa en la presente invención, el término "nanopartículas superparamagnéticas" se refiere a partículas de tamaño nanométrico formadas por una nanopartícula de óxido de hierro, recubierta por un polímero orgánico, inorgánico o un metal para evitar la agregación de las partículas y proporcionarles biocompatibilidad, y que pueden funcionalizarse posteriormente.
En una realización preferente de la invención, las nanopartículas superparamagnéticas de la composición comprenden una nanopartícula de óxido de hierro, de tamaño inferior a 20 nm, que consiste en magnetita y está recubierta por un polímero de ácido poliacrílico (PAA)
En el estado del arte se han descrito ampliamente métodos de síntesis de nanopartículas magnéticas, como por ejemplo la precipitación de óxidos de hierro en presencia de surfactantes o polímeros (Gupta and Gupta, 2005) y son accesibles para un experto en la materia.
La solicitud de patente CA2781329 describe un método para obtener dispersiones de nanopartículas magnéticas, que consiste en hacer reaccionar una solución acuosa que contiene un polímero con un grupo carboxilo, a temperatura entre 90 y 1002C, en atmosfera de nitrógeno con una solución de sal de hierro di y trivalente y una solución alcalina. Tras la precipitación de las nanopartículas mediante adición de etanol, se elimina el sobrenadante y se disuelven en agua y se somete la disolución a diálisis. Este método es accesible para una persona experta en la materia y puede usarse para sintetizar las nanopartículas superparamagnéticas de la invención.
Debido a sus adecuadas propiedades magnéticas, que se muestran en la Tabla 2, las nanopartículas superparamagnéticas de la composición de la invención se pueden usar como agente de contraste para realzar la imagen de MRI ponderada en T2. La MRI es una tecnología basada en la resonancia magnética nuclear, útil para el diagnóstico por imagen en medicina, que proporciona información anatómica. Se pueden obtener imágenes de tejidos blandos mediante MRI directamente con alta resolución. Sin embargo para realzar la intensidad de las imágenes de MRI generalmente se usan agentes de contraste.
Hay varios agentes de contraste que se usan para resalzar la visibilidad de las estructuras internas del cuerpo de animales y seres humanos. Las más comunes son agentes de contraste basados en gadolinio (III), como por ejemplo Magnevist u Omniscam. Las nanopartículas superparamagnéticas también han sido ampliamente estudiadas para su uso como agente de contraste, fundamentalmente en la detección y estudio de la progresión del cáncer de hígado. Ejemplos de contrastes basados en nanopartículas superparamagnéticas son Endorem y Resovist. Para usar estas nanopartículas como agente de contraste no solo se necesita que sean seguras y biocompatibles, sino que además deben tener una alta relajatividad para reducir efectivamente T2 (Hayashi et al; 2013).
Las propiedades de las nanopartículas superparamagnéticas de la invención, junto con el resto de componentes, permiten el uso simultáneo de la composición para tratar tumores con una relativamente alta resolución espacial del tumor y que permite el uso de otros contrastes adicionales como los basados en gadolinio.
Otro aspecto de la invención es un método para medir la progresión tumoral usando la composición de la invención mediante MRI ponderada en T2, caracterizada porque as nanopartículas superparamagnéticas de la composición se usan para aumentar el contraste de la imagen.
Adicionalmente en la composición se puede añadir una sustancia fluorescente, como por ejemplo rodamina, para obtener imágenes de fluorescencia combinadas con las de MRI, lo que abre nuevas vías para un agente teragnóstico utilizando imágenes multimodales de detección combinando MRI y fluorescencia. Tal y como se usa en la presente invención, el término "medio farmacéuticamente aceptable" se refiere a aquellos compuestos, materiales, composiciones, suplementos, formulaciones, y/o dosis que, según el alcance del conocimiento médico, son aptas para el uso en tejidos de seres humanos y animales, sin excesiva toxicidad, irritación, reacciones alérgicas u otras complicaciones tóxicas compensadas con un ratio riesgo/beneficio razonable.
Es totalmente inesperado que el uso de la composición de la invención tenga un comportamiento sinérgico en el tratamiento de tumores malignos y más específicamente en el tratamiento de gliomas, como puede verse en la Figura 4, que demuestra una sorprendente casi total regresión del tumor.
Otro aspecto de la invención es un método para tratar tumores malignos que comprende administrar la dosis terapéuticamente efectiva a un sujeto, de una composición que comprende al menos un liposoma, un ácido graso poliinsaturado ω-3 de cadena larga y una nanopartícula superparamagnética y un medio farmacológicamente aceptable.
Tal y como se usa en la presente invención, el término "sujeto" se refiere a animales, incluyendo mamíferos, y preferentemente humanos. Tal y como se usa en la presente invención, los términos "administrar", "administrando", "administración" se refieren a administrar directamente la composición a un sujeto, con una cantidad efectiva de la composición para el cuerpo del sujeto.
Tal y como se usa en la presente invención el término " cantidad efectiva" se refiere a una cantidad adecuada para curar o al menos detener parcialmente los síntomas o el estado de la enfermedad y sus complicaciones.
La cantidad de la composición efectiva para su uso, dependerá del estado o enfermedad a ser tratada, así como la severidad de los síntomas, y dependiendo de las características del sujeto, como su edad, peso y su estado general de salud.
La composición puede administrarse mediante diversas formas, incluyendo pero no limitándose a inyección intravenosa y/o infusión. Otro aspecto de la invención es un método de administrar a un sujeto la composición de la invención mediante inyección intravenosa y/o infusión para tratar tumores malignos, y en una realización particular de la invención, para tratar gliomas. Además de liposomas, ácidos grasos poliinsaturado ω-3 de cadena larga, y nanopartículas superparamagnéticas, la composición puede contener otros ingredientes. Por ejemplo, sin limitar el alcance de la presente invención, en una realización preferida, estabilizantes, incluyendo antioxidantes, anti-inflamatorios no esteroideos, vitaminas, flavonoides, minerales, elementos traza, licopeno, proteínas bioactivas y péptidos, oligosacáridos, glucosinolatos, y extractos de plantas entre otros.
Ejemplos
Ejemplo 1. Preparación y caracterización de liposomas
(A) La composición que contiene liposomas se obtiene mediante un método de hidratación de lípidos y extrusión. Para ello se toman 20 mg de L-a-fosfatidilcolina de yema de huevo (Avanti
Polar Lipids Inc., Alabaster, Alabama, USA) y se disuelve en 2 mi de cloroformo (Merck, Darmstad, DE). La solución se coloca en un matraz redondo y se somete a evaporación por rotación (Heindolph Instruments, Schwabach, DE) durante 60 minutos, 280 rpm, 474 mBar y 402C. La capa de lípidos que se forma antes de la evaporación del cloroformo se somete a rotación en las mismas condiciones para eliminar los restos de cloroformo. Luego la capa de lípidos desecada se rehidrata con 5 mi de agua y se somete a rotación durante 60 minutos a presión atmosférica y 502C. Este proceso genera una suspensión heterogénea de liposomas de distintos tamaños. Para obtener una distribución de tamaños homogénea se extruye la suspensión de liposomas once veces (Northern Lipids, Burnaby, CAN), a través de una membrana de 200 nm (Whatman, GE Healthcare, Fairfield, Connecticut, USA) manteniendo la temperatura a 502C.
(B) La composición que contiene liposomas y nanopartículas superparamagnéticas (SOLUCIONES NANOTECNOLÓGICAS, S.L, Mallén, Zaragoza, España) que consisten en magnetita (0.5 mg Fe/ml) recubiertas de ácido poliacrílico, denominadas a partir de aquí como "Nanotex", se obtienen usando el mismo método de síntesis que para la composición que solo tiene liposomas (A) con la adición de las nanopartículas junto con el tampón de hidratación. (E) La composición que contiene liposomas y ácidos grasos poliinsaturados ω-3 de cadena larga (Solutex, Alcobendas, Madrid, Spain) que consisten en un aceite ω-3 refinado, obtenido a partir de anchoveta peruana, que contiene aproximadamente un 80% de EPA en forma de etil éster, a partir de ahora denominado 80% EPA-EE, y obtenida mediante el mismo método que la composición (A) añadiendo el aceite ω-3 en el tampón de hidratación (0.1 v/v).
Todas las composiciones obtenidas contienen liposomas homogéneos y se almacenan a 42C antes de su posterior utilización. La capa de lípidos que se acumula con el tiempo en la superficie de la composición, como una capa lipídica, y que se asocia al aceite ω-3 no encapsulado, se elimina de la composición por aspiración antes de su uso.
Los métodos de síntesis de las composiciones se detallan en la Figura 1 .
El tamaño de (A) la composición que contiene liposomas, (B) la composición que contiene liposomas y 80% EPA-EE se determina mediante Dynamic Light Scattering (DLS, DynaPro MS/X (Wyatt Inc., Dernbach, DE). La Figura 2, panel superior, muestra la distribución de tamaños de los liposomas. El tamaño de la composición (E) que contiene liposomas y Nanotex no puede medirse mediante la técnica de DLS por la elevada refractividad de las nanoparticulas. Estas medidas se realizan mediante Microscopía Electrónica de Transmisión (TEM). Adicionalmente se presentan medidas realizadas mediante TEM de (D) una solución que contiene solo Nanotex, y de (C) una composición que contiene liposomas teñidos con acetato de uranilo, para hacerlos observables mediante TEM.
La Figura 2, panel superior muestra los resultados de las medidas de las composiciones (A) y (B) mediante DLS. La composición (A) que contiene liposomas muestra un diámetro de 200 nm, que se corresponde con el tamaño de filtro empleado en la extrusión. La composición (B) que contiene liposomas y 80% EPA-EE, muestra además del tamaño esperado de liposomas de 200 nm, unas partículas de mayor tamaño, aproximadamente 7000 nm, señaladas con la flecha negra en la Figura 2, panel superior. Estas partículas de mayor tamaño se acumulan con el tiempo en la parte superior formando una capa lipídica y se corresponden con 80% EPA-EE. Esta capa lipídica se elimina fácilmente mediante aspiración antes de su uso. También se observan pequeñas gotículas de menor tamaño, 20-30 nm, señaladas con la flecha azul en la Figura 2, que desaparecen con el tiempo, agregándose y migrando a la superficie. La Figura 2, panel inferior muestra las medidas obtenidas mediante TEM. En el caso de (E) la composición que contiene liposomas y Nanotex, se observan cantidades apreciables de Nanotex en el espacio extraliposomal. Todos los resultados obtenidos mediante DLS y TEM muestran homogeneidad en el tamaño de los liposomas. Las composiciones permanecen homogéneas sin que se produzcan precipitados por un espacio prolongado de tiempo.
Ejemplo 2. Medidas de la relajatividad del agua. Determinación de los valores de Ti y T2. Para determinar la viabilidad del uso como agente de contraste en MRI, se determinan los valores de los tiempos de relajación Ti y T2 de dos composiciones diferentes conteniendo liposomas o liposomas y Nanotex. Se preparan diferentes concentraciones de ambas, para determinar la relación entre la concentración y los valores de relajatividad, mediante diluciones de las suspensiones originales de liposomas o de liposomas y Nanotex (0.5 mg Fe/ml) al 50% y al 25% (v/v). Los valores de Ti y T2 de las muestras se miden a 372C usando la secuencia de Carr-Purcell-Meiboom-Gill (CPMG) en un Bruker Minispec 1 .5 Tesla (Bruker BIOSPIN, Ettlingen, DE).
Tabla 1 . Valores de a diferentes concentraciones
Figure imgf000018_0001
Tabla 2. Valores de T2 a diferentes concentraciones.
Figure imgf000019_0001
Los valores de la relajatividad ΤΊ del agua se muestran en la Tabla 1 . Las composiciones que contienen liposomas y Nanotex muestran un valor de significantemente menor que las composiciones que contienen únicamente liposomas, en todo el rango de concentración investigado. Respecto a los valores de relajatividad T2, la Tabla 2 muestra que las composiciones que contienen liposomas y Nanotex muestran valores de relajación mil veces inferiores a las composiciones que únicamente contienen liposomas. Estos resultados indican que las composiciones que contienen liposomas y Nanotex podrían ser útiles como agentes de contraste en MRI ponderada en T2.
Ejemplo 3. Evaluación de un modelo de glioma in vivo
Se desarrolla un modelo de glioblastoma adecuado al presente estudio mediante la implantación estereotáxica de aproximadamente 106 células de glioma C6 en el núcleo caudado de ratones adultos CD1 (30-35 g de peso corporal). A los 15 días después de la implantación del tumor, este ha proliferado notablemente. Los ratones sobreviven aproximadamente unas 3 semanas después de la implantación de las células tumorales.
La evolución del crecimiento de los gliomas in vivo después de la implantación en el cerebro del ratón, se sigue mediante MRI obteniendo imágenes ponderadas en Ti y T2 periódicamente. Todas las medidas de MRI se realizan empleando un campo magnético de 7 Tesla horizontal (16 cm de diámetro) controlado desde una consola de radiofrecuencia Bruker Avance III, operando con software Linux Paravision V. Las imágenes ponderadas en Ti se obtienen usando una secuencia Multi Slice Multi Echo (MSME) después de la administración de 100 microlitros de Gd (III) DPTA (0.1 M) para aumentar el contraste de las imágenes ponderadas en T^ Las imágenes ponderadas en T2 se toman usando una secuencia rápida de adquisición con aumento del contraste (RARE). La comparación de datos se realiza usando los valores medios y la desviación estándar. Las imágenes ponderadas en se usan para medir el tamaño del glioma, mientras que las imágenes ponderadas en T2 se usan para distinguir entre edema y glioma.
Ejemplo 3.1 Evaluación del efecto de composiciones con liposomas, composiciones con liposmas y nanopartículas superparamagnéticas, y composiciones con liposomas y ácidos grasos poliinsaturados ω-3 de cadena larga
Se implementan tres tipos de tratamientos en ratones adultos CD1 (30-35 G de peso corporal) usando el modelo de células C6 de glioma descrito anteriormente. El Grupo 1 (ratones 1 y 2) recibe un tratamiento con composiciones que contienen solo liposomas, el Grupo 2 (ratones 3 y 4) recibe un tratamiento con composiciones que contienen liposomas y Nanotex y el Grupo 3 (ratones 5 y 6) recibe un tratamiento con una composición que contiene liposomas y 80% EPA- EE. Todos los tratamientos se administran por vía intravenosa, mediante inyección en la vena de la cola (una dosis única de 100 microl) a los 15 días de la implantación de las células C6 de glioma en el núcleo caudado del cerebro.
Las composiciones utilizadas, así como su síntesis son las descritas en el Ejemplo 1 .
El tamaño de los tumores se obtiene mediante imagines de MRI ponderadas en TV Las imágenes T2 se emplean para distinguir entre tumor y edema, en caso de duda. Los resultados obtenidos se muestran en la Tabla 3. Los ratones tratados con liposomas sin ácidos grasos poliinsaturados ω-3 de cadena larga muestran un aumento continuo el tamaño del glioma. Los ratones tratados con composiciones que contienen liposomas y 80% EPA-EE muestran una disminución del tamaño del tumor a los 15 días de la administración del tratamiento. En los ratones tratados con composiciones con liposomas y nanopartículas superparamagnéticas, se observa también una disminución evidente del tamaño del tumor después de 15 días de la administración de tratamiento, muy cercana a la remisión completa. Además de los resultados de MRI, es importante hacer notar que los ratones del Grupo 2 y 3 presentaron un aspecto general mejorado y mostraron síntomas obvios de recuperación, sin lateralización hemipléjica o parapléjica y sin alteraciones en el color y densidad del pelo (lo que no ocurre en los ratones del Grupo 1 ). Tabla 3. Crecimiento tumoral en los distintos grupos de ratones.
Figure imgf000021_0001
La figura 3 muestra imágenes representativas de MRI ponderada en T2, de la evolución de los gliomas en ratones tratados con (A) una composición que contiene liposomas, (B) una composición que contiene liposomas y 80% EPA-EE, y (C) una composición que contiene liposomas y Nanotex.
Ejemplo 3.2. Evaluación del efecto de composiciones con liposomas, composiciones con liposomas y nanopartículas superparamagnéticas, y composiciones con liposomas, nanopartículas superparamagnéticas y ácidos grasos poliinsaturados ω-3 de cadena larga
Se realizan dos tratamientos en ratones para poder comparar la eficacia del tratamiento con la composición que contiene solamente liposomas y nanopartículas superparamagnéticas y con la composición que contiene los tres3 componentes, ambos realizados a los 15 días de la implantación del tumor de células de glioma C6 como ya se ha explicado anteriormente. El Grupo 1 (ratones 1 y 2) recibe una composición que contiene liposomas, la nanopartícula superparamagnética Nanotex y ácidos grasos poliinsaturados ω-3 de cadena larga que consiste en 80% EPA-EE, y el Grupo 2 (ratones 3 y 4) reciben una composición que contiene solo liposomas y Nanotex. Los tratamientos, en ambos casos se administran por vía intravenosa mediante inyección en vena de la cola (una dosis única de 100 microlitros). La Tabla 4 muestra los resultados obtenidos.
Tabla 4. Resultados representativos del crecimiento tumoral después de la administración de distintas composiciones.
Figure imgf000022_0001
La composición que contiene la combinación de liposomas con Nanotex y 80% EPA-EE, induce una gran disminución del tamaño del glioma, tan sólo 6 días después de su administración. La regresión del tumor resulta, sorprendentemente, prácticamente completa. Más concretamente, las medidas de la reducción de tamaño del tumor superan al 90% de su tamaño inicial. Estos ratones presentan además un comportamiento y síntomas de regresión muy cercanos a su recuperación completa, sin pérdida de pelo ni alteraciones en el color del mismo, y sin síntomas ni de hemiplejía ni de hemiparesia. En el caso de los ratones tratados con una composición que contienen liposomas y Nanotex, a los 6 días del tratamiento, los gliomas todavía están aumentando su tamaño y aún no se observa regresión, manteniéndose todos los síntomas de evolución maligna, incluyendo alteraciones en el color del pelo, hemiplejía y hemiparesia.
La Figura 4 muestra resultados representativos de MRI ponderada en T2 de la evolución del glioma en ratones tratados con liposomas y nanopartículas superparamagnéticas (Arriba, grupo 2, ratón 3) y la composición que contiene liposomas, nanopartículas superparamagnéticas y 80% EPA-EE (abajo, Grupo 1 ratón 2).
Bibliografía
Lopez-Larrubia P, Cañadillas-Cárdenas E, Mételo A, Arias N, Martínez-Maestro M, Salguero A, Cerdán S, Magnetic resonance imaging of gliomas, Advances in the Biology, Imaging and Therapies for Glioblastoma, Prof.. Clark Chen (Ed.), 201 1 , ISBN: 978-953-307-284-5.
Stupp R, Tonn JC, Brada M, Pentheroudakis G, High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Annals of Oncology, 2010, 21 (S5), 190-193.
S. Friedman H, Kerby T, Calver H, Temozolomide and Treatment of Malignant Glioma, Clin. Canc. Res., 2000, 6, 2585-2597.
J Vredenburgh J, Desjardins A, Reardon D, S Friedman H, Experience with Irinotecan for the treatment of malignant gliomas, Neuroncology, 2009, 1 1 :80-91 .
Ferrara N, J. Hillan K, Gerber HP, Novotny W, Discovery and Development of bevacizumab, an anti-VGEF antibody for treating cáncer. Nature Reviews, Drud Discovery, 2004, 3, 391 -400. Merendino N, Costantini L, Manzi L, Molinari R, D'Eliseo D, Velott F, Dietary ω-3 Polyunsaturated fatty acid DHA: A potential adjuvant in the treatment of Cáncer, BioMed Research International, 2013, Volume 2013, 1 -1 1 . Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, Galvin JE, Emond J, Jack CR Jr, Weiner M, Shinto L, Aisen PS, Docosahexaenoic acid supplementation and cognitive decline in Alzheimer Disease. A randomized trial. JAMA, 2010, 304, 1903-191 1 .
Kawashima A, Harada T, Imada K, Yano T, Mizuguchi K Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1 b-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2008, 79, 59-65.
Valable S, Barbier E, Bernaudin M, Roussel S, Segebarth C, Petit E, Remy C, In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumours in a rat model of gliomas, Neurolmage, 2008; 40(2), 973-83.
Kim BY, Rutka JT, Chan WC, Nanomedicine. The New Engl. J. Med., 2010, 363(25):2434- 2443.
Bangham AD, Horne RW, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electrón microscope, Journal of Mol. Biol., 1964, 8(5), 660-668. Horne RW, Bangham AD, Whittaker VP, Negatively stained lipoprotein membranes, Nature, 1963, 200, 1340.
Bangham AD, Horne RW , Glauert AM, Dingle JT, Lucy JA, Action of saponin on biological cell membranes, Nature, 1962, 196, 952-955.
Lasic, DD, The mechanism of vesicle formation, Bioch. J., 1988. 256(1 ): 1 . Park, J.W., Benz CC, Martin FJ, Future directions of liposome-and immunoliposome-based cáncer therapeutics, Elsevier, Seminars in Oncology, 2004.
Leserman LD, Barbet J, Kourilsky F, Weinstein JN, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein, Nature, 1980, 288 (5791 ), 602-604.
Torchilin VP, Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery, 2005, 4, 145-160. EP0697214, Liposomal cyclosporin pharmaceutical formulations.
EP2520281 , Target-aiming drug delivery system for diagnosis and treatment of cáncer containing liposome labeled with peptides which specifically targets interleukin-4 receptors, and manufacturing method thereof.
EP 2433619, Novel antitumoral agent and its therapeutic uses.
US201200521 15, Nanocarrier therapy for treating invasive tumors. EP2578237, Compositions and methods for enhancing contrast in imaging.
US201 10158903, One pot processes of preparing multifunctional liposome drug for imaging, delivery and targeting in cáncer diagnosis and therapy. WO2000000189, Method for reducing the damaging effects of radiation therapy on animal skin and mucosa.
Lupton, JR, Chapkin RS, Chemopreventive effects of Ω-3 fatty acids, Cáncer Chemo prevention; Vol I, In: Kelloff, GJ, Hawk ET, Sigman CC, Promising Cáncer Chemopreventive Agents, Totowa, NJ: Humana Press, 2004, 591 -608. Maclean CH, Newberry SJ, Mojica WA, Issa, A Khanna P, Lim YW, Morton SC, Suttorp M, Tu W, Hilton LG, Garland RH, Traína SB, Shekelle PG, Effects of ω-3 fatty acids on cáncer risk, JAMA, 2006, 295, 403-415. WO2006067498, Eicosapentaenoic acid for the treatment of cáncer.
US20130197087A1 , Composition comprising a combination of DHA and EPA for administration prior to commencement of chemotherapy. Mezei M, Gulasekharam V, Liposomes - selective drug delivery system for the topical route of administration, Life Sci., 1980, 26, 1473-1477.
Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C, Nanoliposomes and their applications in food nanotechnology, J. Liposome Res., 2008, 18, 309-327.
Liu WL, Liu W, Liu CM, Yang SB, Liu JH, Zheng HJ, Su KM, Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice. Br. J. Nutr., 201 1 , 106(9): 1330-1336.
Dora IA, Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice, Br. J. Nutr., 201 1 ,106(9), 1330-1336.
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008; 108(6), 2064-21 10.
Auffinger B, Morshed R, Tobías A, Cheng Y, Ahmed A, Lesniak MS, Pereira DIA, Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice, Br. J. Nutr., 201 1 , 106(9), 1330-1336. Silva A, Oliveira T, Mamani J, Malheiros S,L Malavolta L, Pavón L, Sibov T, Amaro E, Tannús A, Vidoto E, Martins M, Santos R, Gamarra L, Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed., 201 1 , 6, 591 - 603. US201 10274746, Therapeutic Liposomes and Methods for Producing and Using the Same.
Kievit F, Zhang M, Surface engineering of iron oxide nanoparticles for targeted, cáncer therapy. Acc. Chem. Res., 201 1 , 44(10), 853-862.
Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D,Formation of Magnetite Nanoparticles at Low Temperature: From superparamagnetic to stable single domain partióles. PLoS ONE, 2013, 8(3): e57070. Soumia P, Sandeep C, Jubbin J, A fish a day, keeps the cardiologist away! - A review of the effect of ω-3 fatty acids in the cardiovascular system, Indian J. Endocrinol. Metab., 2013,17(3), 422-429.
Gupta K, Gupta M, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, 26, 3995-4021 .
Jong W, Borm D, Drug delivery and nanoparticles: applications and hazards, Int. J. Nano Med., 2008, 3(2), 133-149. Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K, Superparamagnetic nanoparticle clusters for cáncer theranostics combining magnetic resonance imaging and hyperthermia treatment, Theranostics, 2013, 3(6), 366-376.
Pinto-Alphandary H, Andremont A, Couvreur P, Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications, International journal of antimicrobial agents, 2000, 13(3), 155-168.
Malam Y, Loizidou M, Seifalian AM, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer,Trends Pharmacol. Sci., 2009. 30(1 1 ), 592-599.
De Cuyper, M, Joniau M, Magnetoliposomes. Eur. Biophys. J., 1988. 15(5), 31 1 -319. Al-Jamal WT, Kostarelos K, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 201 1 . 44(10), 1094-104.

Claims

Reivindicaciones
1 . Una composición que contiene al menos un liposoma, un ácido graso poliinsaturado ω-3 de cadena larga y una nanopartícula superparamagnética.
2. Una composición según la reivindicación 1 , donde las nanopartículas superparamagnéticas comprenden una nanopartícula de óxido de hierro, de tamaño inferior a 20 nm, que consiste en un núcleo de magnetita y está recubierta por un polímero de ácido poliacrílico (PAA).
3. Una composición según cualquiera de las reivindicaciones 1 -2, donde los liposomas, son una dispersión homogénea de liposomas unilamelares con un diámetro máximo de 200 nm.
4. Una composición según cualquiera de las reivindicaciones 1 -3, donde el ácido graso poliinsaturado ω-3 de cadena larga contiene al menos EPA y/o DHA.
5. Una composición según cualquiera de las reivindicaciones 1 -4, donde el ácido graso poliinsaturado ω-3 de cadena larga se encuentra en forma de etil éster.
6. Una composición según las reivindicaciones 1 -5 donde al menos el 80% de los ácido grasos poliinsaturados ω-3 de cadena larga de la composición son EPA en forma etil éster.
7. Una composición según las reivindicaciones 1 -6 que además comprende un medio farmacológicamente aceptable.
8. Uso de una composición según cualquiera de las reivindicaciones 1 -7, para la elaboración de un medicamento útil en el tratamiento de tumores malignos, que comprende administrar la dosis terapéuticamente efectiva a un sujeto.
9. Uso según la reivindicación 8, caracterizado porque se produce la muerte del tumor y/o se induce, estimula o produce la regresión tumoral.
10. Uso según las reivindicaciones 8-9, donde los tumores malignos son gliomas.
1 1 . Uso según cualquiera de las reivindicaciones 8-10, donde el sujeto es un humano.
12. Uso según las reivindicaciones 8-1 1 , donde la administración se realiza mediante infusión y/o inyección intravenosa.
13. Uso de la composición según cualquiera de las reivindicaciones 1 -7, para la elaboración de una composición que se emplea para medir la progresión tumoral, mediante MRI ponderada en T2, caracterizada porque las nanopartículas superparamagnéticas de la composición se usan para aumentar el contraste de la imagen.
PCT/ES2015/070016 2014-01-15 2015-01-14 Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos WO2015107244A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201690033A ES2579912B1 (es) 2014-01-15 2015-01-14 Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430035 2014-01-15
ES201430035A ES2543362B1 (es) 2014-01-15 2014-01-15 Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos

Publications (1)

Publication Number Publication Date
WO2015107244A1 true WO2015107244A1 (es) 2015-07-23

Family

ID=53542445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070016 WO2015107244A1 (es) 2014-01-15 2015-01-14 Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos

Country Status (2)

Country Link
ES (1) ES2543362B1 (es)
WO (1) WO2015107244A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219573A3 (en) * 2021-04-15 2022-11-24 Rolling Pastures Pte. Ltd. Microencapsulation wall material, suspension core capsule, edible capsule with electronics, methods and a production system for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052837A1 (en) * 2002-06-27 2004-03-18 William Stillwell Lipid conjugated anti-cancer drugs and methods of use thereof
WO2012104277A2 (en) * 2011-01-31 2012-08-09 Nanobiotix Method of monitoring the release from liposomes of a product of interest using superparamagnetic nanoparticles.
WO2013110828A1 (es) * 2012-01-27 2013-08-01 Soluciones Nanotecnológicas, S.L. Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052837A1 (en) * 2002-06-27 2004-03-18 William Stillwell Lipid conjugated anti-cancer drugs and methods of use thereof
WO2012104277A2 (en) * 2011-01-31 2012-08-09 Nanobiotix Method of monitoring the release from liposomes of a product of interest using superparamagnetic nanoparticles.
WO2013110828A1 (es) * 2012-01-27 2013-08-01 Soluciones Nanotecnológicas, S.L. Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRAESER, R. ET AL.: "Antimetastatic effects of liposomal gemcitabine and empty liposomes in an orthotopic mouse model of pancreatic cancer;", PANCREAS, vol. 38, no. 3, April 2009 (2009-04-01), pages 330 - 337, XP009134519 *
HERNANDO GRANDE, A.: "Nanotecnología and nanopartículas magnéticas: the física actual in lucha contra the enfermedad;", REV. R.ACAD.CIENC.EXACT.FIS. NAT. (ESP, vol. 101, no. 2, 2007, pages 321 - 327, XP055213076 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219573A3 (en) * 2021-04-15 2022-11-24 Rolling Pastures Pte. Ltd. Microencapsulation wall material, suspension core capsule, edible capsule with electronics, methods and a production system for producing the same

Also Published As

Publication number Publication date
ES2543362A1 (es) 2015-08-18
ES2543362B1 (es) 2016-06-06

Similar Documents

Publication Publication Date Title
Majumder et al. Nanocarrier-based systems for targeted and site specific therapeutic delivery
Wang et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer
Li et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer
Son et al. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo
Chen et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system
Kan et al. A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect
Zhao et al. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo
He et al. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy
Fan et al. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy
Liu et al. Ultrasound-mediated destruction of paclitaxel and oxygen loaded lipid microbubbles for combination therapy in ovarian cancer xenografts
ES2671047T3 (es) Encapsulado de fotosensibilizadores en nanoemulsiones
Zhang et al. Redox-and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy
Sabeti et al. Development and characterization of liposomal doxorubicin hydrochloride with palm oil
Tan et al. Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor
Li et al. Preparation, characterization and evaluation of bufalin liposomes coated with citrus pectin
Ni et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer
ES2951598T3 (es) Composición farmacéutica que combina al menos dos nanopartículas distintas y un compuesto farmacéutico, preparación y usos de los mismos
Chen et al. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats
Xie et al. Macroporous organosilicon nanocomposites co-deliver Bcl2-converting peptide and chemotherapeutic agent for synergistic treatment against multidrug resistant cancer
He et al. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer
Liu et al. Coloaded nanoparticles of paclitaxel and piperlongumine for enhancing synergistic antitumor activities and reducing toxicity
CN112535676A (zh) 提高阿霉素肿瘤主动靶向性和肾脏保护的纳米结构脂质制剂及制备方法
US20140105829A1 (en) Therapeutic nanoemulsion formulation for the targeted delivery of docetaxel and methods of making and using the same
Wang et al. Ceramide lipid-based nanosuspension for enhanced delivery of docetaxel with synergistic antitumor efficiency
Gautam et al. Emergence of novel targeting systems and conventional therapies for effective cancer treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201690033

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737909

Country of ref document: EP

Kind code of ref document: A1