WO2015099420A1 - 성형탄, 그 제조 방법 및 그 제조 장치 - Google Patents

성형탄, 그 제조 방법 및 그 제조 장치 Download PDF

Info

Publication number
WO2015099420A1
WO2015099420A1 PCT/KR2014/012751 KR2014012751W WO2015099420A1 WO 2015099420 A1 WO2015099420 A1 WO 2015099420A1 KR 2014012751 W KR2014012751 W KR 2014012751W WO 2015099420 A1 WO2015099420 A1 WO 2015099420A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw sugar
coal
weight
parts
molasses
Prior art date
Application number
PCT/KR2014/012751
Other languages
English (en)
French (fr)
Inventor
김현정
윤시경
조민영
이상호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130164462A external-priority patent/KR101595539B1/ko
Priority claimed from KR1020140186548A external-priority patent/KR101674889B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201480065332.6A priority Critical patent/CN105992811A/zh
Publication of WO2015099420A1 publication Critical patent/WO2015099420A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/04Gasification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds

Definitions

  • the present invention relates to coal briquettes, a method for producing the same, and a device for producing the same. More specifically, the present invention relates to coal briquettes, a method of manufacturing the same, and a manufacturing apparatus thereof, which can reduce manufacturing costs while improving cold strength and hot strength of coal briquettes.
  • iron ore is used as a reducing furnace and a molten gasifier for melting the reduced iron ore.
  • a melt gasifier coal briquettes are charged into a melt gasifier as a heat source for melting iron ore.
  • the reduced iron is melted in the molten gasifier, converted to molten iron and slag and then discharged to the outside.
  • the coal briquettes charged into the melt gasifier form a coal filling layer.
  • Oxygen is blown through the tuyere installed in the melt gasifier and then burns the coal packed bed to produce combustion gas. Combustion gas is converted into hot reducing gas while rising through the coal-filled bed.
  • the high temperature reducing gas is discharged to the outside of the melt gasification furnace and supplied to the reduction furnace as reducing gas.
  • coal briquettes are manufactured by mixing coal and a binder.
  • molasses is used as the binder.
  • the component of molasses varies depending on the production region, and it is difficult to control the component according to the sugar production process. Therefore, when the coal briquettes are manufactured using molasses as a binder, the quality of the coal briquettes cannot be constantly controlled. In particular, when molasses having high moisture is used, the quality of coal briquettes is deteriorated.
  • Raw sugar binder and molasses are used together to improve the cold strength and hot strength while providing a coal briquette that can reduce the manufacturing cost. It is also an object of the present invention to provide a method for producing coal briquettes. And to provide an apparatus for producing coal briquettes described above.
  • the present invention is charged into the dome of the molten gasifier in the molten gas manufacturing apparatus comprising a reducing gas which is connected to the molten gasifier, i) a molten gasifier, and ii) a molten gasifier, providing a reduced iron rapid heating It provides a method for producing coal briquettes.
  • the process for producing coal briquettes includes i) providing pulverized coal, ii) providing molasses, iii) providing a raw sugar binder, iv) providing a mixture of molasses and raw sugar binder added to the pulverized coal, and v) Shaping the mixture to provide coal briquettes.
  • the raw sugar binder may be provided as a raw sugar solution, and the raw sugar solution may include 35 wt% to 85 wt% of raw sugar. More specifically, the raw sugar solution may include 65 wt% to 85 wt% of raw sugar.
  • Method for producing coal briquettes according to an embodiment of the present invention may further comprise the step of adding a curing agent to the pulverized coal before providing molasses.
  • the molasses and the raw sugar binder may be separately added to the pulverized coal.
  • Method for producing coal briquettes according to an embodiment of the present invention may further comprise the step of adding a curing agent to the pulverized coal before providing molasses.
  • the molasses and the raw sugar binder may be premixed and added to the pulverized coal. The raw sugar is transferred to the molasses side and mixed with molasses to prepare a raw sugar solution as a raw sugar binder and then added to the pulverized coal.
  • the hardener may be at least one material selected from the group consisting of quicklime, slaked lime, calcium carbonate, cement, bentonite, clay, silica, silicate, dolomite, phosphoric acid and sulfuric acid.
  • Providing the raw sugar binder i) melting the raw sugar with steam of 70 °C to 120 °C providing a molten liquid, and ii) adding water to the melt and stirred at 60 °C to 70 °C to provide a raw sugar binder It may include a step.
  • Providing the raw sugar binder may further include adjusting the concentration of the raw sugar solution by adding water to the raw sugar solution.
  • Providing the raw sugar binder includes i) crushing the sugar cane while injecting water, ii) juice the pulverized sugar cane to provide sugar cane juice, and iii) removing impurities from the sugar cane juice and Concentrating the sorghum juice to provide sugarcane syrup.
  • Sugar cane syrup may be provided as a raw sugar binder.
  • the amount of solids contained in the sugar cane juice may be 10wt% to 30wt%.
  • the amount of solids contained in the sugar cane syrup may be 50 wt% to 80 wt%.
  • the reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
  • the amount of the raw sugar binder may be 3 parts by weight to 10 parts by weight of the coal briquettes. More preferably, the amount of the raw sugar binder may be 3 to 5 parts by weight of the coal briquettes.
  • the amount of molasses may be 5 parts by weight to 15 parts by weight of the mixture, and the amount of raw sugar binder may be equal to or less than the amount of molasses.
  • the raw sugar binder includes sucrose, and the amount of sucrose to 100 parts by weight of pulverized coal may be 2 parts by weight to 4 parts by weight.
  • the raw sugar binder includes glucose, and the amount of glucose relative to 100 parts by weight of pulverized coal may be 2 parts by weight to 4 parts by weight.
  • the raw sugar binder includes fructose, and the amount of fructose to 100 parts by weight of pulverized coal may be 2 parts by weight to 4 parts by weight.
  • the curing agent is at least one material selected from the group consisting of quicklime, hydrated lime, calcium carbonate, cement, bentonite, clay, silica, silicate, dolomite, phosphoric acid and sulfuric acid, and the amount of the curing agent is 1 weight based on 100 parts by weight of the pulverized coal. Parts to 5 parts by weight.
  • the present invention is charged into the dome of the molten gasifier in the molten gas manufacturing apparatus comprising a reducing gas which is connected to the molten gasifier, i) a molten gasifier, and ii) a molten gasifier, providing a reduced iron rapid heating To provide coal briquettes.
  • the coal briquettes include pulverized coal, molasses, raw sugar binder, and a curing agent, and when the raw sugar binder includes sucrose, the amount of sucrose may be 1.35 parts by weight to 9 parts by weight based on 100 parts by weight of pulverized coal. More preferably, the amount of sucrose may be 2.7 parts by weight to 9 parts by weight. More preferably, the amount of sucrose may be 3.6 parts by weight to 9 parts by weight.
  • Apparatus for producing coal briquettes includes: i) one or more raw sugar solution reservoirs adapted to store raw sugar solutions, ii) fine coal storage tanks adapted to store pulverized coal, iii) molasses storage tanks adapted to store molasses, iv) raw sugar A mixer adapted to supply raw sugar solution, pulverized coal and molasses to produce a mixture, respectively, and v) a pair of rollers connected to the mixer to receive and compress the mixture.
  • the raw sugar solution reservoir may comprise i) a casing, ii) a casing, a transfer screw extending in the longitudinal direction of the raw sugar solution reservoir, and iii) a steam supply tube in communication with the casing and adapted to supply steam into the casing.
  • the coal briquette manufacturing apparatus may further include: i) a raw sugar storage tank for supplying raw sugar, and ii) a premixer for interconnecting the raw sugar storage tank and the raw sugar solution storage tank and transferring the raw sugar while pre-stirring the raw sugar. .
  • the premixer may extend long in the horizontal direction.
  • the one or more raw sugar solution reservoirs comprise a pair of raw sugar solution reservoirs spaced apart from each other, and the premixer may each be connected to a pair of raw sugar solution reservoirs.
  • the coal briquette manufacturing apparatus may further include a raw sugar solution concentration controller connected to a raw sugar solution storage tank and provided with a water supply line.
  • the coal briquette manufacturing apparatus includes: i) raw sugar storage tank applied to store raw sugar, ii) molasses, and connected to the raw sugar storage tank to receive raw sugar, and a hot wire coil is installed in the molasses storage tank to provide molasses and raw sugar Molasses storage tank adapted to heat-melt; iii) pulverized coal storage tank adapted to store pulverized coal; iv) a pulverized coal storage tank and a mixer adapted to supply raw sugar, molasses and pulverized coal, respectively, to produce a mixture; and v) a mixer. And a pair of rollers to feed and compress the mixture.
  • a raw sugar binder may be used to improve the hot strength of the coal briquettes.
  • molasses it is possible to reduce the manufacturing cost of coal briquettes.
  • FIG. 1 is a schematic flowchart of a method of manufacturing coal briquettes according to an exemplary embodiment of the present invention.
  • FIGS. 2 to 5 are schematic views of the coal briquette manufacturing apparatus according to the first to fourth embodiments of the present invention.
  • FIG. 6 is a schematic diagram of a raw sugar manufacturing apparatus for providing the raw sugar of FIG. 1.
  • FIGS. 7 and 8 are schematic views of a molten iron manufacturing apparatus including the coal briquette manufacturing apparatus of FIGS. 2 to 5, respectively.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • raw sugar binder used hereinafter is interpreted to include all materials including raw sugar.
  • raw sugar binders are interpreted to include both solid and liquid forms of the material. More specifically, the raw sugar binder may include a raw sugar solution.
  • FIG. 1 schematically shows a flow chart of a method for producing coal briquettes according to an embodiment of the present invention.
  • the flowchart of the manufacturing method of the coal briquette of FIG. 1 is only for illustration of this invention, Comprising: This invention is not limited to this. Therefore, the manufacturing method of the coal briquettes can be variously modified.
  • the method of manufacturing coal briquettes includes providing fine coal (S10), providing molasses (S20), providing a raw sugar binder (S30), and adding a hardener to the fine coal (S40). ), Providing a mixture in which molasses and raw sugar binder is added to the pulverized coal (S50), and molding the mixture to provide coal briquettes (S60).
  • the method of manufacturing coal briquettes may further include other steps.
  • step S10 pulverized coal is provided.
  • Pulverized coal is used as raw coal.
  • the pulverized coal is mixed with moisture in advance to maintain the amount of moisture mixed with the pulverized coal at 2wt% to 12wt%. If the amount of water mixed in the pulverized coal is adjusted in the above-described range, the moisture may block the pores of the pulverized coal particles.
  • the pulverized coal particles can be well bonded to each other to efficiently improve the cold strength of the coal briquettes.
  • step S20 molasses is provided.
  • Molasses is the black or ocher juice from which sugar is extracted from sugar beet or sugar cane.
  • Molasses is the final byproduct of the process of producing raw sugars from sugar cane. Using molasses as a binder, coal briquettes having excellent cold strength can be produced.
  • a raw sugar binder is provided.
  • the raw sugar binder may be used by using sugar cane syrup as the raw sugar solution or by dissolving the raw sugar in water.
  • the raw sugar binder may include sucrose, glucose or fructose.
  • the raw sugar solution may include 35 wt% to 85 wt% of raw sugar. If the amount of raw sugar is too small, the cold strength and hot strength of the coal briquettes may be lowered. In addition, when the amount of raw sugar is too large, the formability of the coal briquettes decreases or the manufacturing cost increases. Therefore, the amount of raw sugar is adjusted to the above range. More preferably, the raw sugar solution may include 65 wt% to 85 wt% of raw sugar.
  • the temperature of the crude sugar solution may be 10 ° C to 80 ° C. If the temperature of the raw sugar solution is too high, the raw sugar may deteriorate. In addition, when the temperature of the raw sugar solution is too low, its flowability may decrease. Therefore, the temperature of the raw sugar solution is adjusted to the above-mentioned range.
  • the viscosity of the raw sugar solution can be adjusted to 1cp to 60000cp. If the viscosity of the raw sugar solution is too high, the flowability is poor and the efficiency of manufacturing coal briquettes is lowered. Therefore, it is preferable to adjust the viscosity of the raw sugar solution to the above-mentioned range.
  • the raw sugar binder improves cold strength by a saccharide salt reaction with a curing agent. Therefore, when the raw coal binder is added to the fine coal to produce coal briquettes, physical properties of the coal briquettes may be improved. In addition, when the raw sugar binder is used, since the cold strength of the coal briquettes is improved, the amount of molasses used may be further reduced.
  • the raw sugar binder includes sucrose, glucose and fructose.
  • Sucrose is called sucrose and the product name is sugar.
  • Sucrose is a disaccharide in which ⁇ -glucose (glucose) and ⁇ -fructose (fructose) are combined 1 and 2, and the molecular formula is C 12 H 22 O 11 and is the main component of sugar in juices such as sugar cane, sugar beet and sugar maple.
  • Sucrose has excellent sweetness quality and strength, and is used as a reference material for sweetener evaluation.
  • Glucose is a typical aldohexose, i.e., a monosaccharide having 6 carbons and an aldehyde group.
  • Glucose is the central compound of carbohydrate metabolism, capable of synthesizing 38 ATPs per molecule, and the molecular formula is C 6 H 12 O 6 .
  • fructose is a kind of 2-ketohexose, also called levulose, and is composed of levan ( ⁇ 2,6 fructan) or inulin ( ⁇ 1,2 fructan) in the form of free and disaccharides in fruits, vegetables, and honey. It is distributed in the form of homo polysaccharides, such as.
  • the amount of glucose or fructose, based on 100 parts by weight of pulverized coal may be 2 parts by weight to 4 parts by weight, respectively.
  • the amount of sucrose per 100 parts by weight of pulverized coal may be 2 parts by weight to 5 parts by weight. If the amount of sucrose, glucose or fructose is too small, the cold strength of the coal briquettes may be lowered. In addition, when the amount of sucrose, glucose or fructose is too high, the production cost of coal briquettes may increase. Therefore, it is preferable to adjust the amount of sucrose, glucose or fructose added to the coal briquettes in the above-mentioned range.
  • step S40 a hardener is added to the pulverized coal.
  • Quick curing agents such as quicklime, slaked lime, calcium carbonate, cement, bentonite, clay, silica, silicate, dolomite, phosphoric acid or sulfuric acid can be used.
  • CaO may be used to produce coal briquettes having excellent cold strength and hot strength.
  • the amount of hardener may be 0.1 to 5 parts by weight of pulverized coal. By adjusting the amount of the curing agent in the above-described range, the cold strength of the coal briquettes can be greatly improved. Meanwhile, although FIG. 1 illustrates that step S40 is included, step S40 may be omitted in some cases.
  • step S50 a mixture of molasses and raw sugar binder is added to the pulverized coal.
  • the process time of step S50 and the process time of step S40 may be kept the same.
  • step S60 the mixture is molded to provide coal briquettes.
  • coal briquettes may be manufactured by charging a mixture between paired rolls rotating in opposite directions.
  • the amount of the raw sugar binder may be 3 parts by weight to 10 parts by weight of the coal briquettes. More preferably, the amount of the raw sugar binder may be 3 to 5 parts by weight of the coal briquettes. If the amount of raw sugar binder is too large, the production cost of coal briquettes may increase. In addition, when the amount of raw sugar binder is too small, the hot strength and the cold strength of the coal briquettes may be lowered. Therefore, it is preferable to adjust the amount of the raw sugar binder in the above range.
  • the amount of molasses may be 5 parts by weight to 15 parts by weight of the mixture. Since the molasses can be replaced with the raw sugar binder, the amount of the raw sugar binder is preferably equal to or less than the amount of molasses. If the amount of raw sugar binder is too large compared to the amount of molasses, the formability of the coal briquettes may be lowered. Therefore, it is preferable to adjust the amount of molasses to the above-mentioned range.
  • the amount of sucrose may be 1.35 parts by weight to 9 parts by weight based on 100 parts by weight of pulverized coal. More preferably, the amount of sucrose may be 2.7 parts by weight to 9 parts by weight. More preferably, the amount of sucrose may be 3.6 parts by weight to 9 parts by weight. If the amount of sucrose is too small, the cold strength of the coal briquettes may be lowered. In addition, when the amount of sucrose is too large, the flowability of the raw sugar binder is lowered, the coal briquette manufacturing process can not proceed efficiently. In addition, a hardening
  • curing agent can be mixed with sucrose.
  • the hardener is at least one material selected from the group consisting of quicklime, slaked lime, calcium carbonate, cement, bentonite, clay, silica, silicate, dolomite, phosphoric acid and sulfuric acid.
  • the amount of the curing agent may be 1 part by weight to 5 parts by weight with respect to 100 parts by weight of pulverized coal.
  • the amount of hardener can be adjusted to the above-mentioned range to improve the cold strength of the coal briquettes.
  • Coal briquettes may be produced at 3 ° C to 300 ° C. When the coal briquettes are cured in the above-described temperature range after molding, the coal briquettes and the cold strength are excellent.
  • the coal briquettes are charged into the dome portion of the melt gasifier and rapidly heated to melt the reduced iron charged into the melt gasifier. The reduced iron is melted to produce molten iron.
  • the reduction furnace is connected to the molten gasifier to receive the reducing gas to convert iron ore to reduced iron.
  • FIG. 2 schematically shows a coal briquette manufacturing apparatus 100 according to a first embodiment of the present invention.
  • the structure of the coal briquette manufacturing apparatus 100 of FIG. 2 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the coal briquette manufacturing apparatus 100 may be modified in other forms.
  • the coal briquette manufacturing apparatus 100 includes a raw sugar storage tank 10, a pulverized coal storage tank 20, a hardener storage tank 30, a molasses storage tank 40, a preliminary mixing tank 50, and a mixer 60. And a pair of rollers 70.
  • the coal briquette manufacturing apparatus 100 may further include other devices as necessary.
  • Raw sugar is stored in the raw sugar storage tank (10).
  • Raw sugar is transferred to the molasses side connected to the raw sugar storage tank 10, that is, molasses storage tank 40 is heated and melted together with molasses by the hot wire coil 401 installed in the molasses storage tank 40 while stirring and mixing with molasses. Therefore, raw sugar solution may be prepared in the molasses storage tank 40 in which molasses is stored.
  • the water jacket is installed around the molasses storage tank 40 to be indirectly heated.
  • Molasses is stored in the molasses storage tank 40.
  • an appropriate amount of molasses may be supplied to the molasses storage tank 40 only when the coal briquettes are manufactured.
  • the pulverized coal stored in the pulverized coal storage tank 20 is uniformly mixed in the preliminary mixing tank 50 with the hardener stored in the hardener storage tank 30.
  • the pulverized coal to which the curing agent is added in the preliminary mixing tank 50 is supplied to the mixer 60 and mixed with the molasses and raw sugar solution supplied from the molasses storage tank 40.
  • the molasses and the raw sugar solution cause the curing agent, the sugar acid reaction, and the caramelization reaction, respectively.
  • the mixture prepared by mixing the pulverized coal, molasses and the raw sugar solution can be supplied to a pair of rollers 70 connected to the mixer 60 to be compressed, thereby improving the cold strength of the manufactured coal briquettes. Only raw sugar can be used, or it can be mixed with molasses and used at low cost.
  • FIG. 3 schematically shows a coal briquette manufacturing apparatus 200 according to a second embodiment of the present invention. Since the coal briquette manufacturing apparatus 200 of FIG. 3 is similar to the coal briquette manufacturing apparatus 100 of FIG. 2, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the raw sugar stored in the raw sugar storage tank 10 is supplied to the raw sugar solution storage tank 42 to prepare a raw sugar solution.
  • the raw sugar solution reservoir 42 includes a casing 421, a steam supply pipe 423, and a transfer screw 425.
  • the casing 421 has a shape extending in the vertical direction.
  • the casing 421 may be made of steel or the like to ensure durability thereof.
  • the feed screw 425 is located in the casing 421.
  • the conveying screw 425 comprises a blade formed continuously around an axis extending in the longitudinal direction of the raw sugar solution reservoir 42, that is, the vertical direction.
  • the temperature of the raw sugar solution reservoir 42 is maintained at 60 ° C to 65 ° C. Therefore, the raw sugar solution can be efficiently produced in the raw sugar solution reservoir 42.
  • the feed screw 425 uniformly mixes the raw sugar charged from the upper portion of the raw sugar solution reservoir 42 and the steam supplied through the steam supply pipe 421.
  • the feed screw 425 prepares the raw sugar solution by homogeneous mixing, and then transfers it to the lower portion of the raw sugar solution reservoir 42. Since steam is used together with the feed screw 425, the raw sugar can be melted efficiently, and the non-uniformity caused by the sinking of the raw sugar by gravity can be solved. Since the steam has a temperature of 100 ° C to 120 ° C, raw sugar can be melted well to prepare a raw sugar solution, and the raw sugar is not thermally decomposed and resinized.
  • the steam supply pipe 423 is spaced apart from each other along the longitudinal direction of the raw sugar solution reservoir 42 is in communication with the casing 421.
  • steam can be uniformly supplied into the casing 421.
  • the raw sugar solution having a uniform concentration can be produced in the raw sugar solution reservoir 42.
  • the raw sugar solution prepared in the raw sugar solution reservoir 42 is supplied to the mixer 60.
  • molasses is supplied to the mixer 60 from the molasses storage tank 43.
  • the molasses is added to the pulverized coal separately from the raw sugar solution and made into a mixture in the mixer 60. Separate reservoir separations were made to prevent contamination of one binder when one binder was contaminated by microorganisms. It is possible to prevent the phenomenon that the function as a binder is reduced by preventing the fermentation phenomenon by the microorganism.
  • FIG. 4 schematically shows an apparatus for manufacturing coal briquettes 300 according to a third exemplary embodiment of the present invention. Since the coal briquette manufacturing apparatus 300 of FIG. 4 is similar to the coal briquette manufacturing apparatus 100 of FIG. 2, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the premixer 44 interconnects the raw sugar reservoir 10 and the raw sugar solution reservoir 42.
  • the premixer 44 is connected to the raw sugar storage tank 10 and receives the raw sugar from the raw sugar storage tank 10 and transfers it with pre-stirring. Therefore, if there is a mass of raw sugar at the same time transporting the raw sugar, it can be finely crushed to adjust the particle size uniformly.
  • the premixer 44 is installed to extend in the horizontal direction.
  • the raw sugar solution reservoir 42 mixes the raw sugar supplied from the premixer 44 with steam sprayed in the direction of the arrow by the steam supply pipe 423 to provide a molten liquid.
  • the temperature of the steam may be 70 °C to 120 °C. If the temperature of steam is too low, raw sugar may not melt well. In addition, when the temperature of the steam is too high, the raw sugar solution reservoir 42 may deteriorate as raw sugar is overheated, which may adversely affect durability. Therefore, it is preferable to adjust the temperature of steam to the above-mentioned range.
  • the raw sugar solution concentration controller 80 receives the melt from the raw sugar solution reservoir 42.
  • the raw sugar solution concentration controller 80 adds water to the melt through a self-equipped water supply line 801 and stirred at 60 ° C. to 70 ° C. to provide a raw sugar solution. If the stirring temperature is too low, the water and the melt may not mix well and raw sugar may be present unevenly. In addition, if the stirring temperature is too high, the raw sugar solution may deteriorate. Therefore, the stirring temperature is adjusted to the above-mentioned range. On the other hand, in the raw sugar solution concentration controller 80 it is possible to appropriately adjust the concentration of the raw sugar solution by adding water to the raw sugar solution.
  • the raw sugar solution concentration controller 80 is attached to the sensor to measure the concentration of the raw sugar solution to supply water when the concentration of the raw sugar solution is high.
  • the prepared raw sugar solution is supplied to the raw sugar solution supply tank 85 and temporarily stored.
  • the raw sugar solution is supplied to the mixer 60 and uniformly mixed with molasses and pulverized coal.
  • FIG. 5 schematically shows a coal briquette manufacturing apparatus 400 according to a fourth embodiment of the present invention. Since the coal briquette manufacturing apparatus 400 of FIG. 5 is similar to the coal briquette manufacturing apparatus 100 of FIG. 4, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • a raw sugar solution may be prepared using a pair of raw sugar solution reservoirs 42a and 42b.
  • the pair of raw sugar solution reservoirs 42a and 42b are spaced apart from each other, and the premixer 44 is connected to the pair of raw sugar solution reservoirs 42a and 42b, respectively. Therefore, it is possible to increase the amount of raw sugar solution prepared by using a pair of raw sugar solution reservoirs 42a and 42b.
  • FIG. 6 schematically shows a raw sugar manufacturing apparatus 15 for providing the raw sugar of FIG. 1.
  • the raw sugar manufacturing apparatus 15 of FIG. 6 is for illustration only, and this invention is not limited to this. Therefore, the raw sugar manufacturing apparatus 15 can be modified also in another form.
  • the raw sugar manufacturing apparatus 15 includes a grinder 151, a juicer 152, a sugar cane juice storage tank 153, a vacuum fan 154, an impurity remover 155, and a centrifuge 156. ), Sugarcane concentrator 157 and quicklime reservoir 159.
  • the raw sugar manufacturing apparatus 15 may further include other components as necessary.
  • the sugar cane is pulverized finely with the injected water. Finely ground sugar cane is juiced in the juicer 152 and extracted into sugar cane juice. Sugar cane juice is stored in the sugar cane juice storage tank 153. Since sugar cane juice is prepared by grinding sugar cane, there are many impurities mixed in the sugar cane growing process. Accordingly, the quicklime from the quicklime storage tank 159 is added to the sugarcane juice transferred to the impurity remover 155 to prepare sugarcane syrup from which impurities in the sugarcane juice are removed. Sugar cane syrup can be used directly or concentrated and used as a coal briquette binder.
  • Sugar cane syrup has a very low viscosity, which is advantageous for pipe transportation compared to molasses.
  • the sugar cane syrup has excellent mixing efficiency, the cold strength variation of the coal briquettes can be reduced by uniform mixing.
  • the sugar cane syrup stably maintains the cold strength of the coal briquettes regardless of the variation of the carbon type.
  • the amount of solids contained in the sugar cane syrup may be 50 wt% to 80 wt%. More preferably, the amount of solids may be 65 wt% to 70 wt%. If the amount of solids is too small, sufficient strength of coal briquettes cannot be secured and microbial propagation cannot be suppressed. In particular, the microorganisms contained in a large amount of sugar cane syrup reduces the sugar content by fermenting sucrose contained in the sugar cane syrup with an alcohol component, thereby lowering the cold strength of the coal briquettes. Therefore, it is necessary to prevent sugar cane syrup from being fermented by microorganisms.
  • paraffin can prevent foaming of sugarcane syrup by organic acids and the like. That is, when carbon dioxide contained in the sugar cane syrup is ejected to the outside, bubbles are generated. When the sugar cane syrup is agitated, the container storing the sugar cane syrup may explode due to the presence of an organic substance which is a foaming surfactant, resulting in volume increase and foaming. Therefore, paraffin is used to prevent this.
  • Table 1 shows the content of solids and the viscosity of solids according to the total reduction sugar of sugarcane syrup having a ratio of solids to total reducing sugars of about 1.1.
  • the sugar cane syrup has a viscosity of 500 cps, which satisfies a viscosity condition of 25000 cps or less suitable for use as a coal briquette binder. Therefore, sugar cane syrup can be used industrially.
  • the total reduction sugar content of the sugar cane syrup is 73 wt%, which is higher than the total reduction sugar level of 45 mol% to 60 wt% of the molasses binder. Therefore, it is possible to improve the strength of the coal briquettes by using a sugar cane syrup having a high total reducing sugar.
  • the amount of total reduction sugar contained in the sugar cane syrup is preferably 65wt% to 90wt%. If the total amount of reduced sugar is too small, sugar cane syrup can ferment. Therefore, in order to use it stably stored within one year, to remove the precipitate by adding quicklime or slaked lime to sugar cane syrup. In addition, when the amount of total reducing sugar is too large, the sugar cane syrup has a high viscosity and thus cannot be applied to the actual process. Therefore, the amount of total reduction sugar is adjusted to the above-mentioned range.
  • quicklime used for removing impurities shown in FIG. 6 may be recovered and used again.
  • the sugarcane juice from which impurities are removed is concentrated by heating in a sugarcane concentrator 157 and used as a raw sugar binder. That is, the coal briquettes can be manufactured using the sugar cane syrup obtained from the raw sugar producing apparatus 15 of FIG. 6 as a raw sugar binder.
  • Sugar cane syrup is distilled and recrystallized in a vacuum pan 154 and extracted into massecuite. White flakes have a solid content of 90 wt% or more, including raw sugar crystals.
  • the raw sugar is extracted through the centrifugation process in the centrifuge 156. This process is repeated continuously in the vacuum fan 154 and the centrifuge 156 to extract the raw sugar, and discharge the molasses by-product.
  • Raw sugar binder obtained through this process is easy to control the moisture content. Therefore, coal type coal having a high intrinsic moisture content can also be used. If the amount of sugar in the sugar cane syrup is too large, the strength of the coal briquettes may be reduced by excessive moisture. On the other hand, if the water content of the sugar cane syrup is too small, that is, if the water content is excessively less than 10wt%, a problem occurs in the transfer, the water content of the coal briquettes may be insufficient to reduce the strength of the coal briquettes. And raw sugar binders instead of molasses can be used for coal of various types of coal. Table 2 shows the results of component analysis of sugarcane juice, sugarcane syrup and raw sugar obtained in the raw sugar production apparatus 15 of FIG. 6.
  • the sugar cane juice, sugar cane syrup and raw sugar obtained in the raw sugar producing apparatus 15 of FIG. 6 all include sucrose, glucose or fructose.
  • sucrose is a disaccharide (glucose)
  • glucose and fructose is a monosaccharide (monosaccharide).
  • the ratio of the content of disaccharides to the content of monosaccharides of the raw sugar is higher than 90, and sugar cane juice and sugar cane syrup also have a high ratio.
  • the ratio of the content of disaccharides to the content of monosaccharides in molasses is very low, less than 4.
  • the raw sugar binder can obtain the same strength of coal briquettes even if the amount of the molten binder is used in a smaller amount. As a result, the cost of manufacturing coal briquettes can be reduced. That is, in order to obtain the strength of the coal briquettes described above, the ratio of the amount of disaccharides to the amount of monosaccharides is preferably 4 to 1000. More preferably, the ratio of the amount of disaccharide to the amount of monosaccharide may be 10 to 1000.
  • the sugar cane syrup is obtained by juice and condensation of sugar cane, the production process is simple, and a crystal production process requiring a high investment cost is unnecessary.
  • the step of making the solution in order to use as a binder can be omitted. Therefore, the process can be simplified as a whole and the process can be streamlined.
  • the price of sugar cane is cheaper than raw sugar due to the transportation cost is low, the price of the binder can be lowered to reduce the manufacturing cost.
  • the sugar cane syrup does not adhere well to the forming roll, the shape defect of the coal briquettes can be prevented, and the viscosity can be uniformly applied to the coal briquettes as compared with the viscosity of the molasses.
  • the sugar cane syrup has a higher adhesive ability than molasses and thus improves the cold strength of the coal briquettes, it is possible to prevent a decrease in the cold strength and the hot strength due to the change in the carbon type of the coal briquettes.
  • FIG. 7 schematically illustrates a molten iron manufacturing apparatus 1000 including the coal briquette manufacturing apparatus 100, 200, 300, or 400 of FIGS. 2 to 5. That is, the molten coal manufacturing apparatus 1000 of FIG. 7 may use any one of the coal briquette manufacturing apparatuses 100, 200, 300, and 400. Meanwhile, the structure of the apparatus for manufacturing molten iron 1000 of FIG. 7 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the apparatus for manufacturing molten iron 1000 of FIG. 7 may be modified in various forms.
  • the apparatus for manufacturing molten iron 1000 includes a fluidized bed reduction furnace 90, a compacted material manufacturing device 94, a compacted material storage tank 96, and a coal briquette manufacturing device 100, 200, 300, and 400. And a melt gasifier 98.
  • the apparatus for manufacturing molten iron 1000 may include other devices as necessary.
  • the fluidized-bed reduction furnace 90 iron ore in spectral form is charged, and is reduced by flowing and contacting with a reducing gas.
  • the fluidized-bed reduction furnace 90 receives a reducing gas from the melt gasifier 98 and consists of multiple stages for preheating and sequential reduction.
  • the coal briquette manufacturing apparatus 100, 200, 300, and 400 provide coal briquettes, and the coal briquettes are charged into a molten gasifier 98 and used as a heat source for melting reduced iron.
  • oxygen is injected into the molten gasifier 98 through the tuyere 983 to form a combustion zone. Therefore, molten iron can be manufactured by melting reduced iron as the combustion zone is formed, and the reducing gas generated from the coal briquettes is supplied to the fluidized-bed reduction furnace 90.
  • Iron ore is flowed in the fluidized-bed reduction furnace 90 is converted to reduced iron and then compressed in the compacted material manufacturing apparatus 94 is made of compacted material.
  • the compacted material is stored in the compacted material storage tank 96 which can also function as a uniform back pressure, and is charged together with the coal briquettes in the molten gasifier 98.
  • the dome part 981 is formed in the upper part of the melt gasifier 98. That is, a wider space is formed than the other parts of the melt gasifier 98, where hot reducing gas exists. Therefore, the coal briquettes charged to the dome portion 981 by the high-temperature reducing gas can be easily differentiated. That is, the coal briquettes are injected into the upper portion of the molten gasifier 98 maintained at 1000 ° C., so the coal briquettes are subjected to rapid thermal shock. Therefore, the coal briquettes may be differentiated while falling to the lower portion of the melt gasifier 98.
  • the coal briquettes produced by the method of FIG. 1 have high hot strength, the coal briquettes are not differentiated in the dome portion 981 of the melt gasifier 98 but fall while being kept in a lowered state to the lower portion of the melt gasifier 98.
  • the char generated by the pyrolysis reaction of the coal briquettes moves to the lower portion of the molten gasifier 98 and exothermicly reacts with oxygen supplied through the tuyere 983.
  • the coal briquettes can be used as a heat source for keeping the molten gasifier 98 at a high temperature.
  • a bulk coal material or coke may be charged into the melt gasifier 98 as necessary.
  • An air vent 983 is provided on the outer wall of the melt gasifier 98 to blow in oxygen. Oxygen is blown into the coal packed bed to form a combustion zone.
  • the coal briquettes may be burned in a combustion zone to generate reducing gas.
  • FIG. 8 schematically shows another apparatus for manufacturing molten iron 2000 including the coal briquette manufacturing apparatus 100, 200, 300, and 400 of FIGS. 2 to 5. Since the structure of the apparatus for manufacturing molten iron 2000 of FIG. 8 is similar to that of the apparatus for manufacturing molten iron 1000 of FIG. 7, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the molten iron manufacturing apparatus 2000 includes a packed-bed reduction furnace 92, coal briquette manufacturing apparatus 100, 200, 300, and 400, and a molten gasifier 98.
  • the apparatus for manufacturing molten iron 3000 may include other devices as necessary.
  • iron ore is charged and reduced.
  • the iron ore charged into the packed-bed reduction furnace 92 is made of reduced iron while passing through the packed-bed reduction furnace 92 after being pre-dried.
  • the packed-bed reduction reactor 92 receives a reducing gas from the melt gasifier 98 to form a packed bed therein.
  • the coal briquette manufacturing apparatus 100, 200, 300, and 400 manufactures coal briquettes, and the coal briquettes are charged into a molten gasifier 98 and used as a heat source for melting reduced iron.
  • oxygen is injected into the molten gasifier 98 through the tuyere 983. Therefore, molten iron can be manufactured by melting reduced iron by combustion heat of coal briquettes.
  • Coal briquettes were prepared by mixing pulverized coal, quicklime, raw sugar solution and molasses.
  • concentration of the raw sugar solution used was variously adjusted, and the physical properties of the used raw sugar solution and molasses are shown in Table 3 below.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.25 parts by weight of solids), and 5 parts by weight of 85% solution (4.25 parts by weight of solids) of raw coal.
  • the amount of pulverized coal was 8.5 parts by weight.
  • the rest of the experimental procedure was the same as the above-described experimental example.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.25 parts by weight of solids), and 3 parts by weight of 85% solution (0.25 parts by weight of solids) of raw coal.
  • the amount of pulverized coal was 8.5 parts by weight. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured by using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 5 parts by weight (5 parts by weight of solids) of a 75% solution per mill. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured by using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 3 parts by weight (3 parts by weight of solids) of 75% solution per mill. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 5 parts by weight of a 65% solution (3.25 parts by weight of solids) of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 3 parts by weight of 65% solution (1.95 parts by weight of solids) of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 4 parts by weight of a 65% solution (2.6 parts by weight of solids) of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured by using 2.7 parts by weight of quicklime, 5 parts by weight of molasses, and 5 parts by weight of a 55% solution of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime, 5 parts by weight of molasses (3.75 parts by weight of solids), and 4 parts by weight of a 55% solution (2.2 parts by weight of solids) of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by using 2.7 parts by weight of quicklime, 5 parts by weight of molasses, and 5 parts by weight of a 35% solution of raw coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime and 10 parts by weight of molasses based on 100 parts by weight of pulverized coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were manufactured using 2.7 parts by weight of quicklime and 5 parts by weight of molasses (3.75 parts by weight of solids) based on 100 parts by weight of pulverized coal. The rest of the experimental procedure was the same as in Comparative Example 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 2 parts by weight of sucrose and 6 parts by weight of molasses with respect to 100 parts by weight of coal. The rest of the experimental procedure was the same as the above-described experimental example.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 4 parts by weight of sucrose and 6 parts by weight of molasses with respect to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 2 parts by weight of glucose and 6 parts by weight of molasses with respect to 100 parts by weight of coal. The rest of the experimental procedure was the same as the above-described experimental example.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 4 parts by weight of glucose and 6 parts by weight of molasses with respect to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 2 parts by weight of fructose and 6 parts by weight of molasses to 100 parts by weight of coal. The rest of the experimental procedure was the same as the above-described experimental example.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 4 parts by weight of fructose and 6 parts by weight of molasses to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 6 parts by weight of molasses as a binder with respect to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 8 parts by weight of molasses as a binder with respect to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Coal briquettes were prepared by mixing 2.7 parts by weight of CaO as a curing agent and 10 parts by weight of molasses as a binder with respect to 100 parts by weight of coal. The rest of the experiment was the same as in Experiment 1 described above.
  • Table 5 shows experimental results of the coal briquettes prepared according to Experimental Examples 11 to 16 and Comparative Examples 3 to 5 described above. As shown in Table 5, it was confirmed that the cold strength and the hot strength of the coal briquettes were improved when sucrose, glucose and fructose were used together as compared to when molasses was used as the binder. In addition, when adding sucrose, it was found that the cold strength of the coal briquettes is more improved than when glucose and fructose are added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

환원철이 장입되는 용융가스화로, 및 용융가스화로에 연결되고 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄의 제조 방법을 제공한다. 성형탄의 제조 방법은 i) 미분탄을 제공하는 단계, ii) 당밀을 제공하는 단계, iii) 원당 용액을 제공하는 단계, iv) 미분탄에 당밀과 원당 용액을 첨가한 혼합물을 제공하는 단계, 및 v) 혼합물을 성형하여 성형탄을 제공하는 단계를 포함한다.

Description

성형탄, 그 제조 방법 및 그 제조 장치
본 발명은 성형탄, 그 제조 방법 및 그 제조 장치에 관한 것이다. 좀더 상세하게는, 본 발명은 성형탄의 냉간 강도와 열간 강도를 향상시키면서 제조 비용을 절감할 수 있는 성형탄, 그 제조 방법 및 그 제조 장치에 관한 것이다.
용융환원제철법에서는 철광석을 환원로와 환원된 철광석을 용융하는 용융가스화로를 사용한다. 용융가스화로에서 철광석을 용융하는 경우, 철광석을 용융할 열원으로서 성형탄을 용융가스화로에 장입한다. 여기서, 환원철은 용융가스화로에서 용융된 후, 용철 및 슬래그로 전환된 후 외부로 배출된다. 용융가스화로에 장입된 성형탄은 석탄충전층을 형성한다. 산소는 용융가스화로에 설치된 풍구를 통하여 취입된 후 석탄충전층을 연소시켜서 연소 가스를 생성한다. 연소가스는 석탄충전층을 통하여 상승하면서 고온의 환원 가스로 전환된다. 고온의 환원가스는 용융가스화로의 외부로 배출되어 환원가스로서 환원로에 공급된다.
일반적으로, 성형탄은 석탄과 바인더를 혼합하여 제조된다. 이 경우, 바인더로서 당밀이 사용된다. 당밀의 성분은 산지에 따라 다르고, 제당 제조 공정에 따라 그 성분을 제어하기 어렵다. 따라서 당밀을 바인더로 사용하여 성형탄을 제조하는 경우, 성형탄의 품질을 일정하게 제어할 수 없다. 특히, 높은 수분을 가지는 당밀을 사용하는 경우, 성형탄의 품질이 저하된다.
원당 바인더와 당밀을 함께 사용하여 냉간 강도와 열간 강도를 향상시키면서 제조 비용을 절감할 수 있는 성형탄을 제공하고자 한다. 또한, 전술한 성형탄의 제조 방법을 제공하고자 한다. 그리고 전술한 성형탄의 제조 장치를 제공하고자 한다.
본 발명의 일 실시예에서는 i) 환원철이 장입되는 용융가스화로, 및 ii) 용융가스화로에 연결되고, 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄의 제조 방법을 제공한다. 성형탄의 제조 방법은 i) 미분탄을 제공하는 단계, ii) 당밀을 제공하는 단계, iii) 원당 바인더를 제공하는 단계, iv) 미분탄에 당밀과 원당 바인더를 첨가한 혼합물을 제공하는 단계, 및 v) 혼합물을 성형하여 성형탄을 제공하는 단계를 포함한다.
원당 바인더를 제공하는 단계에서, 원당 바인더는 원당 용액으로 제공되고, 원당 용액은 35wt% 내지 85wt%의 원당을 포함할 수 있다. 좀더 구체적으로, 원당 용액은 65wt% 내지 85wt%의 원당을 포함할 수 있다.
본 발명의 일 실시예에 따른 성형탄의 제조 방법은 당밀을 제공하는 단계 전에 미분탄에 경화제를 첨가하는 단계를 더 포함할 수 있다. 혼합물을 제공하는 단계에서, 당밀과 원당 바인더는 각각 별개로 미분탄에 첨가될 수 있다. 본 발명의 일 실시예에 따른 성형탄의 제조 방법은 당밀을 제공하는 단계 전에 미분탄에 경화제를 첨가하는 단계를 더 포함할 수 있다. 혼합물을 제공하는 단계에서, 당밀과 원당 바인더는 사전 혼합되어 미분탄에 첨가될 수 있다. 원당이 당밀측으로 이송되어 당밀과 혼합되면서 원당 바인더인 원당 용액으로 제조된 후 미분탄에 첨가될 수 있다. 미분탄에 경화제를 첨가하는 단계에서, 경화제는 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 및 황산으로 이루어진 군에서 선택된 하나 이상의 물질일 수 있다.
원당 바인더를 제공하는 단계는, i) 70℃ 내지 120℃의 스팀으로 원당을 용융시켜 용융액을 제공하는 단계, 및 ii) 용융액에 물을 첨가하여 60℃ 내지 70℃에서 교반하여 원당 바인더를 제공하는 단계를 포함할 수 있다. 원당 바인더를 제공하는 단계는 원당 용액에 물을 첨가하여 원당 용액의 농도를 조절하는 단계를 더 포함할 수 있다. 원당 바인더를 제공하는 단계는, i) 물을 주입하면서 사탕수수를 분쇄하는 단계, ii) 분쇄된 사탕수수를 착즙하여 사탕수수 주스를 제공하는 단계, 및 iii) 사탕수수 주스의 불순물을 제거하고 사탕수수 주스를 농축하여 사탕수수 시럽을 제공하는 단계를 포함할 수 있다. 사탕수수 시럽이 원당 바인더로 제공될 수 있다. 사탕수수 주스를 제공하는 단계에서, 사탕수수 주스에 함유된 고형분의 양은 10wt% 내지 30wt%일 수 있다. 사탕수수 시럽을 제공하는 단계에서, 사탕수수 시럽에 함유된 고형분의 양은 50wt% 내지 80wt%일 수 있다.
환원로는 유동층형 환원로 또는 충전층형 환원로일 수 있다. 성형탄을 제공하는 단계에서, 원당 바인더의 양은 성형탄의 3 중량부 내지 10 중량부일 수 있다. 좀더 바람직하게는, 원당 바인더의 양은 성형탄의 3 중량부 내지 5 중량부일 수 있다. 당밀의 양은 혼합물의 5 중량부 내지 15 중량부이고, 원당 바인더의 양은 당밀의 양 이하일 수 있다.
원당 바인더를 제공하는 단계에서, 원당 바인더는 자당을 포함하고, 미분탄 100 중량부에 대한 자당의 양은 2 중량부 내지 4 중량부일 수 있다. 원당 바인더를 제공하는 단계에서, 원당 바인더는 포도당을 포함하고, 미분탄 100중량부에 대한 포도당의 양은 2 중량부 내지 4 중량부일 수 있다. 원당 바인더를 제공하는 단계에서, 원당 바인더는 과당을 포함하고, 미분탄 100중량부에 대한 과당의 양은 2 중량부 내지 4 중량부일 수 있다. 경화제는 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 및 황산으로 이루어진 군에서 선택된 하나 이상의 물질이고, 상기 경화제의 양은 상기 미분탄 100 중량부에 대해 1중량부 내지 5중량부일 수 있다.
본 발명의 일 실시예에서는 i) 환원철이 장입되는 용융가스화로, 및 ii) 용융가스화로에 연결되고, 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄을 제공한다. 성형탄은 미분탄, 당밀, 원당 바인더, 및 경화제를 포함하고, 원당 바인더가 자당을 포함하는 경우, 자당의 양은 미분탄 100 중량부에 대해 1.35중량부 내지 9중량부일 수 있다. 좀더 바람직하게는, 자당의 양은 2.7중량부 내지 9중량부일 수 있다. 더욱 바람직하게는, 자당의 양은 3.6중량부 내지 9중량부일 수 있다.
본 발명의 일 실시예에 따른 성형탄 제조 장치는, i) 원당 용액을 저장하도록 적용된 하나 이상의 원당 용액 저장조, ii) 미분탄을 저장하도록 적용된 미분탄 저장조, iii) 당밀을 저장하도록 적용된 당밀 저장조, iv) 원당 용액 저장조, 미분탄 저장조 및 당밀 저장조와 각각 연결되어 원당 용액, 미분탄 및 당밀을 공급받아 혼합물을 제조하도록 적용된 믹서, 및 v) 믹서와 연결되어 혼합물을 공급받아 압축하는 한 쌍의 롤러들을 포함한다.
원당 용액 저장조는, i) 케이싱, ii) 케이싱내에 위치하고, 원당 용액 저장조의 길이 방향으로 길게 뻗은 이송 스크류, 및 iii) 케이싱과 연통되어 케이싱내에 스팀을 공급하도록 적용된 스팀 공급관을 포함할 수 있다. 본 발명의 일 실시예에 따른 성형탄 제조 장치는 i) 원당을 공급하는 원당 저장조, 및 ii) 원당 저장조와 원당 용액 저장조를 상호 연결하고, 원당을 사전 교반하면서 이송하는 예비 혼합기를 더 포함할 수 있다.
예비 혼합기는 수평 방향으로 길게 뻗을 수 있다. 하나 이상의 원당 용액 저장조는 상호 이격 설치된 한 쌍의 원당 용액 저장조들을 포함하고, 예비 혼합기는 한 쌍의 원당 용액 저장조들에 각각 연결될 수 있다. 본 발명의 일 실시예에 따른 성형탄 제조 장치는 원당 용액 저장조와 연결되고, 급수 라인을 구비한 원당 용액 농도 조절기를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 성형탄 제조 장치는 i) 원당을 저장하도록 적용된 원당 저장조, ii) 당밀을 저장하고, 원당 저장조와 연결되어 원당을 공급받고, 당밀 저장조 내에 열선 코일이 설치되어 당밀과 원당을 가열 용융하도록 적용된 당밀 저장조, iii) 미분탄을 저장하도록 적용된 미분탄 저장조, iv) 미분탄 저장조 및 당밀 저장조와 각각 연결되어 원당, 당밀 및 미분탄을 공급받아 혼합물을 제조하도록 적용된 믹서, 및 v) 믹서와 연결되어 혼합물을 공급받아 압축하는 한 쌍의 롤러들을 포함한다.
성형탄 제조시 원당 바인더를 사용하여 성형탄의 열간 강도를 향상시킬 수 있다. 또한, 원당 바인더와 당밀을 함께 사용하여 성형탄의 제조 비용을을 절감할 수 있다.
도 1은 본 발명의 일 실시예에 따른 성형탄의 제조 방법의 개략적인 순서도이다.
도 2 내지 도 5는 본 발명의 제1 실시예 내지 제4 실시예에 따른 성형탄 제조 장치의 개략적인 도면들이다.
도 6은 도 1의 원당을 제공하기 위한 원당 제조 장치의 개략적인 도면이다.
도 7 및 도 8은 각각 도 2 내지 도 5의 성형탄 제조 장치를 포함하는 용철제조장치의 개략적인 도면이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하에서 사용하는 "원당 바인더"라는 용어는 원당을 포함하는 모든 물질을 포함하는 것으로 해석된다. 또한, 원당 바인더는 고체 및 액체 형태의 물질을 모두 포함하는 것으로 해석된다. 좀더 구체적으로, 원당 바인더는 원당 용액을 포함할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 성형탄의 제조 방법의 순서도를 개략적으로 나타낸다. 도 1의 성형탄의 제조 방법의 순서도는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 성형탄의 제조 방법을 다양하게 변형할 수 있다.
도 1에 도시한 바와 같이, 성형탄의 제조 방법은 미분탄을 제공하는 단계(S10), 당밀을 제공하는 단계(S20), 원당 바인더를 제공하는 단계(S30), 미분탄에 경화제를 첨가하는 단계(S40), 미분탄에 당밀과 원당 바인더를 첨가한 혼합물을 제공하는 단계(S50), 그리고 혼합물을 성형하여 성형탄을 제공하는 단계(S60)를 포함한다. 이외에, 성형탄의 제조 방법은 다른 단계들을 더 포함할 수 있다.
먼저, 단계(S10)에서는 미분탄을 제공한다. 원료탄으로서 미분탄을 사용한다. 미분탄은 사전에 수분을 혼합하여 미분탄에 혼합된 수분의 양을 2wt% 내지 12wt%로 유지한다. 미분탄에 혼합된 수분의 양을 전술한 범위로 조절하는 경우, 수분이 미분탄 입자의 기공을 막아줄 수 있다. 그 결과, 후속 공정에서 혼합되는 경화제와 바인더가 미분탄 입자내로 침투하지 못하고 미분탄 입자 외부에 존재하므로, 미분탄 입자들 상호간에 잘 결합되어 성형탄의 냉간 강도를 효율적으로 향상시킬 수 있다.
다음으로, 단계(S20)에서는 당밀을 제공한다. 당밀은 사탕무우 또는 사탕수수에서 사탕을 뽑아내고 남은 흑색 또는 황토색의 즙액이다. 당밀은 사탕수수로부터 원당을 생산하는 공정에서 발생하는 최종 부산물이다. 당밀을 바인더로 사용하여 우수한 냉간 강도를 가지는 성형탄을 제조할 수 있다.
단계(S30)에서는 원당 바인더를 제공한다. 원당 바인더는 원당 용액으로서 사탕수수 시럽을 사용하거나 원당을 물에 용해하여 사용할 수 있다. 또는, 원당 바인더는 자당, 포도당 또는 과당을 포함할 수 있다. 한편, 원당 용액은 35wt% 내지 85wt%의 원당을 포함할 수 있다. 원당의 양이 너무 적은 경우, 성형탄의 냉간 강도 및 열간 강도가 저하될 수 있다. 또한, 원당의 양이 너무 많은 경우, 성형탄의 성형성이 저하되거나 제조비가 상승한다. 따라서 원당의 양을 전술한 범위로 조절한다. 더욱 바람직하게는, 원당 용액은 65wt% 내지 85wt%의 원당을 포함할 수 있다. 원당 용액의 온도는 10℃ 내지 80℃일 수 있다. 원당 용액의 온도가 너무 높은 경우, 원당이 열화될 수 있다. 또한, 원당 용액의 온도가 너무 낮은 경우, 그 흐름성이 저하될 수 있다. 따라서 원당 용액의 온도를 전술한 범위로 조절한다.
그리고 원당 용액의 점도는 1cp 내지 60000cp로 조절할 수 있다. 원당 용액의 점도가 너무 높은 경우, 흐름성이 좋지 않아 성형탄의 제조 공정 효율이 저하된다. 따라서 원당 용액의 점도를 전술한 범위로 조절하는 것이 바람직하다.
성형탄 제조시 원당 바인더는 경화제와의 당산염 반응에 의해 냉간 강도를 향상시킨다. 따라서 원당 바인더를 미분탄에 첨가하여 성형탄을 제조하는 경우, 성형탄의 물성을 향상시킬 수 있다. 또한, 원당 바인더를 사용하는 경우, 성형탄의 냉간 강도가 향상되므로, 당밀의 사용량을 좀더 줄일 수도 있다.
한편, 원당 바인더는 자당(sucrose), 포도당(glucose) 및 과당(fructose)을 포함한다. 자당은 슈크로오스라고 하며, 제품명은 설탕이다. 자당은 α-glucose(포도당)와 β-fructose(과당)이 1, 2 결합한 이당류로서, 분자식은 C12H22O11이며, 사탕수수, 사탕 무, 당단풍 등의 즙액 중 당의 주성분이다. 자당은 감미의 질, 강도 등이 뛰어나 감미료 평가의 기준 물질로서 이용된다. 포도당은 대표적인 알도헥소스, 즉 탄소 6개를 가지며 알데하이드기를 가지는 단당류이다. 포도당은 탄수화물 대사의 중심 화합물로서, 한 분자당 38개의 ATP를 합성할 수 있으며, 분자식은 C6H12O6이다. D형 및 L형 2종의 광학 이성질체가 있고, 천연으로는 D형만이 존재하며 이러한 D글루코스를 포도당이라 한다. 한편, 과당은 레불로오스(levulose)라고도 하는 2케토헥소오스의 일종으로서, 과실, 채소, 꿀 등에 유리형 및 이당류의 형태로 레반(β2,6프룩탄) 또는 이눌린(β1,2프룩탄) 등의 호모 다당류의 형태로 분포한다.
미분탄 100중량부에 대하여 포도당 또는 과당의 양은 각각 2중량부 내지 4중량부일 수 있다. 한편, 미분탄 100중량부에 대하여 자당의 양은 2중량부 내지 5중량부일 수 있다. 자당, 포도당 또는 과당의 양이 너무 적은 경우, 성형탄의 냉간 강도가 저하될 수 있다. 또한, 자당, 포도당 또는 과당의 양이 너무 많은 경우, 성형탄의 제조 비용이 증가할 수 있다. 따라서 성형탄에 첨가되는 자당, 포도당 또는 과당의 양을 전술한 범위로 조절하는 것이 바람직하다.
단계(S40)에서는 미분탄에 경화제를 첨가한다. 경화제로서 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 또는 황산 등을 사용할 수 있다. 바람직하게는 CaO를 사용하여 우수한 냉간 강도 및 열간 강도를 가지는 성형탄을 제조할 수 있다. 경화제의 양은 미분탄의 0.1 중량부 내지 5 중량부일 수 있다. 경화제의 양을 전술한 범위로 조절함으로써 성형탄의 냉간 강도를 크게 향상시킬 수 있다. 한편, 도 1에는 단계(S40)가 포함되는 것으로 도시하였지만, 경우에 따라 단계(S40)를 생략할 수도 있다.
단계(S50)에서는 미분탄에 당밀과 원당 바인더를 첨가한 혼합물을 제공한다. 단계(S50)의 공정 시간과 단계(S40)의 공정 시간은 동일하게 유지할 수 있다.
마지막으로, 단계(S60)에서는 혼합물을 성형하여 성형탄을 제공한다. 예를 들면, 상호 반대 방향으로 회전하는 쌍롤들 사이에 혼합물을 장입하여 성형탄을 제조할 수 있다. 여기서, 원당 바인더의 양은 성형탄의 3 중량부 내지 10 중량부일 수 있다. 좀더 바람직하게는, 원당 바인더의 양은 성형탄의 3 중량부 내지 5 중량부일 수 있다. 원당 바인더의 양이 너무 많은 경우, 성형탄의 제조 비용이 상승할 수 있다. 또한, 원당 바인더의 양이 너무 적은 경우, 성형탄의 열간 강도 및 냉간 강도가 저하될 수 있다. 따라서 원당 바인더의 양을 전술한 범위로 조절하는 것이 바람직하다.
한편, 당밀의 양은 혼합물의 5 중량부 내지 15 중량부일 수 있다. 당밀을 원당 바인더로 대체할 수 있으므로, 원당 바인더의 양은 당밀의 양 이하인 것이 바람직하다. 원당 바인더의 양이 당밀의 양에 비해 너무 많은 경우, 성형탄의 성형성이 저하될 수 있다. 따라서 당밀의 양을 전술한 범위로 조절하는 것이 바람직하다.
원당 바인더가 자당을 포함하는 경우, 자당의 양은 미분탄 100 중량부에 대해 1.35중량부 내지 9중량부일 수 있다. 좀더 바람직하게는, 자당의 양은 2.7중량부 내지 9중량부일 수 있다. 더욱 바람직하게는, 자당의 양은 3.6중량부 내지 9중량부일 수 있다. 자당의 양이 너무 적은 경우, 성형탄의 냉간 강도가 저하될 수 있다. 또한, 자당의 양이 너무 많은 경우, 원당 바인더의 흐름성이 저하되어 성형탄 제조 공정이 효율적으로 진행될 수 없다. 한편, 자당과 함께 경화제를 혼합할 수 있다. 경화제는 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 및 황산으로 이루어진 군에서 선택된 하나 이상의 물질이다. 경화제의 양은 미분탄 100 중량부에 대해 1중량부 내지 5중량부일 수 있다. 경화제의 양을 전술한 범위로 조절하여 성형탄의 냉간 강도를 향상시킬 수 있다.
성형탄은 3℃ 내지 300℃에서 제조할 수도 있다. 성형후 전술한 온도 범위에서 성형탄을 경화할 경우 성형탄의 및 냉간 강도가 우수하다. 성형탄은 용융가스화로의 돔부에 장입되어 급속 가열되면서 용융가스화로에 장입된 환원철을 용융시킨다. 환원철은 용융되어 용철로 제조된다. 환원로는 용융가스화로와 연결되어 환원 가스를 공급받아서 철광석을 환원철로 변환한다.
도 2는 본 발명의 제1 실시예에 따른 성형탄 제조 장치(100)를 개략적으로 나타낸다. 도 2의 성형탄 제조 장치(100)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 성형탄 제조 장치(100)를 다른 형태로도 변형할 수 있다.
도 2에 도시한 바와 같이, 성형탄 제조 장치(100)는 원당 저장조(10), 미분탄 저장조(20), 경화제 저장조(30), 당밀 저장조(40), 예비 혼합조(50), 믹서(60), 그리고 한 쌍의 롤러들(70)을 포함한다. 이외에, 필요에 따라 성형탄 제조 장치(100)는 다른 장치들을 더 포함할 수 있다.
원당 저장조(10)에는 원당이 저장된다. 원당은 원당 저장조(10)와 연결된 당밀측, 즉 당밀 저장조(40)로 이송되어 당밀과 혼합 교반되면서 당밀 저장조(40)에 설치된 열선 코일(401)에 의해 당밀과 함께 가열 용융된다. 따라서 당밀이 저장된 당밀 저장조(40)에서 원당 용액을 제조할 수 있다. 한편, 도 2에는 도시하지 않았지만, 워터 재킷을 당밀 저장조(40) 주위에 설치하여 간접 가열한다.
당밀 저장조(40)에는 당밀이 저장된다. 이와는 달리, 당밀을 외부에서 보관한 후, 성형탄 제조시에만 적절한 양의 당밀을 당밀 저장조(40)에 공급하여 사용할 수도 있다. 미분탄 저장조(20)에 저장된 미분탄은 경화제 저장조(30)에 저장된 경화제와 예비 혼합조(50)에서 균일하게 혼합된다.
예비 혼합조(50)에서 경화제가 첨가된 미분탄은 믹서(60)에 공급되고, 당밀 저장조(40)에서 공급된 당밀, 원당 용액과 함께 혼합된다. 여기서, 당밀과 원당 용액은 각각 경화제와 당산염 반응 및 카라멜화 반응을 일으킨다. 미분탄, 당밀 및 원당 용액을 혼합하여 제조한 혼합물을 믹서(60)와 연결된 한 쌍의 롤러들(70)에 공급하여 압축하고, 그 결과로서 제조한 성형탄의 냉간 강도를 향상시킬 수 있다. 원당만 사용할 수도 있고, 당밀과 혼용하여 저렴하게 사용할 수도 있다.
도 3은 본 발명의 제2 실시예에 따른 성형탄 제조 장치(200)를 개략적으로 나타낸다. 도 3의 성형탄 제조 장치(200)는 도 2의 성형탄 제조 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며, 그 상세한 설명을 생략한다.
도 3에 도시한 바와 같이, 원당 저장조(10)에 저장된 원당은 원당 용액 저장조(42)에 공급되어 원당 용액으로 제조된다. 이를 위하여 원당 용액 저장조(42)는 케이싱(421), 스팀 공급관(423) 및 이송 스크류(425)를 포함한다. 케이싱(421)은 연직 방향으로 길게 뻗은 형상을 가진다. 케이싱(421)은 강재 등으로 제조하여 그 내구성을 확보할 수 있다. 이송 스크류(425)는 케이싱(421) 내에 위치한다. 이송 스크류(425)는 원당 용액 저장조(42)의 길이 방향, 즉 연직 방향을 따라 길게 뻗은 축 주위로 연속 형성된 블레이드를 포함한다. 원당 용액 저장조(42)의 온도는 60℃ 내지 65℃로 유지된다. 따라서 원당 용액 저장조(42)에서 원당 용액을 효율적으로 제조할 수 있다.
이송 스크류(425)는 원당 용액 저장조(42)의 상부에서 장입되는 원당과 스팀 공급관(421)을 통하여 공급되는 스팀을 균일 혼합한다. 이송 스크류(425)는 균일 혼합에 의해 원당 용액을 제조한 후 원당 용액 저장조(42)의 하부로 이송한다. 이송 스크류(425)와 함께 스팀을 이용하므로, 또한, 원당을 효율적으로 용융시킬 수 있고, 중력에 의해 원당이 가라앉아 발생하는 불균일 문제를 해소할 수 있다. 스팀은 100℃ 내지 120℃의 온도를 가지므로, 원당을 잘 용융시켜 원당 용액을 제조할 수 있으며 원당이 열분해되어 수지화되지 않는다. 스팀 공급관(423)은 원당 용액 저장조(42)의 길이 방향을 따라 상호 이격되어 케이싱(421)과 연통된다. 도 3의 화살표 방향으로 원당 용액 저장조(42)에서는 스팀을 케이싱(421)내에 균일하게 공급할 수 있다. 그 결과, 원당 용액 저장조(42)에서 균일한 농도를 가진 원당 용액을 제조할 수 있다.
원당 용액 저장조(42)에서 제조된 원당 용액은 믹서(60)로 공급된다. 한편, 당밀은 당밀 저장조(43)로부터 믹서(60)로 공급된다. 여기서 당밀은 원당 용액과 별개로 미분탄에 첨가되어 믹서(60)에서 혼합물로 제조된다. 별개의 저장조 분리는 한 바인더가 미생물에 의해 오염되었을 경우 다른 바인더의 오염을 막기위해 제조되었다. 미생물에 의한 발효 현상을 방지하여 바인더로서의 기능이 저하되는 현상을 방지할 수 있다.
도 4는 본 발명의 제3 실시예에 따른 성형탄 제조 장치(300)를 개략적으로 나타낸다. 도 4의 성형탄 제조 장치(300)는 도 2의 성형탄 제조 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며, 그 상세한 설명을 생략한다.
도 4에 도시한 바와 같이, 예비 혼합기(44)는 원당 저장조(10)와 원당 용액 저장조(42)를 상호 연결한다. 예비 혼합기(44)는 원당 저장조(10)와 연결되어 원당 저장조(10)로부터 원당을 공급받아 사전 교반하면서 이송한다. 따라서 원당을 이송하는 동시에 덩어리진 원당이 있는 경우, 이를 미세하게 파쇄하여 그 입도를 균일하게 조절할 수 있다. 이를 위해 예비 혼합기(44)는 수평 방향으로 길게 뻗어서 설치된다.
원당 용액 저장조(42)는 예비 혼합기(44)로부터 공급된 원당을 스팀 공급관(423)에 의해 화살표 방향으로 분사하는 스팀과 혼합하여 용융액을 제공한다. 여기서, 스팀의 온도는 70℃ 내지 120℃일 수 있다. 스팀의 온도가 너무 낮은 경우, 원당이 잘 안 녹을 수 있다. 또한, 스팀의 온도가 너무 높은 경우, 원당이 과열되면서 원당 용액 저장조(42)가 열화되어 내구성에 악영향을 줄 수 있다. 따라서 스팀의 온도를 전술한 범위로 조절하는 것이 바람직하다.
원당 용액 농도 조절기(80)는 용융액을 원당 용액 저장조(42)로부터 공급받는다. 원당 용액 농도 조절기(80)는 자체 구비된 급수 라인(801)을 통해 물을 용융액에 첨가하여 60℃ 내지 70℃에서 교반해 원당 용액을 제공한다. 교반 온도가 너무 낮은 경우, 물과 용융액이 잘 혼합되지 않아 원당이 불균일하게 존재할 수 있다. 또한, 교반 온도가 너무 높은 경우, 원당 용액이 열화될 수 있다. 따라서 교반 온도를 전술한 범위로 조절한다. 한편, 원당 용액 농도 조절기(80)에서는 원당 용액에 물을 첨가하여 원당 용액의 농도를 적절하게 조절할 수 있다. 즉, 도 4에는 도시하지 않았지만, 원당 용액 농도 조절기(80)에는 센서가 부착되어 원당 용액의 농도를 측정하여 원당 용액의 농도가 높은 경우 물을 공급한다. 제조된 원당 용액은 원당 용액 공급조(85)에 공급되어 임시 저장된다. 그리고 원당 용액은 믹서(60)에 공급되어 당밀 및 미분탄과 균일 혼합된다.
도 5는 본 발명의 제4 실시예에 따른 성형탄 제조 장치(400)를 개략적으로 나타낸다. 도 5의 성형탄 제조 장치(400)는 도 4의 성형탄 제조 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며, 그 상세한 설명을 생략한다.
도 5에 도시한 바와 같이, 한 쌍의 원당 용액 저장조들(42a, 42b)을 사용하여 원당 용액을 제조할 수 있다. 한 쌍의 원당 용액 저장조들(42a, 42b)은 상호 이격 설치되며, 예비 혼합기(44)는 한 쌍의 원당 용액 저장조들(42a, 42b)에 각각 연결된다. 따라서 한 쌍의 원당 용액 저장조들(42a, 42b)을 이용하여 제조되는 원당 용액의 양을 증대시킬 수 있다.
도 6은 도 1의 원당을 제공하기 위한 원당 제조 장치(15)를 개략적으로 나타낸다. 도 6의 원당 제조 장치(15)는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 원당 제조 장치(15)를 다른 형태로도 변형할 수 있다.
도 6에 도시한 바와 같이, 원당 제조 장치(15)는 분쇄기(151), 착즙기(152), 사탕수수 주스 저장조(153), 진공팬(154), 불순물 제거기(155), 원심 분리기(156), 사탕수수 농축기(157) 및 생석회 저장조(159)를 포함한다. 이외에, 원당 제조 장치(15)는 필요에 따라 다른 구성요소를 더 포함할 수 있다.
분쇄기(151)는 그 표면에 요철을 가지므로, 주입되는 물과 함께 장입되는 사탕수수를 잘게 분쇄한다. 잘게 분쇄된 사탕수수는 착즙기(152)에서 착즙되어 사탕수수 주스로 추출된다. 사탕수수 주스는 사탕수수 주스 저장조(153)에 저장된다. 사탕수수 주스는 사탕수수를 분쇄하여 제조되므로, 사탕수수 재배 과정 등에서 섞인 많은 불순물들이 존재한다. 따라서 생석회 저장조(159)로부터 생석회를 불순물 제거기(155)로 이송된 사탕수수 주스에 투입하여 사탕수수 주스에 함유된 불순물을 제거한 사탕수수 시럽을 제조한다. 사탕수수 시럽은 직접 사용되거나 농축되어 성형탄 바인더로 사용할 수 있다. 사탕수수 시럽은 매우 낮은 점도를 가지므로, 당밀에 비해 배관 수송에 유리하다. 또한, 사탕수수 시럽은 우수한 혼합 효율을 가지므로, 균일 혼합에 의해 성형탄의 냉간 강도 편차를 줄일 수 있다. 또한, 사탕수수 시럽은 탄종의 변동에 관계없이 성형탄의 냉간 강도를 안정적으로 유지시킨다.
사탕수수 시럽에 함유된 고형분의 양은 50wt% 내지 80wt%일 수 있다. 좀더 바람직하게는, 고형분의 양은 65wt% 내지 70wt%일 수 있다. 고형분의 양이 너무 적은 경우, 충분한 성형탄의 강도를 확보할 수 없고 미생물 번식을 억제할 수 없다. 특히, 사탕수수 시럽에 다량 포함된 미생물은 사탕수수 시럽에 포함된 자당을 알코올 성분으로 발효시켜서 당 성분을 감소시키므로, 성형탄의 냉간 강도를 저하시킨다. 따라서 사탕수수 시럽이 미생물에 의해 발효되지 않도록 할 필요가 있다. 또한, 고형분의 양이 너무 많은 경우, 사탕수수 시럽의 이송, 보관, 절출 등이 어려울 수 있다. 따라서 주입하는 물과 사탕수수의 양을 조절하여 고형분의 양을 전술한 범위로 조절하는 것이 바람직하다. 사탕수수 시럽의 수송을 위해 장기 보관이 필요한 경우, 사탕수수 시럽에 1wt% 이하의 파라핀을 첨가할 수 있다. 파라핀은 유기산 등에 의한 사탕수수 시럽의 거품 발생을 방지할 수 있다. 즉, 사탕수수 시럽에 함유된 이산화탄소가 외부로 분출되는 경우, 거품이 발생한다. 사탕수수 시럽을 교반하는 경우, 거품을 일으키는 계면 활성제인 유기 물질이 존재하여 부피 증가 및 거품 발생으로 사탕수수 시럽을 저장한 용기가 폭발할 수 있다. 따라서 파라핀을 이용하여 이를 방지한다.
표 1은 총환원당 대비 고형분의 비율이 약 1.1인 사탕수수 시럽의 총환원당에 따른 고형분의 함량과 고형분의 점도를 나타낸다.
표 1
Figure PCTKR2014012751-appb-T000001
표 1에 도시한 바와 같이, 고형분의 함량이 78wt%인 경우, 사탕수수 시럽의 점도가 500cp로서 성형탄 바인더로 사용하기에 적합한 25000cp 이하의 점도 조건을 만족한다. 따라서 사탕수수 시럽을 공업적으로 사용할 수 있다. 그리고 이 경우, 사탕수수 시럽의 총환원당의 양이 73wt%로서 당밀 바인더의 총환원당 수준인 45wt% 내지 60wt%보다 높다. 따라서 높은 총환원당을 가지는 사탕수수 시럽을 이용하여 성형탄의 강도를 향상시킬 수 있다. 좀더 구체적으로, 사탕수수 시럽에 함유된 총환원당의 양은 65wt% 내지 90wt%인 것이 바람직하다. 총환원당의 양이 너무 적은 경우, 사탕 수수 시럽이 발효될 수 있다. 따라서 1년 이내에 안정적으로 보관하면서 사용하기 위해서는 사탕수수 시럽에 생석회 또는 소석회를 첨가하여 침전물을 분리시킨다. 또한, 총환원당의 양이 너무 큰 경우, 사탕 수수 시럽이 높은 점도를 가지므로 실제 공정에 적용할 수 없다. 따라서 총환원당의 양을 전술한 범위로 조절한다.
한편, 도 6에 도시한 불순물 제거에 사용된 생석회는 다시 회수하여 사용할 수 있다. 불순물이 제거된 사탕수수 주스는 사탕수수 농축기(157)에서 가열하여 농축한 후 원당 바인더로 사용한다. 즉, 도 6의 원당 제조 장치(15)로부터 얻어진 사탕수수 시럽을 바로 원당 바인더로 사용하여 성형탄을 제조할 수 있다. 사탕수수 시럽은 진공팬(154)에서 증류 및 재결정되어 백하(massecuite)로 추출된다. 백하는 원당 결정을 포함하여 90wt% 이상의 고형분을 가진다. 그리고 원심 분리기(156)에서 원심 분리 공정을 통하여 원당이 추출된다. 이러한 과정을 진공팬(154)과 원심 분리기(156)에서 지속적으로 반복하여 원당을 추출하고, 부산물인 당밀을 배출시킨다.
이러한 공정을 통하여 얻어진 원당 바인더는 수분량 조절이 용이하다. 따라서 높은 고유 수분량을 가지는 탄종의 석탄도 사용할 수 있다. 사탕수수 시럽의 수분량이 너무 많은 경우, 과다 수분에 의해 성형탄의 강도가 저하될 수 있다. 한편, 사탕수수 시럽의 수분량이 너무 적은 경우, 즉 10wt% 이하로 수분량이 과도하게 적어지는 경우 이송에 문제가 발생하고, 성형탄의 수분량이 부족하여 성형탄의 강도가 저하될 수 있다. 그리고 당밀 대신에 원당 바인더를 사용하면 다양한 탄종의 석탄을 사용할 수 있다. 도 6의 원당 제조 장치(15)에서 얻어지는 사탕수수 주스, 사탕수수 시럽 및 원당의 성분 분석 결과를 하기의 표 2에 나타낸다.
표 2
Figure PCTKR2014012751-appb-T000002
표 2에 기재한 바와 같이, 도 6의 원당 제조 장치(15)에서 얻어지는 사탕수수 주스, 사탕수수 시럽 및 원당은 모두 자당, 포도당 또는 과당을 포함한다. 여기서, 자당은 이당류(disaccharide)이고, 포도당과 과당은 단당류(monosaccharide)이다. 원당의 단당류의 함량 대비 이당류의 함량의 비율은 90 이상으로 높으며, 사탕수수 주스와 사탕수수 시럽도 높은 비율을 가진다. 이와는 대조적으로, 당밀의 단당류의 함량 대비 이당류의 함량의 비율은 4 미만으로 매우 낮다. 따라서 원당 바인더는 당밀 바인더에 비해 적은 양을 사용하더라도 동일한 성형탄의 강도를 얻을 수 있다. 그 결과, 성형탄 제조 비용을 줄일 수 있다. 즉, 전술한 성형탄의 강도를 얻기 위해서는 단당류의 양에 대한 이당류의 양의 비는 4 내지 1000인 것이 바람직하다. 좀더 바람직하게는, 단당류의 양에 대한 이당류의 양의 비는 10 내지 1000일 수 있다.
한편, 사탕수수 시럽은 사탕수수를 착즙 및 농축하여 얻어지므로, 그 생산 공정이 간단하고, 고도의 투자비가 필요한 결정 생산 공정이 불필요하다. 또한, 바인더로 사용하기 위해 용액 상태로 만들어야 하는 공정도 생략할 수 있다. 따라서 전체적으로 공정이 단순화되어 공정을 효율화할 수 있다. 그리고 사탕수수 시럽 생산지와 성형탄 제조지의 거리가 가까운 경우, 수송비가 적게 들어 사탕수수의 가격이 원당에 비해 저렴하므로, 바인더의 가격이 낮아서 제조 비용을 절감할 수 있다. 또한, 사탕수수 시럽은 성형롤에 잘 부착되지 않으므로, 성형탄의 형상 불량 발생을 방지할 수 있으며, 점도가 당밀의 점도에 비해 낮아 성형탄에 균일하게 도포할 수 있다. 한편, 사탕수수 시럽은 당밀에 비해 접착 능력이 높아서 성형탄의 냉간 강도를 향상시키므로, 성형탄의 탄종 변화에 의한 냉간 강도와 열간 강도의 저하를 방지할 수 있다.
도 7은 도 2 내지 도 5의 성형탄 제조 장치(100, 200, 300, 400)를 포함하는 용철제조장치(1000)를 개략적으로 나타낸다. 즉, 도 7의 용철제조장치(1000)는 성형탄 제조 장치(100, 200, 300, 400) 중에서 어느 한 성형탄 제조 장치를 사용할 수 있다. 한편, 도 7의 용철제조장치(1000)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 도 7의 용철제조장치(1000)를 다양한 형태로 변형할 수 있다.
도 7에 도시한 바와 같이, 용철제조장치(1000)는 유동층형 환원로(90), 괴성체 제조 장치(94), 괴성체 저장조(96), 성형탄 제조 장치(100, 200, 300, 400) 및 용융가스화로(98)를 포함한다. 이외에, 용철제조장치(1000)는 필요에 따라 기타 다른 장치를 포함할 수 있다.
유동층형 환원로(90)에는 분광 형태의 철광석이 장입되고 환원 가스에 의해 유동 및 접촉하여 환원된다. 유동층형 환원로(90)는 용융가스화로(98)로부터 환원 가스를 공급받으며, 예열 및 순차적인 환원을 위하여 다단으로 이루어져 있다. 성형탄 제조 장치(100, 200, 300, 400)는 성형탄을 제공하고, 성형탄은 용융가스화로(98)에 장입되어 환원철을 용융시키는 열원으로 사용된다. 성형탄을 연소시키기 위하여 풍구(983)를 통하여 산소를 용융가스화로(98)에 주입해 연소대를 형성한다. 따라서 연소대의 형성에 따라 환원철을 용융하여 용철을 제조할 수 있으며, 성형탄으로부터 발생한 환원 가스는 유동층형 환원로(90)에 공급된다.
철광석은 유동층형 환원로(90)에서 유동되어 환원철로 변환된 후 괴성체 제조 장치(94)에서 압축되어 괴성체로 제조된다. 괴성체는 균배압 기능을 겸할 수 있는 괴성체 저장조(96)에 저장되었다가 용융가스화로(98)에 성형탄과 함께 장입된다.
용융가스화로(98)의 상부에는 돔부(981)가 형성된다. 즉, 용융가스화로(98)의 다른 부분에 비해 넓은 공간이 형성되고, 여기에는 고온의 환원 가스가 존재한다. 따라서 고온의 환원 가스에 의해 돔부(981)에 장입되는 성형탄이 쉽게 분화될 수 있다. 즉, 성형탄은 1000℃로 유지되는 용융가스화로(98)의 상부에 투입되므로, 성형탄이 급속한 열충격을 받는다. 따라서 성형탄이 용융가스화로(98)의 하부로 낙하하면서 분화될 수 있다.
그러나 도 1의 방법으로 제조한 성형탄은 높은 열간 강도를 가지므로, 용융가스화로(98)의 돔부(981)에서 분화되지 않고, 용융가스화로(98)의 하부까지 촤 상태를 유지하면서 낙하한다. 성형탄의 열분해 반응에 의해 생성된 촤는 용융가스화로(98)의 하부로 이동하여 풍구(983)를 통해 공급되는 산소와 발열 반응한다. 그 결과, 성형탄은 용융가스화로(98)를 고온으로 유지하는 열원으로서 사용될 수 있다. 한편, 촤가 통기성을 제공하므로, 용융가스화로(98)의 하부에서 발생한 다량의 환원 가스와 유동층형 환원로(90)로부터 공급된 환원철이 용융가스화로(98)내에 형성된 석탄 충전층을 좀더 용이하게 통과할 수 있다.
한편, 성형탄 이외에 괴상 탄재 또는 코크스를 필요에 따라 용융가스화로(98)에 장입할 수도 있다. 용융가스화로(98)의 외벽에는 풍구(983)를 설치하여 산소를 취입한다. 산소는 석탄충전층에 취입되어 연소대를 형성한다. 성형탄은 연소대에서 연소되어 환원가스를 발생시킬 수 있다.
도 8은 도 2 내지 도 5의 성형탄 제조 장치(100, 200, 300, 400)를 포함하는 또다른 용철제조장치(2000)를 개략적으로 나타낸다. 도 8의 용철제조장치(2000)의 구조는 도 7의 용철제조장치(1000)의 구조와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며 그 상세한 설명을 생략한다.
도 8에 도시한 바와 같이, 용철제조장치(2000)는 충전층형 환원로(92), 성형탄 제조 장치(100, 200, 300, 400) 및 용융가스화로(98)를 포함한다. 이외에, 용철제조장치(3000)는 필요에 따라 기타 다른 장치를 포함할 수 있다. 충전층형 환원로(92)에는 철광석이 장입되어 환원된다. 충전층형 환원로(92)에 장입되는 철광석은 사전 건조된 후에 충전층형 환원로(92)를 통과하면서 환원철로 제조된다. 충전층형 환원로(92)는 용융가스화로(98)로부터 환원가스를 공급받아 그 내부에 충전층을 형성한다. 성형탄 제조 장치(100, 200, 300, 400)는 성형탄을 제조하고, 성형탄은 용융가스화로(98)에 장입되어 환원철을 용융시키는 열원으로 사용된다. 성형탄을 연소시키기 위하여 풍구(983)를 통하여 산소를 용융가스화로(98)에 주입한다. 따라서 성형탄의 연소열에 의해 환원철을 용융하여 용철을 제조할 수 있다.
이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
원당 용액의 실험예
미분탄, 생석회, 원당 용액 및 당밀을 혼합하여 성형탄을 제조하였다. 사용한 원당 용액의 농도를 다양하게 조절하였고, 사용한 원당 용액과 당밀의 물성을 하기의 표 3에 나타낸다.
표 3
Figure PCTKR2014012751-appb-T000003
실험예 1
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.25 중량부), 및 원당 85% 용액 5 중량부(고형분 4.25 중량부)를 사용하여 성형탄을 제조하였다. 미분탄의 수분량은 8.5 중량부였다. 나머지 실험 과정은 전술한 실험예와 동일하였다.
실험예 2
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.25 중량부), 및 원당 85% 용액 3 중량부(고형분 0.255 중량부)를 사용하여 성형탄을 제조하였다. 미분탄의 수분량은 8.5 중량부였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 3
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 75% 용액 5 중량부(고형분 5 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 4
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 75% 용액 3 중량부(고형분 3 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 5
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 65% 용액 5 중량부(고형분 3.25 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 6
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 65% 용액 3 중량부(고형분 1.95 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 7
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 65% 용액 4 중량부(고형분 2.6 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 8
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부, 및 원당 55% 용액 5 중량부를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 9
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부(고형분 3.75 중량부), 및 원당 55% 용액 4 중량부(고형분 2.2 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
실험예 10
미분탄 100 중량부에 대하여 생석회 2.7 중량부, 당밀 5 중량부, 및 원당 35% 용액 5 중량부를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
비교예 1
미분탄 100 중량부에 대하여 생석회 2.7 중량부 및 당밀 10 중량부를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.
비교예 2
미분탄 100 중량부에 대하여 생석회 2.7 중량부 및 당밀 5 중량부(고형분 3.75 중량부)를 사용하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 비교예 1과 동일하였다.
원당 용액의 실험결과
전술한 실험예 1 내지 실험예 10, 비교예 1 및 비교예 2에 따라 제조한 성형탄의 압축강도 및 낙하강도(4회, 8회)를 측정하였다. 그 실험 결과를 하기의 표 4에 나타낸다.
표 4
Figure PCTKR2014012751-appb-T000004
실험결과, 본 발명의 실험예 1 내지 실험예 10에 따라 제조한 성형탄의 압축강도와 낙하강도가 전체적으로 비교예 1 및 비교예 2에 비해 다소 증가한 것을 확인할 수 있었다. 나아가, 실험예 1 내지 실험예 7에서 적정량의 원당용액을 사용하는 경우, 성형탄의 압축강도와 낙하강도가 좀더 향상된 것을 알 수 있었다. 또한, 동일 중량 대비 당밀의 원료비가 원당 용액의 원료비보다 낮으므로 당밀을 원당 용액과 혼용하는 경우 성형탄의 제조 비용을 더욱 절감할 수 있었다.
자당, 포도당, 과당의 실험예
실험예 11
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 2중량부의 자당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예와 동일하였다.
실험예 12
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 4중량부의 자당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
실험예 13
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 2중량부의 포도당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예와 동일하였다.
실험예 14
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 4중량부의 포도당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
실험예 15
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 2중량부의 과당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예와 동일하였다.
실험예 16
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 4중량부의 과당 및 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
비교예 3
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 6중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
비교예 4
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 8중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
비교예 5
100 중량부의 석탄에 대하여 경화제로서 2.7 중량부의 CaO와 바인더로서 10중량부의 당밀을 혼합하여 성형탄을 제조하였다. 나머지 실험과정은 전술한 실험예 1과 동일하였다.
자당, 포도당, 과당의 실험 결과
전술한 실험예 11 내지 실험예 16과 비교예 3 내지 비교예 5에 따라 제조한 성형탄에 대하여 냉간강도와 열간강도를 측정하였고, 공업분석을 실시하였다. 이러한 실험과정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명을 생략한다.
표 5는 전술한 실험예 11 내지 실험예 16과 비교예 3 내지 비교예 5에 따라 제조한 성형탄의 실험 결과를 나타낸다. 표 5에 기재한 바와 같이, 바인더로서 당밀만 사용하는 경우보다 자당, 포도당 및 과당을 함께 사용하는 경우에 성형탄의 냉간강도와 열간강도가 향상되는 것을 확인할 수 있었다. 또한, 자당을 첨가하는 경우, 포도당과 과당을 첨가하는 경우에 비해 성형탄의 냉간강도가 좀더 향상되는 것을 알 수 있었다.
표 5
Figure PCTKR2014012751-appb-T000005
본 발명을 앞서 기재한 바에 따라 설명하였지만, 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 종사하는 자들은 쉽게 이해할 것이다.

Claims (30)

  1. 환원철이 장입되는 용융가스화로, 및
    상기 용융가스화로에 연결되고, 상기 환원철을 제공하는 환원로
    를 포함하는 용철제조장치에서 상기 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄의 제조 방법으로서,
    미분탄을 제공하는 단계,
    당밀을 제공하는 단계,
    원당 바인더를 제공하는 단계,
    상기 미분탄에 당밀과 원당 바인더를 첨가한 혼합물을 제공하는 단계, 및
    상기 혼합물을 성형하여 성형탄을 제공하는 단계
    를 포함하는 성형탄의 제조 방법.
  2. 제1항에서,
    상기 원당 바인더를 제공하는 단계에서, 상기 원당 바인더는 원당 용액으로 제공되고, 상기 원당 용액은 35wt% 내지 85wt%의 원당을 포함하는 성형탄의 제조 방법.
  3. 제2항에서,
    상기 원당 용액은 65wt% 내지 85wt%의 원당을 포함하는 성형탄의 제조 방법.
  4. 제1항에서,
    상기 당밀을 제공하는 단계 전에 상기 미분탄에 경화제를 첨가하는 단계를 더 포함하고,
    상기 혼합물을 제공하는 단계에서, 상기 당밀과 상기 원당 바인더는 각각 별개로 미분탄에 첨가되는 성형탄의 제조 방법.
  5. 제1항에서,
    상기 당밀을 제공하는 단계 전에 상기 미분탄에 경화제를 첨가하는 단계를 더 포함하고,
    상기 혼합물을 제공하는 단계에서, 상기 당밀과 상기 원당 바인더는 사전 혼합되어 상기 미분탄에 첨가되는 성형탄의 제조 방법.
  6. 제5항에서,
    원당이 상기 당밀측으로 이송되어 상기 당밀과 혼합되면서 상기 원당 바인더인 원당 용액으로 제조된 후 상기 미분탄에 첨가되는 성형탄의 제조 방법.
  7. 제5항에서,
    상기 미분탄에 경화제를 첨가하는 단계에서, 상기 경화제는 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 및 황산으로 이루어진 군에서 선택된 하나 이상의 물질인 성형탄의 제조 방법.
  8. 제1항에서,
    상기 원당 바인더를 제공하는 단계는,
    70℃ 내지 120℃의 스팀으로 원당을 용융시켜 용융액을 제공하는 단계, 및
    상기 용융액에 물을 첨가하여 60℃ 내지 70℃에서 교반하여 상기 원당 바인더를 제공하는 단계
    를 포함하는 성형탄의 제조 방법.
  9. 제8항에서,
    상기 원당 바인더를 제공하는 단계는 원당 용액에 물을 첨가하여 상기 원당 용액의 농도를 조절하는 단계를 더 포함하는 성형탄의 제조 방법.
  10. 제1항에서,
    상기 원당 바인더를 제공하는 단계는,
    물을 주입하면서 사탕수수를 분쇄하는 단계,
    상기 분쇄된 사탕수수를 착즙하여 사탕수수 주스를 제공하는 단계, 및
    상기 사탕수수 주스의 불순물을 제거하고 상기 사탕수수 주스를 농축하여 사탕수수 시럽을 제공하는 단계
    를 포함하고,
    상기 사탕수수 시럽이 상기 원당 바인더로 제공되는 성형탄의 제조 방법.
  11. 제10항에서,
    상기 사탕수수 주스를 제공하는 단계에서, 상기 사탕수수 주스에 함유된 고형분의 양은 10wt% 내지 30wt%인 성형탄의 제조 방법.
  12. 제11항에서,
    상기 사탕수수 시럽을 제공하는 단계에서, 상기 사탕수수 시럽에 함유된 고형분의 양은 50wt% 내지 80wt%인 성형탄의 제조 방법.
  13. 제1항에서,
    상기 환원로는 유동층형 환원로 또는 충전층형 환원로인 성형탄의 제조 방법.
  14. 제1항에서,
    상기 성형탄을 제공하는 단계에서, 상기 원당 바인더의 양은 상기 성형탄의 3 중량부 내지 10 중량부인 성형탄의 제조 방법.
  15. 제14항에서,
    상기 원당 바인더의 양은 상기 성형탄의 3 중량부 내지 5 중량부인 성형탄의 제조 방법.
  16. 제14항에서,
    상기 당밀의 양은 상기 혼합물의 5 중량부 내지 15 중량부이고, 상기 원당 바인더의 양은 상기 당밀의 양 이하인 성형탄의 제조 방법.
  17. 제1항에서,
    상기 원당 바인더를 제공하는 단계에서, 상기 원당 바인더는 자당을 포함하고, 상기 미분탄 100중량부에 대한 상기 자당의 양은 2 중량부 내지 5 중량부인 성형탄의 제조 방법.
  18. 제1항에서,
    상기 원당 바인더를 제공하는 단계에서, 상기 원당 바인더는 포도당을 포함하고, 상기 미분탄 100중량부에 대한 상기 포도당의 양은 2 중량부 내지 4 중량부인 성형탄의 제조 방법.
  19. 제1항에서,
    상기 원당 바인더를 제공하는 단계에서, 상기 원당 바인더는 과당을 포함하고, 상기 미분탄 100중량부에 대한 상기 과당의 양은 2 중량부 내지 4 중량부인 성형탄의 제조 방법.
  20. 환원철이 장입되는 용융가스화로, 및
    상기 용융가스화로에 연결되고, 상기 환원철을 제공하는 환원로
    를 포함하는 용철제조장치에서 상기 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄으로서,
    미분탄, 당밀, 원당 바인더, 및 경화제를 포함하고,
    상기 원당 바인더가 자당을 포함하는 경우, 상기 자당의 양은 상기 미분탄 100 중량부에 대해 1.35중량부 내지 9중량부인 성형탄.
  21. 제20항에서,
    상기 자당의 양은 2.7중량부 내지 9중량부인 성형탄.
  22. 제21항에서,
    상기 자당의 양은 3.6중량부 내지 9중량부인 성형탄.
  23. 제21항에서,
    상기 경화제는 생석회, 소석회, 탄산칼슘, 시멘트, 벤토나이트, 클레이(clay), 실리카, 실리케이트, 돌로마이트, 인산 및 황산으로 이루어진 군에서 선택된 하나 이상의 물질이고, 상기 경화제의 양은 상기 미분탄 100 중량부에 대해 1중량부 내지 5중량부인 성형탄.
  24. 원당 용액을 저장하도록 적용된 하나 이상의 원당 용액 저장조,
    미분탄을 저장하도록 적용된 미분탄 저장조,
    당밀을 저장하도록 적용된 당밀 저장조,
    상기 원당 용액 저장조, 상기 미분탄 저장조 및 상기 당밀 저장조와 각각 연결되어 상기 원당 용액, 상기 미분탄 및 상기 당밀을 공급받아 혼합물을 제조하도록 적용된 믹서, 및
    상기 믹서와 연결되어 상기 혼합물을 공급받아 압축하는 한 쌍의 롤러들
    을 포함하는 성형탄 제조 장치.
  25. 제24항에서,
    상기 원당 용액 저장조는,
    케이싱,
    상기 케이싱내에 위치하고, 상기 원당 용액 저장조의 길이 방향으로 길게 뻗은 이송 스크류, 및
    상기 케이싱과 연통되어 상기 케이싱내에 스팀을 공급하도록 적용된 스팀 공급관
    을 포함하는 성형탄 제조 장치.
  26. 제24항에서,
    원당을 공급하는 원당 저장조, 및
    상기 원당 저장조와 상기 원당 용액 저장조를 상호 연결하고, 상기 원당을 사전 교반하면서 이송하는 예비 혼합기
    를 더 포함하는 성형탄 제조 장치.
  27. 제26항에서,
    상기 예비 혼합기는 수평 방향으로 길게 뻗은 성형탄 제조 장치.
  28. 제26항에서,
    상기 하나 이상의 원당 용액 저장조는 상호 이격 설치된 한 쌍의 원당 용액 저장조들을 포함하고,
    상기 예비 혼합기는 상기 한 쌍의 원당 용액 저장조들에 각각 연결된 성형탄 제조 장치.
  29. 제24항에서,
    상기 원당 용액 저장조와 연결되고, 급수 라인을 구비한 원당 용액 농도 조절기를 더 포함하는 성형탄 제조 장치.
  30. 원당을 저장하도록 적용된 원당 저장조,
    당밀을 저장하고, 상기 원당 저장조와 연결되어 상기 원당을 공급받고, 상기 당밀 저장조 내에 열선 코일이 설치되어 상기 당밀과 상기 원당을 가열 용융하도록 적용된 당밀 저장조,
    미분탄을 저장하도록 적용된 미분탄 저장조,
    상기 미분탄 저장조 및 상기 당밀 저장조와 각각 연결되어 상기 원당, 상기 당밀 및 상기 미분탄을 공급받아 혼합물을 제조하도록 적용된 믹서, 및
    상기 믹서와 연결되어 상기 혼합물을 공급받아 압축하는 한 쌍의 롤러들
    을 포함하는 성형탄 제조 장치.
PCT/KR2014/012751 2013-12-26 2014-12-23 성형탄, 그 제조 방법 및 그 제조 장치 WO2015099420A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480065332.6A CN105992811A (zh) 2013-12-26 2014-12-23 型煤、其制备方法及其制备装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0164462 2013-12-26
KR1020130164462A KR101595539B1 (ko) 2013-12-26 2013-12-26 성형탄 및 그 제조 방법
KR1020140186548A KR101674889B1 (ko) 2014-12-22 2014-12-22 성형탄 제조 방법 및 그 제조 장치
KR10-2014-0186548 2014-12-22

Publications (1)

Publication Number Publication Date
WO2015099420A1 true WO2015099420A1 (ko) 2015-07-02

Family

ID=53479192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012751 WO2015099420A1 (ko) 2013-12-26 2014-12-23 성형탄, 그 제조 방법 및 그 제조 장치

Country Status (2)

Country Link
CN (1) CN105992811A (ko)
WO (1) WO2015099420A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050084A (ko) * 2000-12-19 2002-06-26 이구택 강도가 우수한 성형탄 및 그 제조방법
KR20050068245A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 강도를 향상시킨 성형탄을 사용하는 용철제조방법
KR20050077103A (ko) * 2004-01-26 2005-08-01 주식회사 포스코 넓은 입도 분포의 석탄을 직접 사용하는 용철제조장치 및이를 이용한 용철제조방법
KR20130097919A (ko) * 2012-02-27 2013-09-04 코텍엔지니어링 주식회사 성형탄, 이의 제조장치 및 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8721757D0 (en) * 1987-09-16 1987-10-21 Coal Industry Patents Ltd Coal briquetting process
GB8725252D0 (en) * 1987-10-28 1987-12-02 Coal Industry Patents Ltd Briquetting process
GB2227024B (en) * 1989-01-12 1992-08-19 Coal Ind Coal briquetting process
CN101270310A (zh) * 2008-01-04 2008-09-24 宝钢集团上海浦东钢铁有限公司 熔融还原炼铁工艺用型煤
WO2009137437A1 (en) * 2008-05-05 2009-11-12 Coaltek, Inc. Methods and systems for processing solid fuel
AT507851B1 (de) * 2009-01-16 2017-10-15 Primetals Technologies Austria GmbH Verfahren zur herstellung von kohlepartikel enthaltenden presslingen
CN102746913A (zh) * 2011-04-21 2012-10-24 宝山钢铁股份有限公司 熔融还原炼铁用型煤成型方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050084A (ko) * 2000-12-19 2002-06-26 이구택 강도가 우수한 성형탄 및 그 제조방법
KR20050068245A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 강도를 향상시킨 성형탄을 사용하는 용철제조방법
KR20050077103A (ko) * 2004-01-26 2005-08-01 주식회사 포스코 넓은 입도 분포의 석탄을 직접 사용하는 용철제조장치 및이를 이용한 용철제조방법
KR20130097919A (ko) * 2012-02-27 2013-09-04 코텍엔지니어링 주식회사 성형탄, 이의 제조장치 및 제조방법

Also Published As

Publication number Publication date
CN105992811A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
US3788832A (en) Process for pre-treating and melting glassmaking materials
CA1091023A (en) Manufacture of glass from aged, partially reacted briquettes
RU2010153663A (ru) Способ и устройство для получения чугуна или жидких стальных полупродуктов
WO2012022058A1 (zh) 煤物质单燃烧器分解设备
KR101565506B1 (ko) 성형탄용 바인더의 제조 방법 및 이를 포함하는 성형탄의 제조 방법
WO2017069545A1 (ko) 경석을 이용한 합성 제올라이트 제조방법
CN101463282B (zh) 一种工业型煤及其生产工艺
CN101112986B (zh) 用石油焦作还原剂生产工业硅的方法
CN104531938B (zh) 一种高炉炮泥生产压渣剂用于转炉炼钢的方法
WO2019009484A1 (ko) 성형탄 제조방법 및 이를 이용하여 제조된 성형탄
JPH0665579A (ja) 冶金用成型コークス製造のための成型炭の原料配合方法
WO2015099420A1 (ko) 성형탄, 그 제조 방법 및 그 제조 장치
WO2012086961A2 (ko) 부분 탄화 성형탄 제조 방법, 부분 탄화 성형탄 제조 장치 및 용철 제조 장치
CN103087795A (zh) 电石用成型半焦的制备方法
CN103639069A (zh) 超重力分离硼渣中硼资源的设备、方法及系统
JP2953938B2 (ja) 低温乾留による冶金用成型コークス製造方法
KR101674889B1 (ko) 성형탄 제조 방법 및 그 제조 장치
WO2016140428A1 (ko) 성형탄, 그 제조 방법, 제조 장치, 용철 제조 방법 및 용철 제조 장치
JP2004285134A (ja) 冶金炉用原料の製造方法
CN210795784U (zh) 一种生产电石的系统
WO2015099441A1 (ko) 성형탄 및 그 제조 방법
CN209922906U (zh) 一种生产电石的系统
JP2010285684A (ja) 竪型炉用炭材内装塊成鉱の製造方法
KR102023062B1 (ko) 성형탄의 제조 방법
KR101634069B1 (ko) 성형탄 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 139550140003003749

Country of ref document: IR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873547

Country of ref document: EP

Kind code of ref document: A1