WO2015101304A1 - 一种流化床还原粉状铁矿石的系统和方法 - Google Patents

一种流化床还原粉状铁矿石的系统和方法 Download PDF

Info

Publication number
WO2015101304A1
WO2015101304A1 PCT/CN2014/095707 CN2014095707W WO2015101304A1 WO 2015101304 A1 WO2015101304 A1 WO 2015101304A1 CN 2014095707 W CN2014095707 W CN 2014095707W WO 2015101304 A1 WO2015101304 A1 WO 2015101304A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fluidized bed
cyclone
stage
inlet
Prior art date
Application number
PCT/CN2014/095707
Other languages
English (en)
French (fr)
Inventor
朱庆山
范川林
李洪钟
谢朝晖
牟文恒
王存虎
焦新刚
Original Assignee
中国科学院过程工程研究所
北京中凯宏德科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 北京中凯宏德科技有限公司 filed Critical 中国科学院过程工程研究所
Priority to FI20165599A priority Critical patent/FI127553B/en
Priority to CA2938642A priority patent/CA2938642C/en
Priority to RU2016131342A priority patent/RU2637043C1/ru
Priority to NZ722606A priority patent/NZ722606A/en
Priority to US15/109,393 priority patent/US10233510B2/en
Priority to AU2014375511A priority patent/AU2014375511B2/en
Publication of WO2015101304A1 publication Critical patent/WO2015101304A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/146Multi-step reduction without melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/003Cyclones or chain of cyclones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/18Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the fields of chemical industry and metallurgy, and particularly relates to a system and method for reducing powdered iron ore by using a fluidized bed.
  • Non-blast furnace ironmaking can be divided into direct reduction and smelting reduction.
  • the direct reduction product is reduced from iron concentrate to obtain sponge iron, which is mainly used as raw material for electric furnace steelmaking, and the melting also further melts sponge iron to separate slag iron. Get hot metal. Whether it is direct reduction or smelting reduction, it needs to pass the iron concentrate gas solid phase reduction process. The difference between the two is mainly in the metallization rate.
  • the metallization rate of direct reduction is generally required to exceed 90%, and there is still a subsequent molten pool.
  • the metallization rate of the final reduction, smelting reduction of gas-solid phase reduction (generally referred to as pre-reduction) can be as low as 75%.
  • the process involved in the direct reduction and the prereduction of the smelting reduction is substantially the same, and the iron ore in a solid state is reduced by the gas phase, and thus this patent application collectively refers to iron ore reduction.
  • iron ore reduction There are many methods for iron ore reduction. According to the type of reduction reactor, it can be divided into rotary kiln, rotary hearth furnace, shaft furnace and fluidized bed. Compared with other reactors, fluidized bed reduction has direct treatment of fine ore. It has outstanding advantages such as good heat and mass transfer and high reduction efficiency, and is considered to be the most efficient iron ore reduction reactor.
  • Fluidized bed reduction of iron ore has been studied for several decades, and a large number of process patents have been applied, and FIOR/FINMET, FINEX, HISmelt, Circofer, Circored and other processes have been piloted or industrialized.
  • FIOR/FINMET adopts H 2 +CO obtained by natural gas reforming as reduction and fluidization medium, and adopts four-stage fluidized bed in series operation, and the reducing gas passes through the fourth fluidized bed, the third fluidized bed and the second fluidized bed.
  • the first fluidized bed is passed through in series, the gas pressure is 11-13 atm (gauge pressure), and the unconsumed H2 and CO in the reduced tail gas are returned to the recycling after being subjected to purification treatment such as dust removal and decarburization.
  • the iron ore fines are reduced in series from the first fluidized bed, the second fluidized bed, the third fluidized bed, and the fourth fluidized bed (Schenk et al., Particuology, 2011, 914-23).
  • the reduction temperature of the fourth fluidized bed is about 800 ° C. Since there is no heat supply in the middle, the temperature of the fluidized bed decreases from four to one stage, and only 400-500 ° C to the first fluidized bed. The lower reduction rate is very slow, so the first fluidized bed actually acts primarily for preheating.
  • the FINEX process is a new smelting reduction process based on fluidized bed pre-reduction developed by POSCO Steel of Korea based on the introduction of the VEX smelting reduction process of VAI.
  • the development of FINEX technology began in 1992. In 1996, it completed a 15t/day laboratory expansion test. In 1999, it completed a 150t/day pilot test. In January 2001, it began 800,000 tons/year demonstration project construction. It was completed in May, and a 1.5 million tons/year industrial demonstration plant was built in May 2007.
  • the pre-reduction part of the FINEX process (US5762681, US5785733, CN95191907.5, CN95191873.7, US20020166412, US20060119023, US20080302212, US20080277842) is basically the same as the FIOR/FINMET process, using a four-stage fluidized bed in series operation, only reducing and fluidizing the medium.
  • the net gas obtained by purifying the gas produced by the smelting reduction in the smelting reduction furnace).
  • the reducing gas is sequentially passed through the fourth fluidized bed, the third fluidized bed, the second fluidized bed and the first fluidized bed in series, and the gas pressure is 2.3-4.0 atm (gauge pressure) to reduce the unconsumed H 2 in the tail gas.
  • FINEX does not have a separate iron ore powder preheating.
  • the unit, the first fluidized bed mainly functions as a drying/preheating, the temperature is about 400 ° C, and the temperature of the fourth-stage fluidized bed is 800-900 ° C.
  • the fluidized bed reduction of the FINEX process has been operating for several years on a scale of 1.5 million tons of iron per year (the actual reduced iron ore is expected to exceed 2.7 million tons per year).
  • the Circofer process and the Circored process are coal-based and gas-based fluidized bed reduced iron ore processes developed by the German company Lurgi (the company has sold its metallurgical business to Outokumpu in Finland).
  • the Circored process (US5603748, Schenk et al. Particuology, 2011, 914-23) uses hydrogen as a reduction medium in a two-stage fluidized bed for series reduction.
  • the iron ore fines are first dried in a preheating unit (transported fluidized bed - cyclone - venturi combined preheater) and preheated to 850-900 ° C, then into a circulating fluidized bed at a temperature of 850-900 ° C (first Pre-reduction in the stage reduction, the pre-reduced iron ore powder discharged from the circulating fluidized bed enters into the bubbling fluidized bed (second-stage reduction) for final reduction, and the bubbling fluidized bed is horizontal horizontal multi-stage (grade Fluidized bed, operating temperature is 630-650 ° C, both fluidized bed operating pressures are 4 atm (gauge pressure), and the reduced iron ore powder discharged from the bubbling fluidized bed is heated by a rapid heater to the briquetting station.
  • a preheating unit transported fluidized bed - cyclone - venturi combined preheater
  • Luqi began researching circulating fluidized bed reduction iron ore technology in the 1970s. From 1973 to 1990, it focused on the development of coal as a reduction medium technology. In 1993, it began to study the circulating fluidized bed with hydrogen as medium. The reduction technology began to build a 500,000 tons/year demonstration project at the Trinidad plant in 1996. The construction was completed in March 1999, the first batch of hot compacts were obtained in May 1999, and the system was commissioned, optimized and rectified in 1999-2001.
  • Circofer process (US20070256519, CN100587080C, CN100540698C) is a coal-based iron ore fluidization reduction process developed by Lurgi/Outokumpu (Orth et al., Minerals Engineering, 2007, 854-861), iron ore fines in Cyclone-Venturi
  • Lurgi/Outokumpu Orth et al., Minerals Engineering, 2007, 854-861
  • iron ore fines in Cyclone-Venturi The combined preheater exchanges heat with the exhaust gas discharged from the first fluidized bed, and the iron ore powder is preheated and then enters the front chamber of the first fluidized bed, and at the same time, the coal powder is added into the front tank and oxygen is introduced into the coal powder.
  • the heat generated by the partial combustion preheats the iron ore powder and simultaneously produces a reducing gas.
  • the preheated iron ore powder and the generated gas enter the first fluidized bed main bed from the top of the first fluidized bed front chamber, and the exhaust gas is purified.
  • the net gas enters from the bottom of the first fluidized bed as a fluidization and reduction medium.
  • the iron ore powder is reduced, it is discharged from the lower part of the main bed of the first fluidized bed into the second fluidized bed to continue the reduction, and the sponge iron obtained by the reduction is from the second.
  • the fluidized bed is discharged, and the semi-coke particles in the sponge iron are removed by a thermal magnetic separator, and then entered into the melting furnace for separation of the slag iron.
  • the hot exhaust gas discharged from the top of the first fluidized bed is separated by a cyclone, and then enters the cyclone-venturi combined preheater to heat the iron ore powder while cooling the tail gas, and then recovers heat through the waste heat boiler, and then passes through the bag filter.
  • venturi scrubber further remove dust, and then the CO 2 in addition to the CO 2 remover as net gas flow of the return cycle and as the reducing agent.
  • Lurgi established a ⁇ 700mm, 5t/day circulating fluidized bed pilot plant for the development of Circofer technology.
  • the HISmelt process uses a conveyor bed combined with a four-stage cyclone preheater to preheat the iron ore fines before entering the melting furnace (http://www.hismelt.com; Schenk et al., Particuology, 2011, 914-23). It is not in the true sense of iron ore reduction, and has little relevance to this patent application, so its process will not be described in detail.
  • Fluidized bed series FIOR/FINMET and FINEX mainstream processes adopt four-stage fluidized bed
  • the similar patents using four-stage fluidized bed reduction include: US20120328465 (2012), CN101892339 (2012), CN101397597 (2010) ), CN101519707 (2010), CN100560739 (2009), US20080277842 (2008), AU2001265669 (2001), etc.
  • these patent iron ore powder reduction parts are basically the same as FIOR/FINMET and FINEX.
  • the patents of CN103221555 (2013), CN102127611 (2012), US6960238 (2005), US6736876 (2004), US20020166412 (2002), US 5785733 (1998) and the like employ three-stage fluidized bed reduction.
  • CN201563469 (2010), CN101333575 (2010), and CN101906501 (2010) use two-stage fluidized bed reduction.
  • Powder preheating uses a circulating fluidized bed-cyclone preheater-Venturi combination unit to preheat the iron ore powder
  • CN101906501 (2010) uses a five-stage cyclone preheater to preheat the iron ore powder.
  • CN101333575 (2010) preheating iron ore fines using a slope furnace.
  • Other patents do not have a special iron ore powder preheating unit, which is basically the same as the FIOR/FINMET and FINEX processes. The last stage fluidized bed acts as a preheating of iron ore fines.
  • Gas preheating The Lurgi fluidized bed reduction process is equipped with a gas preheating unit, and many patents include none of the FIOR/FINMET process patents (US5082251, US5192486) and FINEX process patents (US5762681, US5785733).
  • the gas preheating unit but if the gas is not preheated, the fluidized bed temperature cannot maintain the high temperature of 800 ° C and above required for the reaction.
  • Some processes directly pass the high-temperature gas discharged from the melter-gasifier into the last-stage fluidized bed, such as CN101519707 (2010), CN101906501 (2010), AU2001265669 (2001), and US6736876 (2004), directly using the melt gasifier to produce high temperature.
  • the fluidized bed has the advantages of good gas-solid contact and high heat and mass transfer efficiency compared with the shaft furnace, the energy consumption per ton of hot compact produced by FIOR/FINMET is about 15.0GJ, which is much higher than that based on the shaft furnace.
  • the 10.5GJ of the MIDREX process indicates that there is still much room for improvement in energy consumption reduction based on fluidized bed technology.
  • the existing iron ore powder fluidized bed reduction process has the following two problems:
  • High operating pressure The existing FIOR/FINMET and FINEX processes are operated at high pressure (such as FIOR/FINMET operating pressure 12-14 atm).
  • the gas compression process is very energy intensive. If the operating pressure can be reduced to near normal pressure (MIDREX operation) The pressure of 1-1.5 atm) will greatly reduce the compression power consumption of the gas and improve the efficiency of fluidized bed reduction of iron ore.
  • One of the main reasons for the high pressure operation of the prior art is to reduce the diameter of the fluidized bed reactor. Because of the high thermodynamic requirements of using gas to reduce iron ore to metallic iron, iron ore can only be obtained in the case of a large excess of gas. The reduction of ferric oxide is made of metallic iron, so the amount of gas required for the reduction process is very large.
  • the diameter of the fluidized bed is usually too large.
  • the operating pressure of the 1 million tons system of the FINMET process is 12-14 atm.
  • the diameter of the lower fluidized bed is still 5m, which can be calculated. If the atmospheric pressure is used, the diameter of the fluidized bed will reach 17.7m.
  • the object of the present invention is to provide a system and a method for reducing powdered iron ore by fluidized bed, which solves the defects in the prior art, has the advantages of high reduction efficiency, good reduction economy, and is suitable for large-scale industrial production. .
  • a system for fluidized bed reduction of powdered iron ore comprising a silo 1, a screw feeder 2, a bubbling fluidized bed 3, a primary feeder 4, a primary circulating fluidized bed 5, a secondary Feeder 6, secondary circulating fluidized bed 7, three-stage feeder 8, three-stage circulating fluidized bed 9, discharger 10, product silo 11, pipeline burner 12, primary gas preheater 13, two Stage gas preheater 14, three-stage gas preheater 15.
  • the bubbling fluidized bed 3 comprises a fluidized bed main body 31, a first cyclonic separator 32, a second cyclonic separator 33, a third cyclonic separator 34 and a feeder 35;
  • the primary circulating fluidized bed 5 comprises a first riser 51, a fourth cyclone 52, a fifth cyclone 53 and a primary circulating leg 54;
  • the secondary circulating fluidized bed 7 comprises a secondary riser 71, a sixth cyclone 72, a seventh cyclone 73 and a secondary circulating leg 74;
  • the three-stage circulating fluidized bed 9 comprises a three-stage riser 91, an eighth cyclone 92, a ninth cyclone 93 and a three-stage circulating material leg 94;
  • a discharge port at the bottom of the silo 1 is provided with a pipe communicating with the feed port of the screw feeder 2, through which the powdered iron ore is added to the screw feeder 2, the screw feed 2
  • the discharge port communicates with the inlet of the second cyclone separator 33 and the outlet of the first cyclone separator 32 through a pipe.
  • the fluidized bed main body 31 is a horizontal multi-stage bubbling fluidized bed, and the fluidized bed main body 31 is provided with an air outlet at the upper portion, an air inlet at the bottom, a feed port at the lower portion, and a discharge port at the upper portion.
  • the gas outlet of the fluidized bed main body 31 is connected to the inlet of the first cyclone separator 32, and the feed port of the fluidized bed main body 31 is connected to the discharge port of the feeder 35, the fluidized bed
  • the air inlet of the main body 31 is connected to the air outlet of the fifth cyclone 53 through a pipe, and the discharge port of the fluidized bed main body 31 is connected to the inlet of the primary feeder 4 through a pipe.
  • the inlet of a cyclone separator 32 is also connected to the discharge port of the second cyclone separator 33 and the discharge port of the third cyclone separator 34 through a pipe;
  • the discharge port of the first cyclone separator 32 is The feed ports of the feeder 35 are connected, and the intake port and the discharge port of the feeder 35 are respectively connected to the gas inlet pipe and the feed port of the fluidized bed main body 31 through a pipe;
  • the second cyclone separator 33 The inlet is connected to the outlet of the screw feeder 2 and the outlet of the first cyclone 32 through a pipe
  • the second cyclone gas outlet 33 into the third cyclone 34 a mouth connection, the discharge port of the second cyclone separator 33 is connected to the inlet of the first cyclone separator 32;
  • the gas outlet of the third cyclone separator 34 is connected to the inlet of the reduction exhaust gas treatment system, a discharge port of the third cyclone separator 34 is connected to an inlet of the first cyclone separator 32;
  • the bottom air inlet of the fluidized bed main body 31 and the air outlet of the fifth cyclone separator 53 are connected through a pipeline, and the pipeline burner 12 is installed on the pipeline, and the pipeline burner 12 is provided with a burner and a burner. Connected to the air manifold to increase the temperature of the gas by burning a portion of the gas in the duct burner 12 to provide heat for pre-reduction in the bubbling fluidized bed;
  • the primary feeder 4 is provided with a feed port, an air inlet and a discharge port, and the feed port of the primary feeder 4 is connected to the discharge port of the fluidized bed main body 31 through a pipe.
  • the inlet of the grade feeder 4 is connected to the gas manifold, and the discharge port of the primary feeder 4 is connected to the lower inlet of the primary riser 51 through a pipe;
  • the top of the first riser 51 is provided with an air outlet, the bottom is provided with an air inlet, the lower part is provided with a feed port and a circulating return port; the air outlet of the first riser 51 and the fourth cyclone separator
  • the inlets of the first riser 51 are connected to the discharge port of the primary feeder 4, the inlet of the primary riser 51 and the first stage gas preheater 13
  • the gas outlet is connected by a pipe;
  • the gas outlet of the fourth cyclone separator 52 is connected to the inlet of the fifth cyclone separator 53, and the discharge port of the fourth cyclone separator 52 is circulated with the first stage
  • the material legs 54 are connected; the lower part of the first-stage circulating material leg 54 is provided with a returning port and a discharging opening, and the returning port of the first-stage circulating material leg 54 and the circulating returning of the first-stage lifting pipe 51
  • the port is connected by a pipe, and the discharge port of the first-stage circulating material leg 54 is connected
  • the ducts are connected; the air outlet of the fifth cyclone 53 is connected to the air inlet of the bottom of the fluidized bed main body 31, a discharge port of the fifth cyclone separator 53 is connected to a feed port of the secondary feeder 6 through a pipe;
  • the secondary feeder 6 is provided with a feed port, an air inlet and a discharge port, and a feed port of the secondary feeder 6 is connected to a discharge port of the fifth cyclone separator 53, the secondary feed
  • the air inlet of the device 6 is connected to the gas manifold, and the discharge port of the secondary feeder 6 is connected to the upper inlet of the secondary riser 71 through a pipe;
  • the top of the second riser 71 is provided with an air outlet, the upper part is provided with an upper feed port, the bottom is provided with an air inlet, the lower part is provided with a lower feed port and a circulating return port; the second riser 71 is out
  • the gas port is connected to the inlet of the sixth cyclone 72, and the upper inlet of the secondary riser 71 is connected to the discharge port of the secondary feeder 6, and the lower portion of the secondary riser 71 is Discharge of the material port and the first-stage circulating material leg 54
  • the port is connected by a pipe; the inlet of the secondary riser 71 is connected to the gas outlet of the secondary gas preheater 14 through a pipe; the outlet of the sixth cyclone 72 is separated from the seventh cyclone
  • the inlet of the sixth cyclone separator 72 is connected to the secondary circulating material leg 74; the lower portion of the secondary circulating material leg 74 is provided with a return port and a discharge opening.
  • the return port of the secondary circulating material leg 74 is connected to the circulating return port of the secondary riser 71 through a pipe, and the discharge port of the secondary circulating material leg 74 passes through the pipe and the tertiary riser 91.
  • the lower feed inlet is connected, the inlet of the secondary circulating material leg 74 is connected to the gas main pipe through a pipe;
  • the gas outlet of the seventh cyclonic separator is connected to the inlet of the reducing exhaust gas treatment system, a discharge port of the seventh cyclone separator is connected to the feed port of the tertiary feeder 8 through a pipe;
  • the three-stage feeder 8 is provided with a feed port, an air inlet and a discharge port, and a feed port of the three-stage feeder 8 is connected to a discharge port of the seventh cyclone 73, the three-stage feed
  • the air inlet of the device 8 is connected to the gas main pipe, and the discharge port of the three-stage feeder 8 is connected to the upper feed port of the third-stage riser 91 through a pipe;
  • the top of the three-stage riser 91 is provided with an air outlet, the upper part is provided with an upper feed port, the bottom is provided with an air inlet, the lower part is provided with a lower feed port and a circulating return port; and the third-stage riser 91 is out
  • the gas port is connected to the inlet of the eighth cyclone 92, and the upper feed port of the tertiary riser 91 is connected to the discharge port of the tertiary feeder 8, and the lower feed port of the tertiary riser 91
  • the discharge port of the secondary circulating material leg 74 is connected by a pipe; the inlet of the tertiary riser 91 is connected to the gas outlet of the tertiary gas preheater 15 through a pipe; the eighth cyclone 92
  • the outlet of the ninth cyclone separator 93 is connected to the inlet of the ninth cyclone separator 93, and the discharge port of the eighth cyclone separator 92 is connected to the third-stage
  • the discharge device 10 is provided with a feed port, an air inlet and a discharge port, and a feed port of the discharge device 10 is connected to a discharge port of the ninth cyclone separator 73, and the discharge device 10
  • the air inlet is connected to the gas main pipe, and the discharge port of the discharger 10 is connected to the product silo 11 through a pipe.
  • the gas preheater is divided into a first-stage gas preheater 13, a two-stage gas preheater 14 and a three-stage gas preheater 15, which are a primary circulating fluidized bed 5, a secondary circulating fluidized bed 7 and Flow of three-stage circulating fluidized bed 9
  • the gas preheating, any one of the first stage gas preheater 13, the second stage gas preheater 14 and the third stage gas preheater 15 is provided with a burner, a flue gas outlet, a gas inlet and a gas outlet; the burner is used to burn gas to generate high-temperature flue gas to provide required heat for reducing gas preheating, and the burner is connected to the air main pipe and the gas main pipe through a pipeline; the flue gas outlet is connected to the flue gas main pipe; The exhausted flue gas enters the flue gas treatment system to recover heat through the flue gas main pipe; the gas inlet is connected to the gas main pipe; the gas outlet of the first-stage gas preheater 13
  • the present invention also provides a reduction method based on the above-described system for reducing powdered iron ore by a fluidized bed, which means that the powder and the gas simultaneously enter and pass through the above system as follows: powdered iron ore from the silo 1
  • the spiral cyclone 2 enters the second cyclone separator 33, the third cyclone separator 34, the first cyclone separator 32, and then enters the bubbling fluidized bed main body 31 via the feeder 35; from the upper portion of the bubbling fluidized bed main body 31
  • the primary riser 51 entering the primary circulating fluidized bed 5 via the primary feeder 4 discharged through the fourth cyclone separator 52 and the primary circulating material leg 54 and entering the secondary circulating fluidized bed
  • the second riser 71 of the seventh, the fifth cyclone separator 53 collects the powder through the secondary feeder 6 and also enters the secondary riser 71 of the secondary circulating fluidized bed 7; through the sixth cyclone 72 and the secondary cycle
  • the material leg 74 is discharged into
  • the reduced powder product of the tertiary circulating fluidized bed 9 is passed through the eighth cyclone 92 and the tertiary recycle material 94 is discharged and enters the product silo 11, and the powder product collected by the ninth cyclone separator 93 also enters the product silo 11 through the discharger 10; the gas passes through the first-stage gas preheater 13, the secondary gas preheater 14 and After the three-stage gas preheater 15 is preheated, it enters the first-stage riser 51, the second-stage riser 71, and the third-stage riser 91 to contact with the ore powder for reduction; meanwhile, the gas passes through the pipeline through the feeder 35, one.
  • Level feeder 4 primary circulating material leg 54, secondary feeder 6, secondary circulating material leg 74, tertiary feeder 8, tertiary circulating material leg 94 and corresponding bottom air inlet of the discharger 10 enter
  • the gas discharged from the first riser 51 is removed by the fourth cyclone 52 and the fifth cyclone 53 and then enters the pipe burner 12 and partially burns the air from the air main pipe to enter the drum.
  • the bubble fluidized bed main body 31 is brought into contact with the iron ore powder for pre-reduction; the gas discharged from the bubbling fluidized bed main body 31 is passed through the first cyclone separator 32, the second cyclone separator 33, and the third cyclone separator 34.
  • the powdered iron ore enters the reducing exhaust gas treatment system through the pipeline after heat exchange;
  • the gas discharged from the stage riser 71 is removed from the powder through the sixth cyclone 72 and the seventh cyclone 73, and then enters the reduction exhaust gas treatment system through the pipeline;
  • the gas discharged from the tertiary riser 91 is passed through the eighth cyclone 92.
  • the ninth cyclone separator 93 is removed from the powder and then enters through the pipeline.
  • the original tail gas treatment system; the gas and air enter the first-stage gas preheater 13, the second-stage gas preheater 14 and the third-stage gas preheater 15 through the burner, and the heat is generated for the gas to be preheated, and then enters the flue gas through the pipeline. Processing system.
  • the improvement of the invention is that the powdered iron ore is sequentially passed through the bubbling fluidized bed, the first circulating fluidized bed, the secondary circulating fluidized bed and the tertiary circulating fluidized bed in series; the reducing gas is connected in series - Parallel mixing method for reducing powdery iron ore, preheating gas into parallel flow into primary circulating fluidized bed, secondary circulating fluidized bed and tertiary circulating fluidized bed, primary circulating fluidized bed and bubbling flow
  • the reducing gas of the chemical bed is operated in series, and the exhaust gas discharged from the primary circulating fluidized bed enters the bubbling fluidized bed in series to pre-reduced the powdered iron ore.
  • the invention is further improved in that the pre-reduction of the powdered iron ore is carried out by using a transverse multi-stage bubbling fluidized bed, which means reducing the powdered iron ore to ferrous oxide, and the pre-reduction is The 260-750 ° C is carried out, and the reduction time of the pre-reduction is 20-70 minutes.
  • a further improvement of the process of the present invention is that the pre-reduced powdered iron ore is reduced by a three-stage circulating fluidized bed, and the circulating fluidized bed is operated at a high gas velocity, and the high gas velocity is 5 -10 m/s, the reduction is carried out at 800-900 ° C, and the reduction time is 30-70 minutes.
  • a further improvement of the process of the invention is that the reduction process is carried out at a low pressure which is an operating pressure of less than 1 atm.
  • the reduction of iron ore powder by the invention can make the reactor reach the same or smaller size of the traditional process high pressure operation under the pressure of less than 1 atm, and avoid the high gas compression power consumption caused by the high pressure of the conventional technology.
  • the reduction gas string parallel operation of the invention can improve the gas utilization rate, the high operating gas velocity increases the reduction rate of the powdered iron ore, has the advantages of high reduction efficiency, low energy consumption in the reduction process, and the like, and can improve the powdered iron ore.
  • the economics of the restoration process can improve the gas utilization rate, the high operating gas velocity increases the reduction rate of the powdered iron ore, has the advantages of high reduction efficiency, low energy consumption in the reduction process, and the like, and can improve the powdered iron ore.
  • FIG. 1 is a schematic view showing the configuration of a system for fluidized bed reduction of powdered iron ore according to the present invention
  • a system for fluidized bed reduction of powdered iron ore comprising a silo 1, a screw feeder 2, a bubbling fluidized bed 3, a primary feeder 4, a primary circulating fluidized bed 5, a secondary feeder 6.
  • the bubbling fluidized bed 3 comprises a fluidized bed main body 31, a first cyclonic separator 32, a second cyclonic separator 33, a third cyclonic separator 34 and a feeder 35;
  • the first circulating fluidized bed 5 comprises a first riser 51, a fourth cyclone 52, a fifth cyclone 53 and a first circulating leg 54;
  • the secondary circulating fluidized bed 7 comprises a secondary riser 71, a sixth cyclone 72, a seventh cyclone 73 and a secondary circulating leg 74;
  • the tertiary circulating fluidized bed 9 comprises a tertiary riser 91, an eighth cyclone 92, a ninth cyclone 93 and a tertiary recycle leg 94;
  • the discharge port at the bottom of the silo 1 is provided with a pipe communicating with the feed port of the screw feeder 2, through which the powdered iron ore is added to the screw feeder 2, the discharge port of the spiral feed 2 and the said
  • the inlet of the second cyclone separator 33 and the outlet of the first cyclone separator 32 are in communication through a conduit.
  • the fluidized bed main body 31 is a horizontal multi-stage bubbling fluidized bed, the upper part of the fluidized bed main body 31 is provided with an air outlet, the bottom is provided with an air inlet, the lower part is provided with a feeding port, and the upper part is provided with a discharging port; the fluidized bed;
  • the air outlet of the main body 31 is connected to the inlet of the first cyclone separator 32, and the inlet of the fluidized bed main body 31 is connected to the discharge port of the feeder 35, and the air inlet of the fluidized bed main body 31 and the fifth cyclone
  • the gas outlet of the separator 53 is connected by a pipe, and the discharge port of the fluidized bed main body 31 is connected to the inlet of the primary feeder 4 through a pipe, the first rotation
  • the inlet of the air separator 32 is also connected to the discharge port of the second cyclone separator 33 and the discharge port of the third cyclone separator 34 through a pipe; the discharge port of the first cyclone separator 32 and the in
  • the inlet of the first cyclone separator 32 is connected; the outlet of the third cyclone separator 34 is connected to the inlet of the reduction exhaust gas treatment system, and the outlet of the third cyclone separator 34 is connected to the inlet of the first cyclone separator 32;
  • the bottom air inlet of the fluidized bed main body 31 and the air outlet of the fifth cyclone separator 53 are communicated through a pipe, and the pipe burner 12 is installed on the pipe, and the pipe burner 12 is provided with a burner, and the burner is connected with the air main pipe. Connecting, by burning a portion of the gas in the duct burner 12 to increase the temperature of the gas to provide heat for pre-reduction in the bubbling fluidized bed;
  • the first-stage feeder 4 is provided with a feed port, an air inlet and a discharge port, and the feed port of the primary feeder 4 is connected to the discharge port of the fluidized bed main body 31 through a pipe, and the feed of the primary feeder 4
  • the gas port is connected with the gas main pipe, and the discharge port of the first-stage feeder 4 is connected to the lower feed port of the first-stage riser 51 through a pipe;
  • the top of the first riser 51 is provided with an air outlet, the bottom is provided with an air inlet, the lower part is provided with a feed port and a circulating return port; the air outlet of the first riser 51 and the inlet of the fourth cyclone 52 Connected, the feed port of the primary riser 51 is connected to the discharge port of the primary feeder 4, and the inlet of the primary riser 51 is connected to the gas outlet of the primary gas preheater 13 through a pipe;
  • the air outlet of the fourth cyclone separator 52 is connected to the inlet of the fifth cyclone separator 53, and the discharge port of the fourth cyclone separator 52 is connected to the first-stage circulating material leg 54; the primary circulating material leg 54
  • the lower part is provided with a return port and a discharge port, and the return port of the first circulating leg 54 is connected with the circulating return port of the first riser 51 through a pipe, and the discharge port of the first circulating leg 54 passes through the pipe and
  • the secondary feeder 6 is provided with a feed port, an air inlet and a discharge port, and the feed port of the secondary feeder 6 is connected to the discharge port of the fifth cyclone separator 53, and the inlet port of the secondary feeder 6 Connected to the gas main pipe, the discharge port of the secondary feeder 6 and the upper feed port of the secondary riser 71 are connected by a pipe;
  • the top of the secondary riser 71 is provided with an air outlet, the upper part is provided with an upper feed port, the bottom is provided with an air inlet, the lower part is provided with a lower feed port and a circulating return port; the outlet of the secondary riser 71 is sixth and sixth.
  • Cyclone separator The inlets of 72 are connected, the upper inlet of the secondary riser 71 is connected to the discharge port of the secondary feeder 6, the lower inlet of the secondary riser 71 and the discharge of the primary circulating leg 54
  • the gas inlet of the secondary riser 71 is connected to the gas outlet of the secondary gas preheater 14 through a pipe; the gas outlet of the sixth cyclone 72 is connected to the inlet of the seventh cyclone 73.
  • the discharge port of the sixth cyclone separator 72 is connected with the secondary circulating material leg 74; the lower part of the secondary circulating material leg 74 is provided with a return port and a discharge port, and the return port of the secondary circulating material leg 74 is of the second stage.
  • the circulating return port of the riser 71 is connected by a pipe, and the discharge port of the secondary circulating material leg 74 is connected to the lower feed port of the tertiary riser 91 through a pipe, and the intake port of the secondary circulating material leg 74 is
  • the gas main pipe is connected through a pipeline;
  • the gas outlet of the seventh cyclone separator is connected with the inlet of the reduction tail gas treatment system, and the discharge port of the seventh cyclone separator is connected with the feed port of the tertiary feeder 8 through a pipeline;
  • the three-stage feeder 8 is provided with a feed port, an air inlet and a discharge port, and the feed port of the three-stage feeder 8 is connected to the discharge port of the seventh cyclone 73, and the air inlet of the third-stage feeder 8 Connected to the gas main pipe, the discharge port of the tertiary feeder 8 is connected to the upper inlet of the tertiary riser 91 through a pipe;
  • the top of the three-stage riser 91 is provided with an air outlet, the upper part is provided with an upper feed port, the bottom is provided with an air inlet, the lower part is provided with a lower feed port and a circulating return port; the third-stage riser 91 has an air outlet and an eighth
  • the inlets of the cyclone separators 92 are connected, and the upper feed port of the tertiary riser 91 is connected to the discharge port of the tertiary feeder 8, the lower feed port of the tertiary riser 91 and the secondary circulating leg
  • the discharge opening of 74 is connected by a pipe;
  • the intake port of the tertiary riser 91 is connected to the gas outlet of the tertiary gas preheater 15 through a pipe;
  • the inlets of the eighth cyclone separator 92 are connected to the third-stage circulating material legs 94; the third-stage
  • the material port is connected to the circulating return port of the third-stage riser 91 through a pipe, and the discharge port of the three-stage circulating material leg 94 is connected to the product silo 11 through a pipe, and the gas inlet and gas of the third-stage circulating material leg 94 are connected.
  • the manifold is connected by a pipeline; the outlet of the ninth cyclone separator 93 and the reductive exhaust gas treatment system Port is connected to a ninth cyclone discharge port 93 of the ejector feed port 10 is connected by conduit;
  • the discharge device 10 is provided with a feed port, an air inlet and a discharge port, and the feed port of the discharge device 10 is connected to the discharge port of the ninth cyclone separator 73, and the air inlet of the discharge device 10 and the gas main pipe Connected, the discharge opening of the discharger 10 is connected to the product silo 11 through a pipe.
  • the gas preheater is divided into a first-stage gas preheater 13, a two-stage gas preheater 14 and a three-stage gas preheater 15, which are a first-stage circulating fluidized bed 5, a secondary circulating fluidized bed 7 and a third-stage.
  • a gas preheater is provided with a burner, a flue gas outlet, a gas inlet and a gas outlet; the burner is used to burn the gas to generate high temperature flue gas to provide the required heat for the preheating of the reducing gas, and the burner and the air main pipe and the gas main pipe pass through the pipeline Connected; the flue gas outlet is connected to the flue gas main pipe, and the exhausted flue gas enters the flue gas treatment system to recover heat through the flue gas main pipe; the gas inlet is connected with the gas main pipe; the gas outlet of the first-stage gas preheater 13 and the first-stage riser 51 The gas inlets at the bottom are connected, the gas outlet of the secondary gas preheater 14 is connected to the inlet of the bottom of the secondary riser 71, the gas outlet of the tertiary gas preheater
  • a method for reducing powdered iron ore by using the fluidized bed reduction powdered iron ore system of Embodiment 1, comprising the steps of: powdered iron ore being fed into the second cyclone from the silo 1 via the screw feeder 2
  • the inlet of the separator 33, the powdered iron ore separated and collected by the second cyclone separator 33 and the third cyclone separator 34 respectively enters the inlet of the first cyclone separator 32 through the pipe, and is discharged from the fluidized bed main body 31.
  • the exhaust gas After the exhaust gas is mixed, it enters the first cyclone separator 32 for gas-solid separation, and the powdery iron ore is discharged from the discharge port at the bottom of the first cyclone separator 32 and then enters the fluidized bed main body 31 via the feeder 35. After the pre-reduction reaction of the powdered iron ore in the bubbling fluidized bed 3, it is discharged from the discharge port at the upper part of the fluidized bed main body 31, and enters the first-stage riser 51 through the primary feeder 4, in the first-stage circulation flow.
  • the powdered iron ore is discharged from the secondary circulating fluid leg 7 after being reacted in the secondary circulating fluidized bed 7, and enters the tertiary riser 91 of the tertiary circulating fluidized bed 9 through the lower feed port, and at the same time the seventh
  • the powdery iron ore collected by the cyclone 73 enters the tertiary riser 91 from the upper feed port via the secondary feeder 8.
  • the iron ore powder is reduced from the tertiary circulating material leg 94 into the product silo 11 after being reduced by the tertiary circulating fluidized bed 9, while the powdery iron ore collected by the ninth cyclone separator 93 is discharged through the discharger 10. Enter the product silo 11.
  • the gas enters the first-stage gas preheater 13, the second-stage gas preheater 14 and the third-stage gas preheater 15 through the gas main pipe in three ways.
  • the first-stage gas preheater 13 and the second stage The gas outlets of the gas preheater 14 and the tertiary gas preheater 15 are discharged, and enter the first-stage riser 51, the second-stage riser 71, and the third-stage riser 91 through the bottom intake port, respectively, in the first-stage circulating fluidized bed. 5.
  • the reduction reaction occurs with the powdered iron ore in the secondary circulating fluidized bed 7 and the tertiary circulating fluidized bed 9.
  • the reduced tail gas discharged from the primary circulating fluidized bed 5 is gas-solid separated by the fourth cyclone separator 52 and the fifth cyclone separator 53, and then enters the inlet of the lower portion of the fluidized bed main body 31 through the pipe to connect the fifth cyclone.
  • the pipe of the separator 53 and the fluidized bed main body 31 is provided with a pipe burner 12, and the burner of the pipe burner 12 is connected to the air main pipe, and is partially burned.
  • the temperature of the tail gas is reduced by the high-grade circulating fluidized bed, and the reduced exhaust gas heated by the pipeline preheater 12 is pre-reduced to the powdered iron ore in the bubbling fluidized bed 3, from the upper part of the fluidized bed main body 31.
  • the air outlet is discharged, and is discharged into the reducing exhaust gas treatment system by the first cyclone separator 32, the second cyclone separator 33, and the third cyclone separator 34.
  • the reduced tail gas discharged from the risers of the secondary circulating fluidized bed 7 and the tertiary circulating fluidized bed 9 passes through the sixth cyclone separator 72 and the eighth cyclone separator 92, the seventh cyclone separator 73, and the ninth cyclone separator After 93 gas-solid separation, it is discharged into a reducing exhaust gas treatment system.
  • the first-stage gas preheater 13, the secondary gas preheater 14 and the tertiary gas preheater 15 preheat the heat required for the gas to be obtained by burning the gas through the burner, and the gas and air from the gas main pipe and the air main pipe respectively pass.
  • the pipeline is sent to the burners of the first-stage gas preheater 13, the second-stage gas preheater 14 and the third-stage gas preheater 15, and is ignited by the burner in the first-stage gas preheater 13, the second-stage gas preheater
  • the 14 and tertiary gas preheaters 15 are combusted and then discharged through the flue gas outlets of the primary gas preheater 13, the secondary gas preheater 14 and the tertiary gas preheater 15 to enter the flue gas treatment system.
  • the pre-reduced powdered iron ore is subjected to reduction in a three-stage circulating fluidized bed by the above process of the present invention, and the reduction temperature of each circulating fluidized bed is 800 ° C, the reduction time of each stage is 70 minutes, and each stage of flow
  • the operating gas velocity of the chemical bed is 5m/s and the maximum operating pressure is 0.35atm
  • the metallization rate of the powdered iron ore at the outlet of the third-stage circulating fluidized bed reaches 83.5%
  • the reduction temperature is 850 °C
  • the reduction time of each stage At 30 minutes, the operating gas velocity in each fluidized bed is 10m/s, and the maximum operating pressure is 0.73atm.
  • the metallization rate of the powdered iron ore at the outlet of the third-stage circulating fluidized bed reaches 88.2%; the reduction temperature is 900. °C, the reduction time of each stage is 30 minutes, the operating gas velocity in each fluidized bed is 9m/s, and the maximum operating pressure is 0.71atm.
  • the metallization rate of the powdered iron ore at the outlet of the third-stage circulating fluidized bed reaches 95.1%; reduction temperature 900 ° C, reduction time of 60 minutes per stage, operating gas velocity of 9 m / s in each fluidized bed, corresponding to the maximum operating pressure of 0.72 atm, third-stage circulating fluidized bed outlet powdered iron ore
  • the metallization rate reached 96.3%.

Abstract

一种流化床还原粉状铁矿石的系统,通过高气速操作加快铁矿石还原速度并同时大幅提高单位截面流化床的气体处理能力,通过还原煤气并联降低通过单级流化床的气量,通过还原煤气串联-并联操作提高煤气的利用率,实现在近常压下粉状铁矿石在流化床内的高效还原;以及一种基于上述系统的还原方法。

Description

一种流化床还原粉状铁矿石的系统和方法 技术领域
本发明属于化工、冶金领域,特别涉及一种采用流化床对粉状铁矿石进行还原的系统和方法。
背景技术
现有的生铁冶炼主要采用高炉工艺,需要使用焦炭和球团矿,流程较长。为了降低对焦炭的依赖,非高炉炼铁工艺受到人们的重视。非高炉炼铁可分为直接还原和熔融还原两类,直接还原的产品是由铁精矿还原得到海绵铁,主要用作电炉炼钢的原料,而熔融还原则进一步将海绵铁熔化分离渣铁得到铁水。无论是直接还原还是熔融还原,都需要经过铁精矿气固相还原过程,两者的区别主要在金属化率上,直接还原的金属化率一般要求超过90%,而由于还有后续熔池终还原,熔融还原的气固相还原(一般称预还原)的金属化率可以低至75%。直接还原与熔融还原的预还原所涉及的过程基本相同,都是通过气相还原固体状态的铁矿石,因此本专利申请将其统称为铁矿石还原。铁矿石还原的方法很多,根据还原反应器的类型,可分为回转窑、转底炉、竖炉和流化床等,与其他反应器相比,流化床还原具有可直接处理粉矿、传热传质好、还原效率高等突出优点,被认为是最为高效的铁矿石还原反应器。流化床还原铁矿石已研究了几十年,申请了大量的工艺专利,并有FIOR/FINMET、FINEX、HISmelt、Circofer、Circored等工艺进行过中试或实现了产业化。
FIOR工艺最早在20世纪五十年代由ESSO Research and Engineering Company开始研究,于1962年在ESSO实验室(Baton Rouge,La,美国)完成了5t/d的小试,1965年在加拿大(Darmouth,Nova Scotia)建成了300t/d的工厂,1976年在委内瑞拉建成了40万吨/年工业装置生产热压块(US5082251,US5192486),并基于“细粉铁矿石还原”的英文首字母取名为FIOR(Fine Iron Ore Reduction),并持续运行了至今。FIOR公司于1992年起与奥钢联共同合作开发FINMET技术,于1995年完成了FINMET技术验证,1998年1月开始建设50万吨/年的FINMET系统,1999年11月开始调试,2000年5月正式运行,2001年开始将两条50万吨/年的FINMET系统合并为100万吨/年的系统。FIOR/FINMET采用天然气重整得到的H2+CO作为还原和流化介质,采用四级 流化床串联操作,还原气体经第四流化床、第三流化床、第二流化床至第一流化床依次串联通过,气体压力为11-13atm(表压),还原尾气中未消耗的H2和CO经除尘、脱碳等净化处理后返回循环使用。铁矿粉则从第一流化床、第二流化床、第三流化床、第四流化床依次串联被还原(Schenk et al.,Particuology,2011,914-23)。第四流化床的还原温度为约800℃,由于中间没有补热,流化床的温度从四级至一级依次降低,至第一流化床时仅为400-500℃,在此低温下还原速度很慢,所以第一流化床实际上主要起预热作用。
FINEX工艺是由韩国浦项制铁在引进奥钢联的COREX熔融还原工艺基础上,与奥钢联联合开发的基于流化床预还原的熔融还原新工艺。FINEX技术研发始于1992年,于1996年完成了15t/天的实验室扩大试验,1999年完成了150t/天的中试,2001年1月开始80万吨/年的示范工程建设,2004年5月达产,2007年5月建成了150万吨/年产业化示范工厂。FINEX工艺的预还原部分(US5762681,US5785733,CN95191907.5,CN95191873.7,US20020166412,US20060119023,US20080302212,US20080277842)与FIOR/FINMET工艺基本一样,采用四级流化床串联操作,只是还原及流化介质采用熔融还原(熔融还原炉中)产生的煤气净化后得到的净煤气。还原气体由第四流化床、第三流化床、第二流化床至第一流化床依次串联通过,气体压力2.3-4.0atm(表压),还原尾气中未消耗的H2及CO经除尘、脱碳等净化处理后返回循环使用。铁矿粉从第一流化床、第二流化床、第三流化床、第四流化床中依次串联通过被还原,与FIOR/FINMET一样,FINEX没有设置单独的铁矿粉预热单元,第一流化床主要起干燥/预热作用,温度约为400℃,第四级流化床的温度在800-900℃。FINEX工艺的流化床还原已在150万吨铁/年(实际还原铁矿石预计超过270万吨/年)的规模上运行数年。
Circofer工艺和Circored工艺是由德国鲁奇(Lurgi)公司(鲁奇公司已将其冶金业务已出售给芬兰的Outokumpu公司)开发的煤基和气基流化床还原铁矿工艺。Circored工艺(US5603748,Schenk et al.Particuology,2011,914-23)以氢气为还原介质,采用两级流化床串联还原。铁矿粉首先在预热单元(输送流化床-旋风-文丘里组合预热器)中干燥并预热至850-900℃后,进入温度为850-900℃的循环流化床(第一级还原)中进行预还原,由循环流化床排出的预还原铁矿粉进入鼓泡流化床(第二级还原)中进行终还原,该鼓泡流化床为卧式横向多段(级)流化床,操作温度为630-650℃,两个流化床操作压力都为4atm(表压),从鼓泡 流化床中排出的还原铁矿粉经过快速加热器加热至压块所需的680℃以上,进入热压块工段压块。还原尾气经与循环气体换热回收显热、净化、压缩等处理后返回循环利用。鲁奇公司从上世纪七十年代开始研究循环流化床还原铁矿技术,1973-1990年间主要专注于以煤为还原介质技术的开发,1993年开始转向研究以氢气为介质的循环流化床还原技术,1996年开始在Trinidad工厂建设50万吨/年示范工程,于1999年3月完成建设、1999年5月得到第一批热压块,1999-2001年间对系统进行调试、优化、整改,于2001年8月成功实现了63.6t/h HBI的达产目标,并在2001年8-11月间连续生产了约13万吨HBI,但从2001年11月起因市场原因闲置。Circofer工艺(US20070256519,CN100587080C,CN100540698C)是Lurgi/Outokumpu公司开发的煤基铁矿石流态化还原工艺(Orth et al.,Minerals Engineering,2007,854-861),铁矿粉在旋风-文丘里组合预热器中与第一流化床排放的尾气换热,铁矿粉被预热后进入第一流化床的前仓,同时向前仓中加入煤粉并通入氧气,通过煤粉部分燃烧产生的热量预热铁矿粉、同时产生还原性气体,经预热的铁矿粉和产生的气体从第一流化床前仓顶部进入第一流化床主床,尾气净化后得到的净煤气从第一流化床底部进入作为流化和还原介质,铁矿粉还原后从第一流化床主床下部排出进入第二流化床继续还原,还原得到的海绵铁从第二流化床排出,经热磁选机去除海绵铁中的半焦颗粒,再进入熔分炉进行渣铁分离。由第一流化床顶部排出的热尾气先经旋风除尘器分离、后进入旋风-文丘里组合预热器加热铁矿粉的同时使尾气冷却,再经过废热锅炉回收热量,然后经布袋除尘器和文丘里除尘器进一步脱除粉尘,再经CO2脱除器除CO2后作为净煤气返回循环用作流化及还原介质。鲁奇公司于1980年建立了φ700mm、5t/天的循环流化床中试平台用于发展Circofer技术,至2003年总共进行了十几轮的试验,运行总时间超过70天,但从现有的文献报道来看,Circofer工艺只完成了上述中试,未见进一步中试或产业化应用的报道。
HISmelt工艺采用输送床结合四级旋风预热器在进入熔分炉前对铁矿粉进行预热(http://www.hismelt.com;Schenk et al.,Particuology,2011,914-23),还不属于真正意义上的铁矿石还原,与本专利申请相关性不大,故不再详述其工艺。
除了上述进行过中试和产业化的流化床还原工艺外,国内外还申请了很多流化床还原铁矿工艺方面的专利,这些专利一般采用2-4级流化床还原,与FIOR/FINMET和FINEX工艺很相似,有些甚至基本一样,其他则通过流化床级 数、粉体预热方式、气体预热方式、气体操作方式等进行组合形成差异,从而形成了众多的授权专利,这也从一个侧面说明对流化床级数、铁矿粉预热、还原气体预热、气体操作方式这几个主要方面的不同组合,在流态化铁矿石还原工艺方面具有很大的创新空间。下面就从这几个主要方面对国内外铁矿粉流态化还原工艺进行分析。
1)流化床级数:FIOR/FINMET和FINEX主流工艺采用四级流化床,与此相似采用四级流化床还原的专利还包括:US20120328465(2012)、CN101892339(2012)、CN101397597(2010)、CN101519707(2010)、CN100560739(2009)、US20080277842(2008)、AU2001265669(2001)等,这些专利铁矿粉还原部分与FIOR/FINMET和FINEX基本一样。CN103221555(2013)、CN102127611(2012)、US6960238(2005)、US6736876(2004)、US20020166412(2002)、US5785733(1998)等专利采用三级流化床还原。除鲁奇工艺外,CN201563469(2010)、CN101333575(2010)、CN101906501(2010)采用两级流化床还原。
2)粉体预热:鲁奇工艺采用循环流化床-旋风预热器-文丘里组合单元对铁矿粉进行预热,CN101906501(2010)采用五级旋风预热器预热铁矿粉,CN101333575(2010)采用斜坡炉预热铁矿粉。其他专利中没有专门的铁矿粉预热单元,实际上基本与FIOR/FINMET和FINEX工艺相同,最后一级流化床起到铁矿粉预热作用。
3)气体预热:鲁奇流化床还原工艺设有气体预热单元,而很多专利包括FIOR/FINMET工艺专利(US5082251,US5192486)和FINEX工艺专利(US5762681,US5785733)工艺中都没有涉及或者包括气体预热单元,但如果气体不预热,流化床温度无法维持反应所需的800℃及以上的高温。有些工艺将熔融气化炉排出的高温气体直接通入最末级流化床,如CN101519707(2010)、CN101906501(2010)、AU2001265669(2001)、US6736876(2004),直接利用熔融气化炉出来高温气体的显热,然而由于熔分过程会产生CO2和H2O等气体,不去除直接利用会降低气体的还原能力。实际上FIOR/FINMET实际流程中设有气体预热单元(Schenk et al.,Particuology,2011,914-23),即还原气体先经预热器预热再依次通过四级流化床、三级流化床、二级流化床及一级流化床,由于反应过程总体吸热,在中间没有预热器的情况下,流化床的温度逐级降低,到了最末一级(一级流化床)时温度仅有400-500℃,还原能力很差。为了解决这个问题,US6960238(2005)提出在气体进入每一级流化床前通入氧气/空气对还原气体进 行部分燃烧直接加热还原气体,直接部分燃烧虽提高气体的温度,但燃烧生成的CO2和H2O会极大地降低气体的还原势和还原能力,对还原过程非常不利。
4)气体操作方式:现有工艺对于气体都是采用串联操作,各工艺采用的反应压力差别很大。FIOR/FINMET的操作表压为11-13atm,FINEX的操作表压为2-4atm,Circored的操作表压为4atm。CN100560739C的操作压力为4-10atm。有些专利,如CN101519707(2010)及CN102127611(2012)给出了1-10atm的操作压力,然而过大的范围不具有实际可操作性,因为操作压力相差十倍意味着流化床的操作线速度也相差十倍,一般流化床难有这么大的操作弹性。很多专利如CN101333575(2010)、101563469(2010)、CN103221555(2013)、CN101892339(2012)等没有说明操作压力。
然而,尽管与竖炉相比,流化床具有气固接触好、传热传质效率高等优点,但FIOR/FINMET生产每吨热压块的能耗约为15.0GJ,远高于基于竖炉的MIDREX工艺的10.5GJ,说明基于流化床工艺的技术在能耗降低方面尚有很大的提升空间。现有的铁矿粉流化床还原工艺存在如下两方面问题:
1)操作压力高:现有的FIOR/FINMET、FINEX工艺都采用高压操作(如FIOR/FINMET操作压力12-14atm),气体压缩过程非常耗能,如果能够降低操作压力至近常压(MIDREX的操作压力为1-1.5atm)将可大幅降低气体的压缩功耗,提高流化床还原铁矿石的效率。现有工艺采用高压操作的一个主要原因是为了降低流化床反应器的直径,由于采用气体还原铁矿石至金属铁的热力学要求较高,只有在气体大量过量的情况下才能将铁矿石中的三氧化二铁还原为金属铁,所以还原过程所需气量很大,如果采用常压操作通常会导致流化床直径过大,比如FINMET工艺的100万吨系统在12-14atm的操作压力下流化床直径仍有5m,可以计算,如果采用常压操作,流化床直径将达到17.7m。
2)还原效率低:很多工艺尽管采用四级流化床还原,但由于气体串联通过四级至一级流化床中间没有补热过程,导致反应温度从四级至一级逐渐降低,一级流化床的温度仅有400-500℃。由于在700℃以下时铁矿石还原动力学较慢,因此传统的四级流化床的末两级起的还原作用较小,导致整体还原效率较低。
综上所述,通过工艺及技术创新,降低流化床操作压力、提高多级流化床总体还原效率是降低流化床还原铁矿石过程能耗,提高还原过程经济性的关键。
发明内容
本发明的目的在于,提供一种流化床还原粉状铁矿石的系统和方法,用以解决现有技术中的缺陷,具有还原效率高,还原经济性好,适合大规模工业生产等优点。
为达到上述目的,本发明采用了如下的技术方案:
一种流化床还原粉状铁矿石的系统,所述系统包括料仓1、螺旋加料器2、鼓泡流化床3、一级加料器4、一级循环流化床5、二级加料器6、二级循环流化床7、三级加料器8、三级循环流化床9、排料器10、产品料仓11、管道燃烧器12、一级煤气预热器13、二级煤气预热器14、三级煤气预热器15。
所述鼓泡流化床3包括流化床主体31、第一旋风分离器32、第二旋风分离器33、第三旋风分离器34和加料器35;
所述一级循环流化床5包括一级提升管51、第四旋风分离器52、第五旋风分离器53和一级循环料腿54;
所述二级循环流化床7包括二级提升管71、第六旋风分离器72、第七旋风分离器73和二级循环料腿74;
所述三级循环流化床9包括三级提升管91、第八旋风分离器92、第九旋风分离器93和三级循环料腿94;
所述料仓1底部的出料口设有与所述的螺旋加料器2的进料口相连通的管道,通过该管道将粉状铁矿石加入螺旋加料器2,所述螺旋加料2的出料口与所述第二旋风分离器33的入口和第一旋风分离器32的出气口通过管道相连通。
所述流化床主体31为横向多级鼓泡流化床,所述流化床主体31上部设有出气口、底部设有进气口、下部设有进料口、上部设有出料口;所述流化床主体31的出气口与第一旋风分离器32的入口相连接,所述流化床主体31的进料口与加料器35的出料口相连接,所述流化床主体31的进气口与第五旋风分离器53的出气口通过管道相连接,所述流化床主体31的出料口与一级加料器4的进料口通过管道相连接,所述第一旋风分离器32的入口还与第二旋风分离器33的出料口、第三旋风分离器34的出料口通过管道相连接;所述第一旋风分离器32的出料口与所述加料器35的进料口相连接,所述加料器35的进气口和出料口分别与煤气总管和流化床主体31的进料口通过管道相连接;所述第二旋风分离器33的入口与所述螺旋加料器2的出料口和第一旋风分离器32的出气口通过管道与相连接,所述第二旋风分离器33的出气口与所述第三旋风分离器34的入 口相连接,所述第二旋风分离器33的出料口与所述第一旋风分离器32的入口相连;所述第三旋风分离器34的出气口与还原尾气处理系统的入口相连接,所述第三旋风分离器34的出料口与所述第一旋风分离器32的入口相连;
所述流化床主体31底部进气口与所述第五旋风分离器53的出气口通过管道相连通,在该管道上安装有管道燃烧器12,管道燃烧器12设有烧嘴,烧嘴与空气总管相连接,通过通入空气在管道燃烧器12中燃烧部分煤气来提高煤气的温度,为鼓泡流化床中的预还原提供热量;
所述一级加料器4设有进料口、进气口和出料口,所述一级加料器4的进料口与流化床主体31的出料口通过管道相连接,所述一级加料器4的进气口与煤气总管相连接,所述一级加料器4的出料口与一级提升管51的下部进料口通过管道相连接;
所述一级提升管51顶部设有出气口、底部设有进气口、下部设有进料口和循环回料口;所述一级提升管51的出气口与所述第四旋风分离器52的入口相连接,所述一级提升管51的进料口与一级加料器4的出料口相连接,所述一级提升管51的进气口与一级煤气预热器13的煤气出口通过管道相连接;所述第四旋风分离器52的出气口与所述第五旋风分离器53的入口相连接,所述第四旋风分离器52的排料口与所述一级循环料腿54相连接;所述一级循环料腿54下部设有回料口和排料口,所述一级循环料腿54的回料口与所述的一级提升管51的循环回料口通过管道相连接,所述一级循环料腿54的排料口通过管道与二级提升管71的下部进料口相连接,所述一级循环料腿54的进气口与煤气总管通过管道相连接;所述第五旋风分离器53的出气口与所述流化床主体31底部的进气口相连接,所述第五旋风分离器53的排料口与所述二级加料器6的进料口通过管道相连接;
所述二级加料器6设有进料口、进气口和出料口,所述二级加料器6的进料口与第五旋风分离器53的排料口相连,所述二级加料器6的进气口与煤气总管相连接,所述二级加料器6的出料口与二级提升管71的上部进料口通过管道相连接;
所述二级提升管71顶部设有出气口、上部设有上部进料口、底部设有进气口、下部设有下部进料口和循环回料口;所述二级提升管71的出气口与所述第六旋风分离器72的入口相连接,所述二级提升管71的上部进料口与二级加料器6的出料口相连接,所述二级提升管71的下部进料口与一级循环料腿54的排料 口通过管道相连;所述二级提升管71的进气口与二级煤气预热器14的煤气出口通过管道相连接;所述第六旋风分离器72的出气口与所述第七旋风分离器73的入口相连接,所述第六旋风分离器72的排料口与所述二级循环料腿74相连接;所述二级循环料腿74下部设有回料口和排料口,所述二级循环料腿74的回料口与所述二级提升管71的循环回料口通过管道相连接,所述二级循环料腿74的排料口通过管道与三级提升管91的下部进料口相连接,所述二级循环料腿74的进气口与煤气总管通过管道相连接;所述第七旋风分离器的出气口与还原尾气处理系统的入口相连接,所述第七旋风分离器的排料口与所述三级加料器8的进料口通过管道相连接;
所述三级加料器8设有进料口、进气口和出料口,所述三级加料器8的进料口与第七旋风分离器73的排料口相连,所述三级加料器8的进气口与煤气总管相连接,所述三级加料器8的出料口与三级提升管91的上部进料口通过管道相连接;
所述三级提升管91顶部设有出气口、上部设有上部进料口、底部设有进气口、下部设有下部进料口和循环回料口;所述三级提升管91的出气口与第八旋风分离器92的入口相连接,所述三级提升管91的上部进料口与三级加料器8的出料口相连接,所述三级提升管91的下部进料口与二级循环料腿74的排料口通过管道相连;所述三级提升管91的进气口与三级煤气预热器15的煤气出口通过管道相连接;所述第八旋风分离器92的出气口与所述的第九旋风分离器93的入口相连接,所述的第八旋风分离器92的排料口与所述的三级循环料腿94相连接;所述三级循环料腿94下部设有回料口和排料口,所述三级循环料腿94的回料口与三级提升管91的循环回料口通过管道相连接,所述三级循环料腿94的排料口通过管道与产品料仓11相连接,所述三级循环料腿94的进气口与煤气总管通过管道相连接;所述第九旋风分离器93的出气口与还原尾气处理系统的入口相连接,所述第九旋风分离器93的排料口与所述排料器10的进料口通过管道相连接;
所述排料器10设有进料口、进气口和出料口,所述排料器10的进料口与第九旋风分离器73的排料口相连,所述排料器10的进气口与煤气总管相连接,所述排料器10的出料口与产品料仓11通过管道相连接。
所述煤气预热器分为一级煤气预热器13、二级煤气预热器14和三级煤气预热器15,分别为一级循环流化床5、二级循环流化床7和三级循环流化床9的流 化煤气预热,所述一级煤气预热器13、二级煤气预热器14和三级煤气预热器15中的任一煤气预热器设有烧嘴、烟气出口、煤气入口和煤气出口;所述烧嘴用来燃烧煤气产生高温烟气为还原煤气预热提供所需热量,所述烧嘴与空气总管和煤气总管通过管道相连;所述烟气出口与烟气总管相连,排出的烟气经烟气总管进入烟气处理系统回收热量;所述煤气入口与煤气总管相连;一级煤气预热器13的煤气出口与一级提升管51底部的进气口相连接,二级煤气预热器14的煤气出口与二级提升管71底部的进气口相连接,三级煤气预热器15的煤气出口与三级提升管91底部的进气口相连接。
本发明还提供了基于上述流化床还原粉状铁矿石的系统的还原方法,所述方法是指粉体和气体同时按如下方式进入并通过上述系统:粉状铁矿石由料仓1经螺旋加料器2进入第二旋风分离器33、第三旋风分离器34、第一旋风分离器32,然后经加料器35进入鼓泡流化床主体31;从鼓泡流化床主体31上部出料口排出后,经一级加料器4进入一级循环流化床5的一级提升管51、经第四旋风分离器52和一级循环料腿54排出并进入二级循环流化床7的二级提升管71,第五旋风分离器53收集粉体经二级加料器6也进入二级循环流化床7的二级提升管71;经第六旋风分离器72和二级循环料腿74排出并进入三级循环流化床9的三级提升管91,第七旋风分离器73收集粉体经三级加料器8也进入三级循环流化床9的三级提升管91;三级循环流化床9的还原粉体产物经第八旋风分离器92和三级循环料腿94排出并进入产品料仓11,第九旋风分离器93收集的粉体产物经排料器10也进入产品料仓11;煤气经一级煤气预热器13、二级煤气预热器14和三级煤气预热器15预热后,分别进入一级提升管51、二级提升管71和三级提升管91与矿石粉体接触进行还原;同时,煤气经管道分别经加料器35、一级加料器4、一级循环料腿54、二级加料器6、二级循环料腿74、三级加料器8、三级循环料腿94和排料器10的相应的底部进气口进入还原系统中;由一级提升管51排出的气体经第四旋风分离器52、第五旋风分离器53脱除粉体后进入管道燃烧器12与来自空气总管的空气发生部分燃烧升温后进入鼓泡流化床主体31与铁矿石粉体接触进行预还原;由鼓泡流化床主体31排出的气体经第一旋风分离器32、第二旋风分离器33和第三旋风分离器34与粉状铁矿石换热后经管道进入还原尾气处理系统;由二级提升管71排出的气体经第六旋风分离器72、第七旋风分离器73脱除粉体后经管道进入还原尾气处理系统;由三级提升管91排出的气体经第八旋风分离器92、第九旋风分离器93脱除粉体后经管道进入还 原尾气处理系统;煤气和空气经烧嘴进入一级煤气预热器13、二级煤气预热器14和三级煤气预热器15燃烧产热用于煤气预热后,经管道进入烟气处理系统。
本发明的改进之处在于,采用粉状铁矿石以串联方式依次通过鼓泡流化床、一级循环流化床、二级循环流化床和三级循环流化床;还原煤气以串联-并联混合方式还原粉状铁矿石,预热煤气以并联方式通入一级循环流化床、二级循环流化床和三级循环流化床,一级循环流化床与鼓泡流化床的还原气体采用串联操作,一级循环流化床排出的尾气以串联的方式进入鼓泡流化床对粉状铁矿石进行预还原。
本发明进一步改进在于,采用横向多级鼓泡流化床对粉状铁矿石进行预还原,所述的预还原是指将粉状铁矿石还原至氧化亚铁,所述的预还原在650-750℃下进行,所述的预还原的还原时间为20-70分钟。
本发明工艺的更进一步改进在于,采用三级循环流化床对经预还原的粉状铁矿石进行还原,所述的循环流化床采用高气速操作,所述的高气速为5-10m/s,所述的还原在800-900℃下进行,所述的还原时间为30-70分钟。
本发明工艺的再一个改进在于,还原过程在低压下进行,所述低压为操作压力小于1atm。
采用本发明对铁矿石粉体进行还原,可在低于1atm的压力下使反应器达到传统工艺高压操作相同或更小的尺寸,避免了传统技术采用高压而导致的气体压缩功耗高的缺点;同时本发明还原煤气串并联操作可提高煤气利用率,高操作气速提高粉状铁矿石的还原速率,具有还原效率高,还原过程能耗低等优点,可提高粉状铁矿石还原过程的经济性。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的流化床还原粉状铁矿石的系统的配置示意图;
附图标记:1、料仓;2、螺旋加料器;3、鼓泡流化床;31、流化床主体;32、第一旋风分离器;33、第二旋风分离器;34、第三旋风分离器;35、加料器;4、一级加料器;5、一级循环流化床;51、一级提升管;52、第四旋风分离器;53、第五旋风分离器;54、一级循环料腿;6、二级加料器;7、二级循环流化床;71、二级提升管;72、第六旋风分离器;73、第七旋风分离器;74、二级循环料 腿;8、三级加料器;9、三级循环流化床;91、三级提升管;92、第八旋风分离器;93、第九旋风分离器;94、三级循环料腿;10、排料器;11、产品料仓;12、管道燃烧器;13、一级煤气预热器;14、二级煤气预热器;15、三级煤气预热器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种流化床还原粉状铁矿石的系统,系统包括料仓1、螺旋加料器2、鼓泡流化床3、一级加料器4、一级循环流化床5、二级加料器6、二级循环流化床7、三级加料器8、三级循环流化床9、排料器10、产品料仓11、管道燃烧器12、一级煤气预热器13、二级煤气预热器14、三级煤气预热器15;
鼓泡流化床3包括流化床主体31、第一旋风分离器32、第二旋风分离器33、第三旋风分离器34和加料器35;
一级循环流化床5包括一级提升管51、第四旋风分离器52、第五旋风分离器53和一级循环料腿54;
二级循环流化床7包括二级提升管71、第六旋风分离器72、第七旋风分离器73和二级循环料腿74;
三级循环流化床9包括三级提升管91、第八旋风分离器92、第九旋风分离器93和三级循环料腿94;
料仓1底部的出料口设有与螺旋加料器2的进料口相连通的管道,通过该管道将粉状铁矿石加入螺旋加料器2,螺旋加料2的出料口与所述的第二旋风分离器33的入口和第一旋风分离器32的出气口通过管道相连通。
流化床主体31为横向多级鼓泡流化床,流化床主体31上部设有出气口、底部设有进气口、下部设有进料口、上部设有出料口;流化床主体31的出气口与第一旋风分离器32的入口相连接,流化床主体31的进料口与加料器35的出料口相连接,流化床主体31的进气口与第五旋风分离器53的出气口通过管道相连接,流化床主体31的出料口与一级加料器4的进料口通过管道相连接,第一旋 风分离器32的入口还与第二旋风分离器33的出料口、第三旋风分离器34的出料口通过管道相连接;第一旋风分离器32的出料口与加料器35的进料口相连接,加料器35的进气口和出料口分别与煤气总管和流化床主体31的进料口通过管道相连接;第二旋风分离器33的入口与螺旋加料器2的出料口和第一旋风分离器32的出气口通过管道与相连接,第二旋风分离器33的出气口与第三旋风分离器34的入口相连接,第二旋风分离器33的出料口与第一旋风分离器32的入口相连;第三旋风分离器34的出气口与还原尾气处理系统的入口相连接,第三旋风分离器34的出料口与第一旋风分离器32的入口相连;
流化床主体31底部进气口与第五旋风分离器53的出气口通过管道相连通,在该管道上安装有管道燃烧器12,管道燃烧器12设有烧嘴,烧嘴与空气总管相连接,通过通入空气在管道燃烧器12中燃烧部分煤气来提高煤气的温度,为鼓泡流化床中的预还原提供热量;
一级加料器4设有进料口、进气口和出料口,一级加料器4的进料口与流化床主体31的出料口通过管道相连接,一级加料器4的进气口与煤气总管相连接,一级加料器4的出料口与一级提升管51的下部进料口通过管道相连接;
一级提升管51顶部设有出气口、底部设有进气口、下部设有进料口和循环回料口;一级提升管51的出气口与所述的第四旋风分离器52的入口相连接,一级提升管51的进料口与一级加料器4的出料口相连接,一级提升管51的进气口与一级煤气预热器13的煤气出口通过管道相连接;第四旋风分离器52的出气口与第五旋风分离器53的入口相连接,第四旋风分离器52的排料口与所述的一级循环料腿54相连接;一级循环料腿54下部设有回料口和排料口,一级循环料腿54的回料口与一级提升管51的循环回料口通过管道相连接,一级循环料腿54的排料口通过管道与二级提升管71的下部进料口相连接,一级循环料腿54的进气口与煤气总管通过管道相连接;第五旋风分离器53的出气口与所述的流化床主体31底部的进气口相连接,第五旋风分离器53的排料口与二级加料器6的进料口通过管道相连接;
二级加料器6设有进料口、进气口和出料口,二级加料器6的进料口与第五旋风分离器53的排料口相连,二级加料器6的进气口与煤气总管相连接,二级加料器6的出料口与二级提升管71的上部进料口通过管道相连接;
二级提升管71顶部设有出气口、上部设有上部进料口、底部设有进气口、下部设有下部进料口和循环回料口;二级提升管71的出气口与第六旋风分离器 72的入口相连接,二级提升管71的上部进料口与二级加料器6的出料口相连接,二级提升管71的下部进料口与一级循环料腿54的排料口通过管道相连;二级提升管71的进气口与二级煤气预热器14的煤气出口通过管道相连接;第六旋风分离器72的出气口与第七旋风分离器73的入口相连接,第六旋风分离器72的排料口与二级循环料腿74相连接;二级循环料腿74下部设有回料口和排料口,二级循环料腿74的回料口与二级提升管71的循环回料口通过管道相连接,二级循环料腿74的排料口通过管道与三级提升管91的下部进料口相连接,二级循环料腿74的进气口与煤气总管通过管道相连接;第七旋风分离器的出气口与还原尾气处理系统的入口相连接,第七旋风分离器的排料口与三级加料器8的进料口通过管道相连接;
三级加料器8设有进料口、进气口和出料口,三级加料器8的进料口与第七旋风分离器73的排料口相连,三级加料器8的进气口与煤气总管相连接,三级加料器8的出料口与三级提升管91的上部进料口通过管道相连接;
三级提升管91顶部设有出气口、上部设有上部进料口、底部设有进气口、下部设有下部进料口和循环回料口;三级提升管91的出气口与第八旋风分离器92的入口相连接,三级提升管91的上部进料口与三级加料器8的出料口相连接,所述三级提升管91的下部进料口与二级循环料腿74的排料口通过管道相连;三级提升管91的进气口与三级煤气预热器15的煤气出口通过管道相连接;第八旋风分离器92的出气口与第九旋风分离器93的入口相连接,第八旋风分离器92的排料口与三级循环料腿94相连接;三级循环料腿94下部设有回料口和排料口,三级循环料腿94的回料口与三级提升管91的循环回料口通过管道相连接,三级循环料腿94的排料口通过管道与产品料仓11相连接,三级循环料腿94的进气口与煤气总管通过管道相连接;第九旋风分离器93的出气口与还原尾气处理系统的入口相连接,第九旋风分离器93的排料口与排料器10的进料口通过管道相连接;
排料器10设有进料口、进气口和出料口,排料器10的进料口与第九旋风分离器73的排料口相连,排料器10的进气口与煤气总管相连接,排料器10的出料口与产品料仓11通过管道相连接。
煤气预热器分为一级煤气预热器13、二级煤气预热器14和三级煤气预热器15,分别为一级循环流化床5、二级循环流化床7和三级循环流化床9的流化煤气预热,一级煤气预热器13、二级煤气预热器14和三级煤气预热器15中的任 一煤气预热器设有烧嘴、烟气出口、煤气入口和煤气出口;烧嘴用来燃烧煤气产生高温烟气为还原煤气预热提供所需热量,烧嘴与空气总管和煤气总管通过管道相连;烟气出口与烟气总管相连,排出的烟气经烟气总管进入烟气处理系统回收热量;煤气入口与煤气总管相连;一级煤气预热器13的煤气出口与一级提升管51底部的进气口相连接,二级煤气预热器14的煤气出口与二级提升管71底部的进气口相连接,三级煤气预热器15的煤气出口与三级提升管91底部的进气口相连接。
实施例2
采用实施例1的流化床还原粉状铁矿石的系统进行粉状铁矿石还原的方法,包括以下步骤:粉状铁矿石由料仓1经螺旋加料器2后送入第二旋风分离器33的入口,经第二旋风分离器33和第三旋风分离器34分离收集得到的粉状铁矿石分别通过管道进入第一旋风分离器32的入口,与流化床主体31排出的尾气混合后进入第一旋风分离器32进行气固分离,粉状铁矿石由第一旋风分离器32底部的出料口排出后经加料器35进入流化床主体31。粉状铁矿石在鼓泡流化床3中发生预还原反应后,由流化床主体31上部的出料口排出,经一级加料器4进入一级提升管51,在一级循环流化床中还原后,从一级循环料腿54排出,经下部加料口进入二级循环流化床7的二级提升管71,与此同时第五旋风分离器53收集的粉状铁矿石经二级加料器6从上部进料口进入二级提升管71。粉状铁矿石在二级循环流化床7中反应后从二级循环料腿74排出,经下部进料口进入三级循环流化床9的三级提升管91,与此同时第七旋风分离器73收集的粉状铁矿石经二级加料器8从上部进料口进入三级提升管91。铁矿石粉体经三级循环流化床9还原后从三级循环料腿94排出进入产品料仓11,与此同时第九旋风分离器93收集的粉状铁矿石经排料器10进入产品料仓11。
煤气经煤气总管分三路分别进入一级煤气预热器13,二级煤气预热器14和三级煤气预热器15,煤气经预热后,从一级煤气预热器13、二级煤气预热器14和三级煤气预热器15的煤气出口排出,分别经底部进气口进入一级提升管51、二级提升管71和三级提升管91,在一级循环流化床5、二级循环流化床7和三级循环流化床9中与粉状铁矿石发生还原反应。从一级循环流化床5排出的还原尾气经第四旋风分离器52和第五旋风分离器53气固分离后,通过管道进入流化床主体31下部的进气口,在连接第五旋风分离器53和流化床主体31的管道上设有管道燃烧器12,管道燃烧器12的烧嘴与空气总管相连,通过部分燃烧来提 高一级循环流化床还原尾气的温度,经管道预热器12燃烧提温的还原尾气在鼓泡流化床3中对粉状铁矿还是进行预还原后,从流化床主体31上部的出气口排出,经第一旋风分离器32、第二旋风分离器33和第三旋风分离器34除尘后排入还原尾气处理系统。从二级循环流化床7和三级循环流化床9的提升管排出的还原尾气经第六旋风分离器72和第八旋风分离器92、第七旋风分离器73和第九旋风分离器93进行气固分离后,排入还原尾气处理系统。一级煤气预热器13、二级煤气预热器14和三级煤气预热器15预热煤气所需的热量通过烧嘴燃烧煤气获得,从煤气总管和空气总管来的煤气和空气分别通过管道送入一级煤气预热器13、二级煤气预热器14和三级煤气预热器15的烧嘴,通过烧嘴点燃后在一级煤气预热器13、二级煤气预热器14和三级煤气预热器15中燃烧,然后通过一级煤气预热器13、二级煤气预热器14和三级煤气预热器15的烟气出口排出,进入烟气处理系统。
实施例3
采用本发明处理组成(质量百分含量)为85.2%Fe2O3,2.7%CaO,1.8%MgO,3.2%Al2O3和7.1%SiO2的铁矿石,粉状铁矿石的粒度为0.10-1.0mm,经本发明上述工艺在鼓泡流化床进行预还原,在650℃下还原70min、700℃下还原35min或750℃下还原20min,均可将粉状铁矿石中的Fe2O3还原至FeO。经过预还原后的粉状铁矿石经本发明上述工艺,在三级循环流化床中进行还原,当每级循环流化床还原温度为800℃、每级还原时间70分钟、每级流化床的操作气速为5m/s、对应最大操作压力0.35atm时,第三级循环流化床出口粉状铁矿石的金属化率达到了83.5%;还原温度850℃、每级还原时间30分钟、每级流化床中操作气速为10m/s、对应最大操作压力0.73atm时,第三级循环流化床出口粉状铁矿石的金属化率达到了88.2%;还原温度900℃、每级还原时间30分钟、每级流化床中操作气速为9m/s、对应最大操作压力0.71atm时,第三级循环流化床出口粉状铁矿石的金属化率达到了95.1%;还原温度900℃、每级还原时间60分钟、每级流化床中操作气速为9m/s、对应最大操作压力0.72atm时,第三级循环流化床出口粉状铁矿石的金属化率达到了96.3%。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本 发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种流化床还原粉状铁矿石的系统,其特征在于,所述系统包括:料仓(1)、螺旋加料器(2)、鼓泡流化床(3)、一级加料器(4)、一级循环流化床(5)、二级加料器(6)、二级循环流化床(7)、三级加料器(8)、三级循环流化床(9)、排料器(10)、产品料仓(11)、管道燃烧器(12)、一级煤气预热器(13)、二级煤气预热器(14)、三级煤气预热器(15);
    所述鼓泡流化床(3)包括流化床主体(31)、第一旋风分离器(32)、第二旋风分离器(33)、第三旋风分离器(34)和加料器(35);
    所述一级循环流化床(5)包括一级提升管(51)、第四旋风分离器(52)、第五旋风分离器(53)和一级循环料腿(54);
    所述二级循环流化床(7)包括二级提升管(71)、第六旋风分离器(72)、第七旋风分离器(73)和二级循环料腿(74);
    所述三级循环流化床(9)包括三级提升管(91)、第八旋风分离器(92)、第九旋风分离器(93)和三级循环料腿(94);
    所述料仓(1)的出料口与螺旋加料器(2)的进料口相连通,所述螺旋加料器(2)的出料口分别与第一旋风分离器(32)的出气口和第二旋风分离器(33)的入口通过管道相连通;
    所述第一旋风分离器(32)的入口分别与第二旋风分离器(33)的出料口、第三旋风分离器(34)的出料口和流化床主体(31)的出气口通过管道相连接,所述第一旋风分离器(32)的出料口与加料器(35)的进料口相连通,所述第一旋风分离器(32)的出气口与第二旋风分离器(33)的入口相连通;
    所述第二旋风分离器(33)的出气口与第三旋风分离器(34)的入口相连通,所述第三旋风分离器(34)的出气口与还原尾气处理系统相连;
    所述加料器(35)的进气口与煤气总管相连通,所述加料器(34)的出料口与流化床主体(31)的进料口通过管道相连接;
    所述流化床主体(31)的出料口与一级加料器(4)的进料口通过管道相连接,所述的流化床主体(31)进气口与第五旋风分离器(53)的出气口通过管道相连通,且在该管道上设置管道燃烧器(12),管道燃烧器(12)上设有烧嘴,烧嘴与空气总管相连接,通过通入空气在管道燃烧器(12)中燃烧部分煤气来提高煤气的温度,为流化床主体(31)中的预还原提供热量;
    所述一级加料器(4)的进气口与煤气总管相连接,所述一级加料器(4)的 出料口与一级提升管(51)的进料口通过管道相连接;
    所述一级提升管(51)的出气口与第四旋风分离器(52)的入口相连通,所述一级提升管(51)的进气口与一级煤气预热器(13)的煤气出口通过管道相连接,所述一级提升管(51)的循环回料口与一级循环料腿(54)的回料口相连通;
    所述第四旋风分离器(52)的出气口与第五旋风分离器(53)的入口相连通,所述第四旋风分离器(52)的排料口与一级循环料腿(54)相连通;
    所述一级循环料腿(54)的排料口通过管道与二级提升管(71)的下部进料口相连通,所述一级循环料腿(54)的进气口与煤气总管相连通;
    所述第五旋风分离器(53)的出气口与流化床主体(31)的进气口通过管道相连通,所述第五旋风分离器(53)的排料口与二级加料器(6)的进料口通过管道相连接;
    所述二级加料器(6)的进气口与煤气总管相连通,所述二级加料器(6)的出料口与二级提升管(71)的上部进料口通过管道相连接;
    所述二级提升管(71)的出气口与第六旋风分离器(72)的入口相连通,所述二级提升管(71)的进气口与二级煤气预热器(14)的煤气出口通过管道相连接,所述二级提升管(71)的循环回料口与二级循环料腿(74)的回料口相连通;
    所述第六旋风分离器(72)的出气口与第七旋风分离器(73)的入口相连通,所述第六旋风分离器(72)的排料口与二级循环料腿(74)相连通;
    所述二级循环料腿(74)的排料口通过管道与三级提升管(91)的下部进料口相连通,所述二级循环料腿(74)的进气口与煤气总管相连通;
    所述第七旋风分离器(73)的出气口与还原尾气处理系统的入口相连接,所述第七旋风分离器(73)的排料口与三级加料器(8)的进料口通过管道相连接;
    所述三级加料器(8)的进气口与煤气总管相连接,所述三级加料器(8)的出料口与三级提升管(91)的上部进料口通过管道相连接;
    所述三级提升管(91)的出气口与第八旋风分离器(92)的入口相连通,所述三级提升管(91)的进气口与三级煤气预热器(15)的煤气出口通过管道相连接,所述三级提升管(91)的循环回料口与三级循环料腿(94)的回料口相连通;
    所述第八旋风分离器(92)的出气口与第九旋风分离器(93)的入口相连通,所述第八旋风分离器(92)的排料口与三级循环料腿(94)相连通;
    所述三级循环料腿(94)的排料口通过管道与产品料仓(11)相连通,所述三级循环料腿(94)的进气口与煤气总管相连通;
    所述第九旋风分离器(93)的出气口与还原尾气处理系统的入口相连接,所述第九旋风分离器(93)的排料口与排料器(10)的进料口通过管道相连接;
    所述排料器(10)的进气口与煤气总管相连通,所述排料器(10)的出料口与产品料仓(11)通过管道相连接;
    所述一级煤气预热器(13)、二级煤气预热器(14)和三级煤气预热器(15)中任一煤气预热器的烧嘴与空气总管和煤气总管通过管道相连,通过燃烧煤气产生高温烟气用于预热还原煤气,所述任一煤气预热器的烟气出口与烟气总管相连,排出的烟气经烟气总管进入烟气处理系统回收热量,所述任一煤气预热器的煤气入口与煤气总管相连,所述任一煤气预热器的煤气出口分别与一级提升管(51)、二级升管(71)和三级提升管(91)底部的进气口相连通。
  2. 基于权利要求1所述的流化床还原粉状铁矿石的系统的还原方法,所述方法是指粉体和气体同时按如下方式进入并通过所述系统:粉状铁矿石由料仓(1)经螺旋加料器(2)进入第二旋风分离器(33)、第三旋风分离器(34)、第一旋风分离器(32),然后经加料器(35)进入鼓泡流化床主体(31);从鼓泡流化床主体(31)上部出料口排出后,经一级加料器(4)进入一级循环流化床(5)的一级提升管(51)、经第四旋风分离器(52)和一级循环料腿(54)排出并进入二级循环流化床(7)的二级提升管(71),第五旋风分离器(53)收集粉体经二级加料器(6)也进入二级循环流化床(7)的二级提升管(71);经第六旋风分离器(72)和二级循环料腿(74)排出并进入三级循环流化床(9)的三级提升管(91),第七旋风分离器(73)收集粉体经三级加料器(8)也进入三级循环流化床(9)的三级提升管(91);三级循环流化床(9)的还原粉体产物经第八旋风分离器(92)和三级循环料腿(94)排出并进入产品料仓(11),第九旋风分离器(93)收集粉体产物经排料器(10)也进入产品料仓(11);煤气经一级煤气预热器(13)、二级煤气预热器(14)和三级煤气预热器(15)预热后,分别进入一级提升管(51)、二级提升管(71)和三级提升管(91)与矿石粉体接触进行还原;同时,煤气经管道分别经加料器(35)、一级加料器(4)、一级循环料腿(54)、二级加料器(6)、二级循环料腿(74)、三级加料器(8)、三级循环料腿(94)和排料器(10)的相应的底部进气口进入还原系统中;由一级提升管(51)排出的气体经第四旋风分离器(52)、第五旋风分离器(53)脱除粉体后进入管道燃烧器(12)与来自空气总管的空气发生部分燃烧升温后进入鼓泡流化床主体(31)与铁矿石粉体接触进行预还原;由鼓泡流化床主体(31)排出的气 体经第一旋风分离器(32)、第二旋风分离器(33)和第三旋风分离器(34)与粉状铁矿石换热后经管道进入还原尾气处理系统;由二级提升管(71)排出的气体经第六旋风分离器(72)、第七旋风分离器(73)脱除粉体后经管道进入还原尾气处理系统;由三级提升管(91)排出的气体经第八旋风分离器(92)、第九旋风分离器(93)脱除粉体后经管道进入还原尾气处理系统;煤气和空气经烧嘴进入一级煤气预热器(13)、二级煤气预热器(14)和三级煤气预热器(15)燃烧产热用于煤气预热后,经管道进入烟气处理系统。
  3. 根据权利要求2所述的还原方法,其特征在于,采用横向多级鼓泡流化床对粉状铁矿石进行预还原。
  4. 根据权利要求2所述的还原方法,其特征在于,所述的预还原是指将粉状铁矿石还原至氧化亚铁,所述的预还原在650-750℃下进行,所述的预还原的还原时间为20-70分钟。
  5. 根据权利要求2所述的还原方法,其特征在于,采用一级煤气预热器、二级煤气预热器和三级煤气预热器对还原煤气分别预热至高温,所述的高温为850-950℃。
  6. 根据权利要求2所述的还原方法,其特征在于,所述一级循环流化床、二级循环流化床和三级循环流化床中的任一循环流化床均采用高气速操作,所述的高气速为5-10m/s。
  7. 根据权利要求2所述的还原方法,其特征在于,所述的还原过程在800-900℃下进行,还原时间为30-70分钟。
  8. 根据权利要求2所述的还原方法,其特征在于,所述的还原过程在低压下进行,所述低压为操作压力小于1atm。
PCT/CN2014/095707 2013-12-31 2014-12-30 一种流化床还原粉状铁矿石的系统和方法 WO2015101304A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FI20165599A FI127553B (en) 2013-12-31 2014-12-30 Swab bed reduction system and method for powdered iron ore
CA2938642A CA2938642C (en) 2013-12-31 2014-12-30 System and method for fluidized bed reduction of powdered iron ore
RU2016131342A RU2637043C1 (ru) 2013-12-31 2014-12-30 Система и способ восстановления порошкообразной железной руды в псевдоожиженном слое
NZ722606A NZ722606A (en) 2013-12-31 2014-12-30 System and method for fluidized bed reduction of powdered iron ore
US15/109,393 US10233510B2 (en) 2013-12-31 2014-12-30 System and method for fluidized bed reduction of powdered iron ore
AU2014375511A AU2014375511B2 (en) 2013-12-31 2014-12-30 System and method for fluidized bed reduction of powdered iron ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310750393.3A CN103695588B (zh) 2013-12-31 2013-12-31 一种流化床还原粉状铁矿石的系统和方法
CN201310750393.3 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015101304A1 true WO2015101304A1 (zh) 2015-07-09

Family

ID=50357249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095707 WO2015101304A1 (zh) 2013-12-31 2014-12-30 一种流化床还原粉状铁矿石的系统和方法

Country Status (8)

Country Link
US (1) US10233510B2 (zh)
CN (1) CN103695588B (zh)
AU (1) AU2014375511B2 (zh)
CA (1) CA2938642C (zh)
FI (1) FI127553B (zh)
NZ (1) NZ722606A (zh)
RU (1) RU2637043C1 (zh)
WO (1) WO2015101304A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798779A (zh) * 2019-01-27 2019-05-24 中钢集团吉林机电设备有限公司 用于直流矿热炉热装料的炉料多级分离加热方法及其装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725819B (zh) * 2013-12-31 2015-06-03 中国科学院过程工程研究所 一种铁矿粉流态化还原系统及方法
CN103695588B (zh) * 2013-12-31 2015-04-01 中国科学院过程工程研究所 一种流化床还原粉状铁矿石的系统和方法
EP2905345A1 (de) * 2014-02-10 2015-08-12 Primetals Technologies Austria GmbH Pneumatische Erzchargierung
CN104911334B (zh) * 2015-05-13 2017-08-25 中国科学院过程工程研究所 一种高品位二氧化锰矿流态化还原的系统及方法
CN106319126B (zh) * 2016-09-28 2019-05-17 中国科学院过程工程研究所 一种用于钒钛磁铁矿流态化氧化还原的系统及方法
CN106467930B (zh) * 2016-09-28 2019-05-17 中国科学院过程工程研究所 一种钒钛磁铁矿流态化高温快速氧化还原的系统及方法
CN109250700B (zh) * 2018-08-16 2021-05-18 内蒙古万众炜业科技环保股份公司 兰炭生产用余热循环利用系统及其使用方法
CN112251599B (zh) * 2020-10-16 2022-08-05 中科南京绿色制造产业创新研究院 一种氧化锰矿流态化还原装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082251A (en) * 1990-03-30 1992-01-21 Fior De Venezuela Plant and process for fluidized bed reduction of ore
CN101153349A (zh) * 2006-09-29 2008-04-02 宝山钢铁股份有限公司 一种综合利用煤气和粉矿的熔融还原炼铁工艺
CN101892339A (zh) * 2010-07-27 2010-11-24 中冶赛迪工程技术股份有限公司 一种熔融还原装置及方法
CN103667571A (zh) * 2013-12-31 2014-03-26 中国科学院过程工程研究所 一种铁精矿粉体流态化直接还原的系统及方法
CN103695588A (zh) * 2013-12-31 2014-04-02 中国科学院过程工程研究所 一种流化床还原粉状铁矿石的系统和方法
CN103725819A (zh) * 2013-12-31 2014-04-16 中国科学院过程工程研究所 一种铁矿粉流态化还原系统及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836034B2 (ja) * 1980-12-22 1983-08-06 重質油対策技術研究組合 重質油の熱分解と共に還元鉄を製造する方法
US5674308A (en) * 1994-08-12 1997-10-07 Midrex International B.V. Rotterdam, Zurich Branch Spouted bed circulating fluidized bed direct reduction system and method
RU2121003C1 (ru) * 1994-12-29 1998-10-27 Поханг Айрон энд Стил Ко., Лтд Устройство псевдоожиженного слоя для восстановления железной руды и способ восстановления железной руды с использованием этого устройства
UA70348C2 (uk) * 1999-11-04 2004-10-15 Пхохан Айрон Енд Стіл Ко., Лтд. Відновний реактор з псевдозрідженим шаром і спосіб стабілізації псевдозрідженого шару у такому реакторі
AT409387B (de) * 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Verfahren und anlage zur gasreduktion von teilchenförmigen oxidhältigen erzen
MX2009000735A (es) * 2006-07-21 2009-03-06 Corus Technology Bv Metodo y aparato para reducir material metalifero a un producto de reduccion.
CN101386908B (zh) * 2007-09-11 2010-12-08 中国科学院过程工程研究所 对难选铁矿石粉体进行磁化焙烧的工艺系统及焙烧的工艺
CN101880059B (zh) * 2010-06-08 2015-02-18 中国科学院过程工程研究所 一种采用流化床反应器生产三氧化二钒的方法
CN102560089B (zh) * 2010-12-24 2014-07-30 深圳中科九台资源利用研究院有限公司 一种难选铁矿石粉体磁化焙烧的系统及焙烧工艺
CN103031431B (zh) * 2011-09-30 2014-02-26 中国科学院过程工程研究所 钛铁精矿氧化焙烧-还原焙烧系统及焙烧工艺
CN103031433B (zh) * 2011-09-30 2014-07-30 中国科学院过程工程研究所 一种钛铁精矿流态化氧化焙烧-流态化还原焙烧系统及焙烧工艺
CN103031432B (zh) * 2011-09-30 2014-09-24 中国科学院过程工程研究所 钛铁精矿流态化氧化-还原焙烧改性的系统及焙烧工艺
CN102363837B (zh) * 2011-11-14 2015-11-18 深圳市中科九台资源利用科技产业股份有限公司 一种粉状氧化锰矿流态化低温还原方法
CN103397127B (zh) * 2013-07-28 2014-12-10 张英华 一种熔融还原炼铁设备及炼铁方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082251A (en) * 1990-03-30 1992-01-21 Fior De Venezuela Plant and process for fluidized bed reduction of ore
CN101153349A (zh) * 2006-09-29 2008-04-02 宝山钢铁股份有限公司 一种综合利用煤气和粉矿的熔融还原炼铁工艺
CN101892339A (zh) * 2010-07-27 2010-11-24 中冶赛迪工程技术股份有限公司 一种熔融还原装置及方法
CN103667571A (zh) * 2013-12-31 2014-03-26 中国科学院过程工程研究所 一种铁精矿粉体流态化直接还原的系统及方法
CN103695588A (zh) * 2013-12-31 2014-04-02 中国科学院过程工程研究所 一种流化床还原粉状铁矿石的系统和方法
CN103725819A (zh) * 2013-12-31 2014-04-16 中国科学院过程工程研究所 一种铁矿粉流态化还原系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798779A (zh) * 2019-01-27 2019-05-24 中钢集团吉林机电设备有限公司 用于直流矿热炉热装料的炉料多级分离加热方法及其装置
CN109798779B (zh) * 2019-01-27 2024-01-19 新吉电(吉林)工程技术有限公司 用于直流矿热炉热装料的炉料多级分离加热方法及其装置

Also Published As

Publication number Publication date
AU2014375511B2 (en) 2017-02-23
US10233510B2 (en) 2019-03-19
NZ722606A (en) 2017-04-28
CN103695588B (zh) 2015-04-01
CA2938642C (en) 2018-07-10
FI127553B (en) 2018-08-31
AU2014375511A1 (en) 2016-08-18
US20160348197A1 (en) 2016-12-01
CN103695588A (zh) 2014-04-02
RU2637043C1 (ru) 2017-11-29
CA2938642A1 (en) 2015-07-09
FI20165599A (fi) 2016-07-29

Similar Documents

Publication Publication Date Title
WO2015101305A1 (zh) 一种铁矿粉流态化还原系统及方法
WO2015101304A1 (zh) 一种流化床还原粉状铁矿石的系统和方法
CN103667571B (zh) 一种铁精矿粉体流态化直接还原的系统及方法
CN105039627B (zh) 一种外热式的煤基直接还原‑熔分炉熔融还原炼铁工艺
CN205133650U (zh) 造气闪速炼铁的系统
CN114934147B (zh) 带气体循环的循环流化床氢气直接还原铁矿石方法和系统
KR101607253B1 (ko) 복합 용철 제조 장치
KR101607254B1 (ko) 복합 용철 제조 장치
CN115354105B (zh) 一种还原乏气循环的气基直接还原铁的系统与方法
JPH0130888B2 (zh)
CN117858967A (zh) 用于生产铁产品的冶金设备的运行方法
CN107075592B (zh) 复合铁水制备装置
CN116042946A (zh) 一种高炉热风炉炼铁全流程供热工艺
CN114921602A (zh) 一种超短流程炼钢装置系统
CN115820965A (zh) 一种节能降耗的熔融还原铁热质循环的系统及方法
JPS5980703A (ja) 粉、粒状鉱石のたて型炉溶融還元方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 20165599

Country of ref document: FI

ENP Entry into the national phase

Ref document number: 2016131342

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2938642

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014375511

Country of ref document: AU

Date of ref document: 20141230

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109393

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14876315

Country of ref document: EP

Kind code of ref document: A1