WO2015102348A1 - 피동잔열제거계통 및 이를 구비하는 원전 - Google Patents
피동잔열제거계통 및 이를 구비하는 원전 Download PDFInfo
- Publication number
- WO2015102348A1 WO2015102348A1 PCT/KR2014/012995 KR2014012995W WO2015102348A1 WO 2015102348 A1 WO2015102348 A1 WO 2015102348A1 KR 2014012995 W KR2014012995 W KR 2014012995W WO 2015102348 A1 WO2015102348 A1 WO 2015102348A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- heat exchanger
- flow path
- inlet
- removal system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/023—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/32—Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
- G21C1/322—Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed above the core
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/02—Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/02—Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
- G21C15/08—Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from moderating material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/243—Promoting flow of the coolant for liquids
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/26—Promoting flow of the coolant by convection, e.g. using chimneys, using divergent channels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/004—Pressure suppression
- G21C9/012—Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/006—Details of nuclear power plant primary side of steam generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Definitions
- the present invention relates to a passive residual heat removal system to which a plate heat exchanger is applied and a nuclear power plant having the same.
- Reactors are divided into active reactors using active forces such as pumps and driven reactors using driven forces such as gravity or gas pressure, depending on the safety system configuration.
- active forces such as pumps
- driven reactors using driven forces such as gravity or gas pressure
- separate type reactors eg, Korean pressurized water reactor
- main equipment steam generator, pressurizer, pump impeller, etc.
- integral reactors where the main equipment is installed inside the reactor vessel (eg , SMART reactor).
- the passive residual heat removal system is adopted as a system to remove the heat of the reactor coolant system (the sensible heat of the reactor coolant system and the residual heat of the core) in the event of an accident in various nuclear power plants including an integrated reactor.
- the reactor primary cooling water is directly circulated to cool the reactor (AP1000: Westinghouse, USA), and the secondary cooling water is circulated using a steam generator to cool the reactor (SMART reactor: Korea).
- SMART reactor Korea
- the external cooling of the heat exchanger (condensation heat exchanger) of the passive residual heat removal system includes water-cooled (AP1000), some air-cooled (WWER 1000: Russia) and A water-air-cooled combination method (IMR: Japan) is used.
- the heat exchanger of the passive residual heat removal system transfers the heat received from the reactor to the outside (final heat sink) through the emergency cooling tank, and the condensation heat exchanger using the steam condensation phenomenon with excellent heat transfer efficiency as a heat exchanger method. It is adopted.
- the passive residual heat removal system uses a primary coolant (nuclear coolant system) or a secondary coolant (steam generator) and thus serves as a pressure boundary between the primary system and the secondary system, and the heat exchanger of the passive residual heat removal system is generally stored. It is important to maintain the pressure boundary in case of accident because the boundary between the outside of the building and the outside environment can be discharged to the atmospheric environment.
- An object of the present invention is to provide a nuclear power plant having a passive residual heat removal system that overcomes the application range limitation of the plate-type heat exchanger, and solves problems such as flow anxiety generated in applying the plate-type heat exchanger.
- Another object of the present invention is to propose a passive residual heat removal system and a nuclear power plant having the same, which can effectively remove sensible heat and core residual heat of the reactor coolant system through high heat exchange efficiency while maintaining pressure boundaries of the heat exchange fluids in a passive manner. It is to.
- the passive residual heat removal system includes a primary system fluid or a secondary system in which the sensible heat and the residual heat are transmitted to remove residual heat of the sensible heat and the core of the reactor coolant system.
- a plate heat exchanger for exchanging fluid with a cooling fluid introduced into or out of the containment unit, and connecting the reactor coolant system to the plate heat exchanger or circulating the secondary system fluid to form a circulation passage of the primary system fluid.
- a circulation pipe connecting the steam generator disposed at the boundary of the primary system and the secondary system to the plate heat exchanger to form a flow path.
- the plate heat exchanger of the passive residual heat removal system is selectively introduced into the closed flow path and the open flow path or the partially open flow path to smoothly circulate and discharge the cooling fluid or the atmosphere, and the water-cooled, air-cooled or mixed cooling Both methods can be applied.
- the present invention by freely selecting the width and height of the substrate in the plate heat exchanger and the number of plates freely, it is possible to configure a passive residual heat removal system having a heat exchanger assembly composed of a plurality of plate heat exchangers. Accordingly, the passive residual heat removal system can be configured to alleviate the bottleneck at the inlet of the plate heat exchanger.
- the present invention can maintain the safety function of the passive residual heat removal system for a long time (semi-permanent) by adopting an air-cooled or mixed cooling system.
- FIG. 1 is a conceptual view of a passive residual heat removal system and a nuclear power plant having the same according to an embodiment of the present invention.
- FIG. 2 is a conceptual view of a passive residual heat removal system and a nuclear power plant having the same according to another embodiment of the present invention.
- Figure 3 is a conceptual diagram of the accident medium and the late accident after time after the occurrence of the accident in the passive residual heat removal system and the nuclear power plant having the same shown in FIG.
- Figure 4 is a conceptual diagram of a nuclear power plant having a passive residual heat removal system and the same according to another embodiment of the present invention.
- FIG. 5 is a conceptual view of a passive residual heat removal system and a nuclear power plant having the same according to another embodiment of the present invention.
- FIG. 6 is a conceptual view of a passive residual heat removal system and a nuclear power plant having the same according to another embodiment of the present invention.
- FIG. 7 is a conceptual view of a passive residual heat removal system and a nuclear power plant having the same according to another embodiment of the present invention.
- FIG. 8 to 14 is a schematic view of the flow path plate heat exchanger that can be selectively applied to the passive residual heat removal system of Figures 1 to 7.
- FIG. 15 is a conceptual diagram of a plurality of play type heat exchangers that can be selectively applied to the passive residual heat removal system of FIGS. 1 to 7.
- FIG. 16 is a layout diagram illustrating a plurality of plate heat exchangers illustrated in FIG. 15.
- the plate-type heat exchanger refers to a general plate heat exchanger and a printed plate heat exchanger as well as a case in which there is a difference in a processing method or a joining method of a plate (plate) unless otherwise specified.
- FIG. 1 is a conceptual diagram of a passive residual heat removal system 100 and a nuclear power plant 10 having the same according to an embodiment of the present invention.
- nuclear power plant 10 shown in FIG. 1 is shown for an integrated reactor, the present invention is not necessarily applied only to an integrated reactor, but may also be applied to a separate reactor.
- FIG. 1 the residual residual heat removal system 100 and the nuclear power plant 10 having the same disclosed in the present invention are symmetrically illustrated with respect to the reactor coolant system 12. 1 illustrates the normal operation of the nuclear power plant 10 on the right side, and the occurrence of an accident of the nuclear power plant 10 on the left side. The same is true in the other drawings below, which are shown to be symmetrical with each other unless otherwise described.
- the nuclear power plant 10 includes various systems for maintaining the integrity of the nuclear power plant 10 in preparation for normal operation and accident occurrence, and also includes a structure such as a storage unit 11.
- the containment part 11 is formed to surround the reactor coolant system 12 on the outside of the reactor coolant system 12 to prevent leakage of radioactive material.
- the containment portion 11 serves as a final barrier to prevent the leakage of radioactive material from the reactor coolant system 12 to the external environment.
- the containment part 11 is divided into a containment building (or a nuclear reactor building) and an iron container and a containment container and a safety protection container according to a material forming a pressure boundary.
- the containment container is a large container designed at a low pressure like a containment building
- the safety protective container is a small container designed to be small by increasing the design pressure.
- the term "container" 11 generally refers to a containment building, a reactor building, a containment container, or a safety protective container.
- the steam generator 12b uses steam transferred from the core 12a to supply steam. Generate. Steam is supplied to the turbine system 14 through the main steam engine (14a), the turbine system 14 produces electricity using the supplied steam.
- the isolation valves 13b and 14b installed in the main water supply pipe 13a and the main steam engine 14a are open during normal operation of the nuclear power plant 10, but are closed by an operation signal when an accident occurs.
- the inside of the reactor coolant system 12 is filled with a primary system fluid, and transfers heat transferred from the core 12a to the secondary system fluid in the steam generator 12b.
- the primary system of the nuclear power plant 10 is a system that receives heat directly from the core 12a to cool the core 12a, and the secondary system receives heat from the primary system while maintaining a pressure boundary with the primary system. It is a system that produces electricity by using the received heat. In particular, the pressure boundary must be maintained between the primary system and the secondary system for the soundness of pressurized hard water-type nuclear power plants.
- the reactor coolant system 12 is provided with a reactor coolant pump 12c for circulating the primary system fluid, and a pressurizer 12d for suppressing boiling of the coolant and controlling the operating pressure.
- the steam generator 12b is disposed at the boundary between the primary system and the secondary system to induce heat exchange between the primary system fluid and the secondary system fluid.
- the passive residual heat removal system 100 is one of the core systems for securing the safety of the nuclear power plant 10 when an accident occurs in the nuclear power plant 10, and removes the residual heat of the reactor coolant system 12 and the residual heat of the core 12a. It is a release system.
- the driven residual heat removal system 100 may include a plate heat exchanger 110 and a circulation pipe 120, and may include an emergency cooling water storage unit 130.
- the plate heat exchanger 110 may be installed at at least one of the inside or the outside of the storage unit 11.
- the plate heat exchanger 110 flows the primary system fluid or the secondary system fluid received from the sensible heat and the residual heat from the outside of the containment unit 11 so as to remove the sensible heat of the reactor coolant system 12 and the residual heat of the core 12a. Heat exchange with the cooled cooling fluid.
- the plate heat exchanger 110 shown in FIG. 1 is installed outside the containment unit 11, and is configured to heat exchange the secondary system fluid with the cooling fluid outside the containment unit 11.
- the circulation pipe 120 connects the reactor coolant system 12 to the plate heat exchanger 110 or forms a steam generator 12b between the primary system and the secondary system to form a circulation channel of the primary system or the secondary system.
- Type heat exchanger (110). 1 shows a circulation pipe 120 connecting the steam generator 12b and the plate heat exchanger 110 to form a circulation passage of the secondary system fluid.
- the plate heat exchanger 110 is arranged separately from each other on the plate to exchange heat between the primary system fluid or the secondary system fluid supplied through the circulation pipe 120 while maintaining the pressure boundary and the cooling fluid, and the fluids alternately pass through each other. It has a plurality of channels (not shown).
- the plate heat exchanger 110 may include at least one of a printed plate heat exchanger and a plate heat exchanger.
- Printed board heat exchangers are formed by diffusion bonding and have channels formed densely by photochemical etching techniques.
- a plate heat exchanger is formed by extruding a plate to form channels and combining the plates by at least one of gasket, welding and brazing welding.
- the channels include a first flow passage (not shown) and a second flow passage (not shown) through which different fluids pass.
- the first flow passage is arranged in a plurality of spaced apart from each other on the plate to pass through the cooling fluid for cooling the primary system fluid or the secondary system fluid.
- the second flow path is formed to pass the primary system fluid or the secondary system fluid, and a plurality of the second flow paths are arranged on the plate alternately with the first flow path to induce heat exchange while maintaining a pressure boundary with the cooling fluid.
- the plate heat exchanger 110 of FIG. 1 uses circulation of the secondary system fluid, the secondary system fluid flows through the second channel and the cooling fluid flowing through the first channel cools the secondary system fluid.
- Inlet and outlet headers 111a and 112a and outlet headers 111b and 112b are formed at each inlet and outlet of the plate heat exchanger 110.
- Inlet headers 111a and 112a are formed at the inlets of the first channel and the second channel to distribute the fluids supplied to the plate heat exchanger 110 to the respective channels.
- Outlet headers 111b and 112b are formed at the outlet of the first flow path and the second flow path to collect fluids passing through the respective channels.
- the fluids supplied to the plate heat exchanger 110 include a cooling fluid passing through the first channel, a primary system fluid or a secondary system fluid passing through the second channel.
- the fluids supplied to the plate heat exchanger 110 in the driven residual heat removal system 100 shown in FIG. 1 are cooling fluids and secondary fluids.
- the inlet header 111a and the outlet header 111b of the second channel must be provided to maintain the input boundary.
- the inlet header 112a and the outlet header 112b may be selectively provided to facilitate the inlet and outlet flow.
- the first passage may not include the inlet header 112a and the outlet header 112b, or may be replaced by an inlet guide structure and an outlet guide structure extending outwardly from the first passage.
- the inlet of the first channel is disposed adjacent to the outlet of the second channel, and the outlet of the first channel is disposed adjacent to the inlet of the second channel.
- the inlet header 112a of the first channel is disposed adjacent to the outlet header 111b of the second channel, and the outlet header 112b of the first channel is disposed adjacent to the inlet header 111a of the second channel. do.
- the circulation pipe 120 includes a steam pipe 121 for supplying a secondary system fluid to the plate heat exchanger 110 and a water supply pipe 122 for receiving a secondary system fluid from the plate heat exchanger 110.
- the steam pipe 121 is branched from the main steam engine 14a so as to receive a secondary system fluid from the main steam engine 14a extending from the outlet of the steam generator 12b and connected to the inlet of the second flow path.
- Feed pipe 122 is branched from the main water supply pipe (13a) extending from the inlet of the steam generator (12b) to transfer heat to the cooling fluid and to circulate the cooled secondary system fluid back to the steam generator (12b) It is connected to the exit of 2 euros.
- the passive residual heat removal system 100 may include an emergency cooling water storage unit 130.
- the emergency cooling water storage unit 130 is formed to store the cooling fluid therein and is installed outside the storage unit 11.
- Emergency cooling water storage unit 130 has an opening 131 in the upper portion to discharge the received heat by evaporating the cooling fluid stored therein when the temperature rises by the heat transferred from the primary system fluid or the secondary system fluid.
- the plate heat exchanger 110 may be installed inside the emergency cooling water storage unit 130 so that at least a part of the plate heat exchanger 110 is immersed in the cooling fluid. In this case, at least a portion of the steam pipe 121 and the water supply pipe 122 penetrate the emergency cooling water storage unit 130 to the main steam engine 14a and the main water supply pipe 13a from the outside of the storage unit 11, respectively. Can be connected.
- the plate heat exchanger 110 when the plate heat exchanger 110 is completely immersed in the cooling fluid of the emergency coolant storage unit 130, the plate heat exchanger 110 is water-cooled to form the emergency coolant storage unit 130. Cool the secondary system fluid using a cooling fluid (cooling water).
- Figure 1 shows the state of the passive residual heat removal system 100 when an accident occurs in the left side of the figure symmetrically shown.
- the isolation valves 13b and 14b installed in the main steam engine 14a and the main water supply pipe 13a are connected to each other according to a related signal. It is closed.
- the isolation valve 122a installed in the water supply pipe 122 of the driven residual heat removal system 100 is opened by a related signal, and the water supply pipe is formed by the flow of the secondary system fluid formed by opening the isolation valve 122a.
- the check valve 122b provided at 121 is also opened. Accordingly, the supply of the water supply from the water supply system 13 to the steam generator 12b is stopped, and the secondary system fluid circulates in the driven residual heat removal system 100.
- the secondary system fluid passes through the water supply pipe 122 and the main water supply pipe 13a sequentially and enters the inlet of the steam generator 12b.
- the secondary system fluid supplied to the steam generator 12b receives the residual heat of the sensible heat and the core 12a from the primary system fluid inside the reactor coolant system 12 in the steam generator 12b, and the temperature of the secondary system fluid rises. At least part of it evaporates.
- the secondary system fluid flowing out through the outlet of the steam generator 12b rises along the steam pipe 121 of the main steam engine 14a and the driven residual heat removal system 100 to flow into the second channel of the plate heat exchanger 110. Inflow.
- the first flow path of the plate heat exchanger 110 flows into the cooling fluid inside the emergency cooling water storage unit 130, and heat is transferred from the secondary system fluid to the cooling fluid in the plate heat exchanger 110.
- the secondary system fluid which transfers heat to the cooling fluid is cooled and condensed and descends, and then moves along the water supply pipe 122 to circulate to the steam generator 12b. Since the circulation of the secondary system fluid is caused by a natural phenomenon due to the density difference, when the sensible heat of the reactor coolant system 12 and the residual heat of the core 12a are sufficiently removed, a sufficient density difference necessary for the circulation of the secondary system fluid disappears. The circulation of the secondary system fluid continues.
- the temperature inside the emergency cooling water storage unit 130 gradually increases. At least a portion of the cooling fluid evaporates and is released to the outside through the opening 131, and heat transferred to the cooling fluid is also discharged to the outside.
- the passive residual heat removal system 100 may circulate the secondary system fluid in a passive manner by natural force, and remove the sensible heat of the reactor coolant system 12 and the residual heat of the core 12a.
- the plate heat exchanger 110 is made to pass through the secondary system fluid and the cooling fluid through different channels to heat exchange, it is possible to prevent damage to the pressure boundary, and to induce sufficient heat exchange through the micro-channel. .
- FIG. 2 is a conceptual diagram of a passive residual heat removal system 200 and a nuclear power plant 20 having the same according to another embodiment of the present invention.
- the plate heat exchanger 210 has a portion of the cooling fluid of the emergency coolant storage unit 230 to pass the cooling fluid inside the emergency coolant storage unit 230 and the atmosphere outside the storage unit 21 to the first passage. Is immersed in.
- the plate heat exchanger 210 has an upper end portion penetrating the emergency coolant storage unit 230 so as to discharge the evaporated fluid to the outside by the heat transfer between the cooling fluid and the secondary system fluid in the atmosphere. It may be formed to protrude upward.
- the other configuration is similar to that described in FIG.
- the plate heat exchanger 210 is formed relatively longer than the plate heat exchanger 210 shown in FIG. 1 to provide a water-cooled and air-cooled heat exchange environment for the fluids heat exchanged in the plate heat exchanger 210. can do.
- Nuclear power plant 20 of Figure 2 is shown symmetrically left and right, the right side shows the normal operating state and the left side shows the initial occurrence of the accident.
- the secondary system fluid discharged from the outlet of the steam generator 22b flows into the second channel inlet of the plate heat exchanger 210 through the main steam engine 24a and the steam pipe 221. do.
- the cooling fluid is sufficiently stored in the emergency cooling water storage unit 230, at least a part of the plate heat exchanger 210 is immersed in the cooling fluid, and the water-cooling heat exchange performance is significantly larger than that of the air cooling type.
- the secondary system fluid is cooled by water cooling.
- the secondary system fluid cooled in the plate heat exchanger 210 and discharged from the outlet of the second flow path is circulated back to the steam generator 22b through the water supply pipe 222 and the main water supply pipe 23a, and through the continuous circulation, the reactor The sensible heat of the coolant system 22 and the residual heat of the core 22a are removed.
- FIG. 3 is a conceptual diagram of the accident medium and the late accident after a time after the accident occurred in the passive residual heat removal system 200 and the nuclear power plant 20 having the same shown in FIG.
- the left side represents the middle of the accident and the right side represents the late accident.
- the cooling fluid of the emergency cooling water storage unit 230 evaporates and the water level is reduced compared to the initial accident.
- the cooling fluid level of the emergency cooling water storage unit 230 is lowered, the cooling fluid of the emergency cooling water storage unit 230 and the atmosphere outside the storage unit 21 flow into the first flow path of the plate type heat exchanger 210.
- the secondary system fluid is cooled by a mixture of water and air cooling.
- the cooling fluid of the emergency cooling water storage unit 230 evaporates more than the middle of the accident, and thus the water level is further reduced. Accordingly, the first channel of the plate heat exchanger 210 flows into the atmosphere outside the containment portion 21 to cool the secondary system fluid in an air-cooled manner.
- the plate-type heat exchanger 210 formed as described above may have a different cooling method depending on the level of the cooling fluid stored in the emergency cooling water storage unit 230 and time after the accident occurs. This is because the residual heat of the core 22a rapidly decreases with time after the accident occurs.
- the water-cooled, water-cooled and air-cooled mixed, air-cooled cooling method is adopted in order to switch to the appropriate cooling method according to the reduction of residual heat to increase the cooling efficiency and maintain the cooling sustainability. Accordingly, the passive residual heat removal system 200 can continuously remove the sensible heat of the reactor coolant system 22 and the residual heat of the core 22a.
- FIG. 4 is a conceptual diagram of a passive residual heat removal system 300 and a nuclear power plant 30 having the same according to another embodiment of the present invention. 4 shows symmetrically in FIG. 4 at the time of normal operation of the nuclear power plant 30, and at the left thereof at the time of an accident of the nuclear power plant 30.
- the passive residual heat removal system (300) cools the secondary system fluid only by the air cooling type cooling system without emergency cooling water storage.
- the atmosphere outside the storage unit 31 flows into the first flow path of the plate heat exchanger 310, and the secondary system fluid supplied from the steam generator 32b flows into the second flow path. Heat is transferred from the secondary system fluid passing through each flow path to the atmosphere, and the atmosphere is discharged to the outside of the plate heat exchanger 310. Accordingly, sensible heat and residual heat transferred from the reactor coolant system 32 and the core 32a may be discharged to the outside atmosphere.
- FIG. 5 is a conceptual diagram of a passive residual heat removal system 400 and a nuclear power plant 40 having the same according to another embodiment of the present invention.
- the plate heat exchanger 410 is installed in the inner space of the storage unit 41, and the emergency coolant storage unit 430 is installed outside the storage unit 41.
- the plate heat exchanger 410 has connection pipes 441 and 442 through which the inlet and the outlet of the first flow passage penetrate the containment portion 41 so that the cooling fluid in the emergency cooling water storage unit 430 passes through the first flow passage. By the emergency cooling water storage unit 430 is connected.
- the secondary system fluid is supplied to the second flow path of the plate heat exchanger 410 through the main steam pipe 44a and the steam pipe 421, and the first heat exchanger 410 of the plate heat exchanger 410 in the emergency cooling water storage unit 430. Heat exchange with the cooling fluid supplied to the flow path. Accordingly, the secondary system fluid is cooled by the water cooling cooling method. Both the secondary system fluid and the cooling fluid continuously circulate through the plate heat exchanger 410.
- the cooling fluid of the emergency cooling water storage unit 430 is supplied to the plate heat exchanger 410 through the connection pipe 441, but flows through a flow path that is separated from the secondary system fluid. Is not damaged.
- the cooling fluid of the emergency coolant storage unit 430 circulates through the plate heat exchanger 410 and the heat transfer temperature is increased from the secondary system fluid, and flows back into the emergency coolant storage unit 430 through the connection pipe 442. do.
- the cooling fluid of the emergency cooling water storage unit 430 evaporates when the temperature rises and discharges the received heat to the outside.
- the isolation valves 441a and 442a and the check valve 441b provided in the connection pipes 441 and 442 are normally open and are closed only when necessary for maintenance.
- FIG. 6 is a conceptual diagram of a passive residual heat removal system 500 and a nuclear power plant 50 having the same according to another embodiment of the present invention.
- the plate heat exchanger 510 is installed in the inner space of the storage unit 51, and the emergency coolant storage unit 530 is not installed.
- the plate heat exchanger 510 is connected to each other by connecting pipes 541 and 542 through which the inlet and the outlet of the first flow passage penetrate the storage 51 so as to pass the atmosphere outside the storage 51. It communicates with the exterior of the storage part 51.
- the outside air flows into the plate heat exchanger 510 through the connecting pipes 541 and 542 by natural circulation and flows along the first flow path. Accordingly, the secondary system fluid flowing along the second channel is cooled by air cooling.
- the atmosphere introduced from the outside of the containment unit 51 is supplied to the plate type heat exchanger 510 through the connection pipes 541 and 542, but flows through a flow path that is separated from the secondary system fluid.
- the pressure boundary is not damaged.
- FIG. 7 is a conceptual diagram of a passive residual heat removal system 600 and a nuclear power plant 60 having the same according to another embodiment of the present invention.
- the passive residual heat removal system 600 is configured to remove the residual heat of the reactor coolant system 62 and the residual heat of the core 62a by using a primary system fluid.
- the emergency coolant storage unit 630 is installed outside the storage unit 61, and the plate heat exchanger 610 is immersed in the cooling fluid of the emergency coolant storage unit 630.
- the circulation pipe 620 includes a steam pipe 621 and the injection pipe 622.
- the steam pipe 621 receives the primary system fluid from the reactor coolant system 62 and delivers the primary system fluid to the plate heat exchanger 610 so that at least a portion of the steam pipe 621 passes through the containment portion 61 and the second reactor coolant system 62 and the second. It is connected to the entrance of the flow path.
- Inlet piping 622 transfers heat to the cooling fluid and injects the cooled primary system fluid back into reactor coolant system 62, at least a portion of which passes through containment 61 and exits to the second channel and the reactor coolant. It is connected to the system 62.
- the cooling fluid of the emergency cooling water storage unit 630 flows into the first flow path of the plate heat exchanger 610, the primary fluid flows into the second flow path, and the water cooling type is cooled.
- the system fluid By circulating the system fluid, sensible heat of the reactor coolant system 62 and residual heat of the core 62a may be removed.
- the driven residual heat removal system 600 may induce heat exchange without damaging the pressure boundary.
- the plate heat exchanger 610 may be installed inside the containment 61, as shown.
- the secondary system fluid of Figures 1 to 6 may be adopted a circulation structure of the primary system fluid.
- the following description may be made without distinguishing between the first euro passage and the second euro passage, and the descriptions given in the first euro passage unless the description is limited to only one of the first air passage and the second euro passage.
- the bar may also apply to the second euro, and what is described in the second euro may also apply to the first euro.
- FIGS. 8 to 14 are conceptual views illustrating a plate heat exchanger 710 that may be selectively applied to the passive residual heat removal system 100, 200, 300, 400, 500, and 600 of FIGS. 1 to 7.
- a compact flow path can be arranged by photochemical etching technology, and the welding between the plates of the heat exchanger can be removed using the diffusion bonding technique.
- the general plate heat exchanger also allows a compact flow path arrangement.
- the plate heat exchanger 710 is the atmosphere of the containment unit 11, 21, 31, 41, 51, 61, see Figs. 1 to 7 and the emergency coolant storage unit 130, 230, 430, 630, Figs. 3, 5, and 7) heat exchange the cooling fluid, and the plates are provided with channels 715, 716 separated from each other to induce heat exchange of the fluids while maintaining pressure boundaries.
- Channels 715 and 716 include a first flow path 715 through which cooling fluid is passed, and a second flow path 716 through which primary or secondary fluid flows, each channel 715 and 716 having a first flow path. It corresponds to one of the flow path 715 and the second flow path 716.
- the first flow path 715 and the second flow path 716 have a closed type in which a cooling fluid or atmosphere passes in only one direction and a primary fluid or a secondary fluid flows only in a direction opposite to the one direction. It may be a euro.
- the first flow path 715 may be an open flow path or a partially open flow path in which cooling fluid or the atmosphere passes even in a direction crossing the one direction.
- the first flow passage through which the cooling fluid or the atmosphere passes may optionally employ an open flow passage or a partially open flow passage for cooling the air cooled or air-cooled and mixed in the relatively long length plate heat exchanger 710.
- the second flow path 716 when the open flow path is adopted, the pressure boundary is damaged, so the open flow path cannot be applied.
- the plate heat exchanger 710 illustrated shows a cross section of a first flow path 715 through which a cooling fluid flows.
- the plate heat exchanger 710 includes an inlet region 710a, a main heat transfer region 710b and an outlet region 710c.
- the inlet region 710a is a region for distributing the cooling fluid supplied to the plate heat exchanger 710 to each of the first flow passages 715.
- the main heat transfer region 710b is the cooling fluid, the primary system fluid, and the cooling fluid. Substantial heat exchange is performed between the secondary system fluids, and the outlet region 710c is a region for collecting and discharging the fluids which have completed heat exchange from the respective first flow passages 715.
- the main heat transfer region 710b connects the inlet region 710a and the outlet region 710c, and is formed between the inlet region 710a and the outlet region 710c.
- the cooling fluid Since the temperature of the cooling fluid is lower than the temperature of the primary system fluid or the secondary system fluid, the cooling fluid receives heat from the primary system fluid or the secondary system fluid while passing through the plate-type heat exchanger 710, and the temperature is increased. As the temperature of the cooling fluid rises, the density decreases, so that the cooling fluid rises in the plate heat exchanger 710.
- the flow paths are inlet region rather than the flow path resistance of the main heat transfer region 710b connecting the inlet region 710a and the outlet region 710c to mitigate flow instability due to two phase flow.
- the flow path resistance of 710a may be formed relatively large.
- the plate heat exchanger 710 illustrated in FIG. 9 has a width smaller in the inlet region 710a than in the main heat transfer region 710b. Adopted a way to form and extend long.
- the flow path 715a of the inlet area 710a is formed in a zigzag form to have a flow resistance that is relatively larger than that of the straight flow path and is connected to the main heat transfer area 710b. Specifically, the flow path of the inlet region 710a is alternately and repeatedly connected in the longitudinal direction and the width direction of the plate heat exchanger 710 to extend to the main heat transfer region 710b.
- the flow path enlarger 715b is formed between the inlet region 710a and the main heat transfer region 710b, and has a width of the flow path extending from the size of the flow path of the inlet region 710a to the size of the flow path of the main heat transfer region 710b. It is formed to increase gradually.
- the flow path resistance becomes relatively small as it passes through the flow path expanding portion 715b, and a relatively small flow path resistance is maintained in the flow paths of the main heat transfer region 710b and the exit region 710c.
- 10 to 12B are conceptual views of a plate heat exchanger 710 having headers at the inlet and outlet, respectively.
- the plate heat exchanger 710 may be provided with an inlet header 712a for distributing fluid to each flow path and an outlet header 712b for collecting fluid from each flow path.
- the inlet header 712a and the outlet header 712b are used to prevent pressure boundary damage. It is not necessarily a structure that is to be installed, or a structure that is to be installed in the case of being installed outside the containment, it may not be installed or may be replaced by a flow guide structure for smooth inlet and outlet flow.
- the inlet header 712a is installed at the inlet of the flow path and supplied from the outside of the cooling fluid or the containment unit supplied from the emergency coolant storage unit 130, 230, 430, 630, FIGS. 1 to 3, 5, and 7.
- the atmosphere is distributed to each of the first flow passages (715).
- the outlet header 712b is installed at the outlet of the first passage 715 to collect the cooling fluid passing through the first passage 715 to be recovered to the emergency cooling water storage unit or externally discharged.
- the installation position of the inlet header 712a and the outlet header 712b may vary depending on the design of the plate heat exchanger 710.
- the structure of the channels 715 and 716 can be freely selected because it is manufactured by a photochemical etching method. Since it is free, the positions of the inlet header 712a and the outlet header 712b may also vary.
- the inlet headers 711a and 712a and the outlet headers 711b and 712b are respectively installed on the side of the plate heat exchanger 710, and each of the flow paths 715 and 716 are formed in the inlet region ( It is bent or forms a curved flow path in 710a and outlet region 710b and extends to inlet header 711a and 712a or outlet header 711b and 712b.
- the extending direction of the flow paths 715 and 716 in the inlet area 710a and the extending direction of the flow paths 715 and 716 in the exit area 710c may be the same direction as illustrated in FIG. 11, and FIGS. 12A and 12B. As shown in 12b, they may be in opposite directions, which may vary depending on the design of the passive residual heat removal system.
- first flow path 715 and a second flow path 716 of the plate heat exchanger 710 show a first flow path 715 and a second flow path 716 of the plate heat exchanger 710, respectively.
- first flow path 715 the cooling fluid or the outside atmosphere passes through the heat and the temperature is increased or evaporated to decrease the density.
- second flow path 716 the primary fluid or the secondary fluid flows through the cooling. Heat is transferred to the fluid or the atmosphere, causing the temperature to drop or condense to increase density.
- 13 and 14 are flow path conceptual views of a plate heat exchanger 710 having open flow paths or partially open flow paths, respectively.
- the plate heat exchanger 710 enters the cooling fluid or the atmosphere from the side and merges with the cooling fluid or the atmosphere passing through the first channel to alleviate the bottleneck at the inlet while maintaining the pressure boundary of the fluids.
- An open flow path is provided.
- the plate heat exchanger 710 includes a partially open flow path in which an open flow path is formed only in a part of the main heat transfer region 710b.
- the plate heat exchanger 710 having an open flow passage or a partially open flow passage includes a longitudinal flow passage 715 and a transverse flow passage 717 forming the open flow passage or the partially open flow passage.
- the longitudinal flow path 715 connects the inlet region 710a of the upper end of the plate heat exchanger 710 and the outlet region 710c of the lower end.
- the transverse flow path 717 flows in and out of the cooling fluid or air through inlets and outlets formed at both sides of the plate heat exchanger 710 to alleviate the bottleneck of the inlet, and crosses the longitudinal flow path 715. Is formed.
- the plate heat exchanger 710 in which the open flow path is formed may form an air-cooled driven residual heat removal system for cooling the primary system fluid or the secondary system fluid with only the atmosphere.
- the plate heat exchanger 710 in which the partially open flow path is formed may form a passive residual heat removal system of a mixed type (mixing of water and air cooling) for cooling the primary system fluid or the secondary system fluid with atmospheric and cooling fluids.
- the plate heat exchanger 710 for cooling the primary system fluid or the secondary system fluid in an air-cooled or mixed manner is preferably formed with a relatively long length.
- the plate heat exchanger 710 in which the partially open flow path is formed is used to alleviate the supercooling problem of the reactor coolant system 12, 22, 32, 42, 52, 62, and FIGS.
- the partially open flow path is configured to smoothly circulate the cooling fluid as it operates in the early stage of the water cooling, and to suppress further increase in the cooling rate due to the inflow of the atmosphere.
- the open flow passage or the partially open flow passage may be formed only in the first flow passage 715 through which the cooling fluid or the atmosphere passes. This is because the second flow path 716 must be circulated in the closed circuit to prevent the pressure boundary from being damaged.
- FIGS. 15 is a conceptual diagram of a plurality of play type heat exchangers 815 that can be selectively applied to the passive residual heat removal system (100, 200, 300, 400, 500, 600, see FIGS. 1 to 7) of FIGS. to be.
- FIG. 810 shows the top view, left side view, front view and right side view of the plurality of plate heat exchangers 810, respectively.
- Each of the plurality of plate heat exchangers 810 is surrounded by a casing 813, and a cooling fin 813 for expanding a heat transfer area is installed in the casing 813.
- the primary system fluid or the secondary system fluid is distributed to each plate heat exchanger 810 through a steam pipe 821, and each of the second system fluids is provided by the inlet header 811a in each plate heat exchanger 810. It is distributed in a flow path (not shown).
- the primary system fluid or the secondary system fluid that has passed through the second channel is collected by the outlet header 811b and then joined in the injection pipe (primary system fluid circulation method) or the water supply pipe 822 (secondary system fluid circulation method).
- Cooling fluid or atmosphere is also distributed to each first flow path (not shown) by the inlet header 812a, and the cooling fluid or atmosphere passing through the first flow path is collected by the outlet header 812b.
- the entrance and exit headers 812a and 812b are not essential structures.
- FIG. 16 is a layout diagram of the plurality of plate heat exchangers 910 illustrated in FIG. 15.
- the plurality of plate heat exchangers 910 are arranged horizontally to form a heat exchanger assembly, it may be disposed inside the emergency cooling water storage unit 930.
- the plurality of plate heat exchanger 910 is arranged in a grid form to form a heat exchanger assembly, it may be disposed in the emergency cooling water storage unit 930.
- the passive residual heat removal system and the nuclear power plant described above are not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made. It may be.
- the present invention can be used to improve the performance of the passive residual heat removal system in the nuclear power industry.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
본 발명은, 원자로냉각재계통의 현열과 노심의 잔열을 제거하도록 상기 현열과 잔열을 전달받은 일차계통유체 또는 이차계통유체를 격납부의 외부에서 유입된 냉각 유체와 열교환시키는 플레이트형 열교환기, 및 상기 일차계통유체의 순환유로를 형성하도록 상기 원자로냉각재계통을 상기 플레이트형 열교환기에 연결하거나 상기 이차계통유체의 순환유로를 형성하도록 일차계통과 이차계통의 경계에 배치된 증기발생기를 상기 플레이트형 열교환기에 연결하는 순환배관을 포함하는 피동잔열제거계통과 이를 구비하는 원전을 개시한다.
Description
본 발명은 플레이트형 열교환기가 적용된 피동잔열제거계통과 이를 구비하는 원전에 관한 것이다.
원자로는 안전계통의 구성방식에 따라 펌프와 같은 능동력을 사용하는 능동형원자로와 중력 또는 가스압력 등의 피동력을 사용하는 피동형원자로로 나뉜다. 또한, 주요기기의 설치위치에 따라 주요기기(증기발생기, 가압기, 펌프 임펠러 등)가 원자로 외부에 설치되는 분리형원자로(예, 한국 가압경수로)와 주요기기가 원자로용기 내부에 설치되는 일체형원자로(예, SMART 원자로)로 나뉜다.
원전산업분야에서 피동잔열제거계통은 일체형원자로를 포함하여 다양한 원전에서 사고가 발생하는 경우 원자로냉각재계통의 열(원자로냉각재계통의 현열 및 노심의 잔열)을 제거하는 계통으로 채용되고 있다. 피동잔열제거계통의 냉각수 순환 방식으로는 원자로 일차냉각수를 직접 순환시켜 원자로를 냉각하는 방식(AP1000: 미국 웨스팅하우스)과 증기발생기를 이용하여 이차냉각수를 순환시켜 원자로를 냉각하는 방식(SMART 원자로: 한국) 두 가지가 주로 사용되고 있으며, 일차냉각수를 탱크에 주입하여 직접 응축시키는 방식(CAREM:아르헨티나)도 일부 이용되고 있다.
또한 피동잔열제거계통의 열교환기(응축열교환기)의 외부를 냉각하는 방식으로는 대부분의 원자로에서 적용하고 있는 수랭식(water-cooled, AP1000)과, 일부 공랭식(air-cooled, WWER 1000:러시아)과 수-공랭식 병용 방식(IMR:일본)이 이용되고 있다. 피동잔열제거계통의 열교환기는 원자로로부터 전달받은 열을 비상냉각탱크 등을 통해 외부(최종 열침원)로 전달하는 기능을 수행하며, 열교환기 방식으로 열전달 효율이 뛰어난 증기 응축현상을 이용한 응축열교환기가 많이 채용되고 있다.
그러나 일반적으로 피동잔열제거계통은 일차냉각수(원자로냉각재계통) 또는 이차냉각수(증기발생기)를 이용하므로 일차계통 또는 이차계통과 압력경계로서의 역할을 수행하며, 또한 피동잔열제거계통의 열교환기는 일반적으로 격납건물 외부의 대기환경과 경계를 이루고 있으므로 압력경계가 손상되는 경우 일차냉각수 또는 이차냉각수가 대기 환경으로 방출될 수 있으므로 사고 시 압력경계를 유지하는 것은 매우 중요한 역할이다.
따라서, 원자로의 성능 향상을 위해 피동잔열제거계통의 성능을 향상시키는 것을 고려해 볼 수 있다.
본 발명의 일 목적은 플레이트형 열교환기의 적용 범위 한계를 극복하고, 플레이트형 열교환기를 적용함에 있어 발생하는 유동 불안 등의 문제를 해결한 피동잔열제거계통 및 이를 구비하는 원전을 제공하기 위한 것이다.
본 발명의 다른 일 목적은 피동적인 방법으로 열교환 유체들의 압력 경계를 유지하면서 높은 열교환 효율을 통해 효과적으로 원자로냉각재계통의 현열 및 노심의 잔열을 제거할 수 있는 피동잔열제거계통 및 이를 구비하는 원전을 제안하기 위한 것이다.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 피동잔열제거계통은, 원자로냉각재계통의 현열과 노심의 잔열을 제거하도록 상기 현열과 잔열을 전달받은 일차계통유체 또는 이차계통유체를 격납부의 내부 또는 외부에서 유입된 냉각 유체와 열교환시키는 플레이트형 열교환기, 및 상기 일차계통유체의 순환유로를 형성하도록 상기 원자로냉각재계통을 상기 플레이트형 열교환기에 연결하거나 상기 이차계통유체의 순환유로를 형성하도록 일차계통과 이차계통의 경계에 배치된 증기발생기를 상기 플레이트형 열교환기에 연결하는 순환배관을 포함한다.
상기와 같은 구성의 본 발명에 의하면, 고집적도 열전달 성능과 고온 고압에 대한 내구성을 갖는 플레이트형 열교환기를 피동잔열제거계통에 적용할 수 있다. 본 발명에서 피동잔열제거계통의 플레이트형 열교환기에는 폐쇄형 유로와 개방형 유로 또는 부분 개방형 유로가 선택적으로 도입되어, 냉각 유체 또는 대기를 원활히 순환시키고 배출시킬 수 있으며, 수랭식, 공랭식 또는 혼합식의 냉각 방식이 모두 적용될 수 있다.
또한 본 발명은, 플레이트형 열교환기에서 기판의 폭과 높이를 자유롭게 선정하고 판의 수를 자유롭게 선택하여, 복수의 플레이트형 열교환기로 구성된 열교환기 집합체를 구비하는 피동잔열제거계통을 구성할 수 있다. 이에 따라 플레이트형 열교환기의 입구에서 병목 현상을 완화시킨 피동잔열제거계통을 구성할 수 있다.
또한 본 발명은, 공랭식 또는 혼합식의 냉각 방식 채택을 통해 피동잔열제거계통의 안전기능을 장기간(반영구적) 유지할 수 있다.
도 1은 본 발명의 일 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 2는 본 발명의 다른 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 3은 도 2에 도시된 피동잔열제거계통 및 이를 구비하는 원전에서 사고 발생 후 시간이 경과한 사고 중기와 사고 후기의 개념도.
도 4는 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 5는 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 6은 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 7은 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통 및 이를 구비하는 원전의 개념도.
도 8 내지 도 14는 도 1 내지 도 7의 피동잔열제거계통에 선택적으로 적용될 수 있는 플레이트형 열교환기를 유로 개념도.
도 15는 도 1 내지 도 7의 피동잔열제거계통에 선택적으로 적용될 수 있는 복수의 플레이형 열교환기의 개념도.
도 16은 도 15에 도시된 복수의 플레이트형 열교환기의 배치 개념도.
이하, 본 발명에 관련된 피동잔열제거계통 및 원전에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일?유사한 구성에 대해서는 동일?유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서 플레이트형 열교환기라 함은, 특별한 언급이 없는 한 일반적인 판형 열교환기와 인쇄기판형 열교환기뿐만 아니라 플레이트(판)의 가공 방법이나 접합 방법에 차이가 있는 경우도 모두 포괄적으로 지칭한다.
도 1은 본 발명의 일 실시예에 관련된 피동잔열제거계통(100) 및 이를 구비하는 원전(10)의 개념도이다.
도 1에 도시된 원전(10)은 일체형 원자로에 대하여 도시되어 있으나, 본 발명이 반드시 일체형 원자로에만 적용되는 것은 아니고 분리형 원자로에도 적용될 수 있다.
도 1에서는 설명의 편의를 위하여 본 발명에서 개시하는 피동잔열제거계통(100) 및 이를 구비하는 원전(10)에 대하여 원자로냉각재계통(12)을 중심으로 대칭으로 도시하였다. 그리고, 도 1의 우측에는 원전(10)의 정상 운전시를 도시하고 좌측에는 원전(10)의 사고 발생시를 도시하였다. 이는 서로 대칭을 이루도록 도시된 이하의 다른 도면에서도 다른 설명이 없는 한 마찬가지이다.
원전(10)은 정상적인 운용과 사고 발생에 대비하여 원전(10)의 건전성을 유지하기 위한 다양한 계통들을 포함하고, 그 밖에 격납부(11) 등의 구조물을 포함한다.
격납부(11)는 방사성 물질의 누출을 방지하도록 원자로냉각재계통(12)의 외부에 상기 원자로냉각재계통(12)을 감싸도록 형성된다. 격납부(11)는 원자로냉각재계통(12)으로부터 외부 환경으로의 방사성 물질의 누출을 방지하는 최종 방벽 역할을 한다.
격납부(11)는 압력경계를 구성하는 재료에 따라 강화콘크리트로 구성하는 격납건물(또는 원자로건물이라 함)과 철재용기로 구성하는 격납용기와 안전보호용기로 나뉜다. 격납용기는 격납건물과 같이 저압으로 설계되는 대형용기이며, 안전보호용기는 설계압력을 증가시켜 소형으로 설계되는 소형용기이다. 본 명세서에서 특별한 언급이 없는 한 격납부(11)라 함은, 격납건물, 원자로건물, 격납용기 또는 안전보호용기 등을 모두 포괄적으로 지칭한다.
원전(10)의 정상 운전시 주급수관(13a)을 통해 급수계통(13)으로부터 증기발생기(12b)로 급수가 공급되면, 증기발생기(12b)는 노심(12a)에서 전달된 열을 이용해 증기를 발생시킨다. 증기는 주증기관(14a)을 통해 터빈계통(14)으로 공급되며, 터빈계통(14)은 공급받은 증기를 이용하여 전기를 생산한다. 주급수관(13a)과 주증기관(14a)에 설치되는 격리밸브(13b, 14b)들은 원전(10)의 정상 운전시에는 개방되어 있으나, 사고 발생시에는 작동 신호에 의해 닫힌다.
원자로냉각재계통(12)의 내부에는 일차계통유체가 채워져 있으며, 노심(12a)에서 전달받은 열을 증기발생기(12b)에서 이차계통유체에 전달한다. 원전(10)의 일차계통이란 노심(12a)으로부터 직접적으로 열을 전달받아 노심(12a)을 냉각하는 계통이고, 이차계통이란 상기 일차계통과 압력경계를 유지하면서 상기 일차계통으로부터 열을 전달받아 전달받은 열을 이용해 전기를 생산하는 계통이다. 특히, 가압 경수형 원전의 건전성을 위해 일차계통과 이차계통 사이에는 반드시 압력경계가 유지되어야 한다.
원자로냉각재계통(12)에는 일차계통유체를 순환시키기 위한 원자로냉각재펌프(12c), 냉각재의 비등을 억제하고 운전 압력을 제어하기 위한 가압기(12d)가 설치된다. 증기발생기(12b)는 일차계통과 이차계통 경계에 배치되어 일차계통유체와 이차계통유체 사이의 열교환을 유도한다.
피동잔열제거계통(100)은 원전(10)에서 사고 발생시 원전(10)의 안전성을 확보하기 위한 핵심계통 중의 하나로, 원자로냉각재계통(12)의 현열 및 노심(12a)의 잔열을 제거하여 외부로 방출하는 계통이다.
이하에서는 먼저 피동잔열제거계통(100)의 구조에 대하여 설명하고, 이어서 원전(10)에서 사고 발생 시 피동잔열제거계통(100)의 작동에 대하여 설명한다.
피동잔열제거계통(100)은 플레이트형 열교환기(110), 순환배관(120)을 포함하며, 비상냉각수저장부(130)를 포함할 수 있다.
플레이트형 열교환기(110)는 격납부(11)의 내부 또는 외부 중 적어도 한 곳에 설치될 수 있다. 플레이트형 열교환기(110)는 원자로냉각재계통(12)의 현열과 노심(12a)의 잔열을 제거하도록 상기 현열과 잔열을 전달받은 일차계통유체 또는 이차계통유체를 격납부(11)의 외부에서 유입된 냉각 유체와 열교환시킨다.
도 1에 도시된 플레이트형 열교환기(110)는 격납부(11)의 외부에 설치되며, 이차계통유체를 격납부(11) 외부의 냉각 유체와 열교환시키도록 이루어진다.
순환배관(120)은 일차계통유체 또는 이차계통유체의 순환유로를 형성하도록 원자로냉각재계통(12)을 플레이트형 열교환기(110)에 연결하거나 일차계통과 이차계통 사이의 증기발생기(12b)를 플레이트형 열교환기(110)에 연결한다. 도 1에는 이차계통유체의 순환유로를 형성하도록 증기발생기(12b)와 플레이트형 열교환기(110)를 연결하는 순환배관(120)이 도시되어 있다.
플레이트형 열교환기(110)는 순환배관(120)을 통해 공급된 일차계통유체 또는 이차계통유체를 냉각 유체와 압력경계를 유지하면서 열교환시키도록 플레이트에 서로 구분되게 배열되며 상기 유체들을 서로 교대로 통과시키는 복수의 채널(미도시)들을 구비한다.
플레이트형 열교환기(110)는 인쇄기판형 열교환기와 판형 열교환기 중 적어도 하나를 포함할 수 있다. 인쇄기판형 열교환기는 확산접합에 의해 형성되며 광화학적 식각기술에 의해 조밀하게 형성되는 채널들을 구비한다. 이에 반해 판형 열교환기는 플레이트를 압출하여 채널들을 형성하고 상기 플레이트들을 개스킷, 용접, 브레이징 용접 중 적어도 하나의 방법으로 결합하여 형성된다.
채널들은 서로 다른 유체를 통과시키는 제1유로(미도시)와 제2유로(미도시)를 포함한다. 제1유로는 일차계통유체 또는 이차계통유체를 냉각하는 냉각 유체를 통과시키도록 복수개가 플레이트에 서로 이격되게 배열된다. 제2유로는 일차계통계통유체 또는 이차계통유체를 통과시키도록 형성되고, 냉각 유체와 압력 경계를 유지하면서 열교환을 유도하도록 복수개가 상기 제1유로와 교대로 플레이트에 배열된다.
도 1의 플레이트형 열교환기(110)는 이차계통유체의 순환을 이용하므로, 제2유로에는 이차계통유체가 흐르고 제1유로를 흐르는 냉각 유체는 상기 이차계통유체를 냉각한다.
플레이트형 열교환기(110)의 각 입구와 출구에는 입구 헤더(111a, 112a)와 출구 헤더(111b, 112b)가 형성된다. 입구 헤더(111a, 112a)는 플레이트형 열교환기(110)로 공급된 유체들을 각 채널들에 분배하도록 상기 제1유로와 제2유로의 입구에 형성된다. 출구 헤더(111b, 112b)는 각 채널들을 통과한 유체들을 모으도록 제1유로와 제2유로의 출구에 형성된다. 플레이트형 열교환기(110)에 공급된 유체들은 제1유로를 통과하는 냉각 유체, 제2유로를 통과하는 일차계통유체 또는 이차계통유체를 포함한다. 특히, 도 1에 도시된 피동잔열제거계통(100)에서 플레이트형 열교환기(110)에 공급된 유체들이란 냉각 유체와 이차계통유체이다.
도 1에서 제2유로의 입구 헤더(111a)와 출구 헤더(111b)는 입력경계 유지를 위해 필수적으로 구비되어야 한다. 그러나, 제1유로는 입출구가 비상냉각수저정부 유체에 개방되어 있는 구조이므로 입출구 유동을 원활하게 하기 위해 입구 헤더(112a)와 출구 헤더(112b)는 선택적으로 구비될 수 있는 구조물이다. 따라서, 제1유로에는 입구 헤더(112a)와 출구 헤더(112b)가 구비되지 않을 수도 있고, 제1유로로부터 외부로 연장되는 형태의 입구안내구조물과 출구안내구조물 등으로 대체될 수도 있다.
냉각 유체와 이차계통유체는 서로 다른 방향으로 흐르면서 열교환하므로, 제1유로의 입구는 제2유로의 출구와 인접하게 배치되고, 제1유로의 출구는 제2유로의 입구와 인접하게 배치된다. 그리고, 제1유로의 입구 헤더(112a)는 제2유로의 출구 헤더(111b)와 인접하게 배치되고, 제1유로의 출구 헤더(112b)는 제2유로의 입구 헤더(111a)와 인접하게 배치된다.
순환배관(120)은 플레이트형 열교환기(110)로 이차계통유체를 공급하는 증기배관(121)과 상기 플레이트형 열교환기(110)로부터 이차계통유체를 공급받는 급수배관(122)을 포함한다.
증기배관(121)은 증기발생기(12b)의 출구에서 연장되는 주증기관(14a)에서 이차계통유체를 공급받도록 상기 주증기관(14a)으로부터 분기되어 상기 제2유로의 입구에 연결된다. 급수배관(122)은 냉각 유체에 열을 전달하고 냉각된 이차계통유체를 증기발생기(12b)로 다시 순환시키도록 상기 증기발생기(12b)의 입구에서 연장되는 주급수관(13a)으로부터 분기되어 상기 제2유로의 출구에 연결된다.
피동잔열제거계통(100)은 비상냉각수저장부(130)를 포함할 수 있다.
비상냉각수저장부(130)는 내부에 냉각 유체를 저장하도록 형성되어 격납부(11)의 외부에 설치된다. 비상냉각수저장부(130)는 일차계통유체 또는 이차계통유체로부터 전달받은 열에 의해 온도 상승시 내부에 저장된 냉각 유체를 증발시켜 전달받은 열을 외부로 방출하도록 상부에 개구부(131)를 구비한다.
플레이트형 열교환기(110)는 적어도 일부가 상기 냉각 유체에 침지되도록 비상냉각수저장부(130)의 내부에 설치될 수 있다. 이 경우 증기배관(121)과 급수배관(122)은 적어도 일부가 비상냉각수저장부(130)를 관통하여 격납부(11)의 외부에서 각각 상기 주증기관(14a)과 상기 주급수관(13a)에 연결될 수 있다.
도 1에 도시한 바와 같이 플레이트형 열교환기(110)가 비상냉각수저장부(130)의 냉각 유체에 완전히 침지되어 있는 경우, 플레이트형 열교환기(110)는 수랭식으로 비상냉각수저장부(130)의 냉각 유체(냉각수)를 이용하여 이차계통유체를 냉각한다.
다음으로, 사고 발생시 피동잔열제거계통(100)의 작동에 대하여 설명한다. 도 1에서 서로 대칭적으로 도시한 도면의 좌측이 사고 발생시 피동잔열제거계통(100)의 상태를 나타낸다.
원전(10)에서 냉각재상실사고 또는 비냉각재상실사고(증기관파단사고 등) 등의 사고가 발생하면 주증기관(14a)과 주급수관(13a)에 설치된 격리밸브(13b, 14b)들은 관련신호에 의하여 폐쇄된다. 그리고, 피동잔열제거계통(100)의 급수배관(122)에 설치된 격리밸브(122a)는 관련신호에 의해 개방되며, 상기 격리밸브(122a) 개방에 의해 형성된 이차계통유체의 유동에 의해 상기 급수배관(121)에 설치된 체크밸브(122b)도 개방된다. 이에 따라, 급수계통(13)으로부터 증기발생기(12b)로 급수의 공급은 중단되고, 피동잔열제거계통(100) 내에서 이차계통유체가 순환한다.
이차계통유체는 급수배관(122)과 주급수관(13a)을 순차적으로 통과해 증기발생기(12b)의 입구로 유입된다. 증기발생기(12b)로 공급된 이차계통유체는 증기발생기(12b)에서 원자로냉각재계통(12) 내부의 일차계통유체로부터 현열 및 노심(12a)의 잔열을 전달받고, 이차계통유체의 온도는 상승하여 적어도 일부가 증발한다.
증기발생기(12b)의 출구를 통해 유출된 이차계통유체는 주증기관(14a) 및 피동잔열제거계통(100)의 증기배관(121)을 따라 상승하여 플레이트형 열교환기(110)의 제2유로로 유입된다. 플레이트형 열교환기(110)의 제1유로로는 비상냉각수저장부(130) 내부의 냉각 유체가 유입되며, 플레이트형 열교환기(110)에서는 이차계통유체로부터 냉각 유체로 열이 전달된다.
냉각 유체에 열을 전달한 이차계통유체는 냉각 및 응축되어 하강하고, 다시 급수배관(122)을 따라 이동하여 증기발생기(12b)로 순환한다. 이차계통유체의 순환은 밀도차에 의한 자연 현상에 의하여 발생하는 것이므로, 원자로냉각재계통(12)의 현열 및 노심(12a)의 잔열이 충분히 제거되어 이차계통유체의 순환에 필요한 충분한 밀도차가 소멸될 때까지 이차계통유체의 순환은 계속된다.
이차계통유체로부터 냉각 유체로 열이 전달되면 비상냉각수저장부(130) 내부의 온도는 점차 상승한다. 냉각 유체는 적어도 일부가 증발하여 개구부(131)를 통해 외부로 방출되며, 냉각 유체에 전달된 열도 외부로 방출된다.
이와 같이 피동잔열제거계통(100)은 자연력에 의한 피동적인 방법으로 이차계통유체를 순환시키고, 원자로냉각재계통(12)의 현열 및 노심(12a)의 잔열을 제거할 수 있다. 또한, 플레이트형 열교환기(110)는 서로 다른 채널들로 이차계통유체와 냉각 유체를 통과시켜 열교환시키도록 이루어지므로 압력 경계의 손상을 방지할 수 있고, 미세 유로를 통해 충분한 열교환을 유도할 수 있다.
이하에서는 피동잔열제거계통의 다른 실시예에 대하여 설명한다.
도 2는 본 발명의 다른 실시예에 관련된 피동잔열제거계통(200) 및 이를 구비하는 원전(20)의 개념도이다.
플레이트형 열교환기(210)는 제1유로로 비상냉각수저장부(230) 내부의 냉각 유체와 격납부(21) 외부의 대기를 통과시키도록 어느 일부가 상기 비상냉각수저장부(230)의 냉각 유체에 침지된다. 플레이트형 열교환기(210)는 냉각 유체와 대기 중 이차계통유체와의 열전달에 의해 증발된 유체를 외부로 방출하도록 상단부가 비상냉각수저장부(230)를 관통하여 상기 비상냉각수저장부(230)의 상부로 돌출되게 형성될 수도 있다. 기타 구성은 도 1에서 설명한 바와 유사하다.
플레이트형 열교환기(210)는 도 1에 도시된 플레이트형 열교환기(210)에 비하여 상대적으로 길게 형성되어, 상기 플레이트형 열교환기(210)에서 열교환하는 유체들에 수랭식과 공랭식의 열교환 환경을 제공할 수 있다.
도 2의 원전(20)은 좌우가 대칭적으로 도시되어 있으며, 우측은 정상 운전 상태를 나타낸 것이고 좌측은 사고 발생 초기를 나타낸 것이다.
냉각재상실사고 등의 사고가 발생하면 증기발생기(22b)의 출구에서 방출된 이차계통유체는 주증기관(24a) 및 증기배관(221)을 통해 플레이트형 열교환기(210)의 제2유로 입구로 유입된다. 사고 발생 초기에는 비상냉각수저장부(230) 내부에 냉각 유체가 충분히 저장되어 있고, 플레이트형 열교환기(210)의 적어도 일부가 냉각 유체에 침지되어 있으며, 수랭식 열교환 성능이 공랭식에 비해 현저하게 크기 때문에 이차계통유체는 수랭식의 냉각 방식에 의해 냉각된다.
플레이트형 열교환기(210)에서 냉각되어 제2유로의 출구로부터 배출된 이차계통유체는 급수배관(222) 및 주급수관(23a)을 통해 다시 증기발생기(22b)로 순환되며, 지속적인 순환을 통해 원자로냉각재계통(22)의 현열 및 노심(22a)의 잔열을 제거한다.
도 3은 도 2에 도시된 피동잔열제거계통(200) 및 이를 구비하는 원전(20)에서 사고 발생 후 시간이 경과한 사고 중기와 사고 후기의 개념도이다.
도 3에서 대칭인 도면을 중심으로 좌측은 사고 중기를 나타내고 우측은 사고 후기를 나타낸다.
먼저 좌측의 사고 중기를 나타내는 도면을 참조하면, 사고 초기에 비하여 비상냉각수저장부(230)의 냉각 유체가 증발하여 수위가 감소했음을 확인할 수 있다. 비상냉각수저장부(230)의 냉각 유체 수위가 낮아짐에 따라 플레이트형 열교환기(210)의 제1유로로는 비상냉각수저장부(230)의 냉각 유체와 격납부(21) 외부의 대기가 유입되어 수랭식과 공랭식의 혼합 방식으로 이차계통유체를 냉각한다.
다음으로 우측의 사고 후기를 나타내는 도면을 참조하면, 사고 중기에 비하여 비상냉각수저장부(230)의 냉각 유체가 대부분 증발하여 수위가 더욱 감소했음을 확인할 수 있다. 이에 따라 플레이트형 열교환기(210)의 제1유로로는 격납부(21) 외부의 대기가 유입되어 공랭식의 방식으로 이차계통유체를 냉각한다.
이와 같이 형성되는 플레이트형 열교환기(210)는 비상냉각수저장부(230)에 저장된 냉각 유체의 수위와 사고 발생 후 시간 경과에 따라 냉각 방식이 달라질 수 있다. 이는 노심(22a)의 잔열이 사고 발생 후 시간이 경과함에 따라 급격히 감소하는 특성을 이용한 것이다. 수랭식, 수랭식과 공랭식이 혼합된 혼합식, 공랭식의 냉각 방식을 순차적으로 채택하여 잔열 감소에 따라 적절한 냉각방식으로 전환되도록 구성하여 냉각 효율을 높이고 냉각 지속성을 유지할 수 있다. 이에 따라 피동잔열제거계통(200)은 지속적으로 원자로냉각재계통(22)의 현열 및 노심(22a)의 잔열을 제거할 수 있다.
도 4는 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통(300) 및 이를 구비하는 원전(30)의 개념도이다. 도 4에서 대칭적으로 도시된 도면의 우측은 원전(30)의 정상 운전시를 나타내고, 좌측은 원전(30)의 사고 발생시를 나타낸다.
피동잔열제거계통(300)은 도 1 내지 도 3에 도시된 피동잔열제거계통(100, 200)과 달리 비상냉각수저장부 없이 공랭식의 냉각 방식만으로 이차계통유체를 냉각한다.
플레이트형 열교환기(310)의 제1유로로는 격납부(31) 외부의 대기가 유입되고, 제2유로로는 증기발생기(32b)에서 공급된 이차계통유체가 유입된다. 각각의 유로를 통과하는 이차계통유체로부터 대기로 열이 전달되고, 대기는 플레이트형 열교환기(310)의 외부로 방출된다. 이에 따라, 원자로냉각재계통(32) 및 노심(32a)으로부터 전달된 현열과 잔열은 외부 대기로 배출될 수 있다.
도 5는 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통(400) 및 이를 구비하는 원전(40)의 개념도이다.
플레이트형 열교환기(410)는 격납부(41)의 내부 공간에 설치되고, 비상냉각수저장부(430)는 격납부(41)의 외부에 설치된다. 플레이트형 열교환기(410)는 제1유로로 비상냉각수저장부(430) 내부의 냉각 유체를 통과시키도록 제1유로의 입구와 출구가 각각 격납부(41)를 관통하는 연결배관(441, 442)에 의해 비상냉각수저장부(430)에 연결된다.
이차계통유체는 주증기관(44a)과 증기배관(421)을 통해 플레이트형 열교환기(410)의 제2유로로 공급되고, 비상냉각수저장부(430)에서 플레이트형 열교환기(410)의 제1유로로 공급된 냉각 유체와 열교환한다. 이에 따라 이차계통유체는 수랭식 냉각 방식에 의해 냉각된다. 이차계통유체와 냉각 유체 모두 플레이트형 열교환기(410)를 지속적으로 순환한다.
비상냉각수저장부(430)의 냉각 유체는 연결배관(441)을 통해 플레이트형 열교환기(410)로 공급되나 이차계통유체와 서로 구분되는 유로를 통해 흐르므로 플레이트형 열교환기(410)에서 압력 경계가 손상되지 않는다. 비상냉각수저장부(430)의 냉각 유체는 플레이트형 열교환기(410)를 순환하면서 이차계통유체로부터 열을 전달 온도가 상승하며, 연결배관(442)을 통해 다시 비상냉각수저장부(430)로 유입된다. 비상냉각수저장부(430)의 냉각 유체는 온도가 상승하면 증발되어 전달받은 열을 외부로 배출한다.
연결배관(441, 442)에 설치된 격리밸브(441a, 442a)와 체크밸브(441b)는 평상시 개방되어 있으며, 유지 보수를 위해 필요한 경우에만 닫힌다.
도 6은 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통(500) 및 이를 구비하는 원전(50)의 개념도이다.
플레이트형 열교환기(510)는 격납부(51)의 내부 공간에 설치되고, 비상냉각수저장부(530)는 설치되지 않는다. 플레이트형 열교환기(510)는 제1유로로 격납부(51) 외부의 대기를 통과시키도록 제1유로의 입구와 출구가 격납부(51)를 관통하는 연결배관(541, 542)에 의해 상기 격납부(51) 외부와 통한다.
외부의 대기는 자연순환에 의해 연결배관(541, 542)을 통해 플레이트형 열교환기(510)로 유입되고 제1유로를 따라 유동한다. 이에 따라 제2유로를 따라 유동하는 이차계통유체는 공랭식으로 냉각된다.
격납부(51)의 외부에서 유입되는 대기는 연결배관(541, 542)을 통해 플레이트형 열교환기(510)로 공급되나 이차계통유체와 서로 구분되는 유로를 통해 흐르므로 플레이트형 열교환기(510)에서 압력 경계가 손상되지 않는다.
도 7은 본 발명의 또 다른 실시예에 관련된 피동잔열제거계통(600) 및 이를 구비하는 원전(60)의 개념도이다.
피동잔열제거계통(600)은 도 1 내지 도 6에서 설명한 피동잔열제거계통(600)과 달리 일차계통유체를 이용하여 원자로냉각재계통(62)의 현열 및 노심(62a)의 잔열을 제거하도록 이루어진다. 비상냉각수저장부(630)는 격납부(61)의 외부에 설치되고, 플레이트형 열교환기(610)는 상기 비상냉각수저장부(630)의 냉각 유체에 침지된다.
순환배관(620)은 증기배관(621)과 주입배관(622)을 포함한다.
증기배관(621)은 원자로냉각재계통(62)에서 일차계통유체를 공급받아 플레이트형 열교환기(610)로 전달하도록, 적어도 일부가 격납부(61)를 관통하여 원자로냉각재계통(62)과 제2유로의 입구에 연결된다. 주입배관(622)은 냉각 유체에 열을 전달하고 냉각된 일차계통유체를 원자로냉각재계통(62)으로 다시 주입시키도록, 적어도 일부가 격납부(61)를 관통하여 제2유로의 출구와 원자로냉각재계통(62)에 연결된다.
플레이트형 열교환기(610)의 제1유로로 비상냉각수저장부(630)의 냉각 유체가 흐르고, 제2유로로 일차계통유체가 흘러 수랭식의 냉각이 이루어지며, 피동잔열제거계통(600)은 일차계통유체를 순환시켜 원자로냉각재계통(62)의 현열 및 노심(62a)의 잔열을 제거할 수 있다.
일차계통유체와 냉각 유체는 서로 구별되는 유로를 흐르므로, 피동잔열제거계통(600)은 압력 경계를 손상시키지 않고 열교환을 유도할 수 있다. 압력 경계가 손상되지 않는 한, 플레이트형 열교환기(610)는 도시한 바와 달리 격납부(61)의 내부에 설치될 수도 있다. 또한, 도 1 내지 도 6의 이차계통유체 대신 일차계통유체의 순환 구조를 채택할 수도 있다.
이상에서 피동잔열제거계통의 구조와 자연 순환에 의한 피동잔열제거계통의 작동을 설명하였으나, 실제로 플레이트형 열교환기가 피동잔열제거계통에 적용되는 경우에는 이상(two pahse) 유동 영역에서의 유동 불안 문제, 열교환기 입구에서의 병목 현상 등의 문제가 발생하므로 이를 개선하는 것이 필요하다. 이하에서는 이러한 문제를 개선하기 위해 본 발명에서 제안하는 플레이트형 열교환기의 구조에 대하여 설명한다.
이하에서의 설명은 제1유로와 제2유로를 구분하지 않고 설명할 수도 있으며, 설명하는 바가 대기 제1유로와 제2유로 중 어느 하나에만 한정되는 것으로 명시하지 않는 한, 제1유로에서 설명하는 바는 제2유로에도 적용될 수 있고, 제2유로에서 설명하는 바는 제1유로에도 적용될 수 있다.
이하에서는 도 1 내지 도 7에서 설명한 피동잔열제거계통(100, 200, 300, 400, 500, 600)에 적용될 수 있는 플레이트형 열교환기(710)의 구체적인 구조에 대하여 설명한다.
도 8 내지 도 14는 도 1 내지 도 7의 피동잔열제거계통(100, 200, 300, 400, 500, 600)에 선택적으로 적용될 수 있는 플레이트형 열교환기(710)를 유로 개념도이다.
플레이트형 열교환기(710)에 인쇄기판형 열교환기의 제작기법을 적용하는 경우, 광화학적 식각 기술에 의해 조밀한 유로배치가 가능하며 확산 접합 기술을 이용하여 열교환기의 판 사이의 용접을 제거할 수 있는 구조를 갖으며, 또한 일반적인 판형 열교환기도 조밀한 유로배치가 가능하다. 플레이트형 열교환기(710)는 격납부(11, 21, 31, 41, 51, 61, 도 1 내지 도 7 참조)의 대기와 비상냉각수저장부(130, 230, 430, 630, 도 1 내지 도 3, 도 5, 도 7 참조)의 냉각 유체를 열교환 시키며, 압력 경계를 유지하면서 유체들의 열교환을 유도하도록 플레이트에 서로 구분되는 채널(715, 716)들을 구비한다.
채널(715, 716)들은 냉각 유체를 통과시키는 제1유로(715), 일차계통유체 또는 이차계통유체를 통과시키는 제2유로(716)를 포함하며, 각각의 채널(715, 716)은 제1유로(715)와 제2유로(716) 중 어느 하나에 해당한다.
제1유로(715)와 제2유로(716)의 형태는, 일 방향으로만 냉각 유체 또는 대기가 통과하고 상기 일 방향의 반대 방향으로만 일차계통유체 또는 이차계통유체가 통과하는 형태의 폐쇄형 유로일 수 있다.
제2유로(716)와 달리 제1유로(715)는 상기 일 방향과 교차하는 방향으로도 냉각 유체 또는 대기가 통과하는 형태의 개방형 유로 또는 부분 개방형 유로일 수도 있다. 냉각 유체 또는 대기가 통과하는 제1유로는, 상대적으로 긴 길이의 플레이트형 열교환기(710)에서 공랭식 또는 공랭식과 혼합식의 냉각을 위해 개방형 유로 또는 부분 개방형 유로를 선택적으로 채용할 수 있다. 그러나, 제2유로(716)의 경우 개방형 유로를 채용하면 압력 경계가 손상되므로 개방형 유로를 적용할 수 없다.
먼저 도 8을 참조하면, 도시된 플레이트형 열교환기(710)는 냉각 유체가 흐르는 제1유로(715)의 단면을 나타낸 것이다. 플레이트형 열교환기(710)는 입구 영역(710a), 주열전달 영역(710b) 및 출구 영역(710c)을 포함한다. 입구 영역(710a)은 플레이트형 열교환기(710)에 공급된 냉각 유체를 각각의 제1유로(715)로 분배하는 영역이며, 주열전달 영역(710b)은 냉각 유체와 일차계통유체, 냉각 유체와 이차계통유체 사이에 실질적인 열교환이 이루어지는 영역이고, 출구 영역(710c)은 열교환을 마친 유체들을 각각의 제1유로(715)로부터 모아 방출하는 영역이다. 주열전달 영역(710b)은 입구 영역(710a)과 출구 영역(710c)을 연결하며, 상기 입구 영역(710a)과 출구 영역(710c)의 사이에 형성된다.
냉각 유체의 온도는 일차계통유체나 이차계통유체의 온도보다 낮으므로, 냉각 유체는 플레이트형 열교환기(710)를 통과하면서 상기 일차계통유체 또는 이차계통유체로부터 열을 전달받아 온도가 상승한다. 냉각 유체의 온도가 상승하면 밀도가 감소하므로 플레이트형 열교환기(710) 내에서 냉각 유체는 상승하게 된다.
다음으로 도 9를 참조하면, 유로들은 이상(two phase) 유동에 의한 유동 불안정을 완화하도록, 입구 영역(710a)과 출구 영역(710c)을 연결하는 주열전달 영역(710b)의 유로 저항보다 입구 영역(710a)의 유로저항이 상대적으로 크게 형성될 수 있다.
유로저항을 상대적으로 크게 만드는 방법은 여러 가지가 있을 수 있으나, 도 9에 도시된 플레이트형 열교환기(710)는 주열전달 영역(710b)의 유로보다 입구 영역(710a)에서의 유로가 작은 폭으로 형성되어 길게 연장되는 방식을 채택하였다.
입구 영역(710a)의 유로(715a)는 직선형 유로보다 상대적으로 큰 유로저항을 구비하도록 지그재그 형태로 형성되어 주열전달 영역(710b)에 연결된다. 구체적으로는 입구 영역(710a)의 유로가 플레이트형 열교환기(710)의 길이 방향과 폭 방향으로 교대로 반복적으로 연결되어 주열전달 영역(710b)까지 연장되는 형태로 형성된다. 입구 영역(710a)의 유로저항을 주열전달 영역(710b)의 유로저항보다 크게 형성함에 따라 이상(two phase) 유동에서의 유동 불안 발생 확률을 감소시킬 수 있다.
유로확대부(715b)는 입구 영역(710a)과 주열전달 영역(710b) 사이에 형성되고, 입구 영역(710a)의 유로 크기에서 주열전달 영역(710b)의 유로 크기까지 연장 방향을 향해 유로의 폭이 점차 증가하도록 형성된다. 유로확대부(715b)를 지나면서 유로저항은 상대적으로 작아지고, 이후의 주열전달 영역(710b)과 출구 영역(710c)의 유로에서는 상대적으로 작은 유로저항이 유지된다.
도 10 내지 도 12b는 입구와 출구에 각각 헤더를 구비하는 플레이트형 열교환기(710)의 개념도이다.
먼저, 도 10을 참조하면 플레이트형 열교환기(710)에는 유체를 각각의 유로로 분배하는 입구 헤더(712a)와 각각의 유로로부터 유체를 모으는 출구 헤더(712b)가 설치될 수도 있다. 격납부(11, 21, 31, 41, 51, 61, 도 1 내지 도 7 참조) 내부에 플레이트형 열교환기가 설치되는 경우 입구 헤더(712a)와 출구 헤더(712b)는 압력경계손상을 방지하기 위해 필수적으로 설치되어야 하는 구조물이나, 격납부 외부에 설치되는 경우에는 필수적으로 설치되어야 하는 구조물은 아니며, 설치되지 않을 수도 있고 입출구 유동을 원활하게 하기 위한 유로안내구조물로 대치될 수도 있다.
입구 헤더(712a)는 유로의 입구에 설치되어 비상냉각수저장부(130, 230, 430, 630, 도 1 내지 도 3, 도 5, 도 7 참조)로부터 공급된 냉각 유체 또는 격납부의 외부에서 공급된 대기를 각각의 제1유로(715)에 분배시킨다. 그리고, 출구 헤더(712b)는 제1유로(715)의 출구에 설치되어 제1유로(715)를 통과한 냉각 유체를 모아 비상냉각수저장부로 회수시키거나 외부 방출시킨다.
입구 헤더(712a)와 출구 헤더(712b)의 설치 위치는 플레이트형 열교환기(710)의 설계에 따라 달라질 수 있다. 특히 플레이트형 열교환기(710)에 인쇄기판형 열교환기의 제작 기법을 적용하는 경우 광화학적 식각 방법에 의해 제조되므로 채널(715, 716)의 구조를 자유롭게 선택할 수 있고, 일반 판형 열교환기도 유로구성이 매우 자유로우므로, 입구 헤더(712a)와 출구 헤더(712b)의 위치도 달라질 수 있다.
도 11 내지 도 12b를 참조하면 입구 헤더(711a, 712a)와 출구 헤더(711b, 712b)가 각각 플레이트형 열교환기(710)의 측면에 설치되고, 각각의 유로(715, 716)들은 입구 영역(710a)과 출구 영역(710b)에서 절곡되거나 곡선 유로를 형성하여 입구 헤더(711a, 712a) 또는 출구 헤더(711b, 712b)까지 연장된다.
입구 영역(710a)에서 유로(715, 716)의 연장 방향과 출구 영역(710c)에서 유로(715, 716)의 연장 방향은, 도 11에 도시된 바와 같이 동일한 방향일 수도 있고, 도 12a 및 도 12b에 도시한 바와 같이 서로 반대 방향일 수도 있으며, 이는 피동잔열제거계통의 설계에 따라 달라질 수 있다.
도 12a 및 도 12b는 각각 플레이트형 열교환기(710)의 제1유로(715)와 제2유로(716)를 도시한 것이다. 제1유로(715)에서는 냉각 유체 또는 외부의 대기가 통과하면서 열을 전달받아 온도가 상승하거나 증발하여 밀도가 감소하고, 제2유로(716)에서는 일차계통유체 또는 이차계통유체가 통과하면서 상기 냉각 유체 또는 대기에 열을 전달해 온도가 하강하거나 응축되어 밀도가 증가한다.
도 13 및 도 14는 각각 개방형 유로 또는 부분 개방형 유로를 구비하는 플레이트형 열교환기(710)의 유로 개념도이다.
도 13을 참조하면, 플레이트형 열교환기(710)는 유체들의 압력 경계를 유지하면서 입구에서의 병목 현상을 완화하도록 측면에서 냉각 유체 또는 대기를 유입시켜 제1유로를 통과하는 냉각 유체 또는 대기와 합류시키는 개방형 유로를 구비한다. 그리고 도 14를 참조하면, 플레이트형 열교환기(710)는 주열전달 영역(710b)의 일부에만 개방형으로 유로가 형성되는 부분 개방형 유로를 구비한다.
개방형 유로 또는 부분 개방형 유로를 구비하는 플레이트형 열교환기(710)는 상기 개방형 유로 또는 부분 개방형 유로를 형성하는 종방향 유로(715)와 횡방향 유로(717)를 포함한다. 종방향 유로(715)는 플레이트형 열교환기(710)의 상단부의 입구 영역(710a)과 하단부의 출구 영역(710c)을 연결한다. 횡방향 유로(717)는 입구의 병목 현상을 완화하도록 플레이트형 열교환기(710)의 양 측면부에 형성되는 입구와 출구를 통해 냉각 유체 또는 대기를 유입 및 유출시키며 종방향 유로(715)와 교차하도록 형성된다.
특히, 개방형 유로가 형성되는 플레이트형 열교환기(710)는 대기만으로 일차계통유체 또는 이차계통유체를 냉각하는 공랭식 전용의 피동잔열제거계통을 형성할 수 있다. 그리고 부분 개방형 유로가 형성되는 플레이트형 열교환기(710)는 대기와 냉각 유체로 일차계통유체 또는 이차계통유체를 냉각하는 혼합식(수랭과 공랭의 혼합)의 피동잔열제거계통을 형성할 수 있다. 공랭식 또는 혼합식의 방식으로 일차계통유체 또는 이차계통유체를 냉각하는 플레이트형 열교환기(710)는 상대적으로 긴 길이로 형성되는 것이 바람직하다.
부분 개방형 유로가 형성되는 플레이트형 열교환기(710)는 냉각률에 제한이 있는 원자로냉각재계통(12, 22, 32, 42, 52, 62, 도 1 내지 도 7 참조)의 과냉각 문제를 완화하기 위한 것으로, 부분 개방형 유로는 사고 초기 수랭식으로 작동함에 따라 냉각 유체의 순환은 원활하게 하고, 대기의 유입에 의한 추가적인 냉각률 증가를 억제하기 위해 구성된 것이다.
본 발명의 플레이트형 열교환기(710)에서 개방형 유로 또는 부분 개방형 유로는 냉각 유체 또는 대기를 통과시키는 제1유로(715)에만 형성될 수 있다. 제2유로(716)는 압력 경계가 손상되는 것을 방지하기 위해 폐회로를 순환해야하기 때문이다.
도 15는 도 1 내지 도 7의 피동잔열제거계통(100, 200, 300, 400, 500, 600, 도 1 내지 도 7 참조)에 선택적으로 적용될 수 있는 복수의 플레이형 열교환기(815)의 개념도이다.
(a), (b), (c) 및 (d)는 각각 복수의 플레이트형 열교환기(810)의 평면도, 좌측면도, 정면도, 우측면도를 나타낸 것이다. 복수의 플레이트형 열교환기(810)는 각각 케이싱(813)에 의해 감싸지며, 케이싱(813)에는 열전달 면적 확장을 위한 냉각핀(813)이 설치된다.
일차계통유체 또는 이차계통유체는 증기배관(821)을 통해 각각의 플레이트형 열교환기(810)로 분배되고, 각각의 플레이트형 열교환기(810) 내에서는 입구 헤더(811a)에 의해 각각의 제2유로(미도시)로 분배된다. 제2유로를 통과한 일차계통유체 또는 이차계통유체는 출구 헤더(811b)에 의해 모이고 다시 주입배관(일차계통유체 순환방식) 또는 급수배관(822, 이차계통유체 순환방식)에서 합류한다. 냉각 유체 또는 대기도 입구 헤더(812a)에 의해 각각의 제1유로(미도시)로 분배되고, 제1유로를 통과한 냉각 유체 또는 대기는 출구 헤더(812b)에 의해 모인다. 단, 앞에서 설명한 바와 같이 바와 같이 격납부 외부에 열교환기를 설치하는 경우에는 입출구헤더(812a, 812b)는 필수적인 구조물은 아니다.
도 16은 도 15에 도시된 복수의 플레이트형 열교환기(910)의 배치 개념도이다.
(a)를 참조하면, 복수의 플레이트형 열교환기(910)는 횡으로 배열되어 열교환기 집합체를 형성하며, 비상냉각수저장부(930)의 내부에 배치될 수 있다.
(b)를 참조하면, 복수의 플레이트형 열교환기(910)는 격자 형태로 배열되어 열교환기 집합체를 형성하며, 비상냉각수저장부(930)의 내부에 배치될 수 있다.
이상에서 설명된 피동잔열제거계통 및 원전은 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명은 원전 산업 분야에서 피동잔열제거계통의 성능 향상을 위해 이용될 수 있다.
Claims (18)
- 원자로냉각재계통의 현열과 노심의 잔열을 제거하도록 상기 현열과 잔열을 전달받은 일차계통유체 또는 이차계통유체를 격납부의 내부 또는 외부에서 유입된 냉각 유체와 열교환시키는 플레이트형 열교환기; 및상기 일차계통유체의 순환유로를 형성하도록 상기 원자로냉각재계통을 상기 플레이트형 열교환기에 연결하거나, 상기 이차계통유체의 순환유로를 형성하도록 일차계통과 이차계통의 경계에 배치된 증기발생기를 상기 플레이트형 열교환기에 연결하는 순환배관을 포함하는 피동잔열제거계통.
- 제1항에 있어서,상기 플레이트형 열교환기는,확산접합에 의해 형성되며 광화학적 식각기술에 의해 조밀하게 형성되는 채널들을 구비하는 인쇄기판형 열교환기; 및플레이트를 압출하여 채널들을 형성하고, 상기 플레이트들을 개스킷, 용접, 브레이징 용접 중 적어도 하나의 방법으로 결합하여 형성되는 판형 열교환기 중 적어도 하나를 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제1항에 있어서,상기 플레이트형 열교환기는 상기 순환배관을 통해 공급된 상기 일차계통유체 또는 상기 이차계통유체를 상기 냉각 유체와 압력 경계를 유지하면서 열교환시키기 위한 복수의 채널을 구비하고,상기 복수의 채널은 플레이트에 서로 구분되게 배열되며 상기 유체들을 서로 교대로 통과시키도록 형성되는 것을 특징으로 하는 피동잔열제거계통.
- 제3항에 있어서,상기 채널은 이상(two phase) 유동에 의한 유동 불안정을 완화하도록, 입구 영역과 출구 영역을 연결하는 주열전달 영역의 유로저항보다 상기 입구 영역의 유로저항이 상대적으로 더 크게 형성되는 것을 특징으로 하는 피동잔열제거계통.
- 제4항에 있어서,상기 입구 영역은, 상기 주열전달 영역보다 작은 폭으로 형성되며, 유로의 길이를 연장시켜 직선형 유로보다 상대적으로 더 큰 유로저항을 구비하도록 형성되는 것을 특징으로 하는 피동잔열제거계통.
- 제5항에 있어서,상기 플레이트형 열교환기는, 상기 입구 영역과 상기 주열전달 영역 사이에 형성되고, 상기 입구 영역의 유로 크기에서 상기 주열전달 영역의 유로 크기까지 유로의 폭이 점차 증가하도록 형성되는 유로확대부를 더 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제3항에 있어서,상기 복수의 채널은,상기 냉각 유체를 통과시키도록 서로 이격되게 배열되는 복수의 제1유로; 및상기 일차계통유체 또는 상기 이차계통유체를 통과시키도록 형성되고, 상기 냉각 유체와 압력 경계를 유지하면서 열교환을 유도하도록 상기 제1유로와 교대로 배열되는 복수의 제2유로를 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제7항에 있어서,상기 피동잔열제거계통은,상기 플레이트형 열교환기로 공급된 유체들을 각 채널들에 분배하도록 상기 제1유로와 상기 제2유로의 입구에 형성되는 입구 헤더; 및상기 각 채널들을 통과한 상기 유체들을 모으도록 상기 제1유로와 상기 제2유로의 출구에 형성되는 출구 헤더를 더 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제7항에 있어서,상기 순환배관은,상기 증기발생기의 출구에서 연장되는 주증기관에서 상기 이차계통유체를 공급받도록 상기 주증기관으로부터 분기되어 상기 제2유로의 입구에 연결되는 증기배관; 및상기 냉각 유체에 열을 전달하고 냉각된 상기 이차계통유체를 상기 증기발생기로 다시 순환시키도록 상기 증기발생기의 입구에서 연장되는 주급수관으로부터 분기되어 상기 제2유로의 출구에 연결되는 급수배관을 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제9항에 있어서,상기 플레이트형 열교환기는 상기 격납부의 내부 공간에 설치되고, 상기 제1유로로 상기 격납부 외부의 대기를 통과시키도록 상기 제1유로의 입구와 출구가 상기 격납부를 관통하는 연결배관에 의해 상기 격납부의 외부와 통하는 것을 특징으로 하는 피동잔열제거계통.
- 제9항에 있어서,상기 플레이트형 열교환기는 상기 격납부의 외부 공간에 설치되고, 상기 증기배관과 상기 급수배관은 상기 격납부의 외부에서 상기 주증기관과 주급수관에 각각 연결되는 것을 특징으로 하는 피동잔열제거계통.
- 제9항에 있어서,상기 피동잔열제거계통은, 내부에 상기 냉각 유체를 저장하도록 형성되어 상기 격납부의 외부에 설치되는 비상냉각수저장부를 더 포함하고,상기 비상냉각수저장부는 상기 일차계통유체 또는 상기 이차계통유체로부터 전달받은 열에 의해 온도 상승시 내부에 저장된 상기 냉각 유체를 증발시켜 전달받은 열을 외부로 방출하도록 상부에 개구부를 구비하는 것을 특징으로 하는 피동잔열제거계통.
- 제12항에 있어서,상기 플레이트형 열교환기는 상기 격납부의 내부 공간에 설치되고, 상기 제1유로로 상기 비상냉각수저장부 내부의 냉각 유체를 통과시키도록 상기 제1유로의 입구와 출구가 상기 격납부를 관통하는 연결배관에 의해 상기 비상냉각수저장부에 연결되는 것을 특징으로 하는 피동잔열제거계통.
- 제12항에 있어서,상기 플레이트형 열교환기는 적어도 일부가 상기 냉각 유체에 침지되도록 상기 비상냉각수저장부의 내부에 설치되고,상기 증기배관과 상기 급수배관은 적어도 일부가 상기 비상냉각수저장부를 관통하여 상기 격납부의 외부에서 각각 상기 주증기관과 상기 주급수관에 연결되는 것을 특징으로 하는 피동잔열제거계통.
- 제14항에 있어서,상기 플레이트형 열교환기는 상기 제1유로로 상기 비상냉각수저장부 내부의 냉각 유체 및 상기 격납부 외부의 대기를 통과시키도록 어느 일부가 상기 비상냉각수저장부에 침지되고, 상기 냉각 유체와 상기 대기 중 상기 이차계통유체와의 열전달에 의해 증발된 유체를 외부로 방출하도록 상단부가 상기 비상냉각수저장부를 관통하여 상기 비상냉각수저장부의 상부로 돌출되는 것을 특징으로 하는 피동잔열제거계통.
- 제7항에 있어서,상기 순환배관은,상기 원자로냉각재계통에서 상기 일차계통유체를 공급받아 상기 플레이트형 열교환기로 전달하도록 적어도 일부가 상기 원자로냉각재계통과 상기 제2유로의 입구에 연결되는 증기배관; 및상기 냉각 유체에 열을 전달하고 냉각된 상기 일차계통유체를 상기 원자로냉각재계통으로 다시 주입시키도록 적어도 일부가 상기 제2유로의 출구와 상기 원자로냉각재계통에 연결되는 주입배관을 포함하는 것을 특징으로 하는 피동잔열제거계통.
- 제1항에 있어서,상기 플레이트형 열교환기는 입구의 병목 현상을 완화하도록, 측면에서 상기 냉각 유체를 유입시켜 상기 채널들을 통과하는 냉각 유체와 합류시키는 개방형 유로를 구비하는 것을 특징으로 하는 피동잔열제거계통.
- 제1항에 있어서,상기 플레이트형 열교환기는 입구의 병목 현상을 완화하도록 복수개로 구비되며,상기 플레이트형 열교환기는,상기 플레이트형 열교환기의 적어도 일부를 감싸도록 형성되는 케이싱; 및열전달 면적을 확장시키도록 상기 케이싱의 적어도 일부를 감싸도록 형성되는 냉각핀을 더 포함하는 것을 특징으로 하는 피동잔열제거계통.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/108,767 US10811147B2 (en) | 2014-01-06 | 2014-12-29 | Passive residual heat removal system and atomic power plant comprising same |
SA516371460A SA516371460B1 (ar) | 2014-01-06 | 2016-07-04 | نظام إزالة الحرارة المتبقية السالبة ومصنع قدرة ذرية يشتمل عليه |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140001461A KR101535478B1 (ko) | 2014-01-06 | 2014-01-06 | 피동잔열제거계통 및 이를 구비하는 원전 |
KR10-2014-0001461 | 2014-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015102348A1 true WO2015102348A1 (ko) | 2015-07-09 |
Family
ID=53493635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/012995 WO2015102348A1 (ko) | 2014-01-06 | 2014-12-29 | 피동잔열제거계통 및 이를 구비하는 원전 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10811147B2 (ko) |
KR (1) | KR101535478B1 (ko) |
SA (1) | SA516371460B1 (ko) |
WO (1) | WO2015102348A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113838587A (zh) * | 2021-08-30 | 2021-12-24 | 西安交通大学 | 基于一体式换热器的小型氟盐堆非能动余排系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3692551A4 (en) * | 2017-10-02 | 2021-06-23 | Westinghouse Electric Company Llc | POOL-TYPE LIQUID METAL FAST SPECTRUM REACTOR USING PRINTED CIRCUIT HEAT EXCHANGER CONNECTION TO POWER CONVERSION SYSTEM |
JP6810101B2 (ja) * | 2018-06-06 | 2021-01-06 | 株式会社神戸製鋼所 | 積層型熱交換器 |
KR102371676B1 (ko) * | 2020-03-23 | 2022-03-04 | 한국수력원자력 주식회사 | 피동 잔열 제거 계통 |
KR102348091B1 (ko) | 2020-04-01 | 2022-01-10 | 한국원자력연구원 | 증기 발생기 사고 대처 시스템 |
CN111430050B (zh) * | 2020-04-24 | 2024-06-18 | 上海核工程研究设计院股份有限公司 | 一种反应堆二次侧非能动余热排出系统及使用方法 |
CZ309095B6 (cs) * | 2020-12-08 | 2022-01-26 | Újv Řež, A. S. | Pasivní systém se zvýšenou spolehlivostí pro odvod zbytkového tepla z jaderného reaktoru a způsob na něm prováděný |
KR102701905B1 (ko) * | 2021-08-26 | 2024-09-02 | 한국원자력연구원 | 선박의 원자로 피동냉각 설비 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4249595A (en) * | 1979-09-07 | 1981-02-10 | The Trane Company | Plate type heat exchanger with bar means for flow control and structural support |
KR20020037105A (ko) * | 2000-11-13 | 2002-05-18 | 장인순 | 원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과장치 |
KR20060020756A (ko) * | 2004-08-28 | 2006-03-07 | 웨스팅하우스 일레트릭 캄파니 엘엘씨 | 다양한 비상냉각설비를 갖춘 일체형 가압 경수로 및 그운전방법 |
WO2012176336A1 (ja) * | 2011-06-24 | 2012-12-27 | 三菱電機株式会社 | プレート式熱交換器及び冷凍サイクル装置 |
KR101242743B1 (ko) * | 2011-12-14 | 2013-03-13 | 한국과학기술원 | 일체형 피동안전탱크를 이용한 일체형 원자력 발전 시스템 |
KR101255588B1 (ko) * | 2011-10-14 | 2013-04-16 | 한국원자력연구원 | 원자로의 잔열 제거 장치 및 그 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5224358A (en) * | 1990-10-04 | 1993-07-06 | Nippondenso Co., Ltd. | Refrigerating apparatus and modulator |
US5612982A (en) * | 1995-07-31 | 1997-03-18 | Westinghouse Electric Corporation | Nuclear power plant with containment cooling |
DE102009031557A1 (de) * | 2009-03-02 | 2010-09-09 | Sms Siemag Ag | Energierückgewinnung in Warmbandstraßen durch Umwandlung der Kühlwärme der Stranggießanlage sowie der Restwärme von Brammen und Coils in elektrische Energie oder sonstige Nutzung der aufgefangenen Prozesswärme |
KR100877574B1 (ko) * | 2006-12-08 | 2009-01-08 | 한국원자력연구원 | 원자력 수소생산용 고온, 고압 및 내식성 공정 열교환기 |
-
2014
- 2014-01-06 KR KR1020140001461A patent/KR101535478B1/ko active IP Right Grant
- 2014-12-29 WO PCT/KR2014/012995 patent/WO2015102348A1/ko active Application Filing
- 2014-12-29 US US15/108,767 patent/US10811147B2/en active Active
-
2016
- 2016-07-04 SA SA516371460A patent/SA516371460B1/ar unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4249595A (en) * | 1979-09-07 | 1981-02-10 | The Trane Company | Plate type heat exchanger with bar means for flow control and structural support |
KR20020037105A (ko) * | 2000-11-13 | 2002-05-18 | 장인순 | 원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과장치 |
KR20060020756A (ko) * | 2004-08-28 | 2006-03-07 | 웨스팅하우스 일레트릭 캄파니 엘엘씨 | 다양한 비상냉각설비를 갖춘 일체형 가압 경수로 및 그운전방법 |
WO2012176336A1 (ja) * | 2011-06-24 | 2012-12-27 | 三菱電機株式会社 | プレート式熱交換器及び冷凍サイクル装置 |
KR101255588B1 (ko) * | 2011-10-14 | 2013-04-16 | 한국원자력연구원 | 원자로의 잔열 제거 장치 및 그 방법 |
KR101242743B1 (ko) * | 2011-12-14 | 2013-03-13 | 한국과학기술원 | 일체형 피동안전탱크를 이용한 일체형 원자력 발전 시스템 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113838587A (zh) * | 2021-08-30 | 2021-12-24 | 西安交通大学 | 基于一体式换热器的小型氟盐堆非能动余排系统 |
Also Published As
Publication number | Publication date |
---|---|
SA516371460B1 (ar) | 2020-08-24 |
KR101535478B1 (ko) | 2015-07-09 |
US20160322121A1 (en) | 2016-11-03 |
US10811147B2 (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015102348A1 (ko) | 피동잔열제거계통 및 이를 구비하는 원전 | |
WO2015084027A1 (ko) | 피동격납건물냉각계통 및 이를 구비하는 원전 | |
US10541058B2 (en) | Passive safety system and nuclear power plant comprising same | |
WO2015149718A1 (zh) | 非能动安全壳热量导出系统及其控制方法和压水反应堆 | |
US20160042816A1 (en) | Reactor and operating method for the reactor | |
US20180061514A1 (en) | Self-diagnosis and accident-handling unmanned nuclear reactor | |
WO2014081140A1 (ko) | 공냉식 방열기를 가진 변압기 | |
KR101559017B1 (ko) | 중대사고방지 무인사고대처 원자로 및 그 동작 방법 | |
EP3009781B1 (en) | Heat exchanger | |
KR101490177B1 (ko) | 피동잔열제거계통 및 이를 구비하는 원전 | |
KR101624561B1 (ko) | 격납부냉각계통 및 이를 구비한 원전 | |
US7993426B2 (en) | Moisture separator | |
KR19980069816A (ko) | 원자력발전소를 위한 드레인시스템 | |
WO2022019554A1 (ko) | 재해사고 원자로 냉각 시스템 및 이를 이용한 원자로 냉각 방법 | |
KR101498587B1 (ko) | 원자로 공동 피동 냉각 장치 | |
KR101540668B1 (ko) | 피동안전계통 및 이를 구비하는 원전 | |
US11545274B2 (en) | Coolant cleanup and heat-sinking systems and methods of operating the same | |
US11289218B2 (en) | Air cooler, intercooler and nuclear facility | |
KR101628170B1 (ko) | 피동격납부냉각계통 및 이를 구비하는 원전 | |
KR101570076B1 (ko) | 격납부 냉각계통, 및 이를 구비하는 원전 | |
KR20080001466U (ko) | 위치별 차등냉각이 가능한 소화겸용 전력구/터널냉각시스템 | |
KR101479001B1 (ko) | 피동잔열제거계통의 배기설비 | |
JP2022526554A (ja) | 冷却装置 | |
WO2018128337A2 (ko) | 냉각 성능이 개선된 원자력 발전소 및 이의 운전방법 | |
JP3765031B2 (ja) | コジェネレーション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14876152 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108767 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14876152 Country of ref document: EP Kind code of ref document: A1 |