WO2015099506A1 - 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 - Google Patents

서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 Download PDF

Info

Publication number
WO2015099506A1
WO2015099506A1 PCT/KR2014/012932 KR2014012932W WO2015099506A1 WO 2015099506 A1 WO2015099506 A1 WO 2015099506A1 KR 2014012932 W KR2014012932 W KR 2014012932W WO 2015099506 A1 WO2015099506 A1 WO 2015099506A1
Authority
WO
WIPO (PCT)
Prior art keywords
subblock
size
layer image
layer
coding unit
Prior art date
Application number
PCT/KR2014/012932
Other languages
English (en)
French (fr)
Inventor
박민우
이진영
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201480076495.4A priority Critical patent/CN106063271B/zh
Priority to EP14873781.0A priority patent/EP3089452A4/en
Publication of WO2015099506A1 publication Critical patent/WO2015099506A1/ko
Priority to US15/192,262 priority patent/US10567773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/187Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/188Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a video data packet, e.g. a network abstraction layer [NAL] unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction

Definitions

  • the present invention relates to an interlayer video encoding method and an interlayer video decoding method.
  • the present invention relates to an interlayer video encoding method and decoding method for determining a subblock and performing prediction based on the determined subblock.
  • video codec for efficiently encoding or decoding high resolution or high definition video content.
  • video is encoded according to a limited encoding method based on coding units having a tree structure.
  • Image data in the spatial domain is transformed into coefficients in the frequency domain using frequency transformation.
  • the video codec divides an image into blocks having a predetermined size for fast operation of frequency conversion, performs DCT conversion for each block, and encodes frequency coefficients in units of blocks. Compared to the image data of the spatial domain, the coefficients of the frequency domain are easily compressed. In particular, since the image pixel value of the spatial domain is expressed as a prediction error through inter prediction or intra prediction of the video codec, when frequency conversion is performed on the prediction error, much data may be converted to zero.
  • the video codec reduces data volume by substituting data repeatedly generated continuously with small size data.
  • the multilayer video codec encodes and decodes a first layer video and one or more second layer videos.
  • the amount of data of the first layer video and the second layer video may be reduced by removing temporal / spatial redundancy of the first layer video and the second layer video and redundancy between layers.
  • subblock size information is signaled.
  • the signaled subblock size information includes information about a block of a size that is not used as a prediction unit, and thus there is a problem in that an unnecessary number of bits is wasted.
  • subblock size information of a second layer image indicating a size of a subblock within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit.
  • the subblock of the first layer image is determined to be located in an area within the candidate block.
  • An interlayer video encoding method includes determining a size of a subblock of a second layer image within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit; Determining a candidate block included in a first layer image different from the second layer image corresponding to the current block included in the second layer image; When at least one subblock of the second layer image determined using the determined size of the subblock is obtained from the current block, the motion of the subblock of the first layer image corresponding to the subblock of the second layer image Obtaining information; Obtaining or predicting motion information of the current block using motion information of the obtained subblock of the first layer image, and encoding the current block using motion information of the obtained or predicted current block; And generating a bitstream including subblock size information indicating the size of the determined subblock, wherein the subblock of the first layer image is positioned in an area within the candidate block.
  • the inter-layer video decoding method comprises the steps of decoding the encoded first layer image; Determining a candidate block included in the first layer image corresponding to a current block included in a second layer image; If the size of the current block is not an integer multiple of a predetermined subblock size, determining at least one block that is not the size of the predetermined subblock as a subblock; When the subblock is determined, acquiring motion information of a subblock of the first layer image corresponding to the subblock of the second layer image; And acquiring or predicting motion information of the current block by using motion information of the obtained subblock of the first layer image, and decoding the current block by using motion information of the acquired or predicted current block. And a subblock of the second layer image is located in an area within the candidate block.
  • an interlayer video encoding method includes encoding a first layer image; Determining a candidate block included in the first layer image corresponding to a current block included in a second layer image; If the size of the current block is not an integer multiple of a predetermined subblock size, determining at least one block that is not the size of the predetermined subblock as a subblock; When the subblock is determined, acquiring motion information of a subblock of the first layer image corresponding to the subblock of the second layer image; And acquiring or predicting motion information of the current block by using motion information of the obtained subblock of the first layer image, and encoding the current block by using motion information of the obtained or predicted current block. And a subblock of the second layer image is located in an area within the candidate block.
  • the size of information related to the subblock size signaled is reduced, and the implementation / operation complexity of the decoding apparatus is reduced.
  • the size of the subblock is determined in consideration of the size of the prediction unit allowed by the existing codec, thereby improving compatibility with the existing codec.
  • FIG. 1A is a block diagram of an interlayer video encoding apparatus, according to various embodiments.
  • FIG. 1B is a flowchart of an interlayer video encoding method, according to various embodiments.
  • 1C is a block diagram of an interlayer video decoding apparatus, according to various embodiments.
  • 1D is a flowchart of an interlayer video decoding method, according to various embodiments.
  • FIG. 2A is a block diagram of an interlayer video encoding apparatus, according to various embodiments.
  • 2B is a flowchart of an interlayer video encoding method, according to various embodiments.
  • 2C is a block diagram of an interlayer video decoding apparatus, according to various embodiments.
  • 2D is a flowchart of an interlayer video decoding method, according to various embodiments.
  • 3A is a diagram illustrating an interlayer prediction structure, according to various embodiments.
  • 3B is a diagram illustrating a multilayer video, according to various embodiments.
  • 3C is a diagram illustrating NAL units including encoded data of a multilayer video, according to various embodiments.
  • 4A is a diagram illustrating a disparity vector for inter-layer prediction according to various embodiments.
  • 4B is a diagram for describing a spatial neighboring block candidate for predicting a disparity vector, according to various embodiments.
  • 4C is a diagram illustrating a temporal neighboring block candidate for predicting a disparity vector, according to various embodiments.
  • FIG. 5 is a diagram illustrating a subblock-based inter view motion prediction according to various embodiments.
  • 6A and 6C are diagrams for describing a process of determining a size of a subblock according to various embodiments.
  • FIG 7A illustrates VPS extension syntax according to an embodiment of the present invention.
  • FIG. 7B is a diagram illustrating an SPS extension syntax according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a video encoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 9 is a block diagram of a video decoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 10 illustrates a concept of coding units, according to various embodiments of the present disclosure.
  • FIG. 11 is a block diagram of an image encoder based on coding units, according to various embodiments of the present disclosure.
  • FIG. 12 is a block diagram of an image decoder based on coding units, according to various embodiments of the present disclosure.
  • FIG. 13 is a diagram illustrating coding units and partitions, according to various embodiments of the present disclosure.
  • FIG. 14 illustrates a relationship between coding units and transformation units, according to various embodiments of the present disclosure.
  • 16 is a diagram of coding units, according to various embodiments of the present disclosure.
  • 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to various embodiments of the present disclosure.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • 21 illustrates a physical structure of a disc in which a program is stored, according to various embodiments.
  • Fig. 22 shows a disc drive for recording and reading a program by using the disc.
  • FIG. 23 shows an overall structure of a content supply system for providing a content distribution service.
  • 24 and 25 illustrate an external structure and an internal structure of a mobile phone to which the video encoding method and the video decoding method of the present invention are applied, according to various embodiments.
  • 26 illustrates a digital broadcasting system employing a communication system according to the present invention.
  • FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to various embodiments of the present disclosure.
  • subblock size information of a second layer image indicating a size of a subblock within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit.
  • the subblock of the first layer image is determined to be located in an area within the candidate block.
  • the determining of the candidate block included in the first layer image different from the second layer image corresponding to the current block included in the second layer image may include the second layer image from the current block included in the second layer image. And obtaining a disparity vector indicating a candidate block included in another first layer image, wherein the vertical component of the obtained disparity vector is zero.
  • the current block is one of one or more prediction units generated by dividing a coding unit of a second layer image, and the subblock is a block smaller than or equal to the prediction unit.
  • the determining of the size of the subblock within a range greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit using the subblock size information may include: the minimum of the coding unit obtained from the bitstream.
  • the size of the subblock is determined using information representing a size and information representing a difference between a maximum size of the coding unit included in the bitstream and a minimum size of the coding unit.
  • a VPS NAL unit (Video Parameter Set Network Abstraction Layer) or an SPS NAL unit (Sequence Parameter Set Network Abstraction Layer) including the subblock size information is obtained from the bitstream, and the subblock size information of the second layer image is Characterized in that the obtained from the VPS NAL unit or the SPS NAL unit.
  • An interlayer video encoding method includes determining a size of a subblock of a second layer image within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit; Determining a candidate block included in a first layer image different from the second layer image corresponding to the current block included in the second layer image; When at least one subblock of the second layer image determined using the determined size of the subblock is obtained from the current block, the motion of the subblock of the first layer image corresponding to the subblock of the second layer image Obtaining information; Obtaining or predicting motion information of the current block using motion information of the obtained subblock of the first layer image, and encoding the current block using motion information of the obtained or predicted current block; And generating a bitstream including subblock size information indicating the size of the determined subblock, wherein the subblock of the first layer image may be located in an area within the candidate block.
  • the determining of the candidate block included in the first layer image different from the second layer image corresponding to the current block included in the second layer image may include: the second layer from the current block included in the second layer image; And obtaining a disparity vector indicating a candidate block included in the first layer image different from the image, wherein the vertical component of the obtained disparity vector may be zero.
  • the current block may be one of one or more prediction units generated by dividing a coding unit of the second layer image, and the subblock may be a block smaller than or equal to the prediction unit.
  • bitstream including the size information of the subblock indicating the size of the determined subblock, information indicating the minimum size of the coding unit and the difference between the maximum size of the coding unit and the minimum size of the coding unit Generating a bitstream further comprising the indicating information.
  • the generating of the bitstream including the size information of the subblock indicating the size of the determined subblock includes: generating a VPS NAL unit or an SPS NAL unit including the subblock size information; And generating a bitstream including the VPS NAL unit or the SPS NAL unit.
  • An interlayer video decoding apparatus may include: an acquirer configured to obtain subblock size information of a second layer image within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit; The size of the subblock is determined within a range that is greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit by using the subblock size information, and corresponds to the current block included in the second layer image.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • An interlayer video encoding apparatus determines a size of a subblock of a second layer image within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit. Determining a candidate block included in the first layer image that is different from the second layer image corresponding to the current block included in the second layer image, and using the determined subblock size from the current block; When at least one subblock of is obtained, motion information of a subblock of a first layer image corresponding to the subblock of the second layer image is obtained, and motion information of the subblock of the obtained first layer image is obtained. Obtain or predict motion information of the current block by using the motion information of the current block. Encoding unit for encoding the current block; And a bitstream generator configured to generate a bitstream including subblock size information indicating the size of the determined subblock, wherein the subblock of the first layer image may be located in an area within the candidate block.
  • An interlayer video decoding method includes: decoding an encoded first layer image; Determining a candidate block included in the first layer image corresponding to a current block included in a second layer image; If the size of the current block is not an integer multiple of a predetermined subblock size, determining at least one block that is not the size of the predetermined subblock as a subblock; When the subblock is determined, acquiring motion information of a subblock of the first layer image corresponding to the subblock of the second layer image; And acquiring or predicting motion information of the current block by using motion information of the obtained subblock of the first layer image, and decoding the current block by using motion information of the acquired or predicted current block.
  • the subblock of the second layer image may be determined to be located in an area within the candidate block.
  • An interlayer video encoding method includes encoding a first layer image; Determining a candidate block included in the first layer image corresponding to a current block included in a second layer image; If the size of the current block is not an integer multiple of a predetermined subblock size, determining at least one block that is not the size of the predetermined subblock as a subblock; When the subblock is determined, acquiring motion information of a subblock of the first layer image corresponding to the subblock of the second layer image; And acquiring or predicting motion information of the current block by using motion information of the obtained subblock of the first layer image, and encoding the current block by using motion information of the obtained or predicted current block.
  • the subblock of the second layer image may be determined to be located in an area within the candidate block.
  • the present invention also provides a computer-readable recording medium having recorded thereon a program for executing the interlayer video encoding and decoding method by a computer according to various embodiments of the present invention.
  • an interlayer video encoding technique and an interlayer video decoding technique for performing subblock based prediction are proposed.
  • 8 to 20 a video encoding method and a video decoding method based on coding units having a tree structure according to various embodiments applicable to the interlayer video encoding method and the decoding method proposed above are disclosed. Also, various embodiments to which the video encoding method and the video decoding method proposed above may be applied are described with reference to FIGS. 21 to 27.
  • the 'image' may be a still image of the video or a video, that is, the video itself.
  • sample means data to be processed as data allocated to a sampling position of an image.
  • the pixels in the spatial domain image may be samples.
  • 'Current Block' may mean a block of an image to be encoded or decoded.
  • 'Neighboring Block' indicates at least one coded or decoded block neighboring the current block.
  • the neighboring block may be located at the top of the current block, at the top right of the current block, at the left of the current block, or at the top left of the current block. It may also include temporally neighboring blocks as well as spatially neighboring blocks.
  • the temporally neighboring neighboring blocks may include co-located blocks or neighboring blocks of the same location block as the current block of the reference picture.
  • FIGS. 1A to 7B An interlayer video decoding and encoding apparatus and method for performing subblock based prediction according to various embodiments are described with reference to FIGS. 1A to 7B.
  • FIG. 1A is a block diagram of an interlayer video encoding apparatus 10 according to various embodiments.
  • FIG. 1B is a flowchart of an interlayer video encoding method, according to various embodiments.
  • the interlayer video encoding apparatus 10 includes an encoder 12 and a bitstream generator 18.
  • the encoder 12 may include a first layer encoder 14 and a second layer encoder 16.
  • the interlayer video encoding apparatus 10 classifies and encodes a plurality of image sequences for each layer according to a scalable video coding scheme, and includes a separate stream including data encoded for each layer. You can output The interlayer video encoding apparatus 10 may encode the first layer image sequence and the second layer image sequence into different layers.
  • the first layer encoder 12 may encode the first layer images and output a first layer stream including encoded data of the first layer images.
  • the second layer encoder 16 may encode second layer images and output a second layer stream including encoded data of the second layer images.
  • the interlayer video encoding apparatus 10 classifies and encodes a plurality of image sequences for each layer according to a scalable video coding scheme, and includes separate data including the encoded data for each layer. Output a stream of.
  • the interlayer video encoding apparatus 10 may encode the first layer image sequence and the second layer image sequence into different layers.
  • low resolution images may be encoded as first layer images, and high resolution images may be encoded as second layer images.
  • An encoding result of the first layer images may be output as a first layer stream, and an encoding result of the second layer images may be output as a second layer stream.
  • the interlayer video encoding apparatus 10 may represent and encode a first layer stream and a second layer stream as one bitstream through a multiplexer.
  • a multiview video may be encoded according to a scalable video coding scheme.
  • Left view images may be encoded as first layer images
  • right view images may be encoded as second layer images.
  • the center view images, the left view images and the right view images are respectively encoded, among which the center view images are encoded as the first layer images, the left view images are the first layer images, and the right view images are the third It may be encoded as layer images.
  • the center view color image, the center view depth image, the left view color image, the left view depth image, the right view color image, and the right view depth image may be respectively a first layer image, a second layer image, a third layer image, and a first layer image.
  • the center view color image, the center view depth image, the left view depth image, the left view color image, the right view depth image, and the right view color image may be the first layer image, the second layer image, the third layer image, It may also be encoded as a fourth layer image, a fifth layer image, and a sixth layer image.
  • a scalable video coding scheme may be performed according to temporal hierarchical prediction based on temporal scalability.
  • a first layer stream including encoding information generated by encoding images of a base frame rate may be output.
  • Temporal levels may be classified according to frame rates, and each temporal layer may be encoded into each layer.
  • the second layer stream including the encoding information of the high frame rate may be output by further encoding the images of the higher frame rate with reference to the images of the base frame rate.
  • scalable video coding may be performed on the first layer and the plurality of enhancement layers (second layer, third layer, ..., K-th layer).
  • the first layer images and the K-th layer images may be encoded. Accordingly, the encoding results of the first layer images are output to the first layer stream, and the encoding results of the first, second, ..., K-th layer images are respectively output to the first, second, ..., K-th layer streams. Can be.
  • the interlayer video encoding apparatus 10 may perform inter prediction to predict a current image by referring to images in a single layer. Through inter prediction, a motion vector representing motion information between the current image and the reference image, a residual component between the current image and the reference image, and the like are obtained from a corresponding region of the first layer (base layer). It can be predicted.
  • the interlayer video encoding apparatus 10 may perform inter-layer prediction for predicting prediction information of the second layer images by referring to the prediction information of the first layer images.
  • one first layer image and a first layer image may be formed according to a multilayer prediction structure. Inter-layer prediction between three layer images and inter-layer prediction between a second layer image and a third layer image may be performed.
  • a disparity vector is derived between a current image and a reference image of another layer, and a residual component, which is a difference component between the prediction image and the current image generated by using the reference image of another layer, is generated.
  • a residual component which is a difference component between the prediction image and the current image generated by using the reference image of another layer, is generated.
  • the interlayer video encoding apparatus 10 may perform inter-layer prediction for predicting second layer images by referring to the first layer images.
  • one first layer image and a first layer image may be formed according to a multilayer prediction structure. Inter-layer prediction between three layer images and inter-layer prediction between a second layer image and a third layer image may be performed.
  • a position difference component between the current image and a reference image of another layer and a residual component between the current image and a reference image of another layer may be generated.
  • the interlayer prediction structure will be described later with reference to FIG. 3A.
  • the interlayer video encoding apparatus 10 encodes each block of each image of the video for each layer.
  • the type of block may be square or rectangular, and may be any geometric shape. It is not limited to data units of a certain size.
  • the block may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, or the like among coding units having a tree structure.
  • the maximum coding unit including the coding units of the tree structure may be a coding tree unit, a coding block tree, a block tree, a root block tree, a coding tree, a coding root, or a tree. It may also be called variously as a trunk trunk.
  • a video encoding and decoding method based on coding units having a tree structure will be described later with reference to FIGS. 8 to 20.
  • Inter prediction and inter layer prediction may be performed based on a data unit of a coding unit, a prediction unit, or a transformation unit.
  • the first layer encoder 12 may generate symbol data by performing source coding operations including inter prediction or intra prediction on the first layer images.
  • the symbol data represents the value of each encoding parameter and the sample value of the residual.
  • the encoder 12 generates symbol data by performing inter prediction or intra prediction, transformation, and quantization on samples of a data unit of the first layer images, and performs entropy encoding on the symbol data.
  • One layer stream can be created.
  • the second layer encoder 16 may encode second layer images based on coding units having a tree structure.
  • the second layer encoder 16 generates symbol data by performing inter / intra prediction, transformation, and quantization on samples of a coding unit of a second layer image, and performs entropy encoding on the symbol data, thereby performing a second layer. You can create a stream.
  • the second layer encoder 16 may perform interlayer prediction that predicts the second layer image by using prediction information of the first layer image.
  • the second layer encoder 16 predicts the second layer current image using the prediction information of the first layer reconstructed image to encode the second layer original image of the second layer image sequence through the interlayer prediction structure.
  • the information may be determined, and a prediction error between the second layer original image and the second layer prediction image may be encoded by generating a second layer prediction image based on the determined prediction information.
  • the second layer encoder 16 may determine the block of the first layer image to be referred to by the block of the second layer image by performing interlayer prediction on the second layer image for each coding unit or prediction unit. For example, a reconstruction block of the first layer image positioned corresponding to the position of the current block in the second layer image may be determined. The second layer encoder 16 may determine a second layer prediction block by using a first layer reconstruction block corresponding to the second layer block. In this case, the second layer encoder 16 may determine the second layer prediction block by using the first layer reconstruction block located at the same point as the second layer block.
  • the second layer encoder 16 may use the second layer prediction block determined by using the first layer reconstruction block according to the interlayer prediction structure as a reference image for interlayer prediction of the second layer original block.
  • the second layer encoder 16 converts a residual component according to an error between the sample value of the second layer prediction block and the sample value of the second layer original block, that is, the interlayer prediction, by using the first layer reconstructed image. It can be quantized and entropy encoded.
  • the first layer image to be encoded may be a first view video
  • the second layer image may be a second view video. Since the multi-view images are acquired at the same time, the similarity is very high for each image at each viewpoint.
  • the multi-view image may have a disparity due to different angles of shot, lighting, or characteristics of an imaging tool (camera, lens, etc.).
  • the disparity is represented as a disparity vector
  • the disparity compensated prediction is performed by using a disparity vector to perform a disparity compensated prediction that finds and encodes an area most similar to a block to be currently encoded in an image of another viewpoint. It can increase.
  • the second layer encoder 16 may determine the subblock size of the second layer image.
  • the subblock means a block smaller than or equal to the prediction unit.
  • the prediction unit is generated by dividing the coding unit, and means a block smaller than or equal to this prediction unit. Accordingly, the second layer encoder 16 may perform interlayer prediction for each subblock unit and determine the prediction sample value for the prediction unit by using the prediction sample value for each subblock.
  • the second layer encoder 16 may determine the size of the subblock of the second layer image within a range that is greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit.
  • the size of the subblock may be determined for each layer, and the size of the subblocks in a specific layer may be the same. Meanwhile, the subblock may be a square sub prediction unit.
  • the second layer encoder 16 adjusts the size of the subblock within the range of 8x8 to 64x64. You can decide.
  • the current coding unit is the minimum size of the coding unit and a partition type other than 2Nx2N is determined as the partition type, so that the prediction unit included in the current coding unit is determined to be smaller than the minimum unit of the current coding unit.
  • the interlayer video decoding apparatus 20 uses the subblock size information.
  • the size of the subblock smaller than the minimum size of the coding unit may be determined.
  • the interlayer video decoding apparatus 20 may determine the size of the subblock as the size of the prediction unit in the current coding unit. You can decide by changing the size.
  • the interlayer video decoding apparatus 20 does not comply with the size of the subblock determined by the subblock size information. Instead, the prediction unit included in the current coding unit may be determined as a subblock.
  • the prediction unit when the prediction unit is smaller than the minimum size of the coding unit, it is efficient that the size of the subblock is determined according to the prediction unit.
  • the maximum size of the coding unit is considered is that since the coding unit is split and a prediction unit is obtained, the size of the prediction unit should always be smaller than or equal to the size of the coding unit, but the size of the subblock is the maximum size of the coding unit. This is because, when larger, the contradiction occurs in that the size of the prediction unit is larger than the size of the coding unit.
  • the second layer encoder 16 may determine a candidate block included in the first layer image corresponding to the current block included in the second layer image.
  • the candidate block refers to a corresponding block located in another layer image corresponding to the current block, and motion information included in the candidate block may be used to predict or obtain motion information of the current block.
  • the second layer encoder 16 may obtain a disparity vector indicating a candidate block included in the first layer image from the current block included in the second layer image.
  • the second layer encoder 16 may determine a candidate block included in the first layer image by using the disparity vector.
  • the second layer encoder 16 may determine a candidate block of the first layer image co-located at the same point as the current block included in the second layer image.
  • the current block may be one of one or more prediction units generated by dividing the coding unit of the second layer image.
  • the subblock may be a block smaller than or equal to the prediction unit. That is, the subblock is generally smaller than the prediction unit, but is not limited thereto, and the size of the subblock and the prediction unit may be the same.
  • the second layer encoder 16 may determine a disparity vector indicating a candidate block included in the first layer image from the current block by using the disparity vector of the neighboring block space-time adjacent to the current block.
  • the second layer encoder 16 may determine that the vertical component of the obtained disparity vector is zero. This is because layer images representing different viewpoints are acquired by the camera with different viewpoints in the horizontal direction. That is, the vertical disparity vector of the obtained disparity vector may not be 0. However, since each layer image is obtained by changing the viewpoint only in the horizontal direction when the image is acquired, the vertical component of the disparity vector is zero. When the interlayer prediction is performed using the changed disparity vector, the coding efficiency may be improved.
  • the second layer encoder 16 may obtain at least one subblock of the second layer image determined using the subblock size from the current block. For example, if the current block is 16x16 and the size of the determined subblock is 8x8, four 8x8 subblocks in the current block can be determined.
  • the second layer encoder 16 determines a subblock of the first layer image corresponding to the subblock of the second layer image when at least one subblock of the second layer image is obtained. In this case, the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the second layer encoder 16 obtains motion information of the current block by using motion information of a subblock of the first layer image.
  • the motion information may include a motion vector according to motion prediction, information representing a reference picture in the reference picture list, and information indicating whether the motion vector is available.
  • the second layer encoder 16 may predict the motion information of the current block by using the motion information of the obtained subblock of the second layer image.
  • the second layer encoder 16 may encode the current block using the predicted motion information of the current block.
  • the second layer encoder 16 determines a prediction sample value of the current block by using the predicted motion information of the current block, and calculates a difference between the original pixel values of the current block and the prediction sample value of the current block.
  • Information about the indicated residue can be encoded.
  • the information about the residue may be specifically converted, and the information about the converted residue may be entropy encoded.
  • the bitstream generator 18 may generate a bitstream including interlayer prediction information determined in relation to the encoded video and interlayer prediction, and may transmit the generated bitstream to the decoding apparatus. Meanwhile, when performing subblock based interlayer prediction with respect to interlayer prediction, the bitstream generator 18 may generate a bitstream including information on a subblock size. In addition, the bitstream generator 18 may include information about the entropy-coded residue as the encoded video.
  • the bitstream generator 18 may generate a bitstream further including information indicating a minimum size of a coding unit and information indicating a difference between a maximum size and a minimum size of a coding unit.
  • the second layer encoder 16 may determine the minimum size of the coding unit and the size of the coding unit for the second layer image, and the bitstream generator 18 may use the minimum size of the coding unit.
  • Information indicating the information and information indicating the difference between the maximum and minimum sizes of the coding unit is generated.
  • the bitstream generator 18 may first generate a VPS unit or an SPS NAL unit including the subblock size information. Thereafter, the bitstream generator 18 may generate a bitstream including the VPS NAL unit or the SPS NAL unit.
  • the interlayer video encoding apparatus 10 may predict (or derive) a disparity vector from other encoding information in order to reduce the amount of data transmitted for each prediction unit. For example, the interlayer video encoding apparatus 10 may predict a disparity vector from neighboring blocks of a currently reconstructed block. In addition, if the disparity vector is not predicted from the neighboring block, the disparity vector may be set as the basic disparity vector.
  • the interlayer video encoding apparatus 10 converts a residual component according to an interlayer prediction, that is, an error between a sample value of a second layer prediction block and a sample value of a second layer original block by using a first layer reconstructed image. It can be quantized and entropy encoded. In addition, an error between prediction information may also be entropy encoded.
  • the interlayer video encoding apparatus 10 may encode the current layer image sequence by referring to the first layer reconstructed images through the interlayer prediction structure.
  • the interlayer video encoding apparatus 10 may encode a second layer image sequence according to a single layer prediction structure without referring to other layer samples. Therefore, care should be taken not to limit the interpretation that the interlayer video encoding apparatus 10 performs only inter prediction of the interlayer prediction structure in order to encode the second layer image sequence.
  • the first layer image may mean a reference view image
  • the second layer image may mean an image of a view currently encoded.
  • FIG. 1B is a flowchart of an interlayer video encoding method, according to various embodiments.
  • the interlayer video encoding apparatus 10 may determine a size of a subblock of a second layer image within a range that is greater than or equal to a minimum size of a coding unit and less than or equal to a maximum size of a coding unit.
  • the subblock means a block smaller than or equal to the prediction unit.
  • the prediction unit is generated by dividing the coding unit, and means a block smaller than or equal to this prediction unit. Accordingly, the interlayer video encoding apparatus 10 may perform interlayer prediction for each subblock unit, and determine the prediction sample value for the prediction unit by using the prediction sample value for each subblock.
  • the interlayer video encoding apparatus 10 determines a candidate block included in a first layer image different from a second layer image corresponding to a current block included in a first layer image.
  • the interlayer video encoding apparatus 10 obtains a disparity vector indicating a candidate block included in a first layer image different from the second layer image from the current block included in the first layer image.
  • the interlayer video encoding apparatus 10 may find a candidate block by using the obtained disparity vector.
  • the interlayer video encoding apparatus 10 may determine a candidate block included in the first layer image co-located at the same point as the current block included in the second layer image.
  • the interlayer video encoding apparatus 10 may correspond to a subblock of the second layer image when at least one subblock of the second layer image determined using the size of the subblock is obtained from the current block. Acquire motion information of a subblock of a first layer image.
  • the subblock of the first layer image is determined to be located in an area within the candidate block.
  • the interlayer video encoding apparatus 10 obtains or predicts motion information of a current block by using motion information of the obtained subblock of the first layer image, and uses motion information of the acquired or predicted current block. To encode the current block.
  • the interlayer video encoding apparatus 10 In operation 19, the interlayer video encoding apparatus 10 generates a bitstream including the size information of the determined subblock.
  • the interlayer video encoding apparatus 10 determines the size of the subblock within the range of the minimum and maximum sizes of the coding unit in consideration of the minimum and maximum sizes of the coding units. This simplifies the process and lowers the complexity of implementation / operation of the decryption apparatus.
  • the interlayer video encoding apparatus 10 includes a central processor (not shown) that collectively controls the first layer encoder 14, the second layer encoder 16, and the bitstream generator 18. ) May be included.
  • the first layer encoder 14, the second layer encoder 16, and the bitstream generator 18 may be operated by their own processors (not shown), and the processors (not shown) may be mutually organic. As it operates, the interlayer video encoding apparatus 10 may operate as a whole.
  • the first layer encoder 14, the second layer encoder 16, and the bitstream generator 18 may be controlled by the control of an external processor (not shown) of the interlayer video encoding apparatus 10. It may be.
  • the interlayer video encoding apparatus 10 may include one or more data storage units (not shown) that store input and output data of the first layer encoder 14, the second layer encoder 16, and the bitstream generator 18. It may include.
  • the interlayer video encoding apparatus 10 may include a memory controller (not shown) that manages data input and output of the data storage unit (not shown).
  • the interlayer video encoding apparatus 10 may perform a video encoding operation including transformation by operating in conjunction with an internal video encoding processor or an external video encoding processor to output a video encoding result.
  • the internal video encoding processor of the interlayer video encoding apparatus 10 may implement a video encoding operation as a separate processor.
  • the inter-layer video encoding apparatus 10, the central computing unit, or the graphics processing unit may include a video encoding processing module to implement a basic video encoding operation.
  • 1C is a block diagram of an interlayer video decoding apparatus, according to various embodiments.
  • the interlayer video decoding apparatus 20 may include an acquirer 22 and a decoder 24.
  • the decoder 24 may include a first layer decoder 26 and a second layer decoder 28.
  • the interlayer video decoding apparatus 20 receives a bitstream of a video encoded for each layer.
  • the interlayer video decoding apparatus 20 may receive bitstreams for each layer according to a scalable encoding method.
  • the number of layers of the bitstreams received by the interlayer video decoding apparatus 20 is not limited.
  • the first layer decoder 26 of the interlayer video decoding apparatus 20 receives and decodes the first layer stream, and the second layer decoder 28 decodes the second layer stream. An embodiment of receiving and decoding will be described in detail.
  • the interlayer video decoding apparatus 20 may receive a stream in which image sequences having different resolutions are encoded in different layers.
  • the low resolution image sequence may be reconstructed by decoding the first layer stream, and the high resolution image sequence may be reconstructed by decoding the second layer stream.
  • a multiview video may be decoded according to a scalable video coding scheme.
  • left view images may be reconstructed by decoding the first layer stream.
  • Right-view images may be reconstructed by further decoding the second layer stream in addition to the first layer stream.
  • the center view images may be reconstructed by decoding the first layer stream.
  • Left view images may be reconstructed by further decoding a second layer stream in addition to the first layer stream.
  • Right-view images may be reconstructed by further decoding the third layer stream in addition to the first layer stream.
  • a scalable video coding scheme based on temporal scalability may be performed. Images of the base frame rate may be reconstructed by decoding the first layer stream. The high frame rate images may be reconstructed by further decoding the second layer stream in addition to the first layer stream.
  • first layer images may be reconstructed from the first layer stream, and second layer images may be further reconstructed by further decoding the second layer stream with reference to the first layer reconstructed images.
  • the K-th layer images may be further reconstructed by further decoding the K-th layer stream with reference to the second layer reconstruction image.
  • the interlayer video decoding apparatus 20 obtains encoded data of first layer images and second layer images from a first layer stream and a second layer stream, and adds a motion vector and an interlayer generated by inter prediction.
  • the prediction information generated by the prediction can be further obtained.
  • the interlayer video decoding apparatus 20 may decode inter-predicted data for each layer and may decode inter-layer predicted data among a plurality of layers. Reconstruction via motion compensation and interlayer video decoding may be performed based on a coding unit or a prediction unit.
  • images may be reconstructed by performing motion compensation for the current image with reference to reconstructed images predicted through inter prediction of the same layer.
  • Motion compensation refers to an operation of reconstructing a reconstructed image of the current image by synthesizing the reference image determined using the motion vector of the current image and the residual component of the current image.
  • the interlayer video decoding apparatus 20 may perform interlayer video decoding by referring to prediction information of the first layer images in order to decode a second layer image predicted through interlayer prediction.
  • Interlayer video decoding refers to an operation of reconstructing prediction information of a current image using prediction information of a reference block of another layer to determine prediction information of a current image.
  • the interlayer video decoding apparatus 20 may perform interlayer video decoding for reconstructing third layer images predicted using the second layer images.
  • the interlayer prediction structure will be described later with reference to FIG. 3A.
  • the second layer decoder 28 may decode the second layer stream without referring to the first layer image sequence. Therefore, care should be taken not to limit the interpretation that the second layer decoder 28 performs interlayer prediction in order to decode the second layer image sequence.
  • the interlayer video decoding apparatus 20 decodes each block of each image of the video.
  • the block may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, or the like among coding units having a tree structure.
  • the acquirer 22 may receive a bitstream and obtain information about an encoded image from the received bitstream.
  • the acquirer 22 may obtain subblock size information of an image from a bitstream.
  • the acquirer 22 obtains subblock size information indicating a subblock size of a specific layer image from the bitstream.
  • the first layer decoder 26 may decode the first layer image by using encoding symbols of the parsed first layer image.
  • the first layer decoder 26 may apply coding units having a tree structure to each largest coding unit of the first layer stream. Decryption may be performed on a basis.
  • the first layer decoder 26 may perform entropy decoding for each largest coding unit to obtain encoded information and encoded data.
  • the first layer decoder 26 may reconstruct the residual component by performing inverse quantization and inverse transformation on the encoded data obtained from the stream.
  • the first layer decoder 26 may directly receive a bitstream of the quantized transform coefficients. As a result of performing inverse quantization and inverse transformation on the quantized transform coefficients, the residual component of the images may be reconstructed.
  • the first layer decoder 26 may determine the predicted image through motion compensation between the same layer images, and reconstruct the first layer images by combining the predicted image and the residual component.
  • the second layer decoder 28 may generate a second layer prediction image by using samples of the first layer reconstruction image.
  • the second layer decoder 28 may decode the second layer stream to obtain a prediction error according to interlayer prediction.
  • the second layer decoder 28 may generate the second layer reconstruction image by combining the prediction error with the second layer prediction image.
  • the second layer decoder 28 may determine the second layer prediction image by using the first layer reconstruction image decoded by the first layer decoder 26.
  • the second layer decoder 28 may determine a block of the first layer image to be referred to by the coding unit or the prediction unit of the second layer image, according to the interlayer prediction structure. For example, a reconstruction block of the first layer image positioned corresponding to the position of the current block in the second layer image may be determined.
  • the second layer decoder 28 may determine the second layer prediction block by using the first layer reconstruction block corresponding to the second layer block.
  • the second layer decoder 28 may determine the second layer prediction block by using the first layer reconstruction block co-located at the same point as the second layer block.
  • the second layer decoder 28 may use the second layer prediction block determined by using the first layer reconstruction block according to the interlayer prediction structure as a reference image for interlayer prediction of the second layer original block. In this case, the second layer decoder 28 may reconstruct the second layer block by synthesizing the sample value of the second layer prediction block determined using the first layer reconstructed image and the residual component according to the interlayer prediction. Can be.
  • the first layer image to be encoded may be a first view video
  • the second layer image may be a second view video
  • the first layer image to be encoded may be a color (texture) video
  • the second layer image may be a depth video.
  • the interlayer video decoding apparatus 20 may obtain a disparity vector for interlayer prediction through a bitstream or predict it from other encoding information.
  • the disparity vector may be predicted from neighboring blocks of the currently reconstructed block.
  • the disparity vector may be set as a basic disparity vector.
  • the second layer decoder 28 uses the subblock size information of the second layer image obtained from the bitstream to be greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit. The size of can be determined.
  • the second layer decoder 28 obtains a disparity vector indicating a candidate block included in the first layer image by using the current block included in the second layer image as a starting point.
  • the second layer decoder 28 determines the size of the subblock according to the subblock size information.
  • the second layer decoder 28 may acquire motion information of a subblock of the first layer image corresponding to the subblock of the second layer image when the subblock is obtained from the current block by using the determined size of the subblock. Can be.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the second layer decoder 28 may predict the motion information of the current block by using the motion information of the subblock of the second layer image, and decode the current block by using the predicted motion information of the current block.
  • inter-layer motion prediction is inter-view motion prediction.
  • the interlayer video decoding apparatus 20 may use one of various motion vector candidates to predict the motion vector.
  • the interlayer video decoding apparatus 20 may determine a motion vector to be predicted from the spatial candidate block as one motion vector candidate. In addition, the interlayer video decoding apparatus 20 may determine a motion vector to be predicted from the temporal candidate block as another motion vector candidate.
  • the interlayer video decoding apparatus 20 determines a motion vector candidate for subblock based inter-view motion vector prediction.
  • the interlayer video decoding apparatus 20 may determine a motion vector candidate for inter-view motion vector prediction for the current prediction unit by using the disparity vector mvDisp. In addition, the interlayer video decoding apparatus 20 may determine a motion vector candidate for inter-view motion vector prediction for the current prediction unit by using an index indicating a reference view.
  • the interlayer video decoding apparatus 20 obtains a motion vector candidate from at least one of an L0 prediction list and an L1 prediction list.
  • the interlayer video decoding apparatus 20 may determine a picture to be referred to among pictures included in the L0 prediction list or the L1 prediction list. In more detail, the interlayer video decoding apparatus 20 may determine a picture to be referred to among pictures included in the prediction list by using a reference picture index.
  • the reference picture index may include an index indicating a picture to be referred to among pictures included in the L0 prediction list and an index indicating a picture to be referred to among pictures included in the L1 prediction list.
  • the interlayer video decoding apparatus 20 may determine a prediction direction.
  • the interlayer video decoding apparatus 20 may determine the prediction direction using the prediction direction information.
  • the prediction direction information is information indicating at least one prediction direction of the L1 list and the L0 list.
  • the prediction direction information may include L0 prediction direction information indicating that the L0 list is available and L1 prediction direction information indicating that the L1 list is available.
  • the interlayer video decoding apparatus 20 subsequently refers to one picture included in the prediction list related to the prediction direction, predicts the motion vector using the motion vector, and uses the predicted motion vector to block the block in the reference picture. And the predicted sample value may be generated using the determined block.
  • the interlayer video decoding apparatus 20 determines the motion vector candidate, the interlayer video decoding apparatus 20 generates a merge candidate list.
  • the interlayer video decoding apparatus 20 generates a merge candidate list including various merge candidates such as a spatial merge candidate, a temporal merge candidate, an inter-view motion compensation merge candidate, and an inter-view disparity compensation merge candidate. do.
  • a motion vector candidate, a reference picture index, and a prediction direction that may be used for inter prediction may be determined for the merge candidate.
  • the merge candidate may mean a block used for motion vector prediction.
  • the interlayer video decoding apparatus 20 determines whether each merge candidate is available according to the priority of each merge candidate. The interlayer video decoding apparatus 20 adds the available merge candidates to the merge list.
  • the interlayer video decoding apparatus 20 determines whether a temporal merging candidate is available, and adds the temporal merging candidate to the merge list if the temporal merging candidate is available.
  • the interlayer video decoding apparatus 20 may determine whether an inter-view motion compensation merging candidate, which is a next priority, is available according to the priority of the merge candidate.
  • the interlayer video decoding apparatus 20 adds the inter-view motion compensation merging candidate to the merge list.
  • the interlayer video decoding apparatus 20 adds the available merge candidates according to the priority among the merge candidates, and if there is not enough space to add the merge candidate to the merge candidate list, the interlayer video decoding apparatus 20 does not add the merge candidate to the merge candidate list anymore. Do not.
  • the interlayer video decoding apparatus 20 obtains a merge index.
  • the merge index refers to an index indicating one of merge candidates added to the merge candidate list.
  • the interlayer video decoding apparatus 20 determines a candidate block to be used for vector prediction in the merge list by using the merge index.
  • the interlayer video decoding apparatus 20 may determine the motion vector candidate, the reference picture index, and the prediction determined through inter-view motion vector prediction. Inter-view motion compensation is performed using the direction information.
  • the interlayer video decoding apparatus 20 performs inter-view motion compensation to generate a predicted sample value for the current prediction unit.
  • the interlayer video decoding apparatus 40 predicts a motion vector of the current prediction unit by using a motion vector candidate, and determines a block by using the predicted motion vector.
  • the interlayer video decoding apparatus 40 generates a prediction sample value for the current prediction unit by using the determined block.
  • the interlayer video decoding apparatus 20 determines the subblock based inter-view motion vector candidate when the partition type of the current coding unit is 2N ⁇ 2N type. Can be.
  • the subblock-based inter-view motion vector candidate divides a current prediction unit at one time point into a sub-prediction unit, determines a sub-prediction unit located at another time point in the sub-prediction unit, and determines the motion of the subblock located at another determined time.
  • the motion vector candidate determined for the sub prediction unit included in the current prediction unit using the information.
  • the interlayer video decoding apparatus 20 may not determine a subblock based inter-view motion vector candidate unless the partition type is 2N ⁇ 2N type.
  • the interlayer video decoding apparatus 20 indicates that the motion information of the current prediction unit has a motion accuracy of a subblock size. You can decide. That is, the interlayer video decoding apparatus 20 may generate a prediction sample value for the current prediction unit by performing inter-view motion compensation on a subblock basis.
  • the interlayer video decoding apparatus 20 may determine that the motion information of the current prediction unit does not have the motion accuracy of the subblock size.
  • the interlayer video decoding apparatus 20 may not perform subblock-based inter-view motion compensation.
  • 1D is a flowchart of an interlayer video decoding method, according to various embodiments.
  • the interlayer video decoding apparatus 20 obtains subblock size information of a second layer image.
  • the subblock size information indicates a size of the subblock within a range that is greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit.
  • the interlayer video decoding apparatus 20 determines a size of a subblock within a range that is greater than or equal to the minimum size of the coding unit and less than or equal to the maximum size of the coding unit, using the subblock size information.
  • the interlayer video decoding apparatus 20 determines a candidate block included in a first layer image different from a second layer image corresponding to a current block included in a second layer image.
  • the interlayer video decoding apparatus 20 obtains a disparity vector indicating a candidate block included in a first layer image different from the second layer image from a current block included in the second layer image.
  • the interlayer video decoding apparatus 20 may determine the candidate block using the obtained disparity vector.
  • the interlayer video decoding apparatus 20 may determine a candidate block included in the first layer image co-located at the same point as the current block included in the second layer image.
  • the interlayer video decoding apparatus 20 may correspond to a subblock of the second layer image when at least one subblock of the second layer image determined using the size of the subblock is obtained from the current block. Acquire motion information of a subblock of the first layer image.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the interlayer video decoding apparatus 20 obtains or predicts motion information of a current block by using motion information of a subblock of a first layer image, and uses the current information by using prediction or acquired motion information of a current block. Decrypt the block.
  • FIG. 2A is a block diagram of an interlayer video encoding apparatus according to another embodiment of the present invention.
  • the interlayer video encoding apparatus 30 may include an encoder 32.
  • the encoder 32 may include a first layer encoder 34 and a second layer encoder 36. Meanwhile, the encoder 32 may perform some of the functions performed by the encoder 12 unless the functions are arranged to each other.
  • the first layer encoder 34 may encode the encoded first layer image.
  • the second layer encoder 36 may determine a candidate block of the first layer image corresponding to the current block included in the second layer image.
  • the second layer encoder 36 may obtain a disparity vector indicating a candidate block included in the first layer image by using a current block included in the second layer image as a starting point.
  • the second layer encoder 36 may determine a candidate block included in the first layer image co-located at the same point as the current block included in the second layer image.
  • the second layer encoder 36 may determine at least one subblock to be included in the current block in order to divide the current block into at least one subblock.
  • the second layer encoder 36 determines a block having a size other than the predetermined size as a subblock. In particular, in this case, it is not an integer multiple: 1) when the size of the current block is larger than the predetermined size (for example, 1.5 times) or 2) when the size of the current block is smaller than the predetermined size (for example, 0.5 times). ), 3) one of the width and height of the current block is greater than or equal to the predetermined width or width, and the other of the width and height of the current block is less than or equal to the predetermined width or width (the width and height of the current block). May be identical). In the present embodiment, the case 1 is particularly assumed.
  • the second layer encoder 36 may determine a block having the same size as that of the current block as a subblock. For example, if the size of the current block is 16x12 and the predetermined block size is 8x8, the current block because the height of the current block (ie, 12) is 1.5 times not an integer multiple of the predetermined block height (ie, 8). A block 16x12 having the same size as may be determined as a subblock.
  • the second layer encoder 36 no longer determines another subblock (for example, a second subblock to be described later), and determines a subblock having the same size as that of the current block as a subblock to be included in the current block. Can be.
  • the second layer encoder 36 may determine that the size of the current block is not an integer multiple of the predetermined subblock size, and at least one block having the same size as the predetermined block size is the first subblock. Can be determined.
  • the second layer encoder 36 has a predetermined block size (8x8) because the width of the current block is not an integer multiple of the predetermined block width.
  • a block having the same size as) may be determined as the first subblock.
  • the second layer encoder 36 may determine a second subblock in addition to the first subblock.
  • the second subblock means a block having a width or height smaller than at least one of a predetermined block width and a predetermined block height.
  • a block having the same size as the predetermined block size may be determined as the first subblock.
  • the first sub-block is properly positioned (leftmost in the current block or rightmost in the current block) in the current block, a space of 4x8 size remains. If a block having the same size as the original predetermined block size is to be placed in the remaining space of 4x8 size, a block having the same size as the predetermined block size in the current block does not fit into the remaining space.
  • the second layer encoder 36 may determine a block having a width smaller than the predetermined block width corresponding to the remaining space (ie, 4) as the second subblock to be included in the current block.
  • the second subblock is a block of a size not equal to the predetermined size.
  • the size of the second subblock may be 8x4 in addition to 4x8. Since the size of the second subblock is an allowable prediction unit size, the second subblock may be used in the process of predicting the inter-view motion even if the block having the same size as the predetermined size is not the subblock.
  • the second layer encoder 36 may divide the current block into at least one subblock according to the division boundary by using the division boundary for each of a predetermined width or height in the horizontal or vertical direction from the top left pixel of the current block. .
  • the division boundary may be set every 8 pixels in the horizontal direction from the top left pixel. If the height of the current block is 12 and the predetermined size is 8x8, the division boundary can be set every 8 pixels in the vertical direction from the leftmost pixel.
  • Some of the blocks obtained by dividing along the division boundary are blocks having the same height and width as the predetermined height and width, and the corresponding block may be determined as the first subblock.
  • the second layer encoder 36 may determine the right space and the right space of the rightmost division boundary in the current block. Only blocks of width or height smaller than the predetermined width or height fit into the space below the bottommost partition boundary in the block.
  • a block of a width or height smaller than at least one of a predetermined width and height may be located in an area within the current block in the right space located at the rightmost division boundary and the space below the division boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of a predetermined width and height may be determined as the second subblock.
  • the present invention is not limited thereto, and the second layer encoder 36 may determine a division boundary in various ways and determine a subblock to be included in the current block according to the division boundary.
  • the division boundary can be set every 8 pixels in the horizontal direction (left direction) from the top right pixel.
  • the division boundary can be set every 8 pixels in the vertical direction from the top right pixel.
  • Most of the blocks obtained by dividing along the division boundary are blocks of a predetermined height and width, and the blocks of the predetermined height and width may be determined as the first subblock.
  • the second layer encoder 36 may include a left space of the leftmost division boundary located in the current block and Only blocks of a width or height smaller than at least one of a predetermined width and height may be located in a space below a partition boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of a predetermined width and height may be located in the current block in the left space of the leftmost partition and the space below the split boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of the predetermined width and height may be determined as the second subblock.
  • the second layer encoder 36 may acquire motion information of the subblock of the first layer image corresponding to the subblock of the second layer image.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the subblock of the first layer image corresponding to the subblock of the second layer image may mean a subblock of the first layer image co-located at the same point as the subblock of the second layer image.
  • the second layer encoder 36 may predict or obtain motion information of the current block using the motion information of the subblock of the first layer image, and encode the current block using the motion information of the predicted or obtained current block. Can be.
  • the interlayer video encoding apparatus 30 may further include a bitstream generator (not shown).
  • the bitstream generator (not shown) may generate a bitstream including the encoded second layer image and the encoded first layer image including the encoded current block.
  • the interlayer video encoding apparatus 30 may perform some of the functions performed by the interlayer video encoding apparatus 10 described with reference to FIG. 1A.
  • the encoder 32 may perform some of the functions performed by the encoder 12.
  • the bitstream generator (not shown) may perform some of the functions performed by the bitstream generator 18.
  • 2B is a flowchart of an interlayer video encoding method, according to various embodiments.
  • the interlayer video encoding apparatus 30 may encode the first layer image.
  • the interlayer video encoding apparatus 30 may determine a candidate block included in the first layer image corresponding to the current block included in the second layer image.
  • the interlayer video encoding apparatus 30 may obtain a disparity vector indicating a candidate block included in the first layer image from the current block included in the second layer image.
  • the interlayer video encoding apparatus 30 may find a candidate block included in the first layer image by using the obtained disparity vector.
  • the interlayer video encoding apparatus 30 may determine whether the size of the current block is not an integer multiple of the size of a predetermined subblock. One block may be determined as a subblock.
  • the interlayer video encoding apparatus 30 may obtain motion information of the subblock of the first layer image corresponding to the subblock of the second layer image.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the interlayer video encoding apparatus 30 may acquire or predict motion information of the obtained subblock of the first layer image, and encode the current block by using the acquired motion information of the current block. have.
  • 2C is a block diagram of an interlayer video encoding apparatus, according to another embodiment of the present invention.
  • the interlayer video decoding apparatus 40 may include an acquirer 42 and a decoder 44.
  • the decoder 44 may include a first layer decoder 46 and a second layer decoder 48. Meanwhile, the decoder 44 may perform some of the functions performed by the decoder 24 unless the functions are arranged to each other.
  • the first layer decoder 46 may encode the encoded first layer image.
  • the second layer decoder 48 may determine a candidate block included in the first layer image corresponding to the current block included in the second layer image.
  • the second layer decoder 48 may obtain a disparity vector indicating a candidate block included in the first layer image from the current block included in the second layer image.
  • the second layer decoder 48 may determine a candidate block included in the first layer image by using the disperity vector.
  • the second layer decoder 48 may determine a candidate block included in the first layer image co-located at the same point as the current block included in the second layer image.
  • the second layer decoder 48 determines a block having a size other than the predetermined subblock size as a subblock.
  • the second layer decoder 48 may determine a block having the same size as that of the current block as a subblock. For example, if the size of the current block is 12x8 and the predetermined block size is 8x8, the current block is 1.5 times the width of the current block (that is, 12) is 1.5 times not an integer multiple of the predetermined block width (that is, 8). A block 12x8 having the same size as may be determined as the first subblock.
  • the second layer decoder 48 no longer determines another subblock (eg, a second subblock to be described later), and the subblock to include the first subblock having the same size as the current block in the current block. Can be determined.
  • another subblock eg, a second subblock to be described later
  • the second layer decoder 48 may determine that the size of the current block is not an integer multiple of the predetermined subblock size, and at least one block having the same size as the predetermined block size is the first subblock. Can be determined.
  • the second layer decoder 48 has a predetermined block size (8x8) because the width of the current block is not an integer multiple of the predetermined block width.
  • a block having the same size as) may be determined as the first subblock.
  • the second layer decoder 48 may determine a second subblock in addition to the first subblock.
  • the second subblock means a block having a width or height smaller than at least one of a predetermined block width and a predetermined block height.
  • a block having the same size as the predetermined block size may be determined as the first subblock.
  • the first sub-block is properly positioned (leftmost in the current block or rightmost in the current block) in the current block, a space of 4x8 size remains. If a block having the same size as the original predetermined block size is to be placed in the remaining space of 4x8 size, a block having the same size as the predetermined block size does not fit in the remaining space in the current block.
  • the second layer decoder 48 may determine a block having a width smaller than the predetermined block width corresponding to the remaining space (ie, 4) as the second subblock to be included in the current block.
  • the size of the second subblock may be 4x8 or 8x4. Since the size of the second subblock is an allowable prediction unit size, the second subblock may be used for inter-layer motion prediction even when a block having a predetermined size is not a subblock.
  • the second layer decoder 48 may divide the current block into at least one subblock according to the division boundary by using the division boundary for each of a predetermined width or height in the horizontal or vertical direction from the top left pixel of the current block. .
  • the division boundary may be set every 8 pixels in the horizontal direction from the top left pixel. If the height of the current block is 12 and the predetermined size is 8x8, the division boundary can be set every 8 pixels in the vertical direction from the leftmost pixel.
  • Most of the blocks obtained by dividing along the division boundary are blocks of a predetermined height and width, and the blocks of the predetermined height and width may be determined as the first subblock.
  • the second layer decoder 48 determines the right space and the right space of the rightmost partition in the current block. Only blocks smaller than a predetermined width or height fit into the space below the partition boundary located at the bottom of the block.
  • a block having a width or height smaller than at least one of a predetermined width and height may be located in the current block in a right space located at the rightmost division boundary and a space below a division boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of a predetermined width and height may be determined as the second subblock.
  • the present invention is not limited thereto, and the second layer decoder 48 may determine a partition boundary in various ways and determine a subblock to be included in the current block according to the partition boundary.
  • the division boundary can be set every 8 pixels in the horizontal direction (left direction) from the top right pixel. If the height of the current block is 12 and the predetermined size is 8x8, the division boundary can be set every 8 pixels in the vertical direction from the top right pixel. Most of the blocks obtained by dividing along the division boundary are blocks of a predetermined height and width, and the blocks of the predetermined height and width may be determined as the first subblock.
  • the second layer decoder 48 may include a left space of the leftmost division boundary located in the current block and Only blocks smaller than at least one of a predetermined width and height may be located in a space below a partition boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of a predetermined width and height may be located in the current block in the left space of the leftmost partition and the space below the split boundary located at the bottom of the current block.
  • a block having a width or height smaller than at least one of the predetermined width and height may be determined as the second subblock.
  • the second layer decoder 48 may acquire motion information of the subblock of the first layer image corresponding to the subblock of the second layer image.
  • the subblock of the first layer image may be determined to be located in an area within the candidate block.
  • the subblock of the first layer image corresponding to the subblock of the second layer image may mean a subblock of the first layer image co-located at the same point as the subblock of the second layer image.
  • the second layer decoder 48 acquires or predicts motion information of the current block using motion information of a subblock of the first layer image, and decodes the current block using motion information of the obtained or predicted current block. Can be.
  • the interlayer video decoding apparatus 40 may perform some of the functions performed by the interlayer video decoding apparatus 20 described with reference to FIG. 1B.
  • the decoder 44 may perform some of the functions performed by the decoder 24.
  • the acquirer 42 may perform some of the functions performed by the acquirer 22.
  • 2D is a flowchart of an interlayer video decoding method according to another embodiment of the present invention.
  • the interlayer video decoding apparatus 40 decodes an encoded first layer image.
  • the interlayer video decoding apparatus 40 may determine a candidate block included in the first layer image corresponding to the current block included in the second layer image.
  • the interlayer video decoding apparatus 40 obtains a disparity vector indicated by a candidate block included in a first layer image from a current block included in a second layer image.
  • the interlayer video decoding apparatus 40 may determine a candidate block included in the first layer image by using the disparity vector.
  • the interlayer video decoding apparatus 40 determines at least one block that is not the size of the predetermined subblock as the subblock.
  • the interlayer video decoding apparatus 40 obtains motion information of the subblock of the first layer image corresponding to the subblock of the second layer image.
  • the subblock of the first layer image may be determined to be located in an area of the candidate block.
  • the interlayer video decoding apparatus 40 obtains or predicts motion information of the current block by using motion information of the obtained subblock of the first layer image, and obtains motion information of the obtained or predicted current block. To decode the current block.
  • interlayer prediction structure that may be performed in the interlayer video encoding apparatus 10 according to various embodiments will be described with reference to FIG. 3A.
  • 3A illustrates an interlayer prediction structure, according to various embodiments.
  • the interlayer video encoding apparatus 10 predictively encodes base view images, left view images, and right view images according to a reproduction order 50 of the multiview video prediction structure illustrated in FIG. 3A. Can be.
  • images of the same view are arranged in the horizontal direction. Therefore, left view images labeled 'Left' are arranged in a row in the horizontal direction, basic view images labeled 'Center' are arranged in a row in the horizontal direction, and right view images labeled 'Right' are arranged in a row in the horizontal direction. It is becoming.
  • the base view images may be center view images, in contrast to left / right view images.
  • images having the same POC order are arranged in the vertical direction.
  • the POC order of an image indicates a reproduction order of images constituting the video.
  • 'POC X' displayed in the multi-view video prediction structure 50 indicates a relative reproduction order of the images located in the corresponding column. The smaller the number of X is, the higher the reproduction order is, and the larger the reproduction order is, the lower the reproduction order is.
  • the left view images denoted as 'Left' are arranged in the horizontal direction according to the POC order (playing sequence), and the base view image denoted as 'Center'. These images are arranged in the horizontal direction according to the POC order (playing order), and right-view images marked as 'Right' are arranged in the horizontal direction according to the POC order (playing order).
  • both the left view image and the right view image located in the same column as the base view image are images having different viewpoints but having the same POC order (playing order).
  • Each GOP includes images between successive anchor pictures and one anchor picture.
  • An anchor picture is a random access point.
  • Base view images include base view anchor pictures 51, 52, 53, 54, and 55.
  • Left view images include left view anchor pictures 131, 132, 133, 134, and 135.
  • the images include right-view anchor pictures 231, 232, 233, 234, and 235.
  • Multi-view images may be played back in GOP order and predicted (restored).
  • images included in GOP 0 may be reproduced, and then images included in GOP 1 may be reproduced. That is, images included in each GOP may be reproduced in the order of GOP 0, GOP 1, GOP 2, and GOP 3.
  • the images included in GOP 1 may be predicted (restored). That is, images included in each GOP may be predicted (restored) in the order of GOP 0, GOP 1, GOP 2, and GOP 3.
  • inter-view prediction inter layer prediction
  • inter prediction inter prediction
  • an image starting with an arrow is a reference image
  • an image ending with an arrow is an image predicted using the reference image.
  • the prediction result of the base view images may be encoded and output in the form of a base view image stream, and the prediction result of the additional view images may be encoded and output in the form of a layer bitstream.
  • the prediction encoding result of the left view images may be output as the first layer bitstream, and the prediction encoding result of the right view images may be output as the second layer bitstream.
  • B-picture type pictures are predicted with reference to an I-picture type anchor picture followed by a POC order and an I-picture type anchor picture following it.
  • the b-picture type pictures are predicted by referring to an I-picture type anchor picture followed by a POC order and a subsequent B-picture type picture or by referring to a B-picture type picture followed by a POC order and an I-picture type anchor picture following it. .
  • inter-view prediction (inter layer prediction) referring to different view images and inter prediction referring to the same view images are performed, respectively.
  • inter-view prediction (inter layer prediction) with reference to the base view anchor pictures 51, 52, 53, 54, and 55 having the same POC order, respectively. This can be done.
  • the base view images 51, 52, 53, 54, 55 having the same POC order or the left view anchor pictures 131, 132, 133, 134 and 135 may perform inter-view prediction.
  • the remaining images other than the anchor pictures 131, 132, 133, 134, 135, 231, 232, 233, 234, and 235 among the left view images and the right view images other view images having the same POC are also displayed.
  • Reference inter-view prediction (inter layer prediction) may be performed.
  • the remaining images other than the anchor pictures 131, 132, 133, 134, 135, 231, 232, 233, 234, and 235 among the left view images and the right view images are predicted with reference to the same view images.
  • left view images and the right view images may not be predicted with reference to the anchor picture having the playback order that precedes the additional view images of the same view. That is, for inter prediction of the current left view image, left view images other than a left view anchor picture having a playback order preceding the current left view image may be referenced. Similarly, for inter prediction of a current right view point image, right view images except for a right view anchor picture whose reproduction order precedes the current right view point image may be referred to.
  • the left view image that belongs to the previous GOP that precedes the current GOP to which the current left view image belongs is not referenced and is left view point that belongs to the current GOP but is reconstructed before the current left view image.
  • the prediction is performed with reference to the image. The same applies to the right view image.
  • the interlayer video decoding apparatus 20 may reconstruct base view images, left view images, and right view images according to the reproduction order 50 of the multiview video prediction structure illustrated in FIG. 3A. have.
  • the left view images may be reconstructed through inter-view disparity compensation referring to the base view images and inter motion compensation referring to the left view images.
  • the right view images may be reconstructed through inter-view disparity compensation referring to the base view images and the left view images and inter motion compensation referring to the right view images.
  • Reference images must be reconstructed first for disparity compensation and motion compensation of left view images and right view images.
  • the left view images may be reconstructed through inter motion compensation referring to the reconstructed left view reference image.
  • the right view images may be reconstructed through inter motion compensation referring to the reconstructed right view reference image.
  • a left view image belonging to a previous GOP that precedes the current GOP to which the current left view image belongs is not referenced, and is left in the current GOP but reconstructed before the current left view image. It is preferable that only the viewpoint image is referred to. The same applies to the right view image.
  • the interlayer video decoding apparatus 20 not only performs disparity prediction (or interlayer prediction) to encode / decode a multiview image, but also inter-view video through inter-view motion vector prediction. Motion compensation (or inter-layer motion prediction) may be performed.
  • 3B is a diagram illustrating a multilayer video, according to various embodiments.
  • the interlayer video encoding apparatus 10 may include various spatial resolutions, various quality, various frame rates, A scalable bitstream may be output by encoding multilayer image sequences having different viewpoints. That is, the multilayer video encoding apparatus 10 may generate and output a scalable video bitstream by encoding an input image according to various scalability types. Scalability includes temporal, spatial, image quality, multi-point scalability, and combinations of such scalability. These scalabilities can be classified according to each type. In addition, scalabilities can be distinguished by dimension identifiers within each type.
  • scalability has scalability types such as temporal, spatial, image quality and multi-point scalability.
  • scalability types such as temporal, spatial, image quality and multi-point scalability.
  • Each type may be divided into scalability dimension identifiers. For example, if you have different scalability, you can have different dimension identifiers. For example, the higher the scalability of the scalability type, the higher the scalability dimension may be assigned.
  • a bitstream is called scalable if it can be separated from the bitstream into valid substreams.
  • the spatially scalable bitstream includes substreams of various resolutions.
  • the scalability dimension is used to distinguish different scalability from the same scalability type.
  • the scalability dimension may be represented by a scalability dimension identifier.
  • the spatially scalable bitstream may be divided into substreams having different resolutions such as QVGA, VGA, WVGA, and the like.
  • layers with different resolutions can be distinguished using dimensional identifiers.
  • the QVGA substream may have 0 as the spatial scalability dimension identifier value
  • the VGA substream may have 1 as the spatial scalability dimension identifier value
  • the WVGA substream may have 2 as the spatial scalability dimension identifier value. It can have
  • a temporally scalable bitstream includes substreams having various frame rates.
  • a temporally scalable bitstream may be divided into substreams having a frame rate of 7.5 Hz, a frame rate of 15 Hz, a frame rate of 30 Hz, and a frame rate of 60 Hz.
  • Image quality scalable bitstreams can be divided into substreams having different qualities according to the Coarse-Grained Scalability (CGS) method, the Medium-Grained Scalability (MGS) method, and the Fine-Grained Scalability (GFS) method Can be.
  • CGS Coarse-Grained Scalability
  • MMS Medium-Grained Scalability
  • GFS Fine-Grained Scalability
  • Temporal scalability may also be divided into different dimensions according to different frame rates
  • image quality scalability may also be divided into different dimensions according to different methods.
  • a multiview scalable bitstream includes substreams of different views within one bitstream.
  • a bitstream includes a left image and a right image.
  • the scalable bitstream may include substreams related to encoded data of a multiview image and a depth map. Viewability scalability may also be divided into different dimensions according to each view.
  • the scalable video bitstream may include substreams in which at least one of temporal, spatial, image quality, and multi-point scalability is encoded with image sequences of a multilayer including different images.
  • the image sequence 3010 of the first layer, the image sequence 3020 of the second layer, and the image sequence 3030 of the nth (n is an integer) layer may be image sequences having at least one of a resolution, an image quality, and a viewpoint. have.
  • an image sequence of one layer among the image sequence 3010 of the first layer, the image sequence 3020 of the second layer, and the image sequence 3030 of the nth (n is an integer) layer may be an image sequence of the base layer.
  • the image sequences of the other layers may be image sequences of the enhancement layer.
  • the image sequence 3010 of the first layer may include images of a first viewpoint
  • the image sequence 3020 of the second layer may include images of a second viewpoint
  • the image sequence 3030 of the n th layer may include an n th viewpoint.
  • the image sequence 3010 of the first layer is a left view image of the base layer
  • the image sequence 3020 of the second layer is a right view image of the base layer
  • the image sequence 3030 of the nth layer is It may be a right view image.
  • the present invention is not limited to the above example, and the image sequences 3010, 3020, and 3030 having different scalable extension types may be image sequences having different image attributes.
  • 3C is a diagram illustrating NAL units including encoded data of a multilayer video, according to various embodiments.
  • the bitstream generator 18 outputs network abstraction layer (NAL) units including encoded multilayer video data and additional information.
  • NAL network abstraction layer
  • the video parameter set (hereinafter referred to as "VPS") includes information applied to the multilayer image sequences 3120, 3130, and 3140 included in the multilayer video.
  • the NAL unit including the information about the VPS is called a VPS NAL unit 3110.
  • the VPS NAL unit 3110 includes a common syntax element shared by the multilayer image sequences 3120, 3130, and 3140, information about an operation point, and a profile to prevent unnecessary information from being transmitted. Includes essential information about the operating point needed during the session negotiation phase, such as (profile) or level.
  • the VPS NAL unit 3110 according to an embodiment includes scalability information related to a scalability identifier for implementing scalability in multilayer video.
  • the scalability information is information for determining scalability applied to the multilayer image sequences 3120, 3130, and 3140 included in the multilayer video.
  • the scalability information includes information on scalability type and scalability dimension applied to the multilayer image sequences 3120, 3120, and 3140 included in the multilayer video.
  • scalability information may be directly obtained from a value of a layer identifier included in a NAL unit header.
  • the layer identifier is an identifier for distinguishing a plurality of layers included in the VPS.
  • the VPS may signal a layer identifier for each layer through a VPS extension.
  • the layer identifier for each layer of the VPS may be included in the VPS NAL unit and signaled.
  • layer identifiers of NAL units belonging to a specific layer of the VPS may be included in the VPS NAL unit.
  • the layer identifier of the NAL unit belonging to the VPS may be signaled through a VPS extension. Accordingly, in the decoding / decoding method according to various embodiments, scalability information on a layer of NAL units belonging to a corresponding VPS may be obtained using a VPS using layer identifier values of corresponding NAL units.
  • interlayer disparity compensation and interlayer motion prediction will be described with reference to FIG. 4A.
  • 4A is a diagram illustrating a disparity vector for inter-layer prediction according to various embodiments.
  • the interlayer video decoding apparatus 20 may include a first block corresponding to a current block 1401 included in a second layer current picture 1400 using a disparity vector DV.
  • Inter-layer prediction may be performed to find the first layer reference block 1403 included in the layer reference picture 1402, and disparity compensation may be performed using the first layer reference block 1403.
  • the interlayer video decoding apparatus 20 may refer to the first layer reference block 1403 indicated by the disparity vector DV in the second layer current block 1401 for interlayer motion prediction.
  • the motion vector mv_ref may be obtained and the motion vector mv_cur of the current block 1401 may be predicted using the obtained reference motion vector mv_ref.
  • the interlayer video decoding apparatus 20 may perform motion compensation between the second layer images by using the predicted motion vector mv_cur.
  • the reference position may be a position indicated by the disparity vector DV from the center pixel of the current block 1401 or a position indicated by the disparity vector DV from the upper left pixel of the current block 1401.
  • the disparity vector may be transmitted from the encoding apparatus to the decoding apparatus via the bitstream as separate information, and may be predicted based on a depth image or a neighboring block of the current block. . That is, the predicted disparity vector may be NBDV (Neighboring Blocks Disparity Vector) and DoNBDV (Depth oritented NBDV).
  • NBDV Neighboring Blocks Disparity Vector
  • DoNBDV Depth oritented NBDV
  • the NBDV means the disparity vector of the current block predicted using the obtained disparity vector.
  • a depth block corresponding to the current block may be determined using NBDV.
  • NBDV means a disparity vector predicted using the converted disparity vector.
  • 4B is a diagram for describing a spatial neighboring block candidate for predicting a disparity vector, according to various embodiments.
  • the interlayer video decoding apparatus 20 may search spatial neighboring block candidates in a predetermined search order in order to predict the disparity vector of the current block 1500 in the current picture 4000.
  • the neighboring block candidates searched here may be prediction units that temporally or spatially neighbor the current block 1500.
  • the interlayer video decoding apparatus 20 may include a neighboring block A0 1510 located at the lower left of the current block 1500 and a left side of the current block 1500.
  • the neighboring blocks B2 1550 located at may be spatial neighboring block candidates for obtaining the disparity vector.
  • neighboring blocks of a predetermined position may be searched in order of neighboring block candidates A1 1520, B1 1540, B0 1530, A0 1510, and B2 1550.
  • 4C is a diagram for describing a temporal neighboring block candidate for predicting a disparity vector, according to various embodiments.
  • the interlayer video decoding apparatus 20 is included in the reference picture 4100 for inter prediction of the current block 1500 included in the current picture 4000, and is collocated with the current block 1500. At least one of a co-located block Col 1560 and a block around the collocated block 1560 may be included in the temporal neighboring block candidate. For example, the lower right block BR 1570 of the coll Col 1560, which is co-located, may be included in the temporal prediction candidate. Meanwhile, a block used for determining a temporal prediction candidate may be a coding unit or a prediction unit.
  • FIG. 5 is a diagram illustrating a subblock-based inter view motion prediction according to various embodiments.
  • the interlayer video decoding apparatus 20 may determine the disparity vector of the current block 5000.
  • the determined disparity vector may be a vector determined by using information about the disparity vector obtained from the bitstream, or may be a disparity vector derived from a neighboring block.
  • the current block may be a prediction unit.
  • the interlayer video decoding apparatus 20 may determine a corresponding block 5020 in an image of a different view (View 0) from the corresponding current view (View 1) by using the determined disparity vector.
  • the size of the corresponding block 5020 may be the same as the size of the current block 5000, and the corresponding block may be a block co-located at the same point as the current block.
  • the interlayer video decoding apparatus 20 may split the current block into at least one subblock.
  • the interlayer video decoding apparatus 20 may be equally divided into subblocks having a predetermined size. For example, when the size of the current block 5000 is 16x16 and the size of the subblocks 5010 is 8x8, the interlayer video decoding apparatus 20 divides the current block 5000 into four subblocks 5010. Can be divided into
  • the interlayer video decoding apparatus 20 may determine the subblocks 5040 in the block 5020 of a view 0 different from the current view corresponding to each of the four subblocks 5040 in the current block. have.
  • the interlayer video decoding apparatus 20 may obtain the motion vectors of the subblocks 5040 and predict the motion vectors of the subblocks 5010 using the obtained motion vectors.
  • the interlayer video decoding apparatus 20 refers to one of blocks included in one picture among pictures in a View 1 reference list that is the same as the current view by using the predicted motion vector of each subblock 5010. Can be determined by the block.
  • the interlayer video decoding apparatus 20 may perform motion compensation using a reference block.
  • the interlayer video decoding apparatus 20 may signal information about a subblock size for each layer image. For example, the interlayer video decoding apparatus 20 may receive information about a size of a subblock of a layer image of View 1 from a bitstream.
  • the interlayer video decoding apparatus 20 may change the size of the subblock to the size of the current prediction unit when the size of the subblock determined using the information about the size of the subblock is larger than the current prediction unit.
  • the interlayer video decoding apparatus 20 determines the size of the subblock as 16x16 using information about the size of the subblock, and if the current prediction unit is 8x8, the interlayer video decoding apparatus 20 ) May be determined by changing the size of the subblock to the size (8x8) of the current prediction unit. Accordingly, although the interlayer video decoding apparatus 20 determines the size of the subblock using information on the size of the subblock, the interlayer video decoding apparatus 20 is not limited to the size of the subblock determined using the information on the size of the subblock. Accordingly, the size of the subblock may be determined by changing the size of the current prediction unit.
  • the interlayer video decoding apparatus signals information about the size of a subblock for each layer image without considering the minimum size of the coding unit and the maximum size of the coding unit.
  • the interlayer video decoding apparatus 20 determines the size of the subblock of the second layer image within a range smaller than or equal to the maximum size of the coding unit will be described in detail.
  • the prediction unit is less than or equal to the maximum size of the coding unit. If the interlayer video decoding apparatus signals information about the size of the subblock without considering the maximum size of the coding unit, when the interlayer video decoding apparatus determines the size of the subblock of the size of the signaled subblock, the coding unit A subblock larger than the maximum size of may be determined.
  • the interlayer video decoding apparatus 20 may determine the size of a subblock using information about the size of the subblock within a range less than or equal to the maximum size of the coding unit. Therefore, it is possible to reduce the complexity of the implementation / operation of the decoding device.
  • the interlayer video decoding apparatus 20 determines the size of the subblock of the second layer image within a range greater than or equal to the minimum size of the coding unit will be described in detail.
  • the current coding unit is the minimum size of the coding unit and a partition type other than 2Nx2N is determined as the partition type, so that the prediction unit included in the current coding unit is determined to be smaller than the minimum unit of the current coding unit.
  • the interlayer video decoding apparatus 20 uses the subblock size information.
  • the size of the subblock smaller than the minimum size of the coding unit may be determined.
  • the size of the subblock determined by the subblock size information is larger than the size of the prediction unit, the size of the subblock may be changed to the size of the prediction unit as described above.
  • the size is smaller than the minimum size of the coding unit, it is efficient to determine the size of the subblock according to the prediction unit. Therefore, it is preferable to reduce the implementation / operation complexity of the decoding apparatus by signaling the subblock size information only in the case of greater than or equal to the minimum size of the coding unit.
  • the interlayer video decoding apparatus 20 may determine the size of the subblock using information about the size of the subblock within a range that is greater than or equal to the minimum size of the coding unit. Therefore, it is possible to reduce the complexity of the implementation / operation of the decoding device.
  • the interlayer video decoding apparatus considers a 4x4 size prediction unit, which is a prediction unit that is not allowed in a conventional codec, as a subblock size and includes a subblock size indicating the size of a subblock that may include information about the 4x4 size. Signal information.
  • the interlayer video decoding apparatus 20 may signal size information of a subblock indicating a size of a subblock except for a prediction unit having an unacceptable size.
  • Information indicating the size of a subblock may be signaled without unnecessary waste of the number of bits necessary to indicate a prediction unit of an unacceptable size.
  • the view 0 image and the view 1 image may be color images of different views.
  • the present invention is not limited thereto, and the view 0 image and the view 1 image may be depth images of different views.
  • the sub-block based inter-view motion prediction may be performed in the same manner, but the size of the subblock may be determined differently. have.
  • the size of the subblock may be determined according to the subblock size information parsed from the bitstream, whereas in the case of the depth image, the size of the subblock may be determined as the maximum size of the coding unit.
  • inter-layer prediction may be performed using a motion parameter inheritance (MPI) encoding and decoding tool.
  • MPI motion parameter inheritance
  • the motion parameter inheritance (MPI) encoding and decoding tool acquires motion information or disparity information of a block located at the same point of the current block in the same color image at the same time when decoding the depth image. Refers to a tool that encrypts and decrypts using information. That is, even when the MPI encoding and decoding tool is used, as in the case of performing inter-view motion prediction, a block is co-located at the same point as the current block in a different video from the current video, and motion information (or disparity) is performed for each subblock. Information).
  • the interlayer video decoding apparatus 20 obtains the size information of the subblock for MPI encoding and decoding, and uses the size information of the subblock to determine the size of the subblock for MPI encoding and decoding.
  • the size of the subblock for MPI encoding and decoding may be determined by inferring the process of determining the size of the subblock in the inter-view motion prediction.
  • 6A and 6C are diagrams for describing a process of determining a size of a subblock according to various embodiments.
  • the interlayer video decoding apparatus 40 asymmetrically divides a coding unit 6010 into prediction units 6011 and 6012 according to a partition type of a coding unit (partition type PART_nLx2N), or encode a coding unit ( 6020 is divided asymmetrically into prediction units 6021 and 6022 (partition type PART_nRx2N), or coding unit 6030 is asymmetrically divided into prediction units 6031 and 6032 (partition type PART_2NxnU) or coding unit ( 6040 may be asymmetrically partitioned (partition type PART_2NxnD) into prediction units 6061 and 6062.
  • partition type PART_nLx2N partition type of a coding unit
  • encode a coding unit 6020 is divided asymmetrically into prediction units 6021 and 6022
  • coding unit 6030 is asymmetrically divided into prediction units 6031 and 6032 (partition type PART_2NxnU)
  • coding unit ( 6040 may be asymmetrically
  • the interlayer video decoding apparatus 40 may encode coding units 6010, 6020 to split the prediction units 6011, 6012, 6021, 6022, 6061, 6032, 6061, 6062 into at least one subblock.
  • the prediction units 6011, 6012, 6061, 6022, 6031, 6032, 6061, 6062 may be split in a direction perpendicular to the split direction in the process of dividing the prediction unit into the prediction unit at (6030, 6040).
  • the interlayer video decoding apparatus 40 may divide the prediction units 6011, 6012, 6021, 6022, 6031, 6062, 6061, and 6042 into subblocks to perform subblock based interlayer prediction. If the size of the prediction units 6011, 6012, 6061, 6022, 6031, 6032, 6061, 6062 is not an integer multiple of a predetermined size determined as the size of the subblock in advance, the interlayer video decoding apparatus 40 may determine the predetermined size. A subblock cannot be determined by a block of.
  • blocks 6013, 6014, 6023, and 6024 may be 12x8, and blocks 6033, 6034, 6063, and 6044 may be 8x12. .
  • 12x8 and 8x12 sized subblocks may not generally be prediction units allowed by the codec.
  • the interlayer video decoding apparatus 40 when the size of the subblock is not an allowable unit, performs prediction on the coding unit by making the size of the subblock equal to the size of the prediction unit. can do.
  • the interlayer video decoding apparatus 40 determines a block having a size equal to a predetermined size as a first subblock as a prediction unit, and the interlayer video decoding apparatus 40 includes a predetermined width and a height. A block having a width or height less than or equal to at least one is determined as the second subblock.
  • the interlayer video decoding apparatus 40 may split the prediction unit 6112 into first subblocks 6113 and 6114 and second subblocks 6115 and 6216.
  • the interlayer video decoding apparatus 40 may split the prediction units 6110 and 6120 into first subblocks 6113 and 6114 having the same size as the predetermined size 8x8.
  • the interlayer video decoding apparatus 40 may divide the prediction unit 6110 into second subblocks 6115 and 6216 having a width or height smaller than at least one of a predetermined width and height.
  • the interlayer video decoding apparatus 40 may split the prediction unit in a similar manner with respect to the remaining prediction units 6121, 6132, and 6161.
  • the interlayer video decoding apparatus 40 may divide a prediction unit of an unacceptable size (12x8, 8x12) into subblocks of 8x8, 8x4, and 4x8 sizes.
  • the interlayer video decoding apparatus 40 determines a block having a size equal to a predetermined size as a first subblock as a prediction unit and interlayer video.
  • the decoding device 40 determines a block having a width or height smaller than or equal to at least one of a predetermined width and height as a second subblock.
  • the interlayer video decoding apparatus 40 may be partitioned by different division boundaries and different locations of a first subblock and a second subblock in a prediction unit. That is, the interlayer video decoding apparatus 40 determines a partition boundary in various ways when dividing a prediction unit into subblocks, and thus the type of subblocks and the number of subblocks for each type obtained by splitting may be the same. The location of each subblock may vary depending on the partition boundary.
  • the interlayer video decoding apparatus 40 may determine the width and height (nSbW, nSbH) of the subblock using information indicating the size of the subblock for each layer.
  • the interlayer video decoding apparatus 40 may specify a horizontal index (xBlk) for the specific subblock from the leftmost upper subblock among the subblocks included in the current prediction unit, and specify from the leftmost upper subblock among the subblocks.
  • the range of the vertical index may be determined by a value from 0 to yBlkr.
  • yBlkr may be determined as in Equation 1 below.
  • nPbH refers to the height of the prediction unit
  • nSbH refers to the height of the subblock
  • the interlayer video decoding apparatus 40 may determine the actual height of the corresponding subblocks when the vertical position of the specific subblocks deviates from the edge of the prediction unit from the uppermost subblocks among the subblocks included in the current prediction unit.
  • nRealSbH may be determined as the height nPbH of the prediction block minus the height yBlk * nSbH from the uppermost subblock to the blocks located adjacent to the upper end of the specific subblock.
  • the range of the horizontal index may be determined as a value from 0 to xBlkr.
  • xBlkr may be determined as in Equation 2 below.
  • nPbW means the width of the prediction unit
  • nSbW means the width of the subblock.
  • the interlayer video decoding apparatus 40 may determine the actual width of the corresponding subblocks from the uppermost subblock in the width nPbW of the prediction block when specific subblocks among the subblocks included in the current prediction unit are out of the edge of the prediction unit. It may be determined by subtracting the width (xBlk * nSbW) to subblocks located adjacent to the left side of the corresponding subblock.
  • the interlayer video decoding apparatus 40 determines which of the L0 prediction list or the L1 prediction list for the corresponding subblock is used by using the disparity vector mvDisp and the reference view index refViewIdx for each subblock.
  • the interlayer video decoding apparatus 40 may determine the motion vector predicted in the L0 prediction direction and the motion vector predicted in the L1 prediction direction for each subblock. In addition, the interlayer video decoding apparatus 40 may determine a prediction direction for each subblock.
  • the interlayer video decoding apparatus 40 uses the position and actual height and width of the subblock determined in the inter-view motion vector prediction candidate.
  • the interlayer video decoding apparatus 40 may determine the position and actual height and width of the subblock included in the current prediction unit.
  • the interlayer video decoding apparatus 40 determines to perform inter-view motion compensation by using the inter-view motion vector prediction candidate, the motion vector candidate per subblock determined in relation to the inter-view motion compensation merging candidate and the reference picture
  • the motion compensation may be performed for each subblock using the index and the prediction direction, and the prediction sample value may be determined for each subblock.
  • the prediction sample value for each prediction unit may be determined.
  • the interlayer video decoding apparatus 40 determines the width nSbW of the subblock and the height nSbW of the subblock used in the process of determining the inter-view motion vector candidate as follows. You can decide.
  • the interlayer video decoding apparatus 40 determines the size (SubPbSize) of the subblock by using the subblock size information for each layer. It is assumed here that the subblock is square. Therefore, the size of the subblock SubPbSize may mean the height of the subblock or the width of the subblock.
  • the interlayer video decoding apparatus 40 divides the width of the subblock (nSbW) into the width of the original prediction unit (nPbW) when the remainder obtained by dividing the width (nPbW) of the prediction unit by the size (SubPbSize) of the subblock is not zero. You can decide.
  • the width nSbW of the subblock is the width nPbW of the original prediction unit. Can be determined.
  • the interlayer video decoding apparatus 40 may divide the height nSbH of the sub-block by the height nPbH of the original prediction unit when the remainder obtained by dividing the width nPbW of the prediction unit by the size of the subblock SubPbSize is not zero. Can be determined.
  • the interlayer video decoding apparatus 40 may divide the height nSbH of the subblock by the width nPbH of the original prediction unit when the remainder obtained by dividing the height nPbH of the prediction unit by the size of the subblock SubPbSize is not zero. Can be determined.
  • the interlayer video decoding apparatus 40 has a remainder obtained by dividing the height nPbH of the prediction unit by the size (SubPbSize) of the subblock, and the width nPbW of the prediction unit is determined as the size (SubPbSize) of the determined subblock.
  • the remainder divided by 0 the height nSbH and the width nSbW of the subblock may be determined as the size of the subblock SubPbSize.
  • the interlayer video decoding apparatus 40 may determine the size of a subblock as 16x12 or 16x4 when the prediction unit is 16x12 or 16x4.
  • FIG. 7A is a diagram illustrating VPS extension syntax according to various embodiments.
  • the interlayer video decoding apparatuses 20 and 40 obtain a syntax element log2_sub_pb_size_minus3 [layerId] 71 from the bitstream.
  • log2_sub_pb_size_minus3 [layerId] means the size of the subblock for the layer whose layer identifier is layerId.
  • the interlayer video decoding apparatus 20 may determine the size of the subblock SubPbSize [layerId] using the syntax element log2_sub_pb_size_minus3 [layerId].
  • the syntax element log2_sub_pb_size_minus3 [layerId] represents the size of a subblock used in a prediction unit using an inter-view merge candidate. That is, the syntax element log2_sub_pb_size_minus3 [layerId] means log2 is taken as the size of the square subblock of the layer whose layer identifier is layerId, and log2 is subtracted from 3.
  • the syntax element log2_sub_pb_size_minus3 [layerId] may be a value obtained by subtracting 3 from the subblock size (SubPbSize) and subtracting 3 so as not to unnecessarily signal information about a 4x4 size prediction unit that is not allowed as the size of the subblock. have.
  • the allowable range of the value of the syntax element log2_sub_pb_size_minus3 may be MinCbLog2SizeY-3 to CtbLog2SizeY-3.
  • MinCbLog2SizeY means the minimum size of the coding unit
  • CtbLog2SizeY means the maximum size of the coding unit.
  • MinCbLog2SizeY may be determined by adding 3 to the syntax element log2_min_luma_coding_block_size_minus3.
  • the syntax element log2_min_luma_coding_block_size_minus3 means a value obtained by subtracting 3 from a value of taking log2 for the minimum size of a coding unit.
  • CtbLog2SizeY may be determined as MinCbLog2SizeY plus a syntax element log2_diff_max_min_luma_coding_block_size.
  • the syntax element log2_diff_max_min_luma_coding_block_size means a difference between a value of log2 taking the maximum size of a coding unit and a value taking log2 the minimum size of a coding unit.
  • log2_diff_max_min_luma_coding_block_size and log2_min_luma_coding_block_size_minus3 may be parsed from the bitstream.
  • syntax elements log2_diff_max_min_luma_coding_block_size and log2_min_luma_coding_block_size_minus3 may be obtained from a VPS NAL unit or an SPS NAL unit included in the bitstream.
  • the size (SubPbSize [layerId]) of a subblock for a specific layer may be determined according to the flag VpsDepthFlag (layerId).
  • the flag VpsDepthFlag (layerId) means a flag indicating whether a layer whose layer identifier is layerId is a depth map.
  • the size of the subblock SubPbSize [layerId] may be determined as the maximum size CtbLog2SizeY of the coding unit.
  • the size (SubPbSize [layerId]) of the subblock for a particular layer is not a depth map
  • the size SubPbSize [layerId] of the subblock may be determined by Equation 3 below.
  • the interlayer video decoding apparatus 20 may obtain a syntax element log2_sub_pb_size_minus3 [layerId] indicating the size of a subblock from the bitstream through the VPS extension syntax.
  • a syntax element log2_sub_pb_size_minus3 [layerId] indicating the size of a subblock for a specific layer is obtained from a VPS NAL unit included in the bitstream.
  • the interlayer video decoding apparatus 20 may obtain a syntax element indicating the size of the subblock from the SPS NAL unit included in the bit stream.
  • FIG. 7B is a diagram illustrating VPS extension syntax according to various embodiments.
  • the interlayer video decoding apparatus 20 or 40 may obtain a syntax element log2_sub_pb_size_minus3 [0] 72 from the bitstream.
  • the syntax element log2_sub_pb_size_minus [3] means the size of the subblock for the case where the layer image is not a depth image.
  • the interlayer video decoding apparatus 20 or 40 may obtain an SPS NAL unit from the bitstream, and obtain a syntax element log2_sub_pb_size_minus3 [0] 72 from the obtained SPS NAL unit.
  • a syntax element 72 may be obtained for each layer image from each SPS NAL unit.
  • the interlayer video decoding apparatuses 20 and 40 do not parse the syntax element log2_sub_pb_size_minus3 [1] from the bitstream.
  • syntax element log2_sub_pb_size_minus [1] means the size of the subblock for the case where the layer image is the depth image.
  • the syntax element log2_sub_pb_size_minus3 [d] is used to determine the size (SubPbSize) of each subblock using the inter-layer merging candidate.
  • log2_sub_pb_size_minus3 [d] means the size of each layer subblock using the interlayer merging candidate. Specifically, log2_sub_pb_size_minus3 [0] means the value obtained by subtracting 3 from the value of log2 in the subblock size for the color image, and log2_sub_pb_size_minus3 [1] is 3 in the value that takes log2 in the size of the subblock for the depth image. It can mean minus value.
  • log2_sub_pb_size_minus3 [d] may be derived by subtracting 3 from the value (CtbLog2SizeY) in which log2 is taken as the maximum size of the coding unit.
  • syntax element log2_sub_pb_size_minus3 [1] may be a value obtained by subtracting 3 from CtbLog2SizeY.
  • the syntax element log2_sub_pb_size_minus3 [d] is greater than or equal to the minimum size of the coding unit taking log2 (MinCbLog2SizeY) minus 3, and the maximum size of the coding unit subtracting log2 (MaxCbLog2SizeY) minus 3 It can be a value less than or equal to the range.
  • subblock size SubPbSize of a specific layer may be determined as in Equation 4 below.
  • DepthFlag means a flag indicating whether a specific layer image is a depth image.
  • the interlayer video decoding apparatuses 20 and 40 use positions (xPb, yPb) of the current prediction unit, width and height (nPbW and nPbH), reference view index (refViewIdx), and disparity vector (mvDisp) of the current prediction unit.
  • the subblock based interlayer motion vector candidate may be determined.
  • the vertical component of the disparity vector mvDisp may be changed to 0, and the subblock based interlayer motion vector candidate may be determined using the changed disparity vector.
  • FIGS. 5 to 7B are described on the premise that the interlayer video decoding apparatuses 20 and 40 perform the same operation, the same operation may be performed in the interlayer video encoding apparatuses 10 and 30. Those skilled in the art to which this embodiment belongs will readily understand.
  • the interlayer video decoding apparatus 20 or 40 may obtain a syntax element log2_mpi_sub_pb_size_minus3 [1] 73 from the bitstream.
  • the syntax element log2_mpi_sub_pb_size_minus3 [1] means the size of a subblock for the case where the layer image is a depth image.
  • the syntax element log2_mpi_sub_pb_size_minus3 [1] may be used to determine the size of the subblock for MPI encoding and decoding.
  • the interlayer video decoding apparatus 20 or 40 may obtain an SPS NAL unit from the bitstream, and obtain a syntax element 72 from the obtained SPS NAL unit.
  • the interlayer video decoding apparatuses 20 and 40 do not parse the syntax element log2_mpi_sub_pb_size_minus3 [0] from the bitstream.
  • the syntax element log2_mpi_sub_pb_size_minus3 [0] means the size of a subblock for the case where the layer image is not a depth image.
  • the syntax element log2_mpi_sub_pb_size_minus3 [0] may be used to determine the size of the subblock for MPI encoding and decoding.
  • the syntax element log2_mpi_sub_pb_size_minus3 [d] is used to determine the size (MpiSubPbSize) of each subblock using the interlayer merging candidate.
  • log2_mpi_sub_pb_size_minus3 [d] means the size of each layer subblock using the interlayer merging candidate. Specifically, log2_mpi_sub_pb_size_minus3 [0] means the value of subblock size for color image minus 3, and log2_mpi_sub_pb_size_minus3 [1] is 3 for subblock size for depth image. It can mean minus value.
  • the interlayer video decoding apparatuses 20 and 40 may determine the size (MpiSubPbSize) of each layer subblock by using the syntax element sub_pb_size_minus [1] as shown in Equation 5 below.
  • the flag DepthFlag is a flag indicating whether the layer image is a depth image.
  • interlayer video encoding apparatus 10 blocks in which video data is divided are divided into coding units having a tree structure, and As described above, coding units, prediction units, and transformation units are sometimes used for inter-layer prediction or inter prediction.
  • coding units, prediction units, and transformation units are sometimes used for inter-layer prediction or inter prediction.
  • FIGS. 8 to 20 a video encoding method and apparatus, a video decoding method, and apparatus based on coding units and transformation units having a tree structure according to various embodiments will be described with reference to FIGS. 8 to 20.
  • the encoding / decoding process for the first layer images and the encoding / decoding process for the second layer images are performed separately. That is, when inter-layer prediction occurs in the multi-layer video, the encoding / decoding result of the single layer video may be cross-referenced, but a separate encoding / decoding process occurs for each single layer video.
  • the video encoding process and the video decoding process based on coding units having a tree structure described below with reference to FIGS. 8 to 20 are video encoding processes and video decoding processes for single layer video, and thus inter prediction and motion compensation are performed. This is detailed. However, as described above with reference to FIGS. 1A through 7B, interlayer prediction and compensation between base view images and second layer images are performed to encode / decode a video stream.
  • the encoder 12 may perform video encoding for each single layer video.
  • the video encoding apparatus 100 of FIG. 8 may be controlled to perform encoding of the single layer video allocated to each video encoding apparatus 100 by including the number of layers of the multilayer video.
  • the interlayer video encoding apparatus 10 may perform inter-view prediction using encoding results of separate single views of each video encoding apparatus 100. Accordingly, the encoder 12 of the interlayer video encoding apparatus 10 may generate a base view video stream and a second layer video stream that contain encoding results for each layer.
  • the decoder 26 of the interlayer video decoding apparatus 20 in order for the decoder 26 of the interlayer video decoding apparatus 20 according to various embodiments to decode a multilayer video based on coding units having a tree structure, the received first layer video stream and the second layer are decoded.
  • the video decoding apparatus 200 of FIG. 9 includes the number of layers of the multilayer video, and performs decoding of the single layer video allocated to each video decoding apparatus 200.
  • the interlayer video decoding apparatus 20 may perform interlayer compensation by using a decoding result of a separate single layer of each video decoding apparatus 200. Accordingly, the decoder 26 of the interlayer video decoding apparatus 20 may generate first layer images and second layer images reconstructed for each layer.
  • FIG. 8 is a block diagram of a video encoding apparatus 100 based on coding units having a tree structure, according to an embodiment of the present invention.
  • the video encoding apparatus 100 including video prediction based on coding units having a tree structure includes a coding unit determiner 120 and an output unit 130.
  • the video encoding apparatus 100 that includes video prediction based on coding units having a tree structure is abbreviated as “video encoding apparatus 100”.
  • the coding unit determiner 120 may partition the current picture based on a maximum coding unit that is a coding unit having a maximum size for the current picture of the image. If the current picture is larger than the maximum coding unit, image data of the current picture may be split into at least one maximum coding unit.
  • the maximum coding unit may be a data unit having a size of 32x32, 64x64, 128x128, 256x256, or the like, and may be a square data unit having a square of two horizontal and vertical sizes.
  • Coding units may be characterized by a maximum size and depth.
  • the depth indicates the number of times the coding unit is spatially divided from the maximum coding unit, and as the depth increases, the coding unit for each depth may be split from the maximum coding unit to the minimum coding unit.
  • the depth of the largest coding unit is the highest depth and the minimum coding unit may be defined as the lowest coding unit.
  • the maximum coding unit decreases as the depth increases, the size of the coding unit for each depth decreases, and thus, the coding unit of the higher depth may include coding units of a plurality of lower depths.
  • the image data of the current picture may be divided into maximum coding units according to the maximum size of the coding unit, and each maximum coding unit may include coding units divided by depths. Since the maximum coding unit is divided according to depths according to various embodiments, image data of a spatial domain included in the maximum coding unit may be hierarchically classified according to depth.
  • the maximum depth and the maximum size of the coding unit that limit the total number of times of hierarchically dividing the height and the width of the maximum coding unit may be preset.
  • the coding unit determiner 120 encodes at least one divided region obtained by dividing the region of the largest coding unit for each depth, and determines a depth at which the final encoding result is output for each of the at least one divided region. That is, the coding unit determiner 120 encodes the image data in coding units according to depths for each maximum coding unit of the current picture, and selects the depth at which the smallest coding error occurs to determine the final depth. The determined final depth and the image data for each maximum coding unit are output to the outputter 130.
  • Image data in the largest coding unit is encoded based on coding units according to depths according to at least one depth less than or equal to the maximum depth, and encoding results based on the coding units for each depth are compared. As a result of comparing the encoding error of the coding units according to depths, a depth having the smallest encoding error may be selected. At least one final depth may be determined for each maximum coding unit.
  • the coding unit is divided into hierarchically and the number of coding units increases.
  • a coding error of each data is measured, and whether or not division into a lower depth is determined. Therefore, even in the data included in one largest coding unit, since the encoding error for each depth is different according to the position, the final depth may be differently determined according to the position. Accordingly, one or more final depths may be set for one maximum coding unit, and data of the maximum coding unit may be partitioned according to coding units of one or more final depths.
  • the coding unit determiner 120 may determine coding units having a tree structure included in the current maximum coding unit.
  • the coding units according to a tree structure according to various embodiments include coding units having a depth determined as a final depth among all deeper coding units included in the current maximum coding unit.
  • the coding unit of the final depth may be determined hierarchically according to the depth in the same region within the maximum coding unit, and may be independently determined for the other regions.
  • the final depth for the current area can be determined independently of the final depth for the other area.
  • the maximum depth according to various embodiments is an index related to the number of divisions from the maximum coding unit to the minimum coding unit.
  • the first maximum depth according to various embodiments may indicate the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the second maximum depth according to various embodiments may indicate the total number of depth levels from the maximum coding unit to the minimum coding unit. For example, when the depth of the largest coding unit is 0, the depth of the coding unit obtained by dividing the largest coding unit once may be set to 1, and the depth of the coding unit divided twice may be set to 2. In this case, if the coding unit divided four times from the maximum coding unit is the minimum coding unit, since depth levels of 0, 1, 2, 3, and 4 exist, the first maximum depth is set to 4 and the second maximum depth is set to 5. Can be.
  • Predictive encoding and transformation of the largest coding unit may be performed. Similarly, prediction encoding and transformation are performed based on depth-wise coding units for each maximum coding unit and for each depth less than or equal to the maximum depth.
  • encoding including prediction encoding and transformation should be performed on all the coding units for each depth generated as the depth deepens.
  • the prediction encoding and the transformation will be described based on the coding unit of the current depth among at least one maximum coding unit.
  • the video encoding apparatus 100 may variously select a size or shape of a data unit for encoding image data.
  • the encoding of the image data is performed through prediction encoding, transforming, entropy encoding, and the like.
  • the same data unit may be used in every step, or the data unit may be changed in steps.
  • the video encoding apparatus 100 may select not only a coding unit for encoding the image data, but also a data unit different from the coding unit in order to perform predictive encoding of the image data in the coding unit.
  • prediction encoding may be performed based on coding units of a final depth, that is, stranger undivided coding units, according to various embodiments.
  • a more strange undivided coding unit that is the basis of prediction coding is referred to as a 'prediction unit'.
  • the partition in which the prediction unit is divided may include a data unit in which at least one of the prediction unit and the height and the width of the prediction unit are divided.
  • the partition may be a data unit in which the prediction unit of the coding unit is split, and the prediction unit may be a partition having the same size as the coding unit.
  • the partition mode may be formed in a geometric form, as well as partitions divided in an asymmetrical ratio such as 1: n or n: 1, as well as symmetric partitions in which a height or width of a prediction unit is divided in a symmetrical ratio. It may optionally include partitioned partitions, arbitrary types of partitions, and the like.
  • the prediction mode of the prediction unit may be at least one of an intra mode, an inter mode, and a skip mode.
  • the intra mode and the inter mode may be performed on partitions having sizes of 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N.
  • the skip mode may be performed only for partitions having a size of 2N ⁇ 2N.
  • the encoding may be performed independently for each prediction unit within the coding unit to select a prediction mode having the smallest encoding error.
  • the video encoding apparatus 100 may perform conversion of image data of a coding unit based on not only a coding unit for encoding image data, but also a data unit different from the coding unit.
  • the transformation may be performed based on a transformation unit having a size smaller than or equal to the coding unit.
  • the transformation unit may include a data unit for intra mode and a transformation unit for inter mode.
  • the transformation unit in the coding unit is also recursively divided into smaller transformation units, so that the residual data of the coding unit is determined according to the tree structure according to the transformation depth. Can be partitioned according to the conversion unit.
  • a transformation depth indicating a number of divisions between the height and the width of the coding unit divided to the transformation unit may be set. For example, if the size of the transform unit of the current coding unit of size 2Nx2N is 2Nx2N, the transform depth is 0, the transform depth 1 if the size of the transform unit is NxN, and the transform depth 2 if the size of the transform unit is N / 2xN / 2. Can be. That is, the transformation unit having a tree structure may also be set for the transformation unit according to the transformation depth.
  • the split information for each depth requires not only depth but also prediction related information and transformation related information. Accordingly, the coding unit determiner 120 may determine not only the depth that generates the minimum coding error, but also a partition mode in which the prediction unit is divided into partitions, a prediction mode for each prediction unit, and a size of a transformation unit for transformation.
  • a method of determining a coding unit, a prediction unit / partition, and a transformation unit according to a tree structure of a maximum coding unit according to various embodiments will be described in detail with reference to FIGS. 9 to 19.
  • the coding unit determiner 120 may measure a coding error of coding units according to depths using a Lagrangian Multiplier-based rate-distortion optimization technique.
  • the output unit 130 outputs the image data and the split information according to depths of the maximum coding unit, which are encoded based on at least one depth determined by the coding unit determiner 120, in a bitstream form.
  • the encoded image data may be a result of encoding residual data of the image.
  • the split information for each depth may include depth information, partition mode information of a prediction unit, prediction mode information, split information of a transformation unit, and the like.
  • the final depth information may be defined using depth-specific segmentation information indicating whether to encode in a coding unit of a lower depth rather than encoding the current depth. If the current depth of the current coding unit is a depth, since the current coding unit is encoded in a coding unit of the current depth, split information of the current depth may be defined so that it is no longer divided into lower depths. On the contrary, if the current depth of the current coding unit is not the depth, encoding should be attempted using the coding unit of the lower depth, and thus split information of the current depth may be defined to be divided into coding units of the lower depth.
  • encoding is performed on the coding unit divided into the coding units of the lower depth. Since at least one coding unit of a lower depth exists in the coding unit of the current depth, encoding may be repeatedly performed for each coding unit of each lower depth, and recursive coding may be performed for each coding unit of the same depth.
  • coding units having a tree structure are determined in one largest coding unit and at least one split information should be determined for each coding unit of a depth, at least one split information may be determined for one maximum coding unit.
  • the depth since the data of the largest coding unit is partitioned hierarchically according to the depth, the depth may be different for each location, and thus depth and split information may be set for the data.
  • the output unit 130 may allocate encoding information about a corresponding depth and an encoding mode to at least one of a coding unit, a prediction unit, and a minimum unit included in the maximum coding unit.
  • a minimum unit is a square data unit of a size obtained by dividing a minimum coding unit, which is a lowest depth, into four segments.
  • the minimum unit may be a square data unit having a maximum size that may be included in all coding units, prediction units, partition units, and transformation units included in the maximum coding unit.
  • the encoding information output through the output unit 130 may be classified into encoding information according to depth coding units and encoding information according to prediction units.
  • the encoding information for each coding unit according to depth may include prediction mode information and partition size information.
  • the encoding information transmitted for each prediction unit includes information about an estimation direction of the inter mode, information about a reference image index of the inter mode, information about a motion vector, information about a chroma component of an intra mode, and information about an inter mode of an intra mode. And the like.
  • Information about the maximum size and information about the maximum depth of the coding unit defined for each picture, slice, or GOP may be inserted into a header, a sequence parameter set, or a picture parameter set of the bitstream.
  • the information on the maximum size of the transform unit and the minimum size of the transform unit allowed for the current video may also be output through a header, a sequence parameter set, a picture parameter set, or the like of the bitstream.
  • the output unit 130 may encode and output reference information, prediction information, slice type information, and the like related to prediction.
  • a coding unit according to depths is a coding unit having a size in which a height and a width of a coding unit of one layer higher depth are divided by half. That is, if the size of the coding unit of the current depth is 2Nx2N, the size of the coding unit of the lower depth is NxN.
  • the current coding unit having a size of 2N ⁇ 2N may include up to four lower depth coding units having a size of N ⁇ N.
  • the video encoding apparatus 100 determines a coding unit having an optimal shape and size for each maximum coding unit based on the size and the maximum depth of the maximum coding unit determined in consideration of the characteristics of the current picture. Coding units may be configured. In addition, since each of the maximum coding units may be encoded in various prediction modes and transformation methods, an optimal coding mode may be determined in consideration of image characteristics of coding units having various image sizes.
  • the video encoding apparatus may increase the maximum size of the coding unit in consideration of the size of the image and adjust the coding unit in consideration of the image characteristic, thereby increasing image compression efficiency.
  • the interlayer video encoding apparatus 10 described above with reference to FIG. 1A may include as many video encoding apparatuses 100 as the number of layers for encoding single layer images for each layer of a multilayer video.
  • the first layer encoder 12 may include one video encoding apparatus 100
  • the second layer encoder 16 may include as many video encoding apparatuses 100 as the number of second layers. Can be.
  • the coding unit determiner 120 determines a prediction unit for inter-image prediction for each coding unit having a tree structure for each maximum coding unit, and for each prediction unit. Inter-prediction may be performed.
  • the coding unit determiner 120 determines a coding unit and a prediction unit having a tree structure for each maximum coding unit, and performs inter prediction for each prediction unit. Can be.
  • the video encoding apparatus 100 may encode the luminance difference to compensate for the luminance difference between the first layer image and the second layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
  • FIG. 9 is a block diagram of a video decoding apparatus 200 based on coding units having a tree structure, according to various embodiments.
  • a video decoding apparatus 200 including video prediction based on coding units having a tree structure includes a receiver 210, image data and encoding information extractor 220, and image data decoder 230. do.
  • the video decoding apparatus 200 that includes video prediction based on coding units having a tree structure is abbreviated as “video decoding apparatus 200”.
  • the receiver 210 receives and parses a bitstream of an encoded video.
  • the image data and encoding information extractor 220 extracts image data encoded for each coding unit from the parsed bitstream according to coding units having a tree structure for each maximum coding unit, and outputs the encoded image data to the image data decoder 230.
  • the image data and encoding information extractor 220 may extract information about a maximum size of a coding unit of the current picture from a header, a sequence parameter set, or a picture parameter set for the current picture.
  • the image data and encoding information extractor 220 extracts the final depth and the split information of the coding units having a tree structure for each maximum coding unit from the parsed bitstream.
  • the extracted final depth and split information are output to the image data decoder 230. That is, the image data of the bit string may be divided into maximum coding units so that the image data decoder 230 may decode the image data for each maximum coding unit.
  • the depth and split information for each largest coding unit may be set for one or more depth information, and the split information for each depth may include partition mode information, prediction mode information, split information of a transform unit, and the like, of a corresponding coding unit. .
  • depth-specific segmentation information may be extracted.
  • the depth and split information for each largest coding unit extracted by the image data and encoding information extractor 220 are repeatedly repeated for each coding unit for each deeper coding unit, as in the video encoding apparatus 100 according to various embodiments. Depth and split information determined to perform encoding to generate a minimum encoding error. Therefore, the video decoding apparatus 200 may reconstruct an image by decoding data according to an encoding method that generates a minimum encoding error.
  • the image data and encoding information extractor 220 may determine the predetermined data unit. Depth and segmentation information can be extracted for each. If the depth and the split information of the corresponding maximum coding unit are recorded for each predetermined data unit, the predetermined data units having the same depth and the split information may be inferred as data units included in the same maximum coding unit.
  • the image data decoder 230 reconstructs the current picture by decoding image data of each maximum coding unit based on the depth and the split information for each maximum coding unit. That is, the image data decoder 230 may decode the encoded image data based on the read partition mode, the prediction mode, and the transformation unit for each coding unit among the coding units having the tree structure included in the maximum coding unit. Can be.
  • the decoding process may include a prediction process including intra prediction and motion compensation, and an inverse transform process.
  • the image data decoder 230 may perform intra prediction or motion compensation according to each partition and prediction mode for each coding unit, based on the partition mode information and the prediction mode information of the prediction unit of the coding unit according to depths.
  • the image data decoder 230 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each largest coding unit. Through inverse transformation, the pixel value of the spatial region of the coding unit may be restored.
  • the image data decoder 230 may determine the depth of the current maximum coding unit by using the split information for each depth. If the split information indicates that the split information is no longer divided at the current depth, the current depth is the depth. Therefore, the image data decoder 230 may decode the coding unit of the current depth using the partition mode, the prediction mode, and the transformation unit size information of the prediction unit, for the image data of the current maximum coding unit.
  • the image data decoder 230 It may be regarded as one data unit to be decoded in the same encoding mode.
  • the decoding of the current coding unit may be performed by obtaining information about an encoding mode for each coding unit determined in this way.
  • the interlayer video decoding apparatus 20 described above with reference to FIG. 2A decodes the received first layer image stream and the second layer image stream to reconstruct the first layer images and the second layer images.
  • the device 200 may include the number of viewpoints.
  • the image data decoder 230 of the video decoding apparatus 200 may maximize the samples of the first layer images extracted from the first layer image stream by the extractor 220. It may be divided into coding units having a tree structure of the coding units. The image data decoder 230 may reconstruct the first layer images by performing motion compensation for each coding unit according to a tree structure of samples of the first layer images, for each prediction unit for inter-image prediction.
  • the image data decoder 230 of the video decoding apparatus 200 may maximize the samples of the second layer images extracted from the second layer image stream by the extractor 220. It may be divided into coding units having a tree structure of the coding units. The image data decoder 230 may reconstruct the second layer images by performing motion compensation for each prediction unit for inter-image prediction for each coding unit of the samples of the second layer images.
  • the extractor 220 may obtain information related to the luminance error from the bitstream to compensate for the luminance difference between the first layer image and the second layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
  • the video decoding apparatus 200 may obtain information about a coding unit that generates a minimum coding error by recursively encoding each maximum coding unit in the encoding process, and use the same to decode the current picture. That is, decoding of encoded image data of coding units having a tree structure determined as an optimal coding unit for each maximum coding unit can be performed.
  • the image data is efficiently decoded according to the size and encoding mode of a coding unit adaptively determined according to the characteristics of the image using the optimal split information transmitted from the encoding end. Can be restored
  • FIG. 10 illustrates a concept of coding units, according to various embodiments.
  • a size of a coding unit may be expressed by a width x height, and may include 32x32, 16x16, and 8x8 from a coding unit having a size of 64x64.
  • Coding units of size 64x64 may be partitioned into partitions of size 64x64, 64x32, 32x64, and 32x32, coding units of size 32x32 are partitions of size 32x32, 32x16, 16x32, and 16x16, and coding units of size 16x16 are 16x16.
  • Coding units of size 8x8 may be divided into partitions of size 8x8, 8x4, 4x8, and 4x4, into partitions of 16x8, 8x16, and 8x8.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 2.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 3.
  • the resolution is set to 352x288, the maximum size of the coding unit is 16, and the maximum depth is 1.
  • the maximum depth illustrated in FIG. 10 represents the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the maximum size of the coding size is relatively large not only to improve the coding efficiency but also to accurately shape the image characteristics. Accordingly, the video data 310 or 320 having a higher resolution than the video data 330 may be selected to have a maximum size of 64.
  • the coding unit 315 of the video data 310 is divided twice from a maximum coding unit having a long axis size of 64, and the depth is deepened by two layers, so that the long axis size is 32, 16. Up to coding units may be included.
  • the coding unit 335 of the video data 330 is divided once from coding units having a long axis size of 16, and the depth is deepened by one layer to increase the long axis size to 8. Up to coding units may be included.
  • the coding unit 325 of the video data 320 is divided three times from the largest coding unit having a long axis size of 64, and the depth is three layers deep, so that the long axis size is 32, 16. , Up to 8 coding units may be included. As the depth increases, the expressive power of the detailed information may be improved.
  • FIG. 11 is a block diagram of an image encoder 400 based on coding units, according to various embodiments.
  • the image encoder 400 performs operations performed by the picture encoder 120 of the video encoding apparatus 100 to encode image data. That is, the intra prediction unit 420 performs intra prediction on each coding unit of the intra mode of the current image 405, and the inter prediction unit 415 performs the current image on the prediction unit of the coding unit of the inter mode. Inter-prediction is performed using the reference image acquired at 405 and the reconstructed picture buffer 410.
  • the current image 405 may be divided into maximum coding units and then sequentially encoded. In this case, encoding may be performed on the coding unit in which the largest coding unit is to be divided into a tree structure.
  • Residual data is generated by subtracting the prediction data for the coding unit of each mode output from the intra prediction unit 420 or the inter prediction unit 415 from the data for the encoding unit of the current image 405, and
  • the dew data is output as transform coefficients quantized for each transform unit through the transform unit 425 and the quantization unit 430.
  • the quantized transform coefficients are reconstructed into residue data in the spatial domain through the inverse quantizer 445 and the inverse transformer 450.
  • Residual data of the reconstructed spatial domain is added to the prediction data of the coding unit of each mode output from the intra predictor 420 or the inter predictor 415, thereby adding the residual data of the spatial domain to the coding unit of the current image 405. The data is restored.
  • the reconstructed spatial region data is generated as a reconstructed image through the deblocking unit 455 and the SAO performing unit 460.
  • the generated reconstructed image is stored in the reconstructed picture buffer 410.
  • the reconstructed images stored in the reconstructed picture buffer 410 may be used as reference images for inter prediction of another image.
  • the transform coefficients quantized by the transformer 425 and the quantizer 430 may be output as the bitstream 440 through the entropy encoder 435.
  • the inter predictor 415, the intra predictor 420, and the transformer each have a tree structure for each maximum coding unit. An operation based on each coding unit among the coding units may be performed.
  • the intra prediction unit 420 and the inter prediction unit 415 determine the partition mode and the prediction mode of each coding unit among the coding units having a tree structure in consideration of the maximum size and the maximum depth of the current maximum coding unit.
  • the transform unit 425 may determine whether to split the transform unit according to the quad tree in each coding unit among the coding units having the tree structure.
  • FIG. 12 is a block diagram of an image decoder 500 based on coding units, according to various embodiments.
  • the entropy decoding unit 515 parses the encoded image data to be decoded from the bitstream 505 and encoding information necessary for decoding.
  • the encoded image data is a quantized transform coefficient
  • the inverse quantizer 520 and the inverse transform unit 525 reconstruct residue data from the quantized transform coefficients.
  • the intra prediction unit 540 performs intra prediction for each prediction unit with respect to the coding unit of the intra mode.
  • the inter prediction unit 535 performs inter prediction using the reference image obtained from the reconstructed picture buffer 530 for each coding unit of the coding mode of the inter mode among the current pictures.
  • the data of the spatial domain of the coding unit of the current image 405 is reconstructed and restored.
  • the data of the space area may be output as a reconstructed image 560 via the deblocking unit 545 and the SAO performing unit 550.
  • the reconstructed images stored in the reconstructed picture buffer 530 may be output as reference images.
  • step-by-step operations after the entropy decoder 515 of the image decoder 500 may be performed.
  • the entropy decoder 515, the inverse quantizer 520, and the inverse transformer ( 525, the intra prediction unit 540, the inter prediction unit 535, the deblocking unit 545, and the SAO performer 550 based on each coding unit among coding units having a tree structure for each maximum coding unit. You can do it.
  • the intra predictor 540 and the inter predictor 535 determine a partition mode and a prediction mode for each coding unit among coding units having a tree structure, and the inverse transformer 525 has a quad tree structure for each coding unit. It is possible to determine whether to divide the conversion unit according to.
  • the encoding operation of FIG. 10 and the decoding operation of FIG. 11 describe the video stream encoding operation and the decoding operation in a single layer, respectively. Therefore, if the encoder 12 of FIG. 1A encodes a video stream of two or more layers, the encoder 12 may include an image encoder 400 for each layer. Similarly, if the decoder 26 of FIG. 2A decodes a video stream of two or more layers, it may include an image decoder 500 for each layer.
  • FIG. 13 is a diagram illustrating deeper coding units according to depths, and partitions, according to various embodiments.
  • the video encoding apparatus 100 according to various embodiments and the video decoding apparatus 200 according to various embodiments use hierarchical coding units to consider image characteristics.
  • the maximum height, width, and maximum depth of the coding unit may be adaptively determined according to the characteristics of the image, and may be variously set according to a user's request. According to the maximum size of the preset coding unit, the size of the coding unit for each depth may be determined.
  • the hierarchical structure 600 of a coding unit illustrates a case in which a maximum height and a width of a coding unit are 64 and a maximum depth is three.
  • the maximum depth indicates the total number of divisions from the maximum coding unit to the minimum coding unit. Since the depth deepens along the vertical axis of the hierarchical structure 600 of the coding unit according to various embodiments, the height and the width of the coding unit for each depth are divided.
  • a prediction unit and a partition on which the prediction encoding of each depth-based coding unit is shown along the horizontal axis of the hierarchical structure 600 of the coding unit are illustrated.
  • the coding unit 610 has a depth of 0 as the largest coding unit of the hierarchical structure 600 of the coding unit, and the size, ie, the height and width, of the coding unit is 64x64.
  • a depth deeper along the vertical axis includes a coding unit 620 of depth 1 having a size of 32x32, a coding unit 630 of depth 2 having a size of 16x16, and a coding unit 640 of depth 3 having a size of 8x8.
  • a coding unit 640 of depth 3 having a size of 8 ⁇ 8 is a minimum coding unit.
  • Prediction units and partitions of the coding unit are arranged along the horizontal axis for each depth. That is, if the coding unit 610 of size 64x64 having a depth of zero is a prediction unit, the prediction unit may include a partition 610 of size 64x64, partitions 612 of size 64x32, and size included in the coding unit 610 of size 64x64. 32x64 partitions 614, 32x32 partitions 616.
  • the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 includes a partition 620 of size 32x32, partitions 622 of size 32x16 and a partition of size 16x32 included in the coding unit 620 of size 32x32. 624, partitions 626 of size 16x16.
  • the prediction unit of the coding unit 630 of size 16x16 having a depth of 2 includes a partition 630 of size 16x16, partitions 632 of size 16x8, and a partition of size 8x16 included in the coding unit 630 of size 16x16. 634, partitions 636 of size 8x8.
  • the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 includes a partition 640 of size 8x8, partitions 642 of size 8x4 and a partition of size 4x8 included in the coding unit 640 of size 8x8. 644, partitions 646 of size 4x4.
  • the coding unit determiner 120 of the video encoding apparatus 100 may determine the depth of the maximum coding unit 610 for each coding unit of each depth included in the maximum coding unit 610. Encoding must be performed.
  • the number of deeper coding units according to depths for including data having the same range and size increases as the depth increases. For example, four coding units of depth 2 are required for data included in one coding unit of depth 1. Therefore, in order to compare the encoding results of the same data for each depth, each of the coding units having one depth 1 and four coding units having four depths 2 should be encoded.
  • encoding may be performed for each prediction unit of a coding unit according to depths along a horizontal axis of the hierarchical structure 600 of the coding unit, and a representative coding error, which is the smallest coding error at a corresponding depth, may be selected. .
  • a depth deeper along the vertical axis of the hierarchical structure 600 of the coding unit the encoding may be performed for each depth, and the minimum coding error may be searched by comparing the representative coding error for each depth.
  • the depth and partition in which the minimum coding error occurs in the maximum coding unit 610 may be selected as the depth and partition mode of the maximum coding unit 610.
  • FIG. 14 illustrates a relationship between a coding unit and transformation units, according to various embodiments.
  • the video encoding apparatus 100 encodes or decodes an image in coding units having a size smaller than or equal to the maximum coding unit for each maximum coding unit.
  • the size of a transformation unit for transformation in the encoding process may be selected based on a data unit that is not larger than each coding unit.
  • the 32x32 transform unit 720 may be selected. The conversion can be performed.
  • the data of the 64x64 coding unit 710 is transformed into 32x32, 16x16, 8x8, and 4x4 transform units of 64x64 size or less, and then encoded, and the transform unit having the least error with the original is selected. Can be.
  • 15 illustrates encoding information, according to various embodiments.
  • the output unit 130 of the video encoding apparatus 100 is split information, and information about a partition mode 800, information 810 about a prediction mode, and transform unit size for each coding unit of each depth.
  • Information 820 may be encoded and transmitted.
  • the information about the partition mode 800 is a data unit for predictive encoding of the current coding unit and indicates information about a partition type in which the prediction unit of the current coding unit is divided.
  • the current coding unit CU_0 of size 2Nx2N may be any one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It can be divided and used.
  • the information 800 about the partition mode of the current coding unit represents one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It is set to.
  • Information 810 relating to the prediction mode indicates the prediction mode of each partition. For example, through the information 810 about the prediction mode, whether the partition indicated by the information 800 about the partition mode is performed in one of the intra mode 812, the inter mode 814, and the skip mode 816 is performed. Whether or not can be set.
  • the information about the transform unit size 820 indicates whether to transform the current coding unit based on the transform unit.
  • the transform unit may be one of a first intra transform unit size 822, a second intra transform unit size 824, a first inter transform unit size 826, and a second inter transform unit size 828. have.
  • the image data and encoding information extractor 210 of the video decoding apparatus 200 may include information about a partition mode 800, information 810 about a prediction mode, and transformation for each depth-based coding unit. Information 820 about the unit size may be extracted and used for decoding.
  • 16 is a diagram of deeper coding units according to depths, according to various embodiments.
  • Segmentation information may be used to indicate a change in depth.
  • the split information indicates whether a coding unit of a current depth is split into coding units of a lower depth.
  • the prediction unit 910 for predictive encoding of the coding unit 900 having depth 0 and 2N_0x2N_0 size includes a partition mode 912 having a size of 2N_0x2N_0, a partition mode 914 having a size of 2N_0xN_0, a partition mode 916 having a size of N_0x2N_0, and N_0xN_0 May include a partition mode 918 of size. Although only partitions 912, 914, 916, and 918 in which the prediction unit is divided by a symmetrical ratio are illustrated, as described above, the partition mode is not limited thereto, and asymmetric partitions, arbitrary partitions, geometric partitions, and the like. It may include.
  • prediction coding For each partition mode, prediction coding must be performed repeatedly for one 2N_0x2N_0 partition, two 2N_0xN_0 partitions, two N_0x2N_0 partitions, and four N_0xN_0 partitions.
  • prediction encoding For partitions having a size 2N_0x2N_0, a size N_0x2N_0, a size 2N_0xN_0, and a size N_0xN_0, prediction encoding may be performed in an intra mode and an inter mode.
  • the skip mode may be performed only for prediction encoding on partitions having a size of 2N_0x2N_0.
  • the depth 0 is changed to 1 and split (920), and the encoding is repeatedly performed on the depth 2 and the coding units 930 of the partition mode of size N_0xN_0.
  • the depth 1 is changed to the depth 2 and split (950), and repeatedly for the depth 2 and the coding units 960 of the size N_2xN_2.
  • the encoding may be performed to search for a minimum encoding error.
  • depth-based coding units may be set until depth d-1, and split information may be set up to depth d-2. That is, when encoding is performed from the depth d-2 to the depth d-1 to the depth d-1, the prediction encoding of the coding unit 980 of the depth d-1 and the size 2N_ (d-1) x2N_ (d-1)
  • the prediction unit for 990 is a partition mode 992 of size 2N_ (d-1) x2N_ (d-1), a partition mode 994 of size 2N_ (d-1) xN_ (d-1), and size
  • a partition mode 996 of N_ (d-1) x2N_ (d-1) and a partition mode 998 of size N_ (d-1) xN_ (d-1) may be included.
  • partition mode one partition 2N_ (d-1) x2N_ (d-1), two partitions 2N_ (d-1) xN_ (d-1), two sizes N_ (d-1) x2N_
  • a partition mode in which a minimum encoding error occurs may be searched.
  • the coding unit CU_ (d-1) of the depth d-1 is no longer
  • the depth of the current maximum coding unit 900 may be determined as the depth d-1, and the partition mode may be determined as N_ (d-1) xN_ (d-1) without going through a division process into lower depths.
  • split information is not set for the coding unit 952 having the depth d-1.
  • the data unit 999 may be referred to as a 'minimum unit' for the current maximum coding unit.
  • the minimum unit may be a square data unit having a size obtained by dividing a minimum coding unit, which is a lowest depth, into four divisions.
  • the video encoding apparatus 100 compares the encoding errors for each depth of the coding unit 900, selects the depth at which the smallest encoding error occurs, and determines the depth.
  • the partition mode and the prediction mode may be set to the encoding mode of the depth.
  • depths with the smallest error can be determined by comparing the minimum coding errors for all depths of depths 0, 1, ..., d-1, and d.
  • the depth, the partition mode of the prediction unit, and the prediction mode may be encoded and transmitted as split information.
  • the coding unit since the coding unit must be split from the depth 0 to the depth, only the split information of the depth is set to '0', and the split information for each depth except the depth should be set to '1'.
  • the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract information about a depth and a prediction unit of the coding unit 900 and use the same to decode the coding unit 912. have.
  • the video decoding apparatus 200 may grasp the depth of which the split information is '0' as the depth by using the split information for each depth, and may use the split information for the corresponding depth for decoding.
  • 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to various embodiments.
  • the coding units 1010 are deeper coding units determined by the video encoding apparatus 100 according to various embodiments with respect to the maximum coding unit.
  • the prediction unit 1060 is partitions of prediction units of each deeper coding unit among the coding units 1010, and the transform unit 1070 is transform units of each deeper coding unit.
  • the depth-based coding units 1010 have a depth of 0
  • the coding units 1012 and 1054 have a depth of 1
  • the coding units 1014, 1016, 1018, 1028, 1050, and 1052 have depths.
  • coding units 1020, 1022, 1024, 1026, 1030, 1032, and 1048 have a depth of three
  • coding units 1040, 1042, 1044, and 1046 have a depth of four.
  • partitions 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 of the prediction units 1060 are obtained by splitting coding units. That is, partitions 1014, 1022, 1050, and 1054 are 2NxN partition modes, partitions 1016, 1048, and 1052 are Nx2N partition modes, and partitions 1032 are NxN partition modes. Prediction units and partitions of the coding units 1010 according to depths are smaller than or equal to each coding unit.
  • the image data of the part 1052 of the transformation units 1070 is transformed or inversely transformed into a data unit having a smaller size than the coding unit.
  • the transformation units 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 are data units having different sizes or shapes when compared to corresponding prediction units and partitions among the prediction units 1060. That is, the video encoding apparatus 100 according to various embodiments and the video decoding apparatus 200 according to an embodiment may be intra prediction / motion estimation / motion compensation operations and transform / inverse transform operations for the same coding unit. Each can be performed on a separate data unit.
  • coding is performed recursively for each coding unit having a hierarchical structure for each largest coding unit to determine an optimal coding unit.
  • coding units having a recursive tree structure may be configured.
  • the encoding information may include split information about the coding unit, partition mode information, prediction mode information, and transformation unit size information. Table 1 below shows an example that can be set in the video encoding apparatus 100 according to various embodiments and the video decoding apparatus 200 according to various embodiments.
  • the output unit 130 of the video encoding apparatus 100 outputs encoding information about coding units having a tree structure, and the encoding information extracting unit of the video decoding apparatus 200 according to various embodiments of the present disclosure.
  • 220 may extract encoding information about coding units having a tree structure from the received bitstream.
  • the split information indicates whether the current coding unit is split into coding units of a lower depth. If the split information of the current depth d is 0, partition mode information, prediction mode, and transform unit size information may be defined for the depth since the current coding unit is a depth in which the current coding unit is no longer divided into lower coding units. have. If it is to be further split by the split information, encoding should be performed independently for each coding unit of the divided four lower depths.
  • the prediction mode may be represented by one of an intra mode, an inter mode, and a skip mode.
  • Intra mode and inter mode can be defined in all partition modes, and skip mode can only be defined in partition mode 2Nx2N.
  • the partition mode information indicates symmetric partition modes 2Nx2N, 2NxN, Nx2N, and NxN, in which the height or width of the prediction unit is divided by symmetrical ratios, and asymmetric partition modes 2NxnU, 2NxnD, nLx2N, nRx2N, divided by asymmetrical ratios.
  • the asymmetric partition modes 2NxnU and 2NxnD are divided into heights of 1: 3 and 3: 1, respectively, and the asymmetric partition modes nLx2N and nRx2N are divided into 1: 3 and 3: 1 widths, respectively.
  • the conversion unit size may be set to two kinds of sizes in the intra mode and two kinds of sizes in the inter mode. That is, if the transformation unit split information is 0, the size of the transformation unit is set to the size 2Nx2N of the current coding unit. If the transform unit split information is 1, a transform unit having a size obtained by dividing the current coding unit may be set. In addition, if the partition mode for the current coding unit having a size of 2Nx2N is a symmetric partition mode, the size of the transform unit may be set to NxN, and N / 2xN / 2 if it is an asymmetric partition mode.
  • Encoding information of coding units having a tree structure may be allocated to at least one of a coding unit, a prediction unit, and a minimum unit unit of a depth.
  • the coding unit of the depth may include at least one prediction unit and at least one minimum unit having the same encoding information.
  • the encoding information held by each adjacent data unit is checked, it may be determined whether the data is included in the coding unit having the same depth.
  • the coding unit of the corresponding depth may be identified using the encoding information held by the data unit, the distribution of depths within the maximum coding unit may be inferred.
  • the encoding information of the data unit in the depth-specific coding unit adjacent to the current coding unit may be directly referred to and used.
  • the prediction coding when the prediction coding is performed by referring to the neighboring coding unit, the data adjacent to the current coding unit in the coding unit according to depths is encoded by using the encoding information of the adjacent coding units according to depths.
  • the neighboring coding unit may be referred to by searching.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • the maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of depths. Since one coding unit 1318 is a coding unit of depth, split information may be set to zero.
  • the partition mode information of the coding unit 1318 having a size of 2Nx2N includes partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, NxN 1328, 2NxnU 1332, 2NxnD 1334, and nLx2N (1336). And nRx2N 1338.
  • the transform unit split information (TU size flag) is a type of transform index, and a size of a transform unit corresponding to the transform index may be changed according to a prediction unit type or a partition mode of the coding unit.
  • the partition mode information is set to one of symmetric partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, and NxN 1328
  • the conversion unit partition information is 0, a conversion unit of size 2Nx2N ( 1342 is set, and if the transform unit split information is 1, a transform unit 1344 of size NxN may be set.
  • partition mode information is set to one of asymmetric partition modes 2NxnU (1332), 2NxnD (1334), nLx2N (1336), and nRx2N (1338), if the conversion unit partition information (TU size flag) is 0, a conversion unit of size 2Nx2N ( 1352 is set, and if the transform unit split information is 1, a transform unit 1354 of size N / 2 ⁇ N / 2 may be set.
  • the conversion unit splitting information (TU size flag) described above with reference to FIG. 19 is a flag having a value of 0 or 1
  • the conversion unit splitting information according to various embodiments is not limited to a 1-bit flag and is set to 0 according to a setting. , 1, 2, 3., etc., and may be divided hierarchically.
  • the transformation unit partition information may be used as an embodiment of the transformation index.
  • the size of the transformation unit actually used may be expressed.
  • the video encoding apparatus 100 may encode maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information.
  • the encoded maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information may be inserted into the SPS.
  • the video decoding apparatus 200 may use the maximum transform unit size information, the minimum transform unit size information, and the maximum transform unit split information to use for video decoding.
  • the maximum transform unit split information is defined as 'MaxTransformSizeIndex'
  • the minimum transform unit size is 'MinTransformSize'
  • the transform unit split information is 0,
  • the minimum transform unit possible in the current coding unit is defined as 'RootTuSize'.
  • the size 'CurrMinTuSize' can be defined as in relation (1) below.
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may indicate a maximum transform unit size that can be adopted in the system. That is, according to relation (1), 'RootTuSize / (2 ⁇ MaxTransformSizeIndex)' is a transformation obtained by dividing 'RootTuSize', which is the size of the transformation unit when the transformation unit division information is 0, by the number of times corresponding to the maximum transformation unit division information. Since the unit size is 'MinTransformSize' is the minimum transform unit size, a smaller value among them may be the minimum transform unit size 'CurrMinTuSize' possible in the current coding unit.
  • RootTuSize may vary depending on the prediction mode.
  • RootTuSize may be determined according to the following relation (2).
  • 'MaxTransformSize' represents the maximum transform unit size
  • 'PUSize' represents the current prediction unit size.
  • RootTuSize min (MaxTransformSize, PUSize) ......... (2)
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may be set to a smaller value among the maximum transform unit size and the current prediction unit size.
  • 'RootTuSize' may be determined according to Equation (3) below.
  • 'PartitionSize' represents the size of the current partition unit.
  • RootTuSize min (MaxTransformSize, PartitionSize) ........... (3)
  • the conversion unit size 'RootTuSize' when the conversion unit split information is 0 may be set to a smaller value among the maximum conversion unit size and the current partition unit size.
  • the current maximum conversion unit size 'RootTuSize' according to various embodiments that vary according to the prediction mode of the partition unit is only an embodiment, and a factor determining the current maximum conversion unit size is not limited thereto.
  • the image data of the spatial domain is encoded for each coding unit of the tree structure, and the video decoding method based on the coding units of the tree structure.
  • decoding is performed for each largest coding unit, and image data of a spatial region may be reconstructed to reconstruct a picture and a video that is a picture sequence.
  • the reconstructed video can be played back by a playback device, stored in a storage medium, or transmitted over a network.
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the inter-layer video encoding method and / or video encoding method described above with reference to FIGS. 1A through 20 are collectively referred to as the video encoding method of the present invention.
  • the inter-layer video decoding method and / or video decoding method described above with reference to FIGS. 1A to 20 are referred to as the video decoding method of the present invention.
  • a video encoding apparatus including the interlayer video encoding apparatus 10, the video encoding apparatus 100, or the image encoding unit 400 described above with reference to FIGS. 1A through 20 may be referred to as the “video encoding apparatus of the present invention”.
  • the video decoding apparatus including the interlayer video decoding apparatus 20, the video decoding apparatus 200, or the image decoding unit 500 described above with reference to FIGS. 1A through 20 may be referred to as the video decoding apparatus of the present invention.
  • the disk 26000 described above as a storage medium may be a hard drive, a CD-ROM disk, a Blu-ray disk, or a DVD disk.
  • the disk 26000 is composed of a plurality of concentric tracks tr, and the tracks are divided into a predetermined number of sectors Se in the circumferential direction.
  • a program for implementing the above-described quantization parameter determination method, video encoding method, and video decoding method may be allocated and stored in a specific area of the disc 26000 which stores the program according to the above-described various embodiments.
  • a computer system achieved using a storage medium storing a program for implementing the above-described video encoding method and video decoding method will be described below with reference to FIG. 22.
  • the computer system 26700 may store a program for implementing at least one of the video encoding method and the video decoding method of the present invention on the disc 26000 using the disc drive 26800.
  • the program may be read from the disk 26000 by the disk drive 26800, and the program may be transferred to the computer system 26700.
  • a program for implementing at least one of the video encoding method and the video decoding method may be stored in a memory card, a ROM cassette, and a solid state drive (SSD). .
  • FIG. 23 illustrates an overall structure of a content supply system 11000 for providing a content distribution service.
  • the service area of the communication system is divided into cells of a predetermined size, and wireless base stations 11700, 11800, 11900, and 12000 that serve as base stations are installed in each cell.
  • the content supply system 11000 includes a plurality of independent devices.
  • independent devices such as a computer 12100, a personal digital assistant (PDA) 12200, a camera 12300, and a mobile phone 12500 may be an Internet service provider 11200, a communication network 11400, and a wireless base station. 11700, 11800, 11900, and 12000 to connect to the Internet 11100.
  • PDA personal digital assistant
  • the content supply system 11000 is not limited to the structure shown in FIG. 24, and devices may be selectively connected.
  • the independent devices may be directly connected to the communication network 11400 without passing through the wireless base stations 11700, 11800, 11900, and 12000.
  • the video camera 12300 is an imaging device capable of capturing video images like a digital video camera.
  • the mobile phone 12500 is such as Personal Digital Communications (PDC), code division multiple access (CDMA), wideband code division multiple access (W-CDMA), Global System for Mobile Communications (GSM), and Personal Handyphone System (PHS). At least one communication scheme among various protocols may be adopted.
  • PDC Personal Digital Communications
  • CDMA code division multiple access
  • W-CDMA wideband code division multiple access
  • GSM Global System for Mobile Communications
  • PHS Personal Handyphone System
  • the video camera 12300 may be connected to the streaming server 11300 through the wireless base station 11900 and the communication network 11400.
  • the streaming server 11300 may stream and transmit the content transmitted by the user using the video camera 12300 through real time broadcasting.
  • Content received from the video camera 12300 may be encoded by the video camera 12300 or the streaming server 11300.
  • Video data captured by the video camera 12300 may be transmitted to the streaming server 11300 via the computer 12100.
  • Video data captured by the camera 12600 may also be transmitted to the streaming server 11300 via the computer 12100.
  • the camera 12600 is an imaging device capable of capturing both still and video images, like a digital camera.
  • Video data received from the camera 12600 may be encoded by the camera 12600 or the computer 12100.
  • Software for video encoding and decoding may be stored in a computer readable recording medium such as a CD-ROM disk, a floppy disk, a hard disk drive, an SSD, or a memory card that the computer 12100 may access.
  • video data may be received from the mobile phone 12500.
  • the video data may be encoded by a large scale integrated circuit (LSI) system installed in the video camera 12300, the mobile phone 12500, or the camera 12600.
  • LSI large scale integrated circuit
  • a user is recorded using a video camera 12300, a camera 12600, a mobile phone 12500, or another imaging device.
  • the content is encoded and sent to the streaming server 11300.
  • the streaming server 11300 may stream and transmit content data to other clients who have requested the content data.
  • the clients are devices capable of decoding the encoded content data, and may be, for example, a computer 12100, a PDA 12200, a video camera 12300, or a mobile phone 12500.
  • the content supply system 11000 allows clients to receive and play encoded content data.
  • the content supply system 11000 enables clients to receive and decode and reproduce encoded content data in real time, thereby enabling personal broadcasting.
  • the video encoding apparatus and the video decoding apparatus of the present invention may be applied to encoding and decoding operations of independent devices included in the content supply system 11000.
  • the mobile phone 12500 is not limited in functionality and may be a smart phone that can change or expand a substantial portion of its functions through an application program.
  • the mobile phone 12500 includes a built-in antenna 12510 for exchanging RF signals with the wireless base station 12000, and displays images captured by the camera 1530 or images received and decoded by the antenna 12510. And a display screen 12520 such as an LCD (Liquid Crystal Display) and an OLED (Organic Light Emitting Diodes) screen for displaying.
  • the smartphone 12510 includes an operation panel 12540 including a control button and a touch panel. When the display screen 12520 is a touch screen, the operation panel 12540 further includes a touch sensing panel of the display screen 12520.
  • the smart phone 12510 includes a speaker 12580 or another type of audio output unit for outputting voice and sound, and a microphone 12550 or another type of audio input unit for inputting voice and sound.
  • the smartphone 12510 further includes a camera 1530 such as a CCD camera for capturing video and still images.
  • the smartphone 12510 may be a storage medium for storing encoded or decoded data, such as video or still images captured by the camera 1530, received by an e-mail, or obtained in another form. 12570); And a slot 12560 for mounting the storage medium 12570 to the mobile phone 12500.
  • the storage medium 12570 may be another type of flash memory such as an electrically erasable and programmable read only memory (EEPROM) embedded in an SD card or a plastic case.
  • EEPROM electrically erasable and programmable read only memory
  • FIG. 25 illustrates an internal structure of the mobile phone 12500.
  • the power supply circuit 12700 the operation input controller 12640, the image encoder 12720, and the camera interface (12630), LCD control unit (12620), image decoding unit (12690), multiplexer / demultiplexer (12680), recording / reading unit (12670), modulation / demodulation unit (12660) and
  • the sound processor 12650 is connected to the central controller 12710 through the synchronization bus 1730.
  • the power supply circuit 12700 supplies power to each part of the mobile phone 12500 from the battery pack, thereby causing the mobile phone 12500 to operate. Can be set to an operating mode.
  • the central controller 12710 includes a CPU, a read only memory (ROM), and a random access memory (RAM).
  • the digital signal is generated in the mobile phone 12500 under the control of the central controller 12710, for example, the digital sound signal is generated in the sound processor 12650.
  • the image encoder 12720 may generate a digital image signal, and text data of the message may be generated through the operation panel 12540 and the operation input controller 12640.
  • the modulator / demodulator 12660 modulates a frequency band of the digital signal, and the communication circuit 12610 is a band-modulated digital signal. Digital-to-analog conversion and frequency conversion are performed on the acoustic signal.
  • the transmission signal output from the communication circuit 12610 may be transmitted to the voice communication base station or the radio base station 12000 through the antenna 12510.
  • the sound signal acquired by the microphone 12550 is converted into a digital sound signal by the sound processor 12650 under the control of the central controller 12710.
  • the generated digital sound signal may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the text data of the message is input using the operation panel 12540, and the text data is transmitted to the central controller 12610 through the operation input controller 12640.
  • the text data is converted into a transmission signal through the modulator / demodulator 12660 and the communication circuit 12610, and transmitted to the radio base station 12000 through the antenna 12510.
  • the image data photographed by the camera 1530 is provided to the image encoder 12720 through the camera interface 12630.
  • the image data photographed by the camera 1252 may be directly displayed on the display screen 12520 through the camera interface 12630 and the LCD controller 12620.
  • the structure of the image encoder 12720 may correspond to the structure of the video encoding apparatus as described above.
  • the image encoder 12720 encodes the image data provided from the camera 1252 according to the video encoding method of the present invention described above, converts the image data into compression-encoded image data, and multiplexes / demultiplexes the encoded image data. (12680).
  • the sound signal obtained by the microphone 12550 of the mobile phone 12500 is also converted into digital sound data through the sound processor 12650 during recording of the camera 1250, and the digital sound data is converted into the multiplex / demultiplexer 12680. Can be delivered.
  • the multiplexer / demultiplexer 12680 multiplexes the encoded image data provided from the image encoder 12720 together with the acoustic data provided from the sound processor 12650.
  • the multiplexed data may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the signal received through the antenna converts the digital signal through a frequency recovery (Analog-Digital conversion) process .
  • the modulator / demodulator 12660 demodulates the frequency band of the digital signal.
  • the band demodulated digital signal is transmitted to the video decoder 12690, the sound processor 12650, or the LCD controller 12620 according to the type.
  • the mobile phone 12500 When the mobile phone 12500 is in the call mode, the mobile phone 12500 amplifies a signal received through the antenna 12510 and generates a digital sound signal through frequency conversion and analog-to-digital conversion processing.
  • the received digital sound signal is converted into an analog sound signal through the modulator / demodulator 12660 and the sound processor 12650 under the control of the central controller 12710, and the analog sound signal is output through the speaker 12580. .
  • a signal received from the radio base station 12000 via the antenna 12510 is converted into multiplexed data as a result of the processing of the modulator / demodulator 12660.
  • the output and multiplexed data is transmitted to the multiplexer / demultiplexer 12680.
  • the multiplexer / demultiplexer 12680 demultiplexes the multiplexed data to separate the encoded video data stream and the encoded audio data stream.
  • the encoded video data stream is provided to the video decoder 12690, and the encoded audio data stream is provided to the sound processor 12650.
  • the structure of the image decoder 12690 may correspond to the structure of the video decoding apparatus as described above.
  • the image decoder 12690 generates the reconstructed video data by decoding the encoded video data by using the video decoding method of the present invention described above, and displays the reconstructed video data through the LCD controller 1262 through the display screen 1252. ) Can be restored video data.
  • video data of a video file accessed from a website of the Internet can be displayed on the display screen 1252.
  • the sound processor 1265 may convert the audio data into an analog sound signal and provide the analog sound signal to the speaker 1258. Accordingly, audio data contained in a video file accessed from a website of the Internet can also be reproduced in the speaker 1258.
  • the mobile phone 1250 or another type of communication terminal is a transmitting / receiving terminal including both the video encoding apparatus and the video decoding apparatus of the present invention, a transmitting terminal including only the video encoding apparatus of the present invention described above, or the video decoding apparatus of the present invention. It may be a receiving terminal including only.
  • FIG. 26 illustrates a digital broadcasting system employing a communication system, according to various embodiments.
  • the digital broadcasting system according to various embodiments of FIG. 26 may receive digital broadcasting transmitted through a satellite or terrestrial network using the video encoding apparatus and the video decoding apparatus.
  • the broadcast station 12890 transmits the video data stream to the communication satellite or the broadcast satellite 12900 through radio waves.
  • the broadcast satellite 12900 transmits a broadcast signal, and the broadcast signal is received by the antenna 12860 in the home to the satellite broadcast receiver.
  • the encoded video stream may be decoded and played back by the TV receiver 12610, set-top box 12870, or other device.
  • the playback device 12230 can read and decode the encoded video stream recorded on the storage medium 12020 such as a disk and a memory card.
  • the reconstructed video signal may thus be reproduced in the monitor 12840, for example.
  • the video decoding apparatus of the present invention may also be mounted in the set-top box 12870 connected to the antenna 12860 for satellite / terrestrial broadcasting or the cable antenna 12850 for cable TV reception. Output data of the set-top box 12870 may also be reproduced by the TV monitor 12880.
  • the video decoding apparatus of the present invention may be mounted on the TV receiver 12810 instead of the set top box 12870.
  • An automobile 12920 with an appropriate antenna 12910 may receive signals from satellite 12800 or radio base station 11700.
  • the decoded video may be played on the display screen of the car navigation system 12930 mounted on the car 12920.
  • the video signal may be encoded by the video encoding apparatus of the present invention and recorded and stored in a storage medium.
  • the video signal may be stored in the DVD disk 12960 by the DVD recorder, or the video signal may be stored in the hard disk by the hard disk recorder 12950.
  • the video signal may be stored in the SD card 12970.
  • the hard disk recorder 12950 is provided with the video decoding apparatus of the present invention according to various embodiments, the video signal recorded on the DVD disk 12960, the SD card 12970, or another type of storage medium is output from the monitor 12880. Can be recycled.
  • the vehicle navigation system 12930 may not include the camera 1530, the camera interface 12630, and the image encoder 12720 of FIG. 26.
  • the computer 12100 and the TV receiver 12610 may not include the camera 1250, the camera interface 12630, and the image encoder 12720 of FIG. 26.
  • FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to various embodiments.
  • the cloud computing system of the present invention may include a cloud computing server 14100, a user DB 14100, a computing resource 14200, and a user terminal.
  • the cloud computing system provides an on demand outsourcing service of computing resources through an information communication network such as the Internet at the request of a user terminal.
  • service providers integrate the computing resources of data centers located in different physical locations into virtualization technology to provide users with the services they need.
  • the service user does not install and use computing resources such as application, storage, operating system, and security in each user's own terminal, but services in virtual space created through virtualization technology. You can choose as many times as you want.
  • a user terminal of a specific service user accesses the cloud computing server 14100 through an information communication network including the Internet and a mobile communication network.
  • the user terminals may be provided with a cloud computing service, particularly a video playback service, from the cloud computing server 14100.
  • the user terminal may be any electronic device capable of accessing the Internet, such as a desktop PC 14300, a smart TV 14400, a smartphone 14500, a notebook 14600, a portable multimedia player (PMP) 14700, a tablet PC 14800, and the like. It can be a device.
  • the cloud computing server 14100 may integrate and provide a plurality of computing resources 14200 distributed in a cloud network to a user terminal.
  • the plurality of computing resources 14200 include various data services and may include data uploaded from a user terminal.
  • the cloud computing server 14100 integrates a video database distributed in various places into a virtualization technology to provide a service required by a user terminal.
  • the user DB 14100 stores user information subscribed to a cloud computing service.
  • the user information may include login information and personal credit information such as an address and a name.
  • the user information may include an index of the video.
  • the index may include a list of videos that have been played, a list of videos being played, and a stop time of the videos being played.
  • Information about a video stored in the user DB 14100 may be shared among user devices.
  • the playback history of the predetermined video service is stored in the user DB 14100.
  • the cloud computing server 14100 searches for and plays a predetermined video service with reference to the user DB 14100.
  • the smartphone 14500 receives the video data stream through the cloud computing server 14100, the operation of decoding the video data stream and playing the video may be performed by the operation of the mobile phone 12500 described above with reference to FIG. 24. similar.
  • the cloud computing server 14100 may refer to a playback history of a predetermined video service stored in the user DB 14100. For example, the cloud computing server 14100 receives a playback request for a video stored in the user DB 14100 from a user terminal. If the video was being played before, the cloud computing server 14100 may have a streaming method different depending on whether the video is played from the beginning or from the previous stop point according to the user terminal selection. For example, when the user terminal requests to play from the beginning, the cloud computing server 14100 streams the video to the user terminal from the first frame. On the other hand, if the terminal requests to continue playing from the previous stop point, the cloud computing server 14100 streams the video to the user terminal from the frame at the stop point.
  • the user terminal may include the video decoding apparatus as described above with reference to FIGS. 1A through 20.
  • the user terminal may include the video encoding apparatus as described above with reference to FIGS. 1A through 20.
  • the user terminal may include both the video encoding apparatus and the video decoding apparatus as described above with reference to FIGS. 1A through 20.
  • FIGS. 21 through 27 Various embodiments of utilizing the video encoding method, the video decoding method, the video encoding apparatus, and the video decoding apparatus described above with reference to FIGS. 1A through 20 are described above with reference to FIGS. 21 through 27. However, various embodiments in which the video encoding method and the video decoding method described above with reference to FIGS. 1A to 20 are stored in a storage medium or the video encoding apparatus and the video decoding apparatus are implemented in the device are illustrated in FIGS. 21 to 27. It is not limited to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

부호화 단위의 최대 크기보다 작거나 같은 범위 내의 서브블록의 크기를 나타내는 제2 레이어 영상의 서브블록 크기 정보를 획득하고, 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하고, 제2 레이어 영상에 포함된 현재 블록에 대응하는 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하고, 현재 블록으로부터 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하고, 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 획득 또는 예측하고, 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 복호화하고, 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정되는 인터 레이어 비디오 복호화 방법이 개시된다.

Description

서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
본 발명은 인터 레이어 비디오 부호화 방법 및 인터 레이어 비디오 복호화 방법에 관한 것이다. 상세하게는 서브블록을 결정하고, 결정된 서브블록을 기반으로 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 복호화 방법에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 트리 구조의 부호화 단위에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
주파수 변환을 이용하여 공간 영역의 영상 데이터는 주파수 영역의 계수들로 변환된다. 비디오 코덱은, 주파수 변환의 빠른 연산을 위해 영상을 소정 크기의 블록들로 분할하고, 블록마다 DCT 변환을 수행하여, 블록 단위의 주파수 계수들을 부호화한다. 공간 영역의 영상 데이터에 비해 주파수 영역의 계수들이, 압축하기 쉬운 형태를 가진다. 특히 비디오 코덱의 인터 예측 또는 인트라 예측을 통해 공간 영역의 영상 화소값은 예측 오차로 표현되므로, 예측 오차에 대해 주파수 변환이 수행되면 많은 데이터가 0으로 변환될 수 있다. 비디오 코덱은 연속적으로 반복적으로 발생하는 데이터를 작은 크기의 데이터로 치환함으로써, 데이터량을 절감하고 있다.
멀티 레이어 비디오 코덱은, 제1 레이어 비디오와 하나 이상의 제2 레이어 비디오를 부복호화한다. 제1 레이어 비디오와 제2 레이어 비디오의 시간적/공간적 중복성(redundancy)와 레이어 간의 중복성을 제거하는 방식으로, 제1 레이어 비디오와 제2 레이어 비디오의 데이터량이 절감될 수 있다.
한편, 서브블록 기반 인터 레이어 예측이 수행될때, 서브블록 크기 정보가 시그널링된다. 이때, 서브블록 크기 정보는 부호화 단위의 최소 크기보다 작거나, 부호화 단위의 최대 크기보다 큰 경우를 전혀 고려하지 않고 시그널링되기 때문에 불필요하게 부복호화 장치의 구현/연산 복잡도가 높아지는 문제점이 있었다. 또한, 시그널링되는 서브블록 크기 정보는 예측 단위로 이용되지 않는 크기의 블록에 관한 정보를 포함하고 있고, 따라서 불필요한 비트수가 낭비되는 문제점이 있었다.
또한, 서브블록 기반 인터 레이어 예측이 수행될때, 기존 코덱에서 허용하는 예측 단위를 고려하지 않고 서브블록을 결정하기 때문에 기존 코덱과의 호환성이 떨어지는 문제점이 있었다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 복호화 방법은 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에 서브블록의 크기를 나타내는 제2 레이어 영상의 서브블록 크기 정보를 획득하는 단계; 상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하는 단계; 상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및 상기 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고, 상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정된다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 부호화 방법은 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정하는 단계; 상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록으로부터 상기 결정된 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화 하는 단계; 및 상기 결정된 서브블록의 크기를 나타내는 서브블록 크기 정보를 포함하는 비트스트림을 생성하는 단계를 포함하고, 상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정된다.
한편, 본 발명의 다른 실시예에 따른 인터 레이어 비디오 복호화 방법은 부호화된 제1 레이어 영상을 복호화하는 단계; 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계; 상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고, 상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정된다.
한편, 본 발명의 다른 실시예에 따른 인터 레이어 비디오 부호화 방법은 제1 레이어 영상을 부호화하는 단계; 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계; 상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화하는 단계를 포함하고, 상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정된다.
본 발명은 일 실시예에 따라, 서브블록 크기 범위의 제한을 둠으로써 시그널링되는 서브블록 크기 관련 정보의 크기를 줄이고, 부복호화 장치의 구현/연산 복잡도를 낮추도록 한다.
또한 본 발명은 다른 일 실시예에 따라, 기존 코덱에서 허용하는 예측 단위의 크기를 고려하여 서브블록의 크기가 결정됨으로써 기존 코덱과의 호환성을 높일 수 있다.
도 1a 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치의 블록도를 도시한다.
도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
도 1c는 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치의 블록도를 도시한다.
도 1d는 다양한 일 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
도 2a 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치의 블록도를 도시한다.
도 2b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
도 2c는 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치의 블록도를 도시한다.
도 2d는 다양한 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
도 3a 는 다양한 실시예에 따른 인터 레이어 예측 구조를 도시한다.
도 3b는 다양한 실시예에 따른 멀티 레이어 비디오를 나타낸 도면이다.
도 3c는 다양한 실시예에 따른 멀티 레이어 비디오의 부호화된 데이터를 포함하는 NAL 유닛들을 나타낸 도면이다.
도 4a 는 다양한 실시예에 따른 인터 레이어간 예측을 위한 디스패리티 벡터를 설명하기 위한 도면이다.
도 4b 는 다양한 실시예에 따른 디스패리티 벡터를 예측 하기 위한 공간적 주변 블록 후보를 설명하기 위한 도면이다.
도 4c 는 다양한 실시예에 따른 디스패리티 벡터를 예측 하기 위한 시간적 주변 블록 후보를 설명하기 위한 도면이다.
도 5는 다양한 실시예에 따른 서브블록 기반 인터 시점 움직임 예측을 설명하기 위한 도면이다.
도 6a-6c는 다양한 실시예에 따른 서브블록의 크기가 결정되는 과정을 설명하기 위한 도면이다.
도 7a은 본 발명의 일 실시예에 따른 VPS 확장 신택스를 도시한 도면이다.
도 7b는 본 발명의 일 실시예에 따른 SPS 확장 신택스를 도시한 도면이다.
도 8 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 9 는 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 10 은 본 발명의 다양한 실시예에 따른 부호화단위의 개념을 도시한다.
도 11 은 본 발명의 다양한 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 12 는 본 발명의 다양한 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 13 은 본 발명의 다양한 실시예에 따른 부호화단위 및 파티션을 도시한다.
도 14 는 본 발명의 다양한 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 15 는 본 발명의 일 실시예에 따라, 부호화 정보들을 도시한다.
도 16 은 본 발명의 다양한 실시예에 따른 부호화단위를 도시한다.
도 17, 18 및 19 는 본 발명의 다양한 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 21 은 다양한 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 22 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 23 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 24 및 25 는, 다양한 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 26 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 27 은 본 발명의 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 복호화 방법은 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에 서브블록의 크기를 나타내는 제2 레이어 영상의 서브블록 크기 정보를 획득하는 단계; 상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하는 단계; 상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및 상기 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고, 상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정된다.
상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계는 상기 제2 레이어 영상에 포함된 현재 블록으로부터 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득하는 단계를 포함하고, 상기 획득된 디스패리티 벡터의 수직 성분은 0인 것을 특징으로 한다.
상기 현재 블록은 제2 레이어 영상의 부호화 단위가 분할되어 생성된 하나이상의 예측 단위 중 하나이고, 상기 서브블록은 상기 예측 단위보다 작거나 같은 블록인 것을 특징으로 한다.
상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하는 단계는, 비트스트림으로부터 획득된 상기 부호화 단위의 최소 크기를 나타내는 정보 및 상기 비트스트림에 포함된 상기 부호화 단위의 최대 크기와 상기 부호화 단위의 최소 크기 간 차이를 나타내는 정보를 이용하여 상기 서브블록의 크기를 결정한다.
상기 비트스트림으로부터 상기 서브블록 크기 정보를 포함하는 VPS NAL 유닛(Video Parameter Set Network Abstraction Layer) 또는 SPS NAL 유닛(Sequence Parameter Set Network Abstraction Layer)이 획득되고, 상기 제2 레이어 영상의 서브블록 크기 정보는 상기 VPS NAL 유닛 또는 상기 SPS NAL 유닛으로부터 획득된 것을 특징으로 하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 부호화 방법은 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정하는 단계; 상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록으로부터 상기 결정된 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화 하는 단계; 및 상기 결정된 서브블록의 크기를 나타내는 서브블록 크기 정보를 포함하는 비트스트림을 생성하는 단계를 포함하고, 상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정될 수 있다.
상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계는, 상기 제2 레이어 영상에 포함된 현재 블록으로부터 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득하는 단계를 포함하고 상기 획득된 디스패리티 벡터의 수직 성분은 0일 수 있다.
상기 현재 블록은 상기 제2 레이어 영상의 부호화 단위가 분할되어 생성된 하나이상의 예측 단위 중 하나이고, 상기 서브블록은 상기 예측 단위보다 작거나 같은 블록일 수 있다.
상기 결정된 서브블록의 크기를 나타내는 서브블록의 크기 정보를 포함하는 비트스트림을 생성하는 단계는, 상기 부호화 단위의 최소 크기를 나타내는 정보 및 상기 부호화 단위의 최대 크기와 상기 부호화 단위의 최소 크기 간 차이를 나타내는 정보를 더 포함하는 비트스트림을 생성하는 단계를 포함할 수 있다.
상기 결정된 서브블록의 크기를 나타내는 서브블록의 크기 정보를 포함하는 비트스트림을 생성하는 단계는, 상기 서브블록 크기 정보를 포함하는 VPS NAL 유닛 또는 SPS NAL 유닛을 생성하는 단계; 및 상기 VPS NAL 유닛 또는 상기 SPS NAL 유닛을 포함하는 비트스트림을 생성하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 복호화 장치는 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에 제2 레이어 영상의 서브블록 크기 정보를 획득하는 획득부; 상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하고, 상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하고, 상기 현재 블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하고, 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 복호화부를 포함하고,
상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정될 수 있다.
본 발명의 일 실시예에 따른 인터 레이어 비디오 부호화 장치는 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정하고, 상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하고, 상기 현재 블록으로부터 상기 결정된 서브블록 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하고, 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화하는 부호화부; 및 상기 결정된 서브블록의 크기를 나타내는 서브블록 크기 정보를 포함하는 비트스트림을 생성하는 비트스트림 생성부를 포함하고, 상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정될 수 있다.
본 발명의 다른 실시예에 따른 인터 레이어 비디오 복호화 방법은 부호화된 제1 레이어 영상을 복호화하는 단계; 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계; 상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고, 상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정될 수 있다.
본 발명의 다른 실시예에 따른 인터 레이어 비디오 부호화 방법은 제1 레이어 영상을 부호화하는 단계; 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계; 상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계; 상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화하는 단계를 포함하고, 상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정될 수 있다.
또한, 본 발명은 본 발명의 다양한 실시예에 따른 상기 인터 레이어 비디오 부복호화 방법을 컴퓨터로 실행시키기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체를 제공한다.
이하 도 1a 내지 도 7b를 참조하여, 서브블록 기반 예측을 수행하기 위한 인터 레이어 비디오 부호화 기법, 인터 레이어 비디오 복호화 기법이 제안된다. 또한, 도 8 내지 도 20을 참조하여, 앞서 제안한 인터 레이어 비디오 부호화 기법 및 복호화 기법에 적용가능한 다양한 실시예에 따른 트리 구조의 부호화 단위에 기초한 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 21 내지 도 27을 참조하여, 앞서 제안한 비디오 부호화 방법, 비디오 복호화 방법이 적용가능한 다양한 실시예들이 개시된다.
이하, '영상'은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
이하 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀들이 샘플들일 수 있다.
이하 ‘현재 블록(Current Block)’은, 부호화 또는 복호화하고자 하는 영상의 블록을 의미할 수 있다.
이하 ‘주변 블록(Neighboring Block)’은, 현재 블록에 이웃하는 부호화되었거나 또는 복호화된 적어도 하나의 블록을 나타낸다. 예를 들어, 주변 블록은 현재 블록의 상단, 현재 블록의 우측 상단, 현재 블록의 좌측, 또는 현재 블록의 좌측 상단에 위치할 수 있다. 또한 공간적으로 이웃하는 블록뿐 아니라 시간적으로 이웃하는 블록도 포함할 수 있다. 예를 들어, 시간적으로 이웃하는 주변 블록은 참조 픽쳐의 현재 블록과 동일한 위치(co-located) 블록 혹은 동일한 위치 블록의 주변 블록을 포함할 수 있다.
먼저, 도 1a 내지 도 7b를 참조하여, 다양한 실시예에 따른 서브블록 기반 예측을 수행하기 위한 인터 레이어 비디오 복호화 및 부호화 장치 및 방법 이 개시된다.
도 1a 은 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)의 블록도를 도시한다.
도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 부호화부(12) 및 비트스트림 생성부(18)를 포함한다.
부호화부(12)는 제1 레이어 부호화부(14) 및 제2 레이어 부호화부(16)을 포함할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식에 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상 시퀀스와 제2 레이어 영상 시퀀스를 서로 다른 레이어로 부호화할 수 있다.
제1 레이어 부호화부(12)가 제1 레이어 영상들을 부호화하고, 제1 레이어 영상들의 부호화 데이터를 포함하는 제1 레이어 스트림을 출력할 수 있다.
제2 레이어 부호화부(16)가 제2 레이어 영상들을 부호화하고, 제2 레이어 영상들의 부호화 데이터를 포함하는 제2 레이어 스트림을 출력할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식과 유사하게 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상 시퀀스와 제2 레이어 영상 시퀀스를 서로 다른 레이어로 부호화할 수 있다.
예를 들어, 공간적 스케일러빌러티(Spatial Scalability)에 기반한 스케일러블 비디오 코딩 방식에 따르면, 저해상도 영상들이 제1 레이어 영상들로서 부호화되고, 고해상도 영상들이 제2 레이어 영상들로서 부호화될 수 있다. 제1 레이어 영상들의 부호화 결과가 제1 레이어 스트림으로 출력되고, 제2 레이어 영상들의 부호화 결과가 제2 레이어 스트림으로 출력될 수 있다.
일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 제1레이어 스트림과 제2레이어 스트림을 멀티플렉서(multiplexer)를 통해 하나의 비트스트림으로 표현하여 부호화할 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 부호화될 수 있다. 좌시점 영상들은 제1 레이어 영상들로서 부호화되고, 우시점 영상들은 제2 레이어 영상들로서 부호화될 수 있다. 또는, 중앙시점 영상들, 좌시점 영상들과 우시점 영상들이 각각 부호화되고, 이 중에서 중앙시점 영상들은 제1 레이어 영상들로서 부호화되고, 좌시점 영상들은 제1 레이어 영상들, 우시점 영상들은 제3 레이어 영상들로서 부호화될 수 있다. 또는, 중앙시점의 컬러 영상, 중앙시점 깊이 영상, 좌시점 컬러 영상, 좌시점 깊이 영상, 우시점 컬러 영상, 우시점 깊이 영상은 각각 제1 레이어 영상, 제2 레이어 영상, 제3 레이어 영상, 제4 레이어 영상, 제5 레이어 영상, 제6 레이어 영상으로 부호화될 수 있다. 또 다른 예로, 중앙시점 컬러 영상, 중앙시점 깊이 영상, 좌시점 깊이 영상, 좌시점 컬러 영상, 우시점 깊이 영상, 우시점 컬러 영상이 각각 제1 레이어 영상, 제2 레이어 영상, 제3 레이어 영상, 제4 레이어 영상, 제5 레이어 영상, 제6 레이어 영상으로 부호화될 수도 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 시간 계층적 예측(Temporal Hierarchical Prediction)에 따라 스케일러블 비디오 코딩 방식이 수행될 수 있다. 기본 프레임 레이트의 영상들을 부호화하여 생성된 부호화 정보를 포함하는 제1 레이어 스트림이 출력될 수 있다. 프레임 레이트별로 시간적 계층(temporal level)이 분류되고 각 시간적 계층이 각 레이어로 부호화될 수 있다. 기본 프레임 레이트의 영상들을 참조하여 더 높은 프레임 레이트의 영상들을 더 부호화하여, 높은 프레임 레이트의 부호화 정보를 포함하는 제2 레이어 스트림이 출력될 수 있다.
또한, 제1 레이어와 다수의 확장 레이어들(제2 레이어, 제3 레이어, …, 제K 레이어)에 대한 스케일러블 비디오 코딩이 수행될 수 있다. 확장 레이어가 셋 이상인 경우, 제1 레이어 영상들과 K번째 레이어 영상들이 부호화될 수도 있다. 이에 따라 제1 레이어 영상들의 부호화 결과가 제1 레이어 스트림으로 출력되고, 첫번째, 두번째, ..., K번째 레이어 영상들의 부호화 결과가 각각 첫번째, 두번째, ..., K번째 레이어 스트림으로 출력될 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 단일레이어내의 영상들을 참조하여 현재영상을 예측하는 인터 예측(Inter Prediction)을 수행할 수 있다. 인터 예측을 통해, 현재영상과 참조영상 사이의 움직임 정보를 나타내는 모션 벡터(motion vector) 및 현재영상과 참조영상 사이의 레지듀얼 성분(residual) 등을 제1 레이어(기본레이어)의 대응하는 영역으로부터 예측할 수 있다.
또한, 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상들의 예측정보를 참조하여 제2 레이어 영상들의 예측 정보를 예측하는 인터 레이어 예측(Inter-layer Prediction)을 수행할 수 있다.
또한 일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)가 제1 레이어, 제2 레이어, 제3 레이어 등 셋 이상의 레이어를 허용하는 경우에는, 멀티 레이어 예측 구조에 따라 하나의 제1 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측, 제2 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측을 수행할 수도 있다.
인터 레이어 예측에서, 현재영상과 다른 레이어의 참조영상 사이의 시차 벡터(disparity vector)를 유도하고, 다른 레이어의 참조영상을 이용하여 생성된 예측 영상과 현재 영상과의 차이 성분인 레지듀얼 성분이 생성될 수 있다.
또한, 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상들을 참조하여 제2 레이어 영상들을 예측하는 인터 레이어 예측(Inter-layer Prediction)을 수행할 수 있다.
또한 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)가 제1 레이어, 제2 레이어, 제3 레이어 등 셋 이상의 레이어를 허용하는 경우에는, 멀티 레이어 예측 구조에 따라 하나의 제1 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측, 제2 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측을 수행할 수도 있다.
인터 레이어 예측을 통해, 현재영상과 다른 레이어의 참조영상 사이의 위치 차이성분 및 현재영상과 다른 레이어의 참조영상 사이의 레지듀얼 성분이 생성될 수 있다.
인터 레이어 예측 구조는 추후 도 3a를 참조하여 상술한다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 각 레이어마다, 비디오의 각각의 영상의 블록별로 부호화한다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리 구조의 부호화 단위들을 포함하는 최대부호화단위는, 코딩 트리 유닛(Coding Tree Unit), 코딩 블록 트리(Coding Block Tree), 블록 트리, 루트 블록 트리(Root Block Tree), 코딩 트리, 코딩 루트 또는 트리 트렁크(Tree Trunk) 등으로 다양하게 명명되기도 한다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 8 내지 도 20을 참조하여 후술한다.
인터 예측 및 인터 레이어 예측은 부호화 단위, 예측 단위 또는 변환 단위의 데이터 단위를 기초로 수행될 수도 있다.
다양한 실시예에 따른 제1 레이어 부호화부(12)는, 제1 레이어 영상들에 대해 인터 예측 또는 인트라 예측을 포함하는 소스 코딩 동작들을 수행하여 심볼 데이터를 생성할 수 있다. 심볼데이터는 각 부호화 파라미터의 값 및 레지듀얼의 샘플값을 나타낸다.
예를 들어, 부호화부(12)는, 제1 레이어 영상들의 데이터 단위의 샘플들에 대해 인터 예측 또는 인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제1 레이어 스트림을 생성할 수 있다.
제2 레이어 부호화부(16)는, 트리 구조의 부호화 단위들에 기초하여 제2 레이어 영상들을 부호화할 수 있다. 제2 레이어 부호화부(16)는, 제2 레이어 영상의 부호화 단위의 샘플들에 대해 인터/인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제2 레이어 스트림을 생성할 수 있다.
다양한 실시예에 따른 제2 레이어 부호화부(16)는, 제1 레이어 영상의 예측 정보를 이용하여, 제2 레이어 영상을 예측하는 인터 레이어 예측을 수행할 수 있다. 제2 레이어 부호화부(16)는, 인터 레이어 예측 구조를 통해 제2 레이어 영상시퀀스 중 제2 레이어 원본영상을 부호화하기 위해, 제1 레이어 복원영상의 예측정보를 이용하여 제2 레이어 현재영상의 예측정보를 결정하고, 결정된 예측정보에 기초하여 제2 레이어 예측영상을 생성하여 제2 레이어 원본영상과 제2 레이어 예측영상 간의 예측 오차를 부호화할 수 있다.
한편, 제2 레이어 부호화부(16)는, 제2 레이어 영상을 부호화 단위 또는 예측 단위별로 인터 레이어 예측을 수행하여, 제2 레이어 영상의 블록이 참조할 제1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제1 레이어 영상의 복원블록이 결정될 수 있다. 제2 레이어 부호화부(16)는, 제2 레이어 블록에 상응하는 제1 레이어 복원블록을 이용하여, 제2 레이어 예측블록을 결정할 수 있다. 이때, 제2 레이어 부호화부(16)는 제2 레이어 블록과 동일한 지점에 위치하는 제1 레이어 복원 블록을 이용하여 제2 레이어 예측블록을 결정할 수 있다.
제2 레이어 부호화부(16)는, 인터 레이어 예측 구조에 따라 제1 레이어 복원블록을 이용하여 결정된 제2 레이어 예측블록을, 제2 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수 있다. 제2 레이어 부호화부(16)는, 제1 레이어 복원영상을 이용하여 제2 레이어 예측블록의 샘플값과 제2 레이어 원본블록의 샘플값 간의 오차, 즉 인터 레이어 예측에 따른 레지듀얼 성분을 변환 및 양자화 하여 엔트로피 부호화할 수 있다.
한편, 전술한 인터 레이어 비디오 부호화 장치(10)가 다시점 비디오를 부호화하는 경우에, 부호화 되는 제1 레이어 영상은 제1 시점 비디오이고, 제2 레이어 영상은 제2 시점 비디오일 수 있다. 이러한, 다시점 영상은 동일한 시간에 취득되기 때문에 각 시점의 영상 별로 유사도가 매우 높다.
하지만, 다시점 영상은 시점별로 촬영각도, 조명 또는 촬상 도구(카메라, 렌즈 등)의 특성이 다름에 따라 시차(disparity)가 나타날 수 있다. 따라서, 이러한 시차를 디스패리티 벡터로 나타내고, 디스패리티 벡터를 이용하여 다른 시점의 영상에서 현재 부호화 하고자 하는 블록과 가장 유사한 영역을 찾아 부호화 하는 디스패리티 보상 예측(Disparity compensated prediction)을 수행함으로써 부호화 효율을 높일 수 있다.
제2 레이어 부호화부(16)는 제2 레이어 영상의 서브블록 크기를 결정할 수 있다. 여기서 서브블록은 예측 단위보다 작거나 같은 블록을 의미한다. 예측 단위는 부호화 단위가 분할되어 생성되는데, 이 예측 단위보다 작거나 같은 블록을 의미한다. 따라서 제2 레이어 부호화부(16)는 서브블록 단위별로 인터 레이어 예측을 수행하고, 서브블록별 예측 샘플값을 이용하여 예측 단위에 대한 예측 샘플값을 결정할 수 있다.
구체적으로 제2 레이어 부호화부(16)는 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정할 수 있다.
서브블록의 크기는 레이어별로 결정될 수 있고, 특정 레이어 내 서브블록들의 크기는 동일할 수 있다. 한편, 서브블록은 정사각형 모양의 서브 예측 단위일 수 있다.
예를 들어, 제2 레이어 부호화부(16)는 부호화 단위의 최소 크기가 8x8이고, 부호화 단위의 최대 크기가 64x64인 경우에 부호화 단위의 크기가 8x8로부터 64x64 사이의 범위 내에서 서브블록의 크기를 결정할 수 있다.
이하에서는, 부호화 단위의 최소 크기보다 크거나 같은 범위 내에서 제2 레이어영상의 서브블록의 크기를 결정하는 이유를 상술하기로 한다.
여기서 현재 부호화 단위는 부호화 단위의 최소 크기이고 파티션 타입으로 2Nx2N이 아닌 다른 파티션 타입이 결정되어 현재 부호화 단위에 포함된 예측 단위가 현재 부호화 단위의 최소 단위보다 작게 결정되었다고 가정한다.
이때, 인터 레이어 비디오 복호화 장치(20)가 인터 레이어 비디오 부호화 장치로부터 부호화 단위의 최소 크기보다 작은 크기를 나타내는 서브블록 크기 정보를 획득한다면, 인터 레이어 비디오 복호화 장치(20)는 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 작은 서브블록의 크기를 결정할 수 있다.
하지만, 인터 레이어 비디오 복호화 장치(20)는 서브블록 크기 정보에 의해 결정된 서브블록의 크기가 현재 부호화 단위에 포함된 예측 단위의 크기보다 큰 경우에는, 서브블록의 크기를 현재 부호화 단위 내 예측 단위의 크기로 변경하여 결정할 수 있다.
즉 인터 레이어 비디오 복호화 장치(20)는 서브블록 크기 정보에 의해 결정된 서브블록의 크기가 현재 부호화 단위에 포함된 예측 단위의 크기보다 큰 경우에는, 서브블록 크기 정보에 의해 결정된 서브블록의 크기에 따르지 않고, 현재 부호화 단위에 포함된 예측 단위를 서브블록으로 결정할 수 있다.
따라서 예측 단위가 부호화 단위의 최소 크기보다 작은 경우에는 서브블록의 크기가 예측 단위에 따라 결정되는 것이 효율적이다.
결국 서브블록 크기 정보는 부호화 단위의 최소 크기보다 크거나 같은 경우만 고려하여 시그널링하여 부복호화 장치의 구현/연산 복잡도를 낮추는 것이 바람직하다.
또한 부호화 단위의 최대 크기가 고려되는 이유는, 부호화 단위가 분할되어 예측 단위가 획득되기 때문에, 항상 예측 단위의 크기는 부호화 단위의 크기보다 작거나 같아야 하지만, 서브블록의 크기가 부호화 단위의 최대 크기보다 크게 결정되면 예측 단위의 크기가 부호화 단위의 크기보다 크게 되는 모순이 발생하기 때문이다.
제2 레이어 부호화부(16)는 제2 레이어 영상에 포함된 현재 블록에 대응하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다. 여기서 후보블록은 현재 블록에 대응하여 다른 레이어 영상에 위치하는 대응블록을 의미하고, 이 후보블록에 포함된 모션 정보는 현재 블록을 모션 정보를 예측 또는 획득하는데 이용될 수 있다.
예를 들어, 제2 레이어 부호화부(16)는 제2 레이어 영상에 포함된 현재 블록으로부터 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득할 수 있다. 제2 레이어 부호화부(16)는 디스패리티 벡터를 이용하여 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
한편, 제2 레이어 부호화부(16)는 제2 레이어 영상에 포함된 현재 블록과 동일한 지점에 위치(co-located)하는 제1 레이어 영상의 후보블록을 결정할 수 있다.
이때, 현재 블록은 제2 레이어 영상의 부호화 단위가 분할되어 생성된 하나이상의 예측 단위 중 하나일 수 있다. 한편, 서브블록은 예측 단위보다 작거나 같은 블록일 수 있다. 즉, 서브블록은 일반적으로 예측 단위보다 작지만, 이에 제한되지 않고, 서브블록과 예측 단위의 크기는 동일할 수 있다.
제2 레이어 부호화부(16)는 현재 블록에 시공간적으로 인접한 주변블록의 디스패리티 벡터를 이용하여 현재 블록으로부터 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 결정할 수 있다.
이때, 제2 레이어 부호화부(16)는 획득된 디스패리티 벡터의 수직 성분을 0으로 결정할 수 있다. 이는 서로 다른 시점을 나타내는 레이어 영상들이 수평방향으로 시점을 달리하여 카메라에 의해 획득되기 때문이다. 즉, 상기 획득된 디스패리티 벡터는 수직 성분은 0이 아닐 수 있으나, 영상이 획득될 당시에 수평방향만으로만 시점을 달리하여 각 레이어 영상들이 획득되기 때문에 영상의 특성상 디스패리티 벡터의 수직 성분을 0으로 변경하고, 변경된 디스패리티 벡터를 이용하여 인터 레이어 예측을 수행하는 경우 부호화 효율이 더 좋아질 수 있다.
한편, 제2 레이어 부호화부(16)는 현재블록으로부터 서브블록 크기를 이용하여 결정된 제2 레이어 영상의 적어도 하나의 서브블록을 획득할 수 있다. 예를 들어, 현재블록이 16x16이고, 결정된 서브블록의 크기가 8x8인 경우, 현재블록 내 4개의 8x8 크기의 서브블록을 결정할 수 있다. 제2 레이어 부호화부(16)는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록을 결정한다. 이때, 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다.
제2 레이어 부호화부(16)는 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재블록의 모션 정보를 획득한다.
이때, 모션 정보는 움직임 예측에 따른 모션 벡터, 참조 픽처 리스트 내 참조 픽처를 나타내는 정보 및 모션 벡터가 이용가능한지를 나타내는 정보를 포함할 수 있다. 제2 레이어 부호화부(16)는 획득된 제2 레이어 영상의 서브블록의 모션 정보를 이용하여 현재블록의 모션 정보를 예측할 수 있다.
제2 레이어 부호화부(16)는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 부호화할 수 있다.
예를 들어, 제2 레이어 부호화부(16)는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록의 예측 샘플값을 결정하고, 현재 블록의 원본 픽셀값들과 현재 블록의 예측 샘플값간의 차이를 나타내는 레지듀에 관한 정보를 부호화할 수 있다. 이때, 레지듀에 관한 정보는 구체적으로 변환되고, 변환된 레지듀에 관한 정보는 엔트로피 부호화될 수 있다.
비트스트림 생성부(18)는 부호화된 비디오 및 인터 레이어 예측과 관련하여 결정된 인터 레이어 예측 정보를 포함하는 비트스트림을 생성하고, 생성된 비트스트림을 복호화 장치로 전송할 수 있다. 한편, 비트스트림 생성부(18)는 인터 레이어 예측과 관련하여 서브블록 기반 인터 레이어 예측을 수행하는 경우, 서브블록 크기에 관한 정보를 포함하는 비트스트림을 생성할 수 있다. 또한 비트스트림 생성부(18)는 엔트로피 부호화된 레지듀에 관한 정보를 부호화된 비디오로서 포함할 수 있다.
한편, 비트스트림 생성부(18)는 부호화 단위의 최소 크기를 나타내는 정보 및 부호화 단위의 최대 크기와 최소 크기의 차이를 나타내는 정보를 더 포함하는 비트스트림을 생성할 수 있다.
예를 들어, 제2 레이어 부호화부(16)는 제2 레이어 영상에 대한 부호화 단위의 최소 크기 및 부호화 단위의 크기를 결정할 수 있고, 이를 이용하여 비트스트림 생성부(18)는 부호화 단위의 최소 크기를 나타내는 정보 및 부호화 단위의 최대 크기와 최소 크기의 차이를 나타내는 정보를 생성한다.
비트스트림 생성부(18)는 서브블록 크기 정보를 포함하는 VPS 유닛 또는 SPS NAL 유닛을 먼저 생성할 수 있다. 그 후에 비트스트림 생성부(18)는 VPS NAL 유닛 또는 SPS NAL 유닛을 포함하는 비트스트림을 생성할 수 있다.
또는, 인터 레이어 비디오 부호화 장치(10)는 예측 단위별로 전송되는 데이터 양을 줄이기 위해 다른 부호화 정보들로부터 디스패리티 벡터를 예측(또는 유도)할 수 있다. 예를 들면, 인터 레이어 비디오 부호화 장치(10)는 현재 복원되는 블록의 주변블록들로부터 디스패리티 벡터를 예측할 수 있다. 또한 주변 블록으로부터 디스패리티 벡터를 예측하지 못한다면 디스패리티 벡터를 기본디스패리티 벡터로 설정할 수 있다.
이하, 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)에서 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법은 도 4 내지 도 7b에 대한 설명에 구체적으로 후술한다.
인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 복원영상을 이용하여 제2 레이어 예측블록의 샘플값과 제2 레이어 원본블록의 샘플값 간의 오차, 즉 인터 레이어 예측에 따른 레지듀얼 성분을 변환 및 양자화 하여 엔트로피 부호화할 수 있다. 또한, 예측 정보간의 오차도 엔트로피 부호화 될 수 있다.
전술한 바와 같이 인터 레이어 비디오 부호화 장치(10)는 인터 레이어 예측 구조를 통해 제1 레이어 복원영상들을 참조하여 현재 레이어 영상 시퀀스를 부호화할 수도 있다. 다만, 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)가, 다른 레이어 샘플들을 참조하지 않고도, 단일 레이어 예측 구조에 따라 제2 레이어 영상 시퀀스를 부호화할 수도 있다. 따라서, 인터 레이어 비디오 부호화 장치(10)가 제2 레이어 영상 시퀀스를 부호화하기 위해, 인터 레이어 예측 구조의 인터 예측만을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
이하, 인터 레이어 예측을 위한 인터 레이어 비디오 부호화 장치(10)의 자세한 동작을 도 1b를 참조하여 상술한다. 이하의 설명에서 제1 레이어 영상은 참조 시점 영상을 의미하고, 제2 레이어 영상은 현재 부호화 되는 시점의 영상을 의미할 수 있다.
도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
단계 11에서, 인터 레이어 비디오 부호화 장치(10)는 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정할 수 있다. 여기서 서브블록은 예측 단위보다 작거나 같은 블록을 의미한다. 예측 단위는 부호화 단위가 분할되어 생성되는데, 이 예측 단위보다 작거나 같은 블록을 의미한다. 따라서 인터 레이어 비디오 부호화 장치(10)는 서브블록 단위별로 인터 레이어 예측을 수행하고, 서브블록별 예측 샘플값을 이용하여 예측 단위에 대한 예측 샘플값을 결정할 수 있다.
단계 13에서, 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상에 포함된 현재 블록에 대응하는 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정한다.
인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상에 포함된 현재 블록으로부터 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득한다. 인터 레이어 비디오 부호화 장치(10)는 획득된 디스페리티 벡터를 이용하여 후보블록을 찾을 수있다.
한편 인터 레이어 비디오 부호화 장치(10)는 제2 레이어 영상에 포함된 현재 블록과 동일한 지점에 위치(co-located)하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
단계 15에서, 인터 레이어 비디오 부호화 장치(10)는 현재블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득한다.
이때, 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정된다.
단계 17에서, 인터 레이어 비디오 부호화 장치(10)는 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 획득 또는 예측하고, 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 부호화한다.
단계 19에서, 인터 레이어 비디오 부호화 장치(10)는 상기 결정된 서브블록의 크기 정보를 포함하는 비트스트림을 생성한다.
상술한 바에 따라서 인터 레이어 비디오 부호화 장치(10)는 서브블록의 크기를 결정할때, 부호화단위의 최소 크기 및 최대 크기를 고려하여 부호화 단위의 최소 크기 및 최대 크기의 범위 내에서 서브블록의 크기를 결정함으로써 처리과정을 간편화하고, 부복호화 장치의 구현/연산 복잡도를 낮출 수 있다.
본 발명의 에 따른 인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 부호화부(14), 제2 레이어 부호화부(16) 및 비트스트림 생성부(18)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 제1 레이어 부호화부(14) 및 제2 레이어 부호화부(16) 및 비트스트림 생성부(18)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 인터 레이어 비디오 부호화 장치(10)가 전체적으로 작동될 수도 있다. 또는, 인터 레이어 비디오 부호화 장치(10)의 외부 프로세서(미도시)의 제어에 따라, 제1 레이어 부호화부(14), 제2 레이어 부호화부(16) 및 비트스트림 생성부(18)가 제어될 수도 있다.
인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 부호화부(14) , 제2 레이어 부호화부(16) 및 비트스트림 생성부(18)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 인터 레이어 비디오 부호화 장치(10)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
인터 레이어 비디오 부호화 장치(10)는, 비디오 부호화 결과를 출력하기 위해, 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 변환을 포함한 비디오 부호화 동작을 수행할 수 있다. 인터 레이어 비디오 부호화 장치(10)의 내부 비디오 인코딩 프로세서는, 별개의 프로세서로서 비디오 부호화 동작을 구현할 수 있다. 또한, 인터 레이어 비디오 부호화 장치(10) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 가능하다.
도 1c 는 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 획득부(22) 및 복호화부(24)를 포함할 수 있다. 복호화부(24)는 제1 레이어 복호화부(26) 및 제2 레이어 복호화부(28)를 포함할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 레이어별로 부호화된 비디오에 대한 비트스트림을 수신한다.
인터 레이어 비디오 복호화 장치(20)는, 스케일러블 부호화 방식에 따라 레이어별로 비트스트림들을 수신할 수 있다. 인터 레이어 비디오 복호화 장치(20)가 수신하는 비트스트림들의 레이어의 개수가 한정되는 것은 아니다. 하지만, 설명의 편의를 위해 이하 인터 레이어 비디오 복호화 장치(20)의 제1 레이어 복호화부(26)가 제1 레이어 스트림을 수신하여 복호화하고, 제2 레이어 복호화부(28)가 제2 레이어 스트림을 수신하여 복호화하는 실시예에 대해 상술한다.
예를 들어, 공간적 스케일러빌러티에 기반한 인터 레이어 비디오 복호화 장치(20)는, 서로 다른 해상도의 영상시퀀스가 서로 다른 레이어로 부호화된 스트림을 수신할 수 있다. 제1 레이어 스트림을 복호화하여 저해상도 영상시퀀스가 복원되고, 제2 레이어 스트림을 복호화하여 고해상도 영상 시퀀스가 복원될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 복호화될 수 있다. 스테레오스코픽 비디오 스트림이 다수 레이어로 수신된 경우에, 제1 레이어 스트림을 복호화하여 좌시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
또는 다시점 비디오 스트림이 다수 레이어로 수신된 경우에, 제1 레이어 스트림을 복호화하여 중앙시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 좌시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제3 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 스케일러블 비디오 코딩 방식이 수행될 수 있다. 제1 레이어 스트림을 복호화하여 기본 프레임 레이트의 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 고속 프레임 레이트의 영상들이 복원될 수 있다.
또한, 제2 레이어가 셋 이상인 경우, 제1 레이어 스트림으로부터 제1 레이어 영상들이 복원되고, 제1 레이어 복원영상들을 참조하여 제2 레이어 스트림을 더 복호화하면 제2 레이어 영상들이 더 복원될 수 있다. 제2 레이어 복원영상을 참조하여 K번째 레이어 스트림을 더 복호화하면 K번째 레이어 영상들이 더 복원될 수도 있다.
인터 레이어 비디오 복호화 장치(20)는, 제1 레이어 스트림과 제2 레이어 스트림으로부터 제1 레이어 영상들 및 제2 레이어 영상들의 부호화된 데이터를 획득하고, 더하여 인터 예측에 의해 생성된 모션 벡터 및 인터 레이어 예측에 의해 생성된 예측 정보를 더 획득할 수 있다.
예를 들어 인터 레이어 비디오 복호화 장치(20)는 각 레이어별로 인터 예측된 데이터를 복호화하고, 다수 레이어 간에 인터 레이어 예측된 데이터를 복호화할 수 있다. 부호화 단위 또는 예측 단위를 기초로 움직임 보상(Motion Compensation) 및 인터 레이어 비디오 복호화를 통한 복원이 수행될 수도 있다.
각 레이어 스트림에 대해서는 동일 레이어의 인터 예측을 통해 예측된 복원영상들을 참조하여, 현재영상을 위한 움직임 보상을 수행함으로써, 영상들을 복원할 수 있다. 움직임 보상은, 현재 영상의 모션 벡터를 이용하여 결정된 참조영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
또한, 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 예측을 통해 예측된 제2 레이어 영상을 복호화하기 위해 제1 레이어 영상들의 예측 정보를 참조하여 인터 레이어 비디오 복호화를 수행할 수도 있다. 인터 레이어 비디오 복호화는, 현재 영상의 예측정보를 결정하기 위하여 다른 레이어의 참조블록의 예측 정보를 이용하여 현재 영상의 예측정보를 재구성하는 동작을 의미한다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상들을 이용하여 예측된 제3 레이어 영상들을 복원하기 위한 인터 레이어 비디오 복호화를 수행할 수도 있다. 인터 레이어 예측 구조는 추후 도 3a를 참조하여 상술한다.
다만, 다양한 실시예에 따른 제2 레이어 복호화부(28)가, 제1 레이어 영상시퀀스를 참조하지 않고도, 제2 레이어 스트림을 복호화할 수도 있다. 따라서, 제2 레이어 복호화부(28)가 제2 레이어 영상 시퀀스를 복호화하기 위해, 인터 레이어 예측을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
인터 레이어 비디오 복호화 장치(20)는 비디오의 각각의 영상의 블록별로 복호화한다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다.
획득부(22)는 비트스트림을 수신하고, 수신된 비트스트림으로부터 부호화된 영상에 관한 정보를 획득할 수 있다.
예를 들어, 획득부(22)는 비트스트림으로부터 영상의 서브블록 크기 정보를 획득할 수 있다. 구체적으로 획득부(22)는 비트스트림으로부터 특정 레이어 영상의 서브블록 크기를 나타내는 서브블록 크기 정보를 획득한다. 제1 레이어 복호화부(26)는, 파싱된 제1 레이어 영상의 부호화 심볼들을 이용하여, 제1 레이어 영상을 복호화할 수 있다. 인터 레이어 비디오 복호화 장치(20)가 트리 구조의 부호화 단위들을 기초로 부호화된 스트림들을 수신한다면, 제1 레이어 복호화부(26)는, 제1 레이어 스트림의 최대 부호화 단위마다, 트리 구조의 부호화 단위들을 기초로 복호화를 수행할 수 있다.
제1 레이어 복호화부(26)는, 최대 부호화 단위마다 엔트로피 복호화를 수행하여, 부호화 정보와 부호화된 데이터를 획득할 수 있다. 제1 레이어 복호화부(26)는, 스트림으로부터 획득한 부호화된 데이터에 대해 역양자화, 역변환을 수행하여, 레지듀얼 성분을 복원할 수 있다. 다른 실시예에 따른 제1 레이어 복호화부(26)는, 양자화된 변환계수들의 비트스트림을 직접 수신할 수도 있다. 양자화된 변환계수들에 대해 역양자화, 역변환을 수행한 결과, 영상들의 레지듀얼 성분이 복원될 수도 있다.
제1 레이어 복호화부(26)는, 동일 레이어 영상들 간에 움직임 보상을 통해, 예측영상을 결정하고, 예측영상과 레지듀얼 성분을 결합하여 제1 레이어 영상들을 복원할 수 있다.
제2 레이어 복호화부(28)는 인터 레이어 예측 구조에 따르면, 제1 레이어 복원영상의 샘플들을 이용하여 제2 레이어 예측영상을 생성할 수 있다. 제2 레이어 복호화부(28)는 제2 레이어 스트림을 복호화하여, 인터 레이어 예측에 따른 예측 오차를 획득할 수 있다. 제2 레이어 복호화부(28)는, 제2 레이어 예측영상에 예측 오차를 결합함으로써 제2 레이어 복원영상을 생성할 수 있다.
제2 레이어 복호화부(28)는, 제1 레이어 복호화부(26)에서 복호화된 제1 레이어 복원영상을 이용하여 제2 레이어 예측영상을 결정할 수 있다. 제2 레이어 복호화부(28)는, 인터 레이어 예측 구조에 따라, 제2 레이어 영상의 부호화 단위 또는 예측 단위가 참조할 제1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제1 레이어 영상의 복원블록이 결정될 수 있다. 제2 레이어 복호화부(28)는, 제2 레이어 블록에 상응하는 제1 레이어 복원블록을 이용하여, 제2 레이어 예측블록을 결정할 수 있다. 제 2 레이어 복호화부(28)는 제2 레이어 블록과 동일한 지점에 위치(co-located)하는 제1 레이어 복원 블록을 이용하여 제2 레이어 예측 블록을 결정할 수 있다.
제2 레이어 복호화부(28)는, 인터 레이어 예측 구조에 따라 제1 레이어 복원블록을 이용하여 결정된 제2 레이어 예측블록을, 제2 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수도 있다. 이 경우에 제2 레이어 복호화부(28)는, 제1 레이어 복원영상을 이용하여 결정한 제2 레이어 예측블록의 샘플값과 인터 레이어 예측에 따른 레지듀얼 성분을 합성함으로써, 제2 레이어 블록을 복원할 수 있다.
한편, 전술한 인터 레이어 비디오 복호화 장치(20)가 다시점 비디오를 복호화하는 경우에, 부호화 되는 제1 레이어 영상은 제1 시점 비디오이고, 제2 레이어 영상은 제2 시점 비디오일 수 있다. 또한, 전술한 인터 레이어 비디오 복호화 장치(20)가 칼라 뎁스 비디오를 복호화하는 경우에, 부호화 되는 제1 레이어 영상은 컬러(텍스쳐) 비디오이고, 제2 레이어 영상은 뎁스 비디오일 수 있다.
한편, 다시점 영상은 동일한 시간에 취득되기 때문에 각 시점의 영상 별로 유사도가 매우 높다. 따라서, 디스패리티 벡터를 이용하여 다른 시점의 영상에서 현재 부호화 하고자 하는 블록과 가장 유사한 영역을 찾아 부호화 하는 디스패리티 보상 예측(Disparity compensated prediction)을 수행함으로써 부호화 효율을 높일 수 있다. 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 예측을 위한 디스패리티 벡터를 비트스트림을 통해 획득하거나, 또는 다른 부호화 정보들로부터 예측할 수 있다.
예를 들면, 현재 복원되는 블록의 주변블록들로부터 디스패리티 벡터가 예측될 수 있다. 또한 주변 블록으로부터 디스패리티 벡터를 예측하지 못한다면 디스패리티 벡터를 기본 디스패리티 벡터로 설정할 수 있다.
제2 레이어 복호화부(28)는 비트스트림으로부터 획득된 제2 레이어 영상의 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정할 수 있다.
제2 레이어 복호화부(28)는 제2 레이어 영상에 포함된 현재 블록을 시작지점으로 하여 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득한다.
제2 레이어 복호화부(28)는 서브블록 크기 정보에 따른 서브블록의 크기가 결정된다. 제2 레이어 복호화부(28)는 결정된 서브블록의 크기를 이용하여 현재 블록으로부터 서브블록이 획득될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득할 수 있다. 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다.
제2 레이어 복호화부(28)는 제2 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 예측하고, 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 복호화할 수 있다.
이상 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 움직임 예측을 수행하기로 결정함을 가정하여 설명하였다.
이하에서는 인터 레이어 비디오 복호화 장치(20)가 모션 벡터 후보를 결정하고, 병합 리스트를 생성하고, 병합 리스트를 이용하여 인터 레이어 움직임 예측을 수행하기로 결정하는 과정을 상술하도록 한다. 여기서 인터 레이어 움직임 예측은 인터-시점 움직임 예측임을 가정한다.
한편, 인터 레이어 비디오 복호화 장치(20)는 모션 벡터를 예측하기 위해 다양한 모션 벡터 후보들 중 하나를 이용할 수 있다.
예를 들어, 인터 레이어 비디오 복호화 장치(20)는 공간적 후보블록으로부터 예측될 모션 벡터를 하나의 모션 벡터 후보로 결정할 수 있다. 또한 인터 레이어 비디오 복호화 장치(20)는 시간적 후보블록으로부터 예측될 모션 벡터를 또 다른 하나의 모션 벡터 후보로 결정할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 서브블록 기반 인터-시점 모션 벡터 예측을 위한 모션 벡터 후보를 결정한다.
인터 레이어 비디오 복호화 장치(20)는 디스패리티 벡터(mvDisp)를 이용하여 현재 예측 단위에 대한 인터-시점 모션 벡터 예측을 위한 모션 벡터 후보를 결정할 수 있다. 이와 함께 인터 레이어 비디오 복호화 장치(20)는 참조 시점을 나타내는 인덱스를 이용하여 현재 예측 단위에 대한 인터 시점 모션 벡터 예측을 위한 모션 벡터 후보를 결정할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 모션 벡터 후보를 L0 예측 리스트및 L1 예측 리스트 중 적어도 하나로부터 획득한다.
이와 함께 인터 레이어 비디오 복호화 장치(20)는 L0 예측 리스트 또는 L1 예측 리스트에 포함된 픽처들 중 참조할 픽처를 결정할 수 있다. 구체적으로 인터 레이어 비디오 복호화 장치(20)는 참조 픽처 인덱스를 이용하여 예측 리스트에 포함된 픽처들 중 참조할 픽처를 결정할 수 있다. 참조 픽처 인덱스는 L0 예측 리스트에 포함된 픽처들 중 참조할 픽처를 가리키는 인덱스 및 L1 예측 리스트에 포함된 픽처들 중 참조할 픽처를 가리키는 인덱스를 포함할 수 있다.
또한 인터 레이어 비디오 복호화 장치(20)는 예측 방향을 결정할 수 있다. 구체적으로 인터 레이어 비디오 복호화 장치(20)는 예측 방향 정보를 이용하여 예측 방향을 결정할 수 있다. 예측 방향 정보는 L1 리스트 및 L0 리스트 중 적어도 하나의 예측 방향을 나타내는 정보이다. 예를 들어 예측 방향 정보는 L0 리스트가 이용가능함을 나타내는 L0 예측 방향 정보 및 L1 리스트가 이용가능함을 나타내는 L1 예측 방향 정보를 포함할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 추후에 예측 방향과 관련된 예측 리스트에 포함된 하나의 픽처를 참조하고, 모션 벡터를 이용하여 모션 벡터를 예측하고, 예측된 모션 벡터를 이용하여 참조 픽처 내 블록을 결정하고, 결정된 블록을 이용하여 예측 샘플값을 생성할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(20)는 모션 벡터 후보를 결정하면, 병합 후보 리스트를 생성한다.
예를 들어, 인터 레이어 비디오 복호화 장치(20)는 공간적 병합 후보, 시간적 병합 후보, 인터-시점 움직임 보상 병합 후보 및 인터-시점 디스패리티 보상 병합 후보와 같은 다양한 병합 후보를 포함하는 병합 후보 리스트를 생성한다.
이때, 병합 후보에 대해서 인터 예측에 이용될 수 있는 모션 벡터 후보, 참조 픽처 인덱스, 예측 방향이 결정되어 있을 수 있다. 구체적으로 병합 후보는 모션 벡터 예측에 이용된 블록을 의미할 수 있다.
먼저, 인터 레이어 비디오 복호화 장치(20)는 각 병합 후보들의 우선순위에 따라 각 병합 후보가 이용가능한지를 결정한다. 인터 레이어 비디오 복호화 장치(20)는 이용가능한 병합 후보를 병합 리스트에 추가한다.
예를 들어, 인터 레이어 비디오 복호화 장치(20)는 시간적 병합 후보가 이용가능한지를 판단하고, 시간적 병합 후보가 이용가능하다면 시간적 병합 후보를 병합 리스트에 추가한다. 인터 레이어 비디오 복호화 장치(20)는 병합후보의 우선순위에 따라, 다음 우선순위인 인터-시점 움직임 보상 병합 후보가 이용가능한지를 결정할 수 있다.
만약 인터-시점 움직임 보상 병합 후보가 이용가능하다면, 인터 레이어 비디오 복호화 장치(20)는 인터-시점 움직임 보상 병합 후보를 병합 리스트에 추가한다.
한편, 병합 후보 리스트에 추가될 수 있는 병합 후보의 개수는 제한될 수 있다. 따라서 인터 레이어 비디오 복호화 장치(20)는 병합 후보들 간의 우선순위에 따라 이용가능한 병합 후보를 추가하고, 병합 후보 리스트에 병합 후보를 추가할 공간이 부족한 경우에는 더 이상 병합 후보를 병합 후보 리스트에 추가하지 않는다.
한편 인터 레이어 비디오 복호화 장치(20)는 병합 인덱스를 획득한다. 이때, 병합 인덱스는 병합 후보 리스트에 추가된 병합 후보들 중 하나를 가리키는 인덱스를 의미한다.
인터 레이어 비디오 복호화 장치(20)는 병합 인덱스를 이용하여 병합 리스트 중 벡터 예측에 이용될 후보블록을 결정한다.
만약 병합 인덱스를 이용하여 결정된 병합 후보가 인터-시점 움직임 보상병합 후보(IvMC)인 경우, 인터 레이어 비디오 복호화 장치(20)는 인터-시점 모션 벡터 예측을 통해 결정된 모션 벡터 후보, 참조 픽처 인덱스 및 예측방향 정보를 이용하여 인터-시점 움직임 보상을 수행한다.
인터 레이어 비디오 복호화 장치(20)는 인터-시점 움직임 보상을 수행하여, 현재 예측 단위에 대한 예측 샘플값을 생성한다. 구체적으로 인터 레이어 비디오 복호화 장치(40)는 모션 벡터 후보를 이용하여 현재 예측 단위의 모션 벡터를 예측하고, 예측된 모션 벡터를 이용하여 블록을 결정한다. 인터 레이어 비디오 복호화 장치(40)는 결정된 블록을 이용하여 현재 예측단위에 대한 예측 샘플값을 생성한다.
한편, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 인터-시점 모션 벡터 후보를 결정하는 과정에서 현재 부호화 단위의 파티션 타입이 2Nx2N 타입인 경우, 서브블록 기반 인터-시점 모션 벡터 후보를 결정할 수 있다.
서브블록 기반 인터-시점 모션 벡터 후보는 일 시점의 현재 예측 단위를 서브 예측 단위로 분할하고, 서브 예측 단위로 다른 시점에 위치하는 서브 예측 단위를 결정하여, 결정된 다른 시점에 위치하는 서브블록의 모션 정보를 이용하여 현재 예측 단위에 포함된 서브 예측 단위에 대해 결정된 모션 벡터 후보를 의미한다.
반면, 인터 레이어 비디오 복호화 장치(20)는 파티션 타입이 2Nx2N 타입이 아니라면, 서브블록 기반 인터-시점 모션 벡터 후보를 결정하지 않을 수 있다.
본 발명의 일 실시에에 따른 현재 부호화 단위의 파티션 타입이 2Nx2N 타입인 경우(PartMode==PART_2Nx2N), 인터 레이어 비디오 복호화 장치(20)는 현재 예측 단위의 모션 정보가 서브블록 크기의 모션 정확도를 가진다고 결정할 수 있다. 즉, 인터 레이어 비디오 복호화 장치(20)는 서브블록 기반으로 인터-시점 움직임 보상을 수행하여 현재 예측 단위에 대한 예측 샘플값을 생성할 수 있다.
반면 인터 레이어 비디오 복호화 장치(20)는 현재 부호화 단위의 파티션 타입이 2Nx2N 타입이 아닌 경우, 현재 예측 단위의 모션 정보가 서브블록 크기의 모션 정확도를 가지지 않는다고 결정할 수 있다.
이 경우, 인터 레이어 비디오 복호화 장치(20)는 서브블록기반 인터-시점 움직임 보상을 수행하지 않을 수 있다.
도 1d 는 다양한 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
단계 21에서, 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상의 서브블록 크기 정보를 획득한다. 이때, 서브블록 크기 정보는 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 나타낸다.
단계 23에서, 인터 레이어 비디오 복호화 장치(20)는 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정한다.
단계 25에서, 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상에 포함된 현재 블록에 대응하는 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정한다.
예를 들어, 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상에 포함된 현재 블록으로부터 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득한다. 이때, 인터 레이어 비디오 복호화 장치(20)는 획득된 디스패리티 벡터를 이용하여 후보블록을 결정할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상에 포함된 현재 블록과 동일한 지점에 위치(co-located)한 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
단계 27에서, 인터 레이어 비디오 복호화 장치(20)는 현재 블록으로부터 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득한다. 이때 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다.
단계 29에서, 인터 레이어 비디오 복호화 장치(20)는 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 획득 또는 예측하고, 예측 또는 획득된 현재 블록의 모션 정보를 이용하여 현재 블록을 복호화한다.
도 2a 는 본 발명의 다른 실시예에 따른 인터 레이어 비디오 부호화 장치의 블록도를 도시한다.
인터 레이어 비디오 부호화 장치(30)는 부호화부(32)를 포함할 수 있다.
부호화부(32)는 제1 레이어 부호화부(34) 및 제2 레이어 부호화부(36)를 포함할 수 있다. 한편, 부호화부(32)는 기능이 서로 배치되지 않는 한 부호화부(12)에서 수행되는 기능 중 일부를 수행할 수 있다.
제1 레이어 부호화부(34)는 부호화된 제1 레이어 영상을 부호화할 수 있다.
제2 레이어 부호화부(36)는 제2 레이어 영상에 포함된 현재 블록에 대응하는 제1 레이어 영상의 후보블록을 결정할 수 있다.
예를 들어, 제2 레이어 부호화부(36)는 제2 레이어 영상에 포함된 현재 블록을 시작 지점으로 하여 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득할 수 있다.
한편, 제2 레이어 부호화부(36)는 제2 레이어 영상에 포함된 현재 블록과 동일한 지점에 위치(co-located)하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
제2 레이어 부호화부(36)는 현재 블록을 적어도 하나의 서브블록으로 분할하기 위해 현재 블록에 포함될 적어도 하나의 서브블록을 결정할 수 있다.
제2 레이어 부호화부(36)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 소정의 크기가 아닌 크기의 블록을 서브블록으로 결정한다. 특히 이때 정수배가 아닌 경우로는 1)현재 블록의 크기가 소정의 크기보다 큰 경우(예를 들어, 1.5배) 또는 2)현재 블록의 크기가 소정의 크기보다 작은 경우(예를 들어, 0.5배), 3) 현재 블록의 너비 및 높이 중 하나는 소정의 너비 또는 너비보다 크거나 같고, 현재 블록의 너비 및 높이 중 나머지 하나는 소정의 너비 또는 너비보다 작거나 같은 경우(현재 블록의 너비 및 높이가 동일한 경우 제외)가 있을 수 있다. 본 실시예에서는 특히 1)인 경우를 전제로 한다.
본 발명의 일 실시예에 따르면 제2 레이어 부호화부(36)는 소정의 크기가 아닌 크기의 블록을 결정할 때, 현재 블록의 크기와 동일한 크기의 블록을 서브블록으로 결정할 수 있다. 예를 들어, 현재 블록의 크기가 16x12이고, 소정의 블록 크기가 8x8인 경우, 현재 블록의 높이(즉, 12)는 소정의 블록 높이(즉, 8)의 정수배가 아닌 1.5배이기 때문에 현재 블록의 크기와 동일한 크기의 블록(16x12)을 서브블록으로 결정할 수 있다.
제2 레이어 부호화부(36)는 더 이상 다른 서브블록(예를 들어, 후술할 제2 서브블록)을 결정하지 않고, 현재 블록의 크기와 동일한 크기의 서브블록을 현재 블록에 포함될 서브블록으로 결정할 수 있다.
본 발명의 다른 실시예에 따르면 먼저 제2 레이어 부호화부(36)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아니고, 소정의 블록 크기와 동일한 크기의 적어도 하나의 블록을 제1 서브블록으로 결정할 수 있다.
예를 들어, 제2 레이어 부호화부(36)는 현재 블록의 크기가 12x8이고, 소정의 블록 크기가 8x8인 경우, 현재 블록의 너비가 소정의 블록 너비의 정수배가 아니기 때문에 소정의 블록 크기(8x8)과 동일한 크기의 블록을 제1 서브블록으로 결정할 수 있다.
이때, 제2 레이어 부호화부(36)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 제1 서브블록 외에 제2 서브블록을 결정할 수 있다. 이때 제2 서브블록은 소정의 블록 너비 및 소정의 블록 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록을 의미한다.
예를 들어, 현재 블록의 크기가 12x8이고, 소정의 블록 크기가 8x8인 경우, 소정의 블록 크기와 동일한 크기의 블록을 제1 서브블록으로 결정할 수 있다. 이때, 제1 서브블록을 현재 블록 내 적절하게 위치(현재 블록 내 가장 좌측 또는 현재 블록 내 가장 우측으로 위치)시킨 경우, 4x8 크기의 공간이 남게 된다. 원래 소정의 블록 크기와 동일한 크기의 블록을 4x8 크기의 남은 공간에 위치하려는 경우, 현재 블록 내에 소정의 블록 크기와 동일한 크기의 블록은 남은 공간에 맞지 않는다.
따라서 제2 레이어 부호화부(36)는 남은 공간에 맞는 소정의 블록 너비보다 작은 너비(즉, 4)의 블록을 현재 블록에 포함될 제2 서브블록으로 결정할 수 있다. 제2 서브블록은 소정의 크기와 동일하지 않은 크기의 블록이다.
예를 들어, 제2 서브블록의 크기는 4x8 외에 8x4일 수 있다. 제2 서브블록의 크기는 허용되는 예측 단위의 크기이기 때문에 소정의 크기와 동일한 크기의 블록을 서브블록으로 하지 않더라도 인터 시점 움직임 예측하는 과정에서 제2 서브블록을 이용할 수 있다.
구체적으로 제2 레이어 부호화부(36)는 현재 블록의 최상단 좌측 픽셀로부터 가로 또는 세로 방향으로 소정의 너비 또는 높이마다 분할 경계로 하여 분할 경계에 따라 현재 블록을 적어도 하나의 서브블록으로 분할할 수 있다.
예를 들어, 현재 블록의 너비가 12이고, 소정의 크기가 8x8인 경우, 최상단 좌측 픽셀로부터 가로 방향으로 8 픽셀마다 분할 경계로 할 수 있다. 또한 현재 블록의 높이가 12이고, 소정의 크기가 8x8인 경우, 최상단 좌측 픽셀로부터 세로 방향으로 8 픽셀마다 분할 경계로 할 수 있다.
분할 경계를 따라 분할되어 획득된 블록 중 일부 블록은 소정의 높이 및 너비와 동일한 높이 및 너비의 블록이고, 해당 블록은 제1 서브블록으로 결정될 수 있다.
한편, 제2 레이어 부호화부(36)는 분할 경계를 결정하는 과정에서 현재 블록의 너비 또는 높이가 소정의 너비 또는 높이의 정수배가 아닌 경우, 현재 블록 내 가장 우측에 위치한 분할 경계의 우측 공간 및 현재 블록 내 가장 하단에 위치한 분할 경계의 아래 공간에 소정의 너비 또는 높이보다 작은 너비 또는 높이의 블록들만이 맞는다.
따라서 가장 우측의 분할 경계에 위치하는 우측 공간 및 현재 블록의 가장 하단에 위치하는 분할 경계의 아래 공간에는 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록이 현재 블록 안의 영역 내에 위치할 수 있다.
이때, 소정의 너비 및 높이 중 적어도 하나보다 너비 또는 높이가 작은 블록은 제2 서브블록으로 결정될 수 있다.
다만 이에 제한되지 않고, 제2 레이어 부호화부(36)는 분할 경계를 다양한 방법으로 결정하고, 분할 경계에 따라 현재 블록에 포함될 서브블록을 결정할 수 있다.
예를 들어, 현재 블록의 너비가 12이고, 소정의 블록 크기가 8x8인 경우, 최상단 우측 픽셀로부터 가로 방향(좌측 방향)으로 8 픽셀마다 분할 경계로 할 수 있다. 현재 블록의 높이가 12이고, 소정의 블록 크기가 8x8인 경우, 최상단 우측 픽셀로부터 세로 방향으로 8 픽셀마다 분할 경계로 할 수 있다. 분할 경계를 따라 분할되어 획득된 대부분의 블록은 소정의 높이 및 너비의 블록이고, 소정의 높이 및 너비의 블록은 제1 서브블록으로 결정될 수 있다.
한편, 제2 레이어 부호화부(36)는 분할 경계를 결정하는 과정에서 현재 블록의 너비 또는 높이가 소정의 너비 또는 높이의 정수배가 아닌 경우, 현재 블록 내 가장 좌측에 위치하는 분할 경계의 좌측 공간 및 현재 블록 내 가장 하단에 위치하는 분할 경계의 아래 공간에 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록들만이 위치할 수 있다.
따라서 가장 좌측에 위치한 분할 경계의 좌측 공간 및 현재 블록의 가장 하단에 위치한 분할 경계의 아래 공간에는 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록이 현재 블록 내에 위치할 수 있다.
이때, 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록은 제2 서브블록으로 결정될 수 있다.
제2 레이어 부호화부(36)는 서브블록이 결정될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득할 수 있다.
이때 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다. 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록은 제2 레이어 영상의 서브블록과 동일한 지점에 위치(co-located)하는 제1 레이어 영상의 서브블록을 의미할 수 있다.
제2 레이어 부호화부(36)는 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 예측 또는 획득하고, 예측 또는 획득된 현재 블록의 모션 정보를 이용하여 현재 블록을 부호화할 수 있다.
인터 레이어 비디오 부호화 장치(30)는 비트스트림 생성부(미도시)를 더 포함할 수 있다. 비트스트림 생성부(미도시)는 부호화된 현재 블록을 포함하는 부호화된 제2 레이어 영상 및 부호화된 제1 레이어 영상을 포함하는 비트스트림을 생성할 수 있다.
한편, 인터 레이어 비디오 부호화 장치(30)는 도 1a를 참조하여 기재된 인터 레이어 비디오 부호화 장치(10)에 의해 수행되는 기능 중 일부를 수행할 수 있다. 구체적으로 부호화부(32)는 부호화부(12)에 의해 수행되는 기능 중 일부를 수행할 수 있다. 마찬가지로 비트스트림 생성부(미도시)는 비트스트림 생성부(18)에 의해 수행되는 기능 중 일부를 수행할 수 있다.
도 2b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
단계 31에서, 인터 레이어 비디오 부호화 장치(30)는 제1 레이어 영상을 부호화할 수 있다.
단계 33에서, 인터 레이어 비디오 부호화 장치(30)는 제2 레이어 영상에 포함된 현재 블록에 대응하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
예를 들어, 인터 레이어 비디오 부호화 장치(30)는 제2 레이어 영상에 포함된 현재 블록으로부터 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득할 수 있다. 인터 레이어 비디오 부호화 장치(30)는 획득된 디스패리티 벡터를 이용하여 제1 레이어 영상에 포함된 후보블록을 찾을 수 있다.
단계 35에서, 인터 레이어 비디오 부호화 장치(30)는 현재 블록의 크기가 소정의 서브블록의 크기의 정수배가 아닌 경우, 소정의 서브블록 크기의 정수배가 아닌 경우, 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정할 수 있다.
단계 37에서, 인터 레이어 비디오 부호화 장치(30)는 서브블록이 결정될때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득할 수 있다. 이때, 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다.
단계 39에서, 인터 레이어 비디오 부호화 장치(30)는 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 획득 또는 예측하고, 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 부호화할 수 있다.
도 2c는 본 발명의 다른 실시예에 따른 인터 레이어 비디오 부호화 장치의 블록도를 도시한다.
인터 레이어 비디오 복호화 장치(40)는 획득부(42) 및 복호화부(44)를 포함할 수 있다.
복호화부(44)는 제1 레이어 복호화부(46) 및 제2 레이어 복호화부(48)를 포함할 수 있다. 한편, 복호화부(44)는 기능이 서로 배치되지 않는 한 복호화부(24)에서 수행되는 기능 중 일부를 수행할 수 있다.
제1 레이어 복호화부(46)는 부호화된 제1 레이어 영상을 부호화할 수 있다.
제2 레이어 복호화부(48)는 제2 레이어 영상에 포함된 현재 블록에 대응하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
예를 들어, 제2 레이어 복호화부(48)는 제2 레이어 영상에 포함된 현재 블록으로부터 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득할 수 있다. 제2 레이어 복호화부(48)는 디스페리티 벡터를 이용하여 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
한편, 제2 레이어 복호화부(48)는 제2 레이어 영상에 포함된 현재블록과 동일한 지점에 위치(co-located)한 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
제2 레이어 복호화부(48)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 소정의 서브블록 크기가 아닌 다른 크기의 블록을 서브블록으로 결정한다.
본 발명의 일 실시예에 따르면 제2 레이어 복호화부(48)는 소정의 크기가 아닌 크기의 블록을 결정할 때, 현재 블록의 크기와 동일한 크기의 블록을 서브블록으로 결정할 수 있다. 예를 들어, 현재 블록의 크기가 12x8이고, 소정의 블록 크기가 8x8인 경우, 현재 블록의 너비(즉, 12)는 소정의 블록 너비(즉, 8)의 정수배가 아닌 1.5배이기 때문에 현재 블록의 크기와 동일한 크기의 블록(12x8)을 제1 서브블록으로 결정할 수 있다.
제2 레이어 복호화부(48)는 더 이상 다른 서브블록(예를 들어, 후술할 제2 서브블록)을 결정하지 않고, 현재 블록의 크기와 동일한 크기의 제1 서브블록을 현재 블록에 포함될 서브블록으로 결정할 수 있다.
본 발명의 다른 실시예에 따르면 먼저 제2 레이어 복호화부(48)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아니고, 소정의 블록 크기와 동일한 크기의 적어도 하나의 블록을 제1 서브블록으로 결정할 수 있다.
예를 들어, 제2 레이어 복호화부(48)는 현재 블록의 크기가 12x8이고, 소정의 블록 크기가 8x8인 경우, 현재 블록의 너비가 소정의 블록 너비의 정수배가 아니기 때문에 소정의 블록 크기(8x8)과 동일한 크기의 블록을 제1 서브블록으로 결정할 수 있다.
이때, 제2 레이어 복호화부(48)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 제1 서브블록 외에 제2 서브블록을 결정할 수 있다. 이때 제2 서브블록은 소정의 블록 너비 및 소정의 블록 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록을 의미한다.
예를 들어, 현재 블록의 크기가 12x8이고, 소정의 블록 크기가 8x8인 경우, 소정의 블록 크기와 동일한 크기의 블록을 제1 서브블록으로 결정할 수 있다. 이때, 제1 서브블록을 현재 블록 내 적절하게 위치(현재 블록 내 가장 좌측 또는 현재 블록 내 가장 우측으로 위치)시킨 경우, 4x8 크기의 공간이 남게 된다. 원래 소정의 블록 크기와 동일한 크기의 블록을 4x8 크기의 남은 공간에 위치하려는 경우, 현재 블록 내에 소정의 블록 크기와 동일한 크기의 블록이 남은 공간에 맞지 않는다.
따라서 제2 레이어 복호화부(48)는 남은 공간에 맞는 소정의 블록 너비보다 작은 너비(즉, 4)의 블록을 현재 블록에 포함될 제2 서브블록으로 결정할 수 있다.
예를 들어, 제2 서브블록의 크기는 4x8 또는 8x4일 수 있다. 제2 서브블록의 크기는 허용되는 예측 단위의 크기이기 때문에 소정의 크기의 블록을 서브블록으로 하지 않더라도 인터 레이어 움직임 예측에 제2 서브블록을 이용할 수 있다.
구체적으로 제2 레이어 복호화부(48)는 현재 블록의 최상단 좌측 픽셀로부터 가로 또는 세로 방향으로 소정의 너비 또는 높이마다 분할 경계로 하여 분할 경계에 따라 현재 블록을 적어도 하나의 서브블록으로 분할할 수 있다.
예를 들어, 현재 블록의 너비가 12이고, 소정의 크기가 8x8인 경우, 최상단 좌측 픽셀로부터 가로 방향으로 8 픽셀마다 분할 경계로 할 수 있다. 또한 현재 블록의 높이가 12이고, 소정의 크기가 8x8인 경우, 최상단 좌측 픽셀로부터 세로 방향으로 8 픽셀마다 분할 경계로 할 수 있다.
분할 경계를 따라 분할되어 획득된 대부분의 블록은 소정의 높이 및 너비의 블록이고, 소정의 높이 및 너비의 블록은 제1 서브블록으로 결정될 수 있다.
한편, 제2 레이어 복호화부(48)는 분할 경계를 결정하는 과정에서 현재 블록의 너비 또는 높이가 소정의 너비 또는 높이의 정수배가 아닌 경우, 현재 블록 내 가장 우측에 위치한 분할 경계의 우측 공간 및 현재 블록 내 가장 하단에 위치한 분할 경계의 아래 공간에 소정의 너비 또는 높이보다 작은 블록들만이 맞는다.
따라서 가장 우측의 분할 경계에 위치하는 우측 공간 및 현재 블록의 가장 하단에 위치하는 분할 경계의 아래 공간에는 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록이 현재 블록 내에 위치할 수 있다.
이때, 소정의 너비 및 높이 중 적어도 하나보다 너비 또는 높이가 작은 블록은 제2 서브블록으로 결정될 수 있다.
다만 이에 제한되지 않고, 제2 레이어 복호화부(48)는 분할 경계를 다양한 방법으로 결정하고, 분할 경계에 따라 현재 블록에 포함될 서브블록을 결정할 수 있다.
예를 들어, 현재 블록의 너비가 12이고, 소정의 크기가 8x8인 경우, 최상단 우측 픽셀로부터 가로 방향(좌측 방향)으로 8 픽셀마다 분할 경계로 할 수 있다. 현재 블록의 높이가 12이고, 소정의 크기가 8x8인 경우, 최상단 우측 픽셀로부터 세로 방향으로 8 픽셀마다 분할 경계로 할 수 있다. 분할 경계를 따라 분할되어 획득된 대부분의 블록은 소정의 높이 및 너비의 블록이고, 소정의 높이 및 너비의 블록은 제1 서브블록으로 결정될 수 있다.
한편, 제2 레이어 복호화부(48)는 분할 경계를 결정하는 과정에서 현재 블록의 너비 또는 높이가 소정의 너비 또는 높이의 정수배가 아닌 경우, 현재 블록 내 가장 좌측에 위치하는 분할 경계의 좌측 공간 및 현재 블록 내 가장 하단에 위치하는 분할 경계의 아래 공간에 소정의 너비 및 높이 중 적어도 하나보다 작은 블록들만이 위치할 수 있다.
따라서 가장 좌측에 위치한 분할 경계의 좌측 공간 및 현재 블록의 가장 하단에 위치한 분할 경계의 아래 공간에는 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록이 현재 블록 내에 위치할 수 있다. 이때, 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 블록은 제2 서브블록으로 결정될 수 있다.
제2 레이어 복호화부(48)는 서브블록이 결정될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득할 수 있다. 이때 제1 레이어 영상의 서브블록은 후보블록 안의 영역에 위치하도록 결정될 수 있다.
제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록은 제2 레이어 영상의 서브블록과 동일한 지점에 위치(co-located)하는 제1 레이어 영상의 서브블록을 의미할 수 있다.
제2 레이어 복호화부(48)는 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 획득 또는 예측하고, 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 복호화할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(40)는 도 1b를 참조하여 기재된 인터 레이어 비디오 복호화 장치(20)에 의해 수행되는 기능 중 일부를 수행할 수 있다. 구체적으로 복호화부(44)는 복호화부(24)에 의해 수행되는 기능 중 일부를 수행할 수 있다. 마찬가지로 획득부(42)는 획득부(22)에 의해 수행되는 기능 중 일부를 수행할 수 있다.
도 2d는 본 발명의 다른 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
단계 41에서, 인터 레이어 비디오 복호화 장치(40)는 부호화된 제1 레이어 영상을 복호화한다.
단계 43에서, 인터 레이어 비디오 복호화 장치(40)는 제2 레이어 영상에 포함된 현재블록에 대응하는 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
예를 들어, 인터 레이어 비디오 복호화 장치(40)는 제2 레이어 영상에 포함된 현재 블록으로부터 제1 레이어 영상에 포함된 후보블록이 가리키는 디스패리티 벡터를 획득한다. 인터 레이어 비디오 복호화 장치(40)는 디스패리티 벡터를 이용하여 제1 레이어 영상에 포함된 후보블록을 결정할 수 있다.
단계 45에서, 인터 레이어 비디오 복호화 장치(40)는 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정한다.
단계 47에서, 인터 레이어 비디오 복호화 장치(40)는 서브블록이 결정될 때, 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득한다. 이때, 제1 레이어 영상의 서브블록은 후보블록의 영역 안에 위치하도록 결정될 수 있다.
단계 49에서, 인터 레이어 비디오 복호화 장치(40)는 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 현재 블록의 모션 정보를 획득 또는 예측하고, 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 현재 블록을 복호화한다.
이하 도 3a를 참조하여 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)에서 수행될 수 있는 인터 레이어 예측 구조를 상술한다.
도 3a는 다양한 실시예에 따른 인터 레이어 예측 구조를 도시한다.
일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는, 도 3a에 도시된 다시점 비디오 예측 구조의 재생순서(50)에 따라 기본시점 영상들, 좌시점 영상들 및 우시점 영상들을 예측 부호화할 수 있다.
관련기술에 따른 다시점 비디오 예측 구조의 재생순서(50)에 따르면, 가로 방향으로 동일시점(View)의 영상들이 배열되어 있다. 따라서 'Left'로 표기된 좌시점 영상들이 가로 방향으로 일렬로 배열되고, 'Center'로 표기된 기본시점 영상들이 가로 방향으로 일렬로 배열되고, 'Right'로 표기된 우시점 영상들이 가로 방향으로 일렬로 배열되고 있다. 기본시점 영상들은, 좌시점/우시점 영상들에 대비하여, 중앙시점 영상들일 수 있다.
또한, 세로 방향으로 POC 순서가 동일한 영상들이 배열된다. 영상의 POC 순서는 비디오를 구성하는 영상들의 재생순서를 나타낸다. 다시점 비디오 예측 구조(50)에서 표시되어 있는 'POC X'는, 해당 열에 위치한 영상들의 상대적인 재생순서를 나타내며, X의 숫자가 작을수록 재생순서가 앞서고, 커질수록 재생순서가 늦어진다.
따라서 관련기술에 따른 다시점 비디오 예측 구조의 재생순서(50)에 따르면, 'Left'로 표기된 좌시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고, 'Center'로 표기된 기본시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고, 'Right'로 표기된 우시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고 있다. 또한, 기본시점 영상과 동일한 열(column)에 위치한 좌시점 영상 및 우시점 영상은, 모두 시점은 다르지만 POC 순서(재생순서)가 동일한 영상들이다.
각 시점별로, 4개의 연속 영상들이 하나의 GOP(Group of Picture)를 구성하고 있다. 각 GOP는 연속하는 앵커픽처들 사이의 영상들과 하나의 앵커픽처(Key Picture)을 포함한다.
앵커픽처는 랜덤 억세스 포인트(Random Access Point)로, 비디오를 재생할 때 영상의 재생 순서, 즉 POC 순서에 따라 배열된 영상들 중에서 임의로 재생 위치가 선택되면, 재생 위치에서 POC순서가 가장 인접하는 앵커픽처가 재생된다. 기본시점 영상들은 기본시점 앵커픽처들(51, 52, 53, 54, 55)을 포함하고, 좌시점 영상들은 좌시점 앵커픽처들(131, 132, 133, 134, 135)을 포함하고, 우시점 영상들은 우시점 앵커픽처들(231, 232, 233, 234, 235)을 포함한다.
다시점 영상들은 GOP 순서대로 재생되고 예측(복원)될 수 있다. 먼저 다시점 비디오 예측 구조의 재생순서(50)에 따르면, 각 시점별로, GOP 0에 포함된 영상들이 재생된 후, GOP 1에 포함된 영상들이 재생될 수 있다. 즉, GOP 0, GOP 1, GOP 2, GOP 3의 순으로, 각 GOP에 포함된 영상들이 재생될 수 있다. 또한, 다시점 비디오 예측 구조의 코딩순서에 따르면, 각 시점별로, GOP 0에 포함된 영상들이 예측(복원)된 후, GOP 1에 포함된 영상들이 예측(복원)될 수 있다. 즉, GOP 0, GOP 1, GOP 2, GOP 3의 순으로, 각 GOP에 포함된 영상들이 예측(복원)될 수 있다.
다시점 비디오 예측 구조의 재생순서(50)에 따르면, 영상들에 대해 시점간 예측(인터 레이어 예측) 및 인터 예측이 모두 수행된다. 다시점 비디오 예측 구조에서, 화살표가 시작하는 영상이 참조영상이고, 화살표가 끝나는 영상이 참조영상을 이용하여 예측되는 영상이다.
기본시점 영상들의 예측 결과는 부호화된 후 기본시점 영상스트림의 형태로 출력되고, 부가시점 영상들의 예측 결과는 부호화된 후 레이어 비트스트림의 형태로 출력될 수 있다. 또한 좌시점 영상들의 예측부호화 결과는 제1 레이어 비트스트림으로, 우시점 영상들의 예측부호화 결과는 제2 레이어 비트스트림으로 출력될 수 있다.
기본시점 영상들에 대해서는 인터 예측만이 수행된다. 즉, I-픽처타입인 앵커픽처들(51, 52, 53, 54, 55)은 다른 영상들을 참조하지 않지만, B-픽처타입 및 b-픽처타입인 나머지 영상은 다른 기본시점 영상들을 참조하여 예측된다. B-픽처타입 영상들은 POC 순서가 앞서는 I-픽처타입 앵커픽처과 뒤따르는 I-픽처타입 앵커픽처를 참조하여 예측된다. b-픽처타입 영상들은 POC 순서가 앞서는 I-픽처타입 앵커픽처과 뒤따르는 B-픽처타입 영상을 참조하거나, POC 순서가 앞서는 B-픽처타입 영상과 뒤따르는 I-픽처타입 앵커픽처를 참조하여 예측된다.
좌시점 영상들 및 우시점 영상들에 대해서는 각각, 다른 시점 영상들을 참조하는 시점간 예측(인터 레이어 예측) 및 동일 시점 영상들을 참조하는 인터 예측이 수행된다.
좌시점 앵커픽처들(131, 132, 133, 134, 135)에 대해, 각각 POC순서가 동일한 기본시점 앵커픽처(51, 52, 53, 54, 55)을 참조하여 시점간 예측(인터 레이어 예측)이 수행될 수 있다. 우시점 앵커픽처들(231, 232, 233, 234, 235)에 대해서는, 각각 POC순서가 동일한 기본시점 영상(51, 52, 53, 54, 55) 또는 좌시점 앵커픽처(131, 132, 133, 134, 135)을 참조하여 시점 간 예측이 수행될 수 있다. 또한, 좌시점 영상들 및 우시점 영상들 중 앵커픽처(131, 132, 133, 134, 135, 231, 232, 233, 234, 235)이 아닌 나머지 영상들에 대해서도, POC가 동일한 다른시점 영상을 참조하는 시점간 예측(인터 레이어 예측)이 수행될 수 있다.
좌시점 영상들 및 우시점 영상들 중 앵커픽처들(131, 132, 133, 134, 135, 231, 232, 233, 234, 235)이 아닌 나머지 영상들은 동일시점 영상들을 참조하여 예측된다.
다만, 좌시점 영상들 및 우시점 영상들은 각각, 동일시점의 부가시점 영상들 중에서 재생순서가 선행하는 앵커픽처를 참조하여 예측되지 않을 수 있다. 즉, 현재 좌시점 영상의 인터 예측을 위해, 현재 좌시점 영상보다 재생순서가 선행하는 좌시점 앵커픽처를 제외한 좌시점 영상들이 참조될 수 있다. 마찬가지로, 현재 우시점 영상의 인터 예측을 위해, 현재 우시점 영상보다 재생순서가 선행하는 우시점 앵커픽처를 제외한 우시점 영상들이 참조될 수 있다.
또한, 현재 좌시점 영상의 인터 예측을 위해, 현재 좌시점 영상이 속한 현재 GOP보다 선행하는 이전 GOP에 속하는 좌시점 영상은 참조하지 않고, 현재 GOP에 속하지만 현재 좌시점 영상보다 먼저 복원될 좌시점 영상을 참조하여 예측이 수행되는 것이 바람직하다. 우시점 영상의 경우도 마찬가지다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 도 3a에 도시된 다시점 비디오 예측 구조의 재생순서(50)에 따라 기본시점 영상들, 좌시점 영상들 및 우시점 영상들을 복원할 수 있다.
좌시점 영상들은, 기본시점 영상들을 참조하는 시점간 디스패리티 보상과 좌시점 영상들을 참조하는 인터 움직임 보상을 통해 복원될 수 있다. 우시점 영상들은, 기본시점 영상들 및 좌시점 영상들을 참조하는 시점간 디스패리티 보상과 우시점 영상들을 참조하는 인터 움직임 보상을 통해 복원될 수 있다. 좌시점 영상들 및 우시점 영상들의 디스패리티 보상 및 움직임 보상을 위해 참조영상들이 먼저 복원되어야 한다.
좌시점 영상의 인터 움직임 보상을 위해, 복원된 좌시점의 참조영상을 참조하는 인터 움직임 보상을 통해 좌시점 영상들이 복원될 수 있다. 우시점 영상의 인터 움직임 보상을 위해, 복원된 우시점의 참조영상을 참조하는 인터 움직임 보상을 통해, 우시점 영상들이 복원될 수 있다.
또한, 현재 좌시점 영상의 인터 움직임 보상을 위해, 현재 좌시점 영상이 속한 현재 GOP보다 선행하는 이전 GOP에 속하는 좌시점 영상은 참조하지 않고, 현재 GOP에 속하지만 현재 좌시점 영상보다 먼저 복원될 좌시점 영상만 참조되는 것이 바람직하다. 우시점 영상의 경우도 마찬가지다.
또한, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 다시점 영상을 부/복호화 하기 위해서 디스패리티 예측(또는, 인터 레이어 예측)을 수행할 뿐 아니라, 시점간 움직임 벡터 예측을 통한 영상간 움직임 보상(또는, 인터 레이어 움직임 예측)을 수행할 수도 있다.
도 3b는 다양한 실시예에 따른 멀티 레이어 비디오를 나타낸 도면이다.
다양한 네트워크 환경과 다양한 단말기에서 최적의 서비스를 제공할 수 있도록 하기 위해서, 인터 레이어 비디오 부호화 장치(10)는 다양한 공간적 해상도(spatial resolution), 다양한 화질(quality), 다양한 프레임율(frame-rate), 서로 다른 시점을 갖는 멀티 레이어 영상 시퀀스들을 부호화하여 스케일러블한 비트스트림을 출력할 수 있다. 즉, 멀티 레이어 비디오 부호화 장치(10)는 다양한 스케일러빌리티 유형에 따라 입력 영상을 부호화하여 스케일러블 비디오 비트스트림을 생성하여 출력할 수 있다. 스케일러빌리티는 시간적, 공간적, 화질적, 다시점적 스케일러빌리티 및 이러한 스케일러빌리티의 조합을 포함한다. 이러한 스케일러빌리티들은 각 유형에 따라 구분 될 수 있다. 또한, 스케일러빌리티들은 각 유형 내에서 차원 식별자로 구분될 수 있다.
예를들어, 스케일러빌리티는 시간적, 공간적, 화질적 및 다시점적 스케일러빌리티와 같은 스케일러빌리티 유형을 가진다. 그리고 각 유형에 따라 스케일러빌리티 차원 식별자로 구분될 수 있다. 예를들어, 서로 다른 스케일러빌리티를 가진다면 서로 다른 차원 식별자를 가질 수 있다. 예를들어, 해당 스케일러빌리티 유형에 대한 고차원적인 스케일러빌리티일수록 스케일러빌리티 차원을 높게 할당할 수도 있다.
비트스트림으로부터 유효한(valid) 서브스트림들로 분리될 수 있는 경우 비트스트림은 스케일러블(scalable)하다고 불린다. 공간적으로 스케일러블한 비트스트림은 다양한 해상도의 서브스트림들을 포함한다. 동일한 스케일러빌리티 유형에서 서로 다른 스케일러빌리티를 구별하기 위하여 스케일러빌리티 차원을 사용한다. 스케일러빌리티 차원은 스케일러빌리티 차원 식별자로 표현될 수 있다.
예를 들어, 공간적으로 스케일러블한 비트스트림은 QVGA, VGA, WVGA 등과 같은 서로 다른 해상도를 갖는 서브스트림으로 분리될 수 있다. 예를들어, 서로 다른 해상도를 갖는 각 레이어는 차원식별자를 사용하여 구별될 수 있다. 예를들어, QVGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 0을 가질 수 있고, VGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 1을 가질 수 있고, WVGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 2를 가질 수 있다.
시간적으로 스케일러블한 비트스트림은 다양한 프레임율을 갖는 서브스트림들을 포함한다. 예를 들어, 시간적으로 스케일러블한 비트스트림은 7.5Hz의 프레임율, 15Hz의 프레임율, 30Hz의 프레임율, 60Hz의 프레임율을 갖는 서브스트림으로 분리될 수 있다. 화질적으로 스케일러블한 비트스트림은 CGS(Coarse-Grained Scalability) 방식, MGS(Medium-Grained Scalability) 방식, FGS(Fine-Grained Scalability) 방식에 따라서 서로 다른 화질(quality)를 갖는 서브스트림으로 분리될 수 있다. 시간적 스케일러빌리티도 서로 다른 프레임율에 따라 서로 다른 차원으로 구분될 수 있으며, 화질적 스케일러빌리티도 서로 다른 방식에 따라 서로 다른 차원으로 구분될 수 있다.
다시점 스케일러블 비트스트림은 하나의 비트스트림 내에서 서로 다른 시점의 서브 스트림들을 포함한다. 일 예로 스테레오 스코픽(stereo scopic) 영상의 경우 비트스트림은 좌측 영상과 우측 영상을 포함한다. 또한, 스케일러블 비트스트림은 다시점 영상 및 뎁스맵(depth map)의 부호화된 데이터에 관한 서브스트림들을 포함할 수 있다. 시점적 스케일러빌리티도 각각의 시점에 따라 서로 다른 차원으로 구분될 수 있다.
서로 다른 스케일러블 확장 유형은 서로 결합될 수 있다. 즉, 스케일러블 비디오 비트스트림은 시간적, 공간적, 화질적, 다시점적 스케일러빌러티 중 적어도 하나가 서로 다른 영상들로 구성된 멀티 레이어의 영상 시퀀스들을 부호화한 서브스트림들을 포함할 수 있다.
도 3b에서는 서로 다른 스케일러블 확장 유형을 갖는 영상 시퀀스들(3010,3020,3030)을 도시한다. 제 1 레이어의 영상 시퀀스(3010), 제 2 레이어의 영상 시퀀스(3020) 및 제 n(n은 정수) 레이어의 영상 시퀀스(3030)들은 해상도, 화질, 시점 중 적어도 하나가 서로 다른 영상 시퀀스들일 수 있다. 또한, 제 1 레이어의 영상 시퀀스(3010), 제 2 레이어의 영상 시퀀스(3020) 및 제 n(n은 정수) 레이어의 영상 시퀀스(3030)들 중 하나의 레이어의 영상 시퀀스는 기본 레이어의 영상 시퀀스이고, 다른 레이어의 영상 시퀀스들은 향상 레이어의 영상 시퀀스일 수 있다.
일 예로, 제 1 레이어의 영상 시퀀스(3010)는 제 1 시점의 영상들, 제 2 레이어의 영상 시퀀스(3020)는 제 2 시점의 영상들, 제 n 레이어의 영상 시퀀스(3030)은 제 n 시점의 영상들일 수 있다. 다른 예로, 제 1 레이어의 영상 시퀀스(3010)는 기본 레이어의 좌시점 영상, 제 2 레이어의 영상 시퀀스(3020)는 기본 레이어의 우시점 영상, 제 n 레이어의 영상 시퀀스(3030)은 향상 레이어의 우시점 영상일 수 있다. 전술한 예에 한정되지 않고, 서로 다른 스케일러블 확장 유형을 갖는 영상 시퀀스들(3010, 3020, 3030)은 각각 서로 다른 영상 속성(attribute)을 갖는 영상 시퀀스들일 수 있다.
도 3c는 다양한 실시예에 따른 멀티 레이어 비디오의 부호화된 데이터를 포함하는 NAL 유닛들을 나타낸 도면이다.
전술한 바와 같이, 비트스트림 생성부(18)는 부호화된 멀티 레이어 비디오 데이터 및 부가 정보를 포함하는 NAL(Network Abstraction Layer) 유닛들을 출력한다. 비디오 파라메터 세트(Video Parameter Set, 이하 "VPS"라 함)는 멀티 레이어 비디오에 포함된 멀티 레이어 영상 시퀀스들(3120, 3130, 3140)에 적용되는 정보를 포함한다. VPS에 관한 정보를 포함하는 NAL 유닛을 VPS NAL 유닛(3110)라 한다.
VPS NAL 유닛(3110)는 멀티 레이어 영상 시퀀스들(3120, 3130, 3140)에 의하여 공유되는 공통적인 신택스 엘리먼트(syntax element), 불필요한 정보의 전송을 막기 위하여 동작점(operation point)에 관한 정보, 프로파일(profile)이나 레벨과 같이 세션 논의(session negotiation) 단계에서 필요한 동작점에 관한 필수 정보 등을 포함한다. 특히, 일 실시예에 따른 VPS NAL 유닛(3110)에는 멀티 레이어 비디오에서의 스케일러빌리티의 구현을 위한 스케일러빌리티 식별자에 관련된 스케일러빌리티 정보가 포함된다. 스케일러빌리티 정보는 멀티 레이어 비디오에 포함된 멀티 레이어 영상 시퀀스들(3120, 3130, 3140)에 적용되는 스케일러빌리티를 결정하기 위한 정보이다.
스케일러빌리티 정보는 멀티 레이어 비디오에 포함된 멀티 레이어 영상 시퀀스들(3120, 3120, 3140)에 적용되는 스케일러빌리티 유형 및 스케일러빌리티 차원에 대한 정보를 포함한다. 본 발명의 제 1 실시 예에 따른 부복호화 방법에서 스케일러빌리티 정보는 NAL 유닛 헤더에 포함된 계층 식별자의 값으로부터 직접적으로 얻어질 수 있다. 계층 식별자는 VPS에 포함된 다수의 레이어를 구분하기 위한 식별자이다. VPS는 각 레이어에 대한 계층 식별자를 VPS 익스텐션(VPS extension)을 통하여 시그널링할 수 있다. VPS의 각 레이어에 대한 계층 식별자는 VPS NAL 유닛에 포함되어 시그널링될 수 있다. 예를들어, VPS의 특정 레이어에 속하는 NAL 유닛들의 계층 식별자는 VPS NAL 유닛에 포함될 수 있다. 예를 들어, VPS에 속하는 NAL 유닛의 계층 식별자는 VPS 익스텐션(VPS extension)을 통하여 시그널링 될 수 있다. 따라서, 다양한 실시 예에 따른 부복호화 방법에서 VPS를 사용하여 해당 VPS에 속하는 NAL 유닛들의 레이어에 대한 스케일러빌리티 정보를 해당 NAL 유닛들의 계층 식별자 값을 사용하여 얻을 수 있다.
이하, 도 4a를 참조하여 인터 레이어 디스패리티 보상 및 인터 레이어 움직임 예측에 대해 설명한다.
도 4a 는 다양한 실시예에 따른 인터 레이어간 예측을 위한 디스패리티 벡터를 설명하기 위한 도면이다.
도 4a 를 참조하면, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 디스패리티 벡터(DV)를 이용하여 제2 레이어 현재 픽처(1400)에 포함된 현재 블록(1401)에 대응되는 제1 레이어 참조 픽처(1402)에 포함된 제1 레이어 참조 블록(1403)을 찾는 인터 레이어 예측을 수행하고, 제1 레이어 참조 블록(1403)을 이용하여 디스패리티 보상을 수행할 수 있다.
또한, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 움직임 예측을 위해, 제2 레이어 현재 블록(1401)에서 디스패리티 벡터(DV)가 가리키는 제1 레이어 참조 블록(1403)의 참조 움직임 벡터(mv_ref)를 획득하고, 획득된 참조 움직임 벡터(mv_ref)를 이용하여 현재 블록(1401)의 움직임 벡터(mv_cur)을 예측할 수 있다. 이 경우 인터 레이어 비디오 복호화 장치(20)는 예측된 움직임 벡터(mv_cur)를 이용하여 제2 레이어 영상간에 움직임 보상을 수행할 수 있다.
여기서 참조위치는 현재 블록(1401)의 중심 픽셀으로부터 디스패리티 벡터(DV)가 가리키는 위치이거나 현재 블록(1401)의 좌측 상단 픽셀로부터 디스패리티 벡터(DV)가 가리키는 위치일 수 있다.
전술한 바와 같이 서로 다른 시점의 영상을 참조하여 예측을 수행하기 위해서는 디스패리티 벡터가 필요하다. 디스패리티 벡터는 별도의 정보로써 비트스트림을 통해 부호화 장치에서 복호화 장치로 전송될 수도 있고, 뎁스 영상또는 현재 블록의 주변 블록을 기반으로 예측될 수 있다. . 즉 예측되는 디스패리티 벡터는 NBDV(Neighboring Blocks Disparity Vector) 및 DoNBDV(Depth oritented NBDV)일 수 있다.
먼저 NBDV는 주변 블록 후보들 중에서 디스패리티 벡터(인터 레이어 방향의 움직임 벡터)가 획득되는 경우, 획득된 디스패리티 벡터를 이용하여 예측된 현재 블록의 디스패리티 벡터를 의미한다.
한편, 다른 레이어 영상 중 뎁스 영상이 부호화되고 복호화된 경우, NBDV를 이용하여 현재 블록에 대응하는 뎁스 블록이 결정될 수 있다. 이때 결정된 뎁스 블록에 포함된 뎁스 값 중 대표 뎁스 값이 결정되고, 결정된 뎁스 값이 카메라 파라미터를 이용하여 디스패리티 벡터로 변환된다. DoNBDV는 변환된 디스패리티 벡터를 이용하여 예측된 디스패리티 벡터를 의미한다.
도 4b 는 다양한 실시예에 따른 디스패리티 벡터를 예측하기 위한 공간적 주변 블록 후보를 설명하기 위한 도면이다
도 4b를 참조하면, 본 발명의 일 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(4000)에서 현재 블록(1500)의 디스패리티 벡터를 예측하기 위해 공간적 주변 블록 후보들을 소정 검색 순서(예컨대, z-scan 또는 raster scan)에 따라 검색할 수 있다. 여기서 검색되는 주변 블록 후보들은 현재 블록(1500)에 시간적 또는 공간적으로 이웃하는 예측단위일 수 있다.
또는 예를 들어, 본 발명의 다른 실시예에 의하면 인터 레이어 비디오 복호화 장치(20)는 현재 블록(1500)의 좌측 하단에 위치하는 주변블록 A0(1510), 현재 블록(1500)의 좌측에 위치하는 주변블록 A1(1520), 현재 블록(1500)의 우측상단에 위치하는 주변블록 B0(1530), 현재 블록(1500)의 상단에 위치하는 주변블록 B1(1540), 현재 블록(1500)의 좌측상단에 위치하는 주변블록 B2(1550)들이 디스패리티 벡터를 획득하기 위한 공간적 주변 블록 후보들이 될 수 있다. 디스패리티 벡터를 획득하기 위해 주변 블록 후보 A1(1520), B1(1540), B0(1530), A0(1510), B2(1550)의 순서로 소정 위치의 주변블록들이 탐색될 수 있다.
도 4c 는 다양한 실시예에 따른 디스패리티 벡터를 예측하기 위한 시간적 주변 블록 후보를 설명하기 위한 도면이다.
도 4c를 참조하면, 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(4000)에 포함된 현재 블록(1500)의 인터 예측을 위해, 참조 픽처(4100)에 포함되며 현재 블록(1500)과 콜로케이티드(co-located)인 블록 Col(1560) 및 콜로케이드 블록(1560)의 주변의 블록 중 적어도 하나가 시간적 주변 블록 후보에 포함될 수 있다. 예를 들어, 콜로케이티드(co-located)인 블록 Col(1560)의 우측 하단 블록BR(1570)이 시간적 예측 후보에 포함될 수 있다. 한편, 시간적 예측 후보 결정에 이용되는 블록은 부호화 단위 또는 예측 단위일 수 있다.
도 5는 다양한 실시예에 따른 서브블록 기반 인터 시점 움직임 예측을 설명하기 위한 도면이다.
인터 레이어 비디오 복호화 장치(20)는 현재 블록(5000)의 디스패리티 벡터를 결정할 수 있다. 이때, 결정된 디스패리티 벡터는 비트스트림으로부터 획득된 디스패리티 벡터에 관한 정보를 이용하여 결정된 벡터이거나, 주변 블록으로부터 유도된 디스패리티 벡터일 수 있다. 이때, 현재 블록은 예측단위일 수 있다.
인터 레이어 비디오 복호화 장치(20)는 결정된 디스패리티 벡터를 이용하여 대응하는 현재 시점(View 1)과 다른 시점(View 0)의 영상 내 대응 블록(5020)을 결정할 수 있다. 이때, 대응블록(5020)의 크기는 현재 블록(5000)의 크기와 동일할 수 있고, 대응 블록은 현재 블록과 동일한 지점에 위치(co-located)한 블록일 수 있다.
한편, 인터 레이어 비디오 복호화 장치(20)는 현재 블록을 적어도 하나의 서브블록으로 분할할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 소정의 크기의 서브블록들로 균등 분할할 수 있다. 예를 들어, 현재 블록(5000)의 크기를 16x16이고, 서브블록들(5010)의 크기가 8x8인 경우, 인터 레이어 비디오 복호화 장치(20)는 현재 블록(5000)을 4개의 서브블록들(5010)로 분할할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(20)는 현재 블록 내 4개의 서브블록들(5040) 각각에 대응하는 현재 시점과 다른 시점(View 0)의 블록(5020) 내 서브블록들(5040)을 결정할 수 있다.
이때, 인터 레이어 비디오 복호화 장치(20)는 서브블록들(5040)의 모션 벡터를 획득하고, 획득된 모션 벡터를 이용하여 각 서브블록(5010)들의 모션 벡터를 예측할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 예측된 각 서브블록(5010)의 모션 벡터를 이용하여 현재 시점과 같은 시점(View 1) 참조 리스트 내 픽쳐들 중 하나의 픽처에 포함된 블록들 중 하나를 참조 블록으로 결정할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 참조 블록을 이용하여 움직임 보상을 수행할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(20)는 레이어 영상마다 서브블록 크기에 관한 정보를 시그널링할 수 있다. 예를 들어, 인터 레이어 비디오 복호화 장치(20)는 View 1의 레이어 영상에 관한 서브블록의 크기에 관한 정보를 비트스트림으로부터 수신할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 서브블록의 크기에 관한 정보를 이용하여 결정된 서브블록의 크기가 현재 예측 단위보다 큰 경우, 서브블록의 크기를 현재 예측 단위의 크기로 변경하여 결정할 수 있다.
예를 들어, 인터 레이어 비디오 복호화 장치(20)는 서브블록의 크기에 관한 정보를 이용하여 서브블록의 크기를 16x16 크기로 결정하고, 현재 예측 단위가 8x8인 경우라면, 인터 레이어 비디오 복호화 장치(20)는 서브블록의 크기를 현재 예측 단위의 크기(8x8)로 변경하여 결정할 수 있다. 따라서 인터 레이어 비디오 복호화 장치(20)는 서브블록의 크기에 관한 정보를 이용하여 서브블록의 크기를 결정하지만, 서브블록의 크기에 관한 정보를 이용하여 결정된 서브블록의 크기에 제한되지 않고, 조건에 따라 현재 예측 단위의 크기로 서브블록의 크기를 변경하여 결정할 수 있다.
한편 인터 레이어 비디오 복호화 장치는 부호화 단위의 최소 크기 및 부호화 단위의 최대 크기를 고려하지 않고 레이어 영상마다 서브블록의 크기에 관한 정보를 시그널링한다.
이하에서는, 인터 레이어 비디오 복호화 장치(20)가 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어영상의 서브블록의 크기를 결정하는 이유를 상술하기로 한다.
예측 단위는 부호화 단위의 최대 크기보다 작거나 같다. 만약 인터 레이어 비디오 복호화 장치가 부호화 단위의 최대 크기를 고려하지 않고 서브블록의 크기에 관한 정보를 시그널링하면, 인터 레이어 비디오 복호화 장치는 시그널링된 서브블록의 크기의 서브블록의 크기를 결정할 때, 부호화 단위의 최대 크기보다 큰 서브블록을 결정할 수 있다.
따라서 본 발명의 다른 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기에 관한 정보를 이용하여 서브블록의 크기를 결정할 수 있다. 따라서 부복호화 장치의 구현/연산 복잡도를 낮출 수 있다.
이하에서는, 인터 레이어 비디오 복호화 장치(20)가 부호화 단위의 최소 크기보다 크거나 같은 범위 내에서 제2 레이어영상의 서브블록의 크기를 결정하는 이유를 상술하기로 한다.
여기서 현재 부호화 단위는 부호화 단위의 최소 크기이고 파티션 타입으로 2Nx2N이 아닌 다른 파티션 타입이 결정되어 현재 부호화 단위에 포함된 예측 단위가 현재 부호화 단위의 최소 단위보다 작게 결정되었다고 가정한다.
이때, 인터 레이어 비디오 복호화 장치(20)가 인터 레이어 비디오 부호화 장치로부터 부호화 단위의 최소 크기보다 작은 크기를 나타내는 서브블록 크기 정보를 획득한다면, 인터 레이어 비디오 복호화 장치(20)는 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 작은 서브블록의 크기를 결정할 수 있다.
하지만, 서브블록 크기 정보에 의해 결정된 서브블록의 크기가 예측 단위의 크기보다 큰 경우에는, 앞서 상술한 바와 같이 서브블록의 크기가 예측 단위의 크기로 변경되어 결정될 수 있다.
따라서 부호화 단위의 최소 크기보다 작은 경우에는 서브블록의 크기가 예측 단위에 따라 결정되는 것이 효율적이다. 따라서 서브블록 크기 정보는 부호화 단위의 최소 크기보다 크거나 같은 경우만 고려하여 시그널링하여 부복호화 장치의 구현/연산 복잡도를 낮추는 것이 바람직하다.
따라서 인터 레이어 비디오 복호화 장치(20)는 부호화 단위의 최소 크기보다 크거나 같은 범위 내에서 서브블록의 크기에 관한 정보를 이용하여 서브블록의 크기를 결정할 수 있다. 따라서 부복호화 장치의 구현/연산 복잡도를 낮출 수 있다.
한편, 인터 레이어 비디오 복호화 장치는 기존 코덱에서 허용되지 않는 예측 단위인 4x4 크기의 예측 단위에 대해서도 서브블록의 크기로 고려하여 4x4 크기에 관한 정보를 포함할 수 있는 서브블록의 크기를 나타내는 서브블록 크기 정보를 시그널링한다.
본 발명의 다른 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 허용되지 않는 크기의 예측 단위를 제외한 서브블록의 크기를 나타내는 서브블록의 크기 정보를 시그널링할 수 있다. 허용되지 않는 크기의 예측 단위를 나타내기 위해 필요한 비트수를 불필요하게 낭비하지 않고 서브블록의 크기를 나타내는 정보를 시그널링할 수 있다.
한편, 여기서 시점 0(View 0) 영상과 시점 1(View 1) 영상은 서로 다른 시점의 칼라 영상일 수 있다. 다만 이에 제한되지 않고, 시점 0(View 0) 영상과 시점 1(View 1) 영상은 서로 다른 시점의 뎁스 영상일 수 있다. 여기서 시점 0(View 0) 영상과 시점 1(View 1) 영상이 칼라 영상인 경우와 뎁스 영상인 경우에 동일한 방식으로 서브블록 기반 인터 시점 움직임 예측이 이루어질 수 있지만, 서브블록의 크기는 다르게 결정될 수 있다. 예를 들어, 칼라 영상인 경우 비트스트림으로부터 파싱된 서브블록 크기 정보에 따라 서브블록의 크기가 결정될 수 있는 반면, 뎁스 영상인 경우, 서브블록의 크기가 부호화 단위의 최대 크기로 결정될 수 있다.
이상, 도 5를 참조하여 서브블록 기반 인터 시점 움직임 예측에 대하여 설명하였다. 서브블록 기반 인터 시점 움직임 예측과 유사하게 MPI(Motion Parameter Inheritance) 부복호화 툴을 이용하여 인터 레이어 예측을 수행할 수 있다.
MPI(motion parameter Inheritance) 부복호화 툴은 뎁스 영상의 부복호화시 같은 시점의 칼라영상에서 현재 블록의 동일한 지점에 위치하는 블록의 모션 정보 또는 디스패리티 정보를 그대로 획득하여 현재 블록의 모션 정보 또는 디스패리티 정보를 이용하여 부복호화하는 툴을 의미한다. 즉, MPI 부복호화툴을 이용하는 경우에도 인터 시점 움직임 예측이 수행될때와 같이 현재 영상과 다른 영상에서 현재 블록와 동일한 지점에 위치(co-located)하는 블록을 찾고, 서브블록별로 모션 정보(또는 디스패리티 정보)를 획득한다.
따라서 MPI 부복호화툴을 이용하는 경우에도 인터 레이어 비디오 복호화 장치(20)는 MPI 부복호화를 위한 서브블록의 크기 정보를 획득하고, 서브블록의 크기 정보를 이용하여 MPI 부복호화를 위한 서브블록의 크기를 결정하는 과정에서도 인터 시점 움직임 예측에서 서브블록의 크기를 결정하는 과정을 유추하여 MPI 부복호화를 위한 서브블록의 크기를 결정할 수 있다.
구체적으로 인터 레이어 비디오 복호화 장치(20)가 서브블록 크기 정보를 이용하여 서브블록의 크기를 결정하는 과정은 도 7b를 참조하여 후술하도록 하겠다.
도 6a-6c는 다양한 실시예에 따른 서브블록의 크기가 결정되는 과정을 설명하기 위한 도면이다.
도 6a를 참조하면, 인터 레이어 비디오 복호화 장치(40)는 부호화 단위의 파티션 타입에 따라 부호화 단위(6010)가 예측 단위(6011,6012)로 비대칭적으로 분할(파티션 타입 PART_nLx2N)되거나, 부호화 단위(6020)가 예측 단위(6021,6022)로 비대칭적으로 분할(파티션 타입 PART_nRx2N)되거나, 부호화 단위(6030)가 예측 단위(6031,6032)로 비대칭적으로 분할(파티션 타입 PART_2NxnU)되거나, 부호화 단위(6040)가 예측 단위(6041,6042)로 비대칭적으로 분할(파티션 타입 PART_2NxnD)될 수 있다.
도 6a를 참조하면, 인터 레이어 비디오 복호화 장치(40)는 예측 단위(6011,6012,6021,6022,6031,6032,6041,6042)를 적어도 하나의 서브블록으로 분할하기 위해 부호화 단위(6010,6020,6030,6040)에서 예측 단위로 분할하는 과정에서 분할한 방향과 수직한 방향으로 예측 단위(6011,6012,6021,6022,6031,6032,6041,6042)를 분할할 수 있다.
인터 레이어 비디오 복호화 장치(40)는 서브블록 기반 인터 레이어 예측을 수행하기 위해 예측 단위(6011,6012,6021,6022,6031,6032,6041,6042)를 서브블록으로 분할할 수 있다. 예측 단위(6011,6012,6021,6022,6031,6032,6041,6042)의 크기가 미리 서브블록의 크기로 결정된 소정의 크기의 정수배가 아닌 경우, 인터 레이어 비디오 복호화 장치(40)는 소정의 크기의 블록으로 서브블록을 결정할 수 없다.
이때, 부호화 단위들(6010,6020,6030,6040)의 크기가 16x16인 경우, 블록(6013,6014,6023,6024)은 12x8이고, 블록(6033,6034,6043,6044)은 8x12일 수 있다. 한편, 12x8 및 8x12 크기의 서브블록은 일반적으로 코덱에서 허용되는 예측 단위가 아닐 수 있다.
따라서 본 발명의 일 실시예에 따른 인터 레이어 비디오 복호화 장치(40)는 서브블록의 크기가 허용되는 단위가 아닌 경우, 서브블록의 크기를 예측 단위의 크기와 동일하게 하여 부호화 단위에 대한 예측을 수행할 수 있다.
도 6b를 참조하면, 인터 레이어 비디오 복호화 장치(40)는 예측 단위를 소정의 크기와 동일한 크기의 블록을 제1 서브블록으로 결정하고, 인터 레이어 비디오 복호화 장치(40)는 소정의 너비 및 높이 중 적어도 하나보다 작거나 같은 너비 또는 높이의 블록을 제2 서브블록으로 결정한다.
따라서 인터 레이어 비디오 복호화 장치(40)는 예측단위(6112)를 제1 서브블록(6113,6114) 및 제2 서브블록(6115,6116)으로 분할할 수 있다. 예를 들어, 인터 레이어 비디오 복호화 장치(40)는 예측 단위(6110,6120)를 소정의 크기(8x8)와 동일한 크기의 제1 서브블록(6113,6114)으로 분할할 수 있다. 이와 함께 인터 레이어 비디오 복호화 장치(40)는 예측 단위(6110)를 소정의 너비 및 높이 중 적어도 하나보다 작은 너비 또는 높이의 제2 서브블록(6115,6116)으로 분할할 수 있다.
마찬가지로 인터 레이어 비디오 복호화 장치(40)는 나머지 예측 단위(6121,6132,6141)에 대해서도 유사한 방식으로 예측 단위를 분할할 수 있다.
따라서 인터 레이어 비디오 복호화 장치(40)는 허용되지 않는 크기(12x8, 8x12)의 예측 단위를 허용되는 크기인 8x8, 8x4, 4x8 크기의 서브블록으로 분할할 수 있다.
한편 도 6c를 참조하면, 도 6b와 관련하여 상세하게 설명한 바와 같이,인터 레이어 비디오 복호화 장치(40)는 예측 단위를 소정의 크기와 동일한 크기의 블록을 제1 서브블록으로 결정하고, 인터 레이어 비디오 복호화 장치(40)는 소정의 너비 및 높이 중 적어도 하나보다 작거나 같은 너비 또는 높이의 블록을 제2 서브블록으로 결정한다.
하지만 도 6b에 도시된 바와 달리 인터 레이어 비디오 복호화 장치(40)는 분할 경계를 달리하여, 예측 단위 내 제1 서브블록의 위치 및 제2 서브블록의 위치를 달리하여 분할될 수 있다. 즉, 인터 레이어 비디오 복호화 장치(40)는 예측 단위를 서브블록으로 분할할 때 분할 경계를 다양한 방법으로 결정하고, 따라서 분할되어 획득된 서브블록의 타입 및 타입별 서브블록의 개수는 동일할 수 있지만 분할 경계에 따라 각 서브블록의 위치는 달라질 수 있다.
한편, 인터 레이어 비디오 복호화 장치(40)는 서브블록을 결정하는 과정에서 레이어별 서브블록의 크기를 나타내는 정보를 이용하여 서브블록의 너비 및 높이(nSbW, nSbH)를 결정할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(40)는 현재 예측 단위에 포함된 서브블록들 중 가장 좌측 상단 서브블록으로부터 특정 서브블록에 대한 가로방향 인덱스(xBlk), 서브블록들 중 가장 좌측 상단 서브블록으로부터 특정 서브블록에 대한 세로방향 인덱스(yBlk)를 결정한다. 세로방향 인덱스의 범위는 0부터 yBlkr까지의 값으로 결정될 수 있다. yBlkr은 다음 수학식 1과 같이 결정될 수 있다.
수학식 1
Figure PCTKR2014012932-appb-M000001
이때, nPbH는 예측 단위의 높이, nSbH는 서브블록의 높이를 의미한다.
한편, 인터 레이어 비디오 복호화 장치(40)는 현재 예측 단위에 포함된 서브블록들 중 최상단 서브블록들으로부터 특정 서브블록들의 세로 방향의 위치가 예측 단위의 가장자리를 벗어나는 경우, 해당 서브블록들의 실제 높이(nRealSbH)를 예측 블록의 높이(nPbH)에서 최상단 서브블록으로부터 특정 서브블록의 상단에 인접하여 위치하는 블록들까지의 높이(yBlk*nSbH)를 뺀 값으로 결정할 수 있다.
한편, 가로방향 인덱스의 범위는 0부터 xBlkr까지의 값으로 결정될 수 있다. xBlkr은 다음 수학식 2과 같이 결정될 수 있다.
수학식 2
Figure PCTKR2014012932-appb-M000002
이때, nPbW는 예측 단위의 너비, nSbW는 서브블록의 너비를 의미한다.
인터 레이어 비디오 복호화 장치(40)는 현재 예측 단위에 포함된 서브블록들 중 특정 서브블록들이 예측 단위의 가장자리를 벗어나는 경우, 해당 서브블록들의 실제 너비를 예측 블록의 너비(nPbW)에서 최상단 서브블록으로부터 해당 서브블록의 좌측에 인접하여 위치하는 서브블록들까지의 너비(xBlk*nSbW)를 뺀 값으로 결정할 수 있다.
인터 레이어 비디오 복호화 장치(40)는 서브블록별로 디스패리티 벡터(mvDisp) 및 참조 시점 인덱스(refViewIdx)를 이용하여 해당 서브블록에 대한 L0 예측 리스트 또는 L1 예측 리스트 중 어느 예측 리스트를 이용하는지를 결정한다.
또한 인터 레이어 비디오 복호화 장치(40)는 서브블록별로 L0 예측 방향으로 예측된 모션 벡터 및 L1 예측 방향으로 예측된 모션 벡터를 결정할 수 있다. 또한 인터 레이어 비디오 복호화 장치(40)는 서브블록별로 예측 방향을 결정할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(40)는 현재 예측 단위에 대해 인터-시점 움직임 보상 병합 후보를 병합후보로 결정한 경우, 인터-시점 모션 벡터 예측 후보에서 결정된 서브블록의 위치 및 실제 높이 및 너비를 이용하여 인터 레이어 비디오 복호화 장치(40)는 현재 예측 단위에 포함된 서브블록의 위치 및 실제 높이 및 너비를 결정할 수 있다.
인터 레이어 비디오 복호화 장치(40)는 인터-시점 모션 벡터 예측 후보를이용하여 인터-시점 움직임 보상을 수행한다고 결정하면, 인터-시점 움직임 보상 병합 후보와 관련하여 결정된 서브블록별 모션 벡터 후보, 참조 픽처 인덱스 및 예측 방향을 이용하여 서브블록별로 움직임 보상을 수행하고, 서브블록별로 예측 샘플값을 결정할 수 있다.
또한 예측 단위에 포함된 서브블록들의 예측 샘플값이 결정되면 예측 단위별 예측 샘플값을 결정할 수 있다.
한편, 본 발명의 다른 실시에 따른 인터 레이어 비디오 복호화 장치(40)는 인터-시점 움직임 벡터 후보를 결정하는 과정에서 이용되는 서브블록의 너비(nSbW) 및 서브블록의 높이(nSbW)를 하기와 같이 결정할 수 있다.
인터 레이어 비디오 복호화 장치(40)는 레이어별 서브블록 크기 정보를 이용하여 서브블록의 크기(SubPbSize)를 결정한다. 여기서 서브블록은 정사각형임을 가정한다. 따라서 서브블록의 크기(SubPbSize)는 서브블록의 높이 또는 서브블록의 너비를 의미할 수 있다.
인터 레이어 비디오 복호화 장치(40)는 예측 단위의 너비(nPbW)를 서브블록의 크기(SubPbSize)로 나눈 나머지가 0이 아닌 경우, 서브블록의 너비(nSbW)를 원래 예측 단위의 너비(nPbW)로 결정할 수 있다.
또는 인터 레이어 비디오 복호화 장치(40)는 예측 단위의 높이(nPbH)를 서브블록의 크기(SubPbSize)로 나눈 나머지가 0이 아닌 경우, 서브블록의 너비(nSbW)를 원래 예측 단위의 너비(nPbW)로 결정할 수 있다.
마찬가지로 인터 레이어 비디오 복호화 장치(40)는 예측 단위의 너비(nPbW)를 서브블록의 크기(SubPbSize)로 나눈 나머지가 0이 아닌 경우, 서브블록의 높이(nSbH)를 원래 예측 단위의 높이(nPbH)로 결정할 수 있다.
또는 인터 레이어 비디오 복호화 장치(40)는 예측 단위의 높이(nPbH)를 서브블록의 크기(SubPbSize)로 나눈 나머지가 0이 아닌 경우, 서브블록의 높이(nSbH)를 원래 예측 단위의 너비(nPbH)로 결정할 수 있다.
한편, 인터 레이어 비디오 복호화 장치(40)는 예측 단위의 높이(nPbH)를 서브블록의 크기(SubPbSize)로 나눈 나머지가 0이고, 예측 단위의 너비(nPbW)를 결정된 서브블록의 크기(SubPbSize)로 나눈 나머지가 0인 경우, 서브블록의 높이(nSbH) 및 너비(nSbW)를 서브블록의 크기(SubPbSize)로 결정할 수 있다.
예를 들어, 인터 레이어 비디오 복호화 장치(40)는 예측 단위가 16x12 또는 16x4일 경우에 서브블록의 크기를 16x12 또는 16x4로 결정할 수 있다.
도 7a는 다양한 실시예에 따른 VPS 확장 신택스를 도시한 도면이다.
도 7a를 참조하면, 인터 레이어 비디오 복호화 장치(20,40)는 기본 레이어가 아닌 레이어의 경우(layerId!=0), 신택스 요소 log2_sub_pb_size_minus3[layerId] (71) 를 비트스트림으로부터 획득한다. 이때, log2_sub_pb_size_minus3[layerId]는 레이어 식별자가 layerId인 레이어에 대한 서브블록의 크기를 의미힌다.
인터 레이어 비디오 복호화 장치(20)는 신택스 요소 log2_sub_pb_size_minus3[layerId]를 이용하여 서브블록의 크기(SubPbSize[layerId])를 결정할 수 있다.
신택스 요소 log2_sub_pb_size_minus3[layerId]는 인터-시점 병합 후보(inter-view merge candidate)를 이용하는 예측 단위에서 이용되는 서브블록의 크기를 나타낸다. 즉, 신택스 요소 log2_sub_pb_size_minus3[layerId]는 레이어 식별자가 layerId인 레이어의 정사각형 서브블록의 크기에 log2를 취하고, log2를 취한 값에 3을 뺀 값을 의미한다.
여기서 신택스 요소 log2_sub_pb_size_minus3[layerId]는 서브블록의 크기로 허용되지 않는 4x4크기의 예측 단위에 관한 정보를 불필요하게 시그널링하지 않도록 서브블록의 크기(SubPbSize)에 2의 log를 취한 값에 3을 뺀 값일 수 있다.
한편, 신택스 요소 log2_sub_pb_size_minus3의 값의 허용 범위는 MinCbLog2SizeY-3부터 CtbLog2SizeY-3일 수 있다.
이때, MinCbLog2SizeY는 부호화 단위의 최소 크기를 의미하고, CtbLog2SizeY는 부호화 단위의 최대 크기를 의미한다.
MinCbLog2SizeY는 신택스 요소 log2_min_luma_coding_block_size_minus3 에 3을 더한 값으로 결정될 수 있다. 신택스 요소 log2_min_luma_coding_block_size_minus3은 부호화 단위의 최소 크기에 log2를 취한 값에 3을 뺀 값을 의미한다.
또한 CtbLog2SizeY는 MinCbLog2SizeY 에 신택스 요소 log2_diff_max_min_luma_coding_block_size를 더한 값으로 결정될 수 있다.
이때, 신택스 요소log2_diff_max_min_luma_coding_block_size는 부호화 단위의 최대 크기에 log2를 취한 값과 부호화 단위의 최소 크기에 log2를 취한 값의 차이를 의미한다.
이러한 신택스 요소 log2_diff_max_min_luma_coding_block_size 및log2_min_luma_coding_block_size_minus3은 비트스트림으로부터 파싱될 수 있다.
예를 들어, 신택스 요소 log2_diff_max_min_luma_coding_block_size 및 log2_min_luma_coding_block_size_minus3는 비트스트림에 포함된 VPS NAL 유닛 또는 SPS NAL 유닛으로부터 획득될 수 있다.
한편 특정 레이어에 대한 서브블록의 크기(SubPbSize[layerId])는 플래그 VpsDepthFlag(layerId)에 따라 결정될 수 있다. 플래그 VpsDepthFlag(layerId)는 레이어 식별자가 layerId인 레이어가 뎁스맵(depth map)인지 여부를 나타내는 플래그를 의미한다.
만약에 특정 레이어가 뎁스맵임을 나타내는 경우, 서브블록의 크기(SubPbSize[layerId])를 부호화단위의 최대 크기(CtbLog2SizeY)로 결정할 수 있다.
한편, 특정 레이어에 대한 서브블록의 크기(SubPbSize[layerId])가 뎁스 맵이 아닌 경우, 서브블록의 크기 SubPbSize[layerId]는 다음 수학식 3에 의해 결정될 수 있다.
수학식 3
Figure PCTKR2014012932-appb-M000003
한편 도 7a을 참조하면, 인터 레이어 비디오 복호화 장치(20)는 VPS 확장 신택스를 통해 서브블록의 크기를 나타내는 신택스 요소log2_sub_pb_size_minus3[layerId]를 비트스트림으로부터 획득할 수 있다.
즉 비트스트림에 포함된 VPS NAL 유닛으로부터 특정 레이어에 대한 서브블록의 크기를 나타내는 신택스 요소 log2_sub_pb_size_minus3[layerId]를 획득한다.
한편, 인터 레이어 비디오 복호화 장치(20)는 비트스림에 포함된 SPS NAL 유닛으로부터 서브블록의 크기를 나타내는 신택스 요소를 획득할 수 있다.
도 7b는 다양한 실시예에 따른 VPS 확장 신택스를 도시한 도면이다.
도 7b를 참조하면, 인터 레이어 비디오 복호화 장치(20,40)는 신택스 요소 log2_sub_pb_size_minus3[0](72)를 비트스트림으로부터 획득할 수 있다. 이때, 신택스 요소 log2_sub_pb_size_minus[3]은 레이어 영상이 뎁스 영상이 아닌 경우에 대한 서브블록의 크기를 의미한다.
인터 레이어 비디오 복호화 장치(20,40)는 비트스트림으로부터 SPS NAL 유닛을 획득하고, 획득된 SPS NAL 유닛으로부터 신택스 요소 log2_sub_pb_size_minus3[0] (72)를 획득할 수 있다.
이때, 레이어 영상마다 다른 SPS NAL 유닛이 존재하고, 각 SPS NAL 유닛으로부터 레이어 영상별로 신택스 요소(72)가 획득될 수 있다.
인터 레이어 비디오 복호화 장치(20,40)는 신택스 요소 log2_sub_pb_size_minus3[1]를 비트스트림으로부터 파싱하지 않는다.
이때, 신택스 요소 log2_sub_pb_size_minus[1]은 레이어 영상이 뎁스 영상인 경우에 대한 서브블록의 크기를 의미한다.
즉, 신택스 요소 log2_sub_pb_size_minus3[d] 중 신택스 요소 log2_sub_pb_size_minus[0]만이 비트스트림으로부터 파싱되고, log2_sub_pb_size_minus[1]은 비트스트림으로부터 파싱되지않는다.
신택스 요소 log2_sub_pb_size_minus3[d]는 인터 레이어 병합 후보를 이용하는 레이어별 서브블록의 크기 (SubPbSize)를 결정하기 위해 이용된다.
신택스 요소 log2_sub_pb_size_minus3[d]는 인터 레이어 병합 후보를 이용하는 레이어별 서브블록의 크기를 의미한다. 구체적으로 log2_sub_pb_size_minus3[0]은 칼라 영상에 대한 서브블록의 크기에 log2를 취한 값에 3을 뺀 값을 의미하고, log2_sub_pb_size_minus3[1]은 뎁스 영상에 대한 서브블록의 크기에 log2를 취한 값에 3을 뺀 값을 의미할 수 있다.
한편, 신택스 요소 log2_sub_pb_size_minus3[d]가 존재하지 않으면 부호화 단위의 최대 크기에 log2를 취한 값(CtbLog2SizeY)에 3을 뺀 값으로 유도될 수 있다.
따라서 신택스 요소 log2_sub_pb_size_minus3[1]은 CtbLog2SizeY에 3을 뺀 값일 수 있다.
한편 신택스 요소 log2_sub_pb_size_minus3[d]는 부호화 단위의 최소 크기에 log2를 취한 값(MinCbLog2SizeY)에 3을 뺀 값보다 크거나 같고, 부호화 단위의 최대 크기에 log2를 취한 값(MaxCbLog2SizeY)에 3을 뺀 값보다 작거나 같은 범위 내의 값일 수 있다.
한편 특정 레이어의 서브블록 크기(SubPbSize)는 다음 수학식 4과 같이 결정될 수 있다.
수학식 4
Figure PCTKR2014012932-appb-M000004
여기서 DepthFlag는 특정 레이어 영상이 뎁스 영상인지 여부를 나타내는 플래그를 의미한다.
인터 레이어 비디오 복호화 장치(20,40)는 현재 예측 단위의 위치(xPb, yPb) 및 현재 예측 단위의 너비 및 높이(nPbW 및 nPbH) 및 참조 시점 인덱스(refViewIdx) 및 디스패리티 벡터(mvDisp)를 이용하여 서브블록 기반 인터 레이어 모션 벡터 후보를 결정할 수 있다.
이때, 서브블록별로 인터 레이어 모션 벡터 후보를 결정하기 전에 디스패리티 벡터(mvDisp)의 수직 성분을 0으로 변경하고, 변경된 디스패리티 벡터를 이용하여 서브블록 기반 인터 레이어 모션 벡터 후보를 결정할 수 있다.
한편, 도 5 내지 도 7b에서 상술된 동작은 인터 레이어 비디오 복호화 장치(20,40)가 수행하는 것을 전제로 설명하였지만, 인터 레이어 비디오 부호화 장치(10,30)에서도 동일한 동작이 수행될 수 있음을 본 실시예가 속하는 기술분야의 통상의 기술자는 쉽게 이해할 수 있을 것이다.
도 7b를 참조하면, 인터 레이어 비디오 복호화 장치(20,40)는 신택스 요소 log2_mpi_sub_pb_size_minus3[1] (73)를 비트스트림으로부터 획득할 수 있다.
신택스 요소 log2_mpi_sub_pb_size_minus3[1]는 레이어 영상이 뎁스 영상인 경우에 대한 서브블록의 크기를 의미한다. 신택스 요소 log2_mpi_sub_pb_size_minus3[1]는 MPI 부복호화를 위한 서브블록의 크기를 결정하는데 이용될 수 있다.
인터 레이어 비디오 복호화 장치(20,40)는 비트스트림으로부터 SPS NAL 유닛을 획득하고, 획득된 SPS NAL 유닛으로부터 신택스 요소(72)를 획득할 수 있다.
이때, 레이어 영상마다 다른 SPS NAL 유닛이 존재하고, 각 SPS NAL 유닛으로부터 레이어 영상별로 신택스 요소(73)가 획득될 수 있다.
인터 레이어 비디오 복호화 장치(20,40)는 신택스 요소 log2_mpi_sub_pb_size_minus3[0]를 비트스트림으로부터 파싱하지 않는다. 신택스 요소 log2_mpi_sub_pb_size_minus3[0]는 레이어 영상이 뎁스 영상이 아닌 경우에 대한 서브블록의 크기를 의미한다. 신택스 요소 log2_mpi_sub_pb_size_minus3[0]는 MPI 부복호화를 위한 서브블록의 크기를 결정하는데 이용될 수 있다.
한편, 신택스 요소 log2_mpi_sub_pb_size_minus3[d] 중 신택스 요소 log2_mpi_sub_pb_size_minus[1]만이 비트스트림으로부터 파싱되고, log2_mpi_sub_pb_size_minus[0]은 비트스트림으로부터 파싱되지않는다.
한편 신택스 요소 log2_mpi_sub_pb_size_minus3[d]는 인터 레이어 병합 후보를 이용하는 레이어별 서브블록의 크기(MpiSubPbSize)를 결정하기 위해 이용된다.
신택스 요소 log2_mpi_sub_pb_size_minus3[d]는 인터 레이어 병합 후보를 이용하는 레이어별 서브블록의 크기를 의미한다. 구체적으로 log2_mpi_sub_pb_size_minus3[0]은 칼라 영상에 대한 서브블록의 크기에 log2를 취한 값에 3을 뺀 값을 의미하고, log2_mpi_sub_pb_size_minus3[1]은 뎁스 영상에 대한 서브블록의 크기에 log2를 취한 값에 3을 뺀 값을 의미할 수 있다.
인터 레이어 비디오 복호화 장치(20,40)는 신택스 요소 sub_pb_size_minus[1]을 이용하여 레이어별 서브블록의 크기(MpiSubPbSize)를 다음 수학식5와 같이 결정할 수 있다.
수학식 5
Figure PCTKR2014012932-appb-M000005
이때, 플래그 DepthFlag는 레이어 영상이 뎁스 영상인지 여부를 나타내는 플래그이다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10) 및 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인터 레이어 예측 또는 인터 예측을 위해 부호화 단위들, 예측 단위들, 변환 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 8 내지 20을 참조하여, 다양한 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
원칙적으로 멀티 레이어 비디오를 위한 부호화/복호화 과정에서, 제1 레이어 영상들을 위한 부호화/복호화 과정과, 제2 레이어 영상들을 위한 부호화/복호화 과정이 따로 수행된다. 즉, 멀티 레이어 비디오 중 인터 레이어 예측이 발생하는 경우에는 싱글 레이어 비디오의 부호화/복호화 결과가 상호 참조될 수 있지만, 싱그 레이어 비디오마다 별도의 부호화/복호화 과정이 발생한다.
따라서 설명의 편의를 위해 도 8 내지 20을 참조하여 후술되는 트리구조의 부호화 단위에 기초한 비디오 부호화 과정 및 비디오 복호화 과정은, 싱글 레이어 비디오에 대한 비디오 부호화 과정 및 비디오 복호화 과정이므로, 인터 예측 및 움직임 보상이 상술된다. 하지만, 도 1a 내지 7b을 참조하여 전술한 바와 같이, 비디오 스트림 부호화/복호화를 위해, 기본시점 영상들과 제2 레이어 영상들 간의 인터 레이어 예측 및 보상이 수행된다.
따라서, 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)의 부호화부(12)가 트리구조의 부호화 단위에 기초하여 멀티 레이어 비디오를 부호화하기 위해서는, 각각의 싱글 레이어 비디오마다 비디오 부호화를 수행하기 위해 도 8의 비디오 부호화 장치(100)를 멀티 레이어 비디오의 레이어 개수만큼 포함하여 각 비디오 부호화 장치(100)마다 할당된 싱글 레이어 비디오의 부호화를 수행하도록 제어할 수 있다. 또한 인터 레이어 비디오 부호화 장치(10)는, 각 비디오 부호화 장치(100)의 별개 단일시점의 부호화 결과들을 이용하여 시점간 예측을 수행할 수 있다. 이에 따라 인터 레이어 비디오 부호화 장치(10)의 부호화부(12)는 레이어별로 부호화 결과를 수록한 기본시점 비디오스트림과 제2 레이어 비디오스트림을 생성할 수 있다.
이와 유사하게, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)의 복호화부(26)가 트리 구조의 부호화 단위에 기초하여 멀티 레이어 비디오를 복호화하기 위해서는, 수신한 제1 레이어 비디오스트림 및 제2 레이어 비디오스트림에 대해 레이어별로 비디오 복호화를 수행하기 위해 도 9의 비디오 복호화 장치(200)를 멀티 레이어 비디오의 레이어 개수만큼 포함하고 각 비디오 복호화 장치(200)마다 할당된 싱글 레이어 비디오의 복호화를 수행하도록 제어할 수 있다, 그리고 인터 레이어 비디오 복호화 장치(20)가 각 비디오 복호화 장치(200)의 별개 싱글 레이어의 복호화 결과를 이용하여 인터 레이어 보상을 수행할 수 있다. 이에 따라 인터 레이어 비디오 복호화 장치(20)의 복호화부(26)는, 레이어별로 복원된 제1 레이어 영상들과 제2 레이어 영상들을 생성할 수 있다.
도 8 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 다양한 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
다양한 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 다양한 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 다양한 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 다양한 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
다양한 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 다양한 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 다양한 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
다양한 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 다양한 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 다양한 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 다양한 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
다양한 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
다양한 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
다양한 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 다양한 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
다양한 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 다양한 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 다양한 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 1a 을 참조하여 전술한 인터 레이어 비디오 부호화 장치(10)는, 멀티 레이어 비디오의 레이어들마다 싱글 레이어 영상들의 부호화를 위해, 레이어 개수만큼의 비디오 부호화 장치(100)들을 포함할 수 있다. 예를 들어, 제1 레이어 부호화부(12)가 하나의 비디오 부호화 장치(100)를 포함하고, 제2 레이어 부호화부(16)가 제2 레이어의 개수만큼의 비디오 부호화 장치(100)를 포함할 수 있다.
비디오 부호화 장치(100)가 제1 레이어 영상들을 부호화하는 경우에, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위별로 영상간 예측을 위한 예측단위를 결정하고, 예측단위마다 영상간 예측을 수행할 수 있다.
비디오 부호화 장치(100)가 제2 레이어 영상들을 부호화하는 경우에도, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위 및 예측단위를 결정하고, 예측단위마다 인터 예측을 수행할 수 있다.
비디오 부호화 장치(100)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 차를 부호화할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
도 9 는 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
다양한 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 8 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 다양한 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
다양한 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 2a를 참조하여 전술한 인터 레이어 비디오 복호화 장치(20)는, 수신된 제1 레이어 영상스트림 및 제2 레이어 영상스트림을 복호화하여 제1 레이어 영상들 및 제2 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
제1 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제1 레이어 영상스트림으로부터 추출된 제1 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 제1 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제1 레이어 영상들을 복원할 수 있다.
제2 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제2 레이어 영상스트림으로부터 추출된 제2 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 제2 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제2 레이어 영상들을 복원할 수 있다.
추출부(220)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 10 은 다양한 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 11 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
다양한 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽처 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽처 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 레지듀 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 레지듀 데이터로 복원된다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽처 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
다양한 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 12 는 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽처 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 픽처 복호화부(230)에서 영상 데이터를 복호화하기 위해, 다양한 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 다양한 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 10의 부호화 동작 및 도 11의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 1a의 부호화부(12)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상부호화부(400)를 포함할 수 있다. 유사하게, 도 2a의 복호화부(26)가 둘 이상의 레이어의 비디오스트림을 복호화한다면, 레이어별로 영상복호화부(500)를 포함할 수 있다.
도 13 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
다양한 실시예에 따른 비디오 부호화 장치(100) 및 다양한 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
다양한 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 다양한 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 14 은 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
다양한 실시예에 따른 비디오 부호화 장치(100) 또는 다양한 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 다양한 실시예에 따른 비디오 부호화 장치(100) 또는 다양한 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 15 은 다양한 실시예에 따라, 부호화 정보들을 도시한다.
다양한 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
다양한 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 16 는 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 다양한 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 다양한 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
다양한 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 다양한 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 17, 18 및 19는 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 다양한 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 다양한 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1는, 다양한 실시예에 따른 비디오 부호화 장치(100) 및 다양한 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
표 1
Figure PCTKR2014012932-appb-T000001
다양한 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 다양한 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
다양한 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 19 를 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 다양한 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 다양한 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 다양한 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 다양한 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
다양한 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 다양한 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 8 내지 20를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 부호화 방법 및/또는 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 복호화 방법 및/또는 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 부호화 장치(10), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 복호화 장치(20), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
다양한 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 21은 다양한 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 다양한 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 22를 참조하여 후술된다.
도 22는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 21 및 22에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 23은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 24에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
다양한 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 24 및 25을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 24은, 다양한 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 25은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 본 발명의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 본 발명의 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(1262)를 거쳐 디스플레이화면(1252)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(1252)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(1265)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(1258)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(1258)에서 재생될 수 있다.
휴대폰(1250) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 24를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 26은 다양한 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 26의 다양한 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 다양한 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 27은 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
도 1a 내지 20을 참조하여 전술된 비디오 부호화 방법 및 비디오 복호화 방법, 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 21 내지 도 27에서 전술되었다. 하지만, 도 1a 내지 20을 참조하여 전술된 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 21 내지 도 27의 실시예들에 한정되지 않는다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에 서브블록의 크기를 나타내는 제2 레이어 영상의 서브블록 크기 정보를 획득하는 단계;
    상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하는 단계;
    상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계;
    상기 현재 블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및
    상기 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고,
    상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  2. 제 1 항에 있어서,
    상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계는 상기 제2 레이어 영상에 포함된 현재 블록으로부터 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득하는 단계를 포함하고, 상기 획득된 디스패리티 벡터의 수직 성분은 0인 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  3. 제 1 항에 있어서,
    상기 현재 블록은 상기 제2 레이어 영상의 부호화 단위가 분할되어 생성된 하나이상의 예측 단위 중 하나이고,
    상기 서브블록은 상기 예측 단위보다 작거나 같은 블록인 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  4. 제 1 항에 있어서,
    상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하는 단계는,
    비트스트림으로부터 획득된 상기 부호화 단위의 최소 크기를 나타내는 정보 및 상기 비트스트림에 포함된 상기 부호화 단위의 최대 크기와 상기 부호화 단위의 최소 크기 간 차이를 나타내는 정보를 이용하여 상기 서브블록의 크기를 결정하는 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  5. 제 1 항에 있어서,
    비트스트림으로부터 상기 서브블록 크기 정보를 포함하는 VPS NAL 유닛(Video Parameter Set Network Abstraction Layer) 또는 SPS NAL 유닛(Sequence Parameter Set Network Abstraction Layer)이 획득되고, 상기 제2 레이어 영상의 서브블록 크기 정보는 상기 VPS NAL 유닛 또는 상기 SPS NAL 유닛으로부터 획득된 것을 특징으로 하는 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  6. 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정하는 단계;
    상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계;
    상기 현재 블록으로부터 상기 결정된 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하는 단계; 및
    상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화 하는 단계; 및
    상기 결정된 서브블록의 크기를 나타내는 서브블록 크기 정보를 포함하는 비트스트림을 생성하는 단계를 포함하고,
    상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  7. 제 6 항에 있어서,
    상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하는 단계는,
    상기 제2 레이어 영상에 포함된 현재 블록으로부터 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 가리키는 디스패리티 벡터를 획득하는 단계를 포함하고,
    상기 획득된 디스패리티 벡터의 수직 성분은 0인 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  8. 제 6 항에 있어서,
    상기 현재 블록은 상기 제2 레이어 영상의 부호화 단위가 분할되어 생성된 하나이상의 예측 단위 중 하나이고,
    상기 서브블록은 상기 예측 단위보다 작거나 같은 블록인 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  9. 제 6 항에 있어서,
    상기 결정된 서브블록의 크기를 나타내는 서브블록의 크기 정보를 포함하는 비트스트림을 생성하는 단계는,
    상기 부호화 단위의 최소 크기를 나타내는 정보 및 상기 부호화 단위의 최대 크기와 상기 부호화 단위의 최소 크기 간 차이를 나타내는 정보를 더 포함하는 비트스트림을 생성하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  10. 제 6 항에 있어서,
    상기 결정된 서브블록의 크기를 나타내는 서브블록의 크기 정보를 포함하는 비트스트림을 생성하는 단계는,
    상기 서브블록 크기 정보를 포함하는 VPS NAL 유닛 또는 SPS NAL 유닛을 생성하는 단계; 및
    상기 VPS NAL 유닛 또는 상기 SPS NAL 유닛을 포함하는 비트스트림을 생성하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  11. 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에 제2 레이어 영상의 서브블록 크기 정보를 획득하는 획득부;
    상기 서브블록 크기 정보를 이용하여 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 서브블록의 크기를 결정하고, 상기 제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하고, 상기 현재 블록으로부터 상기 서브블록의 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하고, 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 복호화부를 포함하고,
    상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 복호화 장치.
  12. 부호화 단위의 최소 크기보다 크거나 같고, 부호화 단위의 최대 크기보다 작거나 같은 범위 내에서 제2 레이어 영상의 서브블록의 크기를 결정하고,
    상기 제 2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제2 레이어 영상과 다른 제1 레이어 영상에 포함된 후보블록을 결정하고, 상기 현재 블록으로부터 상기 결정된 서브블록 크기를 이용하여 결정되는 제2 레이어 영상의 적어도 하나의 서브블록이 획득될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션 정보를 획득하고, 상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화하는 부호화부; 및
    상기 결정된 서브블록의 크기를 나타내는 서브블록 크기 정보를 포함하는 비트스트림을 생성하는 비트스트림 생성부를 포함하고,
    상기 제1 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 부호화 장치.
  13. 부호화된 제1 레이어 영상을 복호화하는 단계;
    제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계;
    상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계;
    상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및
    상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 복호화하는 단계를 포함하고,
    상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 복호화 방법.
  14. 제1 레이어 영상을 부호화하는 단계;
    제2 레이어 영상에 포함된 현재 블록에 대응하는 상기 제1 레이어 영상에 포함된 후보블록을 결정하는 단계;
    상기 현재 블록의 크기가 소정의 서브블록 크기의 정수배가 아닌 경우, 상기 소정의 서브블록의 크기가 아닌 적어도 하나의 블록을 서브블록으로 결정하는 단계;
    상기 서브블록이 결정될 때, 상기 제2 레이어 영상의 서브블록에 대응하는 제1 레이어 영상의 서브블록의 모션정보를 획득하는 단계; 및
    상기 획득된 제1 레이어 영상의 서브블록의 모션 정보를 이용하여 상기 현재 블록의 모션 정보를 획득 또는 예측하고, 상기 획득 또는 예측된 현재 블록의 모션 정보를 이용하여 상기 현재 블록을 부호화하는 단계를 포함하고,
    상기 제2 레이어 영상의 서브블록은 상기 후보블록 안의 영역에 위치하도록 결정되는 것을 특징으로 하는 인터 레이어 비디오 부호화 방법.
  15. 제 1 항 내지 제 10 항 및 제 13 항 내지 제 14 항 중 어느 한 항의 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
PCT/KR2014/012932 2013-12-26 2014-12-26 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 WO2015099506A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480076495.4A CN106063271B (zh) 2013-12-26 2014-12-26 用于执行基于子块的预测的层间视频解码方法及其设备以及用于执行基于子块的预测的层间视频编码方法及其设备
EP14873781.0A EP3089452A4 (en) 2013-12-26 2014-12-26 Inter-layer video decoding method for performing subblock-based prediction and apparatus therefor, and inter-layer video encoding method for performing subblock-based prediction and apparatus therefor
US15/192,262 US10567773B2 (en) 2013-12-26 2016-06-24 Inter-layer video decoding method for performing subblock-based prediction and apparatus therefor, and inter-layer video encoding method for performing subblock-based prediction and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361920818P 2013-12-26 2013-12-26
US61/920,818 2013-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,262 Continuation US10567773B2 (en) 2013-12-26 2016-06-24 Inter-layer video decoding method for performing subblock-based prediction and apparatus therefor, and inter-layer video encoding method for performing subblock-based prediction and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2015099506A1 true WO2015099506A1 (ko) 2015-07-02

Family

ID=53479261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012932 WO2015099506A1 (ko) 2013-12-26 2014-12-26 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치

Country Status (5)

Country Link
US (1) US10567773B2 (ko)
EP (1) EP3089452A4 (ko)
KR (1) KR102281282B1 (ko)
CN (1) CN106063271B (ko)
WO (1) WO2015099506A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078846A1 (en) * 2015-11-03 2017-05-11 Qualcomm Incorporated Updating regions for display based on video decoding mode

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082541A (ja) * 2012-10-12 2014-05-08 National Institute Of Information & Communication Technology 互いに類似した情報を含む複数画像のデータサイズを低減する方法、プログラムおよび装置
JP6305279B2 (ja) * 2014-08-26 2018-04-04 株式会社東芝 映像圧縮装置および映像再生装置
KR20180136967A (ko) 2016-04-22 2018-12-26 엘지전자 주식회사 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
CN116320415A (zh) * 2016-11-21 2023-06-23 松下电器(美国)知识产权公司 图像编码装置及方法、图像解码装置及方法
JPWO2018092868A1 (ja) 2016-11-21 2019-10-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 符号化装置、復号装置、符号化方法及び復号方法
CN116896631A (zh) * 2016-11-29 2023-10-17 韩国电子通信研究院 图像编码/解码方法和装置以及存储有比特流的记录介质
US11496747B2 (en) * 2017-03-22 2022-11-08 Qualcomm Incorporated Intra-prediction mode propagation
CN115348444A (zh) * 2017-07-06 2022-11-15 三星电子株式会社 图像编码方法和设备以及图像解码方法和设备
US10666943B2 (en) * 2017-09-15 2020-05-26 Futurewei Technologies, Inc. Block partition structure in video compression
CN111602394B (zh) * 2018-01-18 2021-07-09 联发科技股份有限公司 视频编解码系统中的视频处理方法及装置
TWI722465B (zh) * 2018-06-29 2021-03-21 大陸商北京字節跳動網絡技術有限公司 子塊的邊界增強
CN110753222B (zh) * 2018-08-14 2022-03-25 北京达佳互联信息技术有限公司 视频编码方法和确定采用帧间编码方式的方法及设备
US11245922B2 (en) * 2018-08-17 2022-02-08 Mediatek Inc. Shared candidate list
BR112021004798A2 (pt) * 2018-09-14 2021-06-08 Huawei Technologies Co., Ltd. suporte de atributo melhorado em codificação de nuvem de pontos
AU2020206246B2 (en) * 2019-01-09 2024-01-04 Huawei Technologies Co., Ltd. Sub-picture layout signaling in video coding
WO2020159250A1 (ko) * 2019-01-30 2020-08-06 삼성전자 주식회사 영상으로부터 다양한 형태로 분할된 블록들을 이용하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR102213901B1 (ko) * 2019-03-21 2021-02-08 삼성전자주식회사 블록 형태별로 블록 크기가 설정되는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133250A (ko) * 2010-12-22 2013-12-06 엘지전자 주식회사 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
KR20130136525A (ko) * 2011-03-09 2013-12-12 미디어텍 싱가폴 피티이. 엘티디. 복잡도가 감소된 변환 단위 파티션의 방법 및 장치
KR20130138461A (ko) * 2012-06-11 2013-12-19 한국항공대학교산학협력단 움직임 벡터 예측 장치 및 그 예측 방법
KR20130139827A (ko) * 2011-02-09 2013-12-23 엘지전자 주식회사 영상 부호화 및 복호화 방법과 이를 이용한 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513350A1 (en) 2003-09-03 2005-03-09 Thomson Licensing S.A. Process and arrangement for encoding video pictures
JP5134001B2 (ja) * 2006-10-18 2013-01-30 アップル インコーポレイテッド 下層のフィルタリングを備えたスケーラブルビデオ符号化
SI3264780T1 (sl) * 2007-04-18 2020-08-31 Dolby International Ab Kodirni sistemi, pri katerih se uporablja dodatni niz sekvenčnih parametrov za skalabilno kodiranje videa ali večpogledno kodiranje
US8555311B2 (en) * 2007-12-19 2013-10-08 United Video Properties, Inc. Methods and devices for presenting guide listings and guidance data in three dimensions in an interactive media guidance application
KR101671005B1 (ko) 2007-12-27 2016-11-01 삼성전자주식회사 트렐리스를 이용한 양자화 부호화 및 역양자화 복호화 방법및 장치
US9210442B2 (en) * 2011-01-12 2015-12-08 Google Technology Holdings LLC Efficient transform unit representation
WO2012115420A2 (ko) 2011-02-23 2012-08-30 엘지전자 주식회사 필터링을 이용한 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
US9066110B2 (en) * 2011-03-08 2015-06-23 Texas Instruments Incorporated Parsing friendly and error resilient merge flag coding in video coding
KR20120118780A (ko) 2011-04-19 2012-10-29 삼성전자주식회사 다시점 비디오의 움직임 벡터 부호화 방법 및 장치, 그 복호화 방법 및 장치
CN102595135B (zh) * 2012-02-24 2013-03-27 中国科学技术大学 一种可伸缩视频编码的方法及装置
US8868254B2 (en) * 2012-06-08 2014-10-21 Apple Inc. Accessory control with geo-fencing
US10003793B2 (en) * 2012-10-01 2018-06-19 Google Technology Holdings LLC Processing of pulse code modulation (PCM) parameters
US9674519B2 (en) * 2012-11-09 2017-06-06 Qualcomm Incorporated MPEG frame compatible video coding
CN105594212B (zh) * 2013-07-24 2019-04-16 三星电子株式会社 用于确定运动矢量的方法及其设备
SG11201510554RA (en) * 2013-07-24 2016-02-26 Qualcomm Inc Simplified advanced motion prediction for 3d-hevc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133250A (ko) * 2010-12-22 2013-12-06 엘지전자 주식회사 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
KR20130139827A (ko) * 2011-02-09 2013-12-23 엘지전자 주식회사 영상 부호화 및 복호화 방법과 이를 이용한 장치
KR20130136525A (ko) * 2011-03-09 2013-12-12 미디어텍 싱가폴 피티이. 엘티디. 복잡도가 감소된 변환 단위 파티션의 방법 및 장치
KR20130138461A (ko) * 2012-06-11 2013-12-19 한국항공대학교산학협력단 움직임 벡터 예측 장치 및 그 예측 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AN ET AL.: "3D-CE3: Sub-PU level inter-view motion prediction", JCT3V DOCUMENT JCT3V-F0110, 19 October 2013 (2013-10-19), pages 1 - 4, XP030131526 *
See also references of EP3089452A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078846A1 (en) * 2015-11-03 2017-05-11 Qualcomm Incorporated Updating regions for display based on video decoding mode
US9883137B2 (en) 2015-11-03 2018-01-30 Qualcomm Incorporated Updating regions for display based on video decoding mode

Also Published As

Publication number Publication date
US10567773B2 (en) 2020-02-18
CN106063271B (zh) 2019-09-03
EP3089452A4 (en) 2017-10-25
KR102281282B1 (ko) 2021-07-23
KR20150076134A (ko) 2015-07-06
CN106063271A (zh) 2016-10-26
US20160309156A1 (en) 2016-10-20
EP3089452A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2015099506A1 (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2015137783A1 (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
WO2015152608A4 (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2014030920A1 (ko) 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 복호화 방법 및 그 장치
WO2013162311A1 (ko) 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2016117930A1 (ko) 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
WO2015133866A1 (ko) 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2014109594A1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2014163467A1 (ko) 랜덤 엑세스를 위한 멀티 레이어 비디오 부호화 방법 및 그 장치, 랜덤 엑세스를 위한 멀티 레이어 비디오 복호화 방법 및 그 장치
WO2015053598A1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
WO2015053601A1 (ko) 멀티 레이어 비디오 부호화 방법 및 그 장치, 멀티 레이어 비디오 복호화 방법 및 그 장치
WO2013157817A1 (ko) 트리 구조의 부호화 단위에 기초한 다시점 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 다시점 비디오 복호화 방법 및 그 장치
WO2014163458A1 (ko) 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법
WO2015012622A1 (ko) 움직임 벡터 결정 방법 및 그 장치
WO2014163460A1 (ko) 계층 식별자 확장에 따른 비디오 스트림 부호화 방법 및 그 장치, 계층 식별자 확장에 따른 따른 비디오 스트림 복호화 방법 및 그 장치
WO2015009113A1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 깊이 영상의 화면내 예측 방법
WO2015005749A1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 블록 기반 디스패리티 벡터 예측 방법
WO2015053597A1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
WO2015194896A1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2014171769A1 (ko) 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
WO2016072753A1 (ko) 샘플 단위 예측 부호화 장치 및 방법
WO2013162251A1 (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2014058210A1 (ko) 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 부호화 방법 및 그 장치, 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 복호화 방법 및 그 장치
WO2015056945A1 (ko) 깊이 인트라 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2015093920A1 (ko) 휘도 보상을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873781

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014873781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE