WO2015099378A1 - 그래핀의 제조 방법과, 그래핀의 분산 조성물 - Google Patents

그래핀의 제조 방법과, 그래핀의 분산 조성물 Download PDF

Info

Publication number
WO2015099378A1
WO2015099378A1 PCT/KR2014/012640 KR2014012640W WO2015099378A1 WO 2015099378 A1 WO2015099378 A1 WO 2015099378A1 KR 2014012640 W KR2014012640 W KR 2014012640W WO 2015099378 A1 WO2015099378 A1 WO 2015099378A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
dispersant
graphite
dispersion
flakes
Prior art date
Application number
PCT/KR2014/012640
Other languages
English (en)
French (fr)
Inventor
손권남
유광현
권원종
이길선
양승보
김인영
이미진
이진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140184902A external-priority patent/KR101666478B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480071363.2A priority Critical patent/CN105873858B/zh
Priority to EP14874853.6A priority patent/EP3056468B1/en
Priority to JP2016538069A priority patent/JP6208364B2/ja
Priority to US15/039,281 priority patent/US10131803B2/en
Publication of WO2015099378A1 publication Critical patent/WO2015099378A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation

Definitions

  • the present invention relates to a method for producing graphene, which can easily produce graphene flakes having a thinner thickness and larger area, and to a dispersion composition of graphene obtained using the same.
  • graphene is a semi-metallic material having a thickness corresponding to a carbon atom layer in an arrangement in which carbon atoms are arranged in a hexagonal shape by sp2 bonds in two dimensions.
  • the electron mobility is about 50,000 cm 2 / Vs or more and thus may exhibit very good electrical conductivity.
  • graphene has a topping of structural, chemical stability and excellent thermal conductivity.
  • it is easy to process one-dimensional or two-dimensional nanopattern made of carbon, which is a relatively light element.
  • the graphene sheet is an inexpensive material and has excellent price competitiveness when compared with conventional nanomaterials. Due to this the electrical, structural, chemical, and economic characteristics of graphene is expected to be possible in the future ungyong silicon-based semiconductor technology, and the transparent electrode is expected to be able to replace, especially flexible electronics field with excellent mechanical properties.
  • various methods for mass production of graphene from carbon-based materials such as graphite have been proposed or studied. In particular, various studies have been made on how to easily produce graphene sheets or flakes having a thinner thickness and a larger area so that excellent characteristics of graphene can be more dramatically expressed.
  • Such conventional graphene manufacturing methods include the following.
  • the present invention is to provide a method for producing graphene that can be easily produced graphene flakes having a thinner thickness and larger area.
  • the present invention provides a dispersion composition of graphene in which graphene is uniformly dispersed in a high concentration in a polar solvent, including the graphene flakes obtained by the above production method.
  • the present invention includes the step of applying a physical force to the dispersion of the carbon-based material and the dispersant including the abyss or derivatives thereof, the dispersant is a mixture of a plurality of polyaromatic hydrocarbon oxide polyaromatic having a molecular weight of about 300 to 1000 Provided is a mixture comprising a hydrocarbon oxide in an amount of about 60% by weight or more, wherein the graphite or its derivative is formed into a graphene flake having a nanoscale thickness under the application of a physical force. do.
  • the dispersion may be a dispersion in which a carbon-based material and a dispersant are dissolved or dispersed in a solvent or a polar organic solvent.
  • the oxygen content may be about 12 to 50 weight 0 /.
  • the polyaromatic hydrocarbon oxide included in the dispersant may have a structure in which at least one oxygen-containing functional group is bonded to an aromatic hydrocarbon including 5 to 30 or 7 to 20 benzene rings.
  • the applying of the physical force may be performed by using a high speed homogenizer, a high pressure homogenizer, a ball mill, a bead mill, or an ultrasonic irradiator.
  • the graphene flakes formed in the graphene manufacturing method may have a thickness of about 1.5 to 50 nm, black is about 5 to 30 nm, may have a diameter of about 0.1 to 10, or about 0.1 to 5 ⁇ , about 50 to 6000, black may have a diameter / thickness ratio of about 50 to 1000.
  • the graphene flakes may be formed in a state in which the dispersant is physically attached to a surface thereof.
  • the above-described method for producing graphene may further include the step of recovering and drying the graphene flake from the dispersion of the graphene flake, the recovery step may be carried out by centrifugation, reduced pressure filtration or pressure filtration. .
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 200 ° C.
  • the present invention also includes graphene flakes obtained by the above-described manufacturing method, wherein such graphene flakes are uniformly dispersed in high concentration in a polar solvent. It provides a dispersion composition of graphene.
  • These Yes dispersion composition of the pin is a common compound of poly aromatic hydrocarbons, oxides of a plurality of kinds, an about 300 to 1000 poly aromatic hydrocarbon oxide having a molecular weight of the dispersing agent is a surface including a common compound 60 increased 0 /., Including the above content of the physical Attached to the graphene flakes; And it may include a polar solvent for dissolving or dispersing the graphene flakes.
  • This dispersion composition forms the graphene flakes to which the dispersant is physically attached to the surface through the above-described manufacturing method, and then directly (or continuously) to the polar solvent without any further treatment to improve its dispersibility. It can be prepared by dissolving or dispersing.
  • the polar solvent is water, NMP, acetone, VIF,
  • DMSO methylethyl acetate
  • ethanol isopropyl alcohol
  • methanol methanol
  • butane 2-especial ethanol
  • 2-butoxy ethane 2-methoxy propanol
  • ethylene glycol pyridine dimethylacetamide
  • N-vinylpyridone methylethyl Ketone
  • butanone alpha-terpinol
  • formic acid ethyl acetate and acrylonitrile.
  • the graphene flakes to which the dispersant is physically attached to the surface may be included in an amount of about 50 parts by weight or less based on 100 parts by weight of the polar solvent.
  • graphene flakes having a thinner thickness and larger area can be easily produced in high yield.
  • graphene flakes prepared according to the process of the present invention can exhibit very good dispersibility in various polar solvents and the like, without further treatment to improve their dispersibility or solubility. therefore, .
  • Dispersion composition of graphene containing such graphene flake is a conductive paste composition, a conductive ink composition, a heat dissipation substrate forming composition, an electrically conductive composite, EMI shielding It can be used very effectively in various fields and applications such as a conductive material for a composite or a battery.
  • FIG. 1 is a schematic diagram showing the principle of a high pressure homogenizer usable in the method for producing graphene of one embodiment.
  • 2A and 2B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the pitch used for the preparation of the dispersant of the preparation example analyzed by MALDI-TOF mass spectrum.
  • 3A and 3B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the dispersant obtained in Preparation Example 1 by MALDI-TOF mass spectrum,
  • Fig. 5 is a diagram showing the results of the analysis of the pitch and the dispersant of Preparation Example 1, respectively, by FT-IR.
  • FIG. 6 is a diagram illustrating the molecular weight distribution of the dispersant obtained in Preparation Examples 2 to 4 by MALDI-TOF mass spectrum, and comparing the analysis results.
  • FIG. 8 shows TEM analysis results (a) and (b) and AFM analysis results (c) and (d), respectively, for measuring the diameter and thickness of the graphene flakes of Example 4.
  • FIG. 8 shows TEM analysis results (a) and (b) and AFM analysis results (c) and (d), respectively, for measuring the diameter and thickness of the graphene flakes of Example 4.
  • Example 1 is a visual observation photograph showing the results of evaluating redispersibility by redispersing the graphene flakes obtained in Example 4 in Example 4 in various solvents.
  • FIG. 12 is a visual observation photograph showing a result of evaluating redispersibility by redispersing the graphene flakes obtained in Comparative Example 1 in water, which is a polar solvent, in Example 4.
  • FIG. 13 is a graph illustrating a result of measuring sheet resistance after preparing a graphene film using the graphene flakes of Example 4 in Test Example 3.
  • FIG. 13 is a graph illustrating a result of measuring sheet resistance after preparing a graphene film using the graphene flakes of Example 4 in Test Example 3.
  • dispenser is a uniform dispersion of carbon-based materials, such as graphene (flakes), other components, such as graphite or other derivatives, or graphene (flakes) in a solvent, an organic solvent, or a liquid medium. It may refer to any ingredient to make.
  • a composition in which other components to be dispersed such as a "dispersant” and a carbon-based material are dispersed in a liquid medium may be referred to as a "dispersion composition", and such a “dispersion composition” may be a solution, slurry, or paste form. Can exist in multiple states.
  • such a "dispersion composition” includes a conductive material composition of a secondary battery; Electrodes or conductive compositions applied in the manufacturing process of various batteries, displays, or rulers; Active material compositions such as secondary batteries; compositions for preparing various polymers or resin composites; or ink or paste compositions applied in the manufacturing process of various electronic materials or devices, and the like, and are not limited thereto.
  • the "dispersant” and the component to be dispersed are included together in the liquid medium, it may be defined to fall within the scope of the "dispersion composition", regardless of its state or purpose.
  • polyaromatic hydrocarbon may refer to an aromatic hydrocarbon compound in which at least two aromatic rings, for example, at least two benzene rings are bonded and included in a single compound structure.
  • polyaromatic hydrocarbon oxide may refer to any compound in which the "polyaromatic hydrocarbon” described above reacts with an oxidant such that at least one oxygen containing functional group is bonded in its chemical structure.
  • the oxygen-containing functional groups that can be introduced into the "polyaromatic hydrocarbon" by the reaction with the oxidizing agent is a hydroxy group, an epoxy group, It can be bonded to an aromatic ring such as a carboxyl group, nitro group or sulfonic acid and can be any functional group containing one or more oxygens in the functional group.
  • carbon-based material means any material mainly containing carbon-carbon bonds, for example, graphene, carbon nanotubes, graphite or the like, or derivatives thereof. Also, carbon black, fullerene represented by C60, and other similar fullerene-based materials or derivatives thereof may be collectively referred to. However, it can be interpreted that "polyaromatic hydrocarbon” or an oxide thereof, which is a main component or main raw material of "dispersant" in the present invention, does not belong to this category of "carbon-based material”.
  • a certain component such as a dispersing agent is "physically attached" to the surface of other components such as graphene flakes, so that chemical bonds such as covalent or coordinating bonds are not mediated between both components, It can be said that only a certain component is adhered to, adhered to, or adsorbed to, the surface of other components, or at least partially embedded in a fixed state.
  • the dispersing agent is a mixture of a plurality of species of poly-aromatic hydrocarbon oxide, A mixture containing a polyaromatic hydrocarbon oxide having a molecular weight of 300 to 1000 in an amount of at least 60 wt. 0 /., Wherein the abyss or derivative thereof is formed into a graphene flake having a nanoscale thickness under the application of a physical force Provided is a method for preparing graphene.
  • the graphene manufacturing method of one embodiment may include the step of uniformly dispersing an adduct or derivative thereof, such as graphite, in an aqueous solvent or a polar organic solvent in the presence of a specific dispersing agent, and then peeling it by applying a physical force thereto.
  • an adduct or derivative thereof such as graphite
  • a specific dispersing agent to be described later may be prepared in the form of graphene flakes by peeling in a more uniform dispersed state.
  • the process of exfoliating by applying a physical force to the graphite or a derivative thereof may be further optimized by using a high pressure homogenizer or the like.
  • the raw abyss or its In a state where the dispersion state of the derivative is optimized peeling may be performed by a more effective process to prepare graphene flakes.
  • graphene flakes having a thinner thickness and larger area can be easily produced in high yield.
  • the graphene flakes prepared according to one embodiment of the present invention can be used for various polar solvents without any additional treatment to improve their dispersibility or solubility. Very good dispersibility and the like. Therefore, the graphene dispersion composition including the graphene flake is very effective in various fields and applications such as conductive paste composition, conductive ink composition, heat dissipation substrate forming composition, electrically conductive composite, EMI shielding composite or battery conductive material. Can be used.
  • the excellent effect according to the method of one embodiment can be expressed by the use of a specific dispersant, aha. First described in detail with respect to such a dispersant, and then in detail the method for producing graphene of one embodiment using the same. Let's do it.
  • Dispersing agent used in the one embodiment the method is a common compound of poly aromatic hydrocarbons, oxides of a plurality of types, and the poly-aromatic hydrocarbons, oxides of molecular weight from about 300 to 1000 may include a common compound about 60 weight 0 /., Including the above content .
  • the polyaromatic hydrocarbon oxides obtained by this method Common "compounds is when analyzed with MALD ⁇ TOF MS, a molecular weight of about 300 to 1000, or of about 300 to 700 of poly aromatic hydrocarbons, oxides of about 60 parts by weight 0 /. Or more, or about 65 weight 0/0 or more, or from about 70 to 95 it was confirmed that comprises by weight 0/0.
  • the specific kind, structure, and distribution of the polyaromatic hydrocarbon oxides included in such a mixture may vary depending on the kind of pitch used as the raw material, its origin, the kind of black oxidant, and the like.
  • the mixture of polyaromatic hydrocarbon oxides included in the dispersant is a polyaromatic having a structure in which at least one oxygen-containing functional group is introduced into a polyaromatic hydrocarbon containing 5 to 30 or 7 to 20 benzene rings, respectively. It includes a plurality of hydrocarbon oxides, the polyaromatic hydrocarbon oxide in such a mixture has a molecular weight distribution as described above, that is, a molecular weight distribution of the molecular weight of about 300 to 1000, or about 300 to 700 oxide of at least about 60% by weight of the total mixture Will have
  • the type of the oxygen-containing functional group may vary depending on the type of oxidizing agent used in the oxidation process such as pitch, etc., for example, at least one selected from the group consisting of hydroxy group, epoxy group, carboxyl group, nitro group and sulfonic acid.
  • various polyaromatic hydrocarbon oxides having a plurality of various functional groups selected from the above-mentioned functional groups may be included and mixed.
  • Polyaromatic hydrocarbon oxides satisfying the above-described structural characteristics, molecular weight distribution, and the like, and a mixture thereof, may simultaneously have a hydrophobic ⁇ -domain where aromatic rings are collected and a hydrophilic region by oxygen-containing functional groups bonded to the aromatic ring.
  • the hydrophobic ⁇ -domain may interact with the surface of a carbon-based material on which carbon-carbon bonds such as graphene (flakes) are formed, and the hydrophilic region may have a single hydrophilic region.
  • the repulsive force between the carbonaceous material eg, each particle of each graphene flake, abyss or derivative thereof
  • the carbonaceous material eg, each particle of each graphene flake, abyss or derivative thereof
  • the above-described dispersant comprising a mixture of the polyaromatic hydrocarbon oxides can be present between the molecules of the carbon-based material in a liquid medium, such as an aqueous solvent or a polar organic solvent to uniformly disperse such carbon-based material . Therefore, the dispersant exhibits excellent dispersing force for uniformly dispersing the carbonaceous material at a higher concentration even when a relatively small amount is used. It was confirmed that.
  • the dispersant may exhibit water solubility in itself due to the presence of a hydrophilic region by an oxygen-containing functional group, and the like, and thus may uniformly disperse the carbonaceous material even in an environmentally friendly solvent.
  • the dispersant exhibits an excellent dispersing force capable of uniformly dispersing the carbonaceous material in a high concentration in various polar organic solvents as well as an environmentally friendly solvent.
  • This excellent dispersing power is due to the fact that the above-described dispersing agent in the form of a mixture of plural kinds of polyaromatic hydrocarbon oxides contains a wide variety of components and has a wide molecular weight distribution, and even when a very small amount of dispersing agent is used due to such excellent dispersing power, Dispersion effects equivalent to using separate compounds of species can be achieved. This may also result in the effect of greatly reducing the residual amount of the dispersant acting as a kind of impurity to be removed from the component to be dispersed in the future.
  • the dispersant due to the excellent dispersing power of the dispersant, it is possible to more uniformly disperse the graphite as a raw material or a derivative thereof in a high concentration in the manufacturing method of one embodiment. Therefore, by peeling the raw material in such an optimized dispersion state, it can be one of the major factors that enable easy production of graphene flakes having a thinner thickness and large area. Furthermore, since the dispersant may remain physically attached to the surface of the finally formed graphene flakes, the graphene flakes prepared by the method of the embodiment may exhibit excellent dispersibility in various polar solvents and the like by themselves. have.
  • the above-described dispersant was analyzed element of poly aromatic hydrocarbons, oxides of a plurality of types it contains, about 12 of the oxygen content contained in the entire common compound total element content to 50 parts by weight 0/0, or from about 15 to 45 wt. It may be 0/0.
  • the oxygen content reflects the degree to which the oxygen-containing functional group is introduced by the oxidation process in the polyaromatic hydrocarbon oxide, and the hydrophilic region described above may be included to an appropriate degree according to the satisfaction of the oxygen content.
  • such a dispersant may be used to more uniformly disperse the raw abyss or derivatives thereof to obtain graphene flakes having a thin thickness more effectively, and to further improve the dispersibility of the final manufactured graphene flakes. have.
  • the oxygen content may be calculated by elemental analysis of a plurality of polyaromatic hydrocarbon oxides included in the mixture described above. That is, when the mixture sample (for example, about 1 mg) is heated to, for example, about 900 ° C. on a thin foil to high silver, the instantaneous melting of the foil and its temperature to about 1500 to 1800 ° C. This temperature can rise, and gas is generated from the complex sample by the high temperature, and the collection and element content can be measured and analyzed. As a result of this elemental analysis, the total elemental content of carbon, oxygen, hydrogen and nitrogen contained in the plurality of polyaromatic hydrocarbon oxides can be measured and analyzed, and the oxygen content with respect to the total elemental content can be obtained.
  • elemental analysis of a plurality of polyaromatic hydrocarbon oxides included in the mixture described above. That is, when the mixture sample (for example, about 1 mg) is heated to, for example, about 900 ° C. on a thin foil to high silver, the instantaneous melting of the foil
  • the above-described dispersant may be prepared by a method comprising the step of oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 in the presence of an oxidizing agent.
  • the pitch discharged from the residue of the fossil fuel may include a plurality of polyaromatic hydrocarbons, and may have a viscous or powdery complex state.
  • the specific type, structure, composition ratio or molecular weight distribution of the polyaromatic hydrocarbon may vary depending on the raw material or the origin of the pitch, the pitch may be, for example, 5 to 50 aromatic rings, for example, a benzene ring. It may include a plurality of polyaromatic hydrocarbons contained in the structure, and may generally include polyaromatic hydrocarbons having a molecular weight of about 200 to 1500.
  • pitch of common compounds, including the molecular weight of about 200 to 1,500 poly-aromatic hydrocarbons that are used as starting materials in the production process of the dispersant is about 80 weight 0 / the poly-aromatic hydrocarbons such molecular weight range. or more, or about 90 weight 0 /. may include a content or more.
  • the oxidation process using an oxidizing agent for a mixture containing polyaromatic hydrocarbons, such as pitch is decomposed.
  • Polyaromatic hydrocarbons having an excessively large molecular weight in the polyaromatic hydrocarbons included in the pitch are decomposed, Mixtures of polyaromatic hydrocarbons with relatively narrow molecular weight distributions can be obtained.
  • polyaromatic hydrocarbons having molecular weights greater than about 1000 or about 700 can be broken down to small molecular weights.
  • At least one oxygen-containing functional group is introduced into the aromatic ring of each polyaromatic hydrocarbon, a mixture containing a plurality of polyaromatic hydrocarbon oxides, that is, a dispersant used in the method of one embodiment can be prepared very simply.
  • a dispersing agent all kinds of oxidizing agents are not particularly limited, and any oxidizing agent can be used without any limitation as long as it can cause an oxidation reaction for introducing an oxygen-containing functional group into an aromatic hydrocarbon.
  • oxidizing agents include nitric acid (HN0 3 ), sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ), ammonium cerium (IV) sulfate; (NH 4 ) 4 Ce ( S0 4 ) 4 ) or ammonium cerium (IV) nitrate (Ammonium cerium (IV) nitrate; (NH 4 ) 2 Ce (N0 3 ) 6 ), etc., and two or more kinds of mixtures selected for these cases may be used. Of course.
  • this oxidation step can be carried out in the solvent, for about 0.5 to 20 hours under a reaction temperature of about 10 to 1 10 ° C.
  • a solution oxidant such as sulfuric acid and / or nitric acid
  • a certain amount of the mixture including the polyaromatic hydrocarbons is added, and at room temperature, for example, about 20 ° C. black is about 1 to 80 ° C.
  • the oxidation step can be carried out for 12 hours.
  • the mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 as a starting material of the production method may be derived from a pitch obtained from a fossil fuel or a product thereof. Accordingly, the type, structure or molecular weight distribution of the polyaromatic hydrocarbons may be different. Nevertheless, as the oxidation process is carried out on a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 derived from the pitch, etc., the above-described dispersant exhibiting excellent dispersibility for carbon-based materials can be simply prepared.
  • the resultant is purified to obtain a plurality of Obtaining a mixture of polyaromatic hydrocarbon oxides of the species may further comprise a step, such purification may proceed by centrifuging the result of the oxidation step.
  • a purification step a mixture of polyaromatic hydrocarbon oxides which satisfy the above-described molecular weight distribution and the like can be obtained more highly and appropriately, and the graphene flakes can be more effectively produced by the method of the embodiment using a dispersant containing the same. can do.
  • a dispersion containing a carbon-based material including the above-described dispersant and graphite or derivatives thereof may be obtained.
  • the kind of abyss or derivatives thereof that can be used as the raw material is not particularly limited, and as the carbon atom layer has a three-dimensional structure in which a carbon atom layer is laminated, by any physical force such as high speed, high pressure, ultrasonic irradiation or shear force, etc.
  • Any carbon-based material can be used that can be peeled off and made into graphene or the like having one or more layers of carbon atoms.
  • the dispersion may be a dispersion in which a carbon-based material including an abysmal derivative thereof or a specific dispersant described above is dissolved or dispersed in an aqueous solvent or a polar organic solvent.
  • the dispersion in the action of a specific dispersing agent. Because, hokyeon or because the carbon-based material be present in a highly uniformly dispersed state, including derivatives thereof, such a maximum, the process proceeds to the peeling step after in the optimized dispersion than the thickness And graphene flakes having a large area can be effectively formed.
  • aqueous solvent or the polar organic solvent water, NMP, acetone, DMF, DMSO, ethanol, isopropyl alcohol, methane, butanol, 2-ethoxy ethanol, 2-subspecial Ethane, 2-methoxypropanol, THF, ethylene glycol, pyridine, dimethylacetamide, N-vinylpyrrolidone, methyl ethyl ketone, butanone, alpha-terpinol, formic acid, ethyl acetate and acrylonitrile Any solvent or polar organic solvent such as one or more selected from may be used.
  • the graphene manufacturing method of one embodiment after forming and providing the dispersion, it is possible to exfoliate the abyss or derivatives thereof by applying a physical force to the graphene flakes through this.
  • the peeling process of applying a physical force can be proceeded by applying any known method that is conventionally applicable for the manufacture of graphene, in addition to various methods such as using a high pressure homogenizer (High Pressure Homogenizer) You can apply and proceed.
  • Such a method include a method using a high speed homogenizer, a high pressure homogenizer, a ball mill, a bead mill, or an ultrasonic irradiator.
  • a method using ultrasonic irradiation it may be difficult to obtain graphene having a large area, many defects may occur on the graphene during peeling, or the peeling yield may not be sufficient.
  • a method using a ball mill or a bead mill may also be difficult to obtain grapheneol having a thin thickness, and the peeling yield may also be insufficient.
  • Figure 1 is a schematic schematic showing the principle of a high pressure homogenizer that can be used in the method for producing graphene of one embodiment.
  • the high pressure homogenizer may have a structure including a microchannel having a diameter of a micrometer and connecting an inlet of a raw material, an outlet of a peeling result such as graphene flakes, and the inlet and an outlet. have.
  • a high pressure homogenizer for example, when a raw material in a dispersion state containing graphite or a derivative thereof is introduced while applying a high pressure of about 100 to 3000 bar, the raw material is obtained on a micron scale, for example, Fine with a diameter of about 10 to 800 ⁇ m While passing through the flow path, a high shear force can be applied to this raw material.
  • a micron scale for example, Fine with a diameter of about 10 to 800 ⁇ m While passing through the flow path, a high shear force can be applied to this raw material.
  • the manufacturing method of the graphene of one embodiment described above may further comprise the step of recovering and drying the graphene flake from the dispersion of the graphene flake, the recovery step is centrifugation, vacuum filtration or pressure filtration Can proceed.
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 200 ° C.
  • graphene flakes having a very thin thickness and a very large area (diameter), which are comparable to the carbon atomic layer thickness can be easily produced in high yield.
  • such graphene flakes may have a thickness of about 1.5-50 nm, or about 5-30 nm, and may have a large diameter of about 0.1-10 // m, or about 0.1-5 // m.
  • the graphene flakes have a very large area (diameter) to thickness, and may have a diameter / thickness ratio of about 50 to 6000, or about 50 to 1000.
  • the "diameter" of the graphene flakes is "the longest distance of the straight line connecting two arbitrary points on the plane of each particle when viewed from the plane having the largest area of each particle of graphene flakes" Can be defined.
  • the graphene flakes can be expressed by maximizing the excellent electrical conductivity, thermal conductivity, and stability of graphene.
  • the graphene flakes may be formed in a state in which the aforementioned dispersant is physically attached to the surface. Due to the physical adhesion of these dispersants, the graphene flakes can exhibit very good dispersibility for various polar solvents without the need for additional treatment or process progress. That is, conventional graphene flakes are usually Dispersibility of at least some of the solvents are very poor, in order to utilize them, a separate treatment for improving the dispersibility or a separate dispersant or the like was required, but the graphene flakes prepared by the method of the embodiment are Without the need for such a separate treatment, it can immediately exhibit excellent dispersibility in various polar solvents.
  • the graphene flakes prepared by the method of one embodiment are redispersed immediately (continuously) in various polar solvents to form a conductive paste composition, a conductive ink composition, a composition for forming a shielding substrate, an electrically conductive composite, an EMI shielding composite or a battery It can be used for various purposes such as conductive materials. .
  • a dispersion composition of graphene comprising the graphene flakes described above.
  • This dispersion composition is a mixture of certain dispersants, i.e., a plurality of polyaromatic hydrocarbon oxides, already described above.
  • a dispersant comprising is physically attached to the surface, graphene flakes that; And it may include a polar solvent for dissolving or dispersing the graphene flakes.
  • Such a dispersion composition is formed through the above-described manufacturing method to form a graphene flake physically attached to the surface, and then directly (or continuously) to a polar solvent, without any further treatment to improve its dispersibility. It can be prepared by dissolving or dispersing.
  • an aqueous solvent such as water, or any polar solvent may be applied without particular limitation.
  • polar solvents include water, NMP, acetone, VIF, DMSO, ethanol, isopropyl alcohol, methane, butane, 2-especial ethanol, 2-butoxy ethanol, 2-methoxy propanol, and THF.
  • Ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, methyl ethyl ketone, butanone, alpha-terpinol, formic acid, ethyl acetate and acrylonitrile can be used.
  • the graphene flakes to which the dispersant is physically attached to the surface may be included in about 50 parts by weight or less based on 100 parts by weight of the polar solvent, and the graphene flakes may be up to about 50 parts by weight. Even if contained in a high concentration, it is possible to maintain a state uniformly dispersed in a polar solvent. As such, in the dispersion composition, due to the action of a specific dispersant physically attached to the graphene flakes, the graphene flakes may themselves exhibit excellent dispersibility in various polar solvents. Therefore, the dispersion composition may maintain a state in which the graphene flakes are uniformly dispersed in a high concentration in various polar solvents in consideration of practical applications. Therefore, such a dispersion composition can be expressed by maximizing the excellent properties of graphene, it can be applied to various applications that require the application of graphene.
  • the graphene dispersion composition may be a conductive paste composition, a conductive ink composition, a composition for forming a heat dissipation substrate, an electrically conductive composite, an EMI shielding composite, or the like. It may be used as a conductive material for batteries, and in addition to the graphene in a dispersed state may be applied to any use known or necessary.
  • the dispersant of Example 1 was prepared by performing the following oxidation process and purification process on pitch, a petroleum by-product obtained from POSCO.
  • a pitch of 0.5 to 1.5 g was added to 75 ml of a mixed solution of sulfuric acid / nitric acid (volume ratio 3: 1), and an oxidation reaction was performed at 70 ° C. for about 3.5 hours.
  • the pitch reaction solution subjected to the oxidation reaction was cooled to room temperature, diluted with distilled water about 5 times, and centrifuged at about 3500 rpm for 30 minutes. Subsequently, the supernatant was removed, the same amount of distilled water was added and redispersed, followed by centrifugation again under the same conditions, and finally the precipitate was recovered and dried. Through this, the dispersant of Example 1 was prepared.
  • the molecular weight distribution of the pitch used as a raw material during the preparation of such a dispersant was analyzed in the MALDF TOF mass spectrum and shown in FIGS. 2A and 2B (an enlarged view of the molecular weight 400 to 500 region). Likewise molecular weight distribution Analyzes are shown in FIGS. 3A and 3B (enlarged view of molecular weight 400 to 500 region). This analysis was carried out using a MALDI-TOF mass spectrum equipment (Ultraflex II, Bruker), the pitch or dispersant was added to the matrix and mixed, followed by drying.
  • MALDI-TOF mass spectrum equipment Ultraflex II, Bruker
  • the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, and in particular, in the enlarged view of FIG. From the results, it was confirmed that a plurality of polyaromatic hydrocarbons having different numbers of aromatic rings (benzene rings) were connected by aliphatic hydrocarbons. In contrast, referring to FIGS. 3A and 3B (enlarged view), large peaks in the dispersing agent of Preparation Example 1 were present in the polyaromatic hydrocarbons at intervals of 44 Da and 16 D, respectively.
  • oxygen-containing functional groups such as -OH or -S03H exist in the form of a mixture of introduced polyaromatic hydrocarbon oxides, and oxides having a molecular weight of about 300 to 1000 and black to about 300 to 700 or more are 60% by weight or more. It was confirmed to be included.
  • the pitch (top) used as the raw material and the dispersant (bottom) of Preparation Example 1 were analyzed by 13C CPMAS NMR (Varian 400MHz Solid-State NMR), respectively, and the results of the analysis were compared with FIG. 4.
  • the carbon-derived peak of the aromatic hydrocarbon and the carbon-derived peak of some aliphatic hydrocarbon were confirmed, but the presence of the oxygen-containing functional group was not confirmed.
  • NMR analysis of the dispersant of Preparation Example 1 confirmed the peak of the oxygen-containing functional group. It was confirmed that such oxygen-containing functional groups were epoxy groups, hydroxyl groups, carboxyl groups, and the like.
  • This dispersant was analyzed by MALDI-TOF mass spectrum in the same manner as in Preparation Example 1, and compared with FIG. Referring to FIG. 6, as the oxidation time is increased, the content of the component (polyaromatic hydrocarbon oxide) of about 1000 and about 700 in the dispersant decreases, so that the molecular weight of about 300 to 1000 and black is about 300 to 700. It was found that a dispersant in the form of a mixture containing a higher content of polyaromatic hydrocarbon oxides was obtained.
  • Test Example 1 Measurement of Oxygen Content of Dispersant
  • PPS commercialized dispersant
  • Example 2 In the same manner as in Example 1, a dispersion of pristine graphite was formed. This dispersion was passed through a high speed homogenizer rotating at 12000 rpm for 1 hour. Through this, the graphite was peeled off to prepare a graphene flake of Example 2.
  • Figure 7 ' shows an electron micrograph of graphite used as a raw material for the production of graphene flakes
  • (c) is prepared in Example 2
  • An electron micrograph of graphene flakes is shown. Referring to Figure 7 (c), it was confirmed that the graphene flakes were formed relatively good.
  • Example 3 Preparation of Graphene Flakes
  • Figure 7 shows an electron micrograph of the graphite used as a raw material for the production of graphene flakes
  • (d) shows an electron micrograph of the graphene flakes prepared in Example 3. Referring to FIG. 7D, it was confirmed that graphene flakes having a thickness of about 50 nm were formed relatively well.
  • Chalcsey Example 4 Preparation of Graphene Flakes
  • Example 4 In the same manner as in Example 1, a dispersion of pristine graphite was formed. This dispersion was introduced into the inlet of the high pressure homogenizer at a high pressure of about 1600 bar and passed through the microchannel, and this process was repeated 10 times. Through this, the graphite was peeled off to prepare a graphene flake of Example 4.
  • Figure 7 shows an electron micrograph of graphite used as a raw material for the production of graphene flakes, (e) and (f) (enlarged view of (e)) graphene prepared in Example 4 Electron micrographs of the flakes are shown. Degree
  • the graphene flakes prepared in Example 4 were found to have a very large area having a diameter of about 0.5 to 5.
  • the graphene flakes of Example 4 have a lower carbon grid (red arrow in the drawing) arranged for TEM analysis. It was confirmed that the graphene flake had a very thin thickness as observed through the graphene flake.
  • Dispersant 1.0g of Comparative Preparation Example 1 50 mL of water and 2.5 g of pristine graphite were mixed to form a dispersion. This dispersion was introduced into the inlet of the high pressure homogenizer at a high pressure of about 1600 bar and passed through the microchannel, and this process was repeated 10 times. Through this, the graphite was peeled off to prepare a graphene flake of Comparative Example 1.
  • Comparative Example 9 is an electron micrograph of the graphene flakes prepared in Comparative Example 1. Referring to FIG. 9, when the dispersant of Comparative Preparation Example 1 was used, it was confirmed that the graphene flakes were not formed relatively well such that the prepared graphene flakes were formed relatively thickly. Comparative Example 2: Preparation of Graphene Flakes
  • Dispersant 1.0g of Comparative Preparation Example 2 50 mL of water and 2.5 g of pristine graphite were mixed to form a dispersion. This dispersion was introduced into the inlet of the high pressure homogenizer at a high pressure of about 1600 bar and passed through the microchannel, and this process was repeated 10 times. Through this, the graphite was peeled off to prepare a graphene flake of Comparative Example 2.
  • FIG. 1 a visual observation photograph showing a result of evaluating such redispersibility is shown.
  • the graphene flakes obtained in the examples can be dispersed very uniformly at high concentration in various polar solvents. This is predicted by the action of the particular dispersant used in the examples.
  • the graphene flakes of the embodiment can be uniformly dispersed in various polar solvents by itself, It has been confirmed that it can be easily applied for use.
  • dispersant of Comparative Preparation Example 1 which merely has 1 to 2 separate compound forms, wherein the dispersant of Preparation Example 1 is in the form of a mixture of several polyaromatic hydrocarbon oxides, and the molecular weight range of such polyaromatic hydrocarbon oxides And because the content range is optimized to interact more effectively with the carbon-based material, thereby better dispersing and exfoliating the carbon-based material.
  • Example 3 Preparation of Graphene-Containing Film and Evaluation of Electrical Properties (Measurement of Surface Resistance)
  • the graphene flakes obtained in Example 4 were prepared in various concentrations of 0.1, 0.5, 1.0, 2.0, and 3.0 mg / ml, respectively. Redispersed to form an aqueous dispersion. 20 ml of this aqueous dispersion was vacuum filtered using a porous AAO membrane having a diameter of 47 mm and a pore size of 200 nm to prepare a graphene-containing film.
  • the surface resistance was measured in different areas using a four-point probe device, and the measurement results are shown in FIG. 13.
  • the film thickness increases and the sheet resistance tends to decrease, and it is confirmed that the graphene-containing film as a whole has low sheet resistance and excellent electrical conductivity. From this, it is confirmed that the graphene flakes of the examples exhibit some excellent electrical properties even though they have a thin thickness, and that the dispersant physically attached to the surface of the graphene flakes does not adversely affect the electrical conductivity of the graphene flakes. .
  • FIG. 14 shows the appearance of the film and the results of measuring sheet resistance thereof.
  • the average of the sheet resistance was about 47.5 ( ⁇ 4.8) / k, which was confirmed to have a low sheet resistance and excellent electrical conductivity even in a film state of a relatively large thickness.
  • the graphene flakes are used to form a conductive paste, an ink composition for printing ink or a conductive ink composition, and apply the same to form a conductive pattern, or to form a conductive material such as a heat dissipation substrate in the film state. It has been confirmed that it can be used in fields or applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크를 용이하게 제조할 수 있는 그래핀의 제조 방법과, 이를 사용하여 얻어진 그래핀의 분산 조성물에 관한 것이다. 상기 그래핀의 제조 방법은 흑연 또는 이의 유도체를 포함한 탄소계 소재 및 분산제의 분산액에 물리적 힘을 인가하는 단계를 포함하고, 상기 분산제는 복수 종의 폴리 방향족 탄화수소 산화물의 혼합물로서, 분자량 300 내지 1000의 폴리 방향족 탄화수소 산화물을 60 중량% 이상의 함량으로 포함한 혼합물을 포함하며, 상기 흑연 또는 이의 유도체는 물리적 힘의 인가 하에 나노 스케일의 두께를 갖는 그래핀(graphene) 플레이크로 형성되는 것이다.

Description

[명세서】
【발명의 명칭】
그래핀의 제조 방법과, 그래핀의 분산 조성물
【기술분야】
본 발명은 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크를 용이하게 제조할 수 있는 그래핀의 제조 방법과, 이를 사용하여 얻어진 그래핀의 분산 조성물에 관한 것이다.
【배경기술】
일반적으로 그래핀은 탄소원자들이 2차원 상에서 sp2 결합에 의한 6각형 모양으로 연결된 배열을 이루면서 탄소 원자층에 대응하는 두께를 갖는 반 금속성 물질이다. 최근 들어, 한층의 탄소 원자층을 갖는 그래핀 시트의 톡성을 평가한 결과, 전자의 이동도가 약 50,000 cm2/Vs 이상으로서 매우 우수한 전기 전도도를 나타낼 수 있음이 보고된 바 있다.
또한, 그래핀은 구조적, 화학적 안정성 및 뛰어난 열 전도도의 톡징을 가지고 있다. 뿐만 아니라 상대적으로 가벼운 원소인 탄소만으로 이루어져 1차원 혹은 2차원 나노패턴을 가공하기가 용이하다. 무엇보다도 상기 그래핀 시트는 값싼 재료로서 기존의 나노재료와 비교할 경우 우수한 가격경쟁력을 갖고 있다. 이러한 전기적, 구조적, 화학적, 경제적 특성으로 인하여 그래핀은 향후 실리콘 기반 반도체 기술 및 투명전극을'대체할 수 있을 것으로 예측되며, 특히 우수한 기계적 물성으로 유연 전자소자 분야에 웅용이 가능할 것으로 기대된다. 이러한 그래핀의 많은 장점 및 뛰어난 특성으로 인해, 그라파이트 등 탄소계 소재로부터 그래핀을 보다 효과적으로 양산할 수 있는 다양한 방법이 제안 또는 연구되어 왔다. 특히, 그래핀의 우수한 특성이 더욱 극적으로 발현될 수 있도록, 보다 얇은 두께 및 대면적을 갖는 그래핀 시트 또는 플레이크를 용이하게 제조할 수 있는 방법에 관한 연구가 다양하게 이루어져 왔다. 이러한 기존의 그래핀 제조 방법에는 다음과 같은 것들이 있다.
먼저, 테이프를 사용하는 등 물리적인 방법으로 그라파이트로부터 그래핀 시트를 박리하는 방법이 알려져 있다. 그러나, 이러한 방법은 양산에 부적합하며, 박리 수율이 매우 낮다.
또한, 그라파이트를 산화하는 등의 화학적인 방법으로 박리하거나, 그라파이트의 탄소 층간에 산, 염기, metal 등을 삽입하여 인터칼레이션 화합물 (intercalation compound) 로부터 박리시킨 그래핀 또는 이의 산화물을 얻는 방법이 알려진 바 있다. 그러나, 전자의 방법은 그라파이트를 산화하여 박리를 진행하고, 이로부터 얻어진 그래핀 산화물을 다시 환원하여 그래핀을 얻는 과정에서, 최종 제조된 그래핀 상에 다수의 결함이 발생할 수 있다. 이는 최종 제조된 그래핀의 특성에 악영향을 미칠 수 있다. 그리고, 후자의 방법 역시 인터칼레이션 화합물을 사용 및 처리하는 등의 공정이 추가로 필요하여 전체적인 공정이 복잡해지고 수율이 층분치 않으며 공정의 경제성이 떨어질 수 있다. 더 나아가, 이러한 방법에서는 대면적의 그래핀 시트 또는 플레이크를 얻기가 용이치 않다.
이러한 방법들의 문제점으로 인해, 최근에는 그라파이트 등을 액상 분산시킨 상태에서, 초음파 조사 또는 블밀 등을 사용한 밀링 방법으로 그라파이트에 포함된 탄소 층들을 박리하여 그래핀을 제조하는 방법이 가장 많이 적용되고 있다. 그러나, 이러한 방법들 역시 층분히 얇은 두께 및 대면적을 갖는 그래핀을 얻기가 어렵거나, 박리 과정에서 그래핀 상에 많은 결함이 발생하거나, 박리 수율이 충분치 못하게 되는 등의 문제점이 있었다.
' 이로 인해, 보다 얇은 두께 및 대면적을 갖는 그래핀 시트 또는 플레이크를 보다 높은 수율로 용이하게 제조할 수 있는 제조 방법이 계속적으로 요구되고 있다.
【발명의 내용】
【해결하려는 과제】
본 발명은 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크를 용이하게 제조할 수 밌는 그래핀의 제조 방법을 제공하는 것이다.
또한, 본 발명은 상기 제조 방법으로 얻어진 그래핀 플레이크를 포함하여, 극성 용매에 그래핀이 고농도로 균일하게 분산된 그래핀의 분산 조성물을 제공하는 것이다.
【과제의 해결 수단】
본 발명은 혹연 또는 이의 유도체를 포함한 탄소계 소재 및 분산제의 분산액에 물리적 힘을 인가하는 단계를 포함하고, 상기 분산제는 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로세 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 증량 % 이상의 함량으로 포함한 흔합물을 포함하며, 상기 흑연 또는 이의 유도체는 물리적 힘의 인가 하에 나노 스케일의 두께를 갖는 그래핀 (graphene) 플레이크로 형성되는 그래핀의 제조 방법을 제공한다. 상기 그래핀의 제조 방법에서, 상기 혹연 또는 이의 유도체는 그라파이트, 팽창 흑연 (expanded graphite), 부정형 혹연, 판상형 흑연, 인조 흑연, 탄소 층간에 인터칼레이션 화합물이 삽입되어 있는 개질 혹연 및 탄소나노섬유로 이루어진 군에서 선택된 1종 이상으로 될 수 있다. .
또, 상기 분산액은 수용매 또는 극성 유기 용매 내에 탄소계 소재 및 분산제가 용해 또는 분산된 분산액으로 될 수 있다.
이때, 상기 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 전체 원소 함량의 약 12 내지 50 중량0 /。인 것으로 될 수 있다. 또, 상기 분산제에 포함된 폴리 방향족 탄화수소 산화물은 5 내지 30 개, 혹은 7 내지 20 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 가질 수 있다.
그리고, 상기 그래핀의 제조 방법에서, 상기 물리적 힘의 인가 단계는 고속 균질기 (High Speed Homogenizer), 고압 균질기 (High Pressure Homogenizer), 볼밀, 비드밀 또는 초음파 조사기를 사용한 방법으로 진행될 수 있다.
이러한 그래핀 제조 방법에서 형성된 그래핀 플레이크는 약 1.5 내지 50nm, 흑은 약 5 내지 30nm의 두께를 가질 수 있으며, 약 0.1 내지 10 , 혹은 약 0.1 내지 5 μιη의 직경을 가질 수 있고, 약 50 내지 6000, 흑은 약 50 내지 1000의 직경 /두께비를 가질 수 있다.
그리고, 상기 그래핀 플레이크는 그 표면에 상기 분산제가 물리적 부착된 상태로 형성될 수 있다.
한편, 상술한 그래핀의 제조 방법은, 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함할 수도 있으며, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 200 °C의 온도 하에 진공 건조하여 진행될 수 있다.
본 발명은 또한, 상술한 제조 방법으로 얻어진 그래핀 플레이크를 포함하며, 이러한 그래핀 플레이크가 극성 용매 내에 고농도로 균일하게 분산된 그래핀의 분산 조성물을 제공한다. 이러한 그래핀의 분산 조성물은 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 약 300 내지 1000의 폴리 방향족 탄화수소 산화물을 약 60 증량0 /。 이상의 함량으로 포함한 흔합물을 포함하는 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크; 및 상기 그래핀 플레이크를 용해 또는 분산시키는 극성 용매를 포함할 수 있다.
이러한 분산 조성물은 상술한 제조 방법을 통해 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크를 형성한 후, 이의 분산성을 향상시키기 위한 별도의 처리 없이, 이를 극성 용매에 바로 (또는 연속적으로) 용해 또는 분산시켜 제조될 수 있다.
또, 상기 분산 조성물에서, 상기 극성 용매는 물, NMP, 아세톤, 이 VIF,
DMSO, 에탄올, 이소프로필알코올, 메탄올, 부탄을, 2-에특시 에탄올, 2-부록시 에탄을, 2-메특시 프로판올 THF, 에틸렌글리콜, 피리딘 디메틸아세트아미드, N- 비닐피를리돈, 메틸에틸케톤, 부탄온, 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1종 이상을 포함할 수.있다.
그리고, 상기 분산 조성물에서, 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크는 극성 용매의 100 중량부에 대해 약 50 중량부 이하로 포함될 수 있다.
이러한 그래핀의 분산 조성물은 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등으로 사용될 수 있다.
【발명의 효과】
본 발명에 따르면, 특정한 분산제의 사용 및 박리 방법의 최적화로 인해, 원료인 흑연 또는 이의 유도체를 보다 균일하게 분산시킨 상태에서 효과적으로 박리해 그래핀 플레이크를 제조할 수 있다. 따라서, 본 발명에 따르면, 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크가 높은 수율로 용이하게 제조될 수 있다. 더구나, 본 발명의 방법에 따라 제조된 _ 그래핀 플레이크는 이의 분산성이나 용해도를 향상시키기 위한 추가적인 처리 없이도, 그 자체로 다양한 극성 용매에 대해 매우 우수한 분산성 등을 나타낼 수 있다. 따라서, . 이러한 그래핀 플레이크를 포함하는 그래핀의 분산 조성물은 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등의 다양한 분야 및 용도로 매우 효과적으로 사용될 수 있다.
【도면의 간단한 설명】
도 1 은 일 구현예의 그래핀의 제조 방법에서 사용 가능한 고압 균질기의 원리를 나타내는 개략적인 모식도이다.
도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)는 제조예의 분산제 제조를 위해 사용되는 pitch의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다.
도 3a 및 도 3b (분자량 400 내지 500 영역의 확대도)는 제조예 1 에서 얻어진 분산제의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다,
도 4는 pitch 및 제조예 1의 분산제를 각각 13C CPMAS NMR로 분석하여 그 분석 결과를 나타낸 도면이다.
도 5 는 pitch 및 제조예 1 의 분산제를 각각 FT-IR 로 분석하여, 그 분석 결과를 나타낸 도면이다.
도 6 은 제조예 2 내지 4 에서 각각 얻어진 분산제의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하고, 그 분석 결과를 비교하여 나타낸 도면이다.
도 7 은 실시예의 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진 (a)와 실시예 1 내지 4 에서 각각 제조된 그래핀 플레이크의 전자 현미경 사진 (b) 내지 (f)를 나타낸다.
도 8 은 실시예 4 의 그래핀 플레이크의 직경 및 두께를 측정하기 위한 TEM 분석 결과 (a) 및 (b)와, AFM 분석 결과 (c) 및 (d)를 각각 나타낸다.
도 9 및 10 은 비교예 1 및 2 에서 각각 제조된 그래핀 플레이크의 전자 현미경 사진을 나타낸다.
도 1 1 은 시험예 2 에서, 실시예 4 에서 얻어진 그래핀 플레이크를 다양한 용매에 재분산시켜 재분산성을 평가한 결과를 나타낸 육안 관찰사진이다.
도 12 는 시험예 2 에서, 비교예 1 에서 얻어진 그래핀 플레이크를 극성 용매인 물에 재분산시켜 재분산성을 평가한 결과를 실시예 4 와 비교하여 나타낸 육안 관찰 사진이다. 도 13 은 시험예 3 에서, 실시예 4 의 그래핀 플레이크를 사용하여 그래핀 필름을 제조한 후, 이의 면 저항을 측정한 결과를 나타내는 그래프이다.
도 14 는 시험예 3 에서, 실시예 4 의 그래핀 플레이크를 사용하여 페아스트 조성물을 제조하고, 이를 PET 기재에 코팅하여 필름을 형성한 모습과, 이의 면저항을 측정한 결과를 나타내는 도면이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구체적인 구현예에 따른 그래핀의 제조 방법과, 그래핀의 분산 조성물 등에 대해 보다 구체적으로 설명하기로 한다.
이하의 명세서에서 사용된 용어의 일부는 다음과 같이 정의될 수 있다. 먼저, 이하와 명세서에서, "분산제"란 수용매, 유기 용매 기타 액상의 매질 내에 다른 성분, 예를 들어, 그라파이트 기타 혹연 또는 이의 유도체나, 그래핀 (플레이크) 등의 탄소계 소재를 균일하게 분산시키기 위한 임의의 성분을 지칭할 수 있다. 이러한 "분산제" 및 탄소계 소재 등 분산의 대상이 되는 다른 성분이 액상 매질 내에 분산되어 있는 조성물을 "분산 조성물 "로 지칭할 수 있으며, 이러한 "분산 조성물 "은 용액상, 슬러리상 또는 페이스트상 등의 여러 상태로 존재할 수 있다. 또한, 이러한 "분산 조성물 "은 2 차 전지의 도전재 조성물; 각종 전지, 디스플레이 또는 자 등의 제조 과정에서 적용되는 전극용 또는 전도성 조성물; 2 차 전지 등의 활물질 조성물; 각종 고분자 또는 수지 복합체 제조용 조성물; 또는 여러 가지 전자 소재 또는 소자 등의 제조 과정에서 적용되는 잉크 또는 페이스트 조성물 등 다양한 용도에 사용 가능한 것으로 그 용도가 별달리 제한되지 않으며, 상기 "분산제" 및 분산 대상 성분이 액상 매질 내에 함께 포함되어 있기만 하면, 그 상태나.용도에 무관하게 상기 "분산 조성물 "의 범주에 속하는 것으로 정의될 수 있다.
또한, 이하의 명세서에서, "폴리 방향족 탄화수소"라 함은 단일 화합물 구조 내에 방향족 고리, 예를 들어, 벤젠 고리가 2 개 이상, 혹은 5 개 이상 결합 및 포함되어 있는 방향족 탄화수소 화합물을 지칭할 수 있다. 또한, "폴리 방향족 탄화수소 산화물 "은 상술한 "폴리 방향족 탄화수소"가 산화제와 반응을 일으켜 이의 화학 구조 내에 산소 함유 작용기가 하나 이상 결합되어 있는 임의의 화합물을 지칭할 수 있다. 이때, 상기 산화제와의 반응에 의해 "폴리 방향족 탄화수소"에 도입될 수 있는 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 또는 술폰산 등 방향족 고리에 결합될 수 있고 작용기 중에 산소를 하나 이상 포함하는 임의의 작용기로 될 수 있다.
그리고, 이하의 명세서에서 "탄소계 소재"라 함은 탄소 -탄소 결합을 주로 포함하는 임의의 소재, 예를 들어, 그래핀 (grapheme), 탄소 나노 튜브, 그라파이트 (graphite) 등의 혹연 또는 이의 유도체, 카본블랙, C60 로 표시되는 플러렌 (fullerene) 기타 이와 유사한 플러렌계 소재 또는 이들의 유도체 등을 포괄하여 지칭할 수 있다. 단, 이러한 "탄소계 소재"의 범주에는 본 발명에서 "분산제"의 주 성분 또는 주 원료로 되는 "폴리 방향족 탄화수소" 또는 이의 산화물은 속하지 않는 것으로 해석될 수 있다.
또, 이하의 명세서에서 분산제와 같은 일정한 성분이 그래핀 플레이크 등의 다른 성분의 표면에 "물리적으로 부착"되어 있다고 함은 양 성분 간에 공유 결합 또는 배위 결합 등의 화학 결합이 매개되지 않고, 물리적 힘만으로 일정한 성분이 다른 성분의 표면에 접착, 부착, 흡착 또는 적어도 일부가 매립되어 고정된상태로 존재함을 지칭할 수 있다.
한편, 발명의 일 구현예에 따르면, 혹연 또는 이의 유도체를 포함한 탄소계 소재 및 분산제의 분산액에 물리적 힘을 인가하는 단계를 포함하고, 상기 분산제는 복수—종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함한 흔합물을 포함하며, 상기 혹연 또는 이의 유도체는 물리적 힘의 인가 하에 나노 스케일의 두께를 갖는 그래핀 (graphene) 플레이크로 형성되는 그래핀의 제조 방법이 제공된다.
이러한 일 구현예의 그래핀 제조 방법은 특정한 분산제의 존재 하에, 그라파이트 등의 혹연 또는 이의 유도체를 수용매 또는 극성 유기 용매에 균일하게 분산시킨 후, 이에 물리적 힘을 가하여 박리하는 단계를 포함할 수 있다. 이러한 일 구현예의. 제조 방법에 따르면, .후술하는 특정 분산제의 작용으로 혹연 또는 이의 유도체가 보다 균일하게 분산된 상태에서 박리되어 그래핀 플레이크로 제조될 수 있다. 또한, 이하에 더욱 후술하겠지만, 상기 흑연 또는 이의 유도체에 물리적 힘을 가하여 박리를 진행하는 공정이 고압 균질기 등을 사용하는 방법으로 보다 최적화될 수 있다.
결과적으로, 일 구현예의 제조 방법에서는 원료인 혹연 또는 이의 유도체의 분산 상태가 최적화된 상태에서 , 보다 효과적인 공정으로 박리를 진행하여 그래핀 플레이크를 제조할 수 있다. 그 결과, 일 구현예에 따르면, 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크가 높은 수율로 용이하게 제조될 수 있다.
더구나, 일 구현예의 방법에 따라 제조된 그래핀 플레이크는 그 표면에 분산제가 물리적으로 부착된 상태로 존재함에 따라, 이의 분산성이나 용해도를 향상시키기 위한 추가적인 처리 없이도, 그 자체로 다양한 극성 용매에 대해 매우 우수한 분산성 등을 나타낼 수 있다. 따라서, 이러한 그래핀 플레이크를 포함하는 그래핀의 분산 조성물이 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등의 다양한 분야 및 용도로 매우 효과적으로 사용될 수 있다.
한편, 일 구현예의 방법에 따른 우수한 효과는 특정한 분산제의 사용에 의해 발현될 수 있는 바, 아하에서는.먼저 이러한 분산제에 관하여 구체적으로 설명한 후, 이를 사용한 일 구현예의 그래핀 제조 방법에 대해 구체적으로 설명하기로 한다.
상기 일 구현예의 방법에서 사용되는 분산제는 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 중량0 /。 이상의 함량으로 포함한 흔합물을 포함할 수 있다.
' 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치 (pitch)는 아스팔트 제조 등을 위해 사용되는 부산물로서, 다수의 방향족 고리를 갖는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 흔합물 형태를 떨 수 있다. 그런데, 본 발명자들의 실험 결과, 이러한 피치 등에 대해 산화제를 사용한산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들의 적어도 일부가 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어지는 것으로 확인되었다. 이와 함께, 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물이 얻어지는 것으로 확인되었다.
구체적으로, 이러한 방법으로 얻어지는 폴리 방향족 탄화수소 산화물들의 흔'합물은 MALD卜 TOF MS로 분석하였을 때, 분자량이 약 300 내지 1000, 혹은 약 300 내지 700 인 폴리 방향족 탄화수소 산화물들을 약 60 중량0 /。 이상, 혹은 약 65 중량0 /0 이상, 혹은 약 70 내지 95 중량0 /0로 포함함이 확인되었다. 이러한 흔합물 중에 포함되는 폴리 방향족 탄화수소 산화물들의 구체적인 종류, 구조 및 분포 등은 그 원료로 되는 피치의 종류나 그 유래, 흑은 산화제의 종류 등에 따라 달라질 수 있다. 그러나, 적어도, 상기 분산제에 포함되는 폴리 방향족 탄화수소 산화물들의 흔합물은 5 내지 30 개, 혹은 7 내지 20 개의 벤젠 고리가 각각 포함된 폴리 방향족 탄화수소에 산소 함유 작용기가 하나 이상 도입된 구조를 갖는 폴리 방향족 탄화수소 산화물을 복수 종 포함하며, 이러한 흔합물 중의 폴리 방향족 탄화수소 산화물은 상술한 분자량 분포, 즉, 분자량 약 300 내지 1000, 혹은 약 300 내지 700 의 산화물이 전체 흔합물의 약 60 중량 % 이상으로 되는 분자량 분포를 갖게 된다.
이때, 상기 산소 함유 작용기의 종류는 피치 등의 산화 공정에서 사용되는 산화제의 종류 등에 따라 달라질 수 있지만, 예를 들어, 히드록시기, 에폭시기, 카르복시기, 니트로기 및 술폰산으로 이루어진 군에서 선택된 1 종 이상으로 될 수 있고, 상기 폴리 방향족 탄화수소 산화물들의 흔합물 내에는 위에서 언급한 작용기들 중에 선택된 복수 종의 다양한 작용기들을 갖는 여러 가지 폴리 방향족 탄화수소 산화물들이 포함 및 흔합돨수 있다.
상술한 구조적 특성 및 분자량 분포 등을 충족하는 폴리 방향족 탄화수소 산화물들과, 이들의 흔합물은 방향족 고리들이 모인 소수성 π - 도메인과, 상기 방향족 고리 등에 결합된 산소 함유 작용기들에 의한 친수성 영역을 동시에 가질 수 있다. 이들 중 소수성 π - 도메인은 혹연 또는 이의 유도체나, 그래핀 (플레이크) 등 탄소 -탄소 결합들이 형성되어 있는 탄소계 소재의 표면과 π - π 상호 작용을 할 수 있으며, 친수성 영역은 각각의 단일한 탄소계 소재 (예를 들어, 각각의 그래핀 플레이크나, 혹연 또는 이의 유도체의 각 입자) 간의 반발력이 발현되도록 할 수 있다. 그 결과, 상기 폴리 방향족 탄화수소 산화물들의 흔합물을 포함하는 상술한 분산제는 수용매나 극성 유기 용매 등 액상 매질 내에서 탄소계 소재의 분자들 사이에 존재하여 이러한 탄소계 소재를 균일하게 분산시킬 수 있다. 따라서, 상기 분산제는 상대적으로 작은 양이 사용되더라도 상기 탄소계 소재를 보다 고농도로 균일하게 분산시키는 우수한 분산력을 나타낼 수 있음이 확인되었다.
더구나, 상술한 분산제는 산소 함유 작용기 등에 의한 친수성 영역의 존재로 인해 그 자체로 수용성을 나타낼 수 있으므로, 친환경적인 수용매 내에서도 상기 탄소계 소재를 균일하게 분산시킬 수 있다. 특히, 상기 분산제는 친환경적인 수용매뿐 아니라, 다양한 극성 유기 용매 내에서, 상기 탄소계 소재를 고농도로 균일하게 분산시킬 수 있는 우수한 분산력을 나타냄이 확인되었다. 특히, 상술한 바와 같은 우수한 분산력은 상기 폴리 방향족 탄화수소 산화물의 화합물 자체를 분리된 1 ~2 종으로 사용하는 것만으로는 달성하기 어렵고, 상술한 분자량 분포 (분자량 범위 및 함량 범위)를 충족하는 복수 종의 폴리 방향족 탄화수소 산화물들의 흔합물을 사용하여야 달성 가능한 것으로 확인되었다. 이러한 우수한 분산력은 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물 형태의 상술한 분산제가 다종의 성분을 포함하며 넓은 분자량 분포를 갖기 때문으로서, 이러한 우수한 분산력으로 인해 분산제의 매우 소량 사용하더라도, 상기 1~2종의 분리된 화합물을 사용하는 것과 동등한 분산 효과를 달성할 수 밌다. 이는 분산 대상 성분으로부터 향후 제거될 일종의 불순물로 작용하는 분산제의 잔류량을 크게 줄일 수 있는 효과로도 귀결될 수 있다.
또한, 이러한 분산제의 우수한 분산력으로 인해, 일 구현예의 제조 방법에서 원료인 흑연 또는 이의 유도체를 보다 균일하게 고농도로 분산시킬 수 있게 된다. 따라서, 이러한 최적화된 분산 상태로 원료를 박리함으로서, 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크의 용이한 제조를 가능케 하는 주된 요인 중 하나가 될 수 있다. 더 나아가, 상기 분산제는 최종 형성된 그래핀 플레이크 표면에 물리적으로 부착된 상태로 유지될 수 있으므로, 일 구현예의 방법으로 제조된 그래핀 플레이크가 그 자체로 다양한 극성 용매에 우수한 분산성 등을 나타내게 할 수 있다.
한편, 상술한 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물들을 원소 분석하였을 때, 전체 흔합물에 포함된 산소 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0, 혹은 약 15 내지 45 중량0 /0로 될 수 있다. 이러한 산소 함량은 상기 폴리 방향족 탄화수소 산화물에서 산화 공정에 의해 산소 함유 작용기가 도입된 정도를 반영하는 것으로서, 이러한 산소 함량의 충족에 따라 상술한 친수성 영역이 적절한 정도로 포함될 수 있다. 그 결과, 상술한 일 구현예의 방법에서 이러한 분산제를 사용해 원료인 혹연 또는 이의 유도체를 보다 균일하게 분산시키고 이로부터 얇은 두께를 갖는 그래핀 플레이크를 더욱 효과적으로 얻을 수 있고, 최종 제조된 그래핀 플레이크의 분산성을 보다 향상시킬 수 있다.
상기 산소 함량은 상술한 혼합물에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하여 산출할 수 있다. 즉, 상기 흔합물 시료 (예를 들어, 약 1 mg)를, 예를 들어, 얇은 호일 위에서 약 900 °C 내외의 고은으로 가열하면 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 1800 °C까지 상승할 수 있고, 이러한 고온에 의해 상기 흔합물 시료로부터 기체가 발생하여 이를 포집 및 원소 함량을 측정 및 분석할 수 있다. 이러한 원소 분석 결과, 상기 복수 종의 폴리 방향족 탄화수소 산화물에 포함된 탄소, 산소, 수소 및 질소의 총 원소 함량이 측정 및 분석될 수 있고, 이러한 총 원소 함량에 대한 산소 함량을 구할 수 있다.
한편, 상술한 분산제는 산화제의 존재 하에, 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물을 산화하는 단계를 포함하는 방법에 의해 제조될 수 있다.
이미 상술한 바와 같이, 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치는 폴리 방향족 탄화수소를 복수 종 포함하고, 점성을 띠거나 분말 형태를 갖는 흔합물 상태로 될 수 있다. 물론, 피치의 원료나 유래 등에 따라 상기 폴리 방향족 탄화수소의 구체적 종류, 구조, 조성비 또는 분자량 분포 등이 달라질 수 있지만, 상기 피치는, 예를 들어, 5 내지 50 개의 방향족 고리, 예를 들어, 벤젠 고리가 구조 중에 포함된 폴리 방향족 탄화수소를 복수 종 포함할 수 있으며, 대체로 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함할 수 있다. 예를 들어, 상기 분산제의 제조 방법에서 출발 물질로 사용되는 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물 (예를 들어, 피치)은 이러한 분자량 범위의 폴리 방향족 탄화수소들을 약 80 중량0 /。 이상, 혹은 약 90 중량0 /。 이상의 함량으로 포함할 수 있다.
그런데, 이러한 피치 등 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화제를 사용한 산화 공정을 거치.게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 증에 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들이 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어질 수 있다. 예를 들어, 약 1000, 혹은 약 700 을 초과하는 분자량을 갖는 폴리 방향족 탄화수소들이 작은 분자량을 갖는 것으로 분해될 수 있다. 또한 이와 함께 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서 , 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물, 다시 말해서 일 구현예의 방법에서 사용되는 분산제가 매우 간단하게 제조될 수 있다. 이러한 분산제의 제조 방법에서, 산화제는 그 종류가 특히 제한되지 않고 방향족 탄화수소에 산소 함유 작용기를 도입하는 산화 반응을 일으킬 수 있는 것이라면 별다른 제한 없이 모두 사용될 수 있다. 이러한 산화제의 구체적인 예로는, 질산 (HN03), 황산 (H2SO4), 과산화수소 (H2O2), 암모늄 세륨 (IV) 황산염 (Ammonium cerium(IV) sulfate; (NH4)4Ce(S04)4) 또는 암모늄 세륨 (IV) 질산염 (Ammonium cerium(IV) nitrate; (NH4)2Ce(N03)6) 등을 들 수 있고, 이들 증에 선택된 2종 이상의 흔합물을 사용할 수도 있음은 물론이다.
그리고, 이러한 산화 단계는 수용매 내에서, 약 10 내지 1 10 °C의 반웅 온도 하에 약 0.5 내지 20 시간 동안 진행될 수 있다. 구체적인 예에서, 황산 및 /또는 질산 등의 용액상 산화제의 존재 하에, 상기 폴리 방향족 탄화수소들을 포함한 흔합물을 일정량 첨가하고, 상온, 예를 들어, 약 20 °C 흑은 80 °C에서 약 1 내지 12 시간 동안 상기 산화 단계를 진행할 수 있다. 이러한 산화 단계의 반웅 온도 또는 시간 등을 조절함에 따라, 상술한 분산제의 특성, 예를 들어, 폴리 방향족 탄화수소들이 산화되는 정도 등을 적절히 조절하여 원하는 특성을 갖는 분산제를 제조할 수 있다.
또한, 이미.상술한 바와 같이, 상기 제조 방법의 출발 물질로 되는 분자량 약 200 내지 1500의 폴리 방향족 탄화수소들을 포함한 흔합물은 화석 연료 또는 이의 산물로부터 얻어진 피치 (pitch)에서 유래할 수 있으며, 이러한 원료 등의 종류에 따라, 상기 폴리 방향족 탄화수소들의 종류, 구조 또는 분자량 분포 등은 서로 달라질 수 있다. 그럼에도 불구하고, 상기 피치 등에서 유래한 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화 공정을 진행함에 따라, 탄소계 소재에 대해 우수한 분산력을 나타내는 상술한 분산제가 간단히 제조될 수 있다.
한편, 상술한 제조 방법은 산화 단계 후에, 그 결과물을 정제하여 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물을 얻는 단계를 더 포함할 수 있고, 이러한 정제 단계는 산화 단계의 결과물을 원심분리하는 단계를 포함하여 진행될 수 있다. 이러한 정제 단계의 진행으로, 이미 상술한 분자량 분포 등을 층족하는 폴리 방향족 탄화수소 산화물들의 혼합물을 보다 순도 높고 적절하게 얻을 수 있으며 , 이를 포함하는 분산제를 사용해 일 구현예의 방법으로 그래핀 플레이크를 보다 효과적으로 제조할 수 있다.
한편, 일 구현예에 따른 그래핀의 제조 방법에서는, 먼저, 상술한 분산제와 흑연 또는 이의 유도체를 포함한 탄소계 소재를 포함한 분산액을 얻을 수 있다. 이때, 상기 원료로 사용 가능한 혹연 또는 이의 유도체의 종류는 특히 제한되지 않으며, 탄소 원자층이 적층된 형태의 입체 구조를 가짐에 따라, 고속, 고압, 초음파 조사 또는 전단력 등의 임의의 물리적 힘에 의해 박리되어 하나 이상의 탄소 원자층을 갖는 그래핀 등으로 제조될 수 있는 임의의 탄소계 소재를 사용할 수 있다.
따라서, 이러한 혹연 또는 이의 유도체의 범주에는, 통상 그라파이트로 지칭되는 일반적인 혹연뿐만 아니라, 이로부터 제조될 수 있는 임의의 유도체나, 이와 유사하게 탄소 원자층이 적층된 형태의 입체 구조를 갖는 임의의 유사체를 모두 포괄하여 지칭할 수 있다. 이의 보다 구체적인 예로는, 팽창 혹연 (expanded graphite), 부정형 혹연, 판상형 흑연, 인조 혹연, 탄소 층간에 인터칼레이션 화합물이 삽입되어 있는 개질 혹연 또는 탄소나노섬유 등을 들 수 있고, 이들 중에 선택된 2 종 이상의 흔합물을 상기 원료인 흑연 또는 이의 유도체로 사용할 수도 있다. 이중 상기 탄소나노섬유의 경우 이를 이루는 탄소 원자층이 섬유의 축 방향에 대하여 수직 배열된 것을 보다 적절히 사용할 수 있고, 이로부터 그래핀 플레이크를 보다 바람직하게 제조할 수 있다.
또한, 상기 분산액은 수용매 또는 극성 유기 용매 내에, 혹연 또는 이의 유도체를 포함한 탄소계 소재 및 이미 상술한 특정한 분산제가 용해 또는 분산된 분산액으로 될 수 있다. 이러한 분산액에서는 특정한 분산제의 작용으로.인해, 혹연 또는 이의 유도체를 포함한 탄소계 소재가 매우 균일하게 분산된 상태로 존재할 수 있으므로, 이러한 최'적화된 분산 상태에서 이후의 박리 공정을 진행하여 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크가 효과적으로 형성될 수 있다. 그리고, 상기 원료로 사용되는 분산액에서 상기 수용매 또는 극성 유기 용매로는, 물, NMP, 아세톤, DMF, DMSO, 에탄올, 이소프로필알코을, 메탄을, 부탄올 , 2-에톡시 에탄올 , 2-부특시 에탄을 , 2-메특시 프로판올, THF, 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N-비닐피롤리돈, 메틸에틸케톤, 부탄온, 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1 종 이상과 같은 임의의 수용매 또는 극성 유기 용매를 사용할 수 있다.
한편, 일 구현예의 그래핀 제조 방법에서, 상기 분산액을 형성 및 제공한 후에는, 이에 대해 물리적 힘을 인가하여 상기 혹연 또는 이의 유도체를 박리할 수 있으며 이를 통해 그래핀 플레이크를 제조할 수 있다. 이때, 물리적 힘을 인가하는 박리 공정은 기존부터 그래핀의 제조를 위해 적용 가능한 것을 알려진 임의의 방법을 모두 적용하여 진행할 수 있고, 이외에도 고압 균질기 (High Pressure Homogenizer)를 사용하는 방법 등 다양한 방법을 적용하여 진행할 수 있다.
이러한 방법의 구체적인 예로는, 고속 균질기 (High Speed Homogenizer), 고압 균질기 (High Pressure Homogenizer), 볼밀, 비드밀 또는 초음파 조사기를 사용한 방법 등을 들 수 있다. 다만, 초음파 조사를 이용한 방법은 대면적을 갖는 그래핀을 얻기가 어렵거나, 박리 과정에서 그래핀 상에 많은 결함이 발생하거나, 박리 수율이 충분치 못하게 될 수 있다. 또, 볼밀이나 비드밀을 사용하는 방법 역시 층분히 얇은 두께를 갖는 그래핀올 얻기 어려울 수 있으며, 박리 수율 역시 층분치 못할 수 있다.
따라서, 위 방법 중에서도, 고속 균질기 또는 고압 균질기를 사용한 방법을 보다 적합하게 적용할 수 있으며, 가장 적합하게는 고압 균질기를 사용한 방법을 적용할 수 있다. 도 1 에^ 일 구현예의 그래핀의 제조 방법에서 사용 가능한 고압 균질기의 원리를 나타내는 개략적인 모식도가 도시되어 있다.
도 1 을 참고하면 고압 균질기는 원료의 유입부와, 그래핀 플레이크 등 박리 결과물의 유출부와 상기 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 구조를 가질 수 있다. 이러한 고압 균질기의 유입부를 통해, 예를 들어, 약 100 내지 3000 bar의 고압을 인가하면서 흑연 또는 이의 유도체를 포함하는 분산액 상태의 원료를 유입시키면, 이러한 원료가 미크론 ( ) 스케일, 예를 들어, 약 10 내지 800 μ m 직경을 갖는 미세 유로를 통과하면서, 이러한 원료에 높은 전단력 (shear force)이 인가될 수 있다. 이러한. 전단력의 작용으로 상기 혹연 또는 이의 유도체가 매우 효율적으로 박뫼될 수 있고, 그 결과 상술한 분산제와의 상승 작용으로 매우 얇은 두께 및 대면적을 갖는 그래핀 플레이크를 제조할 수 있게 됨이 확인되었다.
따라서, 일 구현예의 방법에서, 상기 고압 균질기를 이용한 방법을 적용하여, 다른 방법에 비해서도 더욱 효과적으로 탄소 원자층에 대응하는 얇은 두께 및 더욱 큰 면적을 갖는 그래핀 플레이크를 효과적이고 용이하게 제조할 수 있다.
한편, 상술한 일 구현예의 그래핀의 제조 방법은, 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함할 수도 있으며, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 200 °C의 온도 하에 진공 건조하여 진행돨수 있다.
상술한 일 구현예의 방법에 따르면, 탄소 원자층 두께에 대웅하는 매우 얇은 두께 및 매우 큰 면적 (직경)을 갖는 그래핀 플레이크가 높은 수율로 용이하게 제.조될 수 있다.
예를 들어, 이러한 그래핀 플레이크는 약 1.5 내지 50nm, 혹은 약 5 내지 30nm의 두께를 가질 수 있으며, 약 0.1 내지 10//m, 혹은 약 0.1 내지 5//m의 큰 직경을 가질 수 있다. 또, 상기 그래핀 플레이크는 두께 대비 면적 (직경)이 매우 크게되어, 약 50 내지 6000, 혹은 약 50 내지 1000의 직경 /두께비를 가질 수 있다. 이때, 상기 그래핀 플레이크의 "직경 "이라 함은 "그래핀 플레이크의 각 입자를 가장 넓은 면적을 갖는 평면상에서 보았을 때, 각 입자의 평면상의 임의의 두 점을 연결하는 직선 거리 중 최장 거리"로 정의될 수 있다.
이와 같이, 일 구현예의 방법으로 보다 얇은 두께 및 큰 면적을 갖는 그래핀 플레이크가 제조됨에 따라, 이러한 그래핀 플레이크는 그래핀의 우수한 전기 전도성, 열 전도성 및 안정성을 보다 극대화하여 발현할 수 있다.
또, 상기 그래핀 플레이크는 이미 상술한 분산제가 표면에 물리적 부착된 상태로 형성될 수 있다. 이러한 분산제의 물리적 부착으로 인해, 상기 그래핀 플레이크는 별도의 처리나 공정 진행의 필요성 없이도, 바로 다양한 극성 용매에 대해 매우 우수한 분산성을 나타낼 수 있다. 즉, 기존의 그래핀 플레이크는 통상 적어도 일부의 용매에 대한 분산성이 매우 떨어져 이의 활용을 위해서는 분산성 향상을 위한 별도의 처리를 진행하거나, 별도의 분산제 등의 사용이 필요하였던 것에 비해, 일 구현예의 방법으로 제조된 그래핀 플레이크는 이러한 별도의 처리 등의 필요 없이도 바로 다양한 극성 용매에 대한 우수한 분산성을 나타낼 수 있다.
따라서, 일 구현예의 방법으로 제조된 그래핀 플레이크를 바로 (연속적으로) 다양한 극성 용매에 재분산시켜 전도성 페이스트 조성물, 전도성 잉크 조성물, 방¾ 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등의 다양한 용도로 활용할 수 있게 된다. .
이에 발명의 다른 구현예에 따르면, 상술한 그래괸 플레이크를 포함하는 그래핀의 분산 조성물이 제공된다. 이러한 분산 조성물은 이미 상술한 특정한 분산제, 즉, 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 약
300 내지 1000의 폴리 방향족 탄화수소 산화물을 약 60 중량0 /。 이상의 함량으로 포함한 흔합물을. 포함하는 분산제가 표면에 물리적으로 부착되어' 있는 그래핀 플레이크; 및 상기 그래핀 플레이크를 용해 또는 분산시키는 극성 용매를 포함할 수 있다.
이미 상술한 바와 같이 ; 이러한 분산 조성물은 상술한 제조 방법을 통해 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크를 형성한 후, 이의 분산성을 향상시키기 위한 별도의 처리 없이, 이를 극성 용매에 바로 (또는 연속적으로) 용해 또는 분산시켜 제조될 수 있다.
또, 이러한 분산 조성물에서, 상기 그래핀 플레이크를 분산시키기 위한 극성 용매로는 물 등의 수용매나, 임의의 극성 용매를 별다른 제한 없이 적용할 수 있다. 이러한 극성 용매의 구체적인 예로는, 물, NMP, 아세톤, 이 VIF, DMSO, 에탄올, 이소프로필알코올, 메탄을, 부탄을, 2-에특시 에탄올, 2-부록시 에탄올, 2- 메특시 프로판올, THF, 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N- 비닐피를리돈, 메틸에틸케톤, 부탄온, 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 Ί종 이상을 사용할 수 있다.
그리고, 상기 분산 조성물에서, 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크는 극성 용매의 100 중량부에 대해 약 50 중량부 이하로 포함될 수 있으며, 상기 그래핀 플레이크가 최대 약 50 중량부의 고농도로 포함되더라도, 극성 용매에 균일하게 분산된 상태를 유지할 수 있다. 이와 같이, 상기 분산 조성물에서는, 그래핀 플레이크에 물리적으로 부착된 특정 분산제의 작용으로, 상기 그래핀 플레이크가 그 자체로 다양한 극성 용매에 대해 우수한 분산성을 나타낼 수 있다. 따라서, 상기 분산 조성물은 실제 적용되는 용도 등을 고려해 다양한 극성 용매에 상기 그래핀 플레이크를 고농도로 균일하게 분산시킨 상태를 유지할 수 있다. 그러므로, 이러한 분산 조성물은 그래핀의 우수한 특성을 극대화하여 발현시킬 수 있고, 그래핀의 적용이 필요한 다양한 용도로 적용될 수 있다.
보다 구체적으로, 이러한 그래핀의 분산 조성물은 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는. 전지용 도전재로 사용될 수 있으며, 이외에도 분산 상태의 그래핀의 적용이 가능하거나 필요한 것으로 알려진 임의의 용도로 적용될 수 있다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 블과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. 제조예 1 : 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch)에 대해 다음과 같은 산화 공정 및 정제 공정을 진행하여 실시예 1의 분산제를 제조하였다.
먼저, 황산 /질산의 흔합 용액 (부피비 3:1 )의 75 ml에 피치 0.5 내지 1 .5 g을 첨가하고, 70 °C에서 약 3.5 시간 동안 산화 반웅을 진행하였다.
이후, 상기 산화 반응이 진행된 피치 반옹 용액을 상온으로 냉각시킨 후, 5 배 가량 증류수로 희석시킨 다음, 약 3500 rpm에서 30 분간 원심분리하였다. 이어서, 상등액을 제거하고, 동일량의 증류수를 넣고 재분산한 후에, 동일 조건에서 다시 원심분리하여 최종적으로 침전물을 회수하고 건조하였다. 이를 통해, 실시예 1의 분산제를 제조하였다.
먼저, 이러한 분산제의 제조 과정 중 원료로 사용된 피치의 분자량 분포를 MALD卜 TOF mass spectrum으로 분석하여 도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)에 도시하였고, 제조예 1 의 분산제의 분자량 분포를 마찬가지로 분석하여 도 3a 및 도 3b (분자량 400 내지 500 영역의 확대도)에 도시하였다. 이러한 분석은 MALDI-TOF mass spectrum 장비 (Ultraflex II, Bruker)를 사용하여, 상기 피치 또는 분산제를 matrix에 넣고 흔합한 후에 건조하여 진행하였다.
상기 도 2a 및 도 2b (확대도)를 참고하면, pitch의 경우 분자량 200 내지 1500 의 분자량을 갖는 폴리 방향족 탄화수소들을 포함하는 것으로 확인되었고, 특히 도 2b의 확대도에서 분자량 14Da 간격으로 큰 피크들이 검출되는 것으로부터 서로 다른 개수의 방향족 고리 (벤젠 고리)들을 갖는 복수 종의 폴리 방향족 탄화수소들이 aliphatic hydrocarbon에 의하여 연결되어 있음이 확인되었다. 이에 비해, 도 3a 및 도 3b (확대도)를 참고하면, 제조예 1 의 분산제는 폴리 방향족 탄화수소들에 각각 44Da과 16D의 간격으로 존재하는 큰 피크들이 관찰되었는데 이는 이러한 방향족 탄화수소들에 -CC DH, -OH 또는 -S03H 등 산소 함유 작용기들이 도입된 폴리 방향족 탄화수소 산화물들의 흔합물 형태로 존재함을 증명하는 것으로, 약 300 내지 1000, 흑은 약 300 내지 700 의 분자량을 갖는 산화물들이 60 중량 % 이상으로 포함됨이 확인되었다.
또한, 상기 원료로 사용된 pitch (상단) 및 제조예 1 의 분산제 (하단)를 각각 13C CPMAS NMR (Varian 400MHz Solid-State NMR)로 분석하여, 그 분석 결과를 도 4 에 비교하여 나타내었다. 도 4 를 참고하면, pitch에서는 방향족 탄화수소의 탄소 유래 피크와, 일부 지방족 탄화수소의 탄소 유래 피크가 확인되었으나, 산소 함유 작용기의 존재는 확인되지 않았다. 이에 비해, 제조예 1 의 분산제에 대한 NMR 분석 결과, 산소 함유 작용기의 피크가 확인되었다. 이러한 산소 함유 작용기의 종류는 에폭시기, 히드록시기 또는 카르복시기 등인 것으로 확인되었다.
부가하여, 상기 원료로 사용된 pitch 및 제조예 1 의 분산제를 각각 분말 상태로서 FT-IR (Agilent 660-IR)로 분석하여 그 분석 결과를 도 5 에 비교하여 나타내었다. 이러한 도 5 를 통해서도, 제조예 1 의 분산제에서 산소 함유 작용기의 피크가 생성됨을 확인하였다. 제조예 2 내지 4: 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch; 단, 제조예 1 과는 다른 샘플의 피치 사용)를 사용하고, 산화 반응 시간을 각각 1 시간 (제조예 2), 3.5 시간 (제조예 3) 및 7(제조예 4) 시간으로 달리한 것을 제외하고는 제조예 1 과 동일한 방법으로 진행하여 제조예 2 내지 4의 분산제를 각각 제조하였다.
이러한 분산제를 제조예 1 과 동일한 방법으로 MALDI-TOF mass spectrum으로 분석하여, 도 6 에 비교하여 함께 나타내었다. 도 6 을 참고하면, 산화 시간의 증가에 따라, 분산제 중 분자량 약 1000, 흑은 약 700 초과의 성분 (폴리 방향족 탄화수소 산화물)의 함량이 줄어들어, 분자량 약 300 내지 1000, 흑은 약 300 내지 700 의 폴리 방향족 탄화수소 산화물을 보다 높은 함량으로 포함하는 흔합물 형태의 분산제가 얻어짐이 확인되었다. 시험예 1 : 분산제의 산소 함량 측정
제조예 3 및 4 에서 얻어진 분산제 시료약 1 mg을 얇은 호일 위에서 약 900 °C 내외의 고온으로 가열하였다. 이때, 일이 순간적으로 녹으면서 그 온도가 약 1500 내지 180C C까지 상승하였으며, 이러한 고온에 의해 상기 시료로부터 기체가 발생하였다. 이러한 기체를 포집 및 원소 분석하여 탄소, 산소, 수소 및 질소의 각 원소 함량을 측정 및 분석하였다. 이러한 분석 결과는 각 분산제 제조를 위해 사용된 피치에 대한 분석 결과와 비교하여 하기 표 1에 나타내었다.
[표 1]
Figure imgf000021_0001
상기 표 1 을 참고하면, 제조예 3 및 4 의 분산제 중에는 각 원소의 함량을 분석하였을 때 산소의 함량이 전체 원소 .함량의 약 12 내지 50 중량0 /。, 혹은 약 30 내지 40 중량 0/。로 됨이 확인되었다. 비교 제조예 1 : 분산제
상용화된 하기 화학식 1의 분산제 (PNS)를 비교 제조예 1로 하였다. [
Figure imgf000022_0001
Polyriaphthalene sulfonate (P S) 비교 제조예 2: 분산제
상용화된 분산제인 Sodium dodecyl bezene sulfonate(SDBS)를 비교 제조예 2로 하였다. 실시예 1 : 그래핀 플레이크의 제조
제조예 1 의 분산제 15mg이 분산되어 있는 수분산액 100ml에 pristine graphite 0.5g을 첨가하여 분산액올 형성하였다. Tip-type 초음파 조사기를 사용하고, 320W 파워 및 30 분 간격으로 2 회에 걸쳐 연속적으로 상기 분산액에 초음파를 조사하여, 상기 그라파이트를 박리하고 실시예 1 의 그래핀 플레이크를 제조하였다.
도 7 . 의 (a)에는 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진을 도시하였고, (b)에는 실시예 1 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 7 의 (b)를 참고하면, 그래핀 풀레이크가 비교적 양호하게 형성되었음이 확인되었다. 실시예 2: 그래핀 플레이크의 제조
실시예 1 과 동일하게 pristine graphite의 분산액을 형성하였다. 이러한 분산액을 12000rpm으로 회전하고 있는 고속 균질기에 1 시간 동안 통과시켰다. 이를 통해, 상기 그라파이트를 박리하고 실시예 2 의 그래핀 플레이크를 제조하였다.
도 7 ' 의 (a)에는 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진을 도시하였고, (c)에는 실시예 2 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 7 의 (c)를 참고하면, 그래핀 플레이크가 비교적 양호하게 형성되었음이 확인되었다. 실시예 3: 그래핀 플레이크의 제조
실시예 1 과 동일하게 pristine graphite의 분산액을 형성하였다. 0.3 mm
Zr02 비드를 가지며, 습식으로 10 회 비드가 충전된 비드밀의 챔버를 적용하고, 상기 분산액을 비드밀의 챔버에 통과시켜 밀링 및 분쇄를 수행하였다. 이를 통해, 상기 그라파이트를 박리하고 실시예 3의 그래핀 플레이크를 제조하였다.
도 7 의 (a)에는 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진을 도시하였고, (d)에는 실시예 3 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 7 의 (d)를 참고하면, 50 nm 내외의 두께를 갖는 그래핀 플레이크가 비교적 양호하게 형성되었음이 확인되었다. 샬시예 4: 그래핀 플레이크의 제조
실시예 1 과 동일하게 pristine graphite의 분산액을 형성하였다. 이러한 분산액을 약 1600 bar의 고압으로 고압 균질기의 유입부에 유입시켜 미세 유로를 통과시켰으며, 이러한 과정을 10 회 반복하였다. 이를 통해, 상기 그라파이트를 박리하고 실시예 4의 그래핀 플레이크를 제조하였다.
도 7 의 (a)에는 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진을 도시하였고, (e) 및 (f) ((e)의 확대도)에는 실시예 4 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도
7의 (e) 및 (f)를 참고하면, 실시예 1 내지 3에 비해서도 얇은 두께 및 큰 면적을 가지며, 결함이 최소화된 그래핀 플레이크가 매우 양호하게 형성되었음이 확인되었다.
이러한 실시예 4 의 그래핀 플레이크를 TEM 분석하여 그 이미지를 도
8의 (a) 및 (b) ((a)의 확대도 )에 도시하였다. 상기 도 8의 (a)를 참고하면, 실시예 4에서 제조된 그래핀 플레이크는 약 0.5 내지 5 의 직경을 갖는 매우 대면적의 것으로 확인되었다. 또한, 상기 도 8의 (b) 를 참고하면, 상기 실시예 4의 그래핀 플레이크는 TEM 분석을 위해 배치한 하부의 탄소 그리드 (도면의 적색 화살표)가 상기 그래핀 플레이크를 통해 관찰될 정도로 매우 얇은 두께를 가짐이 확인되었다.
부가하여, 실시예 4 의 그래핀 플레이크를 AFM 분석하여 그 결과를 도 8 의 (c) 및 (d)에 각각 도시하였다. 이를 참고하면, 실시예 4 의 그래핀 플레이크는 약 6 내지 17nm의 매우 얇은 두께를 갖는 것으로 확인되었다. 비교예 1 : 그래핀 플레이크의 제조
비교 제조예 1 의 분산제 1 .0g, 물 50mL 및 pristine graphite 2.5g을 흔합하여 분산액을 형성하였다. 이러한 분산액을 약 1600 bar의 고압으로 고압 균질기의 유입부에 유입시켜 미세 유로를 통과시켰으며, 이러한 과정을 10 회 반복하였다. 이를 통해, 상기 그라파이트를 박리하고 비교예 1 의 그래핀 플레이크를 제조하였다.
도 9 에는 비교예 1 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 9를참고하면, 비교 제조예 1 의 분산제를 사용하는 경우, 제조된 그래핀 플레이크가 비교적 두¾게 형성되는 등 그라파이트의 박리가 잘 이루어지지 않았음이 확인되었다. 비교예 2: 그래핀 플레이크의 제조
비교 제조예 2 의 분산제 1 .0g, 물 50mL 및 pristine graphite 2.5g을 흔합하여 분산액을 형성하였다. 이러한 분산액을 약 1600 bar의 고압으로 고압 균질기의 유입부에 유입시켜 미세 유로를 통과시켰으며, 이러한 과정을 10 회 반복하였다. 이를 통해, 상기 그라파이트를 박리하고 비교예 2 의 그래핀 플레이크를 제조하였다.
도 10 에는 비교예 2 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 10 을 참고하면, 비교 제조예 2 의 분산제를 사용하는 경우에도, 제조된 그래핀 플레이크가 비교적 두¾게 형성되는 등 그라파이트의 박리가 잘 이루어지지 않았음이 확인되었다. 시험예 2: 그래핀 플레이크의.극성 용매에 대한 재분산성 평가
먼저, 실시예 4에서 그래핀 플레이크의 분산액을 제조한 후, 8000rpm에서 30 분 동안 원심분리하여 침전물인 그래핀 플레이크를 회수하였다. 이후, 55 °C의 오븐에서 3일간 진공 건조하여, 그래핀 플레이크를 건조 상태로 얻었다.
이러한 그래핀 플레이크의 분말 20mg을 도 1 1 에 도시된 다양한 용매 10ml에 가하고, bath type sonicator로 1 시간 동안 재분산시켰다. 도 1 1 에는 이러한 재분산성을 평가한 결과를 나타낸 육안 관찰 사진이 도시되어 있다.
추가로, 비교예 1 에서 제조된 그래핀 플레이크의 분산액에 대해서도, 동일하게 처리하여 건조 상태의 그래핀 플레이크를 얻은 후, 동일한 방법으로 극성 용매 (물)에 대해 재분산성을 평가하였다, 이렇게 재분산성을 평가한 결과를 나타낸 육안 관찰사진을 도 12에 상기 실시예 4와 비교하여 나타내었다.
도 1 1 을 참고하면, 실시예에서 얻어진 그래핀 플레이크는 다양한 극성 용매에 고농도로 매우 균일하게 분산될 수 있는 것으로 확인되었다. 이는 실시예에서 사용된 특정 분산제의 작용으로 예측된다. 특히, 기존의 방법으로 제조된 그래핀 플레이크가 극성 용매 내에서 다시 뭉쳐 별도의 처리 없이는 분산되기 어려운 것과는 달리, 실시예의 그래핀 플레이크는 그 자체로 다양한 극성 용매에 균일하게 분산될 수 있으므로, 보다 다양한 용도로 용이하게 적용될 수 있는 것으로 확인되었다.
이에 비해, 도 12 를 참고하면, 비교 제조예 1 (PNS)의 분산제를 사용한 경우, Graphene flake 가 제대로 분산되지 않고, vial의 벽에 붙어 뭉친 상태로 단순히 물에 떠있는 상태로 존재함이 확인되었다.
이는 단순히 1 ~2 종의 분리된 화합물 형태를 갖는 비교 제조예 1 의 분산제와는 달리, 제조예 1 의 분산제가 여러 종의 폴리 방향족 탄화수소 산화물의 흔합물 형태로서, 이러한 폴리 방향족 탄화수소 산화물의 분자량 범위 및 함량 범위가 최적화되어, 탄소계 소재와 보다 효과적으로 상호작용하고, 이를 통해 탄소계 소재를 더욱 잘 분산 및 박리시킬 수 있기 때문으로 보인다.
특히, 실시예 1 및 4 와, 비교예 1 을 대비할 때, 실시예 1 및 4 의 분산제는 최초 사용된 pristine graphite 2.5g의 동일 중량을 기준으로 환산하더라도, 비교예 1 대비 작은 중량으로 사용되었다. 그럼에도 불구하고, 실시예에서 Graphene flake에 대해 비교예 대비 우수한 박리 특성 및 분산성이 발현되고 있는 바, 이는 실시예 및 제조예에 따른 분산제의 매우 우수한 분산력을 뒷받침하며, 분산제의 사용 필요 함량이 크게 줄어들게 되어, 향후 Graphene flake로부터 제거될 필요가 있는 잔류 분산제의 양 역시 크게 줄어들게 됨을 의미한다.
시험예 3: 그래핀 함유 필름의 제조 및 전기적 특성 평가 (면 저항 측정) 먼저, 실시예 4 에서 얻은 그래핀 플레이크를 각각 0.1 , 0.5, 1 .0, 2.0, 3.0mg/ml의 다양한 농도로서 물에 재분산시켜 수분산액을 형성하였다. 이러한 수분산액 20ml를 지름이 47mm이고 기공 크기가 200nm 인 다공성 AAO 멤브레인을 사용하여 진공 여과함으로서 그래핀 함유 필름을 제조하였다. 이러한 그래핀 함유 필름들에 대해 4-포인트 프로브 장치를 사용하여 서로 다른 영역에서 면 저항을 측정하였으며, 그 측정 결과를 도 13에 나타내었다.
도 13 을 참고하면, 수분산액 중 그래핀 플레이크의 농도가 증가할수록 필름 두께가 증가하여 면 저항은 감소하는 경향을 나타내며, 전체적으로 그래핀 함유 필름이 낮은 면 저항 및 우수한 전기 전도도를 갖는 것으로 확인되었다. 이로부터 실시예의 그래핀 플레이크가 얇은 두께를 가지더라도 어느정도 우수한 전기적 특성을 나타낸다는 점과, 그래핀 플레이크 표면에 물리적으로 부착된 분산제가 상기 그래핀 플레이크의 전기 전도도에 별다른 악영향을 미치지 않는다는 점이 확인된다.
한편, 실시예 4 의 건조 그래핀 플레이크 ^( 과 NMP 12ml를 흔합하고 페이스트 믹서를 사용하여 1500rpm에서 2 분간 교반하여 고점도의 페이스트 조성물을 얻었다. 이러한 페이스트 조성물을 PET 기재에 바코팅하고, 100 °C 오본에서 30 분간 건조하여 잔류 용매를 제거하였다. 이러한 방법으로 그래핀 함유 필름을 형성하고, 필름상의 1 1 개 지점에서 4-포인트 프로브 장치를 사용하여 면 저항을 측정하였다.
도 14 에는 상기 필름을 형성한 모습과, 이의 면저항을 측정한 결과가 도시되어 있다.
도 14 를 참고하면, 상기 면 저항의 평균이 약 47.5 ( ± 4.8) /ᄆ으로서, 비교적 큰 두께의 필름 상태에서도 낮은 면 저항 및 우수한 전기 전도도를 갖는 것으로 확인되었다. 이를 통해, 상기 그래핀 플레이크를 사용하여 전도성 페이스트, 잉크쟂 프린팅용 잉크 조성물 또는 전도성 잉크 조성물을 형성하고, 이를 적용해 전도성 패턴을 형성하거나, 상기 필름 상태로 방열 기판 등의 소재로 웅용하는 등 다양한 분야나 용도로 사용될 수 있음이 확인되었다.

Claims

【특허청구범위】
【청구항 1 1
흑연 또는 이의 유도체를 포함한 탄소계 소재 및 분산제의 분산액에 물리적 힘을 인가하는 단계를 포함하고,
상기 분산제는 복수 종의 폴리 방향족. 탄화수소 산화물의 흔합물로서, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함한 흔합물을 포함하며,
상기 흑연 또는 이의 유도체는 물리적 힘의 인가 하에 나노 스케일의 두께를 갖는 그래핀 (graphene) 플레이크로 형성되는 그래핀의 제조 방법.
【청구항 2】
제 1 항에 있어서, 혹연 또는 이의 유도체는 그라파이트, 팽창 혹연 (expanded graphite), 부정형 혹연, 판상형 혹연, 인조 흑연, 탄소 층간에 인터칼레이션 화합물이 삽입되어 있는 개질 혹연 및 탄소나노섬유로 이루어진 군에서 선택된 1종 이상인 그래핀의 제조 방법
【청구항 3】 .
제 1 항에 있어서, 상기 분산액은 수용매 또는 극성 유기 용매 내에 탄소계 소재 및 분산제가 용해 또는 분산된 분산액인 그래핀의 제조 방법.
【청구항 4】
제 1 항에 있어서, 상기 분산제에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 전체 원소 함량의 12 내지 50 중량 %인 그래핀의 제조 방법.
【청구항 5】
제 1 항에 있어서, 상기 분산제에 포함된 폴리 방향족 탄화수소 산화물은 5 내지 30 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 갖는 그래핀의 제조 방법.
【청구항 6】
제 5 항에 있어서, 방향족 탄화수소는 7 내지 20 개의 벤젠 고리를 구조 내에 갖는 그래핀의 제조 방법.
【청구항 7】
제 1 항에 있어서, 상기 물리적 힘의 인가 단계는 고속 균질기 (High Speed Homogenizer), 고압 균질기 (High Pressure Homogenizer), 볼밀, 비드밀 또는 초음파 조사기를 사용한 방법으로 진행되는 그래핀의 제조 방법.
【청구항 8】 - 제 1 항에 있어서, 상기 그래핀 폴레이크는 1.5 내지 50nm의 두께를 갖는 그래핀의 제조 방법.
【청구항 9】
제 1 항에 있어서, 상기 그래핀 플레이크는 0Λ 내지 10 의 직경을 가지며 , 50 내지 6000의 직경 /두께비를 갖는 그래핀의 제조 방법.
【청구항 10】
제 1 항에 있어서, 상기 그래핀 플레이크는 그 표면에 상기 분산제가 물리적 부착된 상태로 형성되는 그래핀의 제조 방법.
【청구항 11】
제 1 항에 있어서,. 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함하는 그래핀의 제조 방법.
【청구항 12】
제 11 항에 있어서, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행되는 그래핀의 제조 방법.
【청구항 13】 제 11 항에 있어서, 상기 건조 단계는 30 내지 200 °C의 온도 하에 진공 건조하여 진행되는 그래핀의 제조 방법.
【청구항 14]
복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 300 내지
1000의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함한 흔합물을 포함하는 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크; 및.
상기 그래핀 플레이크를 용해 또는 분산시키는 극성 용매를 포함하는 그래핀의 분산 조성물.
【청구항 15]
제 14 항에 있어서, 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크를 형성한 후, 이를 극성 용매에 용해 또는 분산시켜 제조되는 그래핀의 분산 조성물.
【청구항 16】
제 14 항에 있어서, 상기 극성 용매는 물, NMP, 아세톤, DMF, DMSO, 에탄올, 이소프로필알코을, 메탄을, 부탄을, 2-에특시 에탄을, 2-부특시 에탄올, 2- 메톡시 프로판을, THF, 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N- 비닐피를리돈, 메틸에틸케톤, 부탄온, 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1종 이상을 포함하는 그래핀의 분산 조성물.
【청구항 17】
제 14 항에 있어서, 상기 분산제가 표면에 물리적으로 부착되어 있는 그래핀 플레이크는 극성 용매의 100 중량부에 대해 50 중량부 이하로 포함되는 그래핀의 분산 조성물.
【청구항 18] 제 14 항에 있어서, 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재로 사용되는 그래핀의 분산 조성물.
PCT/KR2014/012640 2013-12-26 2014-12-22 그래핀의 제조 방법과, 그래핀의 분산 조성물 WO2015099378A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480071363.2A CN105873858B (zh) 2013-12-26 2014-12-22 石墨烯的制备方法及石墨烯的分散组合物
EP14874853.6A EP3056468B1 (en) 2013-12-26 2014-12-22 Graphene production method
JP2016538069A JP6208364B2 (ja) 2013-12-26 2014-12-22 グラフェンの製造方法と、グラフェンの分散組成物
US15/039,281 US10131803B2 (en) 2013-12-26 2014-12-22 Preparation method of graphene and dispersed composition of graphene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0164671 2013-12-26
KR20130164671 2013-12-26
KR1020140184902A KR101666478B1 (ko) 2013-12-26 2014-12-19 그래핀의 제조 방법과, 그래핀의 분산 조성물
KR10-2014-0184902 2014-12-19

Publications (1)

Publication Number Publication Date
WO2015099378A1 true WO2015099378A1 (ko) 2015-07-02

Family

ID=53479164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012640 WO2015099378A1 (ko) 2013-12-26 2014-12-22 그래핀의 제조 방법과, 그래핀의 분산 조성물

Country Status (1)

Country Link
WO (1) WO2015099378A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543486A (en) * 2015-10-13 2017-04-26 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
WO2017081688A1 (en) * 2015-11-10 2017-05-18 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University A method of producing graphene quantum dots and a product thereof
GB2550985A (en) * 2016-10-13 2017-12-06 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2555097A (en) * 2016-10-13 2018-04-25 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
EP3754555A1 (en) * 2019-06-20 2020-12-23 Tetra Laval Holdings & Finance S.A. A method for a packaging material
CN115448303A (zh) * 2022-09-29 2022-12-09 淮安富鑫新材料有限公司 氧化石墨烯浆料连续分散循环系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지
KR20110119270A (ko) * 2010-04-27 2011-11-02 연세대학교 산학협력단 그래핀 나노 시트의 형성 방법 및 상기 방법을 이용하여 형성된 그래핀 나노 시트
KR20120039799A (ko) * 2010-10-18 2012-04-26 한국전기연구원 환원그래핀의 안정적 분산용액 제조방법 및 이에 의해 제조된 환원그래핀 분산용액
KR20120049679A (ko) * 2010-11-09 2012-05-17 한국전기연구원 전단응력을 이용한 단일층 산화 그래핀 환원물 분산용액의 제조방법 및 이에 의해 제조된 단일층 산화 그래핀 환원물 분산용액
KR20130004638A (ko) * 2011-07-04 2013-01-14 (주)월드튜브 그래핀, 흑연 나노 플레이트의 혼합 분산액 및 그의 분말의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지
KR20110119270A (ko) * 2010-04-27 2011-11-02 연세대학교 산학협력단 그래핀 나노 시트의 형성 방법 및 상기 방법을 이용하여 형성된 그래핀 나노 시트
KR20120039799A (ko) * 2010-10-18 2012-04-26 한국전기연구원 환원그래핀의 안정적 분산용액 제조방법 및 이에 의해 제조된 환원그래핀 분산용액
KR20120049679A (ko) * 2010-11-09 2012-05-17 한국전기연구원 전단응력을 이용한 단일층 산화 그래핀 환원물 분산용액의 제조방법 및 이에 의해 제조된 단일층 산화 그래핀 환원물 분산용액
KR20130004638A (ko) * 2011-07-04 2013-01-14 (주)월드튜브 그래핀, 흑연 나노 플레이트의 혼합 분산액 및 그의 분말의 제조 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DU, WENCHENG ET AL.: "From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and fewlayered pristine graphene", JOURNAL OF MATERIALS CHEMISTRY A, vol. 1, 15 July 2013 (2013-07-15), pages 10592 - 1060, XP055096739 *
LIANG, SHUAISHUAI ET AL.: "One-step green synthesis of graphene nanomesh by fluid-based method", THE ROYAL SOCIETY OF CHEMISTRY, vol. 4, no. 31, 2 April 2014 (2014-04-02), pages 16127 - 16131, XP055338643 *
LUO, PEICHENG ET AL.: "Dispersion of single-walled carbon nanotubes by intense turbulent shear in micro-channels", CARBON, vol. 68, 25 November 2013 (2013-11-25), pages 610 - 618, XP055323818 *
YI, MIN ET AL.: "A fluid dynamics route for producing graphene and its analogues", CHINESE SCIENCE BULLETIN, vol. 59, no. 16, 4 April 2014 (2014-04-04), pages 1794 - 1799, XP008180820 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822238B2 (en) 2015-10-13 2020-11-03 Thomas Swan & Co. Ltd. Apparatus and method for bulk production of atomically thin 2- dimensional materials including graphene
GB2545060A (en) * 2015-10-13 2017-06-07 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2545060B (en) * 2015-10-13 2018-05-23 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2543486B (en) * 2015-10-13 2018-07-18 Swan Thomas & Co Ltd Apparatus and method of using the apparatus for bulk production of atomically thin 2-dimensional materials including graphene
GB2543486A (en) * 2015-10-13 2017-04-26 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
WO2017081688A1 (en) * 2015-11-10 2017-05-18 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University A method of producing graphene quantum dots and a product thereof
GB2550985A (en) * 2016-10-13 2017-12-06 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2555097A (en) * 2016-10-13 2018-04-25 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2550985B (en) * 2016-10-13 2020-03-25 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
GB2555097B (en) * 2016-10-13 2020-04-08 Swan Thomas & Co Ltd Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
EP3754555A1 (en) * 2019-06-20 2020-12-23 Tetra Laval Holdings & Finance S.A. A method for a packaging material
WO2020254185A1 (en) * 2019-06-20 2020-12-24 Tetra Laval Holdings & Finance S.A. A method for a packaging material
CN115448303A (zh) * 2022-09-29 2022-12-09 淮安富鑫新材料有限公司 氧化石墨烯浆料连续分散循环系统及方法

Similar Documents

Publication Publication Date Title
KR101666478B1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
EP3056469B1 (en) Production method for graphene
WO2015099457A1 (ko) 그래핀의 제조 방법
Dao et al. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene
WO2015099378A1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
KR101700355B1 (ko) 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물
TWI542643B (zh) 分散劑、其製備方法及包含彼之建基於碳材料的經分散組成物
KR101818703B1 (ko) 고속 균질화 전처리 및 고압 균질화를 이용한 그래핀의 제조 방법
EP3190084A1 (en) Partially oxidized graphene and preparation method therefor
KR102055926B1 (ko) 층상 구조 화합물의 나노시트 제조 방법
CN107163686A (zh) 一种石墨烯复合导电油墨的制备方法及其应用
EP2890633A1 (en) Nanostructured carbon-based material
KR20160123171A (ko) 폴리에틸렌옥사이드계 분산제를 사용하는 그래핀 제조 방법
KR20170125615A (ko) 그래핀의 제조 방법
KR20170067475A (ko) 그래핀 분산액의 제조 방법
WO2015178631A1 (ko) 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물
KR20160131660A (ko) 그래핀 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874853

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014874853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15039281

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016538069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE