WO2015102053A1 - Mass spectrometer - Google Patents
Mass spectrometer Download PDFInfo
- Publication number
- WO2015102053A1 WO2015102053A1 PCT/JP2014/050032 JP2014050032W WO2015102053A1 WO 2015102053 A1 WO2015102053 A1 WO 2015102053A1 JP 2014050032 W JP2014050032 W JP 2014050032W WO 2015102053 A1 WO2015102053 A1 WO 2015102053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- information
- measurement
- unit
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
- G01N30/7233—Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8651—Recording, data aquisition, archiving and storage
Definitions
- the present invention relates to a mass spectrometer, and more particularly, to a mass spectrometer using an ionization method capable of in-situ analysis in real time.
- API Atmospheric Pressure Ionization
- the atmospheric pressure ionization method is advantageous in that it is not necessary to evacuate the ionization chamber, and a sample that is difficult to handle in a vacuum atmosphere, such as a liquid sample or a sample containing a lot of moisture, can be easily ionized.
- ESI ElectroSpray Ionization
- APCI Atmospheric Pressure Chemical Ionization
- DART Direct Analysis Real Time
- DESI Desorption ElectroSpray Ionization
- probe electrospray ionization (PESI Probe ElectroSpray Ionization) method
- a variety of ionization methods such as the method are included in the ambient ionization method.
- a mass spectrometer using an ion source based on the DART method which is a typical ambient ionization method (hereinafter referred to as a DART mass spectrometer) will be described as an example.
- measurement is performed for a certain period of time in a state where nothing is set at a measurement position (position where a spray flow of excited water molecules is sprayed in a DART ion source) (step S81).
- scan measurement over a predetermined mass-to-charge ratio range is repeatedly performed, and data representing a mass spectrum in the mass-to-charge ratio range is collected for each scan measurement.
- the data processing unit in the DART mass spectrometer integrates the signal intensity obtained for each scan measurement over the entire mass-to-charge ratio range, and plots this over time, so that the total ion chromatogram can be obtained in real time. Create with.
- FIG. 5 is an example of a chromatogram (total ion chromatogram) created and displayed in real time. During the blank measurement period, background noise due to various factors appears on the chromatogram.
- step S82 After completion of the blank measurement for a predetermined time, the worker (user) performs measurement on the sample by setting one of the samples at the measurement position (step S82).
- the operator When the sample is set at the measurement position, peaks corresponding to one or more components included in the sample appear on the chromatogram as shown in FIG. Therefore, the operator must specify the information that identifies the sample, such as the name of the measured sample, and the time at which the sample was detected (start time and end time of the peak appearing in the chromatogram) on paper or a personal computer (PC). Are recorded in a document or table (step S83). Then, steps S82 and S83 are repeated until the measurement for all the samples is finished (No is determined in step S84).
- FIG. 16 is a flowchart showing an example of this analysis procedure.
- the operator confirms the sample information recorded on the paper or the like at the time of measurement and the detection time (step S91), and the mass spectrum obtained in the time range in which one sample is detected (usually the peak top on the chromatogram).
- the mass spectrum corresponding to is selected, and the mass spectrum obtained in the blank measurement time range is subtracted from the mass spectrum. As a result, a mass spectrum from which the background due to various factors has been removed is obtained (step S92).
- a peak having a large signal intensity appearing in a mass spectrum may be regarded as a molecular ion peak of a compound, and a compound or a structural formula may be specified.
- an Na addition ion, NH since the adduct ion peak such as 3 additional ions appear with high signal strength it may be necessary to perform such adduct ion peak even considering compound or structure determination.
- step S96 The worker enters comment information such as the specified compound name and structural formula at an appropriate position on the mass spectrum (in the vicinity of the peak used for specifying the compound, etc.). At this time, if comment information cannot be entered near the target peak, such as when the signal strength is low or the peak interval is narrow, draw an enlarged view of the mass spectrum and enter the comment information there. To do. If the operations of steps S91 to S94 are completed for all the measured samples (determined as Yes in step S95), the process proceeds to step S96.
- the operator compares the mass spectra with each other to determine the difference in peak mass-to-charge ratio and the peak signal intensity at the same mass-to-charge ratio. Check for differences and calculate the amount of the difference if necessary. For example, when one sample is a normal sample and the other sample is a normal / abnormal evaluation target sample, the difference from the mass spectrum for the normal sample may be obtained. Thus, a table or graph showing the difference between the mass-to-charge ratio and the difference in signal intensity is created and displayed together with the extracted ion chromatogram or mass spectrum at the target mass-to-charge ratio (steps S96 and S97). . Through the analysis work as described above, it is possible to obtain information indicating a difference or commonality among a plurality of samples.
- measurement can be easily performed by simply holding the sample over the measurement position.
- Selection of a sample to be measured, timing for setting the sample at a measurement position, etc. are left to the measurer, and measurement is very easy and flexible in that respect.
- the operator must record the sample name, detection time, etc. on paper, etc., and it is necessary to proceed with the work by referring to the record at the time of analysis. Losing the recorded information will greatly hinder the analysis work, so it is necessary to manage such information properly so that it can be quickly retrieved as needed. However, such management is very troublesome and cumbersome. .
- the present invention has been made in view of the problems as described above, and its main purpose is to enable easy and easy measurement while reducing the burden on the operator, improving the efficiency of measurement and analysis, It is an object of the present invention to provide a mass spectrometer capable of reducing the variation in results depending on the level of skill and experience.
- the present invention made to solve the above problems is a mass spectrometer that performs measurement in real time on a sample placed at a predetermined measurement position that is an atmospheric pressure atmosphere, a) a comment input receiving unit that receives input of comment information including at least sample information for specifying a sample to be measured by a user during measurement execution; b) The comment information received by the comment input receiving unit is stored in a data file in which measurement data collected at the time of the reception is stored, or in another file associated with the data file.
- a data storage unit to store; It is characterized by having.
- the mass spectrometer according to the present invention can be a mass spectrometer using various ion methods called ambient ionization methods such as the DART method, DESI method, PESI method, ELDI method, and ASAP method described above.
- the comment input reception unit displays, for example, a screen on which a comment input field for an operator to input comment information is displayed on a display unit such as a display monitor during measurement. The information input in the input field is accepted.
- the operator may input text by keyboard operation or the like, but may input by selection by the operator from a list (for example, pull-down menu) in which a plurality of pre-registered information is listed.
- the comment input receiving unit may be configured to receive sample information selected by an operator from a list in which a plurality of sample information is registered in advance as one of the comment information.
- appropriate information may be input from such a list by moving it to a predetermined column by an operation such as drag and drop.
- the format and method of such input are not particularly limited in the present invention.
- the data storage unit stores the accepted comment information in a data file in which measurement data collected at the time of acceptance is stored. Alternatively, it is stored in another file associated with the data file.
- the comment information may be stored in the data file or the other file even during the measurement execution or after the measurement is completed. That is, when a plurality of samples are measured in sequence, each time the comment information for each sample is input, it may be stored in a file, or the comment information input for each sample may be temporarily stored. It is also possible to store the comment information stored in a file after all the samples have been measured.
- sample information on a sample appropriately selected by an operator at the time of measurement is appropriately input, measurement data and sample information for the sample are automatically associated and stored. . Therefore, sample information can be automatically obtained during the analysis based on the measurement data without depending on confirmation or judgment by the operator.
- the comment input receiving unit may start time (zero time) from the start time of a series of measurements in addition to sample information such as a sample name.
- the start time and end time of the period when the measurement for the sample is performed can be received as one of the comment information.
- the mass spectrometer according to the present invention further includes a measurement-time chromatogram display processing unit that creates a chromatogram based on measurement data in real time and renders it on a display screen, and the comment input reception unit includes a display screen. It is preferable that the time corresponding to the position indicated by the operator in the chromatogram drawn above is received as the time information.
- the operator instructs the start point and the end point of the peak appearing in the displayed chromatogram by a click operation with a pointing device. Then, the comment input receiving unit recognizes the time corresponding to the clicked position, and acquires it as the time information of the measurement of the sample corresponding to the peak.
- the operator may read the peak start time and end time and input them as text, but the operation is simplified by designating the time only by clicking as described above.
- the mass spectrometer further includes a measurement time chromatogram creation unit that creates a chromatogram in real time based on measurement data, and a peak detection unit that detects a peak in the chromatogram,
- the data storage unit uses the time information obtained from the detection result by the peak detection unit as measurement time information for the sample, along with the comment information received by the comment input reception unit, in the data file or another data file associated with the data file.
- the file may be stored in the file.
- the peak detection method in the peak detection unit may be a known various method, that is, a method using a gradient of a chromatogram curve, a peak height, a peak width, or the like. According to this configuration, since the operator does not need to input the measurement time information, the work load on the operator can be reduced, and an erroneous time can be prevented from being input. In order to avoid erroneously recognizing a noise peak due to disturbance or the like as a peak derived from a sample, for example, a peak non-detection period so that a peak is not detected for a predetermined time after detecting one peak. Alternatively, a peak detection window for detecting a peak may be provided.
- the comment information received by the comment input receiving unit is created on the basis of the data obtained by the measurement and displayed on the display screen on the chromatogram or mass spectrum. It is advisable to display at an appropriate position.
- sample information corresponding to the peak may be displayed in the vicinity of the peak appearing in the chromatogram.
- the position where the comment information such as the sample information is displayed may be automatically determined according to a predetermined algorithm, or the display position may be designated by the operator.
- the operator may be allowed to specify the position where the comment information is displayed on the chromatogram or mass spectrum.
- a preferred first aspect is A spectrum subtracting unit that subtracts a mass spectrum obtained by blank measurement without a sample from a mass spectrum obtained by measurement in a state where the sample is present, identified based on the comment information received by the comment input acceptance unit; , A mass spectrum display processing unit for displaying the mass spectrum subtracted by the spectrum subtraction unit; Is further provided.
- the spectrum subtraction unit determines whether there is no sample (blank state) or a sample based on, for example, sample information which is one of the comment information, and uses the measurement time information. The time range in which the measurement result of each state is obtained is determined. Then, the subtracted mass spectrum is obtained by subtracting the signal intensity value of each mass-to-charge ratio for the two mass spectra obtained in the respective time ranges. Since the mass spectrum obtained in the absence of the sample can be regarded as background due to noise or the like, this subtraction processing corresponds to processing for removing the background. As a result, the mass spectrum from which the background has been removed can be automatically obtained for each sample without the operator determining the target mass spectrum or performing a subtraction operation.
- the mass spectrum display processing unit may display at least a part of the comment information received by the comment input receiving unit on the subtracted mass spectrum.
- the preferable 2nd aspect in the mass spectrometer which concerns on this invention is a said 1st aspect,
- a difference information extraction unit for extracting information on the difference between the subtracted mass-mass spectra respectively obtained for two or more different samples;
- a difference information display unit for displaying the difference information extracted by the difference information extraction unit; Is further provided.
- the difference information here is a difference in peak signal intensity at the same mass-to-charge ratio, a difference in peak mass-to-charge ratio indicating the maximum signal intensity, and the like. What information is extracted as the difference information for the two mass spectra, what conditions are considered to be different may be set in advance. Further, the display of the difference information may be a display that can identify, for example, only a peak related to the difference on the mass spectrum or a part thereof, for example, only a peak part having a different signal intensity. Specifically, it is conceivable that a peak or a part of a peak related to a difference is displayed in a different display color from other peaks or peak parts, or a specific mark is attached to a peak related to a difference. Further, instead of the peak related to the difference, the display color of the mass-to-charge ratio corresponding to the peak may be changed or a mark may be attached.
- the operator compares the mass-to-charge ratios and signal intensities of the peaks on the two mass spectra, calculates the difference amount, and determines whether the difference is significant. There is no need to In addition, the operator can easily grasp the peak determined to have a difference.
- a preferable third aspect of the mass spectrometer according to the present invention is the above first aspect.
- a compound information storage unit for storing compound information in which the type of compound and mass-to-charge ratio information are associated;
- a compound specifying unit for specifying a compound and / or chemical structural formula by comparing the mass-to-charge ratio of the peak on the mass spectrum with the compound information stored in the compound information storage unit;
- a compound information display unit for displaying information indicating the compound and / or chemical structural formula specified by the compound specifying unit in association with a peak and / or mass spectrum on a chromatogram; Is further provided.
- the above compound information can be obtained from various compound databases that are generally available.
- a database created by the operator himself based on the results of actually measuring various compounds can also be used.
- the mass-to-charge ratio information registered in the compound information is generally the mass-to-charge ratio information of molecular ions, but compounds that easily generate adduct ions added by specific substances or ions desorbed from specific parts. For this, it is preferable to register mass-to-charge ratio information of various molecular-related ions other than molecular ions.
- accurate compound information can be automatically acquired without the operator himself / herself performing complicated work for specifying the compound contained in the sample and its chemical structural formula.
- a single compound or chemical structural formula cannot be specified, a plurality of candidates may be extracted, and the operator may make a final decision by listing these candidates.
- the comment information including the sample information is stored in the data file in which the measurement data is stored or the file associated with the data file. It becomes easy and traceability is ensured. In addition, when analyzing data collected by measurement, important information for analysis such as sample name and measurement time of each sample can be extracted immediately, so even if the analysis is performed automatically, the operator will do it manually Even in this case, the efficiency of analysis can be improved.
- the labor of manually subtracting the mass spectrum of the blank measurement from the mass spectrum of each sample becomes unnecessary, and the analysis work is efficiently performed. This can be done and work errors can be reduced.
- the operator can manually compare the mass-to-charge ratio and signal intensity of the peaks on the two mass spectra, calculate the difference amount, There is no need to determine whether or not the difference is significant. Thereby, the analysis work can be performed efficiently, and variations in results due to differences in the skill and experience of the worker do not occur, and an accurate difference analysis can be performed.
- the mass spectrometer of the present invention it is not necessary for the operator to specify the compound or chemical structural formula, and the efficiency of the analysis work can be further improved. In addition, it is possible to accurately specify a compound or chemical structural formula without depending on the skill and experience of the operator.
- the flowchart which shows an example of the measurement procedure and operation
- the flowchart which shows an example of the processing operation at the time of analyzing the data collected by the measurement shown in FIG.
- Schematic which shows an example of the during-measurement screen displayed on the screen of a display part during measurement execution in the DART mass spectrometer of 1st Example.
- the figure which shows an example of the chromatogram (total ion chromatogram) displayed in real time during the measurement execution in the DART mass spectrometer of 1st Example.
- Schematic which shows an example of the screen during a measurement in the case of inputting the measurement time range by click operation with a cursor in the DART mass spectrometer of 1st Example.
- FIG. 1 is a configuration diagram of a main part of the DART mass spectrometer of the first embodiment.
- the degree of vacuum increases stepwise between the ionization region 20 opened to the atmosphere and the analysis chamber 23 which is a high vacuum atmosphere evacuated by a high performance vacuum pump (not shown).
- the multistage differential exhaust system having the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 is provided.
- the ionization region 20 and the first intermediate vacuum chamber 21 communicate with each other through a small diameter ion introduction tube 26.
- the DART ionization unit 10 is disposed in the ionization region 20 so as to face the inlet opening 26a of the ion introduction tube 26, and the sample 25 to be analyzed is placed between the inlet opening 26a and the DART ionization unit 10 when the measurement is performed. Is inserted.
- the DART ionization unit 10 has three chambers: a discharge chamber 11, a reaction chamber 12, and a heating chamber 13.
- a gas introduction tube 14 for introducing an inert gas such as helium is connected to the first-stage discharge chamber 11, and a needle electrode 15 is disposed inside the discharge chamber 11.
- a heater (not shown) is attached to the heating chamber 13 at the final stage, and a grid electrode 19 is provided to the nozzle 18 that is an outlet of the heating chamber 13.
- the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 28 having a small hole (orifice) at the top, and each of the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 includes Ion guides 27 and 29 are provided for transporting ions to the subsequent stage while converging ions.
- the ion guide 27 uses a plurality of electrode plates arranged along the ion optical axis C as one virtual rod electrode, and a plurality of (for example, four) virtual plates around the ion optical axis C. It is the structure which has arrange
- the ion guide 29 has a configuration in which a plurality (for example, eight) of rod electrodes extending in the direction along the ion optical axis C are arranged around the ion optical axis C.
- the configuration of the ion guides 27 and 29 is not limited to this, and can be changed as appropriate.
- a quadrupole mass filter 30 that separates ions according to the mass-to-charge ratio m / z and an ion detector 31 that detects ions that have passed through the quadrupole mass filter 30 are installed inside the analysis chamber 23, a quadrupole mass filter 30 that separates ions according to the mass-to-charge ratio m / z and an ion detector 31 that detects ions that have passed through the quadrupole mass filter 30 are installed. .
- the detection signal from the ion detector 31 is digitized by an analog-digital converter (ADC) 32 and then sent to the control / processing unit 40.
- ADC analog-digital converter
- the analysis control unit 33 receives the instruction from the control / processing unit 40 and controls the operation of each unit of the mass spectrometer other than the DART ionization unit 10 when performing the measurement. Further, the DART drive control unit 34 controls the operation of the DART ionization unit 10 when performing the measurement.
- the control / processing unit 40 performs overall control and data processing of the entire apparatus. As functional blocks characteristic of the present embodiment, a real-time chromatogram creation unit 41, a comment input reception unit 42, a data file creation Unit 43, data storage unit 44, chromatogram creation unit 46, mass spectrum creation unit 47, spectrum subtraction unit 48, spectrum peak identification unit 49, known component information storage unit 50, difference analysis unit 51, difference information display processing unit 52, Etc.
- control / processing unit 40 Connected to the control / processing unit 40 are an input unit 60 operated by a user (a worker in charge of analysis) and a display unit 61 which is a display monitor.
- the control / processing unit 40 is configured to achieve each function by using a personal computer as a hardware resource and executing dedicated control / processing software installed in advance in the computer.
- the DART drive control unit 34 can be configured to be controlled by an independent control system different from the control / processing unit 40. .
- a mass analysis operation on a sample in the DART mass spectrometer of the present embodiment will be schematically described.
- the DART ion source 10 when helium is supplied into the discharge chamber 11 through the gas introduction tube 14 and a high voltage is applied to the needle electrode 15 with the helium filled in the discharge chamber 11, the needle electrode 15 is grounded. Discharge occurs between the partition walls 16 that are at a potential. This discharge changes the ground singlet molecular helium gas (1 1 S) into a mixture of helium ions, electrons, and excited excited triplet molecular helium (2 3 S).
- the excited triplet molecular helium heated to a high temperature in the heating chamber 13 is ejected from the nozzle 18 to the ionization region 20 through the grid electrode 19.
- the heated excited triplet molecular helium penning ionizes water molecules in the atmosphere present in the ionization region 20.
- the water molecule ions thus generated are in an excited state. Since the gas containing excited triplet molecular helium is high temperature, when this gas is blown onto the sample 25 placed in front of the nozzle 18, the component molecules in the sample 25 are vaporized. When water molecule ions in an excited state act on component molecules generated by vaporization, a reaction occurs to ionize the component molecules. In this manner, the DART ionization unit 10 can ionize a solid or liquid sample as it is, that is, in a state of being placed on the spot.
- the generated ions are sucked into the ion introduction tube 26 by the pressure difference between the ion region 20 and the first intermediate vacuum chamber 21 and sent to the first intermediate vacuum chamber 21.
- the ions are converged by the ion guide 27, sent to the second intermediate vacuum chamber 22 through the orifice at the top of the skimmer 28, and further converged by the ion guide 29 and sent to the analysis chamber 23.
- a predetermined voltage is applied to the four rod electrodes constituting the quadrupole mass filter 30, and only ions having a mass-to-charge ratio corresponding to the voltage pass through the quadrupole mass filter 30 to the ion detector 31. Incident.
- the ion detector 31 outputs a detection signal corresponding to the amount of incident ions.
- the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 30 is a predetermined mass-to-charge ratio. Scanned in range.
- the control / processing unit 40 can obtain a mass spectrum indicating the signal intensity of ions over a predetermined mass-to-charge ratio range based on the detection signals sequentially obtained at this time.
- one of the features of this DART mass spectrometer is that the sample 25 is subjected to mass analysis only by passing the sample 25 over the gas flow ejected from the nozzle 18 of the DART ionization unit 10 and the result is obtained. It is to be obtained.
- FIG. 2 is a flowchart showing the measurement procedure and operation at this time.
- scan measurement over a predetermined mass-to-charge ratio range is started under the control of the analysis control unit 33 in response to an instruction from the control / processing unit 40.
- the operator waits for a few minutes (about 3 minutes in this example) from the start of measurement without inserting the sample into the measurement position. Thereby, measurement in a state where the sample 25 is not at the measurement position, that is, blank measurement is performed.
- FIG. 4 is a schematic diagram illustrating an example of the in-measurement screen 100 displayed on the screen of the display unit 61 during measurement execution.
- a chromatogram display column 101 and a comment information input table 102 are arranged.
- the real-time chromatogram creation unit 41 in the control / processing unit 40 receives the detection data digitized by the analog-to-digital converter 32, and the total ion chromatogram (in the following description, the total ion chromatogram is described).
- the gram is sometimes simply referred to as “chromatogram”) and displayed in the chromatogram display column 101.
- the curve of the chromatogram displayed in the chromatogram display column 101 is updated. As shown in FIG. 5, during the blank measurement, a curve indicating background such as noise appears.
- the operator inputs the name of the sample being measured and the measurement start time and end time for the sample in the comment information input table 102 displayed together with the chromatogram (step S2).
- the comment information input table 102 is provided with a sample name input field 102a, a measurement start time input field 102b, and a measurement end time input field 102c.
- desired information may be input in each field. In the case of blank measurement, “blank” may be entered in the sample name input field.
- the operator inserts the first sample (sample 1) into the measurement position, thereby performing measurement on the sample (step S3). Then, since ions generated from this sample begin to be introduced into the first intermediate vacuum chamber 21 through the ion introduction tube 26, the chromatogram displayed in the chromatogram display column 101 in a substantially real time has a peak as shown in FIG. Begins to appear.
- the operator inputs the name of the sample being measured and the measurement start time and end time for the sample in the comment information input table 102 (step S4).
- the measurement start time and measurement end time for the sample may be input by the operator visually reading the start point and end point of the peak appearing in the chromatogram.
- step S5 After the operator inserts one sample into the measurement position for a predetermined time and completes the measurement, if there is an unmeasured sample (Yes in step S5), the process returns to step S3, and another sample that has not been measured is measured. And perform measurements on the sample. Thereby, as shown in FIG. 5, the second peak appears in the chromatogram. Then, the operator inputs the sample name and the measurement start time / end time for the sample.
- the operator instructs the end of the measurement by performing a predetermined operation with the input unit 60.
- the analysis control unit 33 controls each unit so as to end the measurement.
- the comment input receiving unit 42 collects sample information such as the sample name input to the comment information input table 102 at that time and the measurement start time / end time of each sample.
- the data file creation unit 43 stores all the data obtained by a series of measurements in one data file, and also stores the sample information collected by the comment input reception unit 42 in the same data file. Is stored in the data storage unit 44 (step S6). As a result, a data file storing both the mass spectrum data obtained by the blank measurement and the measurement of a plurality of samples and the information of the sample name and the measurement start time / end time of the measured sample is stored.
- the operator may directly write the sample name or the like in each column of the comment information input table 102, but a simpler input method may be used.
- a sample list in which information such as a sample name, a molecular weight corresponding to the sample, and a composition formula is registered in advance is stored, and a sample is appropriately selected from the sample list.
- a sample name may be entered.
- a pull-down menu in which only sample names are listed may be displayed so that sample names can be selected from them.
- a sample list as shown in FIG. 6 is arranged on the measuring screen 100 or displayed as another screen on the screen 100, and an appropriate sample name is displayed by drag and drop operation from the list. May be entered.
- FIG. 7 is a schematic view showing an example of the in-measurement screen 100 in this case.
- the operator operates the pointing device as the input unit 60 to move the arrow-like cursor 103 displayed in the chromatogram display column 101 to a predetermined position, and performs a click operation.
- the comment input receiving unit 42 acquires time information corresponding to the clicked position, and the time is automatically entered in the measurement start time input field 102b or the measurement end time input field 102c in the comment information input table 102. Write.
- FIG. 7 is a schematic view showing an example of the in-measurement screen 100 in this case.
- the operator operates the pointing device as the input unit 60 to move the arrow-like cursor 103 displayed in the chromatogram display column 101 to a predetermined position, and performs a click operation.
- the comment input receiving unit 42 acquires time information corresponding to the clicked position, and the time is automatically entered in the measurement start time input field 102b or the measurement end time input field 102c in the comment information input table
- FIG. 3 is a flowchart showing the processing operation at this time.
- the chromatogram creation unit 46 reads the designated data file from the data storage unit 44. Then, a total ion chromatogram over the entire measurement time range is created based on the measurement data stored in the file. Also, from the sample information stored in the same file, the sample name and the measurement time range of that sample (the period from the measurement start time to the measurement end time) are recognized and appear in each measurement time range on the chromatogram. The sample name is associated with the peak, and the sample name is pasted at a predetermined position near the peak top of the peak. Then, a chromatogram with a sample name assigned to each peak is displayed on the screen of the display unit 61 (step S11). FIG. 8 is an example of the chromatogram created and displayed in this way.
- the mass spectrum creation unit 47 detects the peak top of the peak for each measurement time range, extracts the mass spectrum data acquired at the time corresponding to the peak top, and creates a mass spectrum. That is, in the example of FIG. 8, mass spectrum data at a time corresponding to the peak top positions of the peaks of the three samples is extracted, and mass spectra are respectively created based on the data. Further, the mass spectrum creation unit 47 calculates the average value of the signal intensity for each mass to charge ratio with respect to the mass spectrum data obtained in the entire measurement time range whose sample name is “blank” or in a predetermined time range therein. Thus, a background mass spectrum that is an average of the mass spectra for the blank measurement is obtained.
- the spectrum subtraction unit 48 subtracts the common background mass spectrum from the mass spectrum for the sample to obtain a mass spectrum from which the background has been removed. Then, a sample name corresponding to each mass spectrum from which the background has been removed is added and displayed on the screen of the display unit 61 together with the chromatogram (step S12).
- FIG. 9 is a diagram showing an example of the chromatogram and mass spectrum displayed in this way. Although the mass spectra for all samples are listed here, the mass spectra for only the selected sample may be displayed, or the mass spectra may be selectively displayed by switching tabs instead of displaying the list. May be displayed.
- the spectrum subtraction unit 48 may calculate a difference between two designated mass spectra instead of subtracting a common background mass spectrum from a mass spectrum for one sample, and obtain a difference mass spectrum. .
- the mass spectrum for sample 2 without background removal is subtracted from the mass spectrum for sample 1 without background removal, and the sample names of the two samples are added to the resulting difference mass spectrum. It may be displayed on the screen of the display unit 61. Since the common background is removed from the difference mass spectrum calculated in this way, the operator can accurately grasp the difference in signal intensity for each mass-to-charge ratio between sample 1 and sample 2 by displaying this difference mass spectrum. can do.
- the known component information storage unit 50 stores in advance information about a compound that is predicted to be contained.
- FIG. 10 is a diagram showing an example of this compound information.
- adduct information such as mass-to-charge ratio of adduct ions such as Na adducts and NH 3 adducts. It is.
- Such information can be generated based on various known compound databases.
- An existing compound database may be used as it is.
- the adduct information may be automatically created from information such as molecular weight.
- the spectrum peak specifying unit 49 performs peak detection on the mass spectrum after background removal for each sample calculated in step S12, and the mass-to-charge ratio information of the detected peak is stored in the known component information storage unit 50. Identify the peaks in light of the compound information. Then, for the identified peak, that is, the peak confirmed to be a certain compound, at least one of information such as the name, molecular weight, mass-to-charge ratio, and structural formula of the compound is displayed on the mass spectrum. Displayed in the vicinity of the peak (step S13).
- a peak in a mass-to-charge ratio corresponding to an adduct ion such as an Na adduct or NH 3 adduct is also detected, and if such a peak is detected, compound information corresponding to the adduct ion is displayed.
- FIG. 11 shows an example in which the enlarged mass spectrum view is displayed in the original (not enlarged) display frame of the mass spectrum, but the enlarged mass spectrum view may be out of the display frame of the original mass spectrum. .
- the difference analysis part 51 performs the process which extracts the difference (or commonality) of the mass spectrum after the background removal with respect to several samples on the conditions set beforehand.
- the difference in mass spectrum here is, for example, a difference in signal intensity at the same mass-to-charge ratio, a difference in mass-to-charge ratio between peaks appearing at a large signal intensity, or the like. If there is a difference in signal intensity or mass-to-charge ratio, a display is made on the mass spectrum so that the difference can be easily identified (step S14).
- the difference analysis unit 51 sets a threshold value of signal intensity, and extracts all mass-to-charge ratios whose signal intensity exceeds the threshold value in a mass spectrum for any sample. Then, a difference in signal intensity in the mass-to-charge ratio is calculated among a plurality of designated samples.
- the signal intensity threshold is set to 400,000
- the three mass-to-charge ratios of m / z / 150.2, m / z 192.2, and m / z 391.2 are the threshold values. Over. If the difference in signal intensity in these mass-to-charge ratios is large, the mass-to-charge ratio is a compound that exists specifically in a certain sample, and conversely, if the difference in signal intensity is small, it exists in any sample in common. It can be said that it is a non-specific compound. In the example of FIG.
- m / zm150.2 is a compound specifically detected in sample 3
- m / z 192.2 is a compound detected in common in sample 1 and sample 2
- m / z 391.2 It can be seen that is a compound specifically detected in sample 1. Therefore, a peak corresponding to a compound that is specifically detected and a peak corresponding to a compound that is commonly detected in at least two samples are displayed in colors that are easily distinguishable from other peaks. Thus, if the compound information is displayed as described above for the peak displayed in a color different from that of the other peaks, the worker exists in one of a plurality of samples as a specific compound or in common. Compounds and the like can be easily grasped.
- the difference analysis unit 51 may calculate the difference in signal intensity for all mass-to-charge ratios among a plurality of designated samples without setting a threshold value for the signal intensity.
- the peak color corresponding to the compound specifically detected in one sample and the peak color corresponding to the compound commonly detected in multiple samples different from other peaks such peak A specific mark may be displayed in the vicinity of or near the compound information display associated with such a peak.
- FIG. 12 shows an example in which a specific mark is attached to the peak detected under the above-described conditions for the example shown in FIG.
- the peak m / z 150.2 detected specifically in sample 3 is an asterisk
- the peak m / z 391.2 specifically detected in sample 1 is a triangle
- the peak of m / z 192.2 detected in common with 2 is marked with a circle.
- the difference information display processing unit 52 creates a table based on information about the specific compound or common compound extracted by the difference analysis unit 51, and further extracts ion chromatograms at mass-to-charge ratios corresponding to these compounds.
- a gram is created (step S15).
- FIG. 13 is an example in which the signal intensity with respect to the peak detected under the above-described conditions for the example shown in FIG. 9 and the signal intensity difference between different samples are tabulated.
- the created table and extracted ion chromatogram are displayed on the screen of the display unit 61 (step S16).
- the operator can quantitatively grasp the signal intensity difference.
- the operator compares the peak appearing in the extracted ion chromatogram with the position of the peak appearing in the total ion chromatogram, so that the compound is certainly sample-specific or common to multiple samples. Can be confirmed.
- the DART mass spectrometer when analyzing measurement data collected by measurement, an operator specifies a data file to be analyzed, and sets analysis-related conditions as necessary. Only automatically removes the background of the mass spectrum, identifies the peaks on the mass spectrum, analyzes the differences between multiple samples, and so on. Thereby, the burden on the worker at the time of data analysis is greatly reduced, and variations in results due to differences in the skill level and skill of the worker can be eliminated.
- a DART mass spectrometer according to a second embodiment of the present invention will be described with reference to the block diagram shown in FIG. In FIG. 14, the same or corresponding components as those in the DART mass spectrometer according to the first embodiment shown in FIG.
- the difference between the DART mass spectrometer of the second embodiment and the DART mass spectrometer of the first embodiment is that a peak detector 45 is newly added to the control / processor 40.
- sample information such as a sample name and measurement time information (measurement start time and end time) for each sample are obtained by performing some operation by an operator during measurement. Entered.
- the measurement start time and the measurement end time are obtained from the result of automatic peak detection by the peak detector 45, regardless of the operator's operation. Is done.
- the peak detection unit 45 determines the peak start point based on the slope, peak height, peak width, etc. of the chromatogram curve created by the real-time chromatogram creation unit 41 every moment. And recognize the end point.
- the method is the same as the detection of a peak on a normal chromatogram.
- the information is automatically stored in the measurement start time input field 102b and the measurement end time input field 102c in the comment information input table 102 shown in FIG. To write.
- the operator only has to perform the operation of entering the sample name or selecting from the list in addition to the operation of holding the sample over the measurement position, and the burden on the operator when performing the measurement is reduced.
- a DART ion source is used as an ion source.
- ambient that can be measured in situ in an atmospheric pressure atmosphere without pretreatment of a solid or liquid sample other than DART.
- Various ionization methods called ionization can be used.
- an ion source based on an ionization method such as the DESI method, the PESI method, the ELDI method, or the ASAP method described above can be used.
- the data that can be analyzed by the DART mass spectrometer according to the first embodiment shown in FIG. 3 corresponds to the measurement data, the sample information, and the measurement time information.
- the data is not necessarily obtained by the measurement procedure as shown in FIG. That is, sample information such as sample name is not input by the operator's operation, but can be applied to a mass spectrometer that performs measurement while automatically selecting a sample according to a sample table listing sample names, for example. Technology.
- the ion source is not limited to the ion source as described above, and the liquid chromatograph mass spectrometer or gas chromatograph mass spectrometer in which a liquid chromatograph or a gas chromatograph is connected to the preceding stage of the mass spectrometer is used as described above. Data analysis processing techniques can also be adopted.
- Peak detection unit 46 Chromatogram creation unit 47 ... Mass spectrum creation unit 48 ... Spectrum subtraction part 49 ... Spectrum peak specifying part 50 ... Known component information storage part 51 ... Difference analysis part 52 ... Different information display processing unit 60 ... input section 61 ... display unit
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
In the present invention, an operator measures each of a plurality of prepared samples by setting each sample in order in a measurement position (sample (25) position) in an ionization region (20). A real-time chromatogram creation unit (41) creates a chromatogram on the basis of sequentially obtained data from a main mass spectrometer unit and displays the chromatogram on the screen of a display unit (61). Further, during measurement, the operator inputs sample information about each sample from an input unit (60) and inputs measurement time information on the basis of the starting point and ending point of a peak that appears on the displayed chromatogram. A comment input reception unit (42) stores the sample information and measurement time information input in this way in a data file that the measurement data is stored in and saves the information in a storage unit (44). As a result, because the measurement data, the sample information for each sample, and the measurement time information are associated, it is possible to display sample information at an appropriate position when displaying a chromatogram or mass spectrum.
Description
本発明は質量分析装置に関し、さらに詳しくは、リアルタイムでその場(in situ)分析が可能であるイオン化法を用いた質量分析装置に関する。
The present invention relates to a mass spectrometer, and more particularly, to a mass spectrometer using an ionization method capable of in-situ analysis in real time.
質量分析装置において試料成分をイオン化する手法として、様々なイオン化法が知られている。こうしたイオン化法は、真空雰囲気の下でイオン化を行う手法と、略大気圧雰囲気の下でイオン化を行う手法とに大別でき、後者は一般に、大気圧イオン化法(API=Atmospheric Pressure Ionization)と総称される。大気圧イオン化法は、イオン化室内を真空排気する必要がない、液体状の試料や水分を多く含む試料など、真空雰囲気中では扱いが困難である試料も容易にイオン化できる、といった利点がある。
Various ionization methods are known as a method for ionizing sample components in a mass spectrometer. These ionization methods can be broadly divided into a method of performing ionization under a vacuum atmosphere and a method of performing ionization under a substantially atmospheric pressure atmosphere. The latter is generally referred to as an atmospheric pressure ionization method (API = Atmospheric Pressure Ionization). Is done. The atmospheric pressure ionization method is advantageous in that it is not necessary to evacuate the ionization chamber, and a sample that is difficult to handle in a vacuum atmosphere, such as a liquid sample or a sample containing a lot of moisture, can be easily ionized.
よく知られている大気圧イオン化法には、液体クロマトグラフ質量分析装置などで使用される、エレクトロスプレイイオン化法(ESI=ElectroSpray Ionization)や大気圧化学イオン化法(APCI=Atmospheric Pressure Chemical Ionization)などがあるが、近年、新しい大気圧イオン化法が次々に開発又は提案され、注目を集めている。
Well-known atmospheric pressure ionization methods include electrospray ionization (ESI = ElectroSpray Ionization) and atmospheric pressure chemical ionization (APCI = Atmospheric Pressure Chemical Ionization) used in liquid chromatograph mass spectrometers. However, in recent years, new atmospheric pressure ionization methods have been developed or proposed one after another and attracting attention.
こうした新しい大気圧イオン化法の多くは、我々の身近な周辺環境(Ambient)に存在する物質そのものを手軽に分析したいという要求に応えて開発されたものであり、これらイオン化法はアンビエントイオン化(Ambient Ionization)法と呼ばれ、これらイオン化法を利用した質量分析はアンビエント質量分析(Ambient Mass Spectrometry)と呼ばれている(非特許文献1~3など参照)。アンビエントイオン化法を厳密に定義することは難しいが、一般には、特別な試料の調製や前処理を行うことなく、リアルタイムで、その場(in situ)計測が可能であるのがその基本的な概念であるといえる。
Many of these new atmospheric pressure ionization methods were developed in response to the need to easily analyze the substances present in our immediate surroundings (Ambient), and these ionization methods are based on ambient ionization (Ambient Ionization). The mass spectrometry using these ionization methods is called ambient mass spectrometry (Ambient Mass Spectrometry) (see Non-Patent Documents 1 to 3, etc.). Although it is difficult to precisely define the ambient ionization method, the basic concept is that in-situ measurement is possible in real time without special sample preparation or pretreatment. You can say that.
代表的なアンビエントイオン化法としては、リアルタイム直接分析(DART=Direct Analysis in Real Time)法、脱離エレクトロスプレイイオン化(DESI=Desorption ElectroSpray Ionization)法などがあるが、非特許文献2、3に示されているように、プローブエレクトロスプレイイオン化(PESI=Probe ElectroSpray Ionization)法、エレクトロスプレイ支援/レーザ脱離イオン化(ELDI=Electrospray assisted Laser Desorption Ionization)法、大気圧固体分析プローブ(ASAP=Atmospheric Solids Analysis Probe)法など、多種多様なイオン化法がアンビエントイオン化法に包含される。
Typical ambient ionization methods include a real-time direct analysis (DART = Direct Analysis Real Time) method, a desorption electrospray ionization (DESI = Desorption ElectroSpray Ionization) method and the like. As shown, probe electrospray ionization (PESI = Probe ElectroSpray Ionization) method, electrospray assisted / laser desorption ionization (ELDI = Electrospray assisted Laser Desorption Ionization) method, atmospheric pressure solid analysis probe (ASAP = Atmospheric Solids Analysis Probe) A variety of ionization methods such as the method are included in the ambient ionization method.
例えばDART法では、加熱されたガスが混じった励起状態の水分子の噴霧流に固体状や液体状の試料をかざすだけで、該試料中の成分のイオン化を行うことができる(非特許文献4など参照)。一方、DESI法では、帯電させた溶媒の微小液滴を試料に噴霧することで試料中の成分のイオン化を行うことができる。そのため、これらイオン化法には、イオン化のための特別な試料調製が不要である、イオン源の構造が簡単であってコスト的にも有利である、イオン化のために外部から供給するのは不活性ガスのみであるので取扱いも容易である、試料に溶媒等の液体が吹き掛けられることがないので、分析後の試料の扱いも簡便である、といった利点がある。
以下、代表的なアンビエントイオン化法であるDART法によるイオン源を用いた質量分析装置(以下、DART質量分析装置という)を例に挙げて説明する。 For example, in the DART method, it is possible to ionize components in a sample simply by holding a solid or liquid sample over a spray flow of excited water molecules mixed with heated gas (Non-patent Document 4). Etc.) On the other hand, in the DESI method, ionization of components in a sample can be performed by spraying a microdroplet of a charged solvent onto the sample. Therefore, these ionization methods do not require special sample preparation for ionization, the structure of the ion source is simple and advantageous in terms of cost, and it is inert to supply from the outside for ionization. Since there is only a gas, there is an advantage that handling is easy and liquid such as a solvent is not sprayed on the sample, so that the sample after analysis is easy to handle.
Hereinafter, a mass spectrometer using an ion source based on the DART method which is a typical ambient ionization method (hereinafter referred to as a DART mass spectrometer) will be described as an example.
以下、代表的なアンビエントイオン化法であるDART法によるイオン源を用いた質量分析装置(以下、DART質量分析装置という)を例に挙げて説明する。 For example, in the DART method, it is possible to ionize components in a sample simply by holding a solid or liquid sample over a spray flow of excited water molecules mixed with heated gas (Non-patent Document 4). Etc.) On the other hand, in the DESI method, ionization of components in a sample can be performed by spraying a microdroplet of a charged solvent onto the sample. Therefore, these ionization methods do not require special sample preparation for ionization, the structure of the ion source is simple and advantageous in terms of cost, and it is inert to supply from the outside for ionization. Since there is only a gas, there is an advantage that handling is easy and liquid such as a solvent is not sprayed on the sample, so that the sample after analysis is easy to handle.
Hereinafter, a mass spectrometer using an ion source based on the DART method which is a typical ambient ionization method (hereinafter referred to as a DART mass spectrometer) will be described as an example.
DART質量分析装置を用いて多数のサンプルに対する測定を実行する場合の、典型的な測定手順の一例を、図15に示すフローチャートに従って説明する。
まず、測定位置(DARTイオン源において励起状態の水分子の噴霧流が吹き付けられる位置)に何もセットしない状態で一定時間測定(ブランク測定)を行う(ステップS81)。このブランク測定及び引き続くサンプル測定では、未知成分を検出するために、所定質量電荷比範囲に亘るスキャン測定が繰り返し実行され、スキャン測定毎に該質量電荷比範囲のマススペクトルを表すデータが収集される。DART質量分析装置におけるデータ処理部は、スキャン測定毎に得られる信号強度を全質量電荷比範囲に亘って積算し、これを時間経過に伴ってプロットしてゆくことで、トータルイオンクロマトグラムをリアルタイムで作成する。 An example of a typical measurement procedure when performing measurements on a large number of samples using a DART mass spectrometer will be described with reference to the flowchart shown in FIG.
First, measurement (blank measurement) is performed for a certain period of time in a state where nothing is set at a measurement position (position where a spray flow of excited water molecules is sprayed in a DART ion source) (step S81). In this blank measurement and subsequent sample measurement, in order to detect unknown components, scan measurement over a predetermined mass-to-charge ratio range is repeatedly performed, and data representing a mass spectrum in the mass-to-charge ratio range is collected for each scan measurement. . The data processing unit in the DART mass spectrometer integrates the signal intensity obtained for each scan measurement over the entire mass-to-charge ratio range, and plots this over time, so that the total ion chromatogram can be obtained in real time. Create with.
まず、測定位置(DARTイオン源において励起状態の水分子の噴霧流が吹き付けられる位置)に何もセットしない状態で一定時間測定(ブランク測定)を行う(ステップS81)。このブランク測定及び引き続くサンプル測定では、未知成分を検出するために、所定質量電荷比範囲に亘るスキャン測定が繰り返し実行され、スキャン測定毎に該質量電荷比範囲のマススペクトルを表すデータが収集される。DART質量分析装置におけるデータ処理部は、スキャン測定毎に得られる信号強度を全質量電荷比範囲に亘って積算し、これを時間経過に伴ってプロットしてゆくことで、トータルイオンクロマトグラムをリアルタイムで作成する。 An example of a typical measurement procedure when performing measurements on a large number of samples using a DART mass spectrometer will be described with reference to the flowchart shown in FIG.
First, measurement (blank measurement) is performed for a certain period of time in a state where nothing is set at a measurement position (position where a spray flow of excited water molecules is sprayed in a DART ion source) (step S81). In this blank measurement and subsequent sample measurement, in order to detect unknown components, scan measurement over a predetermined mass-to-charge ratio range is repeatedly performed, and data representing a mass spectrum in the mass-to-charge ratio range is collected for each scan measurement. . The data processing unit in the DART mass spectrometer integrates the signal intensity obtained for each scan measurement over the entire mass-to-charge ratio range, and plots this over time, so that the total ion chromatogram can be obtained in real time. Create with.
図5は、リアルタイムで作成及び表示されるクロマトグラム(トータルイオンクロマトグラム)の一例である。ブランク測定の期間中には、様々な要因によるバックグラウンドノイズがクロマトグラム上に現れる。
FIG. 5 is an example of a chromatogram (total ion chromatogram) created and displayed in real time. During the blank measurement period, background noise due to various factors appears on the chromatogram.
所定時間のブランク測定終了後、作業者(ユーザ)は、サンプルの一つを測定位置にセットすることで、該サンプルに対する測定を実行する(ステップS82)。サンプルを測定位置にセットすると、図5に示すように、そのサンプルに含まれる1乃至複数の成分に対応するピークがクロマトグラム上に現れる。そこで作業者は、測定したサンプルの名称など、そのサンプルを特定する情報と、そのサンプルが検出された時間(クロマトグラムに現れるピークの開始時間及び終了時間)を、紙やパーソナルコンピュータ(PC)上の文書や表などに記録する(ステップS83)。そして、全てのサンプルに対する測定が終わる(ステップS84でNoと判定される)まで、ステップS82、S83を繰り返す。
After completion of the blank measurement for a predetermined time, the worker (user) performs measurement on the sample by setting one of the samples at the measurement position (step S82). When the sample is set at the measurement position, peaks corresponding to one or more components included in the sample appear on the chromatogram as shown in FIG. Therefore, the operator must specify the information that identifies the sample, such as the name of the measured sample, and the time at which the sample was detected (start time and end time of the peak appearing in the chromatogram) on paper or a personal computer (PC). Are recorded in a document or table (step S83). Then, steps S82 and S83 are repeated until the measurement for all the samples is finished (No is determined in step S84).
このようにして予め用意された多数のサンプルの測定を実施したあと、作業者は次のような手順で解析を実行する。図16はこの解析手順の一例を示すフローチャートである。
作業者は測定実行時に紙等に記録したサンプル情報と検出時間とを確認し(ステップS91)、一つのサンプルが検出されている時間範囲において得られたマススペクトル(通常はクロマトグラム上のピークトップに対応したマススペクトル)を選択して、そのマススペクトルからブランク測定の時間範囲において得られたマススペクトルを減算する操作を行う。これにより、様々な要因によるバックグラウンドが除去されたマススペクトルが得られる(ステップS92)。 After the measurement of a large number of samples prepared in advance in this way, the worker performs analysis in the following procedure. FIG. 16 is a flowchart showing an example of this analysis procedure.
The operator confirms the sample information recorded on the paper or the like at the time of measurement and the detection time (step S91), and the mass spectrum obtained in the time range in which one sample is detected (usually the peak top on the chromatogram). The mass spectrum corresponding to is selected, and the mass spectrum obtained in the blank measurement time range is subtracted from the mass spectrum. As a result, a mass spectrum from which the background due to various factors has been removed is obtained (step S92).
作業者は測定実行時に紙等に記録したサンプル情報と検出時間とを確認し(ステップS91)、一つのサンプルが検出されている時間範囲において得られたマススペクトル(通常はクロマトグラム上のピークトップに対応したマススペクトル)を選択して、そのマススペクトルからブランク測定の時間範囲において得られたマススペクトルを減算する操作を行う。これにより、様々な要因によるバックグラウンドが除去されたマススペクトルが得られる(ステップS92)。 After the measurement of a large number of samples prepared in advance in this way, the worker performs analysis in the following procedure. FIG. 16 is a flowchart showing an example of this analysis procedure.
The operator confirms the sample information recorded on the paper or the like at the time of measurement and the detection time (step S91), and the mass spectrum obtained in the time range in which one sample is detected (usually the peak top on the chromatogram). The mass spectrum corresponding to is selected, and the mass spectrum obtained in the blank measurement time range is subtracted from the mass spectrum. As a result, a mass spectrum from which the background due to various factors has been removed is obtained (step S92).
次いで作業者は、バックグラウンド除去後のマススペクトルに現れているピークに対応する質量電荷比に基づき、そのサンプルに含まれる化合物の種類や化合物の構造式などを特定する(ステップS93)。一般的には、マススペクトルに現れている信号強度の大きなピークは化合物の分子イオンピークであるとみなして化合物や構造式を特定すればよいが、化合物の種類などによっては、Na付加イオン、NH3付加イオンなどのアダクトイオンピークが高い信号強度で出現するため、こうしたアダクトイオンピークも考慮して化合物や構造式の判断を行う必要がある場合もある。
Next, based on the mass-to-charge ratio corresponding to the peak appearing in the mass spectrum after background removal, the worker specifies the type of compound and the structural formula of the compound contained in the sample (step S93). In general, a peak having a large signal intensity appearing in a mass spectrum may be regarded as a molecular ion peak of a compound, and a compound or a structural formula may be specified. However, depending on the type of the compound, an Na addition ion, NH since the adduct ion peak such as 3 additional ions appear with high signal strength, it may be necessary to perform such adduct ion peak even considering compound or structure determination.
作業者は、特定した化合物名や構造式などのコメント情報を、マススペクトル上の適宜の位置(化合物等の特定に用いたピークの近傍)に記入する。この際に、信号強度が低い場合やピーク間隔が狭い場合など、目的のピークの近傍にコメント情報を記入することができない場合には、マススペクトルの拡大図を描出してそこにコメント情報を記入する。そして、測定した全てのサンプルに対し上記ステップS91~S94の作業が終わった(ステップS95でYesと判定された)ならば、ステップS96へと進む。
The worker enters comment information such as the specified compound name and structural formula at an appropriate position on the mass spectrum (in the vicinity of the peak used for specifying the compound, etc.). At this time, if comment information cannot be entered near the target peak, such as when the signal strength is low or the peak interval is narrow, draw an enlarged view of the mass spectrum and enter the comment information there. To do. If the operations of steps S91 to S94 are completed for all the measured samples (determined as Yes in step S95), the process proceeds to step S96.
各サンプルに対する、化合物情報等が記載されたマススペクトルが得られたならば、作業者は、それらマススペクトル同士を比較し、ピークの質量電荷比の差異や同一質量電荷比におけるピークの信号強度の差異などを確認し、必要に応じてその差異の量を計算する。例えば、或る一つのサンプルが正常サンプルであって、他のサンプルが正常・異常の評価対象サンプルである場合には、正常サンプルに対するマススペクトルとの差異を求めればよい。そうして差異があった質量電荷比や信号強度の差異量などを示す表やグラフを作成し、着目する質量電荷比における抽出イオンクロマトグラムやマススペクトルなどととともに表示する(ステップS96、S97)。
以上のような解析作業により、複数のサンプルの差異や共通性を示す情報を得ることができる。 Once the mass spectra describing the compound information, etc. for each sample are obtained, the operator compares the mass spectra with each other to determine the difference in peak mass-to-charge ratio and the peak signal intensity at the same mass-to-charge ratio. Check for differences and calculate the amount of the difference if necessary. For example, when one sample is a normal sample and the other sample is a normal / abnormal evaluation target sample, the difference from the mass spectrum for the normal sample may be obtained. Thus, a table or graph showing the difference between the mass-to-charge ratio and the difference in signal intensity is created and displayed together with the extracted ion chromatogram or mass spectrum at the target mass-to-charge ratio (steps S96 and S97). .
Through the analysis work as described above, it is possible to obtain information indicating a difference or commonality among a plurality of samples.
以上のような解析作業により、複数のサンプルの差異や共通性を示す情報を得ることができる。 Once the mass spectra describing the compound information, etc. for each sample are obtained, the operator compares the mass spectra with each other to determine the difference in peak mass-to-charge ratio and the peak signal intensity at the same mass-to-charge ratio. Check for differences and calculate the amount of the difference if necessary. For example, when one sample is a normal sample and the other sample is a normal / abnormal evaluation target sample, the difference from the mass spectrum for the normal sample may be obtained. Thus, a table or graph showing the difference between the mass-to-charge ratio and the difference in signal intensity is created and displayed together with the extracted ion chromatogram or mass spectrum at the target mass-to-charge ratio (steps S96 and S97). .
Through the analysis work as described above, it is possible to obtain information indicating a difference or commonality among a plurality of samples.
上述したようにDARTイオン源などを備えた質量分析装置では、サンプルを測定位置にかざすだけで手軽に測定が行えるものの、上記のような手順で測定や解析を行うために、以下のような課題がある。
(1)測定対象のサンプルの選択やそのサンプルを測定位置にセットするタイミングなどは測定者に委ねられており、その点で測定は非常に手軽で且つ自由度が大きい。その反面、作業者はサンプル名や検出時間などを紙などに記録しなければならず、解析時にはその記録を参照して作業を進める必要がある。記録した情報を紛失すると解析作業に大きな支障をきたすため、そうした情報をきちんと管理し必要に応じてすぐに取り出すことができるようにしておく必要があるが、そうした管理は非常に面倒で煩雑である。 As described above, in a mass spectrometer equipped with a DART ion source or the like, measurement can be easily performed by simply holding the sample over the measurement position. There is.
(1) Selection of a sample to be measured, timing for setting the sample at a measurement position, etc. are left to the measurer, and measurement is very easy and flexible in that respect. On the other hand, the operator must record the sample name, detection time, etc. on paper, etc., and it is necessary to proceed with the work by referring to the record at the time of analysis. Losing the recorded information will greatly hinder the analysis work, so it is necessary to manage such information properly so that it can be quickly retrieved as needed. However, such management is very troublesome and cumbersome. .
(1)測定対象のサンプルの選択やそのサンプルを測定位置にセットするタイミングなどは測定者に委ねられており、その点で測定は非常に手軽で且つ自由度が大きい。その反面、作業者はサンプル名や検出時間などを紙などに記録しなければならず、解析時にはその記録を参照して作業を進める必要がある。記録した情報を紛失すると解析作業に大きな支障をきたすため、そうした情報をきちんと管理し必要に応じてすぐに取り出すことができるようにしておく必要があるが、そうした管理は非常に面倒で煩雑である。 As described above, in a mass spectrometer equipped with a DART ion source or the like, measurement can be easily performed by simply holding the sample over the measurement position. There is.
(1) Selection of a sample to be measured, timing for setting the sample at a measurement position, etc. are left to the measurer, and measurement is very easy and flexible in that respect. On the other hand, the operator must record the sample name, detection time, etc. on paper, etc., and it is necessary to proceed with the work by referring to the record at the time of analysis. Losing the recorded information will greatly hinder the analysis work, so it is necessary to manage such information properly so that it can be quickly retrieved as needed. However, such management is very troublesome and cumbersome. .
(2)解析時には、各サンプルの検出時間において得られたマススペクトルから、ブランク測定の時間範囲において得られたマススペクトルを手動操作で減算する必要があり、たいへん面倒でミスも起こり易い。
(3)各サンプルのマススペクトルに基づく質量電荷比や信号強度などの差異も作業者が手動で計算し、その結果を判断する必要がある。そのため、作業に時間が掛かるのみならず、作業者の熟練や経験の差によって判断にばらつきが生じ易い。
(4)マススペクトル上に特定した化合物名などのコメント情報を書き込む際に、その情報を対応付けたいピークの信号強度が低かったりピーク間隔が狭かったりして、書き込みが難しいか否かを作業者が判断し、必要に応じてマススペクトルの拡大図を表示する操作を行う必要がある。そしした作業は面倒であり、作業者によってマススペクトル表示の態様にばらつきが生じ易い。
(5)マススペクトル上のピークの質量電荷比から化合物や構造式を特定する際に、場合によっては、アダクトイオンなど分子イオン以外のピークの判断が必要になるが、そうした判断は或る程度経験を積んだ作業者でないと行えず、経験の乏しい作業者はそうした特殊なイオンピークを見逃してしまうおそれがある。その結果、正確な解析結果が得られないおそれがある。 (2) At the time of analysis, it is necessary to manually subtract the mass spectrum obtained in the blank measurement time range from the mass spectrum obtained at the detection time of each sample, which is very cumbersome and prone to errors.
(3) It is necessary for the operator to manually calculate the difference between the mass-to-charge ratio and the signal intensity based on the mass spectrum of each sample and judge the result. For this reason, not only does the work take time, but the judgment tends to vary due to differences in the skill and experience of the operator.
(4) When writing comment information such as a specified compound name on the mass spectrum, the operator determines whether writing is difficult because the signal intensity of the peak to which the information is to be associated is low or the peak interval is narrow. Therefore, it is necessary to perform an operation for displaying an enlarged view of the mass spectrum as necessary. Such work is cumbersome, and variations in the manner of mass spectrum display are likely to occur among workers.
(5) When specifying a compound or structural formula from the mass-to-charge ratio of peaks on a mass spectrum, it may be necessary to determine peaks other than molecular ions such as adduct ions. This is not possible unless the worker is loaded with a worker, and an inexperienced worker may miss such a special ion peak. As a result, an accurate analysis result may not be obtained.
(3)各サンプルのマススペクトルに基づく質量電荷比や信号強度などの差異も作業者が手動で計算し、その結果を判断する必要がある。そのため、作業に時間が掛かるのみならず、作業者の熟練や経験の差によって判断にばらつきが生じ易い。
(4)マススペクトル上に特定した化合物名などのコメント情報を書き込む際に、その情報を対応付けたいピークの信号強度が低かったりピーク間隔が狭かったりして、書き込みが難しいか否かを作業者が判断し、必要に応じてマススペクトルの拡大図を表示する操作を行う必要がある。そしした作業は面倒であり、作業者によってマススペクトル表示の態様にばらつきが生じ易い。
(5)マススペクトル上のピークの質量電荷比から化合物や構造式を特定する際に、場合によっては、アダクトイオンなど分子イオン以外のピークの判断が必要になるが、そうした判断は或る程度経験を積んだ作業者でないと行えず、経験の乏しい作業者はそうした特殊なイオンピークを見逃してしまうおそれがある。その結果、正確な解析結果が得られないおそれがある。 (2) At the time of analysis, it is necessary to manually subtract the mass spectrum obtained in the blank measurement time range from the mass spectrum obtained at the detection time of each sample, which is very cumbersome and prone to errors.
(3) It is necessary for the operator to manually calculate the difference between the mass-to-charge ratio and the signal intensity based on the mass spectrum of each sample and judge the result. For this reason, not only does the work take time, but the judgment tends to vary due to differences in the skill and experience of the operator.
(4) When writing comment information such as a specified compound name on the mass spectrum, the operator determines whether writing is difficult because the signal intensity of the peak to which the information is to be associated is low or the peak interval is narrow. Therefore, it is necessary to perform an operation for displaying an enlarged view of the mass spectrum as necessary. Such work is cumbersome, and variations in the manner of mass spectrum display are likely to occur among workers.
(5) When specifying a compound or structural formula from the mass-to-charge ratio of peaks on a mass spectrum, it may be necessary to determine peaks other than molecular ions such as adduct ions. This is not possible unless the worker is loaded with a worker, and an inexperienced worker may miss such a special ion peak. As a result, an accurate analysis result may not be obtained.
本発明は上記のような課題に鑑みてなされたものであり、その主たる目的は、簡便で手軽な測定を可能としつつ、作業者の負担を軽減して、測定及び解析の効率向上、作業者の熟練や経験の度合いによる結果のばらつきの軽減などを図ることができる質量分析装置を提供することである。
The present invention has been made in view of the problems as described above, and its main purpose is to enable easy and easy measurement while reducing the burden on the operator, improving the efficiency of measurement and analysis, It is an object of the present invention to provide a mass spectrometer capable of reducing the variation in results depending on the level of skill and experience.
上記課題を解決するためになされた本発明は、大気圧雰囲気である所定の測定位置に配置された試料に対する測定をリアルタイムで実行する質量分析装置であって、
a)測定実行中に、ユーザによる、測定対象である試料を特定するためのサンプル情報を少なくとも含むコメント情報の入力を受け付けるコメント入力受付部と、
b)前記コメント入力受付部により受け付けたコメント情報を、その受け付けの時点で収集されている測定データが格納されるデータファイル中に格納する、又はそのデータファイルに対応付けられた別のファイル中に格納するデータ保存部と、
を備えることを特徴としている。 The present invention made to solve the above problems is a mass spectrometer that performs measurement in real time on a sample placed at a predetermined measurement position that is an atmospheric pressure atmosphere,
a) a comment input receiving unit that receives input of comment information including at least sample information for specifying a sample to be measured by a user during measurement execution;
b) The comment information received by the comment input receiving unit is stored in a data file in which measurement data collected at the time of the reception is stored, or in another file associated with the data file. A data storage unit to store;
It is characterized by having.
a)測定実行中に、ユーザによる、測定対象である試料を特定するためのサンプル情報を少なくとも含むコメント情報の入力を受け付けるコメント入力受付部と、
b)前記コメント入力受付部により受け付けたコメント情報を、その受け付けの時点で収集されている測定データが格納されるデータファイル中に格納する、又はそのデータファイルに対応付けられた別のファイル中に格納するデータ保存部と、
を備えることを特徴としている。 The present invention made to solve the above problems is a mass spectrometer that performs measurement in real time on a sample placed at a predetermined measurement position that is an atmospheric pressure atmosphere,
a) a comment input receiving unit that receives input of comment information including at least sample information for specifying a sample to be measured by a user during measurement execution;
b) The comment information received by the comment input receiving unit is stored in a data file in which measurement data collected at the time of the reception is stored, or in another file associated with the data file. A data storage unit to store;
It is characterized by having.
本発明に係る質量分析装置は、例えば上述した、DART法、DESI法、PESI法、ELDI法、ASAP法といった、アンビエントイオン化法と呼ばれる様々なイオン法を用いた質量分析装置とすることができる。
The mass spectrometer according to the present invention can be a mass spectrometer using various ion methods called ambient ionization methods such as the DART method, DESI method, PESI method, ELDI method, and ASAP method described above.
こうしたイオン化法によるイオン源を搭載した質量分析装置では、予め用意された複数の試料から作業者(ユーザ)が適宜試料を選択して所定の測定位置にセットすることで、該試料に対する測定を実行することができる。そこで、本発明に係る質量分析装置において、コメント入力受付部は例えば、測定の際に、作業者がコメント情報を入力するためのコメント入力欄が配置された画面をディスプレイモニタ等の表示部に表示し、該入力欄に入力された情報を受け付ける。
In a mass spectrometer equipped with such an ionization ion source, an operator (user) appropriately selects a sample from a plurality of samples prepared in advance and sets the sample at a predetermined measurement position to execute measurement on the sample. can do. Therefore, in the mass spectrometer according to the present invention, the comment input reception unit displays, for example, a screen on which a comment input field for an operator to input comment information is displayed on a display unit such as a display monitor during measurement. The information input in the input field is accepted.
作業者がキーボード操作等によりテキストを入力するようにしてもよいが、予め登録された複数の情報が列記されたリスト(例えばプルダウンメニュー)の中から作業者による選択によって入力するようにしてもよい。即ち、上記コメント入力受付部は、複数のサンプル情報が予め登録されたリストの中から作業者により選択されたサンプル情報をコメント情報の一つとして受け付ける構成としてもよい。また、そうしたリストの中から、適当な情報をドラッグ&ドロップなどの操作によって所定欄まで移動させることで入力するようにしてもよい。そうした入力の形式や方法は本発明では特に限定されない。
The operator may input text by keyboard operation or the like, but may input by selection by the operator from a list (for example, pull-down menu) in which a plurality of pre-registered information is listed. . That is, the comment input receiving unit may be configured to receive sample information selected by an operator from a list in which a plurality of sample information is registered in advance as one of the comment information. In addition, appropriate information may be input from such a list by moving it to a predetermined column by an operation such as drag and drop. The format and method of such input are not particularly limited in the present invention.
コメント入力受付部による受け付けが確定すると、データ保存部は、受け付けたコメント情報を、その受け付けの時点で収集されている測定データが格納されるデータファイル中に格納する。或いは、そのデータファイルに対応付けられた別のファイル中に格納する。ただし、データファイルや上記別のファイルへのコメント情報の格納は、測定実行中でも測定が終了したあとでも構わない。即ち、複数の試料の測定が順次行われる場合に、各試料に対するコメント情報が入力される毎にファイルへの格納を実行してもよいし、各試料に対して入力されたコメント情報を一時的に記憶しておき、全ての試料の測定が終了したあとに、記憶していたコメント情報をまとめてファイルに格納するようにしてもよい。
When acceptance by the comment input acceptance unit is confirmed, the data storage unit stores the accepted comment information in a data file in which measurement data collected at the time of acceptance is stored. Alternatively, it is stored in another file associated with the data file. However, the comment information may be stored in the data file or the other file even during the measurement execution or after the measurement is completed. That is, when a plurality of samples are measured in sequence, each time the comment information for each sample is input, it may be stored in a file, or the comment information input for each sample may be temporarily stored. It is also possible to store the comment information stored in a file after all the samples have been measured.
本発明に係る質量分析装置では、測定時に作業者が適宜選択した試料についてのサンプル情報を適切に入力しさえすれば、その試料に対する測定データとサンプル情報とが自動的に対応付けて保存される。そのため、その測定データに基づく解析の際に、作業者による確認や判断に依らず、サンプル情報を自動的に得ることができる。
In the mass spectrometer according to the present invention, as long as sample information on a sample appropriately selected by an operator at the time of measurement is appropriately input, measurement data and sample information for the sample are automatically associated and stored. . Therefore, sample information can be automatically obtained during the analysis based on the measurement data without depending on confirmation or judgment by the operator.
また本発明に係る質量分析装置において、上記コメント入力受付部は、サンプル名称などのサンプル情報のほかに、試料に対する測定の時間情報、例えば、一連の測定の開始時点を起点(時間ゼロ)としたときのその試料に対する測定が行われた期間の開始時間及び終了時間を、コメント情報の一つとして受け付ける構成とすることができる。
Further, in the mass spectrometer according to the present invention, the comment input receiving unit may start time (zero time) from the start time of a series of measurements in addition to sample information such as a sample name. The start time and end time of the period when the measurement for the sample is performed can be received as one of the comment information.
具体的に、本発明に係る質量分析装置は、測定データに基づいてクロマトグラムをリアルタイムで作成し表示画面上に描出する測定時クロマトグラム表示処理部をさらに備え、コメント入力受付部は、表示画面上に描出されたクロマトグラムにおいて作業者により指示された位置に対応した時間を上記時間情報として受け付ける構成とするとよい。
Specifically, the mass spectrometer according to the present invention further includes a measurement-time chromatogram display processing unit that creates a chromatogram based on measurement data in real time and renders it on a display screen, and the comment input reception unit includes a display screen. It is preferable that the time corresponding to the position indicated by the operator in the chromatogram drawn above is received as the time information.
この構成では例えば、表示されたクロマトグラムに現れるピークの開始点及び終了点を、作業者がポインティングデバイスによるクリック操作で指示する。すると、コメント入力受付部は、そのクリック操作された位置に対応する時間を認識し、それをそのピークに対応した試料の測定の時間情報として取得する。もちろん、作業者がピークの開始時間及び終了時間を読み取ってテキストで入力してもよいが、上記のようにクリック操作のみで時間を指定することにより操作が簡単になる。
In this configuration, for example, the operator instructs the start point and the end point of the peak appearing in the displayed chromatogram by a click operation with a pointing device. Then, the comment input receiving unit recognizes the time corresponding to the clicked position, and acquires it as the time information of the measurement of the sample corresponding to the peak. Of course, the operator may read the peak start time and end time and input them as text, but the operation is simplified by designating the time only by clicking as described above.
またサンプル情報は作業者による判断の下に入力されることが望ましいが、測定の時間情報は作業者が関与することなく自動的に収集されるようにしてもよい。
そのために、本発明に係る質量分析装置は、測定データに基づいてクロマトグラムをリアルタイムで作成する測定時クロマトグラム作成部と、該クロマトグラムにおいてピークを検出するピーク検出部と、をさらに備え、
上記データ保存部は、ピーク検出部による検出結果から求まる時間情報を試料に対する測定の時間情報として、上記コメント入力受付部により受け付けたコメント情報とともにデータファイル中に又はそのデータファイルに対応付けられた別のファイル中に格納する構成としてもよい。 The sample information is preferably input based on the judgment of the operator, but the measurement time information may be automatically collected without involving the operator.
Therefore, the mass spectrometer according to the present invention further includes a measurement time chromatogram creation unit that creates a chromatogram in real time based on measurement data, and a peak detection unit that detects a peak in the chromatogram,
The data storage unit uses the time information obtained from the detection result by the peak detection unit as measurement time information for the sample, along with the comment information received by the comment input reception unit, in the data file or another data file associated with the data file. The file may be stored in the file.
そのために、本発明に係る質量分析装置は、測定データに基づいてクロマトグラムをリアルタイムで作成する測定時クロマトグラム作成部と、該クロマトグラムにおいてピークを検出するピーク検出部と、をさらに備え、
上記データ保存部は、ピーク検出部による検出結果から求まる時間情報を試料に対する測定の時間情報として、上記コメント入力受付部により受け付けたコメント情報とともにデータファイル中に又はそのデータファイルに対応付けられた別のファイル中に格納する構成としてもよい。 The sample information is preferably input based on the judgment of the operator, but the measurement time information may be automatically collected without involving the operator.
Therefore, the mass spectrometer according to the present invention further includes a measurement time chromatogram creation unit that creates a chromatogram in real time based on measurement data, and a peak detection unit that detects a peak in the chromatogram,
The data storage unit uses the time information obtained from the detection result by the peak detection unit as measurement time information for the sample, along with the comment information received by the comment input reception unit, in the data file or another data file associated with the data file. The file may be stored in the file.
ここで、ピーク検出部におけるピーク検出の方法は既知の各種手法、つまり、クロマトグラムのカーブの傾き、ピーク高さ、或いはピーク幅などを用いた方法でよい。この構成によれば、作業者自身は測定の時間情報を入力する必要はないので、作業者の作業負担が軽減されるとともに、誤った時間が入力されることも防止することができる。なお、外乱等によるノイズピークを誤って試料由来のピークであると誤認識することを回避するために、例えば一つのピークを検出したあとに所定時間の間はピークを検出しないようピーク非検出期間を設けたり、逆にピークを検出するためのピーク検出窓を設けたりしてもよい。
Here, the peak detection method in the peak detection unit may be a known various method, that is, a method using a gradient of a chromatogram curve, a peak height, a peak width, or the like. According to this configuration, since the operator does not need to input the measurement time information, the work load on the operator can be reduced, and an erroneous time can be prevented from being input. In order to avoid erroneously recognizing a noise peak due to disturbance or the like as a peak derived from a sample, for example, a peak non-detection period so that a peak is not detected for a predetermined time after detecting one peak. Alternatively, a peak detection window for detecting a peak may be provided.
また本発明に係る質量分析装置において、コメント入力受付部により受け付けられたコメント情報、特にサンプル情報は、測定により得られたデータに基づいて作成され表示画面上に表示されるクロマトグラム又はマススペクトル上の適宜の位置に表示されるようにするとよい。
In the mass spectrometer according to the present invention, the comment information received by the comment input receiving unit, particularly the sample information, is created on the basis of the data obtained by the measurement and displayed on the display screen on the chromatogram or mass spectrum. It is advisable to display at an appropriate position.
例えば、上述したように測定データに基づいてクロマトグラムがリアルタイムで作成及び表示されるとき、そのクロマトグラムに現れるピークの近傍にそのピークに対応するサンプル情報が表示されるようにするとよい。このとき、サンプル情報等のコメント情報が表示される位置は所定のアルゴリズムに従って自動的に決定されるようにしてもよいし、或いは、表示位置を作業者が指定できるようにしてもよい。例えばコメント情報を入力する際に、クロマトグラム又はマススペクトル上でそのコメント情報が表示される位置を併せて作業者が指定できるようにするとよい。
For example, as described above, when a chromatogram is created and displayed in real time based on measurement data, sample information corresponding to the peak may be displayed in the vicinity of the peak appearing in the chromatogram. At this time, the position where the comment information such as the sample information is displayed may be automatically determined according to a predetermined algorithm, or the display position may be designated by the operator. For example, when inputting comment information, the operator may be allowed to specify the position where the comment information is displayed on the chromatogram or mass spectrum.
また本発明に係る質量分析装置における、好ましい第1の態様は、
前記コメント入力受付部により受け付けられたコメント情報に基づいて特定した、試料がある状態の測定で得られたマススペクトルから、試料がない状態のブランク測定で得られたマススペクトルを差し引くスペクトル減算部と、
該スペクトル減算部により減算処理されたマススペクトルを表示するマススペクトル表示処理部と、
をさらに備えることを特徴としている。 In the mass spectrometer according to the present invention, a preferred first aspect is
A spectrum subtracting unit that subtracts a mass spectrum obtained by blank measurement without a sample from a mass spectrum obtained by measurement in a state where the sample is present, identified based on the comment information received by the comment input acceptance unit; ,
A mass spectrum display processing unit for displaying the mass spectrum subtracted by the spectrum subtraction unit;
Is further provided.
前記コメント入力受付部により受け付けられたコメント情報に基づいて特定した、試料がある状態の測定で得られたマススペクトルから、試料がない状態のブランク測定で得られたマススペクトルを差し引くスペクトル減算部と、
該スペクトル減算部により減算処理されたマススペクトルを表示するマススペクトル表示処理部と、
をさらに備えることを特徴としている。 In the mass spectrometer according to the present invention, a preferred first aspect is
A spectrum subtracting unit that subtracts a mass spectrum obtained by blank measurement without a sample from a mass spectrum obtained by measurement in a state where the sample is present, identified based on the comment information received by the comment input acceptance unit; ,
A mass spectrum display processing unit for displaying the mass spectrum subtracted by the spectrum subtraction unit;
Is further provided.
この第1の態様において、スペクトル減算部は、例えばコメント情報の一つであるサンプル情報により試料がない状態(ブランク状態)であるか試料がある状態であるかを判断し、測定の時間情報によりそれぞれの状態の測定結果が得られている時間範囲を判断する。そして、それぞれの時間範囲において得られている二つのマススペクトルについて各質量電荷比の信号強度値の減算を行うことで、減算処理されたマススペクトルを取得する。試料がない状態で得られたマススペクトルはノイズなどによるバックグラウンドであるとみなせるから、この減算処理はバックグラウンドを除去する処理に相当する。これにより、作業者が対象のマススペクトルを判断したり減算操作を行ったりすることなく、自動的に各試料についてバックグラウンドが除去されたマススペクトルを得ることができる。
In this first aspect, the spectrum subtraction unit determines whether there is no sample (blank state) or a sample based on, for example, sample information which is one of the comment information, and uses the measurement time information. The time range in which the measurement result of each state is obtained is determined. Then, the subtracted mass spectrum is obtained by subtracting the signal intensity value of each mass-to-charge ratio for the two mass spectra obtained in the respective time ranges. Since the mass spectrum obtained in the absence of the sample can be regarded as background due to noise or the like, this subtraction processing corresponds to processing for removing the background. As a result, the mass spectrum from which the background has been removed can be automatically obtained for each sample without the operator determining the target mass spectrum or performing a subtraction operation.
この第1の態様において、上記マススペクトル表示処理部は、減算処理されたマススペクトル上に、前記コメント入力受付部により受け付けられたコメント情報の少なくとも一部を表示するようにしてもよい。
In the first aspect, the mass spectrum display processing unit may display at least a part of the comment information received by the comment input receiving unit on the subtracted mass spectrum.
また本発明に係る質量分析装置における好ましい第2の態様は、上記第1の態様において、
異なる2以上の試料に対してそれぞれ得られた、減算処理されたマスマススペクトルの間での差異の情報を抽出する差異情報抽出部と、
上記差異情報抽出部により抽出された差異情報を表示する差異情報表示部と、
をさらに備えることを特徴としている。 Moreover, the preferable 2nd aspect in the mass spectrometer which concerns on this invention is a said 1st aspect,
A difference information extraction unit for extracting information on the difference between the subtracted mass-mass spectra respectively obtained for two or more different samples;
A difference information display unit for displaying the difference information extracted by the difference information extraction unit;
Is further provided.
異なる2以上の試料に対してそれぞれ得られた、減算処理されたマスマススペクトルの間での差異の情報を抽出する差異情報抽出部と、
上記差異情報抽出部により抽出された差異情報を表示する差異情報表示部と、
をさらに備えることを特徴としている。 Moreover, the preferable 2nd aspect in the mass spectrometer which concerns on this invention is a said 1st aspect,
A difference information extraction unit for extracting information on the difference between the subtracted mass-mass spectra respectively obtained for two or more different samples;
A difference information display unit for displaying the difference information extracted by the difference information extraction unit;
Is further provided.
ここでいう差異情報とは、同一質量電荷比におけるピークの信号強度の差異、最大の信号強度を示すピークの質量電荷比の差異、などである。二つのマススペクトルについて差異情報としてどのような情報を抽出するのか、どのような条件のときに差異があるとみなすのかなどを、予め設定しておくようにしてもよい。また、差異情報の表示は、例えば、マススペクトル上で差異に関連したピーク又はその一部、例えば信号強度の相違するピーク部分のみ、を識別が可能であるような表示とすればよい。具体的には、差異に関連するピークやピークの一部を他のピークやピーク部分と異なる表示色としたり、差異に関連するピークに特定のマークを付したりすることが考えられる。また、差異に関連したピークではなく、そのピークに対応する質量電荷比の表示色を変えたりマークを付したりしてもよい。
The difference information here is a difference in peak signal intensity at the same mass-to-charge ratio, a difference in peak mass-to-charge ratio indicating the maximum signal intensity, and the like. What information is extracted as the difference information for the two mass spectra, what conditions are considered to be different may be set in advance. Further, the display of the difference information may be a display that can identify, for example, only a peak related to the difference on the mass spectrum or a part thereof, for example, only a peak part having a different signal intensity. Specifically, it is conceivable that a peak or a part of a peak related to a difference is displayed in a different display color from other peaks or peak parts, or a specific mark is attached to a peak related to a difference. Further, instead of the peak related to the difference, the display color of the mass-to-charge ratio corresponding to the peak may be changed or a mark may be attached.
この第2の態様によれば、作業者が二つのマススペクトル上のピークの質量電荷比や信号強度を比較したり、その差異量を計算したり、差異が有意であるか否かを判断したりする必要がなくなる。また、差異があると判定されたピークを作業者が容易に把握することができる。
According to the second aspect, the operator compares the mass-to-charge ratios and signal intensities of the peaks on the two mass spectra, calculates the difference amount, and determines whether the difference is significant. There is no need to In addition, the operator can easily grasp the peak determined to have a difference.
さらにまた本発明に係る質量分析装置における好ましい第3の態様は、上記第1の態様において、
化合物の種類と質量電荷比情報とを対応付けた化合物情報を記憶しておく化合物情報記憶部と、
マススペクトル上のピークの質量電荷比を前記化合物情報記憶部に記憶されている化合物情報と照合することにより化合物及び/又は化学構造式を特定する化合物特定部と、
前記化合物特定部で特定された化合物及び/又は化学構造式を示す情報をクロマトグラム上のピーク及び/又はマススペクトルに対応付けて表示する化合物情報表示部と、
をさらに備えることを特徴としている。 Furthermore, a preferable third aspect of the mass spectrometer according to the present invention is the above first aspect.
A compound information storage unit for storing compound information in which the type of compound and mass-to-charge ratio information are associated;
A compound specifying unit for specifying a compound and / or chemical structural formula by comparing the mass-to-charge ratio of the peak on the mass spectrum with the compound information stored in the compound information storage unit;
A compound information display unit for displaying information indicating the compound and / or chemical structural formula specified by the compound specifying unit in association with a peak and / or mass spectrum on a chromatogram;
Is further provided.
化合物の種類と質量電荷比情報とを対応付けた化合物情報を記憶しておく化合物情報記憶部と、
マススペクトル上のピークの質量電荷比を前記化合物情報記憶部に記憶されている化合物情報と照合することにより化合物及び/又は化学構造式を特定する化合物特定部と、
前記化合物特定部で特定された化合物及び/又は化学構造式を示す情報をクロマトグラム上のピーク及び/又はマススペクトルに対応付けて表示する化合物情報表示部と、
をさらに備えることを特徴としている。 Furthermore, a preferable third aspect of the mass spectrometer according to the present invention is the above first aspect.
A compound information storage unit for storing compound information in which the type of compound and mass-to-charge ratio information are associated;
A compound specifying unit for specifying a compound and / or chemical structural formula by comparing the mass-to-charge ratio of the peak on the mass spectrum with the compound information stored in the compound information storage unit;
A compound information display unit for displaying information indicating the compound and / or chemical structural formula specified by the compound specifying unit in association with a peak and / or mass spectrum on a chromatogram;
Is further provided.
上記化合物情報は一般に入手可能である様々な化合物データベースから得ることができる。また、実際に様々な化合物を測定した結果に基づいて作業者自身が作成したデータベースを用いることもできる。また、化合物情報に登録される質量電荷比情報は一般的には分子イオンの質量電荷比情報であるが、特定の物質が付加したアダクトイオンや特定の部分が脱離したイオンが生成され易い化合物に対しては、分子イオン以外の様々な分子関連イオンの質量電荷比情報を登録しておくとよい。
The above compound information can be obtained from various compound databases that are generally available. In addition, a database created by the operator himself based on the results of actually measuring various compounds can also be used. In addition, the mass-to-charge ratio information registered in the compound information is generally the mass-to-charge ratio information of molecular ions, but compounds that easily generate adduct ions added by specific substances or ions desorbed from specific parts. For this, it is preferable to register mass-to-charge ratio information of various molecular-related ions other than molecular ions.
この第3の態様によれば、試料に含まれる化合物やその化学構造式を特定するための煩雑な作業も、作業者自身が行うことなく、自動的に的確な化合物情報を取得することができる。なお、化合物や化学構造式が一つに特定できない場合には、複数の候補を抽出し、それら候補をリストに挙げて作業者が最終的な判断を下せるようにしてもよい。
According to the third aspect, accurate compound information can be automatically acquired without the operator himself / herself performing complicated work for specifying the compound contained in the sample and its chemical structural formula. . When a single compound or chemical structural formula cannot be specified, a plurality of candidates may be extracted, and the operator may make a final decision by listing these candidates.
本発明に係る質量分析装置によれば、測定データが格納されるデータファイル又は該データファイルに対応付けられたファイル中に、サンプル情報を含むコメント情報が格納されるので、コメント情報等の管理が容易になり、トレーサビリティも確実になる。また、測定により収集されたデータを解析する際に、サンプル名や各サンプルの測定の時間などの解析上重要な情報がすぐに取り出せるので、解析を自動的に行う場合でも作業者が手動で行う場合であっても、解析の効率向上を図ることができる。
According to the mass spectrometer of the present invention, the comment information including the sample information is stored in the data file in which the measurement data is stored or the file associated with the data file. It becomes easy and traceability is ensured. In addition, when analyzing data collected by measurement, important information for analysis such as sample name and measurement time of each sample can be extracted immediately, so even if the analysis is performed automatically, the operator will do it manually Even in this case, the efficiency of analysis can be improved.
また本発明に係る質量分析装置の第1の態様によれば、作業者が手作業で各サンプルのマススペクトルから、ブランク測定のマススペクトルを減算する手間が不要になり、解析作業が効率的に行えるとともに作業ミスも軽減できる。
Further, according to the first aspect of the mass spectrometer according to the present invention, the labor of manually subtracting the mass spectrum of the blank measurement from the mass spectrum of each sample becomes unnecessary, and the analysis work is efficiently performed. This can be done and work errors can be reduced.
また本発明に係る質量分析装置の第2の態様によれば、作業者が手作業で二つのマススペクトル上のピークの質量電荷比や信号強度を比較したり、その差異量を計算したり、差異が有意であるか否かを判断したりする必要がなくなる。それにより、解析作業が効率的に行えるとともに、作業者の熟練や経験の差による結果のばらつきが生じず、正確な差異分析を行うことができる。
Further, according to the second aspect of the mass spectrometer according to the present invention, the operator can manually compare the mass-to-charge ratio and signal intensity of the peaks on the two mass spectra, calculate the difference amount, There is no need to determine whether or not the difference is significant. Thereby, the analysis work can be performed efficiently, and variations in results due to differences in the skill and experience of the worker do not occur, and an accurate difference analysis can be performed.
また本発明に係る質量分析装置の第3の態様によれば、化合物や化学構造式の特定も作業者が行う必要がなくなり、解析作業の一層の効率向上が図れる。また、作業者の技量や経験に頼ることなく、正確に化合物や化学構造式を特定することができる。
Further, according to the third aspect of the mass spectrometer of the present invention, it is not necessary for the operator to specify the compound or chemical structural formula, and the efficiency of the analysis work can be further improved. In addition, it is possible to accurately specify a compound or chemical structural formula without depending on the skill and experience of the operator.
[第1実施例]
本発明に係る第1実施例であるDART質量分析装置について、添付図面を参照して説明する。
図1は第1実施例のDART質量分析装置の要部の構成図である。
本実施例の質量分析装置は、大気に開放されたイオン化領域20と図示しない高性能の真空ポンプにより真空排気される高真空雰囲気である分析室23との間に、段階的に真空度が高められた第1中間真空室21及び第2中間真空室22を備えた多段差動排気系の構成を有する。イオン化領域20と第1中間真空室21とは細径のイオン導入管26を通して連通している。イオン化領域20には、イオン導入管26の入口開口26aに対向してDARTイオン化ユニット10が配置され、測定実行時には、その入口開口26aとDARTイオン化ユニット10との間に、分析対象である試料25が挿入される。 [First embodiment]
A DART mass spectrometer according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of a main part of the DART mass spectrometer of the first embodiment.
In the mass spectrometer of the present embodiment, the degree of vacuum increases stepwise between theionization region 20 opened to the atmosphere and the analysis chamber 23 which is a high vacuum atmosphere evacuated by a high performance vacuum pump (not shown). The multistage differential exhaust system having the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 is provided. The ionization region 20 and the first intermediate vacuum chamber 21 communicate with each other through a small diameter ion introduction tube 26. The DART ionization unit 10 is disposed in the ionization region 20 so as to face the inlet opening 26a of the ion introduction tube 26, and the sample 25 to be analyzed is placed between the inlet opening 26a and the DART ionization unit 10 when the measurement is performed. Is inserted.
本発明に係る第1実施例であるDART質量分析装置について、添付図面を参照して説明する。
図1は第1実施例のDART質量分析装置の要部の構成図である。
本実施例の質量分析装置は、大気に開放されたイオン化領域20と図示しない高性能の真空ポンプにより真空排気される高真空雰囲気である分析室23との間に、段階的に真空度が高められた第1中間真空室21及び第2中間真空室22を備えた多段差動排気系の構成を有する。イオン化領域20と第1中間真空室21とは細径のイオン導入管26を通して連通している。イオン化領域20には、イオン導入管26の入口開口26aに対向してDARTイオン化ユニット10が配置され、測定実行時には、その入口開口26aとDARTイオン化ユニット10との間に、分析対象である試料25が挿入される。 [First embodiment]
A DART mass spectrometer according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of a main part of the DART mass spectrometer of the first embodiment.
In the mass spectrometer of the present embodiment, the degree of vacuum increases stepwise between the
DARTイオン化ユニット10は、放電室11、反応室12、加熱室13の3室を有する。初段の放電室11にはヘリウムなどの不活性ガスを導入するためのガス導入管14が接続され、また放電室11内部には針電極15が配設されている。最終段の加熱室13には図示しないヒータが付設されており、また該加熱室13の出口であるノズル18にはグリッド電極19が設けられている。
The DART ionization unit 10 has three chambers: a discharge chamber 11, a reaction chamber 12, and a heating chamber 13. A gas introduction tube 14 for introducing an inert gas such as helium is connected to the first-stage discharge chamber 11, and a needle electrode 15 is disposed inside the discharge chamber 11. A heater (not shown) is attached to the heating chamber 13 at the final stage, and a grid electrode 19 is provided to the nozzle 18 that is an outlet of the heating chamber 13.
第1中間真空室21と第2中間真空室22との間は頂部に小孔(オリフィス)を有するスキマー28で隔てられ、第1中間真空室21と第2中間真空室22とにはそれぞれ、イオンを収束させつつ後段へ輸送するためのイオンガイド27、29が設置されている。この例では、イオンガイド27は、イオン光軸Cに沿って配列された複数の電極板を1本の仮想的なロッド電極とし、イオン光軸Cの周囲に複数本(例えば4本)の仮想的ロッド電極を配置した構成である。また、イオンガイド29は、イオン光軸Cに沿う方向に延伸するロッド電極をイオン光軸Cの周囲に複数本(例えば8本)配置した構成である。ただし、イオンガイド27、29の構成はこれに限らず適宜変更することができる。分析室23内部には、イオンを質量電荷比m/zに応じて分離する四重極マスフィルタ30と該四重極マスフィルタ30を通り抜けたイオンを検出するイオン検出器31が設置されている。このイオン検出器31による検出信号はアナログデジタル変換器(ADC)32でデジタル化されたあとに制御・処理部40へ送られる。
The first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 28 having a small hole (orifice) at the top, and each of the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 includes Ion guides 27 and 29 are provided for transporting ions to the subsequent stage while converging ions. In this example, the ion guide 27 uses a plurality of electrode plates arranged along the ion optical axis C as one virtual rod electrode, and a plurality of (for example, four) virtual plates around the ion optical axis C. It is the structure which has arrange | positioned the target rod electrode. The ion guide 29 has a configuration in which a plurality (for example, eight) of rod electrodes extending in the direction along the ion optical axis C are arranged around the ion optical axis C. However, the configuration of the ion guides 27 and 29 is not limited to this, and can be changed as appropriate. Inside the analysis chamber 23, a quadrupole mass filter 30 that separates ions according to the mass-to-charge ratio m / z and an ion detector 31 that detects ions that have passed through the quadrupole mass filter 30 are installed. . The detection signal from the ion detector 31 is digitized by an analog-digital converter (ADC) 32 and then sent to the control / processing unit 40.
分析制御部33は制御・処理部40からの指示を受けて、測定を実行する際に、DARTイオン化ユニット10以外の質量分析装置の各部の動作を制御する。またDART駆動制御部34は、測定を実行する際に、DARTイオン化ユニット10の動作を制御する。制御・処理部40は装置全体の統括的な制御及びデータ処理を実行するものであり、本実施例に特徴的な機能ブロックとして、リアルタイムクロマトグラム作成部41、コメント入力受付部42、データファイル作成部43、データ記憶部44、クロマトグラム作成部46、マススペクトル作成部47、スペクトル減算部48、スペクトルピーク特定部49、既知成分情報記憶部50、差異解析部51、差異情報表示処理部52、などを含む。この制御・処理部40には、ユーザ(分析担当の作業者)により操作される入力部60及びディスプレイモニタである表示部61が接続されている。なお、一般に、制御・処理部40は、パーソナルコンピュータをハードウエア資源とし、該コンピュータに予めインストールされた専用の制御・処理ソフトウエアを実行することにより、それぞれの機能を達成する構成である。また、DARTイオン化ユニット10の動作は質量分析装置と連動している必要はないので、DART駆動制御部34は制御・処理部40とは異なる独立した制御系により制御される構成とすることもできる。
The analysis control unit 33 receives the instruction from the control / processing unit 40 and controls the operation of each unit of the mass spectrometer other than the DART ionization unit 10 when performing the measurement. Further, the DART drive control unit 34 controls the operation of the DART ionization unit 10 when performing the measurement. The control / processing unit 40 performs overall control and data processing of the entire apparatus. As functional blocks characteristic of the present embodiment, a real-time chromatogram creation unit 41, a comment input reception unit 42, a data file creation Unit 43, data storage unit 44, chromatogram creation unit 46, mass spectrum creation unit 47, spectrum subtraction unit 48, spectrum peak identification unit 49, known component information storage unit 50, difference analysis unit 51, difference information display processing unit 52, Etc. Connected to the control / processing unit 40 are an input unit 60 operated by a user (a worker in charge of analysis) and a display unit 61 which is a display monitor. In general, the control / processing unit 40 is configured to achieve each function by using a personal computer as a hardware resource and executing dedicated control / processing software installed in advance in the computer. Further, since the operation of the DART ionization unit 10 does not need to be linked to the mass spectrometer, the DART drive control unit 34 can be configured to be controlled by an independent control system different from the control / processing unit 40. .
本実施例のDART質量分析装置における、試料に対する質量分析動作を概略的に説明する。
DARTイオン源10においては、ガス導入管14を通して放電室11内にヘリウムが供給され、ヘリウムが放電室11内に充満した状態で針電極15に高電圧が印加されると、針電極15と接地電位である隔壁16との間で放電が生じる。この放電によって、基底一重項分子ヘリウムガス(11S)は、ヘリウムイオン、電子、及び励起された励起三重項分子ヘリウム(23S)の混合物に変化する。この混合物は次の反応室12に入るが、反応室12の隔壁16、17にそれぞれ印加されている電圧により生成される電場の作用により、電荷を有するヘリウムイオンと電子とは反応室12で遮断され、電気的に中性である励起三重項分子ヘリウムのみが加熱室13へと送り込まれる。 A mass analysis operation on a sample in the DART mass spectrometer of the present embodiment will be schematically described.
In theDART ion source 10, when helium is supplied into the discharge chamber 11 through the gas introduction tube 14 and a high voltage is applied to the needle electrode 15 with the helium filled in the discharge chamber 11, the needle electrode 15 is grounded. Discharge occurs between the partition walls 16 that are at a potential. This discharge changes the ground singlet molecular helium gas (1 1 S) into a mixture of helium ions, electrons, and excited excited triplet molecular helium (2 3 S). This mixture enters the next reaction chamber 12, but the charged helium ions and electrons are blocked in the reaction chamber 12 by the action of the electric field generated by the voltage applied to the partition walls 16 and 17 of the reaction chamber 12. Only excited triplet molecular helium that is electrically neutral is fed into the heating chamber 13.
DARTイオン源10においては、ガス導入管14を通して放電室11内にヘリウムが供給され、ヘリウムが放電室11内に充満した状態で針電極15に高電圧が印加されると、針電極15と接地電位である隔壁16との間で放電が生じる。この放電によって、基底一重項分子ヘリウムガス(11S)は、ヘリウムイオン、電子、及び励起された励起三重項分子ヘリウム(23S)の混合物に変化する。この混合物は次の反応室12に入るが、反応室12の隔壁16、17にそれぞれ印加されている電圧により生成される電場の作用により、電荷を有するヘリウムイオンと電子とは反応室12で遮断され、電気的に中性である励起三重項分子ヘリウムのみが加熱室13へと送り込まれる。 A mass analysis operation on a sample in the DART mass spectrometer of the present embodiment will be schematically described.
In the
加熱室13において高温に加熱された励起三重項分子ヘリウムが、グリッド電極19を通してノズル18からイオン化領域20へ噴出する。加熱された励起三重項分子ヘリウムはイオン化領域20に存在する大気中の水分子をペニングイオン化する。これにより生成された水分子イオンは励起状態にある。また励起三重項分子ヘリウムを含むガスは高温であるため、このガスがノズル18の前方に置かれた試料25に吹き掛けられると、該試料25中の成分分子は気化する。気化により発生した成分分子に励起状態の水分子イオンが作用すると、反応を生じて該成分分子をイオン化する。このようにしてDARTイオン化ユニット10では、固体状や液体状の試料をそのまま、つまり、その場に置いた状態でイオン化することができる。
The excited triplet molecular helium heated to a high temperature in the heating chamber 13 is ejected from the nozzle 18 to the ionization region 20 through the grid electrode 19. The heated excited triplet molecular helium penning ionizes water molecules in the atmosphere present in the ionization region 20. The water molecule ions thus generated are in an excited state. Since the gas containing excited triplet molecular helium is high temperature, when this gas is blown onto the sample 25 placed in front of the nozzle 18, the component molecules in the sample 25 are vaporized. When water molecule ions in an excited state act on component molecules generated by vaporization, a reaction occurs to ionize the component molecules. In this manner, the DART ionization unit 10 can ionize a solid or liquid sample as it is, that is, in a state of being placed on the spot.
生成されたイオンは、イオン領域20と第1中間真空室21との圧力差によってイオン導入管26に吸い込まれ、第1中間真空室21へと送られる。そして、イオンはイオンガイド27で収束されてスキマー28頂部のオリフィスを経て第2中間真空室22へと送られ、さらにイオンガイド29で収束され分析室23へ送られる。四重極マスフィルタ30を構成する4本のロッド電極には所定の電圧が印加され、その電圧に対応した質量電荷比を有するイオンのみが四重極マスフィルタ30を通り抜けてイオン検出器31に入射する。イオン検出器31は入射したイオンの量に応じた検出信号を出力する。したがって、例えば、四重極マスフィルタ30を構成する4本のロッド電極に印加する電圧を所定範囲で走査すると、四重極マスフィルタ30を通過し得るイオンの質量電荷比が所定の質量電荷比範囲で走査される。制御・処理部40では、このときに順次得られる検出信号に基づき、所定の質量電荷比範囲に亘るイオンの信号強度を示すマススペクトルを得ることができる。
The generated ions are sucked into the ion introduction tube 26 by the pressure difference between the ion region 20 and the first intermediate vacuum chamber 21 and sent to the first intermediate vacuum chamber 21. The ions are converged by the ion guide 27, sent to the second intermediate vacuum chamber 22 through the orifice at the top of the skimmer 28, and further converged by the ion guide 29 and sent to the analysis chamber 23. A predetermined voltage is applied to the four rod electrodes constituting the quadrupole mass filter 30, and only ions having a mass-to-charge ratio corresponding to the voltage pass through the quadrupole mass filter 30 to the ion detector 31. Incident. The ion detector 31 outputs a detection signal corresponding to the amount of incident ions. Therefore, for example, when the voltage applied to the four rod electrodes constituting the quadrupole mass filter 30 is scanned within a predetermined range, the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 30 is a predetermined mass-to-charge ratio. Scanned in range. The control / processing unit 40 can obtain a mass spectrum indicating the signal intensity of ions over a predetermined mass-to-charge ratio range based on the detection signals sequentially obtained at this time.
上述したように、このDART質量分析装置の特徴の一つは、DARTイオン化ユニット10のノズル18から噴出するガス流に試料25をかざすだけで、該試料25に対する質量分析を実行し、その結果を得られることである。
As described above, one of the features of this DART mass spectrometer is that the sample 25 is subjected to mass analysis only by passing the sample 25 over the gas flow ejected from the nozzle 18 of the DART ionization unit 10 and the result is obtained. It is to be obtained.
次に、本実施例のDART質量分析装置により、試料25として3個のサンプルの測定を行う際の、作業者の操作及び本装置の動作の一例を説明する。図2はこのときの測定の手順及び動作を示すフローチャートである。
作業者が入力部60で所定の操作を行うと、制御・処理部40の指示を受けた分析制御部33の制御の下に、所定の質量電荷比範囲に亘るスキャン測定が開始される。作業者は測定開始から数分程度(この例では約3分間)、サンプルを測定位置に挿入せずに待機する。それにより、試料25が測定位置にない状態の測定、つまりブランク測定を行う。 Next, an example of the operation of the operator and the operation of the apparatus when measuring three samples as thesample 25 by the DART mass spectrometer of the present embodiment will be described. FIG. 2 is a flowchart showing the measurement procedure and operation at this time.
When the operator performs a predetermined operation with theinput unit 60, scan measurement over a predetermined mass-to-charge ratio range is started under the control of the analysis control unit 33 in response to an instruction from the control / processing unit 40. The operator waits for a few minutes (about 3 minutes in this example) from the start of measurement without inserting the sample into the measurement position. Thereby, measurement in a state where the sample 25 is not at the measurement position, that is, blank measurement is performed.
作業者が入力部60で所定の操作を行うと、制御・処理部40の指示を受けた分析制御部33の制御の下に、所定の質量電荷比範囲に亘るスキャン測定が開始される。作業者は測定開始から数分程度(この例では約3分間)、サンプルを測定位置に挿入せずに待機する。それにより、試料25が測定位置にない状態の測定、つまりブランク測定を行う。 Next, an example of the operation of the operator and the operation of the apparatus when measuring three samples as the
When the operator performs a predetermined operation with the
図4は測定実行中に表示部61の画面上に表示される測定中画面100の一例を示す概略図である。測定中画面100には、クロマトグラム表示欄101とコメント情報入力テーブル102とが配置されている。
測定が開始されると、制御・処理部40においてリアルタイムクロマトグラム作成部41はアナログデジタル変換器32でデジタル化された検出データを受け取り、トータルイオンクロマトグラム(なお、以下の説明では、トータルイオンクロマトグラムを単に「クロマトグラム」ということがある)を作成しクロマトグラム表示欄101に表示する。スキャン測定が実施され新たなデータが得られる毎に、クロマトグラム表示欄101に表示されるクロマトグラムのカーブは更新される。図5中に示すように、ブランク測定の実行中には、ノイズなどのバックグラウンドを示すカーブが現れる。 FIG. 4 is a schematic diagram illustrating an example of the in-measurement screen 100 displayed on the screen of the display unit 61 during measurement execution. In the measuring screen 100, a chromatogram display column 101 and a comment information input table 102 are arranged.
When the measurement is started, the real-timechromatogram creation unit 41 in the control / processing unit 40 receives the detection data digitized by the analog-to-digital converter 32, and the total ion chromatogram (in the following description, the total ion chromatogram is described). The gram is sometimes simply referred to as “chromatogram”) and displayed in the chromatogram display column 101. Each time scan measurement is performed and new data is obtained, the curve of the chromatogram displayed in the chromatogram display column 101 is updated. As shown in FIG. 5, during the blank measurement, a curve indicating background such as noise appears.
測定が開始されると、制御・処理部40においてリアルタイムクロマトグラム作成部41はアナログデジタル変換器32でデジタル化された検出データを受け取り、トータルイオンクロマトグラム(なお、以下の説明では、トータルイオンクロマトグラムを単に「クロマトグラム」ということがある)を作成しクロマトグラム表示欄101に表示する。スキャン測定が実施され新たなデータが得られる毎に、クロマトグラム表示欄101に表示されるクロマトグラムのカーブは更新される。図5中に示すように、ブランク測定の実行中には、ノイズなどのバックグラウンドを示すカーブが現れる。 FIG. 4 is a schematic diagram illustrating an example of the in-
When the measurement is started, the real-time
作業者は、クロマトグラムとともに表示されているコメント情報入力テーブル102に、測定しているサンプル名とそのサンプルに対する測定の開始時間及び終了時間とを入力する(ステップS2)。図4に示すように、コメント情報入力テーブル102には、サンプル名入力欄102a、測定開始時間入力欄102b、測定終了時間入力欄102cが設けられているので、作業者は入力部60であるポインティングデバイス等により入力したい欄を選択し、キーボードから適宜のテキストを入力することで、それぞれの欄に所望の情報を入力すればよい。なお、ブランク測定の際には、サンプル名入力欄には「ブランク」と入力すればよい。
The operator inputs the name of the sample being measured and the measurement start time and end time for the sample in the comment information input table 102 displayed together with the chromatogram (step S2). As shown in FIG. 4, the comment information input table 102 is provided with a sample name input field 102a, a measurement start time input field 102b, and a measurement end time input field 102c. By selecting a field to be input by a device or the like and inputting an appropriate text from the keyboard, desired information may be input in each field. In the case of blank measurement, “blank” may be entered in the sample name input field.
測定開始時点から所定の時間が経過したならば、作業者は1番目のサンプル(サンプル1)を測定位置に挿入することで、該サンプルに対する測定を実行する(ステップS3)。すると、このサンプルから発生するイオンがイオン導入管26を通して第1中間真空室21へ導入され始めるので、クロマトグラム表示欄101に略リアルタイムで表示されるクロマトグラムには、図4に示すようにピークが現れ始める。作業者はステップS2と同様に、測定しているサンプル名とそのサンプルに対する測定の開始時間及び終了時間とをコメント情報入力テーブル102に入力する(ステップS4)。サンプルに対する測定開始時間及び測定終了時間は、クロマトグラムに現れるピークの開始点及び終了点をそれぞれ作業者が目視で読み取り、これを入力すればよい。
When a predetermined time has elapsed from the measurement start time, the operator inserts the first sample (sample 1) into the measurement position, thereby performing measurement on the sample (step S3). Then, since ions generated from this sample begin to be introduced into the first intermediate vacuum chamber 21 through the ion introduction tube 26, the chromatogram displayed in the chromatogram display column 101 in a substantially real time has a peak as shown in FIG. Begins to appear. As in step S2, the operator inputs the name of the sample being measured and the measurement start time and end time for the sample in the comment information input table 102 (step S4). The measurement start time and measurement end time for the sample may be input by the operator visually reading the start point and end point of the peak appearing in the chromatogram.
作業者が一つのサンプルを測定位置に所定時間挿入して測定を終了したあと、未測定のサンプルがあれば(ステップS5でYes)ステップS3へと戻り、未測定である別のサンプルを測定位置に挿入し、該サンプルに対する測定を実行する。これにより、図5に示すように、クロマトグラムには二つ目のピークが現れる。そして、作業者は該サンプルについてのサンプル名、測定開始時間・終了時間を入力する。
After the operator inserts one sample into the measurement position for a predetermined time and completes the measurement, if there is an unmeasured sample (Yes in step S5), the process returns to step S3, and another sample that has not been measured is measured. And perform measurements on the sample. Thereby, as shown in FIG. 5, the second peak appears in the chromatogram. Then, the operator inputs the sample name and the measurement start time / end time for the sample.
用意した全てのサンプルについてステップS3、S4の処理を行ったならば、作業者は入力部60で所定の操作を行うことで測定終了を指示する。すると、分析制御部33は測定を終了するように各部を制御する。また、コメント入力受付部42は、その時点でコメント情報入力テーブル102に入力されているサンプル名、各サンプルの測定開始時間・終了時間等のサンプル情報を収集する。データファイル作成部43は一連の測定により得られた全てのデータを一つのデータファイルに格納するとともに、コメント入力受付部42が収集したサンプル情報を同じデータファイルに格納し、そうして作成したファイルをデータ記憶部44に保存する(ステップS6)。
これにより、ブランク測定及び複数のサンプルに対する測定によって得られたマススペクトルデータと、測定されたサンプルのサンプル名や測定開始時間・終了時間の情報がともに格納されたデータファイルが記憶される。 If the processes of steps S3 and S4 are performed for all the prepared samples, the operator instructs the end of the measurement by performing a predetermined operation with theinput unit 60. Then, the analysis control unit 33 controls each unit so as to end the measurement. In addition, the comment input receiving unit 42 collects sample information such as the sample name input to the comment information input table 102 at that time and the measurement start time / end time of each sample. The data file creation unit 43 stores all the data obtained by a series of measurements in one data file, and also stores the sample information collected by the comment input reception unit 42 in the same data file. Is stored in the data storage unit 44 (step S6).
As a result, a data file storing both the mass spectrum data obtained by the blank measurement and the measurement of a plurality of samples and the information of the sample name and the measurement start time / end time of the measured sample is stored.
これにより、ブランク測定及び複数のサンプルに対する測定によって得られたマススペクトルデータと、測定されたサンプルのサンプル名や測定開始時間・終了時間の情報がともに格納されたデータファイルが記憶される。 If the processes of steps S3 and S4 are performed for all the prepared samples, the operator instructs the end of the measurement by performing a predetermined operation with the
As a result, a data file storing both the mass spectrum data obtained by the blank measurement and the measurement of a plurality of samples and the information of the sample name and the measurement start time / end time of the measured sample is stored.
なお、上述したように、作業者がコメント情報入力テーブル102の各欄に直接サンプル名等を書き込むようにしてもよいが、より簡便な入力方法としてもよい。例えば、図6に示すような、サンプル名と該サンプルに対応する分子量、組成式などの情報を登録したサンプルリストを予め作成して記憶しておき、このサンプルリストから適宜サンプルを選択することでサンプル名を入力することができるようにしてもよい。また、図6に示したような様々な情報を含むリストではなく、サンプル名のみを列記したプルダウンメニューを表示し、その中からサンプル名を選択できるようにしてもよい。また、図6に示したようなサンプルリストを測定中画面100上に配置したり該画面100に重ねて別の画面として表示したりして、該リスト中からドラッグ&ドロップ操作により適宜のサンプル名を入力できるようにしてもよい。
As described above, the operator may directly write the sample name or the like in each column of the comment information input table 102, but a simpler input method may be used. For example, as shown in FIG. 6, a sample list in which information such as a sample name, a molecular weight corresponding to the sample, and a composition formula is registered in advance is stored, and a sample is appropriately selected from the sample list. A sample name may be entered. Further, instead of a list including various information as shown in FIG. 6, a pull-down menu in which only sample names are listed may be displayed so that sample names can be selected from them. In addition, a sample list as shown in FIG. 6 is arranged on the measuring screen 100 or displayed as another screen on the screen 100, and an appropriate sample name is displayed by drag and drop operation from the list. May be entered.
また、測定開始時間・終了時間については、クロマトグラム表示欄101に表示されたクロマトグラムに重ねて表示したカーソル(マウスポインタ)によるクリック操作で入力できるようにすると便利である。図7はこの場合の測定中画面100の一例を示す概略図である。作業者は入力部60であるポインティングデバイスを操作してクロマトグラム表示欄101に表示されている矢印状のカーソル103を所定の位置に移動させ、クリック操作を行う。すると、コメント入力受付部42はそのクリックされた位置に対応する時間情報を取得し、その時間をコメント情報入力テーブル102中の測定開始時間入力欄102b又は測定終了時間入力欄102c欄に自動的に書き込む。なお、図7ではサンプル1に対する測定開始時間を指定する際のカーソルの位置を実線で示し、測定終了時間を指定する際のカーソルの位置を点線で示している。このようなグラフィカルな操作により、作業者の入力の手間が軽減される。
Also, it is convenient that the measurement start time and end time can be input by clicking with a cursor (mouse pointer) displayed superimposed on the chromatogram displayed in the chromatogram display column 101. FIG. 7 is a schematic view showing an example of the in-measurement screen 100 in this case. The operator operates the pointing device as the input unit 60 to move the arrow-like cursor 103 displayed in the chromatogram display column 101 to a predetermined position, and performs a click operation. Then, the comment input receiving unit 42 acquires time information corresponding to the clicked position, and the time is automatically entered in the measurement start time input field 102b or the measurement end time input field 102c in the comment information input table 102. Write. In FIG. 7, the position of the cursor when specifying the measurement start time for the sample 1 is indicated by a solid line, and the position of the cursor when specifying the measurement end time is indicated by a dotted line. Such a graphical operation reduces the labor of input by the operator.
続いて、上述したようにして複数のサンプルに対する測定データがデータ記憶部44に格納されている状態で該データに対する解析を行う際の、作業者の操作及び本装置の動作の一例を説明する。図3はこのときの処理動作を示すフローチャートである。
Subsequently, an example of the operation of the operator and the operation of the apparatus when performing analysis on the data in a state where the measurement data for a plurality of samples is stored in the data storage unit 44 as described above will be described. FIG. 3 is a flowchart showing the processing operation at this time.
作業者が入力部60からデータファイル名を指定して解析開始を指示すると、クロマトグラム作成部46は指定されたデータファイルをデータ記憶部44から読み出す。そして、該ファイルに格納されている測定データに基づいて全測定時間範囲に亘るトータルイオンクロマトグラムを作成する。また、同ファイルに格納されているサンプル情報から、サンプル名とそのサンプルの測定時間範囲(測定開始時間から測定終了時間までの期間)とを認識し、クロマトグラム上で各測定時間範囲に現れているピークにサンプル名を対応付け、該ピークのピークトップ近傍の所定位置にサンプル名を貼り付ける。そうして各ピークにサンプル名を付したクロマトグラムを表示部61の画面上に表示する(ステップS11)。図8はこうして作成及び表示されるクロマトグラムの一例である。
When the operator designates the data file name from the input unit 60 and instructs the start of analysis, the chromatogram creation unit 46 reads the designated data file from the data storage unit 44. Then, a total ion chromatogram over the entire measurement time range is created based on the measurement data stored in the file. Also, from the sample information stored in the same file, the sample name and the measurement time range of that sample (the period from the measurement start time to the measurement end time) are recognized and appear in each measurement time range on the chromatogram. The sample name is associated with the peak, and the sample name is pasted at a predetermined position near the peak top of the peak. Then, a chromatogram with a sample name assigned to each peak is displayed on the screen of the display unit 61 (step S11). FIG. 8 is an example of the chromatogram created and displayed in this way.
次に、マススペクトル作成部47は測定時間範囲毎にピークのピークトップを検出し、そのピークトップに対応する時間に取得されたマススペクトルデータを抽出し、マススペクトルを作成する。即ち、図8の例では、三つのサンプルのピークのピークトップ位置に対応する時間におけるマススペクトルデータが抽出され、そのデータに基づいてそれぞれマススペクトルが作成される。さらにマススペクトル作成部47は、サンプル名が「ブランク」である測定時間範囲全体又はその中の所定の時間範囲に得られたマススペクトルデータについて、質量電荷比毎に信号強度の平均値を計算することで、ブランク測定に対するマススペクトルの平均であるバックグラウンドマススペクトルを求める。スペクトル減算部48は、サンプル毎に、該サンプルに対するマススペクトルから共通のバックグラウンドマススペクトルを差し引くことにより、バックグラウンドが除去されたマススペクトルを求める。そして、バックグラウンド除去がされた各マススペクトルに対応するサンプル名を付加し、クロマトグラムとともに表示部61の画面上に表示する(ステップS12)。図9はこうして表示されるクロマトグラム及びマススペクトルの一例を示す図である。
なお、ここでは、全てのサンプルについてのマススペクトルを一覧表示しているが、選択されたサンプルのみのマススペクトルを表示してもよいし、或いは一覧表示でなくタブの切替えによりマススペクトルを選択的に表示するようにしてもよい。 Next, the massspectrum creation unit 47 detects the peak top of the peak for each measurement time range, extracts the mass spectrum data acquired at the time corresponding to the peak top, and creates a mass spectrum. That is, in the example of FIG. 8, mass spectrum data at a time corresponding to the peak top positions of the peaks of the three samples is extracted, and mass spectra are respectively created based on the data. Further, the mass spectrum creation unit 47 calculates the average value of the signal intensity for each mass to charge ratio with respect to the mass spectrum data obtained in the entire measurement time range whose sample name is “blank” or in a predetermined time range therein. Thus, a background mass spectrum that is an average of the mass spectra for the blank measurement is obtained. For each sample, the spectrum subtraction unit 48 subtracts the common background mass spectrum from the mass spectrum for the sample to obtain a mass spectrum from which the background has been removed. Then, a sample name corresponding to each mass spectrum from which the background has been removed is added and displayed on the screen of the display unit 61 together with the chromatogram (step S12). FIG. 9 is a diagram showing an example of the chromatogram and mass spectrum displayed in this way.
Although the mass spectra for all samples are listed here, the mass spectra for only the selected sample may be displayed, or the mass spectra may be selectively displayed by switching tabs instead of displaying the list. May be displayed.
なお、ここでは、全てのサンプルについてのマススペクトルを一覧表示しているが、選択されたサンプルのみのマススペクトルを表示してもよいし、或いは一覧表示でなくタブの切替えによりマススペクトルを選択的に表示するようにしてもよい。 Next, the mass
Although the mass spectra for all samples are listed here, the mass spectra for only the selected sample may be displayed, or the mass spectra may be selectively displayed by switching tabs instead of displaying the list. May be displayed.
また、スペクトル減算部48は、一つのサンプルに対するマススペクトルから共通のバックグラウンドマススペクトルを差し引くのではなく、指定された二つのマススペクトルの差分を計算して差分マススペクトルを求めるようにしてもよい。例えば、バックグラウンド除去がなされていないサンプル1に対するマススペクトルから同じくバックグラウンド除去がなされていないサンプル2に対するマススペクトルを差し引き、それにより得られた差分マススペクトルにその二つのサンプルのサンプル名を付加し、表示部61の画面上に表示するとよい。こうして算出される差分マススペクトルでは共通のバックグラウンドは除去されているので、作業者はこの差分マススペクトルの表示により、サンプル1とサンプル2との質量電荷比毎の信号強度の差を的確に把握することができる。
Further, the spectrum subtraction unit 48 may calculate a difference between two designated mass spectra instead of subtracting a common background mass spectrum from a mass spectrum for one sample, and obtain a difference mass spectrum. . For example, the mass spectrum for sample 2 without background removal is subtracted from the mass spectrum for sample 1 without background removal, and the sample names of the two samples are added to the resulting difference mass spectrum. It may be displayed on the screen of the display unit 61. Since the common background is removed from the difference mass spectrum calculated in this way, the operator can accurately grasp the difference in signal intensity for each mass-to-charge ratio between sample 1 and sample 2 by displaying this difference mass spectrum. can do.
既知成分情報記憶部50には、含有していることが予測される化合物についての情報が予め格納される。図10はこの化合物情報の一例を示す図である。この例では、化合物毎に、分子量、分子イオンの質量電荷比、組成式、構造式などの情報のほか、Na付加体、NH3付加体等のアダクトイオンの質量電荷比といった付加体情報に含まれる。こうした情報は既知である様々な化合物データベースに基づいて作成することができる。また、既存の化合物データベースをそのまま利用してもよい。また、付加体情報は分子量などの情報から自動的に作成するようにしてもよい。
The known component information storage unit 50 stores in advance information about a compound that is predicted to be contained. FIG. 10 is a diagram showing an example of this compound information. In this example, for each compound, in addition to information such as molecular weight, molecular ion mass-to-charge ratio, composition formula, and structural formula, it is included in adduct information such as mass-to-charge ratio of adduct ions such as Na adducts and NH 3 adducts. It is. Such information can be generated based on various known compound databases. An existing compound database may be used as it is. The adduct information may be automatically created from information such as molecular weight.
スペクトルピーク特定部49は、ステップS12で算出された、各サンプルに対するバックグラウンド除去後のマススペクトルについてピーク検出を行い、検出されたピークの質量電荷比情報を既知成分情報記憶部50に格納されている化合物情報に照らしてピークを同定する。そして、同定されたピーク、つまり、或る化合物であることが確認されたピークに対して、その化合物の名称、分子量、質量電荷比、構造式などの情報の少なくとも一つをマススペクトル上のそのピークの近傍に表示する(ステップS13)。このとき、Na付加体、NH3付加体等のアダクトイオンに相当する質量電荷比におけるピークも検出し、そうしたピークが検出されたならば、そのアダクトイオンに対応する化合物情報を表示する。
The spectrum peak specifying unit 49 performs peak detection on the mass spectrum after background removal for each sample calculated in step S12, and the mass-to-charge ratio information of the detected peak is stored in the known component information storage unit 50. Identify the peaks in light of the compound information. Then, for the identified peak, that is, the peak confirmed to be a certain compound, at least one of information such as the name, molecular weight, mass-to-charge ratio, and structural formula of the compound is displayed on the mass spectrum. Displayed in the vicinity of the peak (step S13). At this time, a peak in a mass-to-charge ratio corresponding to an adduct ion such as an Na adduct or NH 3 adduct is also detected, and if such a peak is detected, compound information corresponding to the adduct ion is displayed.
なお、マススペクトルにおいて隣接するピークの間隔が狭すぎて化合物情報表示同士の重なりが生じる場合や、ピークの信号強度が所定値以下であっていずれのピークの化合物情報であるのか視認困難である場合には、そうした表示状態であることを認識して、自動的にマススペクトルの一部を拡大表示し、その拡大表示したマススペクトル上のピークに対応付けて化合物情報を表示するとよい。図11は、マススペクトル拡大図を元の(拡大していない)マススペクトルの表示枠内に表示した例であるが、マススペクトル拡大図は元のマススペクトルの表示枠を外れていても構わない。
In addition, when the interval between adjacent peaks in the mass spectrum is too narrow and the compound information displays overlap, or when the peak signal intensity is below a predetermined value and it is difficult to see which compound information is in which peak For example, it is preferable to recognize that such a display state is present, automatically enlarge a part of the mass spectrum, and display the compound information in association with the peak on the enlarged mass spectrum. FIG. 11 shows an example in which the enlarged mass spectrum view is displayed in the original (not enlarged) display frame of the mass spectrum, but the enlarged mass spectrum view may be out of the display frame of the original mass spectrum. .
また、差異解析部51は予め設定されている条件の下で、複数のサンプルに対するバックグラウンド除去後のマススペクトルの差異(又は共通性)を抽出する処理を実行する。ここでいうマススペクトルの差異とは例えば、同一の質量電荷比における信号強度の差異や、大きな信号強度で現れるピーク間の質量電荷比の差異などである。そして、そうした信号強度や質量電荷比の差異がある場合には、マススペクトル上でその差異が識別容易な表示を行う(ステップS14)。
例えば差異解析部51は、信号強度の閾値を設定しておき、いずれかのサンプルに対するマススペクトルにおいてその閾値を信号強度が超えた質量電荷比を全て抽出する。そして、その質量電荷比における信号強度の差異を、指定された複数のサンプル間において算出する。 Moreover, thedifference analysis part 51 performs the process which extracts the difference (or commonality) of the mass spectrum after the background removal with respect to several samples on the conditions set beforehand. The difference in mass spectrum here is, for example, a difference in signal intensity at the same mass-to-charge ratio, a difference in mass-to-charge ratio between peaks appearing at a large signal intensity, or the like. If there is a difference in signal intensity or mass-to-charge ratio, a display is made on the mass spectrum so that the difference can be easily identified (step S14).
For example, thedifference analysis unit 51 sets a threshold value of signal intensity, and extracts all mass-to-charge ratios whose signal intensity exceeds the threshold value in a mass spectrum for any sample. Then, a difference in signal intensity in the mass-to-charge ratio is calculated among a plurality of designated samples.
例えば差異解析部51は、信号強度の閾値を設定しておき、いずれかのサンプルに対するマススペクトルにおいてその閾値を信号強度が超えた質量電荷比を全て抽出する。そして、その質量電荷比における信号強度の差異を、指定された複数のサンプル間において算出する。 Moreover, the
For example, the
いま、図9に示した三つのサンプルに対するマススペクトルについて、信号強度の閾値を400,000に定めたものとすると、m/z 150.2、m/z 192.2、m/z 391.2の三つの質量電荷比が閾値を超える。これら質量電荷比における信号強度の差異が大きければ、その質量電荷比は或るサンプルに特異的に存在する化合物であり、逆に、信号強度の差異が小さければ、どのサンプルにも共通に存在する非特異的な化合物であるといえる。図9の例の場合、m/z 150.2はサンプル3に特異的に検出される化合物であり、m/z 192.2はサンプル1とサンプル2とに共通に検出される化合物であり、m/z 391.2はサンプル1に特異的に検出される化合物であることが分かる。そこで、特異的に検出される化合物に対応したピークと、少なくとも二つのサンプルに共通に検出される化合物に対応したピークとをそれぞれ、他のピークとは異なる識別容易な色で表示する。こうして他のピークとは異なる色で表示されたピークに対して上述したように化合物情報が表示されていれば、作業者は複数のサンプルの中の一つに特定的な化合物や共通に存在する化合物などを容易に把握することができる。
For the mass spectra for the three samples shown in FIG. 9, assuming that the signal intensity threshold is set to 400,000, the three mass-to-charge ratios of m / z / 150.2, m / z 192.2, and m / z 391.2 are the threshold values. Over. If the difference in signal intensity in these mass-to-charge ratios is large, the mass-to-charge ratio is a compound that exists specifically in a certain sample, and conversely, if the difference in signal intensity is small, it exists in any sample in common. It can be said that it is a non-specific compound. In the example of FIG. 9, m / zm150.2 is a compound specifically detected in sample 3, m / z 192.2 is a compound detected in common in sample 1 and sample 2, and m / z 391.2 It can be seen that is a compound specifically detected in sample 1. Therefore, a peak corresponding to a compound that is specifically detected and a peak corresponding to a compound that is commonly detected in at least two samples are displayed in colors that are easily distinguishable from other peaks. Thus, if the compound information is displayed as described above for the peak displayed in a color different from that of the other peaks, the worker exists in one of a plurality of samples as a specific compound or in common. Compounds and the like can be easily grasped.
もちろん、例えば差異解析部51は、信号強度の閾値を設定することなく、全ての質量電荷比について信号強度の差異を、指定された複数のサンプル間において算出するようにしてもよい。また、一つのサンプルに特異的に検出される化合物に対応したピークや、複数のサンプルに共通に検出される化合物に対応したピークの表示色を他のピークと異なるものとする以外に、そうしたピークの近傍又はそうしたピークに対応付けられた化合物情報表示の近傍に特定のマークを表示するようにしてもよい。図9に示した例について上述した条件で検出されたピークに対し、特定のマークを付した例を図12に示す。この例では、サンプル3に特異的に検出されるm/z 150.2であるピークには星印、サンプル1に特異的に検出されるm/z 391.2であるピークには三角印、サンプル1とサンプル2とに共通に検出されるm/z 192.2であるピークには丸印のマークがそれぞれ付されている。
Of course, for example, the difference analysis unit 51 may calculate the difference in signal intensity for all mass-to-charge ratios among a plurality of designated samples without setting a threshold value for the signal intensity. In addition to making the peak color corresponding to the compound specifically detected in one sample and the peak color corresponding to the compound commonly detected in multiple samples different from other peaks, such peak A specific mark may be displayed in the vicinity of or near the compound information display associated with such a peak. FIG. 12 shows an example in which a specific mark is attached to the peak detected under the above-described conditions for the example shown in FIG. In this example, the peak m / z 150.2 detected specifically in sample 3 is an asterisk, the peak m / z 391.2 specifically detected in sample 1 is a triangle, and sample 1 and sample The peak of m / z 192.2 detected in common with 2 is marked with a circle.
また差異情報表示処理部52は、差異解析部51で抽出された特異的な化合物や共通性のある化合物についての情報に基づくテーブルを作成し、さらにそれら化合物に対応する質量電荷比における抽出イオンクロマトグラムを作成する(ステップS15)。図13は、図9に示した例について上述した条件で検出されたピークに対する信号強度と異なるサンプル間の信号強度差とをテーブル化した例である。そして、作成したテーブルや抽出イオンクロマトグラムを表示部61の画面上に表示する(ステップS16)。図13に示すようなテーブルが表示されることで、作業者は信号強度差を定量的に把握することができる。また、作業者は抽出イオンクロマトグラムに現れるピークとトータルイオンクロマトグラムに現れるピークの位置とを比較することにより、その化合物が確かにサンプル特異的であるか或いは複数のサンプルに共通するものであるを確認することができる。
Further, the difference information display processing unit 52 creates a table based on information about the specific compound or common compound extracted by the difference analysis unit 51, and further extracts ion chromatograms at mass-to-charge ratios corresponding to these compounds. A gram is created (step S15). FIG. 13 is an example in which the signal intensity with respect to the peak detected under the above-described conditions for the example shown in FIG. 9 and the signal intensity difference between different samples are tabulated. Then, the created table and extracted ion chromatogram are displayed on the screen of the display unit 61 (step S16). By displaying a table as shown in FIG. 13, the operator can quantitatively grasp the signal intensity difference. Also, the operator compares the peak appearing in the extracted ion chromatogram with the position of the peak appearing in the total ion chromatogram, so that the compound is certainly sample-specific or common to multiple samples. Can be confirmed.
以上のように、本実施例のDART質量分析装置では、測定により収集された測定データを解析する際に、作業者が解析対象のデータファイルを指定し、必要に応じて解析に関する条件を設定するだけで、自動的に、マススペクトルのバックグラウンド除去、マススペクトル上のピークの同定、複数のサンプル間の差異解析などが行われる。それにより、データ解析の際の作業者の負担は大幅に軽減され、作業者の熟練度や技量の差による結果のばらつきもなくすことができる。
As described above, in the DART mass spectrometer according to the present embodiment, when analyzing measurement data collected by measurement, an operator specifies a data file to be analyzed, and sets analysis-related conditions as necessary. Only automatically removes the background of the mass spectrum, identifies the peaks on the mass spectrum, analyzes the differences between multiple samples, and so on. Thereby, the burden on the worker at the time of data analysis is greatly reduced, and variations in results due to differences in the skill level and skill of the worker can be eliminated.
[第2実施例]
本発明に係る第2実施例であるDART質量分析装置について、図14に示す構成図を参照して説明する。図14では、図1に示した第1実施例によるDART質量分析装置と同一の又は相当する構成要素には同じ符号を付してある。
この第2実施例のDART質量分析装置が第1実施例のDART質量分析装置と異なる点は、制御・処理部40にピーク検出部45が新たに加えられていることである。 [Second Embodiment]
A DART mass spectrometer according to a second embodiment of the present invention will be described with reference to the block diagram shown in FIG. In FIG. 14, the same or corresponding components as those in the DART mass spectrometer according to the first embodiment shown in FIG.
The difference between the DART mass spectrometer of the second embodiment and the DART mass spectrometer of the first embodiment is that apeak detector 45 is newly added to the control / processor 40.
本発明に係る第2実施例であるDART質量分析装置について、図14に示す構成図を参照して説明する。図14では、図1に示した第1実施例によるDART質量分析装置と同一の又は相当する構成要素には同じ符号を付してある。
この第2実施例のDART質量分析装置が第1実施例のDART質量分析装置と異なる点は、制御・処理部40にピーク検出部45が新たに加えられていることである。 [Second Embodiment]
A DART mass spectrometer according to a second embodiment of the present invention will be described with reference to the block diagram shown in FIG. In FIG. 14, the same or corresponding components as those in the DART mass spectrometer according to the first embodiment shown in FIG.
The difference between the DART mass spectrometer of the second embodiment and the DART mass spectrometer of the first embodiment is that a
上述したように、第1実施例のDART質量分析装置では、測定実行中に、作業者による何らかの操作によって、サンプル名等のサンプル情報と各サンプルに対する測定時間情報(測定開始時間及び終了時間)が入力される。これに対し、この第2実施例のDART質量分析装置では、測定時間情報は作業者の操作によらず、ピーク検出部45による自動的なピーク検出の結果から測定開始時間と測定終了時間が取得される。
As described above, in the DART mass spectrometer of the first embodiment, sample information such as a sample name and measurement time information (measurement start time and end time) for each sample are obtained by performing some operation by an operator during measurement. Entered. On the other hand, in the DART mass spectrometer of the second embodiment, the measurement start time and the measurement end time are obtained from the result of automatic peak detection by the peak detector 45, regardless of the operator's operation. Is done.
即ち、測定が開始されると、ピーク検出部45はリアルタイムクロマトグラム作成部41により時々刻々と作成されるクロマトグラムのカーブの傾きやピーク高さ、或いはピーク幅などに基づいて、ピークの開始点と終了点を認識する。その手法は、通常のクロマトグラム上のピークの検出と同じである。そして、一つのサンプルに対するピークの開始時間及び終了時間が求まる毎に、その情報を、図7等に記載のコメント情報入力テーブル102中の測定開始時間入力欄102b及び測定終了時間入力欄102cに自動的に書き込む。これにより、作業者は、サンプルを測定位置にかざす作業のほか、サンプル名を記入したりリストの中から選択したりする作業を行えばよく、測定実行時の作業者の負担は軽減される。
That is, when measurement is started, the peak detection unit 45 determines the peak start point based on the slope, peak height, peak width, etc. of the chromatogram curve created by the real-time chromatogram creation unit 41 every moment. And recognize the end point. The method is the same as the detection of a peak on a normal chromatogram. Each time the peak start time and end time for one sample are obtained, the information is automatically stored in the measurement start time input field 102b and the measurement end time input field 102c in the comment information input table 102 shown in FIG. To write. As a result, the operator only has to perform the operation of entering the sample name or selecting from the list in addition to the operation of holding the sample over the measurement position, and the burden on the operator when performing the measurement is reduced.
なお、上記実施例では、イオン源としてDARTイオン源を利用していたが、DART以外の、固体状又は液体状の試料を前処理することなく大気圧雰囲気中でその場計測が可能な、アンビエントイオン化と呼ばれる各種のイオン化法を用いることできる。具体的には、上述したDESI法、PESI法、ELDI法、ASAP法といったイオン化法によるイオン源を用いることができる。
In the above embodiment, a DART ion source is used as an ion source. However, ambient that can be measured in situ in an atmospheric pressure atmosphere without pretreatment of a solid or liquid sample other than DART. Various ionization methods called ionization can be used. Specifically, an ion source based on an ionization method such as the DESI method, the PESI method, the ELDI method, or the ASAP method described above can be used.
また、上記説明から分かるように、第1実施例によるDART質量分析装置で実施される図3に示したような解析処理が可能であるデータは、測定データとサンプル情報及び測定時間情報とが対応付けられてさえいれば、必ずしも図2に示したような測定手順で得られたデータである必要はない。即ち、サンプル名等のサンプル情報が作業者の操作によって入力されたものでなく、例えばサンプル名等を列記したサンプルテーブルに従って自動的にサンプルを選択しながら測定を実行する質量分析装置にも適用可能な技術である。また、イオン源が上述したようなイオン源に限るものでもなく、質量分析装置の前段に液体クロマトグラフやガスクロマトグラフを接続した液体クロマトグラフ質量分析装置やガスクロマトグラフ質量分析装置に、上述したようなデータ解析処理の手法を採り入れることもできる。
As can be seen from the above description, the data that can be analyzed by the DART mass spectrometer according to the first embodiment shown in FIG. 3 corresponds to the measurement data, the sample information, and the measurement time information. As long as it is attached, the data is not necessarily obtained by the measurement procedure as shown in FIG. That is, sample information such as sample name is not input by the operator's operation, but can be applied to a mass spectrometer that performs measurement while automatically selecting a sample according to a sample table listing sample names, for example. Technology. In addition, the ion source is not limited to the ion source as described above, and the liquid chromatograph mass spectrometer or gas chromatograph mass spectrometer in which a liquid chromatograph or a gas chromatograph is connected to the preceding stage of the mass spectrometer is used as described above. Data analysis processing techniques can also be adopted.
さらにまた、それ以外の点において、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願請求の範囲に包含されることは明らかである。
Furthermore, in other respects, it is obvious that modifications, changes, additions and the like as appropriate within the scope of the present invention are included in the scope of the claims of the present application.
10…DARTイオン化ユニット
11…放電室
12…反応室
13…加熱室
14…ガス導入管
15…針電極
16…入口側隔壁
17…出口側隔壁
18…ノズル
19…グリッド電極
20…イオン化領域
21、22…中間真空室
23…分析室
25…試料
26…イオン導入管
26a…入口開口
27、29…イオンガイド
28…スキマー
30…四重極マスフィルタ
31…イオン検出器
32…アナログデジタル変換器
33…分析制御部
40…制御・処理部
41…リアルタイムクロマトグラム作成部
42…コメント入力受付部
43…データファイル作成部
44…データ記憶部
45…ピーク検出部
46…クロマトグラム作成部
47…マススペクトル作成部
48…スペクトル減算部
49…スペクトルピーク特定部
50…既知成分情報記憶部
51…差異解析部
52…差異情報表示処理部
60…入力部
61…表示部 DESCRIPTION OFSYMBOLS 10 ... DART ionization unit 11 ... Discharge chamber 12 ... Reaction chamber 13 ... Heating chamber 14 ... Gas introduction tube 15 ... Needle electrode 16 ... Inlet side partition 17 ... Outlet side partition 18 ... Nozzle 19 ... Grid electrode 20 ... Ionization region 21,22 ... Intermediate vacuum chamber 23 ... Analysis chamber 25 ... Sample 26 ... Ion introduction tube 26a ... Inlet opening 27, 29 ... Ion guide 28 ... Skimer 30 ... Quadrupole mass filter 31 ... Ion detector 32 ... Analog / digital converter 33 ... Analysis Control unit 40 ... Control / processing unit 41 ... Real time chromatogram creation unit 42 ... Comment input acceptance unit 43 ... Data file creation unit 44 ... Data storage unit 45 ... Peak detection unit 46 ... Chromatogram creation unit 47 ... Mass spectrum creation unit 48 ... Spectrum subtraction part 49 ... Spectrum peak specifying part 50 ... Known component information storage part 51 ... Difference analysis part 52 ... Different information display processing unit 60 ... input section 61 ... display unit
11…放電室
12…反応室
13…加熱室
14…ガス導入管
15…針電極
16…入口側隔壁
17…出口側隔壁
18…ノズル
19…グリッド電極
20…イオン化領域
21、22…中間真空室
23…分析室
25…試料
26…イオン導入管
26a…入口開口
27、29…イオンガイド
28…スキマー
30…四重極マスフィルタ
31…イオン検出器
32…アナログデジタル変換器
33…分析制御部
40…制御・処理部
41…リアルタイムクロマトグラム作成部
42…コメント入力受付部
43…データファイル作成部
44…データ記憶部
45…ピーク検出部
46…クロマトグラム作成部
47…マススペクトル作成部
48…スペクトル減算部
49…スペクトルピーク特定部
50…既知成分情報記憶部
51…差異解析部
52…差異情報表示処理部
60…入力部
61…表示部 DESCRIPTION OF
Claims (10)
- 大気圧雰囲気である所定の測定位置に配置された試料に対する測定をリアルタイムで実行する質量分析装置であって、
a)測定実行中に、ユーザによる、測定対象である試料を特定するためのサンプル情報を少なくとも含むコメント情報の入力を受け付けるコメント入力受付部と、
b)前記コメント入力受付部により受け付けたコメント情報を、その受け付けの時点で収集されている測定データが格納されるデータファイル中に格納する、又はそのデータファイルに対応付けられた別のファイル中に格納するデータ保存部と、
を備えることを特徴とする質量分析装置。 A mass spectrometer that performs measurement on a sample placed at a predetermined measurement position in an atmospheric pressure atmosphere in real time,
a) a comment input receiving unit that receives input of comment information including at least sample information for specifying a sample to be measured by a user during measurement execution;
b) The comment information received by the comment input receiving unit is stored in a data file in which measurement data collected at the time of the reception is stored, or in another file associated with the data file. A data storage unit to store;
A mass spectrometer comprising: - 請求項1に記載の質量分析装置であって、
前記コメント入力受付部は、複数のサンプル情報が予め登録されたリストの中から、ユーザにより選択されたサンプル情報を前記コメント情報の一つとして受け付けることを特徴とする質量分析装置。 The mass spectrometer according to claim 1,
The comment input receiving unit receives sample information selected by a user from a list in which a plurality of sample information is registered in advance as one of the comment information. - 請求項1又は2に記載の質量分析装置であって、
前記コメント入力受付部は、前記サンプル情報のほかに、試料に対する測定の時間情報を前記コメント情報の一つとして受け付けることを特徴とする質量分析装置。 The mass spectrometer according to claim 1 or 2,
The comment input receiving unit receives, in addition to the sample information, measurement time information for a sample as one of the comment information. - 請求項3に記載の質量分析装置であって、
測定データに基づいてクロマトグラムをリアルタイムで作成し表示画面上に描出する測定時クロマトグラム表示処理部をさらに備え、
前記コメント入力受付部は、前記表示画面上に描出されたクロマトグラムにおいてユーザにより指示された位置に対応した時間を前記時間情報として受け付けることを特徴とする質量分析装置。 The mass spectrometer according to claim 3,
A measurement chromatogram display processing unit that creates a chromatogram based on measurement data in real time and renders it on the display screen is further provided.
The comment input receiving unit receives, as the time information, a time corresponding to a position instructed by a user in a chromatogram drawn on the display screen. - 請求項1又は2に記載の質量分析装置であって、
測定データに基づいてクロマトグラムをリアルタイムで作成するクロマトグラム作成部と、前記クロマトグラムにおいてピークを検出するピーク検出部と、をさらに備え、
前記データ保存部は、前記ピーク検出部による検出結果から求まる時間情報を試料に対する測定の時間情報として、前記コメント入力受付部により受け付けたコメント情報とともにデータファイル中に格納する、又はそのデータファイルに対応付けられた別のファイル中に格納することを特徴とする質量分析装置。 The mass spectrometer according to claim 1 or 2,
A chromatogram creation section that creates a chromatogram in real time based on measurement data; and a peak detection section that detects a peak in the chromatogram,
The data storage unit stores the time information obtained from the detection result by the peak detection unit in the data file together with the comment information received by the comment input reception unit as the measurement time information for the sample, or corresponds to the data file A mass spectrometer characterized in that it is stored in a separate file attached. - 請求項1~5のいずれかに記載の質量分析装置であって、
前記コメント入力受付部により受け付けられたコメント情報の少なくとも一部を、測定により得られたデータに基づいて作成され表示画面上に表示されるクロマトグラム又はマススペクトル上の適宜の位置に表示する表示処理部をさらに備えることを特徴とする質量分析装置。 A mass spectrometer according to any one of claims 1 to 5,
Display processing for displaying at least a part of the comment information received by the comment input receiving unit at an appropriate position on a chromatogram or mass spectrum created based on data obtained by measurement and displayed on a display screen The mass spectrometer further comprising a unit. - 請求項1に記載の質量分析装置であって、
前記コメント入力受付部により受け付けられたコメント情報に基づいて特定した、試料がある状態の測定で得られたマススペクトルから、試料がない状態のブランク測定で得られたマススペクトルを差し引くスペクトル減算部と、
該スペクトル減算部により減算処理されたマススペクトルを表示するマススペクトル表示処理部と、
をさらに備えることを特徴とする質量分析装置。 The mass spectrometer according to claim 1,
A spectrum subtracting unit that subtracts a mass spectrum obtained by blank measurement without a sample from a mass spectrum obtained by measurement in a state where the sample is present, identified based on the comment information received by the comment input acceptance unit; ,
A mass spectrum display processing unit for displaying the mass spectrum subtracted by the spectrum subtraction unit;
A mass spectrometer further comprising: - 請求項7に記載の質量分析装置であって、
異なる2以上の試料に対してそれぞれ得られた、減算処理されたマスマススペクトルの間での差異の情報を抽出する差異情報抽出部と、
前記差異情報抽出部により抽出された差異情報を表示する差異情報表示部と、
をさらに備えることを特徴とする質量分析装置。 The mass spectrometer according to claim 7,
A difference information extraction unit for extracting information on the difference between the subtracted mass-mass spectra respectively obtained for two or more different samples;
A difference information display unit for displaying the difference information extracted by the difference information extraction unit;
A mass spectrometer further comprising: - 請求項7に記載の質量分析装置であって、
化合物の種類と質量電荷比情報とを対応付けた化合物情報を記憶しておく記憶部と、
マススペクトル上のピークの質量電荷比を前記記憶部に記憶されている化合物情報と照合することにより化合物を特定する化合物特定部と、
前記化合物特定部で特定された化合物を示す情報をクロマトグラム上のピーク及び/又はマススペクトルに対応付けて表示する表示部と、
をさらに備えることを特徴とする質量分析装置。 The mass spectrometer according to claim 7,
A storage unit for storing compound information in which the type of compound and mass-to-charge ratio information are associated;
A compound specifying unit for specifying a compound by comparing the mass-to-charge ratio of the peak on the mass spectrum with the compound information stored in the storage unit;
A display unit for displaying information indicating the compound specified by the compound specifying unit in association with a peak and / or mass spectrum on a chromatogram;
A mass spectrometer further comprising: - 請求項1~9のいずれかに記載の質量分析装置であって、
リアルタイム直接イオン化法によるイオン源を備えることを特徴とする質量分析装置。 The mass spectrometer according to any one of claims 1 to 9,
A mass spectrometer comprising an ion source based on a real-time direct ionization method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015555859A JP6149947B2 (en) | 2014-01-06 | 2014-01-06 | Mass spectrometer |
PCT/JP2014/050032 WO2015102053A1 (en) | 2014-01-06 | 2014-01-06 | Mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/050032 WO2015102053A1 (en) | 2014-01-06 | 2014-01-06 | Mass spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015102053A1 true WO2015102053A1 (en) | 2015-07-09 |
Family
ID=53493401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050032 WO2015102053A1 (en) | 2014-01-06 | 2014-01-06 | Mass spectrometer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6149947B2 (en) |
WO (1) | WO2015102053A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051468A1 (en) * | 2015-09-25 | 2017-03-30 | 株式会社島津製作所 | Device for processing mass spectrometric data for qualitative analysis |
JP2019066338A (en) * | 2017-10-02 | 2019-04-25 | 日本電子株式会社 | Mass analysis data processor and mass analysis data processing method |
CN112823281A (en) * | 2018-08-31 | 2021-05-18 | 株式会社岛津制作所 | Analysis method, analysis device, and program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6996451B2 (en) * | 2018-08-24 | 2022-01-17 | 株式会社島津製作所 | Analysis support device and analysis support method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058982A (en) * | 2009-09-10 | 2011-03-24 | Shimadzu Corp | Analyzer control system and program for the same |
JP2012132799A (en) * | 2010-12-22 | 2012-07-12 | Shimadzu Corp | Chromatograph mass analyzer |
JP2013200219A (en) * | 2012-03-26 | 2013-10-03 | Jeol Ltd | Data recording device of mass spectrometer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001046343A (en) * | 1999-08-09 | 2001-02-20 | Shimadzu Corp | Medical inspection report preparation device |
JP5214980B2 (en) * | 2008-01-07 | 2013-06-19 | 株式会社東芝 | Medical image interpretation device |
JP2011191162A (en) * | 2010-03-15 | 2011-09-29 | Yokogawa Electric Corp | Waveform measuring instrument |
JP5756611B2 (en) * | 2010-10-07 | 2015-07-29 | 株式会社 資生堂 | Analysis method |
US8822949B2 (en) * | 2011-02-05 | 2014-09-02 | Ionsense Inc. | Apparatus and method for thermal assisted desorption ionization systems |
-
2014
- 2014-01-06 WO PCT/JP2014/050032 patent/WO2015102053A1/en active Application Filing
- 2014-01-06 JP JP2015555859A patent/JP6149947B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058982A (en) * | 2009-09-10 | 2011-03-24 | Shimadzu Corp | Analyzer control system and program for the same |
JP2012132799A (en) * | 2010-12-22 | 2012-07-12 | Shimadzu Corp | Chromatograph mass analyzer |
JP2013200219A (en) * | 2012-03-26 | 2013-10-03 | Jeol Ltd | Data recording device of mass spectrometer |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051468A1 (en) * | 2015-09-25 | 2017-03-30 | 株式会社島津製作所 | Device for processing mass spectrometric data for qualitative analysis |
JPWO2017051468A1 (en) * | 2015-09-25 | 2018-03-08 | 株式会社島津製作所 | Mass spectrometry data processor for qualitative analysis |
CN108139356A (en) * | 2015-09-25 | 2018-06-08 | 株式会社岛津制作所 | For the analytical data of mass spectrum processing unit of qualitative analysis |
US11112391B2 (en) | 2015-09-25 | 2021-09-07 | Shimadzu Corporation | Mass spectrometric data processing device for qualitative analysis |
JP2019066338A (en) * | 2017-10-02 | 2019-04-25 | 日本電子株式会社 | Mass analysis data processor and mass analysis data processing method |
JP7105049B2 (en) | 2017-10-02 | 2022-07-22 | 日本電子株式会社 | Mass spectrometry data processing device and mass spectrometry data processing method |
CN112823281A (en) * | 2018-08-31 | 2021-05-18 | 株式会社岛津制作所 | Analysis method, analysis device, and program |
US20220130652A1 (en) * | 2018-08-31 | 2022-04-28 | Shimadzu Corporation | Analysis method, analysis device, and program |
Also Published As
Publication number | Publication date |
---|---|
JP6149947B2 (en) | 2017-06-21 |
JPWO2015102053A1 (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821767B2 (en) | Chromatographic tandem quadrupole mass spectrometer | |
JP6065983B2 (en) | Data processing equipment for chromatographic mass spectrometry | |
US10607722B2 (en) | Data-processing for chromatographic mass spectrometry | |
US20130306857A1 (en) | Method and system for mass spectrometry | |
JPH08128991A (en) | Mass-spectrum measuring system | |
JP6460252B2 (en) | Mass spectrometry data processor for qualitative analysis | |
JP6737396B2 (en) | Mass spectrometer and chromatograph mass spectrometer | |
JP7173293B2 (en) | Chromatograph mass spectrometer | |
JP2001249114A (en) | Mass spectrometry and mass spectrometer | |
JP6149947B2 (en) | Mass spectrometer | |
JPWO2015079529A1 (en) | Mass spectrometry method, mass spectrometer, and mass spectrometry data processing program | |
JP5510011B2 (en) | Mass spectrometry method and mass spectrometer | |
JP6750687B2 (en) | Mass spectrometer | |
WO2018163926A1 (en) | Tandem mass spectrometry device and program for same device | |
JP7088306B2 (en) | Chromatograph device | |
JP5786703B2 (en) | Data processor for chromatograph mass spectrometer | |
JP6525103B2 (en) | Mass spectrometer | |
JP7070692B2 (en) | Mass spectrometer and mass spectrometry method | |
WO2012108034A1 (en) | Mass spectrometer | |
JP7416232B2 (en) | Chromatograph mass spectrometry data processing method, chromatograph mass spectrometer, and program for chromatograph mass spectrometry data processing | |
WO2023119427A1 (en) | Chromatograph mass spectrometry device | |
JP7400698B2 (en) | chromatography mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14876570 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015555859 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14876570 Country of ref document: EP Kind code of ref document: A1 |