WO2023119427A1 - Chromatograph mass spectrometry device - Google Patents

Chromatograph mass spectrometry device Download PDF

Info

Publication number
WO2023119427A1
WO2023119427A1 PCT/JP2021/047356 JP2021047356W WO2023119427A1 WO 2023119427 A1 WO2023119427 A1 WO 2023119427A1 JP 2021047356 W JP2021047356 W JP 2021047356W WO 2023119427 A1 WO2023119427 A1 WO 2023119427A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
compound
unit
ion
database
Prior art date
Application number
PCT/JP2021/047356
Other languages
French (fr)
Japanese (ja)
Inventor
春菜 川満
和広 河村
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2021/047356 priority Critical patent/WO2023119427A1/en
Publication of WO2023119427A1 publication Critical patent/WO2023119427A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a chromatograph mass spectrometer that combines a chromatograph such as a gas chromatograph, liquid chromatograph, or supercritical fluid chromatograph with a mass spectrometer.
  • GC-MS gas chromatograph-mass spectrometers
  • LC-MS liquid chromatograph-mass spectrometers
  • GC-MS gas chromatograph-mass spectrometers
  • SFC-MS supercritical fluid chromatograph-mass spectrometer
  • the measured mass spectrum at the retention time near the peak top of the chromatographic peak detected in the total ion chromatogram (TIC) and the spectral library Compare the pattern with the standard mass spectrum recorded in , and identify the compound by determining that the similarity is greater than or equal to a predetermined threshold or indicates a high value (see Patent Document 1, etc.) .
  • This method is called non-targeted analysis because the compound to be analyzed is not specified in advance.
  • Well-known spectral libraries for GC/MS include the spectral library published by the National Institute of Standards and Technology (NIST) in the United States and the Wiley Registry provided by Wiley in the United States. .
  • monitor ions quantitative ions in the case of quantitative analysis
  • m/z mass-to-charge ratio
  • retention GC/MS analysis is performed using an analysis method prepared in advance based on time (indicator) and the like, and the compound is identified from the analysis results. This technique is called targeted analysis.
  • peaks can be detected from the extracted ion chromatogram (sometimes called "mass chromatogram" in common usage) at the m/z value of the monitor ion. Therefore, even minute peaks that are buried in adjacent peaks on the TIC can be accurately and efficiently detected to identify the compound (see Non-Patent Document 1, etc.).
  • a multi-component simultaneous analysis method that searches for many types of compounds (500 to 1000 or more compounds) as target compounds while taking advantage of the high identification accuracy and efficiency of such target analysis is known as wide target analysis. It is In recent years, wide-target analysis has attracted attention as a very powerful technique in metabolomics analysis and the like.
  • the present invention has been made in view of the above problems, and its object is to reduce the burden of complicated work on the user in target analysis for a large number of compounds, and to analyze a large number of compounds at a high level.
  • An object of the present invention is to provide a chromatographic mass spectrometer capable of identifying with high accuracy.
  • One aspect of the chromatograph mass spectrometer is a measurement unit including a chromatograph unit that separates the compounds in the sample in the time direction, and a mass spectrometry unit that detects each separated compound;
  • a mass spectrum of the target compound is obtained from a standard mass spectrum and a spectrum library containing compound information including retention time or retention index, and the intensity of the mass peak observed in the mass spectrum and the mass corresponding to the mass peak an ion extraction unit for extracting monitor ions for each target compound using the charge ratio value;
  • a database creating unit for registering in a database compound information of the target compound and mass-to-charge ratio values of monitor ions extracted by the ion extracting unit;
  • a compound designation reception unit that receives designation by a user of a target compound to be analyzed among the compounds registered in the database;
  • a method creation unit that creates an analysis method for the target compound using registered information in the database;
  • a control unit that controls the operation of the measurement unit so as to perform chromatographic mass spectrometry
  • the user himself/herself can perform the analysis of the standard sample containing the target compound, or extract the appropriate monitor ion from the mass spectrum obtained for the target compound.
  • the mass-to-charge ratios of monitor ions suitable for compound identification are automatically extracted and registered in a database for analysis.
  • FIG. 1 is a schematic configuration diagram of a GC-MS system that is an embodiment of the present invention
  • FIG. 4 is a flow chart showing an example of the flow of compound identification in the GC-MS system of the present embodiment.
  • FIG. 3 is a flowchart showing an example of extraction processing of monitor ions and the like in FIG. 2;
  • FIG. FIG. 4 is an explanatory diagram of a procedure for registering a database for target analysis in the GC-MS system of the present embodiment;
  • FIG. 2 is an explanatory diagram of registered contents of a method file in the GC-MS system of the present embodiment;
  • FIG. 4 is a diagram showing an example of the relationship between mass spectra, monitor ions, and reference ions;
  • FIG. 4 is a diagram showing an example of a monitor ion extraction condition setting screen in the GC-MS system of the present embodiment;
  • FIG. 1 is a schematic configuration diagram of the GC-MS system of this embodiment.
  • This GC-MS system comprises a measurement section 1 including a GC section 1A and an MS section 1B, a control/processing section 2, an input section 3, a display section 4, and a spectrum library 5.
  • the GC unit 1A includes a sample vaporization chamber 10 for vaporizing a small amount of liquid sample, a microsyringe 11 for injecting the liquid sample into the sample vaporization chamber 10, a column 13 for separating a plurality of compounds in the sample in the time direction, and a column oven 12 for controlling the temperature of the column 13 .
  • the sample introduction part to the column 13 can be changed to one based on an appropriate method such as the headspace method.
  • the MS unit 1B has an ion source 15 that ionizes a target compound by an ionization method such as electron ionization (EI) and an ion lens that converges the generated ions in a chamber 14 that is evacuated by a vacuum pump (not shown).
  • EI electron ionization
  • a quadrupole mass filter 17 that separates ions according to the mass-to-charge ratio
  • a detection unit 18 that outputs a detection signal according to the amount of ions that have arrived, and an analog-to-digital converter that converts the detection signal into digital data.
  • ADC analog-to-digital converter
  • the control/processing unit 2 mainly has a function of controlling the operation of the measuring unit 1 and a function of processing the data obtained by the measuring unit 1.
  • the control/processing unit 2 includes, as functional blocks, a library reading unit 20, an ion extraction unit 21, a database creation unit 22, a target analysis database 23, an analysis method creation unit 24, an analysis method storage unit 25, an analysis control unit 26, A data storage unit 27 and a compound identification unit 28 are included.
  • the substance of the control/processing unit 2 is a computer such as a personal computer, and the function of each functional block can be realized by executing control/processing software pre-installed in the computer on the computer.
  • the input unit 3 is a keyboard or pointing device (such as a mouse) attached to the computer
  • the display unit 4 is a display monitor attached to the computer.
  • Spectral Library 5 is a kind of database that contains compound information for a large number of compounds. This compound information includes compound name, CAS registry number, molecular weight, molecular formula, structural formula, retention index (or retention time), and mass spectrum. As this spectral library 5, widely publicized spectral libraries such as those provided by NIST in the United States and Wiley in the United States can be used. It can be provided or created by the user himself.
  • the spectrum library 5 is stored, for example, in an external server or the like that is separate from this system, that is, not included in this system, and this system accesses this server under legitimate authority, It can also be configured to download only necessary information from the server.
  • FIG. 2 is a flow chart showing an example of the flow of compound identification.
  • FIG. 3 is a flowchart showing an example of extraction processing of monitor ions and the like in FIG.
  • FIG. 4 is an explanatory diagram of the registration procedure of the target analysis database.
  • FIG. 5 is an explanatory diagram of the registered contents of the method file.
  • FIG. 6 is a diagram showing an example of the relationship between mass spectra, monitor ions, and reference ions.
  • This target analysis database is created as follows.
  • step S1 The user first specifies the spectrum library 5 to be used for database creation through the input unit 3 (step S1). However, if only one spectrum library 5 is prepared, step S1 can be omitted.
  • the user determines the spectral library 5 from which the compound information is collected, and instructs the input unit 3 to read the compound information from the library 5 .
  • the library reading unit 20 reads compound information such as the compound name, mass spectrum, retention time (or retention index) from the spectral library 5 (step S2).
  • the spectral library 5 contains compound information about a large number of compounds, but it is possible to collectively obtain compound information about all of the compounds, or to obtain specific information selected by the user. It may also be possible to obtain compound information only for a plurality of compounds of the above, or compound information only for a compound selected according to conditions specified by the user.
  • the database creation unit 22 registers the read compound information in the target analysis database 23 (step S3).
  • FIG. 4A shows an example of the target analysis database 23 in which compound information has not yet been registered.
  • the registration items are compound name, retention index, retention time, m/z value of monitor ion, m/z value of reference ion, and mass spectrum. Furthermore, registration items such as molecular formula may be added.
  • the read compound information is input to each registration item of compound name, retention index, retention time, and mass spectrum.
  • the retention time can be calculated from the retention index. At this point the m/z values of the monitor and reference ions are unknown.
  • the ion extraction unit 21 executes a process of extracting monitor ions and reference ions from the mass spectrum registered for each compound as described above (step S4). This extraction processing will be described later in detail.
  • the database creation unit 22 registers m/z values of monitor ions and reference ions extracted for each compound in the target analysis database 23 (step S5).
  • the process of step S5 is executed, the m/z values of the extracted monitor ions and reference ions are registered in the target analysis database 23 as shown in FIG. Complete.
  • the analysis method creation unit 24 displays the target analysis database 23 as shown in FIG. 4C on the screen of the display unit 4 in table format. do. The user thereby confirms the compound name, etc., and selects the target compound to be identified (step S6).
  • FIG. 5A shows a state in which two compounds are selected as target compounds.
  • the analysis method creation unit 24 stores registration information such as the retention index of the compound selected as the target compound, m/z values of monitor ions and reference ions, etc. in the database 23 for target analysis. and based on the registered information, a method file of an analysis method including measurement conditions for GC/MS analysis and analysis conditions for each target compound is created (step S7).
  • the measurement conditions include, for example, the carrier gas flow rate in the GC section 1A, the temperature program of the column oven 12, the sample injection amount, and the m/z range of scan measurement in the MS section 1B.
  • the analysis conditions are basically the same as the information registered in the target analysis database 23, as shown in FIG. Including mass spectrum etc.
  • the m/z range of the scan measurement can be determined to cover the m/z values of the monitor and reference ions for all target compounds.
  • the created method file is stored in the analysis method storage unit 25 .
  • the analysis control unit 26 controls the operation of the measurement unit 1 according to the measurement conditions included in the created method file.
  • the GC/MS analysis of the target sample is performed in the measuring section 1 (step S8). That is, in the GC section 1A, the microsyringe 11 drops a predetermined amount of the target sample into the sample vaporization chamber 10 at a predetermined timing. The dropped target sample is vaporized in the sample vaporization chamber 10 and sent to the column 13 along with the carrier gas flow. Various compounds contained in the target sample are temporally separated while passing through the column 13 and introduced into the ion source 15 of the MS section 1B.
  • a compound introduced into the ion source 15 is ionized, and the generated ions are introduced into the quadrupole mass filter 17 through the ion lens 16 .
  • quadrupole mass filter 17 operates to repeat scanning measurements over a predetermined range of m/z values. In this scan measurement, ions that have passed through the quadrupole mass filter 17 reach the detector 18, and the detector 18 outputs an ion intensity signal corresponding to the amount of ions that have arrived as a detection signal. Data obtained by digitizing this detection signal is sent to the control/processing unit 2 and stored in the data storage unit 27 .
  • the compound identification unit 28 performs processing to identify each target compound based on the collected data. Specifically, the compound identification unit 28 first acquires ion intensity data at m/z values of monitor ions for each target compound, and creates an extracted ion chromatogram. This extracted ion chromatogram may be a waveform only for a predetermined time range including the retention time of the target compound. Then, the compound identification unit 28 detects peaks in the created extracted ion chromatogram, and acquires a measured mass spectrum at the retention time of the detected peak top. For example, if no significant chromatographic peak is detected in the extracted ion chromatogram, it is determined that the target compound is not contained.
  • the compound identification unit 28 acquires the mass spectrum of the target compound registered in the method file as a reference mass spectrum, and determines the similarity of the pattern between the reference mass spectrum and the measured mass spectrum. Ask for degrees. A known method may be used to calculate this degree of similarity. Then, it is determined whether or not the degree of similarity is greater than or equal to a predetermined threshold, and if the degree of similarity is greater than or equal to the threshold, it is determined that the target compound is contained in the sample. Conversely, if the degree of similarity is less than the threshold, it is determined that the target compound is not contained in the sample. In this way, it is possible to confirm whether or not all target compounds are contained in the sample, that is, to identify the target compounds (step S9).
  • the procedure for compound identification by the compound identification unit 28 can be changed as appropriate. For example, when an extracted ion chromatogram is created for a certain target compound and no peak is detected near the retention time of the target compound in the extracted ion chromatogram, the compound exists, but other compounds overlap. There is also a possibility that peaks cannot be detected due to Therefore, if the peak could not be detected, create an extracted ion chromatogram at the m/z value of the reference ion of the target compound, and perform compound identification using the peak detected in the extracted ion chromatogram. may
  • the ratio of the signal intensity of the monitor ion to the signal intensity of the reference ion in the measured mass spectrum may be performed by also using the ion ratio.
  • FIG. 6 The ion extractor 21 first detects mass peaks from the mass spectrum (step S11), and obtains the intensity value of the mass peak indicating the maximum intensity (step S12).
  • the mass peak indicated by arrow P is the mass peak showing the maximum intensity, and its intensity value is Imax.
  • the ion extraction unit 21 extracts mass peaks whose intensity value is 10% or more of the maximum intensity value among all the mass peaks detected in step S11 (step S13).
  • This numerical value of "10%" is an example, and can be changed as appropriate.
  • the intensity value of Imax ⁇ 0.1 is indicated by the dashed-dotted line A, and the mass peaks exceeding the peak intensity are indicated by ⁇ marks.
  • the ion extraction unit 21 selects the mass peak with the largest m/z value as a monitor ion from among the mass peaks extracted in step S13 (step S14). Furthermore, among the mass peaks extracted in step S13, a predetermined number of mass peaks having an m/z value smaller than that of the monitor ion are selected as reference ions (step S15). Assuming that the number of reference ions is two, in the example of FIG. 6, the mass peak indicated by arrow M is selected as the monitor ion, and the mass peaks indicated by arrows R1 and R2 are selected as reference ions.
  • steps S12 and S13 mass peaks with a certain intensity value or more are selected as candidates for monitor ions and reference ions because ions with relatively high detection sensitivity are selected as monitor ions and reference ions.
  • steps S14 and S15 it is possible to select monitor ions and reference ions that are well-balanced between high detection sensitivity and compound selectivity.
  • the procedure is substantially replaced with the above treatment, focusing only on mass peaks with m/z values above a certain level, such as m/z 50 or higher, and selecting mass peaks with high intensity values from among them to monitor ions. and reference ions may be determined.
  • m/z values above a certain level
  • the user may be allowed to set the conditions for the ion extractor 21 to extract monitor ions from the mass spectrum.
  • An example will be described.
  • the ion extraction unit 21 displays a monitor ion extraction condition setting screen 6 on the screen of the display unit 4, an example of which is shown in FIG.
  • the user inputs two parameters, "range of m/z" and “range of relative intensity” in this monitor ion extraction condition setting screen 6, and presses the OK button.
  • the m/z value range for selecting monitor ions can be limited, and the intensity value threshold for selecting mass peaks can be appropriately determined.
  • m/z values of monitor ions and reference ions used for compound identification are determined based on the mass spectrum of each compound recorded in the spectrum library. , can be determined without substantial burden on the user.
  • the monitor ion thus determined for each compound is unlikely to overlap with other compounds and is detected with high sensitivity, so that the compound can be identified with high accuracy. .
  • the MS section 1B is a single-type mass spectrometer, but the MS section 1B is a triple quadrupole mass spectrometer or a quadrupole-time-of-flight mass spectrometer.
  • the m/z values of monitor ions and reference ions are replaced by a combination of precursor ion m/z values and product ion m/z values (that is, MRM transitions). be done.
  • the scan measurement was repeatedly performed in the MS part 1B, but selective ion monitoring (SIM) measurement targeting monitor ions and reference ions may be performed.
  • SIM selective ion monitoring
  • the compound when identifying a compound, the compound may be identified based on other information such as the confirming ion ratio, instead of the mass spectrum similarity.
  • the above embodiment is an example in which the present invention is applied to GC-MS, but the present invention can also be applied to LC-MS and SFC-MS.
  • the above-described processing for extracting monitor ions and the like from the mass spectrum is based on the premise that many fragment ions are generated during ionization of the mass spectrometer. Therefore, regardless of whether the mass spectrometer is preceded by GC, LC, or SFC, the ion source of the mass spectrometer should be an ionization method that tends to generate fragments (in other words, promote fragmentation). is preferred.
  • One aspect of the chromatograph mass spectrometer according to the present invention is a measurement unit including a chromatograph unit that separates the compounds in the sample in the time direction, and a mass spectrometry unit that detects each separated compound;
  • a mass spectrum of the target compound is obtained from a standard mass spectrum and a spectrum library containing compound information including retention time or retention index, and the intensity of the mass peak observed in the mass spectrum and the mass corresponding to the mass peak an ion extraction unit for extracting monitor ions for each target compound using the charge ratio value;
  • a database creating unit for registering in a database compound information of the target compound and mass-to-charge ratio values of monitor ions extracted by the ion extracting unit;
  • a compound designation reception unit that receives designation by a user of a target compound to be analyzed among the compounds registered in the database;
  • a method creation unit that creates an analysis method for the target compound using registered information in the database;
  • a control unit that controls the operation of the measurement unit so as to perform chromatographic
  • the user himself/herself analyzes a standard sample containing the target compound and extracts an appropriate monitor ion from the mass spectrum obtained for the target compound.
  • the mass-to-charge ratio of monitor ions suitable for identifying the target compound is automatically extracted and registered in the database for analysis.
  • the compound identification unit creates an extracted ion chromatogram corresponding to monitor ions for each target compound, and in the extracted ion chromatogram, the retention index or Compounds may be identified by comparing mass spectra in peaks detected using retention times with mass spectra contained in the analytical method or registration information in the database.
  • the chromatograph-mass spectrometer described in Item 1 it is possible to acquire monitor ions that have little overlap in mass-to-charge ratio values with monitor ions of other compounds. Therefore, in the extracted ion chromatogram created by the chromatograph mass spectrometer according to item 2, the chromatographic peak corresponding to the target compound contained in a trace amount in the sample can also be observed well, and the target compound A compound can be identified by using an actually measured mass spectrum in which the derived ions are sufficiently observed. Accordingly, compound identification can be performed with high accuracy.
  • the ion extraction unit extracts peaks having a predetermined intensity value or more based on the intensity value of the peak showing the maximum intensity in the mass spectrum.
  • the mass-to-charge ratio value corresponding to the peak having the largest mass-to-charge ratio value can be used as the mass-to-charge ratio value of the monitor ion.
  • the detection sensitivity is sufficiently high, and the possibility that the mass-to-charge ratio overlaps with ions derived from other compounds is small, that is, the selectivity of the compound is high. monitor ion can be selected. As a result, it is possible to improve the accuracy of compound identification when using this monitor ion to identify the compound.
  • the user appropriately sets the conditions of the intensity range and the mass-to-charge ratio value range, so that more appropriate monitoring is performed in terms of both detection sensitivity and compound selectivity It is possible to select ions.
  • the mass spectrometry unit may include an ion source based on an ionization method that promotes ion fragmentation.
  • the ionization method that promotes ion fragmentation is, for example, the electron ionization method.
  • fragment ion peaks derived from a plurality of compounds tend to overlap in regions where the mass-to-charge ratio is relatively small in the mass spectrum. Ion peaks tend to be observed without overlapping. Therefore, according to the chromatograph mass spectrometer described in item 5, as described above, the mass-to-charge ratio value corresponding to the peak having a relatively large mass-to-charge ratio value is selected as the mass-to-charge ratio value of the monitor ion. At times, the monitor ion can be less likely to overlap with other compounds.
  • the ion extractor corresponds to the intensity of the mass peak observed in the mass spectrum of the target compound and the mass peak. extracting one or more reference ions in addition to the monitor ion for each target compound using the mass-to-charge ratio value,
  • the database creation unit registers the mass-to-charge ratio value of the reference ion in the database,
  • the compound identification section may use the ratio of the intensity at the mass-to-charge ratio value of the monitor ion and the intensity at the mass-to-charge ratio value of the reference ion to identify the compound.
  • chromatograph mass spectrometer for example, when overlapping of other compounds is suspected in monitor ions, an extracted ion chromatogram of reference ions is created instead of monitor ions, and the chromatogram can be used for compound identification. Accordingly, compound identification can be performed more reliably.

Abstract

A chromatograph mass spectrometry device according to one aspect of the present invention comprises: a measuring unit (1) including a chromatograph unit and a mass spectrometry unit; an ion extracting unit (21) for acquiring a mass spectrum of a compound of interest from a spectrum library (5) in which a standard mass spectrum and compound information including a holding time or a holding indicator are recorded, and for using an intensity of a mass peak observed in the mass spectrum and an m/z value corresponding to the mass peak to extract a monitor ion for each compound of interest; a database creating unit (22) for registering the compound information of the compound of interest and the m/z value of the monitor ion in a database (23); a compound specification accepting unit (24) for accepting a specification, from a user, relating to a target compound to be analyzed, among the compounds registered in the database; a method creating unit (24) for using the registration information in the database to create an analysis method for the target compound; a control unit (26) for controlling an operation of the measuring unit so as to carry out an analysis of a specimen of interest, in accordance with the analysis method; and a compound identifying unit (28) for using an analysis result for the specimen of interest, and the analysis method or the registration information in the database, to identify a compound in the specimen of interest.

Description

クロマトグラフ質量分析装置Chromatograph mass spectrometer
 本発明は、ガスクロマトグラフ、液体クロマトグラフ、超臨界流体クロマトグラフ等のクロマトグラフと質量分析装置とを組み合わせたクロマトグラフ質量分析装置に関する。 The present invention relates to a chromatograph mass spectrometer that combines a chromatograph such as a gas chromatograph, liquid chromatograph, or supercritical fluid chromatograph with a mass spectrometer.
 近年、食品中の残留農薬検査や環境水中の汚染物質検査、或いは生物試料中のメタボロミクス解析など様々な分野において、ガスクロマトグラフ質量分析装置(GC-MS)や液体クロマトグラフ質量分析装置(LC-MS)などのクロマトグラフ質量分析装置が広く使用されている。以下、主としてGC-MSを例に挙げて説明するが、LC-MSや超臨界流体クロマトグラフ質量分析装置(SFC-MS)等でも事情が同じであることは後述の説明から明らかである。 In recent years, gas chromatograph-mass spectrometers (GC-MS) and liquid chromatograph-mass spectrometers (LC-MS) have been used in various fields such as residual pesticide testing in food, contaminant testing in environmental water, and metabolomics analysis in biological samples. ) and other chromatographic mass spectrometers are widely used. Hereinafter, GC-MS will be mainly described as an example, but it is clear from the description below that the situation is the same for LC-MS, supercritical fluid chromatograph-mass spectrometer (SFC-MS), and the like.
 GC-MSを用いて試料中の未知化合物を同定する際には、一般に、トータルイオンクロマトグラム(TIC)において検出されたクロマトピークのピークトップ付近の保持時間における実測のマススペクトルと、スペクトルライブラリーに収録されている標準的なマススペクトルとのパターンを比較し、その類似度が所定の閾値以上であること又は高い値を示すことを判定することによって化合物を同定する(特許文献1等参照)。この手法は、分析対象である化合物を事前に指定しないことから、ノンターゲット分析と呼ばれる。GC/MS用のスペクトルライブラリーとしては、米国NIST(National Institute of Standards and Technology)が公開しているスペクトルライブラリー、米国ワイリー(Wiley)社が提供しているWiley Registryなどがよく知られている。 When identifying an unknown compound in a sample using GC-MS, generally, the measured mass spectrum at the retention time near the peak top of the chromatographic peak detected in the total ion chromatogram (TIC) and the spectral library Compare the pattern with the standard mass spectrum recorded in , and identify the compound by determining that the similarity is greater than or equal to a predetermined threshold or indicates a high value (see Patent Document 1, etc.) . This method is called non-targeted analysis because the compound to be analyzed is not specified in advance. Well-known spectral libraries for GC/MS include the spectral library published by the National Institute of Standards and Technology (NIST) in the United States and the Wiley Registry provided by Wiley in the United States. .
 ノンターゲット分析では、TICにおいて微小なピークが隣接するピークに埋もれている場合、この微小なピークに対応する化合物を同定することは困難である。このような重なり合った複数のピークを分離するために、デコンボリューション等の解析処理が用いられる場合もある。しかしながら、デコンボリューションではノイズに由来するピークも含めて大量のピークが抽出されるため、その中から試料に実際に含まれる化合物由来のピークを見つける精査の作業に多大な労力が必要である。また、試料に含まれる化合物の数が多い場合には、デコンボリューションを適用したとしても十分な精度で以てピークを抽出することは困難である。 In non-targeted analysis, it is difficult to identify compounds corresponding to minute peaks in TIC when the minute peak is buried in adjacent peaks. Analytical processing such as deconvolution may be used to separate such overlapping peaks. However, since deconvolution extracts a large number of peaks, including peaks derived from noise, a great deal of effort is required to find peaks derived from compounds actually contained in the sample. Moreover, when the number of compounds contained in the sample is large, it is difficult to extract peaks with sufficient accuracy even if deconvolution is applied.
 一方、試料に含まれているか否かを確認したい化合物、つまりターゲット化合物が決まっている場合には、その化合物に由来する代表的なイオンであるモニターイオン(定量分析の場合には「定量イオン」と呼ばれることが多い)の質量電荷比(m/z:厳密には斜体字の「m/z」であるが、本明細書では「m/z」又は「質量電荷比」という)値や保持時間(指標)などに基いて予め作成された分析メソッドを用いてGC/MS分析を実行し、その分析結果から当該化合物を同定する。この手法はターゲット分析と呼ばれる。 On the other hand, if a compound to be checked for inclusion in a sample, that is, a target compound, is determined, monitor ions (quantitative ions in the case of quantitative analysis), which are representative ions derived from the compound, are used. The mass-to-charge ratio (m/z: strictly speaking, italicized “m/z”, but referred to herein as “m/z” or “mass-to-charge ratio”) value and retention GC/MS analysis is performed using an analysis method prepared in advance based on time (indicator) and the like, and the compound is identified from the analysis results. This technique is called targeted analysis.
 ターゲット分析では、モニターイオンのm/z値における抽出イオンクロマトグラム(慣用的に「マスクロマトグラム」ということもある)からピークを検出することができる。そのため、TIC上では隣接ピークに埋もれてしまうような微小なピークであっても、精度よく且つ効率的にピークを検出して化合物を同定することができる(非特許文献1等参照)。特に、こうしたターゲット分析の同定精度の高さと効率性とを活かしながら、多種類の化合物(化合物数が500~1000以上)をターゲット化合物として探索する多成分一斉分析の手法は、ワイドターゲット分析として知られている。近年、ワイドターゲット分析は、メタボロミクス解析などにおいて非常に有力な手法として注目されている。 In target analysis, peaks can be detected from the extracted ion chromatogram (sometimes called "mass chromatogram" in common usage) at the m/z value of the monitor ion. Therefore, even minute peaks that are buried in adjacent peaks on the TIC can be accurately and efficiently detected to identify the compound (see Non-Patent Document 1, etc.). In particular, a multi-component simultaneous analysis method that searches for many types of compounds (500 to 1000 or more compounds) as target compounds while taking advantage of the high identification accuracy and efficiency of such target analysis is known as wide target analysis. It is In recent years, wide-target analysis has attracted attention as a very powerful technique in metabolomics analysis and the like.
国際公開第2018/138901号WO2018/138901
 GC-MSを用いてターゲット分析を行うには、分析に先立ってターゲット分析用の分析メソッドを作成しておく必要がある。そのためには、ターゲット化合物が含まれる標準試料を分析することで得られたマススペクトルや、ターゲット化合物の化合物情報が収録されているライブラリーから得られるマススペクトルを利用して、化合物毎にモニターイオンやリファレンスイオン(確認イオンとも呼ばれる)のm/z値をユーザー自身が決定する必要がある。しかしながら、ワイドターゲット分析のようにターゲット化合物の数が膨大である場合、こうした作業はかなり面倒であり、多大な労力とコストを要する。また、一般には、マススペクトルにおいて最大の信号強度を示すピークに対応するイオンがモニターイオンとして選択されることが多いが、そうした方法では、モニターイオンやリファレンスイオンのm/z値が小さい場合、隣接化合物のイオンと重なることも多い。その結果、化合物を正確に同定できないことがある。 In order to perform target analysis using GC-MS, it is necessary to create an analysis method for target analysis prior to analysis. For this purpose, mass spectra obtained by analyzing standard samples containing target compounds and mass spectra obtained from a library containing compound information of target compounds are used to monitor ions for each compound. and the m/z value of the reference ion (also called confirming ion) must be determined by the user. However, when the number of target compounds is enormous as in wide target analysis, such work is quite troublesome and requires a great deal of labor and cost. Also, in general, the ion corresponding to the peak showing the maximum signal intensity in the mass spectrum is often selected as the monitor ion. It often overlaps with the ions of compounds. As a result, compounds may not be identified accurately.
 本発明は上記課題に鑑みて成されたものであり、その目的とするところは、多数の化合物を対象とするターゲット分析における、ユーザーによる煩雑な作業の負担を軽減しながら、多数の化合物を高い精度で以て同定することができるクロマトグラフ質量分析装置を提供することにある。 The present invention has been made in view of the above problems, and its object is to reduce the burden of complicated work on the user in target analysis for a large number of compounds, and to analyze a large number of compounds at a high level. An object of the present invention is to provide a chromatographic mass spectrometer capable of identifying with high accuracy.
 本発明に係るクロマトグラフ質量分析装置の一態様は、
 試料中の化合物を時間方向に分離するクロマトグラフ部と、分離された各化合物をそれぞれ検出する質量分析部と、を含む測定部と、
 標準的なマススペクトル及び保持時間又は保持指標を含む化合物情報が収録されたスペクトルライブラリーから、目的化合物のマススペクトルを取得し、該マススペクトルにおいて観測されるマスピークの強度と該マスピークに対応する質量電荷比値とを利用して、目的化合物毎にモニターイオンを抽出するイオン抽出部と、
 前記目的化合物の化合物情報、及び、前記イオン抽出部により抽出されたモニターイオンの質量電荷比値を、データベースに登録するデータベース作成部と、
 前記データベースに登録されている化合物の中で、分析の対象とするターゲット化合物についてのユーザーによる指定を受け付ける化合物指定受付部と、
 前記ターゲット化合物について、前記データベースにおける登録情報を利用して分析メソッドを作成するメソッド作成部と、
 前記分析メソッドに従って、目的試料に対するクロマトグラフ質量分析を実行するように前記測定部の動作を制御する制御部と、
 前記目的試料に対するクロマトグラフ質量分析結果と、前記分析メソッド又は前記データベースにおける登録情報とを利用して、前記目的試料中の化合物を同定する化合物同定部と、
 を備える。
One aspect of the chromatograph mass spectrometer according to the present invention is
a measurement unit including a chromatograph unit that separates the compounds in the sample in the time direction, and a mass spectrometry unit that detects each separated compound;
A mass spectrum of the target compound is obtained from a standard mass spectrum and a spectrum library containing compound information including retention time or retention index, and the intensity of the mass peak observed in the mass spectrum and the mass corresponding to the mass peak an ion extraction unit for extracting monitor ions for each target compound using the charge ratio value;
a database creating unit for registering in a database compound information of the target compound and mass-to-charge ratio values of monitor ions extracted by the ion extracting unit;
a compound designation reception unit that receives designation by a user of a target compound to be analyzed among the compounds registered in the database;
a method creation unit that creates an analysis method for the target compound using registered information in the database;
a control unit that controls the operation of the measurement unit so as to perform chromatographic mass spectrometry on a target sample according to the analysis method;
A compound identification unit that identifies a compound in the target sample by using the chromatographic mass spectrometry result for the target sample and the analysis method or registered information in the database;
Prepare.
 本発明の上記態様では、ユーザー自身が、目的化合物が含まれる標準試料の分析を実行したり、目的化合物について得られたマススペクトルから適切なモニターイオンを抽出したりする作業を行うことなく、目的化合物を同定するのに適切なモニターイオンの質量電荷比が自動的に抽出され、分析用のデータベースに登録される。これにより、本発明の上記態様のクロマトグラフ質量分析装置によれば、多数の化合物を対象とするターゲット分析における、ユーザーによる煩雑な作業の負担を軽減しながら、多数の化合物を高い精度で以て同定することができる。 In the above aspect of the present invention, the user himself/herself can perform the analysis of the standard sample containing the target compound, or extract the appropriate monitor ion from the mass spectrum obtained for the target compound. The mass-to-charge ratios of monitor ions suitable for compound identification are automatically extracted and registered in a database for analysis. As a result, according to the chromatograph mass spectrometer of the above aspect of the present invention, a large number of compounds can be analyzed with high accuracy while reducing the burden of complicated work on the user in target analysis for a large number of compounds. can be identified.
本発明の一実施形態であるGC-MSシステムの概略構成図。1 is a schematic configuration diagram of a GC-MS system that is an embodiment of the present invention; FIG. 本実施形態のGC-MSシステムにおける化合物同定の流れの一例を示すフローチャート。4 is a flow chart showing an example of the flow of compound identification in the GC-MS system of the present embodiment. 図2中のモニターイオン等の抽出処理の一例を示すフローチャート。FIG. 3 is a flowchart showing an example of extraction processing of monitor ions and the like in FIG. 2; FIG. 本実施形態のGC-MSシステムにおけるターゲット分析用のデータベースの登録手順の説明図。FIG. 4 is an explanatory diagram of a procedure for registering a database for target analysis in the GC-MS system of the present embodiment; 本実施形態のGC-MSシステムにおけるメソッドファイルの登録内容の説明図。FIG. 2 is an explanatory diagram of registered contents of a method file in the GC-MS system of the present embodiment; マススペクトルとモニターイオン及びリファレンスイオンとの関係の一例を示す図。FIG. 4 is a diagram showing an example of the relationship between mass spectra, monitor ions, and reference ions; 本実施形態のGC-MSシステムにおけるモニターイオン抽出条件設定画面の一例を示す図。FIG. 4 is a diagram showing an example of a monitor ion extraction condition setting screen in the GC-MS system of the present embodiment;
  [一実施形態であるGC-MSシステムの構成]
 本発明の一実施形態であるGC-MSシステムについて、添付図面を参照して詳述する。
 図1は、本実施形態のGC-MSシステムの概略構成図である。
[Configuration of GC-MS system as one embodiment]
A GC-MS system that is one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of the GC-MS system of this embodiment.
 このGC-MSシステムは、GC部1AとMS部1Bを含む測定部1と、制御・処理部2と、入力部3と、表示部4と、スペクトルライブラリー5と、を備える。 This GC-MS system comprises a measurement section 1 including a GC section 1A and an MS section 1B, a control/processing section 2, an input section 3, a display section 4, and a spectrum library 5.
 GC部1Aは、微量の液体試料を気化させる試料気化室10と、試料気化室10中に液体試料を注入するマイクロシリンジ11と、試料中の複数の化合物を時間方向に分離するカラム13と、カラム13を温調するカラムオーブン12と、を含む。なお、カラム13への試料導入部は、ヘッドスペース法などの適宜の方式によるものに変更することもできる。 The GC unit 1A includes a sample vaporization chamber 10 for vaporizing a small amount of liquid sample, a microsyringe 11 for injecting the liquid sample into the sample vaporization chamber 10, a column 13 for separating a plurality of compounds in the sample in the time direction, and a column oven 12 for controlling the temperature of the column 13 . Note that the sample introduction part to the column 13 can be changed to one based on an appropriate method such as the headspace method.
 MS部1Bは、図示しない真空ポンプにより真空排気されるチャンバー14の内部に、目的化合物を電子イオン化(EI)法などのイオン化法によりイオン化するイオン源15と、生成されたイオンを収束させるイオンレンズ16と、イオンを質量電荷比に応じて分離する四重極マスフィルター17と、到達したイオンの量に応じた検出信号を出力する検出部18と、検出信号をデジタルデータに変換するアナログデジタル変換部(ADC)19と、を含む。ここでは、質量分離器として四重極マスフィルターを用いているが、例えば飛行時間型質量分離器、イオントラップなどの、他の方式の質量分離器を用いてもよい。 The MS unit 1B has an ion source 15 that ionizes a target compound by an ionization method such as electron ionization (EI) and an ion lens that converges the generated ions in a chamber 14 that is evacuated by a vacuum pump (not shown). 16, a quadrupole mass filter 17 that separates ions according to the mass-to-charge ratio, a detection unit 18 that outputs a detection signal according to the amount of ions that have arrived, and an analog-to-digital converter that converts the detection signal into digital data. a section (ADC) 19; Here, a quadrupole mass filter is used as the mass separator, but other types of mass separators such as time-of-flight mass separators and ion traps may be used.
 制御・処理部2は、主として、測定部1の動作を制御する機能と、測定部1で得られたデータを処理する機能と、を有する。制御・処理部2は、機能ブロックとして、ライブラリー読込み部20、イオン抽出部21、データベース作成部22、ターゲット分析用データベース23、分析メソッド作成部24、分析メソッド記憶部25、分析制御部26、データ格納部27、化合物同定部28、を含む。 The control/processing unit 2 mainly has a function of controlling the operation of the measuring unit 1 and a function of processing the data obtained by the measuring unit 1. The control/processing unit 2 includes, as functional blocks, a library reading unit 20, an ion extraction unit 21, a database creation unit 22, a target analysis database 23, an analysis method creation unit 24, an analysis method storage unit 25, an analysis control unit 26, A data storage unit 27 and a compound identification unit 28 are included.
 制御・処理部2の実体はパーソナルコンピューター等のコンピューターであり、該コンピューターに予めインストールされた制御・処理ソフトウェアを該コンピューター上で実行することにより各機能ブロックの機能を実現する構成とすることができる。この場合、入力部3はコンピューターに付設されたキーボードやポインティングデバイス(マウス等)であり、表示部4はコンピューターに付設されたディスプレイモニターである。 The substance of the control/processing unit 2 is a computer such as a personal computer, and the function of each functional block can be realized by executing control/processing software pre-installed in the computer on the computer. . In this case, the input unit 3 is a keyboard or pointing device (such as a mouse) attached to the computer, and the display unit 4 is a display monitor attached to the computer.
 スペクトルライブラリー5は、多数の化合物の化合物情報が収録された一種のデータベースである。この化合物情報は、化合物名称、CAS登録番号、分子量、分子式、構造式、保持指標(又は保持時間)、マススペクトルを含む。このスペクトルライブラリー5は、米国NISTや米国ワイリー社が提供しているような、広く公開されているスペクトルライブラリーを用いることができるが、例えば特定の用途や目的のために装置メーカーが作成・提供しているもの、或いは、ユーザー自身が作成したものでもよい。 Spectral Library 5 is a kind of database that contains compound information for a large number of compounds. This compound information includes compound name, CAS registry number, molecular weight, molecular formula, structural formula, retention index (or retention time), and mass spectrum. As this spectral library 5, widely publicized spectral libraries such as those provided by NIST in the United States and Wiley in the United States can be used. It can be provided or created by the user himself.
 図1に示す構成では、制御・処理部2とは別にスペクトルライブラリー5を設けているが、制御・処理部2はスペクトルライブラリー5を含むようにしてもよい。また、スペクトルライブラリー5は、例えば本システムとは別の、つまりは本システムに含まれない外部のサーバー等に保存されており、本システムが正当な権限の下で該サーバーにアクセスし、該サーバーから必要な情報のみをダウンロードする構成とすることもできる。  In the configuration shown in FIG. In addition, the spectrum library 5 is stored, for example, in an external server or the like that is separate from this system, that is, not included in this system, and this system accesses this server under legitimate authority, It can also be configured to download only necessary information from the server.
  [本実施形態のGC-MSシステムにおける化合物同定]
 本実施形態のGC-MSシステムにおける、ターゲット分析による化合物同定の手順及び処理の詳細を説明する。
 図2は、化合物同定の流れの一例を示すフローチャートである。図3は、図2中のモニターイオン等の抽出処理の一例を示すフローチャートである。図4は、ターゲット分析用データベースの登録手順の説明図である。図5は、メソッドファイルの登録内容の説明図である。図6は、マススペクトルとモニターイオン及びリファレンスイオンとの関係の一例を示す図である。
[Compound identification in the GC-MS system of the present embodiment]
Details of compound identification procedures and processing by target analysis in the GC-MS system of the present embodiment will be described.
FIG. 2 is a flow chart showing an example of the flow of compound identification. FIG. 3 is a flowchart showing an example of extraction processing of monitor ions and the like in FIG. FIG. 4 is an explanatory diagram of the registration procedure of the target analysis database. FIG. 5 is an explanatory diagram of the registered contents of the method file. FIG. 6 is a diagram showing an example of the relationship between mass spectra, monitor ions, and reference ions.
 ターゲット分析では事前に、分析可能である化合物についての化合物情報が登録されたターゲット分析用データベースを用意する必要がある。このターゲット分析用データベースは以下のようにして作成される。 In target analysis, it is necessary to prepare in advance a target analysis database in which compound information about compounds that can be analyzed is registered. This target analysis database is created as follows.
 ユーザーは、まず、入力部3により、データベース作成に使用するスペクトルライブラリー5を指定する(ステップS1)。但し、用意されたスペクトルライブラリー5が一つのみである場合には、ステップS1を省くことができる。 The user first specifies the spectrum library 5 to be used for database creation through the input unit 3 (step S1). However, if only one spectrum library 5 is prepared, step S1 can be omitted.
 ユーザーは化合部情報収集元のスペクトルライブラリー5を決定し、該ライブラリー5からの化合物情報の読込みの実行を入力部3により指示する。この指示を受けて、ライブラリー読込み部20はスペクトルライブラリー5から、化合物名、マススペクトル、保持時間(又は保持指標)等の化合物情報を読み込む(ステップS2)。なお、通常、スペクトルライブラリー5には多数の化合物についての化合物情報が収録されているが、その全ての化合物についての化合物情報を一括して取得することができるし、或いは、ユーザーが選択した特定の複数の化合物のみについての化合物情報、さらには、ユーザーが指定した条件に応じて選択された化合物のみについての化合物情報、を取得できるようにしてもよい。 The user determines the spectral library 5 from which the compound information is collected, and instructs the input unit 3 to read the compound information from the library 5 . Upon receiving this instruction, the library reading unit 20 reads compound information such as the compound name, mass spectrum, retention time (or retention index) from the spectral library 5 (step S2). Generally, the spectral library 5 contains compound information about a large number of compounds, but it is possible to collectively obtain compound information about all of the compounds, or to obtain specific information selected by the user. It may also be possible to obtain compound information only for a plurality of compounds of the above, or compound information only for a compound selected according to conditions specified by the user.
 データベース作成部22は、読み込まれた化合物情報をターゲット分析用データベース23に登録する(ステップS3)。図4(A)は、化合物情報が未だ登録されていないターゲット分析用データベース23の一例である。この例では、登録項目は、化合物名称、保持指標、保持時間、モニターイオンのm/z値、リファレンスイオンのm/z値、マススペクトルである。さらに分子式等の登録項目を加えてもよい。ステップS3の登録処理が実行されると、図4(B)に示すように、化合物名称、保持指標、保持時間、及びマススペクトルの各登録項目に、それぞれ読み込まれた化合物情報が入力される。保持時間は保持指標から算出可能である。この時点では、モニターイオン及びリファレンスイオンのm/z値は不明である。 The database creation unit 22 registers the read compound information in the target analysis database 23 (step S3). FIG. 4A shows an example of the target analysis database 23 in which compound information has not yet been registered. In this example, the registration items are compound name, retention index, retention time, m/z value of monitor ion, m/z value of reference ion, and mass spectrum. Furthermore, registration items such as molecular formula may be added. When the registration process in step S3 is executed, as shown in FIG. 4B, the read compound information is input to each registration item of compound name, retention index, retention time, and mass spectrum. The retention time can be calculated from the retention index. At this point the m/z values of the monitor and reference ions are unknown.
 次に、イオン抽出部21は、上述したように化合物毎に登録されたマススペクトルから、モニターイオン及びリファレンスイオンをそれぞれ抽出する処理を実行する(ステップS4)。この抽出処理についてはあとで詳しく説明する。通常、モニターイオンは1個、リファレンスイオンは1個又は複数個である。データベース作成部22は、化合物毎に抽出されたモニターイオン及びリファレンスイオンのm/z値をターゲット分析用データベース23に登録する(ステップS5)。このステップS5の処理が実行されると、図4(C)に示すように、抽出されたモニターイオン及びリファレンスイオンのm/z値がターゲット分析用データベース23に登録され、ターゲット分析用データベース23が完成する。 Next, the ion extraction unit 21 executes a process of extracting monitor ions and reference ions from the mass spectrum registered for each compound as described above (step S4). This extraction processing will be described later in detail. Usually, there is one monitor ion and one or more reference ions. The database creation unit 22 registers m/z values of monitor ions and reference ions extracted for each compound in the target analysis database 23 (step S5). When the process of step S5 is executed, the m/z values of the extracted monitor ions and reference ions are registered in the target analysis database 23 as shown in FIG. Complete.
 次いで、ユーザーが入力部3で所定の操作を行うと、分析メソッド作成部24は、例えば図4(C)に示したようなターゲット分析用データベース23をテーブル形式で表示部4の画面上に表示する。ユーザーはこれにより化合物名称等を確認し、同定したいターゲット化合物を選択する(ステップS6)。図5(A)は、二つの化合物をターゲット化合物として選択した状態である。 Next, when the user performs a predetermined operation on the input unit 3, the analysis method creation unit 24 displays the target analysis database 23 as shown in FIG. 4C on the screen of the display unit 4 in table format. do. The user thereby confirms the compound name, etc., and selects the target compound to be identified (step S6). FIG. 5A shows a state in which two compounds are selected as target compounds.
 そのうえで、ユーザーが分析メソッドの作成を指示すると、分析メソッド作成部24は、ターゲット化合物として選択された化合物の保持指標、モニターイオン及びリファレンスイオンのm/z値などの登録情報をターゲット分析用データベース23から取得し、その登録情報に基いて、GC/MS分析のための測定条件や各ターゲット化合物の解析条件を含む分析メソッドのメソッドファイルを作成する(ステップS7)。 Then, when the user instructs creation of an analysis method, the analysis method creation unit 24 stores registration information such as the retention index of the compound selected as the target compound, m/z values of monitor ions and reference ions, etc. in the database 23 for target analysis. and based on the registered information, a method file of an analysis method including measurement conditions for GC/MS analysis and analysis conditions for each target compound is created (step S7).
 測定条件は、例えばGC部1Aにおけるキャリアガス流量、カラムオーブン12の温度プログラム、試料の注入量、MS部1Bにおけるスキャン測定のm/z範囲などを含む。また、解析条件は、図5(B)に示すように、ターゲット分析用データベース23に登録されている情報と基本的には同じであり、保持時間、モニターイオン及びリファレンスイオンのm/z値、マススペクトルなどを含む。スキャン測定のm/z範囲は、全てのターゲット化合物のモニターイオン及びリファレンスイオンのm/z値をカバーするように決定されるものとすることができる。作成されたメソッドファイルは分析メソッド記憶部25に格納される。 The measurement conditions include, for example, the carrier gas flow rate in the GC section 1A, the temperature program of the column oven 12, the sample injection amount, and the m/z range of scan measurement in the MS section 1B. Further, the analysis conditions are basically the same as the information registered in the target analysis database 23, as shown in FIG. Including mass spectrum etc. The m/z range of the scan measurement can be determined to cover the m/z values of the monitor and reference ions for all target compounds. The created method file is stored in the analysis method storage unit 25 .
 メソッドファイルの作成後、ユーザーが分析の実行を指示すると、分析制御部26は作成されたメソッドファイルに含まれる測定条件に従って測定部1の動作を制御する。これにより、目的試料に対するGC/MS分析が測定部1において実行される(ステップS8)。即ち、GC部1Aにおいてマイクロシリンジ11は所定のタイミングで所定量の目的試料を試料気化室10中に滴下する。滴下した目的試料は試料気化室10内で気化し、キャリアガス流に乗ってカラム13に送り込まれる。目的試料に含まれる各種化合物は、カラム13を通過する間に時間的に分離され、MS部1Bのイオン源15に導入される。 After creating the method file, when the user instructs the execution of analysis, the analysis control unit 26 controls the operation of the measurement unit 1 according to the measurement conditions included in the created method file. As a result, the GC/MS analysis of the target sample is performed in the measuring section 1 (step S8). That is, in the GC section 1A, the microsyringe 11 drops a predetermined amount of the target sample into the sample vaporization chamber 10 at a predetermined timing. The dropped target sample is vaporized in the sample vaporization chamber 10 and sent to the column 13 along with the carrier gas flow. Various compounds contained in the target sample are temporally separated while passing through the column 13 and introduced into the ion source 15 of the MS section 1B.
 イオン源15に導入された化合物はイオン化され、生成されたイオンはイオンレンズ16を経て四重極マスフィルター17に導入される。分析制御部26による制御の下で、四重極マスフィルター17は、所定のm/z値範囲に亘るスキャン測定を繰り返すように動作する。このスキャン測定において四重極マスフィルター17を通過し得たイオンは検出器18に到達し、検出器18は到達したイオンの量に応じたイオン強度信号を検出信号として出力する。この検出信号をデジタル化したデータは制御・処理部2に送られ、データ格納部27に格納される。 A compound introduced into the ion source 15 is ionized, and the generated ions are introduced into the quadrupole mass filter 17 through the ion lens 16 . Under the control of analysis control 26, quadrupole mass filter 17 operates to repeat scanning measurements over a predetermined range of m/z values. In this scan measurement, ions that have passed through the quadrupole mass filter 17 reach the detector 18, and the detector 18 outputs an ion intensity signal corresponding to the amount of ions that have arrived as a detection signal. Data obtained by digitizing this detection signal is sent to the control/processing unit 2 and stored in the data storage unit 27 .
 分析の終了後、化合物同定部28は、収集されたデータに基いて各ターゲット化合物を同定する処理を実施する。具体的には、化合物同定部28はまず、ターゲット化合物毎に、モニターイオンのm/z値におけるイオン強度データを取得し、抽出イオンクロマトグラムを作成する。なお、この抽出イオンクロマトグラムは、ターゲット化合物の保持時間を含む所定の時間範囲のみの波形でよい。そして、化合物同定部28は、作成した抽出イオンクロマトグラムにおいてピークを検出し、検出されたピークトップの保持時間における実測マススペクトルを取得する。例えば、抽出イオンクロマトグラムにおいて有意なクロマトピークが検出されなかった場合には、そのターゲット化合物は含まれていないものと判断する。 After the analysis is completed, the compound identification unit 28 performs processing to identify each target compound based on the collected data. Specifically, the compound identification unit 28 first acquires ion intensity data at m/z values of monitor ions for each target compound, and creates an extracted ion chromatogram. This extracted ion chromatogram may be a waveform only for a predetermined time range including the retention time of the target compound. Then, the compound identification unit 28 detects peaks in the created extracted ion chromatogram, and acquires a measured mass spectrum at the retention time of the detected peak top. For example, if no significant chromatographic peak is detected in the extracted ion chromatogram, it is determined that the target compound is not contained.
 実測マススペクトルが得られたならば、化合物同定部28は、メソッドファイルに登録されているそのターゲット化合物のマススペクトルを参照マススペクトルとして取得し、該参照マススペクトルと実測マススペクトルとのパターンの類似度を求める。この類似度の算出方法は既知の方法でよい。そして、その類似度が所定の閾値以上であるか否かを判定し、類似度が閾値以上であれば、そのターゲット化合物は試料に含まれていると判断する。逆に、類似度が閾値未満であれば、そのターゲット化合物は試料に含まれていないと判断する。こうして、全てのターゲット化合物について試料に含まれるか否かを確認する、つまりはターゲット化合物の同定を行うことができる(ステップS9)。 When the measured mass spectrum is obtained, the compound identification unit 28 acquires the mass spectrum of the target compound registered in the method file as a reference mass spectrum, and determines the similarity of the pattern between the reference mass spectrum and the measured mass spectrum. Ask for degrees. A known method may be used to calculate this degree of similarity. Then, it is determined whether or not the degree of similarity is greater than or equal to a predetermined threshold, and if the degree of similarity is greater than or equal to the threshold, it is determined that the target compound is contained in the sample. Conversely, if the degree of similarity is less than the threshold, it is determined that the target compound is not contained in the sample. In this way, it is possible to confirm whether or not all target compounds are contained in the sample, that is, to identify the target compounds (step S9).
 化合物同定部28による化合物同定の手順は適宜に変えることができる。例えば、或るターゲット化合物について抽出イオンクロマトグラムを作成し、その抽出イオンクロマトグラムにおいて当該ターゲット化合物の保持時間付近にピークが検出されなかった場合、その化合物は存在するものの、他の化合物が重なっているためにピークが検出できない可能性もある。そこで、ピークが検出できなかった場合には、当該ターゲット化合物のリファレンスイオンのm/z値における抽出イオンクロマトグラムを作成し、その抽出イオンクロマトグラムにおいて検出されるピークを用いて化合物同定を実行してもよい。 The procedure for compound identification by the compound identification unit 28 can be changed as appropriate. For example, when an extracted ion chromatogram is created for a certain target compound and no peak is detected near the retention time of the target compound in the extracted ion chromatogram, the compound exists, but other compounds overlap. There is also a possibility that peaks cannot be detected due to Therefore, if the peak could not be detected, create an extracted ion chromatogram at the m/z value of the reference ion of the target compound, and perform compound identification using the peak detected in the extracted ion chromatogram. may
 また、参照マススペクトルと実測マススペクトルとの類似度のみに基いて、最終的な化合物同定を行うのではなく、実測マススペクトルにおけるモニターイオンの信号強度とリファレンスイオンの信号強度との比、つまり確認イオン比も併せて利用することで、化合物同定を行ってもよい。 Also, instead of final compound identification based only on the similarity between the reference mass spectrum and the measured mass spectrum, the ratio of the signal intensity of the monitor ion to the signal intensity of the reference ion in the measured mass spectrum, that is, confirmation Compound identification may be performed by also using the ion ratio.
  [マススペクトルからのモニターイオン等の抽出]
 上記ステップS4におけるイオン抽出処理の一例を図3及び図6により説明する。
 イオン抽出部21は、まずマススペクトルからマスピークを検出し(ステップS11)、最大強度を示すマスピークの強度値を求める(ステップS12)。図6に示すマススペクトルの例では、矢印Pで示すマスピークが最大強度を示すマスピークであり、その強度値はImaxである。
[Extraction of monitor ions, etc. from mass spectrum]
An example of the ion extraction process in step S4 will be described with reference to FIGS. 3 and 6. FIG.
The ion extractor 21 first detects mass peaks from the mass spectrum (step S11), and obtains the intensity value of the mass peak indicating the maximum intensity (step S12). In the example of the mass spectrum shown in FIG. 6, the mass peak indicated by arrow P is the mass peak showing the maximum intensity, and its intensity value is Imax.
 次に、イオン抽出部21は、ステップS11において検出された全てのマスピークの中で、強度値が最大強度値の10%以上であるマスピークを抽出する(ステップS13)。この「10%」という数値は一例であり、適宜に変更することができる。図6の例では、Imax×0.1の強度値を一点鎖線Aで示しており、ピーク強度がそれを超えるマスピークを〇印で示している。 Next, the ion extraction unit 21 extracts mass peaks whose intensity value is 10% or more of the maximum intensity value among all the mass peaks detected in step S11 (step S13). This numerical value of "10%" is an example, and can be changed as appropriate. In the example of FIG. 6, the intensity value of Imax×0.1 is indicated by the dashed-dotted line A, and the mass peaks exceeding the peak intensity are indicated by ◯ marks.
 イオン抽出部21は、ステップS13において抽出されたマスピークの中で、m/z値が最も大きいマスピークをモニターイオンとして選定する(ステップS14)。さらに、ステップS13において抽出されたマスピークの中で、m/z値がモニターイオンよりも小さい所定数のマスピークをリファレンスイオンとして選定する(ステップS15)。リファレンスイオンの個数が2であるとすると、図6の例では、矢印Mで示すマスピークがモニターイオンとして選定され、矢印R1、R2で示すマスピークがリファレンスイオンとして選定される。 The ion extraction unit 21 selects the mass peak with the largest m/z value as a monitor ion from among the mass peaks extracted in step S13 (step S14). Furthermore, among the mass peaks extracted in step S13, a predetermined number of mass peaks having an m/z value smaller than that of the monitor ion are selected as reference ions (step S15). Assuming that the number of reference ions is two, in the example of FIG. 6, the mass peak indicated by arrow M is selected as the monitor ion, and the mass peaks indicated by arrows R1 and R2 are selected as reference ions.
 ステップS12、S13において強度値が或る程度以上大きなマスピークをモニターイオン及びリファレンスイオンの候補として選定するのは、検出感度が比較的高いイオンをモニターイオン及びリファレンスイオンとして選定するためである。 In steps S12 and S13, mass peaks with a certain intensity value or more are selected as candidates for monitor ions and reference ions because ions with relatively high detection sensitivity are selected as monitor ions and reference ions.
 一方、イオン化法としてEI法のようにフラグメントを生じ易いイオン化法を用いた場合、m/z値の小さいフラグメントイオンピークの強度が高くなり易く、そうしたマスピークは化学構造が類似する複数の化合物において重なり易い。そのため、強度値が最大であるマスピークをモニターイオンとして単純に選定すると、複数の異なる化合物のモニターイオンが重なる可能性が高い。それに対し、マスピークのm/z値が大きいほど、フラグメントイオンピークではなく化合物分子からプロトンが脱離したイオンピークである可能性が高いため、上述したように、m/z値ができるだけ大きなマスピークを選定することで、異なる化合物のモニターイオンの重なりを避けることができる。 On the other hand, when an ionization method such as the EI method, which tends to generate fragments, is used as the ionization method, the intensity of fragment ion peaks with small m/z values tends to be high, and such mass peaks overlap in multiple compounds with similar chemical structures. easy. Therefore, if the mass peak with the maximum intensity value is simply selected as the monitor ion, there is a high possibility that multiple monitor ions of different compounds will overlap. On the other hand, the larger the m/z value of the mass peak, the more likely it is an ion peak resulting from desorption of protons from the compound molecule rather than a fragment ion peak. By selection, overlapping of monitor ions of different compounds can be avoided.
 即ち、ステップS14、S15の処理によって、検出感度の高さと化合物の選択性とのバランスのとれたモニターイオン及びリファレンスイオンを選定することができる。
 また、上記処理とは実質的に手順を入れ替え、例えばm/z 50以上など、m/z値が一定以上であるマスピークにのみ着目し、その中から強度値が高いマスピークを選択してモニターイオン及びリファレンスイオンを決定するようにしてもよい。このように、マスピークのm/z値と強度値との両方を利用することでモニターイオンとリファレンスイオンとを適切に決めることができる。
That is, by the processing of steps S14 and S15, it is possible to select monitor ions and reference ions that are well-balanced between high detection sensitivity and compound selectivity.
In addition, the procedure is substantially replaced with the above treatment, focusing only on mass peaks with m/z values above a certain level, such as m/z 50 or higher, and selecting mass peaks with high intensity values from among them to monitor ions. and reference ions may be determined. Thus, by using both the m/z value and the intensity value of the mass peak, it is possible to appropriately determine the monitor ion and the reference ion.
 但し、化合物によっては、或る断片のイオンとその同位体イオンとが高い強度で観測される場合があり、上記方法をそのまま用いると、或る断片のイオンピークとその同位体イオンピークとがモニターイオンとリファレンスイオンとして選定されてしまう。その場合でも、実質的に問題となることは殆どないが、これを避けるには、例えばモニターイオンとして選定するマスピークのm/z値に対し所定のm/z値幅の範囲(例えば±3、±5Daなど)に存在するマスピークを、リファレンスイオンの選定対象から除外するとよい。 However, depending on the compound, a fragment ion and its isotope ion may be observed at high intensity. It will be selected as an ion and a reference ion. Even in that case, there is practically no problem. 5 Da, etc.) should be excluded from the selection of reference ions.
 また、イオン抽出部21がマススペクトルからモニターイオンを抽出する際の条件をユーザーが設定できるようにしてもよい。その一例を説明する。
 ユーザーが入力部3により所定操作を行うと、イオン抽出部21は、図7に一例を示すようなモニターイオン抽出条件設定画面6を表示部4の画面上に表示する。ユーザーは、このモニターイオン抽出条件設定画面6内の「m/zの範囲」及び「相対強度の範囲」という二つのパラメーターをそれぞれ入力し、OKボタンを押下する。これにより、モニターイオンを選定するm/z値範囲を限定することができるとともに、マスピークを選定する強度値の閾値を適宜に決めることができる。
Further, the user may be allowed to set the conditions for the ion extractor 21 to extract monitor ions from the mass spectrum. An example will be described.
When the user performs a predetermined operation using the input unit 3, the ion extraction unit 21 displays a monitor ion extraction condition setting screen 6 on the screen of the display unit 4, an example of which is shown in FIG. The user inputs two parameters, "range of m/z" and "range of relative intensity" in this monitor ion extraction condition setting screen 6, and presses the OK button. As a result, the m/z value range for selecting monitor ions can be limited, and the intensity value threshold for selecting mass peaks can be appropriately determined.
 以上のようにして、本実施形態のGC-MSシステムでは、スペクトルライブラリーに収録されている各化合物のマススペクトルに基いて、化合物同定に利用されるモニターイオン及びリファレンスイオンのm/z値を、ユーザーの実質的な負担なく決定することができる。また、そうして化合物毎に決定されるモニターイオンは、他の化合物との重なりが生じにくく、且つ高い感度で検出されるものであるため、化合物の同定を高い精度で以て行うことができる。 As described above, in the GC-MS system of this embodiment, m/z values of monitor ions and reference ions used for compound identification are determined based on the mass spectrum of each compound recorded in the spectrum library. , can be determined without substantial burden on the user. In addition, the monitor ion thus determined for each compound is unlikely to overlap with other compounds and is detected with high sensitivity, so that the compound can be identified with high accuracy. .
  [変形例]
 上記実施形態のGC-MSシステムにおいてMS部1Bはシングルタイプの質量分析装置であるが、MS部1Bは、トリプル四重極型質量分析装置や四重極-飛行時間型質量分析装置等のMS/MS分析が可能な質量分析装置、さらにはイオントラップ型質量分析装置やイオントラップ飛行時間型質量分析装置等のnが3以上であるMSn分析が可能な質量分析装置であってもよい。MS/MS型の質量分析装置が用いられる場合、モニターイオンやリファレンスイオンのm/z値は、プリカーサーイオンのm/z値とプロダクトイオンのm/z値との組み合わせ(つまりMRMトランジション)に置き換えられる。
[Modification]
In the GC-MS system of the above embodiment, the MS section 1B is a single-type mass spectrometer, but the MS section 1B is a triple quadrupole mass spectrometer or a quadrupole-time-of-flight mass spectrometer. A mass spectrometer capable of /MS analysis, or a mass spectrometer capable of MS n analysis where n is 3 or more, such as an ion trap mass spectrometer or an ion trap time-of-flight mass spectrometer, may be used. When an MS/MS type mass spectrometer is used, the m/z values of monitor ions and reference ions are replaced by a combination of precursor ion m/z values and product ion m/z values (that is, MRM transitions). be done.
 また、上記実施形態のGC-MSシステムでは、MS部1Bではスキャン測定を繰り返し実行していたが、モニターイオン及びリファレンスイオンをターゲットとする選択イオンモニタリング(SIM)測定を実行してもよい。その場合には、化合物同定の際には、マススペクトルの類似度ではなく、確認イオン比などの他の情報に基いて化合物を同定すればよい。 In addition, in the GC-MS system of the above embodiment, the scan measurement was repeatedly performed in the MS part 1B, but selective ion monitoring (SIM) measurement targeting monitor ions and reference ions may be performed. In that case, when identifying a compound, the compound may be identified based on other information such as the confirming ion ratio, instead of the mass spectrum similarity.
 また、上記実施形態は本発明をGC-MSに適用した例であるが、本発明はLC-MSやSFC-MSにも適用可能である。但し、上述した、マススペクトルからモニターイオン等を抽出するための処理は、質量分析装置のイオン化に際して多くのフラグメントイオンが発生することを前提としている。従って、質量分析装置の前段が、GC、LC、SFCのいずれであるかに拘わらず、質量分析装置のイオン源は、フラグメントを生じ易い(言い換えればフラグメントを促進する)イオン化法によるものであることが好ましい。 Also, the above embodiment is an example in which the present invention is applied to GC-MS, but the present invention can also be applied to LC-MS and SFC-MS. However, the above-described processing for extracting monitor ions and the like from the mass spectrum is based on the premise that many fragment ions are generated during ionization of the mass spectrometer. Therefore, regardless of whether the mass spectrometer is preceded by GC, LC, or SFC, the ion source of the mass spectrometer should be an ionization method that tends to generate fragments (in other words, promote fragmentation). is preferred.
 また、上記実施形態や各種の変形例は本発明の一例にすぎず、本発明の趣旨に沿った範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。 In addition, the above-described embodiment and various modifications are merely examples of the present invention, and it is clear that appropriate modifications, modifications, and additions within the spirit of the present invention are included in the scope of the claims of the present application. is.
  [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Various aspects]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
 (第1項)本発明に係るクロマトグラフ質量分析装置の一態様は、
 試料中の化合物を時間方向に分離するクロマトグラフ部と、分離された各化合物をそれぞれ検出する質量分析部と、を含む測定部と、
 標準的なマススペクトル及び保持時間又は保持指標を含む化合物情報が収録されたスペクトルライブラリーから、目的化合物のマススペクトルを取得し、該マススペクトルにおいて観測されるマスピークの強度と該マスピークに対応する質量電荷比値とを利用して、目的化合物毎にモニターイオンを抽出するイオン抽出部と、
 前記目的化合物の化合物情報、及び、前記イオン抽出部により抽出されたモニターイオンの質量電荷比値を、データベースに登録するデータベース作成部と、
 前記データベースに登録されている化合物の中で、分析の対象とするターゲット化合物についてのユーザーによる指定を受け付ける化合物指定受付部と、
 前記ターゲット化合物について、前記データベースにおける登録情報を利用して分析メソッドを作成するメソッド作成部と、
 前記分析メソッドに従って、目的試料に対するクロマトグラフ質量分析を実行するように前記測定部の動作を制御する制御部と、
 前記目的試料に対するクロマトグラフ質量分析結果と、前記分析メソッド又は前記データベースにおける登録情報とを利用して、前記目的試料中の化合物を同定する化合物同定部と、
 を備える。
(Section 1) One aspect of the chromatograph mass spectrometer according to the present invention is
a measurement unit including a chromatograph unit that separates the compounds in the sample in the time direction, and a mass spectrometry unit that detects each separated compound;
A mass spectrum of the target compound is obtained from a standard mass spectrum and a spectrum library containing compound information including retention time or retention index, and the intensity of the mass peak observed in the mass spectrum and the mass corresponding to the mass peak an ion extraction unit for extracting monitor ions for each target compound using the charge ratio value;
a database creating unit for registering in a database compound information of the target compound and mass-to-charge ratio values of monitor ions extracted by the ion extracting unit;
a compound designation reception unit that receives designation by a user of a target compound to be analyzed among the compounds registered in the database;
a method creation unit that creates an analysis method for the target compound using registered information in the database;
a control unit that controls the operation of the measurement unit so as to perform chromatographic mass spectrometry on a target sample according to the analysis method;
A compound identification unit that identifies a compound in the target sample by using the chromatographic mass spectrometry result for the target sample and the analysis method or registered information in the database;
Prepare.
 第1項に記載のクロマトグラフ質量分析装置では、ユーザー自身が、目的化合物が含まれる標準試料の分析を実行したり、目的化合物について得られたマススペクトルから適切なモニターイオンを抽出したりする作業を行うことなく、目的化合物を同定するのに適切なモニターイオンの質量電荷比が自動的に抽出され、分析用のデータベースに登録される。これにより、第1項に記載のクロマトグラフ質量分析装置によれば、多数の化合物を対象とするターゲット分析における、ユーザーによる煩雑な作業の負担を軽減しながら、多数の化合物を高い精度で以て同定することができる。 In the chromatograph-mass spectrometer according to item 1, the user himself/herself analyzes a standard sample containing the target compound and extracts an appropriate monitor ion from the mass spectrum obtained for the target compound. The mass-to-charge ratio of monitor ions suitable for identifying the target compound is automatically extracted and registered in the database for analysis. As a result, according to the chromatograph mass spectrometer described in paragraph 1, while reducing the burden of complicated work by the user in target analysis for a large number of compounds, a large number of compounds can be obtained with high accuracy. can be identified.
 (第2項)第1項に記載のクロマトグラフ質量分析装置において、前記化合物同定部は、ターゲット化合物毎にモニターイオンに対応する抽出イオンクロマトグラムを作成し、該抽出イオンクロマトグラムにおいて保持指標又は保持時間を用いて検出されるピークにおけるマススペクトルと、前記分析メソッド又は前記データベースにおける登録情報に含まれるマススペクトルとを比較することにより化合物を同定するものとし得る。 (Section 2) In the chromatograph mass spectrometer according to Section 1, the compound identification unit creates an extracted ion chromatogram corresponding to monitor ions for each target compound, and in the extracted ion chromatogram, the retention index or Compounds may be identified by comparing mass spectra in peaks detected using retention times with mass spectra contained in the analytical method or registration information in the database.
 第1項に記載のクロマトグラフ質量分析装置では、他の化合物のモニターイオンと質量電荷比値の重なりが殆どないモニターイオンを取得することができる。それ故に、第2項に記載のクロマトグラフ質量分析装置において作成される抽出イオンクロマトグラムでは、試料中に微量に含まれるターゲット化合物に対応するクロマトピークも良好に観測することができ、そのターゲット化合物由来のイオンが十分に観測されている実測のマススペクトルを利用して化合物同定を行うことができる。これにより、化合物同定を高い精度で以て行うことができる。 With the chromatograph-mass spectrometer described in Item 1, it is possible to acquire monitor ions that have little overlap in mass-to-charge ratio values with monitor ions of other compounds. Therefore, in the extracted ion chromatogram created by the chromatograph mass spectrometer according to item 2, the chromatographic peak corresponding to the target compound contained in a trace amount in the sample can also be observed well, and the target compound A compound can be identified by using an actually measured mass spectrum in which the derived ions are sufficiently observed. Accordingly, compound identification can be performed with high accuracy.
 (第3項)第1項又は第2項に記載のクロマトグラフ質量分析装置において、前記イオン抽出部は、マススペクトルにおける最大強度を示すピークの強度値を基準として強度値が所定以上であるピークの中で、質量電荷比値が最も大きいピークに対応する質量電荷比値をモニターイオンの質量電荷比値とするものとし得る。 (Section 3) In the chromatograph mass spectrometer according to Section 1 or Section 2, the ion extraction unit extracts peaks having a predetermined intensity value or more based on the intensity value of the peak showing the maximum intensity in the mass spectrum. Among them, the mass-to-charge ratio value corresponding to the peak having the largest mass-to-charge ratio value can be used as the mass-to-charge ratio value of the monitor ion.
 第3項に記載のクロマトグラフ質量分析装置によれば、検出感度が十分に高く、且つ、他の化合物由来のイオンと質量電荷比が重なる可能性が小さい、つまりは化合物の選択性が高いようなモニターイオンを選定することができる。これにより、このモニターイオンを利用して化合物同定を行う際の、化合物同定の精度を高めることができる。 According to the chromatograph-mass spectrometer according to the third item, the detection sensitivity is sufficiently high, and the possibility that the mass-to-charge ratio overlaps with ions derived from other compounds is small, that is, the selectivity of the compound is high. monitor ion can be selected. As a result, it is possible to improve the accuracy of compound identification when using this monitor ion to identify the compound.
 (第4項)第3項に記載のクロマトグラフ質量分析装置では、前記イオン抽出部でモニターイオンを抽出する際の、強度範囲及び質量電荷比値範囲の条件について、ユーザーによる指定を受け付ける抽出条件指定受付部、をさらに備えるものとし得る。 (Section 4) In the chromatograph-mass spectrometer according to Section 3, extraction conditions for accepting a user's specification of the intensity range and the mass-to-charge ratio value range when extracting monitor ions in the ion extraction unit A designation reception unit may be further provided.
 第4項に記載のクロマトグラフ質量分析装置によれば、ユーザーが強度範囲及び質量電荷比値範囲の条件を適切に設定することで、検出感度及び化合物の選択性の両面でより一層適切なモニターイオンを選定することが可能である。 According to the chromatograph-mass spectrometer according to item 4, the user appropriately sets the conditions of the intensity range and the mass-to-charge ratio value range, so that more appropriate monitoring is performed in terms of both detection sensitivity and compound selectivity It is possible to select ions.
 (第5項)第3項に記載のクロマトグラフ質量分析装置において、前記質量分析部は、イオンのフラグメンテーションを促進させるイオン化法によるイオン源を含むものとし得る。 (Section 5) In the chromatograph mass spectrometer described in Section 3, the mass spectrometry unit may include an ion source based on an ionization method that promotes ion fragmentation.
 イオンのフラグメンテーションを促進させるイオン化法とは、具体的には例えば電子イオン化法である。こうしたイオン化法を用いた場合、マススペクトルにおいて質量電荷比が比較的小さな領域では、複数の化合物由来のフラグメントイオンピークが重なり易いのに対し、質量電荷比が比較的大きな領域では、異なる化合物由来のイオンピークが重ならずに観測される傾向にある。そのため、第5項に記載のクロマトグラフ質量分析装置によれば、上述したように、質量電荷比値が相対的に大きいピークに対応する質量電荷比値をモニターイオンの質量電荷比値として選定したとき、モニターイオンが他の化合物と重なる可能性をより小さくすることができる。 Specifically, the ionization method that promotes ion fragmentation is, for example, the electron ionization method. When such an ionization method is used, fragment ion peaks derived from a plurality of compounds tend to overlap in regions where the mass-to-charge ratio is relatively small in the mass spectrum. Ion peaks tend to be observed without overlapping. Therefore, according to the chromatograph mass spectrometer described in item 5, as described above, the mass-to-charge ratio value corresponding to the peak having a relatively large mass-to-charge ratio value is selected as the mass-to-charge ratio value of the monitor ion. At times, the monitor ion can be less likely to overlap with other compounds.
 (第6項)第1項~第5項のいずれか1項に記載のクロマトグラフ質量分析装置において、前記イオン抽出部は、目的化合物のマススペクトルにおいて観測されるマスピークの強度と該マスピークに対応する質量電荷比値とを利用して、目的化合物毎に前記モニターイオンのほかに一以上のリファレンスイオンを抽出し、
 前記データベース作成部は、前記リファレンスイオンの質量電荷比値をデータベースに登録し、
 前記化合物同定部は、モニターイオンの質量電荷比値における強度とリファレンスイオンの質量電荷比値における強度との比を化合物同定に用いるものとし得る。
(Item 6) In the chromatograph-mass spectrometer according to any one of items 1 to 5, the ion extractor corresponds to the intensity of the mass peak observed in the mass spectrum of the target compound and the mass peak. extracting one or more reference ions in addition to the monitor ion for each target compound using the mass-to-charge ratio value,
The database creation unit registers the mass-to-charge ratio value of the reference ion in the database,
The compound identification section may use the ratio of the intensity at the mass-to-charge ratio value of the monitor ion and the intensity at the mass-to-charge ratio value of the reference ion to identify the compound.
 第6項に記載のクロマトグラフ質量分析装置によれば、例えば、モニターイオンに他の化合物の重なりが疑われる場合に、モニターイオンに代えてリファレンスイオンの抽出イオンクロマトグラムを作成し、そのクロマトグラムを利用して化合物同定を行うことができる。これにより、化合物同定をより確実に行うことができる。 According to the chromatograph mass spectrometer according to item 6, for example, when overlapping of other compounds is suspected in monitor ions, an extracted ion chromatogram of reference ions is created instead of monitor ions, and the chromatogram can be used for compound identification. Accordingly, compound identification can be performed more reliably.
1…測定部
1A…ガスクロマトグラフ(GC)部
 10…試料気化室
 11…マイクロシリンジ
 12…カラムオーブン
 13…カラム
1B…質量分析(MS)部
 14…チャンバー
 15…イオン源
 16…イオンレンズ
 17…四重極マスフィルター
 18…検出部
2…制御・処理部
 20…ライブラリー読込み部
 21…イオン抽出部
 22…データベース作成部
 23…ターゲット分析用データベース
 24…分析メソッド作成部
 25…分析メソッド記憶部
 26…分析制御部
 27…データ格納部
 28…化合物同定部
3…入力部
4…表示部
5…スペクトルライブラリー
DESCRIPTION OF SYMBOLS 1... Measurement part 1A... Gas chromatograph (GC) part 10... Sample vaporization chamber 11... Micro syringe 12... Column oven 13... Column 1B... Mass spectrometry (MS) part 14... Chamber 15... Ion source 16... Ion lens 17... Four Heavy pole mass filter 18... Detection unit 2... Control/processing unit 20... Library reading unit 21... Ion extraction unit 22... Database creation unit 23... Target analysis database 24... Analysis method creation unit 25... Analysis method storage unit 26... Analysis control unit 27 Data storage unit 28 Compound identification unit 3 Input unit 4 Display unit 5 Spectrum library

Claims (6)

  1.  試料中の化合物を時間方向に分離するクロマトグラフ部と、分離された各化合物をそれぞれ検出する質量分析部と、を含む測定部と、
     標準的なマススペクトル及び保持時間又は保持指標を含む化合物情報が収録されたスペクトルライブラリーから、目的化合物のマススペクトルを取得し、該マススペクトルにおいて観測されるマスピークの強度と該マスピークに対応する質量電荷比値とを利用して、目的化合物毎にモニターイオンを抽出するイオン抽出部と、
     前記目的化合物の化合物情報、及び、前記イオン抽出部により抽出されたモニターイオンの質量電荷比値を、データベースに登録するデータベース作成部と、
     前記データベースに登録されている化合物の中で、分析の対象とするターゲット化合物についてのユーザーによる指定を受け付ける化合物指定受付部と、
     前記ターゲット化合物について、前記データベースにおける登録情報を利用して分析メソッドを作成するメソッド作成部と、
     前記分析メソッドに従って、目的試料に対するクロマトグラフ質量分析を実行するように前記測定部の動作を制御する制御部と、
     前記目的試料に対するクロマトグラフ質量分析結果と、前記分析メソッド又は前記データベースにおける登録情報とを利用して、前記目的試料中の化合物を同定する化合物同定部と、
     を備えるクロマトグラフ質量分析装置。
    a measurement unit including a chromatograph unit that separates the compounds in the sample in the time direction, and a mass spectrometry unit that detects each separated compound;
    A mass spectrum of the target compound is obtained from a standard mass spectrum and a spectrum library containing compound information including retention time or retention index, and the intensity of the mass peak observed in the mass spectrum and the mass corresponding to the mass peak an ion extraction unit for extracting monitor ions for each target compound using the charge ratio value;
    a database creating unit for registering in a database compound information of the target compound and mass-to-charge ratio values of monitor ions extracted by the ion extracting unit;
    a compound designation reception unit that receives designation by a user of a target compound to be analyzed among the compounds registered in the database;
    a method creation unit that creates an analysis method for the target compound using registered information in the database;
    a control unit that controls the operation of the measurement unit so as to perform chromatographic mass spectrometry on a target sample according to the analysis method;
    A compound identification unit that identifies a compound in the target sample by using the chromatographic mass spectrometry result for the target sample and the analysis method or registered information in the database;
    A chromatograph mass spectrometer comprising.
  2.  前記化合物同定部は、ターゲット化合物毎にモニターイオンに対応する抽出イオンクロマトグラムを作成し、該抽出イオンクロマトグラムにおいて保持指標又は保持時間を用いて検出されるピークにおけるマススペクトルと、前記分析メソッド又は前記データベースにおける登録情報に含まれるマススペクトルとを比較することにより化合物を同定する、請求項1に記載のクロマトグラフ質量分析装置。 The compound identification unit creates an extracted ion chromatogram corresponding to monitor ions for each target compound, mass spectrum at the peak detected using the retention index or retention time in the extracted ion chromatogram, and the analysis method or 2. The chromatograph mass spectrometer according to claim 1, wherein a compound is identified by comparing mass spectra included in registered information in said database.
  3.  前記イオン抽出部は、マススペクトルにおける最大強度を示すピークの強度値を基準として強度値が所定以上であるピークの中で、質量電荷比値が最も大きいピークに対応する質量電荷比値をモニターイオンの質量電荷比値とする、請求項1に記載のクロマトグラフ質量分析装置。 The ion extraction unit monitors the mass-to-charge ratio value corresponding to the peak having the largest mass-to-charge ratio value among the peaks having a predetermined intensity value or more based on the intensity value of the peak indicating the maximum intensity in the mass spectrum. 2. The chromatograph mass spectrometer of claim 1, wherein the mass-to-charge ratio value is .
  4.  前記イオン抽出部でモニターイオンを抽出する際の、強度範囲及び質量電荷比値範囲の条件について、ユーザーによる指定を受け付ける、抽出条件指定受付部、をさらに備える、請求項3に記載のクロマトグラフ質量分析装置。 4. The mass chromatograph mass according to claim 3, further comprising an extraction condition designation reception unit that receives designation by a user of conditions for an intensity range and a mass-to-charge ratio value range when extracting monitor ions in the ion extraction unit. Analysis equipment.
  5.  前記質量分析部は、イオンのフラグメンテーションを促進させるイオン化法によるイオン源を含む、請求項3に記載のクロマトグラフ質量分析装置。 The chromatograph mass spectrometer according to claim 3, wherein the mass analysis unit includes an ion source based on an ionization method that promotes ion fragmentation.
  6.  前記イオン抽出部は、目的化合物のマススペクトルにおいて観測されるマスピークの強度と該マスピークに対応する質量電荷比値とを利用して、目的化合物毎に前記モニターイオンのほかに一以上のリファレンスイオンを抽出し、
     前記データベース作成部は、前記リファレンスイオンの質量電荷比値をデータベースに登録し、
     前記化合物同定部は、モニターイオンの質量電荷比値における強度とリファレンスイオンの質量電荷比値における強度との比を化合物同定に用いる、請求項1に記載のクロマトグラフ質量分析装置。
    The ion extractor utilizes the mass peak intensity observed in the mass spectrum of the target compound and the mass-to-charge ratio value corresponding to the mass peak to extract one or more reference ions in addition to the monitor ion for each target compound. extract,
    The database creation unit registers the mass-to-charge ratio value of the reference ion in the database,
    2. The chromatograph-mass spectrometer according to claim 1, wherein said compound identification unit uses a ratio of the intensity at the mass-to-charge ratio value of the monitor ion and the intensity at the mass-to-charge ratio value of the reference ion to identify the compound.
PCT/JP2021/047356 2021-12-21 2021-12-21 Chromatograph mass spectrometry device WO2023119427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047356 WO2023119427A1 (en) 2021-12-21 2021-12-21 Chromatograph mass spectrometry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047356 WO2023119427A1 (en) 2021-12-21 2021-12-21 Chromatograph mass spectrometry device

Publications (1)

Publication Number Publication Date
WO2023119427A1 true WO2023119427A1 (en) 2023-06-29

Family

ID=86901654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047356 WO2023119427A1 (en) 2021-12-21 2021-12-21 Chromatograph mass spectrometry device

Country Status (1)

Country Link
WO (1) WO2023119427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235088A (en) * 2013-06-03 2014-12-15 国立医薬品食品衛生研究所長 Quantitative method and program
WO2018008149A1 (en) * 2016-07-08 2018-01-11 株式会社島津製作所 Data processing device for chromatograph mass analysis
JP2018031791A (en) * 2017-10-31 2018-03-01 株式会社島津製作所 Mass analysis method and mass analysis device
JP2019124610A (en) * 2018-01-18 2019-07-25 株式会社島津製作所 Chromatograph mass spectroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235088A (en) * 2013-06-03 2014-12-15 国立医薬品食品衛生研究所長 Quantitative method and program
WO2018008149A1 (en) * 2016-07-08 2018-01-11 株式会社島津製作所 Data processing device for chromatograph mass analysis
JP2018031791A (en) * 2017-10-31 2018-03-01 株式会社島津製作所 Mass analysis method and mass analysis device
JP2019124610A (en) * 2018-01-18 2019-07-25 株式会社島津製作所 Chromatograph mass spectroscope

Similar Documents

Publication Publication Date Title
Gosetti et al. Contaminants in water: non-target UHPLC/MS analysis
Arnhard et al. Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’(SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry
Kaufmann The current role of high-resolution mass spectrometry in food analysis
Cajka et al. LC–MS-based lipidomics and automated identification of lipids using the LipidBlast in-silico MS/MS library
Ojanperä et al. Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time‐of‐flight mass spectrometry
JP5590156B2 (en) Mass spectrometry method and apparatus
JP6065983B2 (en) Data processing equipment for chromatographic mass spectrometry
JP2001249114A (en) Mass spectrometry and mass spectrometer
JP6597909B2 (en) Mass spectrometry data processor
Herrera‐Lopez et al. Simultaneous screening of targeted and non‐targeted contaminants using an LC‐QTOF‐MS system and automated MS/MS library searching
Bouchonnet Introduction to GC-MS coupling
CN110506205B (en) Mass spectrometer and chromatograph-mass spectrometer
JP7173293B2 (en) Chromatograph mass spectrometer
Silva Jr et al. Analytical challenges in doping control: Comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option
CN111830112A (en) Stable isotope labeled tracers for non-target data
Sangster et al. Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry
JP2022179596A (en) Physical isolation of adducts and other complicating factors in precursor ion selection for ida
US7529630B2 (en) Method of analyzing mass analysis data and apparatus for the method
JP5979306B2 (en) Mass spectrometer
US11232936B2 (en) Absolute quantitation of a target analyte using a mass spectrometer
JP2019174431A (en) Method of analyzing chromatogram and mass spectrum obtained from chromatography-mass spectrometry performed on sample comprising multiple components, information processing device, program, and storage medium
WO2023119427A1 (en) Chromatograph mass spectrometry device
Moeder Gas chromatography-mass spectrometry
JP5056169B2 (en) Mass spectrometry data analysis method and apparatus
Rosnack et al. Screening solution using the software platform UNIFI: an integrated workflow by waters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568828

Country of ref document: JP