WO2015102136A1 - Energy saving type method for removing acid gas through pretreatment using ammonia water - Google Patents

Energy saving type method for removing acid gas through pretreatment using ammonia water Download PDF

Info

Publication number
WO2015102136A1
WO2015102136A1 PCT/KR2014/000086 KR2014000086W WO2015102136A1 WO 2015102136 A1 WO2015102136 A1 WO 2015102136A1 KR 2014000086 W KR2014000086 W KR 2014000086W WO 2015102136 A1 WO2015102136 A1 WO 2015102136A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
gas
absorbent
absorption tower
acid gas
Prior art date
Application number
PCT/KR2014/000086
Other languages
French (fr)
Korean (ko)
Inventor
강기준
Original Assignee
(주)에이엠티퍼시픽
강기준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이엠티퍼시픽, 강기준 filed Critical (주)에이엠티퍼시픽
Priority to PCT/KR2014/000086 priority Critical patent/WO2015102136A1/en
Publication of WO2015102136A1 publication Critical patent/WO2015102136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention is a process for removing acid gas from a gas source containing an acid gas, such as natural gas, pre-combustion gas, post-combustion gas, syngas or reactor exhaust gas, more specifically natural gas, pre-combustion gas, post-combustion
  • an acid gas such as natural gas, pre-combustion gas, post-combustion gas, syngas or reactor exhaust gas, more specifically natural gas, pre-combustion gas, post-combustion
  • the present invention relates to a method for removing acid gas through pretreatment with ammonia water from gas, syngas, reactor exhaust gas and the like.
  • absorbents are used in combination with additives to remove acid gases.
  • absorbents should use medium pressure steam (3.0 kg / cm 2 G to 5.0 kg / cm 2 G) because the regeneration temperature is about 120 °C to 140 °C when removing the absorbed acid gas.
  • the selectivity of the absorbent to absorb acid gas is in the order of carbon dioxide (CO 2 )-> inorganic sulfur compound (H 2 S)-> organic sulfur compound (COS).
  • the absorbent absorbs the highest amount of carbon dioxide in the gas and then absorbs the inorganic sulfur compound and the organic sulfur compound. Therefore, a large amount of the absorbent has to be circulated to remove the inorganic sulfur compound and the organic sulfur compound. It consumes energy.
  • Korean Patent No. 0572286 discloses a method of removing acid gas components such as carbon dioxide and inorganic sulfur compounds from a gas by using a specific absorption medium, it does not disclose an efficient removal process of acid gas through ammonia water pretreatment.
  • the present invention was created in order to solve the problems as described above, by using ammonia water to remove the acidic gas to reduce the use of the medium pressure steam, and pre-treatment by ammonia water to increase the energy efficiency using waste heat generated in the process
  • the purpose is to provide a method for removing energy-saving acid gas.
  • the present invention provides a method for removing an acid gas included in a gas source selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas, wherein the gas source is a first absorbent including ammonia water. Processing by introducing into an absorption tower (first step); And a step (second step) of flowing the upper exhaust gas of the first absorption tower into a second absorption tower using a second absorbent (second step), thereby providing an energy saving acid gas removing method. .
  • the energy saving acid gas removing method according to the present invention provides the following effects.
  • the energy generated in the process of removing acidic gas using the second absorbent can be used as the energy of the process of removing acidic gas using ammonia water, which further reduces energy in the acidic gas removal process using ammonia. can do.
  • 1 is an acid gas removal process using a conventional second absorbent.
  • Figure 3 is an acid gas removal process through another embodiment of the present invention.
  • Figure 4 is an acid gas removal process through another embodiment of the present invention.
  • first absorption tower 400 first stripping tower
  • the present invention provides a method for removing an acid gas included in a gas source selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas, wherein the gas source is a first absorbent including ammonia water. Processing by introducing into an absorption tower (first step); And a step (second step) of introducing the upper exhaust gas of the first absorption tower into the second absorption tower using the second absorbent (second step), and energy saving type acid by pretreatment with ammonia water. Provide a method for degassing.
  • the first step may include introducing the gas source into a first absorption tower including ammonia water as a first absorbent to absorb acid gas into ammonia; Transferring the upper exhaust gas of the first absorption tower to a second absorption tower; Exchanging the lower discharge solution of the first absorption tower with the lower discharge solution of the first stripping tower and then introducing the lower discharge solution into the first stripping tower; Removing the acid gas absorbed by the ammonia from the first stripping column and discharging the acid gas upwardly; Heat-exchanging the lower discharge solution of the first stripping tower with the lower discharge solution of the first absorption tower and cooling the liquid to flow into the upper portion of the first absorption tower; Introducing ammonia water obtained by washing with water in the upper portion of the first absorption tower and ammonia water obtained by washing with water in the upper portion of the first stripping column to a concentration tower; And discharging the concentrated ammonia from the top of the concentration tower.
  • the second step the step of introducing the upper exhaust gas of the first absorption tower into the second absorption tower; Discharging the gas source remaining after absorbing the acidic gas into the second absorbent in the second absorption tower; Exchanging the lower discharge solution of the second absorption tower with the lower discharge solution of the second stripping tower and then introducing the liquid into the second stripping tower; Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas upwardly;
  • the lower discharge solution of the second stripping tower may include heat exchange with the lower discharge solution of the second absorption tower and then cooled to flow into the upper portion of the second absorption tower.
  • the energy-saving acid gas removal method the step of introducing the gas source into the first absorption tower containing ammonia water as the first absorbent to absorb the acid gas in the first absorbent; Introducing a lower discharge solution of the first absorption tower into a first stripping tower; Removing the acid gas absorbed by the first absorbent from the first stripping tower and discharging the acid gas to an upper portion of the first stripping tower; Absorbing the remaining acid gas into the second absorbent by introducing the upper discharge solution of the first absorbent into the second absorbent including the second absorbent; Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas to an upper portion of the second stripping tower; And heat-exchanging the lower discharge solution of the second stripping column with the lower discharge solution of the first absorption tower and then introducing the lower discharge solution into the first stripping tower.
  • the acid gas may be any one or a combination of two or more selected from the group consisting of carbon dioxide, inorganic sulfur compounds and organic sulfur compounds.
  • the gas source is introduced into a first absorption tower including ammonia water as a first absorbent to absorb the acid gas to ammonia; Exchanging the lower discharge solution of the first absorption tower with the lower discharge solution of the first stripping tower and then introducing the lower discharge solution into the first stripping tower; Removing the acid gas absorbed by the ammonia from the first stripping column and discharging the acid gas upwardly; Heat-exchanging the lower discharge solution of the first stripping tower with the lower discharge solution of the first absorption tower and cooling the liquid to flow into the upper portion of the first absorption tower; Introducing ammonia water obtained by washing with water in the upper portion of the first absorption tower and ammonia water obtained by washing with water in the upper portion of the first stripping column to a concentration tower; Discharging the concentrated ammonia from the top of the concentration tower; Introducing a lower discharge solution of the concentration tower into a first absorption tower; Introducing an upper discharge gas of the first absorption tower into a second absorption tower
  • the first discharge tower bottom discharge solution flowing into the first stripping column is heat-exchanged with the bottom discharge solution of the first stripping tower, and then heat exchanged once more with the bottom discharge solution of the second stripping tower To the first stripping column.
  • the second absorbent may be selected from the group consisting of amine compounds, calcium absorbents and sodium absorbents.
  • ammonia water introduced into the concentration tower may be introduced into the concentration tower by exchanging heat again with the lower discharge solution of the second stripping column.
  • the first absorption tower and the first stripping tower using ammonia water may be provided with a washing unit for absorbing and recovering the lost ammonia as water, by cooling the water discharged to the lower portion of the concentration tower to enter the washing unit ammonia Can be used for absorption.
  • the water discharged to the bottom of the concentration tower may be used after cooling the heat exchanged with the solution washed in the upper portion of the first absorption tower and the first stripping tower.
  • the energy saving type acid gas removal method through pretreatment with ammonia water according to the present invention will be described in more detail with one embodiment of removing acid gas from bunker-C oil.
  • the composition of the gas discharged from the reactor is as follows.
  • an acidic gas is introduced into the absorption tower 100 using diisopropanolamine (DIPA) at 39% by weight (wt%) using the gas having the composition 10.
  • DIPA diisopropanolamine
  • Carbon dioxide, inorganic sulfur compound, organic sulfur compound must be removed before synthesis gas can be used in reaction process. Sulfur compounds, in particular, have an adverse effect on the catalyst in the reaction process and should be removed below 1 vol ppm.
  • the selectivity for the second absorbent 32 to absorb the acidic gas 25 is in the order of carbon dioxide-> inorganic sulfur compound-> organic sulfur compound. Therefore, diisopropanolamine as the second absorbent absorbs the most carbon dioxide in the gas and then the inorganic sulfur compound and the organic sulfur compound.
  • the amount (kg) of the absorbent (30,32) to be circulated to remove the inorganic sulfur compound and organic sulfur compound is about 3.5 times the amount of the synthesis gas (Nm 3 ), which consumes a lot of energy in the absorption-regeneration process. .
  • the amount of absorbent consumed to absorb carbon dioxide and inorganic sulfur compounds per 1 Nm 3 of syngas is 3.48 kg as shown in the following formula,
  • the amount of absorbent consumed to absorb the organic sulfur compound per 1 Nm 3 of the synthesis gas is 0.02 kg as shown in the following formula,
  • the exhaust gas of the synthesis gas production reactor is first introduced 40 into the first absorption tower 300 using ammonia water using low temperature energy as an absorbent to first remove carbon dioxide and inorganic sulfur compounds. .
  • Synthesis gas 45 discharged to the upper portion of the absorption tower using ammonia water as the absorbent contains an organic sulfur compound, so that the second absorbent is introduced into the second absorption tower 100 to remove the organic sulfur compound.
  • Theoretical circulation amount of the absorbent for reducing the organic sulfur compound to 30 vol ppm or less is 0.02 kg / synthetic gas 1 Nm 3
  • the theoretical absorbent circulation amount for the organic sulfur compound to 1 vol ppm or less is 0.4 kg / synthetic gas 1 Nm 3 .
  • the amount of medium pressure steam used to reduce the organic sulfur compound to 1 vol ppm or less is about 220 kg x 0.4 kg / 3.5 kg, thus about 25 kg per 1000 Nm 3 of syngas.
  • This medium pressure steam amount is about 11% compared to using only the second absorbent as the absorbent.
  • the amount of low pressure steam can also be reduced.
  • the concentration of ammonia in the ammonia water flowing into the first absorption tower is preferably from 2% by weight to 25% by weight. If the concentration of ammonia is too low, the amount of ammonia water used is too high. If the concentration of ammonia is too high, the amount of ammonia that is volatilized and lost in the process may be high, and excessive freezing energy must be used to reduce this volatilization. to be.
  • 1 is a process chart of a conventional acid gas removal method.
  • FIG. 2 is a process chart of a method for removing acid gas through pretreatment with ammonia water according to an embodiment of the present invention
  • FIG. 3 is a process diagram of an energy saving method according to another embodiment of the process diagram shown in FIG. 2.
  • 4 is a flowchart illustrating another embodiment of the energy saving method of the flowchart illustrated in FIG. 3.
  • the same reference numerals as those shown in Figs. 1, 2, 3, and 4 are the same members having the same configuration and function, and thus repetitive description thereof will be omitted.
  • first absorption tower 300 and the first stripping tower 400 may further include a washing unit at the top, re-boilers (203, 403, 503) of the stripping tower (200, 400) and concentration tower (500) ) Using steam (98) and in the condenser (204, 404, 504) with cooling water (97).
  • the coolers 102, 302, and 502 use the coolant 97 to cool.
  • a gas source 40 selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas flows into the first absorption tower 300 using ammonia water as an absorbent.
  • the acid gas is collected in ammonia water and discharged (50) to the lower portion of the first absorption tower 300 is introduced into the first stripping tower (400).
  • the acid gas collected in the ammonia water in the first stripping tower 400 is discharged through the upper part of the first stripping column 55, and after the acid gas is removed, the ammonia water is discharged into the lower portion of the first stripping column 60 to obtain the first gas. It is introduced into the absorption tower 300 (60, 61, 62).
  • the solution 54 washed in the first stripping tower upper washing unit is introduced into the concentration tower 500 with the solution 44 washed in the first absorption tower upper washing unit 70, and concentrated ammonia Discharge 75.
  • the concentrated tower bottom discharge solution 80 is circulated and introduced into the upper washing part of the first absorption tower 300 and the upper washing part of the first stripping tower 400.
  • the upper exhaust gas 45 of the first absorption tower 300 is introduced into the second absorption tower 100 using the second absorbent.
  • the organic sulfur compound is collected in the second absorbent and flows into the second stripping tower 200 through the lower portion of the second absorption tower 100 (20, 21).
  • the second absorbent and the organic sulfur compound are discharged to the lower 30 and the upper 25 of the second stripping tower 200, respectively.
  • the organic sulfur compound is discharged to the upper portion 25 of the second stripping tower 200, and the second absorbent is discharged to the lower portion 30 of the second stripping tower 200. Inflow 32 to the top of 100).
  • the second stripping tower bottom discharge solution 30, 31 and the first absorption tower bottom discharge solution 50, 51, 53 are heat-exchanged through the heat exchanger 601 to be generated in the second stripping tower 400. Using waste heat saves energy.
  • the ammonia water 44 obtained by washing the waste heat generated in the second stripping tower 200 with water at the top of the first absorption tower and the ammonia water obtained by washing with water at the top of the first stripping tower (54). ) Is introduced into the enrichment tower 500, so the heat is exchanged through the heat exchanger 701 to use waste heat generated in the second stripping tower, thereby saving energy.
  • the second absorbent is monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine (MDEA), diisopropanolamine (Diisopropanolamine; DIPA), Diglycolamine (DGA), aminomethylpropanol (AMP), piperidine ethanol (PE) potassium hydroxide (KOH) and sodium hydroxide (NaOH)
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA methyldiethanolamine
  • MDEA diisopropanolamine
  • DIPA Diglycolamine
  • AMP aminomethylpropanol
  • PE potassium hydroxide
  • NaOH sodium hydroxide
  • An amine compound which is one or a combination of two or more selected from the group consisting of, calcium-based absorbents such as limestone and slaked lime, sodium-based absorbents such as sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), and the like can be used. It is not limited

Abstract

The present invention relates to an energy saving type method for removing acid gas through a pretreatment using ammonia water and, more specifically, to an energy saving type method for removing, through a pretreatment using ammonia water, acid gas included in a gas source selected from among natural gas, pre-combustion gas, post-combustion gas, synthetic gas, and reactor discharge gas, the method comprising the steps of: treating the gas source by introducing the gas source into a first absorption tower containing ammonia water as a first absorbent (first step); and treating an upper discharge gas of the absorption tower by introducing the upper discharge gas into a second absorption tower (second step). According to the method for removing acid gas, it is possible to: remove most carbon dioxide in advance through an ammonia water pretreatment; save energy by using waste heat generated during the process; re-use ammonia water through an enriching column; and downsize and simplify a carbon dioxide production process and a sulfur production process after the removal of acid gas by, from acid gas, separating and discharging an inorganic sulfur compound and an organic sulfur compound.

Description

암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법Energy saving type acid gas removal method through pretreatment with ammonia water
본 발명은 천연가스, 연소 전 가스, 연소 후 가스, 합성가스 또는 반응기 배출가스 등 산성가스를 포함하는 가스원으로부터 산성가스를 제거하는 공정으로써, 보다 상세하게는 천연가스, 연소 전 가스, 연소 후 가스, 합성가스, 반응기 배출 가스 등으로부터 암모니아수에 의한 전처리를 통한 산성가스의 제거 방법에 관한 것이다. The present invention is a process for removing acid gas from a gas source containing an acid gas, such as natural gas, pre-combustion gas, post-combustion gas, syngas or reactor exhaust gas, more specifically natural gas, pre-combustion gas, post-combustion The present invention relates to a method for removing acid gas through pretreatment with ammonia water from gas, syngas, reactor exhaust gas and the like.
일반적으로, 천연가스, 연소 전 가스, 연소 후 가스, 합성가스, 반응기 배출 가스 등에 포함되어 있는 메탄(CH4), 수소(H2)와 일산화탄소(CO)를 반응기 혹은 연소기 등의 공정에 사용하기 위해서는, 이산화탄소(CO2), 무기황화합물(H2S), 유기황화합물(COS, CS2등) 등으로 구성되어 있는 불순물인 산성가스를 제거하여야 한다. In general, using methane (CH 4 ), hydrogen (H 2 ) and carbon monoxide (CO) in natural gas, pre-combustion gas, post-combustion gas, syngas, reactor exhaust gas, etc. in a reactor or combustor In order to remove the acid gas, impurities such as carbon dioxide (CO 2 ), inorganic sulfur compounds (H 2 S), and organic sulfur compounds (COS, CS 2, etc.) are removed.
일반적으로 산성가스를 제거하기 위해 흡수제를 첨가제와 혼합하여 사용한다.Generally, absorbents are used in combination with additives to remove acid gases.
그러나 이러한 흡수제는 흡수된 산성가스를 제거할 때 재생 온도가 약 120 ℃ ~ 140 ℃ 로 높아 중압스팀(3.0 kg/cm2G ~ 5.0 kg/cm2G)을 사용하여야 한다. However, these absorbents should use medium pressure steam (3.0 kg / cm 2 G to 5.0 kg / cm 2 G) because the regeneration temperature is about 120 ℃ to 140 ℃ when removing the absorbed acid gas.
이때 상기 흡수제가 산성가스를 흡수하는 선택도는 이산화탄소(CO2) -> 무기황화합물(H2S) -> 유기황화합물(COS) 순이다.In this case, the selectivity of the absorbent to absorb acid gas is in the order of carbon dioxide (CO 2 )-> inorganic sulfur compound (H 2 S)-> organic sulfur compound (COS).
따라서 흡수제는 상기 가스 중 가장 양이 많은 이산화탄소를 흡수하고 나서 무기황화합물과 유기황화합물을 흡수하게 되므로, 무기황화합물과 유기황화합물을 제거하기 위해 매우 많은 양의 흡수제를 순환하여야 하기 때문에 흡수-재생 공정에서 많은 에너지를 소모하게 된다. Therefore, the absorbent absorbs the highest amount of carbon dioxide in the gas and then absorbs the inorganic sulfur compound and the organic sulfur compound. Therefore, a large amount of the absorbent has to be circulated to remove the inorganic sulfur compound and the organic sulfur compound. It consumes energy.
또한 많은 양의 흡수제를 순환하더라도 유기황화합물을 1 vol ppm 이하 제거하기 위해서 필요한 양의 흡수제를 순환하는 것은 공업적으로 불합리하여 흡수탑 상부로 배출되는 합성가스는 약 30 vol ppm 의 유기황화합물을 포함하고 있다. 따라서 흡수탑 상부로 배출되는 합성가스를 반응공정에 사용하기 전에 이 유기황화합물을 무기황화합물로 전환하여 황 성분을 완전히 제거하는 반응기가 필요하며, 유기황화합물을 무기황화합물로 전환하는 반응기에 가스를 유입하기 전에 온도를 약 45 ℃ 에서 150 ℃ 까지 승온하여야 하므로 고압스팀을 사용해야 하고(약 30 kg/cm2), 이 때에도 많은 에너지가 소모된다.In addition, even though circulating a large amount of absorbent, circulating the amount of absorbent necessary to remove 1 vol ppm or less of organic sulfur compounds is industrially unreasonable, and the syngas discharged to the top of the absorption tower contains about 30 vol ppm of organic sulfur compounds. have. Therefore, before the synthesis gas discharged to the absorption tower is used in the reaction process, a reactor for converting the organic sulfur compound into an inorganic sulfur compound to completely remove the sulfur component is needed, and a gas is introduced into the reactor for converting the organic sulfur compound into an inorganic sulfur compound. High temperature steam must be used (approximately 30 kg / cm 2 ) since the temperature must be raised from about 45 ℃ to 150 ℃ before.
한편 한국등록특허 제 0572286호에서는 특정 흡수매질을 이용하여 가스로부터 이산화탄소 및 무기황화합물과 같은 산성가스 성분을 제거 하는 방법을 개시할지라도, 암모니아수 전처리를 통한 산성가스의 효율적 제거 공정을 개시하지 못한다.Meanwhile, even though Korean Patent No. 0572286 discloses a method of removing acid gas components such as carbon dioxide and inorganic sulfur compounds from a gas by using a specific absorption medium, it does not disclose an efficient removal process of acid gas through ammonia water pretreatment.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로서, 산성가스의 제거 시 암모니아수를 이용해 중압스팀 사용을 절감시키고, 공정에서 발생되는 폐열을 이용해 에너지의 효율을 높일 수 있는 암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법을 제공하는데 그 목적이 있다.The present invention was created in order to solve the problems as described above, by using ammonia water to remove the acidic gas to reduce the use of the medium pressure steam, and pre-treatment by ammonia water to increase the energy efficiency using waste heat generated in the process The purpose is to provide a method for removing energy-saving acid gas.
본 발명은, 천연가스, 연소 전 가스, 연소 후 가스, 합성가스 또는 반응기 배출가스 중에서 선택된 가스원에 포함된 산성가스를 제거하는 방법에 있어서, 상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 처리하는 단계(제1단계); 및 상기 제1흡수탑의 상부 배출가스를 제2흡수제를 사용하는 제2흡수탑에 유입시켜 처리하는 단계(제2단계)를 포함하는 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법을 제공한다.The present invention provides a method for removing an acid gas included in a gas source selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas, wherein the gas source is a first absorbent including ammonia water. Processing by introducing into an absorption tower (first step); And a step (second step) of flowing the upper exhaust gas of the first absorption tower into a second absorption tower using a second absorbent (second step), thereby providing an energy saving acid gas removing method. .
본 발명에 따른 에너지 절감형 산성가스 제거 방법은 다음과 같은 효과를 제공한다.The energy saving acid gas removing method according to the present invention provides the following effects.
첫째, 암모니아수를 사용하는 산성가스 제거 공정에서 저온의 폐열을 이용하여 대부분의 이산화탄소를 미리 제거하기 때문에 중압스팀을 사용하는 제2흡수제를 사용하는 공정에서 흡수제의 순환량을 줄일 수 있으므로 에너지 사용을 현저하게 줄일 수 있다.First, in the acid gas removal process using ammonia water, most of the carbon dioxide is removed in advance by using low-temperature waste heat, so the circulation amount of the absorbent can be reduced in the process using the second absorbent using medium pressure steam. Can be reduced.
둘째, 제2흡수제를 사용하여 산성가스를 제거하는 공정에서 발생하는 에너지를 암모니아수를 사용하여 산성가스를 제거하는 공정의 에너지로 사용 할 수 있기 때문에 암모니아를 이용한 산성가스 제거공정에서 에너지를 더욱 더 절감 할 수 있다.Second, the energy generated in the process of removing acidic gas using the second absorbent can be used as the energy of the process of removing acidic gas using ammonia water, which further reduces energy in the acidic gas removal process using ammonia. can do.
셋째, 암모니아수를 사용하여 산성가스를 제거하는 공정에 필요한 에너지를 제2흡수제를 사용하여 산성가스를 제거하는 공정에서 제공하므로 제2흡수제를 사용하는 공정에서 필요한 냉각에너지를 절감할 수 있다.Third, since the energy required for the process of removing the acidic gas using ammonia water is provided in the process of removing the acidic gas using the second absorbent, cooling energy required in the process using the second absorbent can be reduced.
넷째, 산성가스 중 무기황화합물과 유기황화합물을 분리하여 배출하므로 산성가스 제거 이후 이산화탄소 생산 공정, 황 생산 공정이 소형화되고 단순화 될 수 있다.Fourth, since inorganic sulfur compounds and organic sulfur compounds are separated and discharged from acidic gases, carbon dioxide production process and sulfur production process can be miniaturized and simplified after acidic gas removal.
도 1은 종래의 제2흡수제를 사용하는 산성가스 제거 공정이다.1 is an acid gas removal process using a conventional second absorbent.
도 2는 본 발명의 일 실시예로서, 암모니아수를 흡수제로 사용하는 흡수탑을 통해 산성가스 제거 후 제2흡수제를 이용하는 산성가스 제거 공정이다. 2 is an embodiment of the present invention, an acid gas removal process using a second absorbent after removing the acid gas through the absorption tower using ammonia water as the absorbent.
도 3은 본 발명의 다른 실시예를 통한 산성가스 제거 공정이다.Figure 3 is an acid gas removal process through another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예를 통한 산성가스 제거 공정이다.Figure 4 is an acid gas removal process through another embodiment of the present invention.
<부호의 설명><Description of the code>
100: 제2흡수탑 200: 제2탈거탑100: second absorption tower 200: second stripping tower
300: 제1흡수탑 400: 제1탈거탑300: first absorption tower 400: first stripping tower
500: 농축탑 500: concentration tower
101, 301, 501, 601, 701: 열교환기101, 301, 501, 601, 701: heat exchanger
102, 302, 502: 냉각기 203, 403, 503: 재비기102, 302, 502: Cooler 203, 403, 503: Reboiler
204, 404, 504: 응축기204, 404, 504: condenser
본 발명은, 천연가스, 연소 전 가스, 연소 후 가스, 합성가스 또는 반응기 배출가스 중에서 선택된 가스원에 포함된 산성가스를 제거하는 방법에 있어서, 상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 처리하는 단계(제1단계); 및 상기 제1흡수탑의 상부 배출가스를 제2흡수제를 사용하는 제2흡수탑에 유입시켜 처리하는 단계(제2단계)를 포함하는 것을 특징으로 하는, 암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법을 제공한다.The present invention provides a method for removing an acid gas included in a gas source selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas, wherein the gas source is a first absorbent including ammonia water. Processing by introducing into an absorption tower (first step); And a step (second step) of introducing the upper exhaust gas of the first absorption tower into the second absorption tower using the second absorbent (second step), and energy saving type acid by pretreatment with ammonia water. Provide a method for degassing.
상기 제1단계는, 상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 산성가스를 암모니아에 흡수시키는 단계; 상기 제1흡수탑의 상부 배출가스를 제2흡수탑으로 이송시키는 단계; 상기 제1흡수탑의 하부 배출용액을 제1탈거탑의 하부 배출용액과 열교환 한 후 제1탈거탑으로 유입시키는 단계; 상기 제1탈거탑에서 암모니아에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계; 상기 제1탈거탑의 하부 배출용액을 상기 제1흡수탑의 하부 배출용액과 열교환 한 후 냉각시켜 제1흡수탑의 상부로 유입시키는 단계; 상기 제1흡수탑의 상부에서 물로 세척하여 얻은 암모니아수와 상기 제1탈거탑의 상부에서 물로 세척하여 얻은 암모니아수를 농축탑으로 유입시키는 단계; 및 상기 농축탑의 상부로부터 농축된 암모니아를 배출하는 단계를 포함할 수 있다.The first step may include introducing the gas source into a first absorption tower including ammonia water as a first absorbent to absorb acid gas into ammonia; Transferring the upper exhaust gas of the first absorption tower to a second absorption tower; Exchanging the lower discharge solution of the first absorption tower with the lower discharge solution of the first stripping tower and then introducing the lower discharge solution into the first stripping tower; Removing the acid gas absorbed by the ammonia from the first stripping column and discharging the acid gas upwardly; Heat-exchanging the lower discharge solution of the first stripping tower with the lower discharge solution of the first absorption tower and cooling the liquid to flow into the upper portion of the first absorption tower; Introducing ammonia water obtained by washing with water in the upper portion of the first absorption tower and ammonia water obtained by washing with water in the upper portion of the first stripping column to a concentration tower; And discharging the concentrated ammonia from the top of the concentration tower.
또한, 상기 제2단계는, 상기 제1흡수탑의 상부 배출가스를 제2흡수탑에 유입시키는 단계; 상기 제2흡수탑 상부에서 제2흡수제에 산성가스를 흡수시킨 후 남은 상기 가스원을 배출시키는 단계; 상기 제2흡수탑의 하부 배출용액을 제2탈거탑의 하부 배출용액과 열교환 한 후 제2탈거탑으로 유입시키는 단계; 상기 제2탈거탑에서 제2흡수제에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계; 상기 제2탈거탑의 하부 배출용액은 제2흡수탑의 하부 배출용액과 열교환 한 후 냉각시켜 제2흡수탑 상부로 유입시키는 단계를 포함할 수 있다.In addition, the second step, the step of introducing the upper exhaust gas of the first absorption tower into the second absorption tower; Discharging the gas source remaining after absorbing the acidic gas into the second absorbent in the second absorption tower; Exchanging the lower discharge solution of the second absorption tower with the lower discharge solution of the second stripping tower and then introducing the liquid into the second stripping tower; Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas upwardly; The lower discharge solution of the second stripping tower may include heat exchange with the lower discharge solution of the second absorption tower and then cooled to flow into the upper portion of the second absorption tower.
보다 상세하게는, 상기 에너지 절감형 산성가스 제거 방법은, 상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 산성가스를 제1흡수제에 흡수시키는 단계; 상기 제1흡수탑의 하부 배출용액을 제1탈거탑으로 유입시키는 단계; 상기 제1탈거탑에서 상기 제1흡수제에 흡수된 산성가스를 탈거하여 제1탈거탑 상부로 배출시키는 단계; 상기 제1흡수탑의 상부 배출용액을 제2흡수제를 포함한 제2흡수탑에 유입시켜 남은 산성가스를 제2흡수제에 흡수시키는 단계; 상기 제2탈거탑에서 상기 제2흡수제에 흡수된 산성가스를 탈거하여 제2탈거탑 상부로 배출시키는 단계; 및 상기 제2탈거탑의 하부 배출용액을 상기 제1흡수탑 하부 배출용액과 열교환 한 후 상기 제1탈거탑으로 유입시키는 단계를 포함할 수 있다.More specifically, the energy-saving acid gas removal method, the step of introducing the gas source into the first absorption tower containing ammonia water as the first absorbent to absorb the acid gas in the first absorbent; Introducing a lower discharge solution of the first absorption tower into a first stripping tower; Removing the acid gas absorbed by the first absorbent from the first stripping tower and discharging the acid gas to an upper portion of the first stripping tower; Absorbing the remaining acid gas into the second absorbent by introducing the upper discharge solution of the first absorbent into the second absorbent including the second absorbent; Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas to an upper portion of the second stripping tower; And heat-exchanging the lower discharge solution of the second stripping column with the lower discharge solution of the first absorption tower and then introducing the lower discharge solution into the first stripping tower.
또한 상기 산성가스는 이산화탄소, 무기황화합물 및 유기황화합물로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 조합인 것을 특징으로 할 수 있다.In addition, the acid gas may be any one or a combination of two or more selected from the group consisting of carbon dioxide, inorganic sulfur compounds and organic sulfur compounds.
또한 상기 에너지 절감형 산성가스 제거 방법은, 상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 산성가스를 암모니아에 흡수시키는 단계; 상기 제1흡수탑의 하부 배출용액을 제1탈거탑의 하부 배출용액과 열교환 한 후 제1탈거탑으로 유입시키는 단계; 상기 제1탈거탑에서 암모니아에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계; 상기 제1탈거탑의 하부 배출용액을 상기 제1흡수탑의 하부 배출용액과 열교환 한 후 냉각시켜 제1흡수탑의 상부로 유입시키는 단계; 상기 제1흡수탑의 상부에서 물로 세척하여 얻은 암모니아수와 상기 제1탈거탑의 상부에서 물로 세척하여 얻은 암모니아수를 농축탑으로 유입시키는 단계; 상기 농축탑 상부로부터 농축된 암모니아를 배출하는 단계; 상기 농축탑의 하부 배출용액을 제1흡수탑으로 유입시키는 단계; 상기 제1흡수탑의 상부 배출가스를 제2흡수탑에 유입시키는 단계; 상기 제2흡수탑 상부에서 제2흡수제에 산성가스를 흡수시킨 후 남은 상기 가스원을 배출시키는 단계; 상기 제2흡수탑의 하부 배출용액을 제2탈거탑의 하부 배출용액과 열교환 한 후 제2탈거탑으로 유입시키는 단계; 상기 제2탈거탑에서 제2흡수제에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계; 상기 제2탈거탑의 하부 배출용액을 제2흡수탑 하부 배출용액과 열교환 한 후 냉각시켜 제2흡수탑 상부로 유입시키는 단계; 및 상기 제2탈거탑의 하부 배출용액을 상기 제1탈거탑으로 유입되는 제1흡수탑 하부 배출용액과 열교환 한 후 상기 제1탈거탑으로 유입시키는 단계를 포함할 수 있다.In addition, the energy-saving acid gas removal method, the gas source is introduced into a first absorption tower including ammonia water as a first absorbent to absorb the acid gas to ammonia; Exchanging the lower discharge solution of the first absorption tower with the lower discharge solution of the first stripping tower and then introducing the lower discharge solution into the first stripping tower; Removing the acid gas absorbed by the ammonia from the first stripping column and discharging the acid gas upwardly; Heat-exchanging the lower discharge solution of the first stripping tower with the lower discharge solution of the first absorption tower and cooling the liquid to flow into the upper portion of the first absorption tower; Introducing ammonia water obtained by washing with water in the upper portion of the first absorption tower and ammonia water obtained by washing with water in the upper portion of the first stripping column to a concentration tower; Discharging the concentrated ammonia from the top of the concentration tower; Introducing a lower discharge solution of the concentration tower into a first absorption tower; Introducing an upper discharge gas of the first absorption tower into a second absorption tower; Discharging the gas source remaining after absorbing the acidic gas into the second absorbent in the second absorption tower; Exchanging the lower discharge solution of the second absorption tower with the lower discharge solution of the second stripping tower and then introducing the liquid into the second stripping tower; Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas upwardly; Heat-exchanging the lower discharge solution of the second stripping tower with the lower discharge solution of the second absorption tower and cooling the liquid to flow into the upper portion of the second absorption tower; And heat-exchanging the lower discharge solution of the second stripping tower with the first absorption tower lower discharge solution flowing into the first stripping tower, and then introducing the lower discharge solution into the first stripping tower.
즉, 본 발명에 따르면, 상기 제1탈거탑으로 유입되는 상기 제1흡수탑 하부 배출용액은 제1탈거탑의 하부 배출용액과 열교환 한 후, 제2탈거탑의 하부 배출용액과 한번 더 열교환하여 제1탈거탑으로 유입시킬 수 있다.That is, according to the present invention, the first discharge tower bottom discharge solution flowing into the first stripping column is heat-exchanged with the bottom discharge solution of the first stripping tower, and then heat exchanged once more with the bottom discharge solution of the second stripping tower To the first stripping column.
상기 제2흡수제로는 아민류 화합물, 칼슘계 흡수제 및 나트륨계 흡수제로 이루어진 군에서 선택되어 사용될 수 있다. The second absorbent may be selected from the group consisting of amine compounds, calcium absorbents and sodium absorbents.
또한 상기 농축탑으로 유입되는 암모니아수는 제2탈거탑의 하부 배출용액과 한번 더 열교환하여 농축탑으로 유입시킬 수 있다.In addition, the ammonia water introduced into the concentration tower may be introduced into the concentration tower by exchanging heat again with the lower discharge solution of the second stripping column.
또한 암모니아수를 사용하는 제1흡수탑과 제1탈거탑 상부에는, 유실되는 암모니아를 물로 흡수하여 회수하기 위한 세척부를 구비할 수 있는데, 농축탑 하부로 배출되는 물을 냉각하여 상기 세척부로 유입시켜 암모니아 흡수에 사용할 수 있다. 이때, 농축탑 하부로 배출되는 물은 제1흡수탑과 제1탈거탑의 상부에서 세척된 용액과 열교환 한 후 냉각시켜 사용할 수 있다.In addition, the first absorption tower and the first stripping tower using ammonia water may be provided with a washing unit for absorbing and recovering the lost ammonia as water, by cooling the water discharged to the lower portion of the concentration tower to enter the washing unit ammonia Can be used for absorption. At this time, the water discharged to the bottom of the concentration tower may be used after cooling the heat exchanged with the solution washed in the upper portion of the first absorption tower and the first stripping tower.
이하, 본 발명에 따른 암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법은 벙커-C유로부터 산성가스를 제거하는 것을 일실시예로 하여 보다 구체적으로 설명한다. 이때 반응기에서 배출되는 가스의 조성은 다음과 같다.Hereinafter, the energy saving type acid gas removal method through pretreatment with ammonia water according to the present invention will be described in more detail with one embodiment of removing acid gas from bunker-C oil. At this time, the composition of the gas discharged from the reactor is as follows.
합성가스 : 93.8 부피%(vol%)Syngas: 93.8% by volume (vol%)
이산화탄소 : 5 부피%(vol%)Carbon dioxide: 5% by volume (vol%)
무기황화합물 : 0.7 부피%(vol%)Inorganic Sulfur Compounds: 0.7% by volume (vol%)
유기황화합물 : 0.03 부피%(vol%)Organic Sulfur Compounds: 0.03% by volume (vol%)
비활성 기체 (N2) : 0.47 부피%(vol%)Inert gas (N 2 ): 0.47% by volume (vol%)
도 1은 종래기술을 도시한 것으로, 도 1에 따르면, 상기 조성을 갖는 가스를 디이소프로판올아민(DIPA)을 39중량%(wt%)로 사용하는 흡수탑(100)에 유입(10)하여 산성가스(이산화탄소, 무기황화합물, 유기황화합물)를 제거(25)하여야 합성가스를 반응 공정에 사용 할 수 있다. 특히 황화합물은 반응공정에서 촉매에 악영향을 주므로 1 vol ppm 이하로 제거해야 한다. 제2흡수제(32)가 산성가스(25)를 흡수하는 선택도는 이산화탄소 -> 무기황화합물 -> 유기황화합물 순이다. 따라서 제2흡수제인 디이소프로판올아민은 상기 가스 중 가장 양이 많은 이산화탄소를 흡수하고 나서 무기황화합물과 유기황화합물을 흡수하게 된다. 따라서 무기황화합물과 유기황화합물을 제거하기 위해 순환해야 하는 흡수제(30,32)의 양(kg)은 합성가스(Nm3)의 양에 약 3.5배 정도 이므로 흡수-재생 공정에서 많은 에너지를 소모하게 된다. 1 illustrates a prior art, according to FIG. 1, an acidic gas is introduced into the absorption tower 100 using diisopropanolamine (DIPA) at 39% by weight (wt%) using the gas having the composition 10. (25) Carbon dioxide, inorganic sulfur compound, organic sulfur compound must be removed before synthesis gas can be used in reaction process. Sulfur compounds, in particular, have an adverse effect on the catalyst in the reaction process and should be removed below 1 vol ppm. The selectivity for the second absorbent 32 to absorb the acidic gas 25 is in the order of carbon dioxide-> inorganic sulfur compound-> organic sulfur compound. Therefore, diisopropanolamine as the second absorbent absorbs the most carbon dioxide in the gas and then the inorganic sulfur compound and the organic sulfur compound. Therefore, the amount (kg) of the absorbent (30,32) to be circulated to remove the inorganic sulfur compound and organic sulfur compound is about 3.5 times the amount of the synthesis gas (Nm 3 ), which consumes a lot of energy in the absorption-regeneration process. .
합성가스 1 Nm3당 이산화탄소와 무기황화합물을 흡수하기 위해 소모되는 흡수제의 양은 하기 식과 같이 3.48 kg 이고, The amount of absorbent consumed to absorb carbon dioxide and inorganic sulfur compounds per 1 Nm 3 of syngas is 3.48 kg as shown in the following formula,
3.5 kg x (5 + 0.7 vol%)/(5 + 0.7 + 0.03 vol%) = 3.48 kg3.5 kg x (5 + 0.7 vol%) / (5 + 0.7 + 0.03 vol%) = 3.48 kg
합성가스 1 Nm3당 유기황화합물을 흡수하기 위해 소모되는 흡수제의 양은 하기 식과 같이 0.02 kg 이며,The amount of absorbent consumed to absorb the organic sulfur compound per 1 Nm 3 of the synthesis gas is 0.02 kg as shown in the following formula,
3.5 kg - 3.48 kg = 0.02 kg3.5 kg-3.48 kg = 0.02 kg
이때 중압스팀은 합성가스 1000 Nm3 당 220kg이 사용된다.In this case, 220 kg of medium pressure steam is used per 1000 Nm 3 of syngas.
이렇게 많은 양의 흡수제를 순환하더라도 유기황화합물을 1 vol ppm 이하로 제거하기 위해서 필요한 양의 흡수제를 순환하는 것은 공업적으로 불합리하여 흡수탑 상부로 배출되는 합성가스(15)는 약 30 vol ppm 의 유기황화합물을 포함하고 있다. 따라서 흡수탑 상부로 배출되는 합성가스를 반응공정에 사용하기 전에 이 유기황화합물을 무기황화합물로 전환하여 황 성분을 완전히 제거하는 반응기가 필요하며, 유기황화합물을 무기황화합물로 전환하는 반응기에 가스를 유입하기 전에 온도를 약 45 ℃ 에서 150 ℃ 까지 승온하여야 하므로 약 30 kg/cm2의 고압스팀을 사용해야 하며 이 때에도 합성가스 1000 Nm3 당 고압스팀 60 kg 이 필요하므로 많은 에너지가 소요된다.Even though circulating such a large amount of absorbent, it is industrially unreasonable to circulate the amount of absorbent necessary to remove the organic sulfur compound to 1 vol ppm or less, and the syngas 15 discharged to the upper part of the absorption tower has about 30 vol ppm of organic matter. Contains sulfur compounds. Therefore, before the synthesis gas discharged to the absorption tower is used in the reaction process, a reactor for converting the organic sulfur compound into an inorganic sulfur compound to completely remove the sulfur component is needed, and a gas is introduced into the reactor for converting the organic sulfur compound into an inorganic sulfur compound. Since the temperature must be raised from about 45 ℃ to 150 ℃ before, a high pressure steam of about 30 kg / cm 2 should be used, and this also requires a lot of energy because 60 kg of high pressure steam per 1000 Nm 3 syngas.
그러나, 본 발명에서는 상기 합성가스 제조 반응기의 배출 가스를 저온의 에너지를 사용하는 암모니아수를 흡수제로 사용하는 제1흡수탑(300)에 1차적으로 유입(40)하여 이산화탄소와 무기황화합물을 우선 제거한다.However, in the present invention, the exhaust gas of the synthesis gas production reactor is first introduced 40 into the first absorption tower 300 using ammonia water using low temperature energy as an absorbent to first remove carbon dioxide and inorganic sulfur compounds. .
암모니아수를 흡수제로 사용하는 흡수탑 상부로 배출되는 합성가스(45)는 유기황화합물을 포함하고 있으므로 유기황화합물을 제거하기 위하여 제2흡수제를 제2흡수탑(100)으로 유입한다. Synthesis gas 45 discharged to the upper portion of the absorption tower using ammonia water as the absorbent contains an organic sulfur compound, so that the second absorbent is introduced into the second absorption tower 100 to remove the organic sulfur compound.
유기황화합물을 30 vol ppm 이하로 하기 위한 흡수제 이론 순환량은 0.02 kg/합성가스 1 Nm3 이고, 유기황화합물을 1 vol ppm 이하로 하기 위한 흡수제 이론 순환량은 0.4 kg/합성가스 1 Nm3 이다.Theoretical circulation amount of the absorbent for reducing the organic sulfur compound to 30 vol ppm or less is 0.02 kg / synthetic gas 1 Nm 3 , and the theoretical absorbent circulation amount for the organic sulfur compound to 1 vol ppm or less is 0.4 kg / synthetic gas 1 Nm 3 .
따라서, 유기황화합물을 1 vol ppm 이하로 하기 위한 중압 스팀 사용량은 220 kg x 0.4 kg/3.5 kg 이므로 합성가스 1000 Nm3 당 약 25 kg이다. 이 중압 스팀양은 제2흡수제만을 흡수제로 사용 할 경우에 비해 약 11%에 해당한다. 이러한 효과 외에 도3, 도4 에서 도시한 바와 같이 제2흡수제를 사용하는 탈거탑 하부 용액(30)과 암모니아수를 흡수제로 사용하는 탈거탑 유입액(51) 혹은 농축탑 유입액(71)과 열교환을 함으로써 저압 스팀의 양도 절감 할 수 있다.Therefore, the amount of medium pressure steam used to reduce the organic sulfur compound to 1 vol ppm or less is about 220 kg x 0.4 kg / 3.5 kg, thus about 25 kg per 1000 Nm 3 of syngas. This medium pressure steam amount is about 11% compared to using only the second absorbent as the absorbent. In addition to these effects, as shown in Figs. 3 and 4, by exchanging heat with the stripping column bottom solution 30 using the second absorbent and the stripping column inflow liquid 51 or the concentrated tower inflow liquid 71 using the ammonia water as the absorbent. The amount of low pressure steam can also be reduced.
또한 암모니아수를 흡수제로 사용하는 흡수탑 상부 배출 가스(45) 중 무기황화합물과 유기황화합물 함량을 1 vol ppm 이하로 줄일 수 있으므로, 합성가스중 유기황화합물을 무기황화합물로 전환하여 황을 제거하는 반응기가 필요하지 않을 수 있다.In addition, since the content of inorganic sulfur compounds and organic sulfur compounds can be reduced to 1 vol ppm or less in the upper exhaust gas 45 of the absorption tower using ammonia water as an absorber, a reactor for converting organic sulfur compounds into synthetic sulfur compounds to remove sulfur is required. You can't.
이때 제1흡수탑에 유입되는 암모니아수에서 암모니아의 농도는 2 중량% 내지 25 중량%인 것이 바람직하다. 암모니아의 농도가 너무 낮으면 사용되는 암모니아수의 양이 너무 많이 필요하고, 암모니아의 농도가 너무 높으면 공정에서 휘발되어 유실되는 암모니아의 양이 많을 수 있고, 이러한 휘발을 줄이기 위해 과다한 냉동 에너지를 사용해야 하기 때문이다.At this time, the concentration of ammonia in the ammonia water flowing into the first absorption tower is preferably from 2% by weight to 25% by weight. If the concentration of ammonia is too low, the amount of ammonia water used is too high. If the concentration of ammonia is too high, the amount of ammonia that is volatilized and lost in the process may be high, and excessive freezing energy must be used to reduce this volatilization. to be.
보다 상세하게는 각 도면을 참조하여 설명한다.In more detail, it demonstrates with reference to each drawing.
도 1은 종래의 산성가스 제거방법의 공정도이다.1 is a process chart of a conventional acid gas removal method.
도 2는 본 발명의 일 실시예에 따른 암모니아수에 의한 전처리를 통한 산성가스의 제거방법 공정도이고, 도 3은 도 2에 나타낸 공정도의 다른 실시예에 따른 에너지 절감 방법의 공정도이다. 도 4는 도 3에 나타낸 공정도의 에너지 절감 방법의 다른 실시예를 도시한 공정도이다. 여기서 도 1, 도 2, 도 3 및 도 4에 나타낸 참조번호와 동일한 참조번호는 동일한 구성 및 작용을 하는 동일부재이므로, 반복적인 설명을 생략한다.2 is a process chart of a method for removing acid gas through pretreatment with ammonia water according to an embodiment of the present invention, and FIG. 3 is a process diagram of an energy saving method according to another embodiment of the process diagram shown in FIG. 2. 4 is a flowchart illustrating another embodiment of the energy saving method of the flowchart illustrated in FIG. 3. Here, the same reference numerals as those shown in Figs. 1, 2, 3, and 4 are the same members having the same configuration and function, and thus repetitive description thereof will be omitted.
또한 제1흡수탑(300)과 제1탈거탑(400)은 상부에 세척부를 추가로 포함 할 수 있고, 탈거탑(200, 400)과 농축탑(500)의 재비기(203, 403, 503)에서 스팀(98)을 이용해 가열하고, 응축기(204, 404, 504)에서 냉각수(97)을 이용해 냉각한다. 또한 냉각기(102, 302, 502)에서 냉각수(97)를 이용해 냉각한다.In addition, the first absorption tower 300 and the first stripping tower 400 may further include a washing unit at the top, re-boilers (203, 403, 503) of the stripping tower (200, 400) and concentration tower (500) ) Using steam (98) and in the condenser (204, 404, 504) with cooling water (97). In addition, the coolers 102, 302, and 502 use the coolant 97 to cool.
도 3을 참조하면, 천연가스, 연소 전 가스, 연소 후 가스, 합성가스 또는 반응기 배출가스 중에서 선택된 가스원(40)은 암모니아수를 흡수제로 사용하는 제1흡수탑(300)으로 유입된다. 상기 제1흡수탑(300)에서 산성가스는 암모니아수에 포집되어 제1흡수탑(300) 하부로 배출(50)되어 제1탈거탑(400)으로 유입(53)된다. Referring to FIG. 3, a gas source 40 selected from natural gas, pre-combustion gas, post-combustion gas, syngas, or reactor exhaust gas flows into the first absorption tower 300 using ammonia water as an absorbent. In the first absorption tower 300, the acid gas is collected in ammonia water and discharged (50) to the lower portion of the first absorption tower 300 is introduced into the first stripping tower (400).
제1탈거탑(400)에서 암모니아수에 포집되었던 산성가스는 제1탈거탑 상부를 통해 배출(55)되고, 산성가스가 제거되고 난 후의 암모니아수는 제1탈거탑 하부로 배출(60)되어 제1흡수탑(300)으로 유입(60, 61, 62)된다.The acid gas collected in the ammonia water in the first stripping tower 400 is discharged through the upper part of the first stripping column 55, and after the acid gas is removed, the ammonia water is discharged into the lower portion of the first stripping column 60 to obtain the first gas. It is introduced into the absorption tower 300 (60, 61, 62).
제1탈거탑 상부 세척부에서 세척된 용액(54)은 제1흡수탑 상부 세척부에서 세척된 용액(44)과 만나(70) 농축탑(500)으로 유입되고, 농축탑 상부에서 농축 암모니아가 배출(75)된다. 농축탑 하부 배출용액(80)은 순환하여 제1흡수탑(300) 상부 세척부와 제1탈거탑(400)의 상부 세척부로 유입(82)된다. (1단계)The solution 54 washed in the first stripping tower upper washing unit is introduced into the concentration tower 500 with the solution 44 washed in the first absorption tower upper washing unit 70, and concentrated ammonia Discharge 75. The concentrated tower bottom discharge solution 80 is circulated and introduced into the upper washing part of the first absorption tower 300 and the upper washing part of the first stripping tower 400. (Stage 1)
상기 제1흡수탑(300)의 상부 배출가스(45)는 제2흡수제를 사용하는 제2흡수탑(100)으로 유입된다. 제2흡수탑(100)에서 제2흡수제에 유기황화합물이 포집되어 제2흡수탑(100) 하부를 통해 제2탈거탑(200)으로 유입(20, 21)된다. 제2탈거탑(200)에서 제2흡수제와 유기황화합물이 각각 제2탈거탑(200)의 하부(30)와 상부(25)로 배출된다. 이때 제2탈거탑(200)의 상부(25)로는 유기황화합물이 배출되고, 제2탈거탑(200)의 하부(30)로는 제2흡수제가 배출(30, 32)되어 다시 제2흡수탑(100)의 상부로 유입(32)된다. (2단계) The upper exhaust gas 45 of the first absorption tower 300 is introduced into the second absorption tower 100 using the second absorbent. In the second absorption tower 100, the organic sulfur compound is collected in the second absorbent and flows into the second stripping tower 200 through the lower portion of the second absorption tower 100 (20, 21). In the second stripping tower 200, the second absorbent and the organic sulfur compound are discharged to the lower 30 and the upper 25 of the second stripping tower 200, respectively. In this case, the organic sulfur compound is discharged to the upper portion 25 of the second stripping tower 200, and the second absorbent is discharged to the lower portion 30 of the second stripping tower 200. Inflow 32 to the top of 100). (Step 2)
상기 공정 중 제2탈거탑 하부 배출용액(30, 31)과 제1흡수탑 하부 배출용액(50, 51, 53)을 열교환기(601)를 통해 열교환하여 제2탈거탑(400)에서 발생하는 폐열을 사용하므로 에너지가 절감된다.During the process, the second stripping tower bottom discharge solution 30, 31 and the first absorption tower bottom discharge solution 50, 51, 53 are heat-exchanged through the heat exchanger 601 to be generated in the second stripping tower 400. Using waste heat saves energy.
본 발명의 다른 실시예에 따르면 According to another embodiment of the present invention
도 4에 도시한 바와 같이 상기 제2탈거탑(200)에서 발생한 폐열을 상기 제1흡수탑의 상부에서 물로 세척하여 얻은 암모니아수(44)와 제1탈거탑의 상부에서 물로 세척하여 얻은 암모니아수(54)를 농축탑(500)에 유입할 때 열교환기(701)를 통해 열교환하여 제2탈거탑에서 발생하는 폐열을 사용하므로 에너지가 절감된다.As shown in FIG. 4, the ammonia water 44 obtained by washing the waste heat generated in the second stripping tower 200 with water at the top of the first absorption tower and the ammonia water obtained by washing with water at the top of the first stripping tower (54). ) Is introduced into the enrichment tower 500, so the heat is exchanged through the heat exchanger 701 to use waste heat generated in the second stripping tower, thereby saving energy.
상기 제2흡수제는 모노에탄올아민(Monoethanolamine;MEA), 디에탄올아민(Diethanolamine;DEA), 트리에탄올아민(Triethanolamine;TEA), 메틸디에탄올아민(Methyldiethanolamine;MDEA), 디이소프로판올아민(Diisopropanolamine;DIPA), 디글리콜아민(Diglycolamine;DGA), 아미노메틸프로판올(Aminomethylpropanol;AMP), 피페리딘 에탄올(Piperidine ethanol;PE) 포타슘 하이드록사이드(Potassium hydroxide;KOH) 및 소듐 하이드록사이드(Sodium hydroxide; NaOH)로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 조합인 아민류 화합물과, 석회석과 소석회 등과 같은 칼슘계 흡수제와, 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3) 등과 같은 나트륨계 흡수제 등을 사용할 수 있지만, 이에 한정되는 것은 아니다. The second absorbent is monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine (MDEA), diisopropanolamine (Diisopropanolamine; DIPA), Diglycolamine (DGA), aminomethylpropanol (AMP), piperidine ethanol (PE) potassium hydroxide (KOH) and sodium hydroxide (NaOH) An amine compound which is one or a combination of two or more selected from the group consisting of, calcium-based absorbents such as limestone and slaked lime, sodium-based absorbents such as sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), and the like can be used. It is not limited to this.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (6)

  1. 천연가스, 연소 전 가스, 연소 후 가스, 합성가스 또는 반응기 배출가스 중에서 선택된 가스원에 포함된 산성가스를 제거하는 방법에 있어서, In the method of removing the acid gas contained in the gas source selected from natural gas, pre-combustion gas, post-combustion gas, syngas or reactor exhaust gas,
    상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 처리하는 단계(제1단계); 및 Treating the gas source by introducing it into a first absorption tower including ammonia water as a first absorbent (first step); And
    상기 제1흡수탑의 상부 배출가스를 제2흡수제를 사용하는 제2흡수탑에 유입시켜 처리하는 단계(제2단계)를 포함하는 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.And a step (second step) of introducing the upper exhaust gas of the first absorption tower into a second absorption tower using a second absorbent and treating the second absorption tower.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 에너지 절감형 산성가스 제거 방법은,The energy saving acid gas removal method,
    상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 산성가스를 제1흡수제에 흡수시키는 단계;Introducing the gas source into a first absorption tower including ammonia water as a first absorbent to absorb acid gas into the first absorbent;
    상기 제1흡수탑의 하부 배출용액을 제1탈거탑으로 유입시키는 단계;Introducing a lower discharge solution of the first absorption tower into a first stripping tower;
    상기 제1탈거탑에서 상기 제1흡수제에 흡수된 산성가스를 탈거하여 제1탈거탑 상부로 배출시키는 단계;Removing the acid gas absorbed by the first absorbent from the first stripping tower and discharging the acid gas to an upper portion of the first stripping tower;
    상기 제1흡수탑의 상부 배출용액을 제2흡수제를 포함한 제2흡수탑에 유입시켜 남은 산성가스를 제2흡수제에 흡수시키는 단계; Absorbing the remaining acid gas into the second absorbent by introducing the upper discharge solution of the first absorbent into the second absorbent including the second absorbent;
    상기 제2탈거탑에서 상기 제2흡수제에 흡수된 산성가스를 탈거하여 제2탈거탑 상부로 배출시키는 단계; 및Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas to an upper portion of the second stripping tower; And
    상기 제2탈거탑의 하부 배출용액을 상기 제1흡수탑 하부 배출용액과 열교환 한 후 상기 제1탈거탑으로 유입시키는 단계를 포함하는 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.And exchanging the bottom discharge solution of the second stripping column with the first stripping solution after exchanging heat with the first stripping solution.
  3. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 산성가스는 이산화탄소, 무기황화합물 및 유기황화합물로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 조합인 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.The acid gas is carbon dioxide, inorganic sulfur compounds and organic sulfur compounds, characterized in that any one or a combination of two or more selected from the group consisting of, energy saving acid gas removal method.
  4. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 제2흡수제는 아민류 화합물, 칼슘계 흡수제 및 나트륨계 흡수제로 이루어진 군에서 선택된 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.The second absorbent is selected from the group consisting of amine compounds, calcium-based absorbents and sodium-based absorbents, energy saving acid gas removal method.
  5. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 에너지 절감형 산성가스 제거 방법은,The energy saving acid gas removal method,
    상기 가스원을 제1흡수제로서 암모니아수를 포함한 제1흡수탑에 유입시켜 산성가스를 암모니아에 흡수시키는 단계; Absorbing the acid gas into ammonia by introducing the gas source into a first absorption tower including ammonia water as a first absorbent;
    상기 제1흡수탑의 하부 배출용액을 제1탈거탑의 하부 배출용액과 열교환 한 후 제1탈거탑으로 유입시키는 단계;Exchanging the lower discharge solution of the first absorption tower with the lower discharge solution of the first stripping tower and then introducing the lower discharge solution into the first stripping tower;
    상기 제1탈거탑에서 암모니아에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계; Removing the acid gas absorbed by the ammonia from the first stripping column and discharging the acid gas upwardly;
    상기 제1탈거탑의 하부 배출용액을 상기 제1흡수탑의 하부 배출용액과 열교환 한 후 냉각시켜 제1흡수탑의 상부로 유입시키는 단계; Heat-exchanging the lower discharge solution of the first stripping tower with the lower discharge solution of the first absorption tower and cooling the liquid to flow into the upper portion of the first absorption tower;
    상기 제1흡수탑의 상부에서 물로 세척하여 얻은 암모니아수와 상기 제1탈거탑의 상부에서 물로 세척하여 얻은 암모니아수를 농축탑으로 유입시키는 단계;Introducing ammonia water obtained by washing with water in the upper portion of the first absorption tower and ammonia water obtained by washing with water in the upper portion of the first stripping column to a concentration tower;
    상기 농축탑 상부로부터 농축된 암모니아를 배출하는 단계;Discharging the concentrated ammonia from the top of the concentration tower;
    상기 농축탑의 하부 배출용액을 제1흡수탑으로 유입시키는 단계; Introducing a lower discharge solution of the concentration tower into a first absorption tower;
    상기 제1흡수탑의 상부 배출가스를 제2흡수탑에 유입시키는 단계;Introducing an upper discharge gas of the first absorption tower into a second absorption tower;
    상기 제2흡수탑 상부에서 제2흡수제에 산성가스를 흡수시킨 후 남은 상기 가스원을 배출시키는 단계;Discharging the gas source remaining after absorbing the acidic gas into the second absorbent in the second absorption tower;
    상기 제2흡수탑의 하부 배출용액을 제2탈거탑의 하부 배출용액과 열교환 한 후 제2탈거탑으로 유입시키는 단계; Exchanging the lower discharge solution of the second absorption tower with the lower discharge solution of the second stripping tower and then introducing the liquid into the second stripping tower;
    상기 제2탈거탑에서 제2흡수제에 흡수된 산성가스를 탈거하여 상부로 배출시키는 단계;Removing the acid gas absorbed by the second absorbent from the second stripping tower and discharging the acid gas upwardly;
    상기 제2탈거탑의 하부 배출용액을 제2흡수탑 하부 배출용액과 열교환 한 후 냉각시켜 제2흡수탑 상부로 유입시키는 단계; 및 Heat-exchanging the lower discharge solution of the second stripping tower with the lower discharge solution of the second absorption tower and cooling the liquid to flow into the upper portion of the second absorption tower; And
    상기 제2탈거탑의 하부 배출용액을 상기 제1탈거탑으로 유입되는 제1흡수탑 하부 배출용액과 열교환 한 후 상기 제1탈거탑으로 유입시키는 단계를 포함하는 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.And exchanging the lower discharge solution of the second stripping column with the first absorbing tower lower discharge solution flowing into the first stripping tower and then introducing the lower stripping solution into the first stripping tower. How to remove gas.
  6. 청구항 5에 있어서, The method according to claim 5,
    상기 농축탑으로 유입되는 암모니아수는 제2탈거탑의 하부 배출용액과 한번 더 열교환하여 농축탑으로 유입시키는 단계를 더 포함하는 것을 특징으로 하는, 에너지 절감형 산성가스 제거 방법.The ammonia water introduced into the concentration tower further comprises the step of heat-exchanging with the lower discharge solution of the second stripping column to be introduced into the concentration tower, energy saving acidic gas removal method.
PCT/KR2014/000086 2014-01-06 2014-01-06 Energy saving type method for removing acid gas through pretreatment using ammonia water WO2015102136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000086 WO2015102136A1 (en) 2014-01-06 2014-01-06 Energy saving type method for removing acid gas through pretreatment using ammonia water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000086 WO2015102136A1 (en) 2014-01-06 2014-01-06 Energy saving type method for removing acid gas through pretreatment using ammonia water

Publications (1)

Publication Number Publication Date
WO2015102136A1 true WO2015102136A1 (en) 2015-07-09

Family

ID=53493474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000086 WO2015102136A1 (en) 2014-01-06 2014-01-06 Energy saving type method for removing acid gas through pretreatment using ammonia water

Country Status (1)

Country Link
WO (1) WO2015102136A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107697931A (en) * 2017-10-31 2018-02-16 四川锌鸿科技有限公司 A kind of multistage reverse circulation inhales ammonia process
CN115259259A (en) * 2022-07-18 2022-11-01 陕西未来能源化工有限公司 Conversion condensate treatment system and process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703999B1 (en) * 2006-02-24 2007-04-04 한국에너지기술연구원 Method of recovering carbon dioxide from mixed gas using aqueous ammonia and the apparatus thereof
KR20110091684A (en) * 2008-10-21 2011-08-12 우데 게엠베하 Washing solution for gas scrubbing, contaning amines in an aqueous ammonia solution and use thereof
KR20120096575A (en) * 2009-12-17 2012-08-30 알스톰 테크놀러지 리미티드 Ammonia removal, following removal of co2, from a gas stream
KR101190725B1 (en) * 2010-07-14 2012-10-12 한국전력공사 Apparatus for separating acid gas from mixed gas
KR20130047470A (en) * 2011-10-31 2013-05-08 한국에너지기술연구원 Improved method for capturing carbon dioxide using aqueous ammonia and apparatus implementing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703999B1 (en) * 2006-02-24 2007-04-04 한국에너지기술연구원 Method of recovering carbon dioxide from mixed gas using aqueous ammonia and the apparatus thereof
KR20110091684A (en) * 2008-10-21 2011-08-12 우데 게엠베하 Washing solution for gas scrubbing, contaning amines in an aqueous ammonia solution and use thereof
KR20120096575A (en) * 2009-12-17 2012-08-30 알스톰 테크놀러지 리미티드 Ammonia removal, following removal of co2, from a gas stream
KR101190725B1 (en) * 2010-07-14 2012-10-12 한국전력공사 Apparatus for separating acid gas from mixed gas
KR20130047470A (en) * 2011-10-31 2013-05-08 한국에너지기술연구원 Improved method for capturing carbon dioxide using aqueous ammonia and apparatus implementing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107697931A (en) * 2017-10-31 2018-02-16 四川锌鸿科技有限公司 A kind of multistage reverse circulation inhales ammonia process
CN107697931B (en) * 2017-10-31 2020-06-30 四川锌鸿科技有限公司 Multistage reverse circulation ammonia absorption process
CN115259259A (en) * 2022-07-18 2022-11-01 陕西未来能源化工有限公司 Conversion condensate treatment system and process

Similar Documents

Publication Publication Date Title
CN101143286B (en) Method for removing COS from acid airflow
WO2018048032A1 (en) Method for purifying coke oven gas and apparatus for purifying coke oven gas
US8460436B2 (en) Advanced intercooling and recycling in CO2 absorption
CN103170223B (en) The eddy flow intensifying method of Clause method sulfur production tail gas clean-up and device
WO2011002198A2 (en) System and method for absorbing and separating acid gas
CN103691282B (en) A kind of method utilizing hydrogen sulfide acid gas to prepare sodium carbonate
WO2015080324A1 (en) Energy-saving acidic gas capture system and method using separated water
AU2011333125B2 (en) System and method for recovering gas containing C02 and H2S
CN104815525A (en) Treating agent for mixing acid components in mixed gases
WO2019164081A1 (en) Carbon dioxide absorbent and method for separating out carbon dioxide by using same
CN107673314B (en) Low-concentration SO2Method for preparing sulfuric acid through one-to-two conversion of flue gas
WO2014104792A1 (en) Alkanolamine-based carbon dioxide absorbent containing polyalkylene glycol monomethyl ether, and carbon dioxide absorption method and separation method using same
WO2015102136A1 (en) Energy saving type method for removing acid gas through pretreatment using ammonia water
CN1962032A (en) Solvent and method for simultaneous removal of hydrogen sulphide and carbon dioxide
JP5737916B2 (en) CO2 recovery system
KR101190725B1 (en) Apparatus for separating acid gas from mixed gas
WO2015133666A1 (en) Low energy-type acid gas capture system and method using recirculation of absorbent
WO2015056657A1 (en) Composite amine absorption solution, and method and device for removing co2 and/or h2s
CN102451608A (en) Tail gas treatment process applicable to natural gas with high sulfur
KR101422670B1 (en) Method of removing acid gas by pretreatment of ammonia solution for saving energy
WO2015076449A1 (en) Energy-saving acidic gas capture system and method using condensed water
CN107376586A (en) A kind of effective ways of coal-fired flue gas desulfurization decarburization
CA2901544A1 (en) Method and device for the treatment of a gas stream, in particular for the treatment of a natural gas stream
WO2015133665A1 (en) Acid gas capture system and method saving energy by cooling absorbent, which has passed reboiler, by means of steam condensate
WO2014104789A1 (en) Ternary carbon dioxide absorbent and carbon dioxide absorption method and separation method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876949

Country of ref document: EP

Kind code of ref document: A1