WO2015106638A9 - Photovoltaic air-making system - Google Patents

Photovoltaic air-making system Download PDF

Info

Publication number
WO2015106638A9
WO2015106638A9 PCT/CN2015/000034 CN2015000034W WO2015106638A9 WO 2015106638 A9 WO2015106638 A9 WO 2015106638A9 CN 2015000034 W CN2015000034 W CN 2015000034W WO 2015106638 A9 WO2015106638 A9 WO 2015106638A9
Authority
WO
WIPO (PCT)
Prior art keywords
battery
air
photovoltaic
making system
inverter
Prior art date
Application number
PCT/CN2015/000034
Other languages
French (fr)
Other versions
WO2015106638A1 (en
Inventor
Dianjun LIU
Original Assignee
Beijing Hengqi New Energy Technologies Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hengqi New Energy Technologies Ltd. filed Critical Beijing Hengqi New Energy Technologies Ltd.
Publication of WO2015106638A1 publication Critical patent/WO2015106638A1/en
Publication of WO2015106638A9 publication Critical patent/WO2015106638A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • This invention relates to a photovoltaic air-making system, and belongs to the solar energy utilization technical field.
  • the photovoltaic direct current comes from the traditional solar photovoltaic generating station changes to alternating current which is being the same frequency and the same phase with the city electricity by the inverter, so as to join the city electricity net, and then the city electricity net deploys the current to users.
  • the alternating current comes from the photovoltaic station is difficult to being the same frequency and the same phase with the city electricity. Therefore, the alternating current comes from the photovoltaic station may be the impact to the city electric net, so most electrical distribution companies do not allow the electric energy comes from the photovoltaic station join their electricity net.
  • Caused energy comes from the photovoltaic generating station waste.
  • the object of the invention of this application is to provide a photovoltaie air-making system, which converting the photovoltaic energy into potential energy of air, transporting compressed air to some air users.
  • a photovoltaic air-making system which comprises photovoltaic battery, an inverter, an air compressor and an air storage container, wherein photovoltaic battery is used for converting sun photovoltaic energy into direct current energy, the inverter is used for converting the direct current energy into alternating current energy, and the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container.
  • the photovoltaic air-making system further comprises a pressure measure system, a compressor control module, wherein the pressure measure system is used for detecting the pressure of the compressed air in the air storage container, changing the said pressure to electric control signal and sending the said electric control signal to the compressor control module.
  • the compressor control module controls the output voltage and frequency of the inverter and the work status of the air compressor based on the said electric control signal.
  • the photovoltaic air-making system further comprises a battery charger, a first battery, a transfer switch of the first battery, a second battery, a transfer switch of the second battery and a battery management module, wherein the battery management module provides a first transfer control signal to the transfer switch of the first battery in order to make the battery charger charge the first battery and the second battery alternately through the transfer switch of the first battery.
  • the battery management module also provides a second transfer control signal to the transfer switch of the second battery in order to make the first battery and the second battery provide the inverter direct current energy alternately through the transfer switch of the second battery.
  • the photovoltaic air-making system further comprises a MPPT control module, which adjusts the power of the battery charger depends on the sampling values of the photovoltaic battery’s output voltage and output current, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery.
  • a MPPT control module which adjusts the power of the battery charger depends on the sampling values of the photovoltaic battery’s output voltage and output current, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery.
  • the photovoltaie air-making system further comprises a directly-feedback switch, and the MPPT control module controls the directly-feedback switch on and off depends on the photovoltaic battery’s output voltage and current sampling values.
  • the photovoltaic air-making system further comprises a local controller, which comprises a man-machine interface and a communication control interface.
  • the said man-machine interface is used for connecting with the key-press and the display.
  • the communication control interface is used for connecting with the local personal computer and/or the internet.
  • the photovoltaic air-making system of the invention converts the photovoltaic energy into potential energy of air, and directly transports compressed air for some air users.
  • FIG. 1 is an entire schematic view of a photovoltaic air-making system provided by the invention.
  • FIG. 2 is a structural block view of a battery charger controller provided by the invention.
  • FIG. 3 is a working flow chart of a MPPT control module provided by the invention.
  • FIG. 4 is a circuit diagram of a charge-discharge system provided by the invention.
  • FIG. 5 is a working flow chart of a battery management control module provided by the invention.
  • FIG. 6 is a schematic view of an air compression system provided by the invention.
  • FIG. 7 is a working flow chart of a compressor control module provided by the invention.
  • FIG. 1 is an entire schematic view of photovoltaic air-making system provided by the invention.
  • the photovoltaic air-making system provided by the invention comprises photovoltaic battery, an inverter, an air compressor and an air storage container, wherein photovoltaic battery is used for converting sun photovoltaic energy into direct current energy.
  • the inverter is used for converting the direct current energy into alternating current energy.
  • the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container.
  • the photovoltaic air-making system further comprises a pressure measure system, and a compressor control module, wherein the pressure measure system is used for detecting the pressure of the compressed air in the air storage container and changing the said pressure to electric control signal and sending the said electric control signal to the compressor control module.
  • the compressor control module controls the output voltage of the inverter and the work status of the air compressor based on the said electric control signal.
  • the photovoltaic air-making system further comprises a battery charger, a first battery, a transfer switch of the first battery, a second battery, a transfer switch of the second battery and a battery management module, wherein the battery management module provides a first transfer control signal to the transfer switch of the first battery in order to make the battery charger charge the first battery and the second battery alternately through the transfer switch of the first battery.
  • the battery management module also provides a second transfer control signal to the transfer switch of the second battery in order to make the first battery and the second battery provide the inverter direct current energy alternately through the transfer switch of the second battery.
  • the photovoltaic air-making system further comprises a MPPT control module, which adjusts the power of the battery charger depends on the photovoltaic battery’s output voltage and current sampling values, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery.
  • the photovoltaic air-making system further comprises a direcfiy-feedback switch, and the MPPT control module controls the directly-feedback switch on and off depends on the photovoltaic battery’s output voltage and current sampling values.
  • the photovoltaic air-making system further comprises a local controller, which comprises a man-machine interface and a communication control interface, the said man-machine interface is used for connecting with the key-press and the display, the communication control interface is used for connecting with the local personal computer and/or the intemet.
  • a local controller which comprises a man-machine interface and a communication control interface
  • the said man-machine interface is used for connecting with the key-press and the display
  • the communication control interface is used for connecting with the local personal computer and/or the intemet.
  • FIG. 2 is a structural block view of a battery charger controller provided by the invention.
  • the MPPT control module provides high and low level signal to the drive transistor TR1 based on the value of the sampling voltage and sampling current. When the product of the sampling voltage and the sampling current is higher and exceeds a certain value, the MPPT control module provides a high level signal to the transistor TR1.
  • the transistor TR1 is turned on, and which collecting electrode has current through by.
  • the relay J3’s line package which is connected to the collecting electrode has current through by too, which normally open dot is turned on.
  • One part of the output power of the photovoltaic battery is used for charging the battery, and the other part is supplied to the inverter to provide energy for the air compressor.
  • the MPPT control module only supplies the energy to the battery charger.
  • the battery charger charges the first battery and the second battery alternately through the transfer switch.
  • the first battery and the second battery alternately provide direct current to the inverter.
  • the first battery and the second battery are not used to storing electrical energy, but used to stabilize output voltage of the inverter andensure that the air compressor is work properly. Thence the battery capacity is very low.
  • FIG. 3 is a working flow chart of a MPPT control module provided by the invention. As shown in FIG. 3, MPPT control process includes:
  • the timer interrupts service program includes:
  • MPPT algorithm includes:
  • FIG. 4 is a circuit diagram of a charge-discharge system provided by the invention.
  • charge-discharge system comprises a battery charger, a first battery, a second battery, a first transfer switch, driver circuit of the first transfer switch, a second transfer switch, driver circuit of the second transfer switch, sampling circuit of the first battery, sampling circuit of the second battery and a battery management module.
  • the sampling circuit of the first battery comprises resistor R4 and R5. After the resistor R4 and the resistor R5 connect in series, they across the first battery both ends in parallel, of whose the voltage to earth of the intermediate node is V 1 .
  • the sampling circuit of the second battery comprises resistor R6 and R7.
  • the drive circuit to drive the first transfer switch comprises a transistor TR2 and a first relay J1.
  • the first transfer switch is the transfer contact point of the first relay J1.
  • the drive circuit to drive the second transfer switch comprises a transistor TR3 and a second relay J2.
  • the second transfer switch is the transfer contact point of the first relay J2.
  • FIG. 5 is a working flow chart of a battery management control module provided by the invention. As shown in FIG. 5, the battery management control module’s working process includes:
  • the first battery 1 provides electrical energy to the inverter; battery charger is used to recharge the second battery 2;
  • the second battery 2 provides electrical energy to the inverter; battery charger is used to recharge the first battery 1;
  • FIG. 6 is a schematic view of an air compression system provided by the invention.
  • the said air compression system comprises an inverter, an air compressor, an air storage container and a compressor control module, wherein, the inverter is used for converting the direct voltage into three-phase AC voltage and providing the three-phase AC voltage to air compressor.
  • There is a voltage test circuit set in the input terminal of the inverter which is used for testing the input DC voltage of the inverter.
  • the air compressor is used for compressing the normal-pressure air and storing the compressed air into the air storage container.
  • a speed sensor is set beside the air compressor revolving shaft, which is used for testing the speed of the air compressor.
  • a pressure sensor is set on the sidewall of the air storage container, which is used for testing the pressure of the compressed air stored in the air storage container.
  • the compressor control module provides control signals to inverter based on the signal from pressure sensor, the voltage test and speed sensor.
  • FIG. 7 is a working flow chart of a compressor control module provided by the invention. As shown in FIG. 7, the compressor control module’s working process includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A photovoltaic air-making system which belongs to the photovoltaic technical field is provided. The photovoltaic air-making system comprises a photovoltaic battery, an inverter, an air compressor and an air storage container. The photovoltaic battery is used for converting sun photovoltaic energy into direct current energy, the inverter is used for converting the direct current energy into alternating current energy, and the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container. The photovoltaic air-making system can store or convey optical energy in an air energy mode.

Description

A photovoltaic air-making system Technical Field
This invention relates to a photovoltaic air-making system, and belongs to the solar energy utilization technical field.
Background
The photovoltaic direct current comes from the traditional solar photovoltaic generating station changes to alternating current which is being the same frequency and the same phase with the city electricity by the inverter, so as to join the city electricity net, and then the city electricity net deploys the current to users. But, the alternating current comes from the photovoltaic station is difficult to being the same frequency and the same phase with the city electricity. Therefore, the alternating current comes from the photovoltaic station may be the impact to the city electric net, so most electrical distribution companies do not allow the electric energy comes from the photovoltaic station join their electricity net. Caused energy comes from the photovoltaic generating station waste.
Content of the Invention
In order to overcome technical problems exist in prior art, the object of the invention of this application is to provide a photovoltaie air-making system, which converting the photovoltaic energy into potential energy of air, transporting compressed air to some air users.
In order to achieve said object of the invention, a photovoltaic air-making system is provided in the invention, which comprises photovoltaic battery, an inverter, an air compressor and an air storage container, wherein photovoltaic battery is used for converting sun photovoltaic energy into direct current energy, the inverter is used for converting the direct current energy into alternating current energy, and the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container.
Preferably, the photovoltaic air-making system further comprises a pressure measure system, a compressor control module, wherein the pressure measure system is used for detecting the pressure of the compressed air in the air storage container, changing the said pressure to electric control signal and sending the said electric control signal to the  compressor control module. The compressor control module controls the output voltage and frequency of the inverter and the work status of the air compressor based on the said electric control signal.
Preferably, the photovoltaic air-making system further comprises a battery charger, a first battery, a transfer switch of the first battery, a second battery, a transfer switch of the second battery and a battery management module, wherein the battery management module provides a first transfer control signal to the transfer switch of the first battery in order to make the battery charger charge the first battery and the second battery alternately through the transfer switch of the first battery. The battery management module also provides a second transfer control signal to the transfer switch of the second battery in order to make the first battery and the second battery provide the inverter direct current energy alternately through the transfer switch of the second battery.
Preferably, the photovoltaic air-making system further comprises a MPPT control module, which adjusts the power of the battery charger depends on the sampling values of the photovoltaic battery’s output voltage and output current, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery.
Preferably, the photovoltaie air-making system further comprises a directly-feedback switch, and the MPPT control module controls the directly-feedback switch on and off depends on the photovoltaic battery’s output voltage and current sampling values.
Preferably, the photovoltaic air-making system further comprises a local controller, which comprises a man-machine interface and a communication control interface. The said man-machine interface is used for connecting with the key-press and the display. The communication control interface is used for connecting with the local personal computer and/or the internet.
Compared with prior art, the photovoltaic air-making system of the invention converts the photovoltaic energy into potential energy of air, and directly transports compressed air for some air users.
Brief Description of the Drawings
FIG. 1 is an entire schematic view of a photovoltaic air-making system provided by the invention.
FIG. 2 is a structural block view of a battery charger controller provided by the invention;
FIG. 3 is a working flow chart of a MPPT control module provided by the invention;
FIG. 4 is a circuit diagram of a charge-discharge system provided by the invention;
FIG. 5 is a working flow chart of a battery management control module provided by the invention;
FIG. 6 is a schematic view of an air compression system provided by the invention;
FIG. 7 is a working flow chart of a compressor control module provided by the invention.
Description of the Embodiments
The invention will hereinafter be described in detail with reference to the accompanying drawings.
FIG. 1 is an entire schematic view of photovoltaic air-making system provided by the invention. As shown in FIG. 1, the photovoltaic air-making system provided by the invention, comprises photovoltaic battery, an inverter, an air compressor and an air storage container, wherein photovoltaic battery is used for converting sun photovoltaic energy into direct current energy. The inverter is used for converting the direct current energy into alternating current energy. And the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container. The photovoltaic air-making system further comprises a pressure measure system, and a compressor control module, wherein the pressure measure system is used for detecting the pressure of the compressed air in the air storage container and changing the said pressure to electric control signal and sending the said electric control signal to the compressor control module. The compressor control module controls the output voltage of the inverter and the work status of the air compressor based on the said electric control signal. The photovoltaic air-making system further comprises a battery charger, a first battery, a transfer switch of the first battery, a second battery, a transfer switch of the second battery and a battery management module, wherein the battery management module provides a first transfer control signal to the transfer switch of the first battery in order to make the battery charger charge the first battery and the second battery alternately through the transfer switch of the first battery. The battery  management module also provides a second transfer control signal to the transfer switch of the second battery in order to make the first battery and the second battery provide the inverter direct current energy alternately through the transfer switch of the second battery. The photovoltaic air-making system further comprises a MPPT control module, which adjusts the power of the battery charger depends on the photovoltaic battery’s output voltage and current sampling values, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery. The photovoltaic air-making system further comprises a direcfiy-feedback switch, and the MPPT control module controls the directly-feedback switch on and off depends on the photovoltaic battery’s output voltage and current sampling values. The photovoltaic air-making system further comprises a local controller, which comprises a man-machine interface and a communication control interface, the said man-machine interface is used for connecting with the key-press and the display, the communication control interface is used for connecting with the local personal computer and/or the intemet.
FIG. 2 is a structural block view of a battery charger controller provided by the invention. As shown in FIG. 2, after the resistor R1 and the resistor R2 connected in series, they across the photovoltaic battery both ends in parallel, of whose the intermediate node is used to take out sampling voltage of the photovoltaic voltage. The ground terminal of the photovoltaic battery takes out the sampling current through a current transformer. The MPPT control module provides high and low level signal to the drive transistor TR1 based on the value of the sampling voltage and sampling current. When the product of the sampling voltage and the sampling current is higher and exceeds a certain value, the MPPT control module provides a high level signal to the transistor TR1. The transistor TR1 is turned on, and which collecting electrode has current through by. And the relay J3’s line package which is connected to the collecting electrode has current through by too, which normally open dot is turned on. One part of the output power of the photovoltaic battery is used for charging the battery, and the other part is supplied to the inverter to provide energy for the air compressor. When the product of the sampling voltage and the sampling current is less than the certain value, the  MPPT control module only supplies the energy to the battery charger. The battery charger charges the first battery and the second battery alternately through the transfer switch. The first battery and the second battery alternately provide direct current to the inverter. The first battery and the second battery are not used to storing electrical energy, but used to stabilize output voltage of the inverter andensure that the air compressor is work properly. Thence the battery capacity is very low.
FIG. 3 is a working flow chart of a MPPT control module provided by the invention. As shown in FIG. 3, MPPT control process includes:
S01: Initialize the MPPT control module;
S02: Set the timer constant;
S03: Start the timer interrupts service program;
S04: Repeatedly run MPPT algorithm to find the maximum output power;
The timer interrupts service program includes:
S01: Turn off the directly-feedback switch J3;
S02: Run MPPT algorithm;
S03: Record the power of the maximum power point P1;
S04: Turn on the directly-feedback switch J3;
S05: Run MPPT algorithm;
S06: Record the power of the maximum power point P2;
S07: Determine whether P1 > P2 established, if yes; execute S08, otherwise execute S09;
S08: Turn off the directly-feedback switch J3;
S09: Return to the main program.
MPPT algorithm includes:
S01: Measurement photovoltaic battery output voltage Vk and current Ik in time k, and calculate the output power Pk
S02: Compare the output power Pk in time k and the output power Pk-1 in time k-1, if Pk=Pk-1, record the power of the maximum power point, otherwise, execute S03;
S03: Determine whether Pk > Pk-1 established, if yes; execute S04, otherwise execute S05;
S04: Let Vk = Vk + ΔV, and then execute S06;
S05: Let Vk = Vk -ΔV;
S06: Return to S01.
FIG. 4 is a circuit diagram of a charge-discharge system provided by the invention. As shown in FIG. 4, charge-discharge system comprises a battery charger, a first battery, a second battery, a first transfer switch, driver circuit of the first transfer switch, a second transfer switch, driver circuit of the second transfer switch, sampling circuit of the first battery, sampling circuit of the second battery and a battery management module. Wherein, the sampling circuit of the first battery comprises resistor R4 and R5. After the resistor R4 and the resistor R5 connect in series, they across the first battery both ends in parallel, of whose the voltage to earth of the intermediate node is V1. The sampling circuit of the second battery comprises resistor R6 and R7. After the resistor R6 and the resistor R7 connected in series, they across the second battery both ends in parallel, of whose the voltage to earth of the intermediate node is V2. The drive circuit to drive the first transfer switch comprises a transistor TR2 and a first relay J1. The first transfer switch is the transfer contact point of the first relay J1. The drive circuit to drive the second transfer switch comprises a transistor TR3 and a second relay J2. The second transfer switch is the transfer contact point of the first relay J2.
FIG. 5 is a working flow chart of a battery management control module provided by the invention. As shown in FIG. 5, the battery management control module’s working process includes:
S01: Initialize the battery management module;
S02: Measure the output voltage V1 of the first battery 1, and measure the output voltage V2 of the second battery 2;
S03: Determine whether V1 > V2 established, if yes; execute S04, otherwise execute S06;
S04: Determine whether V1 > VBL established, if yes; execute S05, otherwise execute S08, wherein, VBL is the certain value of the charging voltage;
S05: The first battery 1 provides electrical energy to the inverter; battery charger is used to recharge the second battery 2;
S06: Determine whether V2 > VBL established, if yes; execute S07, otherwise execute S08;
S07: The second battery 2 provides electrical energy to the inverter; battery charger is used to recharge the first battery 1;
S08: Notify the compressor control module closing down and delay and waiting for;
S09: Return to S02.
FIG. 6 is a schematic view of an air compression system provided by the invention. As shown in FIG. 6, the said air compression system comprises an inverter, an air compressor, an air storage container and a compressor control module, wherein, the inverter is used for converting the direct voltage into three-phase AC voltage and providing the three-phase AC voltage to air compressor. There is a voltage test circuit set in the input terminal of the inverter, which is used for testing the input DC voltage of the inverter. The air compressor is used for compressing the normal-pressure air and storing the compressed air into the air storage container. A speed sensor is set beside the air compressor revolving shaft, which is used for testing the speed of the air compressor. A pressure sensor is set on the sidewall of the air storage container, which is used for testing the pressure of the compressed air stored in the air storage container. There further comprises an exhaust valve, which is used for exhausting the compressed air. The compressor control module provides control signals to inverter based on the signal from pressure sensor, the voltage test and speed sensor.
FIG. 7 is a working flow chart of a compressor control module provided by the invention. As shown in FIG. 7, the compressor control module’s working process includes:
S01: Testing the pressure from the pressure sensor in the air storage container;
S02: Determine whether the pressure is below lower limit, if yes; execute S03, otherwise execute S04;
S03: Determine whether the input voltage of the inverter is normal, if yes, according to the signal from the speed sensor to run the speed adjusting program, then execute S04; otherwise execute S07;
S04: Turn on the inverter and the air compressor, make the air compressor to fill the air storage container;
S05: Testing the pressure from the pressure sensor in the air storage container;
S06: Determine whether the pressure is upper limit, if yes; execute S07, otherwise return to S03;
S07: Stop the air compressor.
The working principle of the invention has been described herein above with reference to the accompanying drawings; however, the embodiment is used only for exemplarily illustrating the invention. The description is used only for explaining the claims. However, the scope of the invention is not limited to the description. Variations and alternatives that may be easily conceived within the technical scope disclosed in the invention by any person skilled in the art should be covered in the scope of the invention. Therefore, the scope of the invention should be accorded with the scope of the claims.

Claims (6)

  1. A photovoltaic air-making system, which comprises photovoltaic battery, an inverter, an air compressor and an air storage container, characterized in that, photovoltaic battery is used for converting sun photovoltaic energy into direct current energy, the inverter is used for converting the direct current energy into alternating current energy, and the air compressor is used for compressing the air through the alternating current energy and storing the compressed air into the air storage container.
  2. The photovoltaic air-making system of claim 1, characterized in that, the photovoltaic air-making system further comprises a pressure measure system, a compressor control module, wherein the pressure measure system is used for detecting the pressure of the compressed air in the air storage container and changing the said pressure to electric control signal and then sending the said electric control signal to the compressor control module, the compressor control module controls the output voltage of the inverter and the work status of the air compressor based on the said electric control signal.
  3. The photovoltaic air-making system of claim 2, characterized in that, the photovoltaic air-making system further comprises a battery charger, a first battery, a transfer switch of the first battery, a second battery, a transfer switch of the second battery and a battery management module, wherein the battery management module provides a first transfer control signal to the transfer switch of the first battery in order to make the battery charger charge the first battery and the second battery alternately through the transfer switch of the first battery, the battery management module also provides a second transfer control signal to the transfer switch of the second battery in order to make the first battery and the second battery provide the inverter direct current energy alternately through the transfer switch of the second battery.
  4. The photovoltaic air-making system of claim 3, characterized in that, the photovoltaic air-making system further comprises a MPPT control module, which adjusts the power of the battery charger depends on the photovoltaic battery’s output voltage and current sampling  values, in order to make the photovoltaic battery always being on the maximum output power state when the environment temperature or the light intensity is changed, improve the use efficiency of the photovoltaic battery.
  5. The photovoltaic air-making system of claim 4, characterized in that, the photovoltaic air-making system further comprises a directly-feedback switch, and the MPPT control module controls the directly-feedback switch on and offdepends on the photovoltaic battery’s output voltage and current sampling values.
  6. The photovoltaic air-making system of claim 5, characterized in that, the photovoltaic air-making system further comprises a local controller, which comprises a man-machine interface and a communication control interface, the said man-machine interface is used for connecting with the key-press and the display, the communication control interface is used for connecting with the local personal computer and/or the internet.
PCT/CN2015/000034 2014-01-20 2015-01-20 Photovoltaic air-making system WO2015106638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410024610.5A CN103762930A (en) 2014-01-20 2014-01-20 Photovoltaic gas-making system
CN201410024610.5 2014-01-20

Publications (2)

Publication Number Publication Date
WO2015106638A1 WO2015106638A1 (en) 2015-07-23
WO2015106638A9 true WO2015106638A9 (en) 2015-09-11

Family

ID=50530111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000034 WO2015106638A1 (en) 2014-01-20 2015-01-20 Photovoltaic air-making system

Country Status (2)

Country Link
CN (1) CN103762930A (en)
WO (1) WO2015106638A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762930A (en) * 2014-01-20 2014-04-30 青岛格兰德新能源有限公司 Photovoltaic gas-making system
CN104470133B (en) * 2014-12-05 2017-11-03 天津光电华典科技有限公司 A kind of solar street light intelligence control system and its charge/discharge control method
CN105429269A (en) * 2015-12-03 2016-03-23 赖勇清 Compressed air system employing photovoltaic power
CN110086229B (en) * 2019-05-29 2021-12-24 维沃移动通信有限公司 Charging method, charging device, terminal equipment and computer readable storage medium
CN110517627B (en) * 2019-08-14 2021-09-24 深圳市奥拓电子股份有限公司 LED display system, power supply control method and storage medium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005010751U1 (en) * 2004-11-12 2005-09-22 Hehmann, Mathias Solar energy capturing column has cylindrical shell with chamfered rotating top with flat panel at angle to vertical, carrying solar panels connected to gas generator and bottles for storing gas
JP2006181516A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Fresh water generator utilizing solar power generation
CN101109387B (en) * 2007-08-06 2012-08-22 中山大学 Photovoltaic water pump system with hydraulic pressure control function
CN101545577B (en) * 2009-05-08 2011-05-04 吴速 Method and system for quickly supplying air to compressed air motor vehicle by utilizing natural energy
US20130000342A1 (en) * 2010-01-29 2013-01-03 Carrier Corporation Solar power assisted transport refrigeration systems, transport refrigeration units and methods for same
KR20110094442A (en) * 2010-02-16 2011-08-24 주식회사 한성기건 Device for elimination bird nest using compressed air
DE102011007613A1 (en) * 2011-04-18 2012-10-18 Kaco New Energy Gmbh System for storing electrical energy e.g. solar energy generated by photovoltaic system, has reservoir designed as overhead gas storage for storing generated pressurized air and combustible gas, and turbine generating energy from air
CN102787981B (en) * 2011-05-17 2015-04-15 胡涛 Solar energy storage power generation system
CN202280578U (en) * 2011-09-05 2012-06-20 张建林 Wind power generation system boosted by compressed air
CN202348587U (en) * 2011-12-12 2012-07-25 大连职业技术学院 Electric energy storing device
CN102916473A (en) * 2012-11-14 2013-02-06 天津市翔晟远电力设备实业有限公司 Inter-backup type lithium battery management system
CN203057033U (en) * 2013-01-11 2013-07-10 金华三奇电子科技有限公司 Solar photovoltaic power station controller optimized output circuit
CN203554363U (en) * 2013-09-13 2014-04-16 无锡环特太阳能科技有限公司 Deep-sea energy storage system for solar power generation
CN103452739B (en) * 2013-09-13 2017-11-07 无锡环特太阳能科技有限公司 The energy storage method of solar power generation deep-sea energy-storage system
CN103762930A (en) * 2014-01-20 2014-04-30 青岛格兰德新能源有限公司 Photovoltaic gas-making system
CN203722539U (en) * 2014-01-20 2014-07-16 青岛格兰德新能源有限公司 Photovoltaic gas-making system

Also Published As

Publication number Publication date
WO2015106638A1 (en) 2015-07-23
CN103762930A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2015106638A9 (en) Photovoltaic air-making system
CN103733465B (en) Charging device
CN108288852B (en) Independent DC power system and method
US20090039826A1 (en) Solar energy charging/discharging system and charging/discharging method thereof
CN103081282A (en) Power management system
CN102955134A (en) Online detection method and device for health status of storage battery
CN105552878B (en) DC micro-grid structure
CN103166220B (en) A kind of off-grid type Stirling electric power system structure and control method
CN104253468A (en) Movable type wireless charging system and control method
CN104052120B (en) The method for monitoring power supply of the petroleum pipeline internal detector with self-generating system and system
CN103326445B (en) Bus is the lithium battery control system of regulative mode not
CN204156804U (en) A kind of novel household distributed solar energy electrification energy storage system
CN103904768B (en) Method for controlling power supply and power supply control apparatus
CN107482752A (en) A kind of intelligent power supply system with the photovoltaic charged module of high pressure
CN203722539U (en) Photovoltaic gas-making system
CN203491708U (en) AC-DC intelligent allocating energy-storage current commutation apparatus
CN206606074U (en) A kind of lithium battery group charge and discharge maintenance device
CN202931016U (en) Hybrid power supply inversion power supply
CN202120154U (en) Solar battery and output power regulating system thereof
CN105244907B (en) The solar energy storage integral control system and method for a kind of plug and play
CN201091063Y (en) Solar energy photovoltaic power generation parallel in power station
CN204675539U (en) Energy-conserving elevator power-supply system
CN104466996B (en) A kind of alternating current-direct current intelligent allocation energy storage current converter
CN209329714U (en) Communication of power system, which stores, uses battery remote charge/discharge system
CN208028849U (en) A kind of solar water detecting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737481

Country of ref document: EP

Kind code of ref document: A1