WO2015099053A1 - Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus - Google Patents

Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus Download PDF

Info

Publication number
WO2015099053A1
WO2015099053A1 PCT/JP2014/084331 JP2014084331W WO2015099053A1 WO 2015099053 A1 WO2015099053 A1 WO 2015099053A1 JP 2014084331 W JP2014084331 W JP 2014084331W WO 2015099053 A1 WO2015099053 A1 WO 2015099053A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
solid
cyanopyridine
carbonate ester
Prior art date
Application number
PCT/JP2014/084331
Other languages
French (fr)
Japanese (ja)
Inventor
憲治 中尾
鈴木 公仁
藤本 健一郎
冨重 圭一
善直 中川
堂野前 等
正純 田村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013273184A external-priority patent/JP6176108B2/en
Priority claimed from JP2014042007A external-priority patent/JP6349787B2/en
Priority claimed from JP2014183655A external-priority patent/JP6435727B2/en
Priority claimed from JP2014183657A external-priority patent/JP6435728B2/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Publication of WO2015099053A1 publication Critical patent/WO2015099053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/20Preparation of carboxylic acid nitriles by dehydration of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing cyanopyridine, a method for producing benzonitrile, a method for producing carbonate ester, and an apparatus for producing carbonate ester.
  • Carbonate ester is a general term for compounds in which one or two of hydrogen atoms of carbon dioxide CO (OH) 2 is substituted with an alkyl group or an aryl group, and RO—C ( ⁇ O) —OR ′ ( R and R ′ each represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).
  • Carbonate esters are used as additives for gasoline additives to improve octane number, diesel fuel additives for reducing particles in exhaust gas, etc., and also synthesize polycarbonate and urethane, resins and organic compounds such as pharmaceuticals and agricultural chemicals. It is a very useful compound such as an alkylating agent, a carbonylating agent, a solvent, etc., or as a raw material for a lithium ion battery electrolyte, a lubricant oil raw material, and a deoxidizer for rust prevention of boiler piping. .
  • Non-Patent Document 1 as a method for producing a carbonate ester without using phosgene, a carbonic acid ester is reacted with ethylene oxide to synthesize a cyclic carbonate, and further reacted with methanol to form dimethyl carbonate.
  • a method for obtaining the above has been put into practical use. This method is an environmentally friendly and superior method that can be expected to reduce carbon dioxide, which is expected to be reduced as a global warming gas, with little use or generation of corrosive substances such as hydrochloric acid. It is.
  • effective use of by-produced ethylene glycol is a major problem. Further, since it is difficult to safely transport ethylene, which is a raw material for ethylene oxide, and ethylene oxide, there is a restriction that a carbonate ester production process plant must be located adjacent to the ethylene and ethylene oxide production process plant.
  • Patent Document 2 a method for producing dimethyl carbonate by oxidizing methanol and carbon monoxide in a liquid phase in the presence of a cuprous chloride catalyst is also disclosed.
  • carbon monoxide harmful to the human body is handled, and, as in the production method using phosgene, a halogen purification step from the obtained carbonic acid ester is essential by including halogen in the catalyst.
  • Problems such as carbon dioxide by-product have been pointed out.
  • Non-Patent Document 2 a method for producing dimethyl carbonate from methyl nitrite and carbon monoxide in the presence of a Pd—Cu-based catalyst has been put into practical use. In this method, methyl nitrite, which is a raw material, is supplied by reacting methanol and oxygen with nitric oxide by-produced during the production of dimethyl carbonate. There are issues such as handling harmful carbon monoxide.
  • Non-patent Document 3 attempts have been made to directly synthesize carbonate esters by reacting methanol and carbon dioxide in the presence of a solid catalyst.
  • this reaction is an equilibrium reaction, since the equilibrium is largely biased toward the raw material system, the methanol conversion rate remains at most about 1%, and there is a major problem to be overcome that the reaction rate and productivity are low.
  • Non-patent Document 6 research using molecular sieves (solid dehydrating agent) (Non-patent Document 6) has been reported, but it is a process that separates and circulates the reaction part (high pressure) and the dehydration part (normal pressure). There was a problem that consumption was large and a large amount of solid dehydrating agent was required.
  • Solid catalysts used for the direct synthesis reaction of carbonate ester have so far been tin compounds such as dimethoxydibutyltin, thallium compounds such as thallium methoxide, nickel compounds such as nickel acetate, vanadium pentoxide, potassium carbonate and other alkaline carbonates.
  • tin compounds such as dimethoxydibutyltin
  • thallium compounds such as thallium methoxide
  • nickel compounds such as nickel acetate, vanadium pentoxide
  • potassium carbonate and other alkaline carbonates Various compounds such as salts and Cu / SiO 2 have been studied.
  • the present inventors pay attention to a method of directly synthesizing a carbonate ester from monohydric alcohol and carbon dioxide using a heterogeneous catalyst in the production of carbonate ester, and remove water by-produced with the carbonate ester out of the system.
  • the use of acetonitrile as a compatibilizer eliminates the need for high pressures such as 300 atmospheres and 60 atmospheres as described in Non-Patent Documents 4 and 5, and it is the first effect that the reaction is promoted under a pressure close to normal pressure. (See Patent Document 3).
  • the present inventor has further studied the types of wettable powders for further improvement in the amount of carbonate produced, and as a result, by using 2-cyanopyridine or benzonitrile, the production of carbonate ester compared to acetonitrile. It was found that the amount and the production rate were greatly improved, the reaction was likely to proceed under a relatively low pressure close to normal pressure, and the reaction rate was very fast (see Patent Documents 4 and 5). However, the treatment method and utilization method of 2-picolinamide and benzamide as a by-product have not been studied.
  • Nitriles such as 2-cyanopyridine and benzonitrile which are wettable powders in the present invention, are generally used in many applications such as solvents, synthetic resins, dyes and pharmaceutical intermediates.
  • 2-cyanopyridine is a material used as a raw material for pharmaceuticals and agricultural chemicals, and is a material used as a starting material when synthesizing a pyridine or piperidine derivative at the 2-position.
  • Benzonitrile is a material used as a raw material for pharmaceuticals and agricultural chemicals, and is a material used as a starting material when various derivatives are synthesized.
  • this regeneration reaction is highly selective (because by-products are difficult to reuse as a wettable powder), and the yield is high (if the yield is low, the residual amount of 2-picolinamide or benzamide is low). It has been found that this is a problem because the amount of separation treatment with 2-cyanopyridine or benzonitrile increases and the load increases.
  • Non-patent Document 8 In general, nucleophilic substitution reaction with inorganic cyanide is used as one of the methods for synthesizing nitriles, but there is a problem that toxic cyanide is used and halogen salts are by-produced (Non-patent Document 8). ).
  • an ammoxidation method (SOHIO method) has been industrialized in a gas phase reaction using air as an oxidant in the presence of ammonia using a Mo—Bi-based or Fe—Sn-based oxide catalyst.
  • a high reaction temperature of 400 ° C. or higher is required, and it is further limited to acrylonitrile and the like (Non-patent Document 9).
  • Patent Documents 7 and 8 disclose phosgene, phosphorus oxychloride, thionyl chloride in a solvent composed of an aliphatic nitrile or an alicyclic nitrile capable of separating an amide from water.
  • Patent Document 3 describes a catalyst for a dehydration reaction of a primary amide and a method for producing a nitrile using the same.
  • the catalyst is a solid catalyst with vanadium supported on hydrotalcite, and it is said that the primary amide is also active with aromatic amides such as benzamide, amides with heterocycles and aliphatic amides, but the reaction rate is slow. not enough. This is because the amide is generally more stable than the nitrile, and the dehydration reaction of the amide is slower, and the intramolecular hydrogen between the hydrogen atom of the amide group and the nitrogen heteroatom in the amide molecule. This is probably because amides have particularly large intramolecular hydrogen bonds, become stable substances, and are unlikely to undergo dehydration.
  • an object of the present invention is to provide a method for regenerating picolinamide or benzamide to cyanopyridine or benzonitrile without using a powerful reagent and suppressing the generation of by-products. It is to provide.
  • the inventors have shown that the pyridine ring in picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity. Therefore, a catalyst using a basic metal as an active species was studied.
  • Non-Patent Document 12 Metal oxide particles
  • Non-Patent Document 13 a two-dimensional layered inorganic compound carrier called hydrotalcite
  • the metal-oxygen double bond is presumed that the metal-oxygen double bond in the compound acts as an active species for the dehydration reaction of the amide.
  • the inventors examined from the viewpoint that the metal oxide is supported in an optimum existence state in consideration of the surface structure, ionicity, and electronic state as the carrier.
  • the present inventor also examined application of the above knowledge to a method for producing a carbonate ester. That is, the present inventors paid attention to a method of directly synthesizing a carbonate ester from a monohydric alcohol and carbon dioxide in the production of the carbonate ester, and used acetonitrile as a hydrating agent to remove water by-produced together with the carbonate ester out of the system.
  • a high pressure such as 30 MPa (300 atm) or 6 MPa (60 atm) as described in Non-Patent Documents 4 and 5 is unnecessary, and the reaction is accelerated under a pressure close to normal pressure.
  • Patent Document 3 Patent Document 4
  • the present inventors proceeded with a study on a method for producing a carbonate ester including utilization of by-products, and the reaction was likely to proceed under a relatively low pressure close to normal pressure, and the reaction rate was very high. It was considered to use cyanopyridine or benzonitrile, which has excellent properties as a wettable powder, which is fast and has few by-products, in this production method.
  • cyanopyridine characterized in that cyanopyridine is produced by heating and dehydrating a picolinamide in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent.
  • the catalyst carrying the alkali metal oxide carries one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2.
  • the method for producing cyanopyridine as described in (1) or (2) above, wherein
  • a monohydric alcohol and carbon dioxide are reacted in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and cyanopyridine to produce a carbonate and water, and the cyanopyridine and the above
  • a first reaction step of generating picolinamide by a hydration reaction with the generated water After the picolinamide is separated from the first reaction step, the picolinamide is dehydrated by heating in the presence of a catalyst carrying an alkali metal oxide and in the presence of an organic solvent, whereby cyano Having a second reaction step to regenerate to pyridine, A method for producing a carbonic acid ester, wherein the cyanopyridine regenerated in the second reaction step is used in the first reaction step.
  • a first catalyst that produces a carbonate ester and a picolinamide by mixing and reacting one or both of a solid catalyst of CeO 2 and ZrO 2 , a monohydric alcohol, carbon dioxide, and cyanopyridine.
  • a reaction process; The carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction step are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine.
  • a first separation step of separating the alkane and the solid catalyst and picolinamide in solid phase A second separation step of separating each of the liquid phase carbonate ester after solid-liquid separation in the first separation step, unreacted cyanopyridine, and alkane;
  • the solid phase solid catalyst and picolinamide after solid-liquid separation in the first separation step are extracted with a hydrophilic solvent and then solid-liquid separated to obtain a liquid phase picolinamide and a hydrophilic solvent, and a solid phase solid catalyst.
  • the catalyst loaded with cyanopyridine, unreacted picolinamide, and alkali metal oxide discharged from the second reaction step is filtered to separate the catalyst loaded with the solid phase alkali metal oxide. Separation process of A fifth separation step for separating cyanopyridine, picolinamide, organic solvent, and water remaining after separation in the fourth separation step, respectively.
  • Carbonate, picoline which is produced from at least one of methyl picolinate and methyl carbamate as a by-product in the first reaction step and is discharged from the first reaction step in the first separation step.
  • the amide, unreacted cyanopyridine, methyl picolinate, methyl carbamate, and the solid catalyst were subjected to solvent extraction with alkane, followed by solid-liquid separation, and the liquid phase carbonate ester, unreacted cyanopyridine, methyl picolinate, carbamine 12.
  • the method for producing a carbonate ester according to any one of (9) to (11), wherein methyl acid and alkane are separated from the solid catalyst and picolinamide in solid phase.
  • the catalyst carrying the alkali metal oxide carries one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2.
  • the method for producing a carbonate ester according to any one of (8) to (16) above, wherein
  • a production apparatus for use in the method for producing a carbonate according to any one of (8) to (23), A pressurizing part for pressurizing carbon dioxide; In the presence of either one or both of CeO 2 and ZrO 2 and a cyanopyridine, a monohydric alcohol and carbon dioxide are reacted to produce a carbonate and water, and the cyanopyridine and the produced catalyst.
  • the carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction section are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine.
  • a first separation part for separating the alkane and the solid catalyst and picolinamide in a solid phase A second separation part for separating the carbonate, unreacted cyanopyridine, and alkane in the liquid phase after the solid-liquid separation by the first separation part;
  • the solid catalyst and picolinamide after solid-liquid separation by the first separation unit are extracted with a hydrophilic solvent and then solid-liquid separated to separate into a liquid phase picolinamide and a hydrophilic solvent and a solid phase solid catalyst.
  • a third separation unit A second reaction for producing cyanopyridine by subjecting picolinamide separated by the third separation part to a dehydration reaction by heating in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent.
  • An apparatus for producing carbonate ester comprising: a transport unit that transports the cyanopyridine separated by the fifth separation unit to the first reaction unit.
  • Any one of molybdenum, tungsten, rhenium, titanium and niobium on a catalyst support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 and C Benzonitrile is produced by heating and dehydrating benzamide in the presence of a catalyst on which a metal oxide of two or more metal species is supported and in the presence of an organic solvent.
  • a method for producing benzonitrile is produced by heating and dehydrating benzamide in the presence of a catalyst on which a metal oxide of two or more metal species is supported and in the presence of an organic solvent.
  • a monohydric alcohol and carbon dioxide are reacted in the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile to produce a carbonate and water, and the benzonitrile
  • a first reaction step of generating benzamide by a hydration reaction between the water and the generated water After separating the benzamide from the first reaction step, the benzamide is converted into SiO 2 , TiO 2 , a metal oxide of any one or more of molybdenum, tungsten, rhenium, titanium, and niobium.
  • a monohydric alcohol and carbon dioxide are reacted in the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile to produce a carbonate and water, and the benzonitrile
  • the carbonate ester, benzamide, unreacted benzonitrile discharged from the first reaction step, and the solid catalyst are subjected to solvent extraction with alkane and then separated into solid and liquid, and the liquid phase carbonate ester, unreacted benzonitrile, And a first separation step of separating the alkane and the solid catalyst and benzamide in a solid phase;
  • a third separation step in which the solid catalyst and benzamide after the solid-liquid separation are extracted with a hydrophilic solvent, followed by solid-liquid separation, and separated into a liquid phase
  • a second reaction step The catalyst in which the solid phase metal oxide is supported on the catalyst support is filtered by filtering the catalyst in which the benzonitrile, unreacted benzamide, and metal oxide supported on the catalyst support are discharged from the second reaction step.
  • the catalyst support on which the metal oxide is supported is any one or more of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 (31) to (35), The manufacturing method of carbonate ester of any one of these.
  • a monohydric alcohol and carbon dioxide are reacted to form a carbonate and water, and the benzonitrile and the above A first reaction part for producing benzamide by a hydration reaction with the produced water;
  • the carbonate ester, benzamide, unreacted benzonitrile, and the solid catalyst discharged by the first reaction unit are subjected to solvent extraction with alkane, and then solid-liquid separated to obtain a liquid phase carbonate ester, unreacted benzonitrile, And a first separation part for separating the alkane and the solid catalyst and benzamide in a solid phase;
  • a second separation unit for separating the carbonate, unreacted benzonitrile, and alkane in the liquid phase after the solid-liquid separation;
  • a carbonic acid ester producing apparatus comprising: a conveying unit configured to convey the separated benzonitrile to the first reaction unit.
  • regeneration from picolinamide or benzamide to cyanopyridine or benzonitrile can be performed without using a strong reagent and suppressing the generation of by-products.
  • the method for producing 2-cyanopyridine by the dehydration reaction of 2-picolinamide of the present invention comprises dehydrating 2-picolinamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent to give 2-cyanopyridine. It produces pyridine.
  • a basic alkali metal (K, Li, Na, Rb, Cs) oxide can be used, and as the carrier, a substance that generally becomes a catalyst carrier can be used.
  • K, Li, Na, Rb, Cs a basic alkali metal
  • the carrier a substance that generally becomes a catalyst carrier can be used.
  • the pyridine ring in 2-picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity.
  • metal oxides having basic properties are preferred.
  • Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 .
  • the dry method includes a combustion method, an arc method, etc.
  • the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
  • cerium acetylacetonate hydrate and cerium hydroxide cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate
  • cerium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
  • zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are fired in an air atmosphere.
  • zirconium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
  • a solid catalyst carrier made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods.
  • the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable.
  • the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • An example of the method for producing the catalyst of the present invention is as follows.
  • the support is SiO 2
  • a commercially available powder or spherical SiO 2 can be used, and 100 mesh (0.15 mm) is used so that the active metal can be uniformly supported.
  • pre-baking is preferably performed in air at 700 ° C. for 1 hour.
  • SiO 2 has various properties, but a larger surface area is preferable because the active metal can be highly dispersed and the amount of 2-cyanopyridine produced is improved. Specifically, a surface area of 300 m 2 / g or more is preferable.
  • the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more.
  • the active metal oxide can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
  • the metal salt used as the precursor may be water-soluble, and various compounds such as carbonates, hydrogen carbonates, chloride salts, nitrates, and silicates can be used as long as they are alkali metals.
  • the carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
  • the supported amount of the catalyst may be set as appropriate.
  • the supported metal amount of the alkali metal oxide is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol / g based on the total catalyst weight. It is preferable to set at about g. If the loading amount is larger than this, the activity may decrease. Moreover, what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
  • the catalyst in the present invention is composed of a catalyst in which one or more alkali metal oxides are supported on a carrier composed of one or more of SiO 2 , CeO 2 , and ZrO 2.
  • a carrier composed of one or more of SiO 2 , CeO 2 , and ZrO 2.
  • unavoidable impurities mixed in the catalyst production process or the like may be included. However, it is desirable to prevent impurities from entering as much as possible.
  • the catalyst in which the metal oxide serving as the active species of the present invention is supported on the support may be in the form of powder or molded body, and in the case of the molded body, it is spherical, pellet-shaped, cylinder-shaped. , Ring shape, wheel shape, granule shape and the like.
  • the method for producing 2-cyanopyridine using the catalyst of the present invention is not particularly limited as a reaction mode, and is not limited to a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any flow reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, and mesitylene.
  • the reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and economic efficiency.
  • the usual reaction conditions in the method for producing 2-cyanopyridine of the present invention can be carried out at a reaction temperature of 160 to 200 ° C., a pressure of normal pressure, and a time of several hours to 500 hours. Is not to be done.
  • the type and shape of the molecular sieve used as the dehydrating agent are not particularly limited.
  • 3A, 4A, 5A, etc. which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
  • the periphery of the reaction tube is heated to 160 to 200 ° C.
  • the melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized.
  • the 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
  • the boiling point of each substance present in the system after the reaction is different as described above, it can be easily separated by distillation. Further, since the catalyst is a solid, it can be separated and recovered as necessary after the reaction, and can be easily recovered by a solid-liquid separation method such as ordinary filtration.
  • 3-Cyanopyridine and 4-cyanopyridine can be synthesized by changing 2-picolinamide, which is a starting material of 2-cyanopyridine, to nicotinamide and isonicotinamide and carrying out the same treatment.
  • the method for producing benzonitrile includes the same steps as the method for producing cyanopyridine. Specifically, it is as follows.
  • the method for producing benzonitrile by dehydration reaction of benzamide according to the present invention is to produce benzonitrile by dehydration reaction of benzamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent.
  • the catalyst used in the present invention may be an oxide of a basic metal (Mo, W, Re, Ti, Nb), and the support may be a substance that generally becomes a catalyst support.
  • a catalyst supporting an oxide of an active metal species is used on SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , C, and two or more of these catalyst supports It was found to show particularly high performance.
  • any one or two of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 are used. It is preferable to use more than one type of catalyst support because it shows higher performance.
  • the general production method in the case of SiO 2 are roughly classified into a dry method and a wet method.
  • the dry method includes a combustion method, an arc method, etc.
  • the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
  • cerium acetylacetonate hydrate and cerium hydroxide cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate
  • cerium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
  • zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are calcined in an air atmosphere.
  • zirconium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • C is mainly composed of carbon and may be in any form as long as it does not change during the reaction period.
  • activated carbon is preferable, but it is not limited thereto.
  • a base is added to a solution containing two or more kinds of metal salts to form a hydroxide by coprecipitation, followed by filtration, washing and drying in an air atmosphere. It can be prepared by firing. Moreover, although it can prepare also by physically mixing and baking the powder of 2 or more types of oxides, since the specific surface area of a final preparation does not become high, the coprecipitation method with which reaction progresses more is preferable.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • a solid catalyst carrier comprising a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2
  • the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable.
  • the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • the carrier selected from one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C can support active metal species in a highly dispersed manner as the surface area increases. This is preferable because the amount of nitrile produced is improved.
  • the surface area depends on the type of the carrier, but the surface area is preferably 10 m 2 / g or more as measured by the BET method. Whether it is highly dispersed can be confirmed with an image of an electron microscope (SEM, TEM, etc.).
  • a metal oxide that becomes an active species may be supported on a support by a known method.
  • a support can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
  • the carrier is SiO 2
  • commercially available powder or spherical SiO 2 can be used, and the particle size is adjusted to 100 mesh (0.15 mm) or less to remove the moisture so that the active metal can be uniformly supported.
  • SiO 2 has various properties, it is preferable that the surface area is large because the active metal can be supported in a highly dispersed manner and the amount of benzonitrile produced is improved. Specifically, a surface area of 300 m 2 / g or more (BET method) is more preferable.
  • the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is more preferable that the surface area of the catalyst after production is 150 m 2 / g or more (BET method).
  • the metal salt that is a precursor of the metal oxide that becomes the active species may be water-soluble.
  • various compounds such as carbonate, bicarbonate, chloride, nitrate, and silicate can be used.
  • the carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
  • the amount of metal oxide supported may be set as appropriate.
  • the amount of metal oxide supported in terms of metal based on the total catalyst weight is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol. / G, preferably about 0.2 to 0.8 mmol / g.
  • the activity may be reduced due to the coarsening of the metal oxide.
  • what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
  • the catalyst in the present invention is one or two kinds of metal oxides on a support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C.
  • a support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C.
  • the catalyst which carry
  • the impurities are preferably less than 1% by weight of the total catalyst.
  • the catalyst in which the metal oxide serving as the active species of the present invention is supported on the support may be in the form of powder or molded body, and in the case of the molded body, it is spherical, pellet-shaped, cylinder-shaped. , Ring shape, wheel shape, granule shape and the like.
  • the method for producing benzonitrile using the catalyst of the present invention is not particularly limited as a reaction mode, such as a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any of the flow reactors may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the organic solvent is preferably a substance having a boiling point of 130 ° C. or more, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene, furfural, heptadecane and the like. , P-) xylene and mesitylene are preferred.
  • the reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and economic efficiency.
  • the reaction temperature is 160 to 200 ° C.
  • the pressure is normal pressure
  • the time is several hours to 24 hours. It is not a thing.
  • a dehydrating agent such as zeolite is installed in the system, and the by-product water is removed. It is desirable to carry out the reaction while removing.
  • zeolite molecular sieve
  • calcium hydride was installed in the extraction tube as a dehydrating agent, and a catalyst, benzamide, and an organic solvent were placed in the reaction tube. The amount of benzonitrile produced can be improved by reacting at normal pressure with reflux.
  • the type and shape of the molecular sieve used as the dehydrating agent are not particularly limited.
  • 3A, 4A, 5A, etc. which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
  • benzoic acid may be produced as a by-product due to the decomposition of benzamide as described above.
  • benzamide and product remained in the reaction product.
  • benzonitriles, by-product water, and organic solvents, and these by-products are hardly produced.
  • it is very small amount, can isolate
  • the reaction temperature is preferably a condition under which the benzamide dehydration reaction is performed in a liquid phase. Considering the reaction efficiency, it is preferable that the temperature is higher under liquid phase conditions.
  • the reaction is performed under normal pressure, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C.
  • the melting point of each substance in a typical reaction system is 127 ° C. (benzamide), ⁇ 13 ° C. (benzonitrile), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C.
  • the boiling point of each substance present in the system after the reaction is different as described above, it can be easily separated by distillation. Further, since the catalyst is a solid, it can be separated and recovered as necessary after the reaction, and can be easily recovered by a solid-liquid separation method such as ordinary filtration.
  • the first reaction step in the method for producing a carbonate ester of the present invention involves directly reacting a monohydric alcohol and carbon dioxide in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and 2-cyanopyridine. This produces a carbonate ester.
  • any alcohol selected from one or more of primary alcohol, secondary alcohol, and tertiary alcohol can be used, and methanol, ethanol, 1-propanol can be used.
  • methanol, ethanol, 1-propanol can be used.
  • Isopropanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, allyl alcohol, 2-methyl-1-propanol, cyclohexane methanol, benzyl alcohol This is preferable because the yield of the product is high and the reaction rate is fast.
  • the produced carbonates are dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, diheptyl carbonate, dioctyl carbonate, dinonane carbonate, diallyl carbonate, di-2-methyl-propyl carbonate, respectively.
  • dicyclohexane methyl carbonate and dibenzyl carbonate dibenzyl carbonate.
  • CeO 2 and ZrO 2 solid solutions and composite oxides are basically based on a mixing ratio of CeO 2 and ZrO 2 of 50:50, but the mixing ratio can be changed as appropriate.
  • the catalyst used for the direct synthesis of carbonic acid ester is required to have an acid-base complex function, and in particular, has a property of relatively low acidity and relatively high basicity. Is preferred. If the acidity is too high, it is not preferable because a large amount of ether is synthesized rather than carbonate.
  • alcohol is adsorbed in the form of HO—R... M, and RO—C ( ⁇ O) —OR is generated between both adsorbed species.
  • This solid catalyst also exhibits catalytic activity for the hydration reaction of water and 2-cyanopyridine, which are by-produced during the synthesis of carbonate ester. Therefore, although both the carbonate ester synthesis reaction and the hydration reaction proceed on the surface of the catalyst, the hydration of 2-cyanopyridine is carried out even under low pressure conditions, which is unfavorably balanced for the carbonate ester synthesis reaction.
  • the reaction proceeds under catalysis, and the water generated as a by-product from the synthesis reaction of the carbonate ester is rapidly eliminated from the catalyst surface, so that the equilibrium of the synthesis reaction of the carbonate ester shifts to the production system and the reaction pressure is low.
  • the carbonate ester synthesis reaction is allowed to have a high reaction rate without being subjected to equilibrium constraints even under mild conditions.
  • high pressure a large amount of CO 2 molecules are adsorbed on the catalyst surface, making it difficult to contact with water molecules generated during the synthesis of carbonic acid ester, so that the hydration reaction with 2-cyanopyridine does not proceed easily. Therefore, it is considered that the carbonate ester can be produced only in a state close to the equilibrium constraint, and as a result, the productivity is not increased under high pressure.
  • cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
  • zirconium oxide ZrO 2
  • various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium oxide dinitrate, zirconium sulfate and the like are mixed with air. It can be prepared by firing in an atmosphere. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing with water. It can be prepared by drying and firing in an air atmosphere. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
  • a solid catalyst made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods.
  • the solid catalyst according to the present invention may contain inevitable impurities mixed in the catalyst production process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • the catalyst of the present invention may be in any form of powder or molded body, and in the case of a molded body, it may be any of spherical, pellet, cylinder, ring, wheel, granule, etc. .
  • carbon dioxide used in the present invention is not limited to those prepared as industrial gases, but can also be used that separated and recovered from exhaust gases from factories, steel mills, power plants, etc. that manufacture each product.
  • the separated liquid component contains carbonate ester, 2-cyanopyridine, and an organic solvent.
  • the melting point and boiling point of each substance are 4 ° C and 90 ° C (dimethyl carbonate). -43 ° C and 128 ° C (diethyl carbonate), -41 ° C and 167 ° C (dipropyl carbonate), 25 ° C or less and 207 ° C (dibutyl carbonate), and 24 ° C and 215 ° C (2-cyanopyridine) , ⁇ 95 ° C. and 69 ° C. (for example, hexane), the carbonate ester can be separated by distillation, and the product carbonate ester can be recovered with high purity. In addition to distillation, it is also possible to filter and recover what is solidified by cooling stepwise to below the melting point.
  • 2-picolinamide and solid catalyst separated as solid components can be separated from the solid catalyst and a filter by extracting only 2-picolinamide with a hydrophilic solvent.
  • the hydrophilic solvent used here is preferably acetone, ethanol, ether, or water in view of ease of handling and separation at a later stage.
  • the 2-picolinamide dissolved in the hydrophilic solvent can be separated by distillation, and the by-produced 2-picolinamide can be purified with high purity.
  • the separated solid catalyst is regenerated in the step of regenerating the catalyst and can be reused in the first reaction step.
  • the catalyst regeneration step is a step in which impurities on the solid catalyst are heated to burn off, and is baked at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
  • 2-picolinamide is dehydrated in the presence of a catalyst supporting a basic metal oxide and an organic solvent to produce 2-cyanopyridine.
  • a catalyst in which an oxide of a basic alkali metal (K, Li, Na, Rb, Cs) is generally supported on a substance serving as a catalyst carrier can be used.
  • K, Li, Na, Rb, Cs a basic alkali metal
  • the pyridine ring in 2-picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity.
  • a metal having basic properties is preferable.
  • Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 .
  • the dry method includes a combustion method, an arc method, etc.
  • the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
  • cerium acetylacetonate hydrate and cerium hydroxide cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate
  • cerium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
  • zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are fired in an air atmosphere.
  • zirconium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
  • a solid catalyst carrier made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods.
  • the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable.
  • the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • An example of the method for producing the catalyst of the present invention is as follows.
  • the support is SiO 2
  • a commercially available powder or spherical SiO 2 can be used, and 100 mesh (0.15 mm) is used so that the active metal can be uniformly supported.
  • pre-baking is preferably performed in air at 700 ° C. for 1 hour.
  • SiO 2 has various properties, but a larger surface area is preferable because the active metal can be highly dispersed and the amount of 2-cyanopyridine produced is improved. Specifically, a surface area of 300 m 2 / g or more is preferable.
  • the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more.
  • the active metal oxide can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
  • the metal salt used as the precursor may be water-soluble, and various compounds such as carbonates, hydrogen carbonates, chloride salts, nitrates, and silicates can be used as long as they are alkali metals.
  • the carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
  • the catalyst according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above-mentioned elements, but it is desirable that impurities are not mixed as much as possible.
  • the catalyst supported on the carrier of the present invention may be in the form of a powder or a molded body.
  • a spherical shape, a pellet shape, a cylinder shape, a ring shape, a wheel shape, a granule Any shape may be used.
  • the method for producing 2-cyanopyridine using the catalyst of the present invention is not particularly limited as a reaction mode, and is not limited to a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any flow reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the organic solvent used for the dehydration reaction is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like, and mesitylene is particularly preferable.
  • reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 generated during the reaction, and economic efficiency.
  • the reaction temperature may be 160 to 200 ° C.
  • the reaction pressure may be normal pressure
  • the reaction time may be several hours to 500 hours, but is not particularly limited thereto.
  • the type and shape of the molecular sieve used as the dehydrating agent are not particularly limited.
  • 3A, 4A, 5A, etc. which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
  • the periphery of the reaction tube is heated to 160 to 200 ° C.
  • the melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized.
  • the 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
  • the 2-cyanopyridine regenerated in the second reaction step can be reused in the first reaction step.
  • FIG. 1 is an example of a suitable facility of the present invention. Moreover, the state of each substance in each process in this equipment in FIG. 1 is shown in FIG. This equipment can be used in the case of reaction conditions in which the conversion rate of monohydric alcohol is 100% and by-products of methyl picolinate and methyl carbamate are not generated.
  • first reaction step In the first reaction step, in the first reaction column 1 (first reaction section), one or both of the solid catalyst (solid phase) of CeO 2 and ZrO 2 , the monohydric alcohol 12 (liquid phase), Carbon dioxide (gas phase) is charged through 2-cyanopyridine 13 (liquid phase) and pressure blower 10 (pressure part). As the solid catalyst, a solid catalyst 14 (solid phase) newly charged before the reaction or regenerated in the regeneration tower 6 can be used.
  • 2-cyanopyridine is a new one at the start of the reaction, it is purified by unreacted 2-cyanopyridine 20 (liquid phase) purified in the first distillation column 3 and in the third distillation column 9. 2-Cyanopyridine regenerated from picolinamide can be reused.
  • the carbon dioxide ester direct synthesis apparatus using the solid catalyst of either or both of CeO 2 and ZrO 2 of the present invention is a batch reactor, a semi-batch reactor, a continuous tank reactor, a tube type, or the like. Any flow reactor such as a reactor may be used.
  • the reaction temperature in the first reaction column 1 is preferably 50 to 300 ° C.
  • the reaction temperature is less than 50 ° C.
  • the reaction rate is low, the carbonate ester synthesis reaction and the hydration reaction with 2-cyanopyridine hardly proceed, and the carbonate ester productivity tends to be low.
  • the reaction temperature exceeds 150 ° C., the reaction rate of each reaction increases, but decomposition and modification of the carbonate ester, and 2-picolinamide easily react with the monohydric alcohol, resulting in a low carbonate ester yield.
  • this temperature is considered to vary depending on the type and amount of the solid catalyst and the amount and ratio of the raw materials (monohydric alcohol, 2-cyanopyridine), it is desirable to set optimum conditions appropriately. Since the preferable reaction temperature is 100 to 150 ° C., it is desirable to preheat the raw material (monohydric alcohol, 2-cyanopyridine) with steam or the like before the first reaction column.
  • the reaction pressure is preferably 0.1 to 5 MPa (absolute pressure).
  • a pressure reducing device is required, and not only the equipment is complicated and expensive, but also the motive energy for reducing the pressure is required, resulting in poor energy efficiency.
  • the reaction pressure exceeds 5 MPa, the hydration reaction with 2-cyanopyridine is difficult to proceed and not only the yield of the carbonate ester is deteriorated, but also the kinetic energy necessary for pressurization is required and the energy efficiency is poor.
  • the reaction pressure is more preferably 0.1 to 4 MPa (absolute pressure), and further preferably 0.2 to 2 MPa (absolute pressure).
  • the 2-cyanopyridine used for the hydration reaction is desirably introduced into the reactor in advance at a rate of 0.1 to 1 times the volume of the starting alcohol prior to the reaction. If it is introduced at less than 0.1 times, the yield of carbonate ester may be deteriorated because of the small amount of 2-cyanopyridine contributing to the hydration reaction. On the other hand, when it is introduced more than 1 time, there is no particular problem because it can be easily separated from the product after the completion of the reaction and reused. Furthermore, the amount of monohydric alcohol and 2-cyanopyridine with respect to the solid catalyst is considered to vary depending on the type and amount of the solid catalyst, the type of monohydric alcohol and the ratio with 2-cyanopyridine. It is desirable.
  • reaction product separation The reaction liquid 15 after the reaction in the first reaction tower 1 is separated into a liquid phase and a solid phase in the first extraction tower 2 (first separation section).
  • the substances contained in the reaction solution 15 are carbonate ester (liquid phase), unreacted 2-cyanopyridine (liquid phase) and 2-picolinamide (solid phase), solid catalyst (solid phase), and organic solvent (liquid phase). Phase).
  • Alkane is suitable for the organic solvent used here, and hexane, octane, nonane, decane, and undecane are preferable from the viewpoint of ease of separation by distillation in the subsequent stage.
  • the extraction process in the first extraction column 2 is preferably performed at room temperature, but the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
  • the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
  • the extract 17 extracted in the first extraction tower 2 contains carbonate ester, unreacted 2-cyanopyridine, and alkane.
  • the boiling point of each substance in the first distillation column 3 (second separation section) is 90 ° C. (for example, dimethyl carbonate), 215 ° C. (2-cyanopyridine), 69 ° C. (for example, hexane).
  • the product is distilled into carbonic acid ester 19, unreacted 2-cyanopyridine 20, and alkane 16 used for extraction.
  • the solid phase 18 separated in the first extraction tower 2 contains 2-picolinamide and a solid catalyst, and is separated in the second extraction tower 4 (third separation section).
  • a hydrophilic solvent liquid phase capable of dissolving 2-picolinamide is suitable, and acetone, ethanol, ether, and water are preferable because they are easily separated by distillation at a later stage.
  • the extraction step in the second extraction tower 4 is also preferably performed at room temperature for extraction in order to suppress energy consumption. However, the temperature is lower than the boiling point of the hydrophilic solvent (for example, in the case of acetone, the boiling point is 56.56). If it is 5 [deg.] C. and heated to about 40 [deg.] C.), the extraction time can be shortened by heating.
  • the extract solution 21 containing 2-picolinamide and a hydrophilic solvent is distilled in the second distillation column 5 so that the boiling points of the substances are 143 ° C. (2-picolinamide) and 57 ° C. (for example, in the case of acetone). To be separated.
  • the solid catalyst 22 (solid phase) separated in the second extraction tower 4 can be regenerated in the catalyst regeneration tower 6 and returned to the first reaction tower 1.
  • the catalyst regeneration is a step of heating to burn off impurities on the solid catalyst, and is fired at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
  • the 2-picolinamide 23 (solid phase) purified in the second distillation column 5 is transferred to the second reaction column 7 (second reaction section) for regeneration to 2-cyanopyridine.
  • the solution after the reaction can be recovered as a used catalyst 26 by separating only the solid catalyst by filtering with a filter in the catalyst separation device 8. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. Since the boiling point of each substance present in the system is different as described above after the catalyst separation, 2-cyanopyridine, organic solvent, 2-picolinamide, water are distilled by distillation in the third distillation column 9. The organic solvent 27 and 2-picolinamide 28 can be recycled for the dehydration reaction of 2-picolinamide. The purified 2-cyanopyridine 13 can be reused in a reaction for producing a carbonate ester.
  • the production apparatus of the present invention is an apparatus for producing 2-cyanopyridine by dehydrating 2-picolinamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent.
  • the reaction format is not particularly limited, and any of a batch reactor, a semi-batch reactor, a flow reactor such as a continuous tank reactor and a tubular reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the temperature of the second reaction column 7 can be changed according to the reaction mode, but in the case of reflux using a Soxhlet extraction tube and a cooler, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C.
  • a dehydrating agent such as reflux, distillation or zeolite is installed in the system to remove the by-product water. It is desirable to carry out the reaction.
  • the organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like.
  • the periphery of the reaction tube is heated to 160 to 200 ° C.
  • the melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized.
  • the 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
  • the solution after the reaction is recovered as a used catalyst 26 by separating only the catalyst in the catalyst separation column 8 (fourth separation section) while being heated to 103 ° C. or higher, which is the melting point of 2-picolinamide, with low-pressure steam or the like. To do. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. After the catalyst separation, the boiling points of the substances present in the system are different from each other as described above. Therefore, by distilling in the third distillation column 9 (fifth separation part), 2-cyanopyridine 13, The organic solvent 27, 2-picolinamide 28 and water 29 can be easily separated, and the organic solvent 27 and 2-picolinamide 28 can be returned to the previous stage of the third reaction column 7 and recycled. . The purified 2-cyanopyridine 13 is transported to the first reaction column 1 where the carbonate ester is produced by the transport unit, and is reused in the first reaction column 1.
  • FIG. 3 shows another example of the preferred equipment of the present invention
  • FIG. 4 shows the state of each substance in each process in the equipment of FIG.
  • This equipment can also be used in the case of reaction conditions where unreacted monohydric alcohol remains and byproducts of methyl picolinate and methyl carbamate are generated.
  • the basic configuration is the same as in the case of FIG. 1 described above, but the extract 17 extracted in the first extraction tower 2 includes carbonate ester, unreacted 2-cyanopyridine, alkane, and monohydric alcohol. Contains methyl carbamate and methyl picolinate.
  • the boiling point of each substance in the first distillation column 3 is 90 ° C. (for example, dimethyl carbonate), 215 ° C.
  • the first reaction step in the method for producing a carbonate ester of the present invention involves directly reacting a monohydric alcohol and carbon dioxide in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and benzonitrile to produce carbonic acid. An ester is produced.
  • any alcohol selected from one or more of primary alcohol, secondary alcohol, and tertiary alcohol can be used, and methanol, ethanol, 1-propanol can be used.
  • methanol, ethanol, 1-propanol can be used.
  • Isopropanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, allyl alcohol, 2-methyl-1-propanol, cyclohexane methanol, benzyl alcohol This is preferable because the yield of the product is high and the reaction rate is fast.
  • the produced carbonates are dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, diheptyl carbonate, dioctyl carbonate, dinonane carbonate, diallyl carbonate, di-2-methyl-propyl carbonate, respectively.
  • dicyclohexane methyl carbonate and dibenzyl carbonate dibenzyl carbonate.
  • the solid catalyst of CeO 2 and ZrO 2, only CeO 2, only ZrO 2, a CeO 2 and mixtures of ZrO 2, or CeO 2 solid solution or a composite oxide of ZrO 2, in particular Only CeO 2 is preferred.
  • the CeO 2 and ZrO 2 solid solution or a composite oxide the mixing ratio of CeO 2 and ZrO 2 (molar ratio) is not particularly limited, for example, 1:99 to 99: it can be a 1, For example, the molar ratio may be 50:50.
  • the catalyst used for the direct synthesis of carbonic acid ester is required to have an acid-base complex function, and in particular, has a property of relatively low acidity and relatively high basicity. Is preferred. If the acidity is too high, it is not preferable because a large amount of ether is synthesized rather than carbonate.
  • alcohol is adsorbed in the form of HO—R... M, and RO—C ( ⁇ O) —OR is generated between both adsorbed species.
  • This solid catalyst also exhibits catalytic activity for the hydration reaction of water and benzonitrile by-produced during the synthesis of the carbonate ester. Therefore, although both carbonate synthesis reaction and hydration reaction proceed on the surface of this catalyst, the hydration reaction of benzonitrile does not occur even under low pressure conditions, which is unfavorably balanced for the synthesis reaction of carbonate ester.
  • the reaction proceeds under catalysis, and water generated as a by-product in the synthesis reaction of the carbonate ester is quickly eliminated from the catalyst surface, so that the equilibrium of the synthesis reaction of the carbonate ester shifts to the production system, and the mild reaction pressure is low.
  • benzonitrile is catalyzed by the solid catalyst in the present invention in the liquid phase, and the hydration reaction is promoted on the surface thereof. Therefore, when the pressure is increased, the surface of the solid catalyst is covered with CO 2 , and the hydration reaction rate is reduced because it becomes difficult to be catalyzed by the hydration reaction with water molecules generated in the main reaction. Inferred.
  • acetal and 2,2-dimethoxypropane described in Non-Patent Document 4 and Non-Patent Document 5 do not undergo any catalytic action in the liquid phase and cause a hydration reaction with water molecules generated in the main reaction. Therefore, since the main reaction proceeds predominantly at high pressure, it is presumed that the hydration reaction begins to occur under high pressure.
  • cerium oxide CeO 2
  • cerium acetylacetonate hydrate cerium hydroxide
  • cerium sulfate cerium acetate
  • cerium nitrate It can be prepared by firing various cerium compounds such as ammonium cerium nitrate, cerium carbonate, cerium oxalate, cerium perchlorate, cerium phosphate and cerium stearate in an air atmosphere.
  • cerium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere.
  • zirconium oxide ZrO 2
  • various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium oxide nitrate, zirconium sulfate, etc. It can be prepared by firing in an atmosphere.
  • zirconium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere.
  • it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing with water. It can be prepared by drying and firing in an air atmosphere. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
  • a solid catalyst made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods.
  • the solid catalyst according to the present invention may contain inevitable impurities mixed in the catalyst production process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • the impurities are preferably less than 1% by mass with respect to the catalyst.
  • the catalyst of the present invention may be in any form of powder or molded body, and in the case of a molded body, it may be any of spherical, pellet, cylinder, ring, wheel, granule, etc. .
  • carbon dioxide used in the present invention is not limited to those prepared as industrial gases, but can also be used that separated and recovered from exhaust gases from factories, steel mills, power plants, etc. that manufacture each product.
  • Solid-liquid separation Under the conditions where the conversion rate of monohydric alcohol is 100% and no by-products such as methyl benzoate and methyl carbamate are produced, the main product carbonate ester, by-product benzamide, unreacted It becomes a solid catalyst such as benzonitrile and CeO 2 .
  • a liquid component carbonate ester, benzonitrile
  • the organic solvent used here is preferably an alkane that can dissolve the carbonate, and more preferably hexane, octane, nonane, decane, and undecane.
  • the separated liquid component contains carbonate ester, benzonitrile, and organic solvent.
  • the melting point and boiling point of each substance are 4 ° C and 90 ° C (dimethyl carbonate), -43 °C and 128 °C (diethyl carbonate), -41 °C and 167 °C (dipropyl carbonate), 25 °C or less and 207 °C (dibutyl carbonate), -13 °C and 188 °C (benzonitrile), -95 °C And 69 ° C. (for example, hexane), the carbonate ester can be separated by distillation, and the product carbonate ester can be recovered with high purity. In addition to distillation, it is also possible to filter and recover what is solidified by cooling stepwise to below the melting point.
  • the benzamide and the solid catalyst separated as solid components can be separated from the solid catalyst and the filter by extracting only benzamide with a hydrophilic solvent.
  • the hydrophilic solvent used here is preferably acetone, ethanol, ether, or water in view of ease of handling and separation at a later stage.
  • the benzamide dissolved in the hydrophilic solvent can be separated by distillation, and the by-product benzamide can be purified with high purity.
  • the separated solid catalyst is regenerated in the step of regenerating the catalyst and can be reused in the first reaction step.
  • the catalyst regeneration step is a step of heating to burn off impurities etc. on the solid catalyst, and is preferably calcined at 400 to 700 ° C., more preferably at 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
  • the benzamide produced as a by-product in the first reaction step is separated from the system after the carbonic acid ester formation reaction, and then benzonitrile is produced by a dehydration reaction.
  • the second reaction step corresponds to the above-described method for producing benzonitrile.
  • benzamide is produced by dehydrating benzamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent.
  • the catalyst used in the present invention is generally an oxide (metal oxide) of a metal species (molybdenum, tungsten, rhenium, titanium, niobium) having a double bond between the metal and oxygen as a catalyst carrier.
  • a catalyst supported on a substance can be used, as a result of examining various supports, a catalyst composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C is used. It has been found that high performance is exhibited when a catalyst supported on a carrier is used.
  • any one or two or more catalyst carriers of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 because higher performance is exhibited. This is because, in the reaction with benzamide, it is considered that the double bond portion between the metal and oxygen may be active, and thus a metal element having a double bond is preferable among the metal oxides.
  • Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 .
  • the dry method includes a combustion method, an arc method, etc.
  • the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
  • cerium acetylacetonate hydrate and cerium hydroxide cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate
  • cerium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
  • zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are calcined in an air atmosphere.
  • zirconium oxide as a reagent it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
  • C is mainly composed of carbon and may be in any form as long as it does not change during the reaction period.
  • activated carbon is preferable, but it is not limited thereto.
  • a base is added to a solution containing two or more metal salts to form a hydroxide by coprecipitation, followed by filtration and washing in an air atmosphere.
  • it can prepare also by physically mixing and baking the powder of 2 or more types of oxides, since the homogeneity of the component of a final preparation does not become high, the coprecipitation method with which reaction progresses more is preferable.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere.
  • a solid catalyst carrier comprising a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2
  • the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable.
  • the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
  • the carrier selected from one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C can support active metal species in a highly dispersed manner as the surface area increases. This is preferable because the amount of nitrile produced is improved.
  • the surface area depends on the type of the carrier, but the surface area is preferably 10 m 2 / g or more as measured by the BET method.
  • a metal oxide that becomes an active species may be supported on a support by a known method.
  • a precipitation loading method using a general solution, for example, it can be loaded by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
  • the carrier is SiO 2
  • a commercially available powder or spherical SiO 2 can be used, and pre-baking is performed to adjust the particle size to 100 mesh (0.15 mm) or less and to remove moisture so that the active metal can be uniformly supported. It is preferable to carry out at 700 degreeC in air for 1 hour.
  • SiO 2 has various properties, it is preferable that the surface area is large because the active metal can be highly dispersed and the amount of benzonitrile produced is improved. Specifically, a surface area of 300 m 2 / g or more is more preferable.
  • the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is more preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more.
  • the metal salt that is the precursor of the metal oxide that becomes the active species only needs to have high solubility in various solvents.
  • Various compounds such as can be used.
  • the precursor solution of the metal compound After impregnating the precursor solution of the metal compound into the support, it can be used as a catalyst by drying and firing, and the firing temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
  • the amount of metal oxide supported may be set as appropriate.
  • the amount of metal oxide supported in terms of metal based on the total catalyst weight is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol. / G, preferably about 0.2 to 0.8 mmol / g.
  • the activity may be reduced due to the coarsening of the metal oxide.
  • what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
  • the catalyst according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above-mentioned elements, but it is desirable that impurities are not mixed as much as possible.
  • the catalyst supported on the carrier of the present invention may be in the form of a powder or a molded body.
  • a spherical shape, a pellet shape, a cylinder shape, a ring shape, a wheel shape, a granule Any shape may be used.
  • Organic solvent As the organic solvent used in the dehydration reaction, various substances having a boiling point of 130 ° C. or higher are preferably used. Among them, chlorobenzene, (o-, m-, p-) xylene, mesitylene, and the like are more preferably used, and in particular, mesitylene. Is preferred.
  • reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and the economy.
  • the reaction temperature may be 160 to 200 ° C.
  • the reaction pressure may be normal pressure
  • the reaction time may be several hours to 24 hours, but is not particularly limited thereto.
  • reaction format the method for producing benzonitrile using the catalyst of the present invention is not particularly limited as a reaction format, and is distributed as a batch reactor, a semi-batch reactor, a continuous tank reactor or a tubular reactor. Any of the type reactors may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the second reaction step of producing (regenerating) benzonitrile from the by-produced benzamide in the production method of the present invention it is carried out while removing the by-product water produced by the dehydration reaction, as in the step of producing carbonate ester.
  • a dehydrating agent such as zeolite
  • zeolite molecular sieve
  • calcium hydride was installed in the extraction tube as a dehydrating agent, and a catalyst, benzamide, and an organic solvent were placed in the reaction tube.
  • the amount of benzonitrile produced can be improved by reacting at normal pressure with reflux.
  • the type and shape of the molecular sieve used as the dehydrating agent are not particularly limited.
  • 3A, 4A, 5A, etc. which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
  • reaction product In the dehydration reaction of benzamide, benzoic acid may be produced as a by-product due to the decomposition of benzamide as described above. However, after the dehydration reaction using the catalyst of the present invention, a small amount of benzamide and product remained in the reaction product. There are only some benzonitriles, by-product water, and organic solvents, and these by-products are hardly produced.
  • the reaction temperature is preferably a condition under which the benzamide dehydration reaction is performed in a liquid phase. Considering the reaction efficiency, it is preferable that the temperature is higher under liquid phase conditions.
  • the reaction is performed under normal pressure, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C.
  • the melting point of each substance in a typical reaction system is 127 ° C. (benzamide), ⁇ 13 ° C. (benzonitrile), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C.
  • the benzonitrile regenerated in the second reaction step can be reused in the first reaction step.
  • the apparatus for producing carbonate ester using benzonitrile has substantially the same configuration as the apparatus for producing 2-cyanopyridine.
  • an apparatus for producing a carbonate ester using benzonitrile is such that 2-cyanopyridine and 2-picolinamide in FIG. 1 and the like are replaced with benzonitrile and benzamide. Therefore, in the following, an apparatus for producing a carbonate using benzonitrile will be described with reference to FIGS.
  • FIG. 1 is an example of a suitable facility of the present invention. Moreover, the state of each substance in each process in this equipment in FIG. 1 is shown in FIG. This equipment can be used in the case of reaction conditions in which the conversion rate of monohydric alcohol is 100% and byproducts of methyl benzoate and methyl carbamate are not generated.
  • first reaction step In the first reaction step, in the first reaction column 1 (first reaction section), one or both of the solid catalyst (solid phase) of CeO 2 and ZrO 2 , the monohydric alcohol 12 (liquid phase), Carbon dioxide (gas phase) is filled through the benzonitrile 13 (liquid phase) and the pressure booster 10 (pressure part).
  • a solid catalyst 14 solid phase newly charged before the reaction or regenerated in the regeneration tower 6 can be used.
  • a new benzonitrile is used at the start of the reaction, but the unreacted benzonitrile 20 (liquid phase) purified in the first distillation column 3 and the benzamide regenerated from the benzamide purified in the third distillation column 9 are used. Nitriles can be reused.
  • the carbon dioxide ester direct synthesis apparatus using the solid catalyst of either or both of CeO 2 and ZrO 2 of the present invention is a batch reactor, a semi-batch reactor, a continuous tank reactor, a tube type, or the like. Any flow reactor such as a reactor may be used.
  • the reaction temperature in the first reaction column 1 is preferably 50 to 300 ° C.
  • the reaction temperature is less than 50 ° C., the reaction rate is low, the carbonate ester synthesis reaction and the hydration reaction with benzonitrile hardly proceed, and the carbonate ester productivity tends to be low.
  • the reaction temperature exceeds 150 ° C., the reaction rate of each reaction increases, but decomposition and modification of the carbonate ester, and benzamide easily react with the monohydric alcohol, so that the yield of the carbonate ester tends to decrease. is there. More preferably, it is 100 to 150 ° C.
  • this temperature is considered to vary depending on the type and amount of the solid catalyst and the amount and ratio of the raw materials (monohydric alcohol and benzonitrile), it is desirable to appropriately set the optimum conditions. Since the preferred reaction temperature is 100 to 150 ° C., it is desirable to preheat the raw material (monohydric alcohol, benzonitrile) with steam or the like before the first reaction column.
  • the reaction pressure is preferably 0.1 to 5 MPa (absolute pressure).
  • a pressure reducing device is required, and not only the equipment is complicated and expensive, but also the motive energy for reducing the pressure is required, resulting in poor energy efficiency.
  • the reaction pressure exceeds 5 MPa, the hydration reaction by benzonitrile is difficult to proceed and not only the yield of the carbonate ester is deteriorated, but also the kinetic energy necessary for pressurization is required and the energy efficiency is deteriorated.
  • the reaction pressure is more preferably 0.1 to 4 MPa (absolute pressure), and further preferably 0.2 to 2 MPa (absolute pressure).
  • the benzonitrile used for the hydration reaction is preferably introduced into the reactor in advance at a rate of 0.1 to 1 times the volume of the starting alcohol prior to the reaction. If it is introduced at less than 0.1 times, the yield of the carbonate ester may be deteriorated because there is little benzonitrile contributing to the hydration reaction. On the other hand, when it is introduced more than 1 time, there is no particular problem because it can be easily separated from the product after the completion of the reaction and reused.
  • the amount of monohydric alcohol and benzonitrile with respect to the solid catalyst is considered to vary depending on the type and amount of the solid catalyst, the type of monohydric alcohol and the ratio with benzonitrile, and therefore it is desirable to appropriately set optimum conditions.
  • reaction product separation The reaction liquid 15 after the reaction in the first reaction tower 1 is separated into a liquid phase and a solid phase in the first extraction tower 2 (first separation section).
  • the substances contained in the reaction solution 15 are carbonate ester (liquid phase), unreacted benzonitrile (liquid phase), benzamide (solid phase), and solid catalyst (solid phase), and are extracted with an organic solvent (liquid phase).
  • Alkane is suitable for the organic solvent used here, and hexane, octane, nonane, decane, and undecane are preferable from the viewpoint of ease of separation by distillation in the subsequent stage.
  • the extraction process in the first extraction column 2 is preferably performed at room temperature, but the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
  • the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
  • the extract 17 extracted in the first extraction tower 2 contains carbonate ester, unreacted benzonitrile, and alkane. Utilizing that the boiling point of each substance is 90 ° C. (for example, dimethyl carbonate), 188 ° C. (benzonitrile), 69 ° C. (for example, hexane) in the first distillation column 3 (second separation section). The product is then distilled and separated into the product carbonate 19, unreacted benzonitrile 20, and alkane 16 used for extraction.
  • the boiling point of each substance is 90 ° C. (for example, dimethyl carbonate), 188 ° C. (benzonitrile), 69 ° C. (for example, hexane) in the first distillation column 3 (second separation section).
  • the product is then distilled and separated into the product carbonate 19, unreacted benzonitrile 20, and alkane 16 used for extraction.
  • the solid phase 18 separated in the first extraction tower 2 contains benzamide and a solid catalyst, and is separated in the second extraction tower 4 (third separation section).
  • a hydrophilic solvent liquid phase capable of dissolving benzamide is suitable, and acetone, ethanol, ether, and water are preferable because they are easily separated by distillation at a later stage.
  • the extraction step in the second extraction tower 4 is also preferably performed at room temperature for extraction in order to suppress energy consumption. However, the temperature is lower than the boiling point of the hydrophilic solvent (for example, in the case of acetone, the boiling point is 56.56). If it is 5 [deg.] C. and heated to about 40 [deg.] C.), the extraction time can be shortened by heating.
  • the extract 21 containing benzamide and a hydrophilic solvent is distilled in the second distillation column 5, and the boiling point of each substance is separated into 127 ° C. (benzamide) and 57 ° C. (for example, in the case of acetone).
  • the solid catalyst 22 (solid phase) separated by the second extraction tower 4 can be regenerated by the catalyst regeneration tower 6 and returned to the first reaction tower 1.
  • the catalyst regeneration is a step of heating to burn off impurities on the solid catalyst, and is fired at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
  • the benzamide 23 (solid phase) purified in the second distillation column 5 is transferred to the second reaction column 7 (second reaction part) for regeneration to benzonitrile, but in order to avoid blockage in the piping.
  • the piping is preferably heated to 127 ° C. or higher, which is the melting point, with low pressure steam or the like.
  • the solution after the reaction can be recovered as a used catalyst 26 by separating only the solid catalyst by filtering with a filter in the catalyst separation device 8. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. Since the boiling point of each substance present in the system is different as described above after the catalyst separation, it can be easily separated into benzonitrile, organic solvent, benzamide, and water by distillation. The organic solvent 27 and the benzamide 28 can be recycled for the dehydration reaction of benzamide. The purified benzonitrile 13 can be reused in a reaction for producing a carbonate ester.
  • the production apparatus of the present invention is an apparatus for producing benzonitrile by dehydrating benzamide in the presence of a catalyst supporting a metal oxide having a double bond and an organic solvent.
  • the reaction format is not particularly limited, and any of a batch reactor, a semi-batch reactor, a flow reactor such as a continuous tank reactor and a tubular reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
  • the temperature of the second reaction column can be changed according to the reaction mode, but in the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is preferably heated to 160 to 200 ° C.
  • a dehydrating agent such as reflux, distillation or zeolite is installed in the system to remove the by-product water. It is desirable to carry out the reaction.
  • zeolite molecular sieve
  • calcium hydride a catalyst, benzamide, and an organic solvent were placed in the reaction tube.
  • the amount of benzonitrile produced can be improved by reacting at normal pressure with reflux.
  • the organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like.
  • the periphery of the reaction tube is heated to 160 to 200 ° C.
  • the melting point of each substance is 127 ° C. (benzamide), ⁇ 13 ° C. (benzonitrile), ⁇ 45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C. (benzamide), 188 ° C. (benzonitrile), Since the reaction phase is 100 ° C. (water) and 165 ° C.
  • the reaction phase is all liquid except for the solid catalyst, and partially evaporated benzamide, by-product water, Cooled by a cooler, by-product water is adsorbed by a dehydrating agent, and benzamide and the organic solvent return to the reaction tube and contribute to the reaction again.
  • organic solvent such as mesitylene
  • the solution after the reaction is recovered as a used catalyst 26 by separating only the catalyst in the catalyst separation tower 8 (fourth separation section) while being heated to 288 ° C. or higher, which is the melting point of benzamide, with low-pressure steam or the like. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. After the catalyst separation, the boiling point of each substance present in the system is different as described above. Therefore, by distilling in the third distillation column 9 (fifth separation section), the benzonitrile 13 and the organic solvent are separated. 27, benzamide 28, and water 29 can be easily separated, and the organic solvent 27 and benzamide 28 can be returned to the previous stage of the third reaction column 7 and recycled. Further, the purified benzonitrile 13 is transported to the first reaction column 1 where the carbonate is produced by the transport unit, and is reused in the first reaction column 1.
  • FIG. 3 shows another example of the preferred equipment of the present invention
  • FIG. 4 shows the state of each substance in each process in the equipment of FIG.
  • This equipment can also be used in the case of reaction conditions in which unreacted monohydric alcohol remains and by-products of methyl benzoate and methyl carbamate are generated.
  • the basic configuration is the same as in the case of FIG. 1 described above, but the extract 17 extracted in the first extraction tower 2 includes carbonate, unreacted benzonitrile, alkane, methyl carbamate and benzoic acid. Contains methyl acid.
  • the boiling point of each substance in the first distillation column 3 is 90 ° C. (for example, dimethyl carbonate), 215 ° C.
  • methyl benzoate having a melting point of 103 ° C., so that it can be separated into solid and liquid with the filter 30 or the like, and unreacted benzonitrile 20, It can be separated into methyl benzoate 31.
  • the mixture 33 of alkane and monohydric alcohol is mostly alkane, it can be reused as a solvent for extraction.
  • Example and comparative example of the manufacturing method of cyanopyridine are demonstrated.
  • Example 1 SiO 2 as a carrier (manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in order to carry the Na as the alkali metal, finally Na 2 CO 3 as Na amount of metal supported is 0.5 mmol / g (manufactured by Kanto Kagaku, special grade) was used to adjust the aqueous solution, SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O / SiO 2 catalyst.
  • a magnetic stir bar, the above catalyst (0.1 g), 2-picolinamide (2-PA, 1 mmol), and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (preliminarily dried at 300 ° C. for 1 hour).
  • a filled Soxhlet extractor and Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm.
  • the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 24 hours.
  • test tube solution
  • 20 ml of ethanol and anthracene 0.1 g as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC.
  • GC-MS gas chromatograph-mass spectrometer
  • Example 2 Is similar to Example 1, the catalyst preparation, eventually Li metal support amount 0.5 mmol / g and composed as Li 2 CO 3 (manufactured by Kanto Kagaku, special grade) to adjust the aqueous solution with, SiO 2 was impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Li 2 O / SiO 2 catalyst.
  • 2-CP was produced from 2-PA in the same manner as in Example 1 except that a Li 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.43 mmol of 2-CP was produced. By-product was only water, yield was 43%, and selectivity was 100%.
  • Example 3 As in Example 1, but in the catalyst preparation, an aqueous solution was prepared using K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the amount of supported K metal was 0.5 mmol / g, and SiO 2 It was impregnated to 2. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain K 2 O / SiO 2 catalyst. 2-CP was produced from 2-PA in the same manner as in Example 1 except that a K 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.42 mmol of 2-CP was produced. The byproduct was only water, yield was 42%, and selectivity was 100%.
  • K 2 CO 3 manufactured by Kanto Chemical Co., Ltd., special grade
  • Example 4 Is similar to Example 1, the catalyst preparation, finally Rb amount of metal supported is adjusted aqueous solution using a Rb 2 CO 3 (manufactured by Kanto Chemical) as a 0.5 mmol / g, the SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain Rb 2 O / SiO 2 catalyst.
  • 2-CP was produced from 2-PA in the same manner as in Example 1 except that the Rb 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.43 mmol of 2-CP was produced. By-product was only water, yield was 43%, and selectivity was 100%.
  • Example 5 Although it is the same as that of Example 1, in the catalyst preparation, the aqueous solution was adjusted using Cs 2 CO 3 (manufactured by Kanto Chemical Co., 4N) so that the Cs metal loading was finally 0.5 mmol / g, and SiO 2 2 was impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain Cs 2 O / SiO 2 catalyst. Cs but using 2 O / SiO 2 catalyst was prepared 2-CP from 2-PA as in Example 1. As a result, as shown in Table 1, 0.45 mmol of 2-CP was produced. The byproduct was only water, yield was 45%, and selectivity was 100%.
  • Cs 2 CO 3 manufactured by Kanto Chemical Co., 4N
  • Example 6 As in Example 1, but in the catalyst preparation, Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) and K are used so that the total amount of Na metal loading and K metal loading is finally 0.5 mmol / g.
  • 2 CO 3 manufactured by Kanto Chemical Co., Ltd., special grade
  • the molar ratio was changed to prepare an aqueous solution, and SiO 2 was impregnated. Thereafter, it was dried at 110 ° C. for about 6 hours and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O—K 2 O / SiO 2 catalyst.
  • 2-CP was produced from 2-PA in the same manner as in Example 1 except that a Na 2 O—K 2 O / SiO 2 catalyst was used.
  • 2-CP was produced at any molar ratio, the byproduct was only water, the yield was 41 to 43%, and the selectivity was 100%. From the above results, it was found that the amount of alkali metal used can be changed according to the market price.
  • Example 1 (Comparative Example 1) Example 1 except that only SiO 2 (Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) preliminarily calcined at 700 ° C. for about 1 hour was used as the catalyst. And so on. As a result, as shown in Table 3, 2-CP produced only 0.03 mmol and was very low in activity.
  • Example 2 The same procedure as in Example 1 was performed except that 1 mmol of Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-CP was not generated at all.
  • Example 3 The same procedure as in Example 1 was performed except that 1 mmol of Li 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-0.01 produced 2-CP only.
  • Example 4 The same procedure as in Example 1 was conducted except that 1 mmol of K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-CP was not generated at all.
  • Example 5 The same procedure as in Example 1 was carried out except that 1 mmol of Rb 2 CO 3 (manufactured by Kanto Chemical) was used as the catalyst. As a result, as shown in Table 3, 2-CP was hardly generated.
  • Example 6 The same procedure as in Example 1 was performed except that 1 mmol of Cs 2 CO 3 (manufactured by Kanto Chemical Co., 4N) alone was used as the catalyst. As a result, as shown in Table 3, 2-CP produced only 0.01 mmol, and its activity was very low. From the above results, it was found that a catalyst having an alkali metal oxide supported on a SiO 2 carrier is effective.
  • Example 7 In the catalyst preparation, the final amount of Na metal supported was as shown in Table 4, and 5 mmol of 2-picolinamide (PA) was introduced, and the reaction time was 4 hours. The results are shown in Table 4.
  • the amount of Na supported was high at 0.1 to 1 mmol / g, and about 0.5 mmol / g was particularly suitable.
  • Example 8 In the catalyst preparation, Examples were used except that CeO 2 (manufactured by 1st rare element, HS, surface area: 74 m 2 / g) was sized to 100 mesh or less and pre-fired at 500 ° C. for about 3 hours. Same as 5. As a result, as shown in Table 5, 0.11 mmol of 2-CP was produced. The byproduct was only water, yield was 11%, and selectivity was 100%.
  • Example 9 In the preparation of the catalyst, the same procedure as in Example 5 was performed except that ZrO 2 (manufactured by the first rare element, surface area: 88 m 2 / g) was sized to 100 mesh or less and used without preliminary firing. As a result, as shown in Table 5, 0.10 mmol of 2-CP was produced. The byproduct was only water, yield was 10%, and selectivity was 100%.
  • Example 10 In the catalyst preparation, for using the CeO 2 -ZrO 2 solid solution as a carrier, Ce (NO 3) 3 (manufactured by Kanto Chemical Co., Inc.) and Zr (NO 3) 4 dissolved (manufactured by Kanto Chemical) and so Ce is 20 atomic weight% An aqueous NaOH solution was introduced into the resulting solution to form a precipitate, which was filtered, washed with water, fired at 1000 ° C. in an air atmosphere for 3 hours, and then powdered solid solution (surface area: 65 m 2 / g ) This solid solution was sized to 100 mesh or less, and the same procedure as in Example 5 was used except that a pre-baked product was used at 500 ° C. for about 3 hours. As a result, as shown in Table 5, 0.11 mmol of 2-CP was produced. The byproduct was only water, yield was 11%, and selectivity was 100%.
  • Example 11 Example 1 was repeated except that 5 mmol of 2-picolinamide (2-PA) as a reaction product was introduced and the reaction time was as shown in Table 6. The results are shown in Table 6.
  • Example 12 Except for using o-xylene, m-xylene and p-xylene as solvents, the reaction was carried out under the same conditions as in Example 1 to produce 2-CP from 2-PA. As a result, as shown in Table 4, a certain amount of 2-CP was produced with any carrier.
  • Example 13 The reaction was carried out under the same conditions as in Example 1 except that nicotinamide and isonicotinamide were used as reactants instead of 2-PA, and 3-cyanopyridine (3-CP), 4-cyanopyridine (4-CP) ) was manufactured.
  • nicotinamide and isonicotinamide were used as reactants instead of 2-PA
  • 3-cyanopyridine 3-cyanopyridine
  • 4-cyanopyridine 4-cyanopyridine
  • Example 14 examples and comparative examples of benzonitrile will be described.
  • SiO 2 as a carrier manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g
  • SiO 2 as a carrier manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g
  • an aqueous solution was prepared using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Kagaku, special grade) so that the Mo support amount was finally 0.5 mmol / g. And impregnated with SiO 2 .
  • a magnetic stir bar the above catalyst (0.1 g), benzamide (hereinafter referred to as BA. 20 mmol), and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (pre-dried at 300 ° C. for 1 hour) was filled.
  • the Soxhlet extractor and Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm.
  • the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 24 hours.
  • test tube solution
  • 20 ml of ethanol and anthracene 0.1 g as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC.
  • BN benzonitrile
  • Example 15 Similar to Example 14, but in the catalyst preparation, an aqueous solution was used using (NH 4 ) 6 W 12 O 41 (manufactured by Kanto Chemical Co., Ltd., deer grade 1) so that the final W loading was 0.5 mmol / g. Was prepared and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain WO 3 / SiO 2 catalyst.
  • BN was produced from BA in the same manner as in Example 14 except that a WO 3 / SiO 2 catalyst was used. As a result, as shown in Table 9, 3 mmol of BN was generated. By-product was only water, yield was 15%, and selectivity was 100%.
  • Example 16 As in Example 14, but in the catalyst preparation, the aqueous solution was adjusted using NH 4 ReO 4 (manufactured by Mitsuwa Chemicals) so that the final amount of Re supported was 0.5 mmol / g, and SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Re 2 O 7 / SiO 2 catalyst.
  • Benzonitrile (BN) was produced from benzamide (BA) in the same manner as in Example 14 except that the Re 2 O 7 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
  • Example 17 As in Example 14, except that in the catalyst preparation, an aqueous solution was prepared using TiCl 3 (manufactured by Kanto Chemical Co., Ltd., deer grade 1) so that the Ti loading amount was finally 0.5 mmol / g, and the SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a TiO 2 / SiO 2 catalyst.
  • BN was produced from BA in the same manner as in Example 14 except that a TiO 2 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
  • Example 18 As in Example 14, but in the catalyst preparation, (NH 4 ) 3 (NbO (C 2 O 4 ) 3 ) (manufactured by Sigma-Aldrich, so that the Nb supported amount is finally 0.5 mmol / g, The aqueous solution was prepared using 4N) and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Nb 2 O 5 / SiO 2 catalyst. BN was produced from BA in the same manner as in Example 14 except that the Nb 2 O 5 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
  • SiO 2 manufactured by Fuji Silysia, CARiACT, G-3, surface area: 700 m 2 / g
  • SiO 2 was impregnated using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the Mo loading amount finally became as shown in Table 10.
  • BN was produced from BA in the same manner as in Example 14 except that the supported amount of the MoO 3 / SiO 2 catalyst was changed. As a result, as shown in Table 10, at any molar ratio, BN is generated, the byproduct is only water, and the amount of generation increases as the amount of Mo loaded increases, but there is a tendency to saturate above a certain level. It was.
  • Example 20 Carrier TiO 2 (manufactured by Nippon Aerosil Co., P25, surface area: 50m 2 / g), ZrO 2 ( Daiichi Kigenso made, surface area: 88m 2 / g), CeO 2 ( Daiichi Kigenso made, surface area: 74m 2 / g), Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd., KHO, surface area: 10 m 2 / g), carbon black (manufactured by Cabot, Vulcan, XC-72, surface area: 254 m 2 / g), and the amount of supported Mo is 0.
  • Each support was impregnated with (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Chemical Co., Ltd., special grade) so as to be 19 mmol / g.
  • BN was produced from BA in the same manner as in Example 14 using the catalyst thus prepared. As a result, as shown in Table 11, a fixed amount of BN was produced with any carrier.
  • Example 21 Except for using o-xylene, m-xylene, p-xylene and chlorobenzene as the solvent, the reaction was carried out under the same conditions as in Example 14 to produce BN from BA. As a result, as shown in Table 12, a fixed amount of BN was produced with any carrier.
  • Example 22 Evaluation was performed in the same manner as in Example 14 except that no dehydrating agent was used. As a result, after the reaction for 24 hours, the yield was 10% and the selectivity was almost 100%.
  • Example 14 The same procedure as in Example 14 was performed, except that only MgO (sized by Ube Industries, 500A, surface area: 28 m 2 / g) which had been sized to 100 mesh or less and pre-fired at 700 ° C. for about 1 hour was used as the catalyst. As a result, BN was not generated at all.
  • MgO sized by Ube Industries, 500A, surface area: 28 m 2 / g
  • Example 23 Next, the Example of the manufacturing method of carbonate ester using cyanopyridine is demonstrated.
  • Carbonate was produced using the production apparatus shown in FIG. CeO 2 (manufactured by the first rare element: impurity concentration of 0.02% or less) was calcined at 873 K in an air atmosphere for 3 hours to obtain a powdered solid catalyst. Therefore, a magnetic stirrer, the above solid catalyst (1 mmol), methanol (100 mmol) and 2-cyanopyridine (2-CP, 50 mmol) were introduced into a 190 ml autoclave (reactor), and about 5 g of CO 2 in the autoclave. After purging air three times, a predetermined amount of CO 2 was introduced and pressurized.
  • the autoclave was heated to 120 ° C. with a band heater and a hot stirrer, and the time when the target temperature was reached was defined as the reaction start time. After reacting at 120 ° C. for 12 hours, the autoclave was cooled with water, and after cooling to room temperature, the pressure was reduced and 0.2 mL of 1-hexanol as an internal standard substance was added, and the product was collected and analyzed by GC (gas chromatography). . In this way, test Nos. Shown in Table 13 were performed by changing the amount of CO 2 introduced and the reaction pressure. 37-40 experiments were performed.
  • DMC dimethyl carbonate
  • the liquid includes DMC, 2-CP, methanol, and hexane
  • the solid includes 2-PA and CeO 2 .
  • the liquid component after solvent extraction with hexane can be separated into DMC, 2-CP, hexane and methanol by distillation that gradually increases the temperature to about 120 ° C., and DMC with a purity of 96% or more can be recovered. It was.
  • 2-PA and CeO 2 in the solid component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
  • SiO 2 as a carrier manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g
  • SiO 2 Impregnated was used to adjust the aqueous solution, SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C.
  • a magnetic stir bar for about 3 hours to obtain a Na 2 O / SiO 2 catalyst. Therefore, a magnetic stir bar, the above catalyst (0.1 g), 2-PA produced as a byproduct of DMC generation, and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (pre-dried at 300 ° C. for 1 hour) was filled. A Soxhlet extractor and a Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm.
  • the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 500 hours.
  • the test tube (solution) is cooled to room temperature, 20 ml of ethanol and anthracene (0.1 g) as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC.
  • GC-MS gas chromatograph-mass spectrometer
  • Liquids include 2-CP, water, unreacted 2-PA, and mesitylene. This liquid component is separated into 2-CP, water, unreacted 2-PA, and mesitylene by distillation that gradually increases the temperature to about 180 ° C., and 2-CP having a purity of 98% or more is recovered. I was able to. The separated unreacted 2-PA and mesitylene can be recycled again for 2-PA dehydration reaction.
  • a second DMC production reaction was performed using 2-CP regenerated in this way.
  • the reaction conditions were the same, and a small amount of new 2-CP was added to 2-CP that was regenerated and 2-CP that had not been reacted in the first reaction, so that the amount of 2-CP was 50 mmol. did.
  • the amount of 2-CP was 50 mmol. did.
  • DMC was obtained in a high yield, and the amount of 2-PA produced as a by-product was almost the same as DMC, and other by-products were not detected at all. There wasn't.
  • Example 24 Example 23 was repeated except that ethanol (100 mmol) was used as a monohydric alcohol.
  • Liquids, DEC, 2-CP, ethanol, hexane, the solid include 2-PA and CeO 2.
  • the liquid component after solvent extraction with hexane can be separated into DEC, 2-CP, hexane and ethanol by distillation that gradually increases the temperature to about 130 ° C, and DEC with a purity of 96% or more can be recovered. It was.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
  • each liquid and solid was separated in the same manner as in Example 1, and 2-CP having a purity of 98% or more could be recovered.
  • Example 25 The same procedure as in Example 23 was performed except that 1-propanol (100 mmol) was used as the monohydric alcohol and the reaction was performed for 24 hours.
  • Example 23 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid.
  • the liquid contains DPrC, 2-CP, 1-propanol and hexane, and the solid contains 2-PA and CeO 2 .
  • the liquid component after solvent extraction with hexane is separated into DPrC, 2-CP, hexane, and 1-propanol by distillation that gradually increases the temperature to about 170 ° C., and DPrC having a purity of 96% or more is recovered. I was able to.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation.
  • 2-PA having a purity of 97% or more was recovered.
  • regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 1.
  • test no. When 45 to 48 were carried out, 2-CP was produced at 9.5, 12.2, 15.4 and 21.4 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
  • each liquid and solid was separated in the same manner as in Example 1, and 2-CP having a purity of 98% or more could be recovered.
  • Example 26 Example 23 was repeated except that 2-propanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 23 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid.
  • the liquid includes DiPrC, 2-CP, 2-propanol, and hexane
  • the solid includes 2-PA and CeO 2 .
  • the liquid component after solvent extraction with hexane is separated into DiPrC, 2-CP, hexane, and 2-propanol by distillation that gradually increases the temperature to about 170 ° C., and DiPrC having a purity of 96% or more is recovered. I was able to.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
  • each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
  • Example 27 Example 23 was repeated except that 1-butanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 23 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid.
  • the liquid contains DBtC, 2-CP, 1-butanol and hexane, and the solid contains 2-PA and CeO 2 .
  • the liquid component after solvent extraction with hexane first separates hexane and 1-butanol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. As a result, DBC having a purity of 96% or more was recovered.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation.
  • the 2-PA having a purity of 97% or more was recovered.
  • each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
  • Example 28 The same procedure as in Example 23 was performed except that allyl alcohol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 23 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid.
  • the liquid contains DAC, 2-CP, allyl alcohol, and hexane, and the solid contains 2-PA and CeO 2 .
  • the liquid component after solvent extraction with hexane first separates hexane and allyl alcohol by distillation that gradually increases the temperature to about 120 ° C, and then cools to about 0 ° C to precipitate 2-CP. As a result, DAC having a purity of 96% or more was recovered.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation.
  • the 2-PA having a purity of 97% or more was recovered.
  • each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
  • Example 29 The same procedure as in Example 23 was performed except that benzyl alcohol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • the yield of DBnC based on benzyl alcohol is 13.0% at 0.08 MPa, 16.6% at 0.2 MPa, 16.6% at 1 MPa, and 1 MPa at the time of dibenzyl carbonate (DBnC). It was confirmed that it was obtained at 31.8% at 21.8% and 5 MPa. The amount of 2-PA produced as a by-product was almost the same as that of DBnC, and no other by-products were detected.
  • Liquids, DBnC, 2-CP, benzyl alcohol, hexane, the solid, include 2-PA and CeO 2.
  • the liquid component after solvent extraction with hexane first separates hexane and benzyl alcohol by distillation that gradually increases the temperature to about 120 ° C, and then cools to about 0 ° C to precipitate 2-CP.
  • DBnC having a purity of 96% or higher was recovered.
  • 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation.
  • the 2-PA having a purity of 97% or more was recovered.
  • each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
  • Example 30 In the catalyst preparation in reproduction from the recovered 2-PA to 2-CP, the other catalyst was a Li 2 O / SiO 2, K 2 O / SiO 2, Rb 2 O / SiO 2, Cs 2 O / SiO 2 Is the same test No. as in Example 23. 65-72 was performed.
  • the catalyst carrier described above was used, and the catalyst was supported on the catalyst carrier according to the method described above.
  • Example 31 In the catalyst preparation in the regeneration from the recovered 2-PA to 2-CP, Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd.) so that the total amount of the Na metal loading and the K metal loading is finally 0.5 mmol / g. , Special grade) and K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) were used to adjust the aqueous solution by changing the molar ratio and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O-K 2 O / SiO 2 catalyst.
  • Na 2 CO 3 manufactured by Kanto Chemical Co., Ltd.
  • Example 23 As in Example 23, except that a Na 2 O—K 2 O / SiO 2 catalyst was used, NO. 73-80 tests were conducted. As a result, as shown in Table 21, 2-CP was produced at any molar ratio, the by-product was only water, the yield was around 90%, and the selectivity was 100%. From the above results, it was found that the amount of alkali metal used can be changed according to the market price.
  • Example 32 In the catalyst preparation in the regeneration from recovered 2-PA to 2-CP, NO is the same as in Example 23 except that the final amount of supported Na metal is as shown in Table 22 and the reaction pressure is only 1 MPa. . 81-88 tests were conducted. As a result, as shown in Table 22, it was found that Na supported amount showed high activity at 0.1 to 1 mmol, and about 0.5 mmol was a suitable supported amount. On the other hand, it is confirmed that when the loading amount is too large, the activity is lowered. This is because the structure of the SiO 2 carrier is changed due to the loading of a large amount of Na oxide, and the surface area is greatly reduced. It was assumed that the oxide was also a large aggregate.
  • Na 2 O / SiO 2 catalyst was used in the regeneration reaction from 2-PA to 2-CP, but any of Li, Na, K, Rb, and Cs was used as the alkali metal.
  • One or two of these are prepared by adjusting the aqueous solution so that the final concentration is 0.5 mmol / g, then impregnating with SiO 2 , drying at 110 ° C. for about 6 hours, and baking at 500 ° C. for about 3 hours. Even when a catalyst was used, the same effect was obtained.
  • CeO 2 , ZrO 2 , or CeO 2 —ZrO 2 was used in addition to SiO 2 .
  • Example 23 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid.
  • the liquid contains DMC, unreacted AN, methanol, and hexane, and the solid contains AA and CeO 2 . Since the liquid component after solvent extraction with hexane has a melting point and boiling point of AN of -45 ° C and 82 ° C, respectively, DMC and AN cannot be separated by distillation, so it is once cooled to -30 to 0 ° C It is possible to separate the precipitated DMC.
  • a mixture of methanol and hexane and unreacted AN can be separated.
  • the unreacted AN can be reused for the DMC formation reaction. Since the concentration of methanol contained in the mixture is high, it is difficult to reuse it as a solvent for extraction, and it is necessary to dispose of it.
  • AA and CeO 2 in the fixed component are dissolved in 100 ml of acetone and filtered through a filter to separate CeO 2 , AA and acetone, and AA and acetone are separated by distillation heated to about 70 ° C. As a result, AA having a purity of 95% or more was recovered.
  • the second DMC formation reaction was performed by adding new AN to the unreacted AN so that the amount of AN was 300 mmol.
  • the reaction was conducted in the same manner as in Example 23 except that the reaction was performed at 150 ° C. for 24 hours.
  • the amount of DMC produced was reduced to about 1/10 compared to the case of 2-CP, and the DMC yield based on methanol was the highest at 8.0% at 0.5 MPa. It became.
  • Test NO. 2 was conducted under the same conditions as in Example 23 except that the regeneration step from 2-PA to 2-CP and the separation step after the regeneration step were not performed. 92 and 93 were performed. As a result, DMC with a purity of 96% or more and 2-PA with a purity of 97% or more could be recovered, but 2-PA had almost no use and was treated as industrial waste. In addition, the second DMC production reaction newly required at least 29.2 or 42.0 mmol of 2-CP, leading to an increase in raw material costs.
  • Example 33 In catalyst preparation by regeneration from recovered 2-PA to 2-CP, CeO 2 (manufactured by 1st rare element, HS, surface area: 74 m 2 / g) is sized to 100 mesh or less at a carrier, and about 500 ° C. The same material as Example 30 (NO. 71) was used after pre-baking for 3 hours. As a result, 3.3 mmol of 2-CP was produced as shown in Table 27 (NO. 102). The byproduct was only water, yield was 11.2%, and selectivity was 100%.
  • Example 34 In catalyst preparation by regeneration from recovered 2-PA to 2-CP, ZrO 2 (manufactured by Daiichi Rare Element, HS, surface area: 88 m 2 / g) is sized to 100 mesh or less on the support, and about 500 ° C.
  • the same material as Example 30 (NO. 71) was used after pre-baking for 3 hours.
  • Table 27 (NO. 103) 3.0 mmol of 2-CP was produced.
  • the byproduct was only water, yield was 10.2%, and selectivity was 100%.
  • Example 35 Ce (NO 3 ) 3 (manufactured by Kanto Chemical Co., Ltd.) and Zr (NO 3 ) 4 (Kanto) are used in the catalyst preparation in the regeneration from the recovered 2-PA to 2-CP, because CeO 2 —ZrO 2 solid solution is used as a support.
  • (Chemical) was dissolved in a solution of Ce at 20 atomic% to introduce an aqueous NaOH solution to form a precipitate. The precipitate was filtered and washed with water at 1000 ° C. in an air atmosphere for 3 hours. After firing, a powdered solid solution (surface area: 65 m 2 / g) was obtained. This solid solution was sized to 100 mesh or less, pre-baked at 500 ° C. for about 3 hours, and the same as in Example 30 (NO. 71). As a result, 3.2 mmol of 2-CP was produced as shown in Table 27 (NO. 104). The byproduct was only water, yield was 10.8%, and selectivity was 100%.
  • Example 36 In the recovery step from recovered 2-PA to 2-CP, the same procedure as in Example 1 was performed except that o-xylene (20 ml) was used instead of mesitylene as the organic solvent and the reaction pressure was only 1 MPa. As a result, as shown in Table 28 (NO. 105), 9.5 mmol of 2-CP was produced. By-product was only water, yield was 32.2%, and selectivity was 100%.
  • Carbonate ester was produced using the production apparatus shown in FIG. CeO 2 (manufactured by the first rare element: impurity concentration of 0.02% or less) was calcined at 873 K in an air atmosphere for 3 hours to obtain a powdered solid catalyst. Therefore, a magnetic stirrer, the solid catalyst (1 mmol), methanol (100 mmol) and benzonitrile (BN, 50 mmol) were introduced into a 190 ml autoclave (reactor), and the air in the autoclave was blown 3 times with about 5 g of CO 2.
  • DMC dimethyl carbonate
  • BA by-product benzamide
  • BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
  • SiO 2 as a carrier manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g
  • SiO 2 as a carrier was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour.
  • an aqueous solution is prepared using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Kagaku, special grade) so that the amount of Mo metal supported is finally 0.5 mmol / g. and it was impregnated in SiO 2. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C.
  • test tube solution
  • 20 ml of ethanol and anthracene 0.1 g as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC.
  • Table 29 the test No.
  • BN was produced in a proportion of 1.5 mmol, 2.6 mmol, 3.3 mmol, 5.1 mmol, 6.3 mmol, 6.0 mmol, and 3.5 mmol, respectively.
  • water was the only byproduct, yield was about 90%, and selectivity was almost 100%.
  • the solid-liquid coexisting substance after the above test was filtered with a filter under heating at 120 ° C. to separate the liquid and the solid (catalyst).
  • the liquid includes BN, water, unreacted BA, and mesitylene.
  • This liquid component was separated into BN, water, unreacted BA, and mesitylene by distillation that gradually increased the temperature to about 180 ° C., and BN having a purity of 98% or more could be recovered.
  • the separated unreacted BA and mesitylene can be recycled again for the dehydration reaction of BA.
  • Example 38 Example 37 was repeated except that ethanol (100 mmol) was used as a monohydric alcohol.
  • Example 37 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid.
  • the liquid includes DEC, BN, ethanol, and hexane
  • the solid includes BA and CeO 2 .
  • the liquid component after solvent extraction with hexane was separated into DEC, BN, hexane and ethanol by distillation that gradually increased the temperature to about 130 ° C., and DEC having a purity of 96% or more could be recovered.
  • BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
  • each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
  • Example 39 The same procedure as in Example 37 was performed, except that 1-propanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 37 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid.
  • the liquid includes DPC, BN, 1-propanol, and hexane
  • the solid includes BA and CeO 2 .
  • the liquid component after solvent extraction with hexane can be separated into DPC, BN, hexane, and 1-propanol by distillation that gradually increases the temperature to about 170 ° C., and DPC with a purity of 96% or more can be recovered. It was.
  • BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
  • each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
  • the monohydric alcohol is 1-propanol and the product is DPC
  • the temperature is raised to about 180 ° C., so this heat is used by supplying it through a heated pipe when reusing it for DPC production. be able to.
  • Example 40 The same procedure as in Example 37 was performed, except that 1-butanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 37 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid.
  • the liquid contains DBC, BN, 1-butanol and hexane, and the solid contains BA and CeO 2 .
  • the liquid component after solvent extraction with hexane first separates hexane and 1-butanol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. to precipitate BN. It was possible to recover DBC having a purity of 96% or more.
  • BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
  • each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
  • the monohydric alcohol is 1-butanol and the product is DBC
  • the temperature is increased to about 180 ° C., so this heat is used by supplying it through a heated pipe when reusing it for DBC production. be able to.
  • Example 41 The same procedure as in Example 37 was performed except that 100 mmol each of benzyl alcohol, allyl alcohol, and 2-propanol was used as a monohydric alcohol and the reaction was performed for 24 hours.
  • Example 37 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid.
  • the liquid contains EC, BN and each alcohol component, and hexane, and the solid contains BA and CeO 2 .
  • the liquid component after solvent extraction with hexane first separates hexane and each alcohol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. to precipitate BN, EC with a purity of 96% or more could be recovered.
  • BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
  • each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
  • Example 42 In the catalyst preparation in the regeneration from the recovered BA to BN, the catalyst was MoO 3 / TiO 2 , Re 2 O 7 / CeO 2 , WO 3 / SiO 2 , Nb 2 O 5 / ZrO 2 Test NO. 122-129 were performed.
  • the catalyst carrier described above was used, and the catalyst was supported on the catalyst carrier according to the method described above.
  • Example 43 In the catalyst preparation in the regeneration from the recovered BA to BN, NO. Is the same as in Example 37 except that the final Mo loading is as shown in Table 35 and the reaction pressure is only 1 MPa. 130-135 tests were performed. As a result, as shown in Table 35, it was found that Mo loading was high at 0.1 to 1 mmol, and about 0.6 mmol was a suitable loading amount. On the other hand, when the loading amount was excessively increased, the activity was relatively lowered. This is because the Mo oxide on the SiO 2 carrier becomes a large aggregate because the Mo oxide is loaded in a large amount. Inferred.
  • the MoO 3 / SiO 2 catalyst was used in the regeneration reaction from BA to BN, but one or two of W, Re, and Nb were used as metal elements in the final reaction.
  • the same effect can be obtained by using a catalyst obtained by adjusting an aqueous solution to 0.5 mmol / g, then impregnating with SiO 2 , drying at 110 ° C. for about 6 hours, and calcining at 500 ° C. for about 3 hours. was gotten.
  • the same effect was obtained when CeO 2 , ZrO 2 , or CeO 2 —ZrO 2 was used in addition to SiO 2 .
  • Example 44 In the recovered BA to BN regeneration step, the procedure was the same as Example 37, except that o-xylene (20 ml) was used instead of mesitylene as the organic solvent, and the reaction pressure was only 1 MPa. As a result, as shown in Table 36 (NO. 136), 3.2 mmol of BN was generated. By-product was only water, yield was 42.7%, and selectivity was almost 100%.
  • Example 37 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid.
  • the liquid contains DMC, unreacted AN, methanol, and hexane, and the solid contains AA and CeO 2 . Since the liquid component after solvent extraction with hexane has a melting point and boiling point of AN of -45 ° C and 82 ° C, respectively, DMC and AN cannot be separated by distillation, so it is once cooled to -30 to 0 ° C It is possible to separate the precipitated DMC.
  • a mixture of methanol and hexane can separate the unreacted AN, and the unreacted AN can be reused for the DMC formation reaction. Since the concentration of methanol contained in the mixture is high, it is difficult to reuse as a solvent for extraction and it is necessary to dispose of it.
  • AA and CeO 2 in the fixed component are dissolved in 100 ml of acetone and filtered through a filter to separate CeO 2 , AA and acetone, and AA and acetone are separated by distillation heated to about 70 ° C. As a result, AA having a purity of 95% or more was recovered.
  • the second DMC formation reaction was performed by adding new AN to the unreacted AN so that the amount of AN was 300 mmol.
  • the reaction was conducted in the same manner as in Example 37 except that the reaction was performed at 150 ° C. for 24 hours.
  • the amount of DMC produced was reduced to about 1/10 compared to the case of BN, and the DMC yield based on methanol reached 1.7% at 0.5 MPa. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[Problem] To provide a method for performing regeneration from picolinamide or benzamide to cyanopyridine or benzonitrile without using strong reagents and while also limiting generation of by-products. [Solution] To solve said problem, one embodiment of the present invention provides a cyanopyridine manufacturing method characterized in that the cyanopyridine is manufactured by heating picolinamide in the presence of a catalyst loaded with an alkali metal oxide and in the presence of an organic solvent to cause a dehydration reaction. Another embodiment of the present invention provides a benzonitrile manufacturing method characterized in that the benzonitrile is manufactured by heating benzamide in the presence of a catalyst in which a metal oxide of a metal species such as molybdenum is loaded on a catalyst support obtained from SiO2, etc. and in the presence of an organic solvent to cause a dehydration reaction.

Description

シアノピリジンの製造方法、ベンゾニトリルの製造方法、炭酸エステルの製造方法、及び炭酸エステルの製造装置Method for producing cyanopyridine, method for producing benzonitrile, method for producing carbonate ester, and apparatus for producing carbonate ester
 本発明は、シアノピリジンの製造方法、ベンゾニトリルの製造方法、炭酸エステルの製造方法、及び炭酸エステルの製造装置に関する。 The present invention relates to a method for producing cyanopyridine, a method for producing benzonitrile, a method for producing carbonate ester, and an apparatus for producing carbonate ester.
 炭酸エステルとは、炭酸CO(OH)の2原子の水素のうち1原子、あるいは2原子をアルキル基またはアリール基で置換した化合物の総称であり、RO-C(=O)-OR’(R、R’は飽和炭化水素基や不飽和炭化水素基を表す)の構造を持つものである。 Carbonate ester is a general term for compounds in which one or two of hydrogen atoms of carbon dioxide CO (OH) 2 is substituted with an alkyl group or an aryl group, and RO—C (═O) —OR ′ ( R and R ′ each represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).
 炭酸エステルは、オクタン価向上のためのガソリン添加剤、排ガス中のパーティクルを減少させるためのディーゼル燃料添加剤等の添加剤として使われるほか、ポリカーボネートやウレタン、医薬・農薬等の樹脂・有機化合物を合成する際のアルキル化剤、カルボニル化剤、溶剤等、あるいはリチウムイオン電池の電解液、潤滑油原料、ボイラー配管の防錆用の脱酸素剤の原料として使われるなど、非常に有用な化合物である。 Carbonate esters are used as additives for gasoline additives to improve octane number, diesel fuel additives for reducing particles in exhaust gas, etc., and also synthesize polycarbonate and urethane, resins and organic compounds such as pharmaceuticals and agricultural chemicals. It is a very useful compound such as an alkylating agent, a carbonylating agent, a solvent, etc., or as a raw material for a lithium ion battery electrolyte, a lubricant oil raw material, and a deoxidizer for rust prevention of boiler piping. .
 従来の炭酸エステルの製造方法としては、ホスゲンをカルボニルソースとしてアルコールと直接反応させる方法が主流である。この方法は、極めて有害で腐食性の高いホスゲンを用いるため、その輸送や貯蔵等の取扱に細心の注意が必要であり、製造設備の維持管理及び安全性の確保のために多大なコストがかかっていた。また、本方法で製造する場合、原料や触媒中に塩素などのハロゲンが含まれており、得られる炭酸エステル中には、簡単な精製工程では取り除くことのできない微量のハロゲンが含まれる。ガソリン添加剤、軽油添加剤、電子材料向け用途にあっては、腐食の原因となる懸念も存在するため、微量に存在するハロゲンを極微量にするための徹底的な精製工程が必須となる。さらに、最近では、人体に極めて有害なホスゲンを利用することから、本製造方法での製造設備の新設が許可されないなど行政指導が厳しくなされてきており、ホスゲンを用いない新たな製造方法が強く望まれている。 As a conventional method for producing a carbonate ester, a method in which phosgene is used as a carbonyl source to directly react with alcohol is the mainstream. This method uses phosgene, which is extremely harmful and highly corrosive, and therefore requires extreme care in handling such as transportation and storage, and it costs a great deal of money to maintain and maintain manufacturing facilities and ensure safety. It was. Moreover, when manufacturing by this method, halogens, such as chlorine, are contained in a raw material and a catalyst, The trace amount halogen which cannot be removed by a simple refinement | purification process is contained in the carbonate ester obtained. In applications for gasoline additives, light oil additives, and electronic materials, there are also concerns that cause corrosion, and therefore a thorough refining process to make trace amounts of halogens extremely small is essential. Furthermore, since phosgene, which is extremely harmful to the human body, has been used recently, administrative guidance has been tightened, such as the establishment of a new production facility for this production method is not permitted, and a new production method that does not use phosgene is strongly desired. It is rare.
 こうした中、非特許文献1に記載されているように、ホスゲンを用いない炭酸エステルの製造法として、二酸化炭素をエチレンオキシドなどと反応させて環状炭酸エステルを合成し、更にメタノールと反応させて炭酸ジメチルを得る方法が実用化されてきている。この方法は、塩酸などの腐食性物質を使用あるいは発生することがほとんど無く、地球温暖化ガスとして削減を求められている二酸化炭素を骨格に入れることにより削減効果が期待できる環境にやさしい優れた方法である。しかしながら、特許文献1に記載されているように、副生するエチレングリコールなどの有効利用が大きな課題である。またエチレンオキシドの原料であるエチレンや、エチレンオキシドの安全な輸送は困難であるため、これらエチレンとエチレンオキシドの製造工程用プラントに隣接して炭酸エステル製造工程用プラントを立地しなければならないといった制約もある。 Under these circumstances, as described in Non-Patent Document 1, as a method for producing a carbonate ester without using phosgene, a carbonic acid ester is reacted with ethylene oxide to synthesize a cyclic carbonate, and further reacted with methanol to form dimethyl carbonate. A method for obtaining the above has been put into practical use. This method is an environmentally friendly and superior method that can be expected to reduce carbon dioxide, which is expected to be reduced as a global warming gas, with little use or generation of corrosive substances such as hydrochloric acid. It is. However, as described in Patent Document 1, effective use of by-produced ethylene glycol is a major problem. Further, since it is difficult to safely transport ethylene, which is a raw material for ethylene oxide, and ethylene oxide, there is a restriction that a carbonate ester production process plant must be located adjacent to the ethylene and ethylene oxide production process plant.
 また、特許文献2に記載されているように、メタノールと一酸化炭素を塩化第一銅触媒の存在下、液相で酸素酸化することで炭酸ジメチルを製造する方法も開示されている。しかし、本方法では人体に有害な一酸化炭素を取り扱うことや、ホスゲンを用いる製造法と同様、触媒中にハロゲンを含むことにより、得られる炭酸エステルからのハロゲンの精製工程が必須であること、二酸化炭素が少なからず副生するなどの問題が指摘されている。
 さらに、非特許文献2に記載されているように、メチルナイトライトと一酸化炭素からPd-Cu系触媒存在下、炭酸ジメチルを製造する方法も実用化されている。本方法では、原料となるメチルナイトライトを炭酸ジメチル製造時に副生する一酸化窒素にメタノールと酸素を反応させて生成するという方法で供給するものであり、プロセスが複雑であることや、人体に有害な一酸化炭素を取り扱うことなどの課題がある。
Further, as described in Patent Document 2, a method for producing dimethyl carbonate by oxidizing methanol and carbon monoxide in a liquid phase in the presence of a cuprous chloride catalyst is also disclosed. However, in this method, carbon monoxide harmful to the human body is handled, and, as in the production method using phosgene, a halogen purification step from the obtained carbonic acid ester is essential by including halogen in the catalyst. Problems such as carbon dioxide by-product have been pointed out.
Furthermore, as described in Non-Patent Document 2, a method for producing dimethyl carbonate from methyl nitrite and carbon monoxide in the presence of a Pd—Cu-based catalyst has been put into practical use. In this method, methyl nitrite, which is a raw material, is supplied by reacting methanol and oxygen with nitric oxide by-produced during the production of dimethyl carbonate. There are issues such as handling harmful carbon monoxide.
 それに対し、メタノールと二酸化炭素を固体触媒存在下で反応させて炭酸エステルを直接合成しようとする試みがなされている(非特許文献3)。しかし、本反応は平衡反応であるが、平衡が原料系に大きく偏っているため、メタノール転化率が高々1%程度に留まり、反応率、生産性が低いという克服すべき大きな課題があった。 In contrast, attempts have been made to directly synthesize carbonate esters by reacting methanol and carbon dioxide in the presence of a solid catalyst (Non-patent Document 3). However, although this reaction is an equilibrium reaction, since the equilibrium is largely biased toward the raw material system, the methanol conversion rate remains at most about 1%, and there is a major problem to be overcome that the reaction rate and productivity are low.
 上記の課題を解決すべく、炭酸エステル(炭酸ジメチル)と共に副生する水を系外へ除いて反応制約を解除しようとする試みがなされ、例えば触媒と共に水和剤としてアセタール(非特許文献4)、2,2-ジメトキシプロパン(非特許文献5)を用いた研究が報告されている。しかしながら、この方法では、反応圧力が高くなるに従って反応が進行する特性を有し、低圧では反応収率が非常に低く、極めて高圧でないと高い生産性が得られない。これは、アセタール、2,2-ジメトキシプロパンの水和反応は液相で触媒作用を受けずに進行すると予想されることからCO圧力には依存せず、炭酸ジメチル直接合成反応の反応速度が全体の反応速度を決定するためと推察されるが、反応圧力が各々300気圧(30MPa)、60気圧(6MPa)という高圧でメタノール転化率が高くなるため、昇圧に必要な動力エネルギーが非常に大きくなりエネルギー効率が悪くなるなどの問題があった。 In order to solve the above-mentioned problems, an attempt has been made to remove the reaction restriction by removing water by-produced with carbonate (dimethyl carbonate) out of the system. For example, acetal as a wettable powder with a catalyst (Non-patent Document 4) Research using 2,2-dimethoxypropane (Non-patent Document 5) has been reported. However, this method has a characteristic that the reaction proceeds as the reaction pressure increases, the reaction yield is very low at low pressure, and high productivity cannot be obtained unless the pressure is extremely high. This is because the hydration reaction of acetal and 2,2-dimethoxypropane is expected to proceed without being catalyzed in the liquid phase, so the reaction rate of the direct synthesis reaction of dimethyl carbonate is not dependent on CO 2 pressure. It is presumed to determine the overall reaction rate, but because the methanol conversion rate increases at high pressures of 300 atm (30 MPa) and 60 atm (6 MPa), respectively, the motive energy required for pressurization is very large. There was a problem that energy efficiency became worse.
 また、モレキュラーシーブ(固体脱水剤)を用いた研究(非特許文献6)が報告されているが、反応部(高圧)と脱水部(常圧)を分離して循環させるプロセスになることからエネルギー消費が大きく、また大量の固体脱水剤を必要とする問題点があった。 In addition, research using molecular sieves (solid dehydrating agent) (Non-patent Document 6) has been reported, but it is a process that separates and circulates the reaction part (high pressure) and the dehydration part (normal pressure). There was a problem that consumption was large and a large amount of solid dehydrating agent was required.
 尚、炭酸エステルの直接合成反応に用いられる固体触媒は、これまでにジメトキシジブチルスズ等のスズ化合物、タリウムメトキシド等のタリウム化合物、酢酸ニッケル等のニッケル化合物、五酸化バナジウム、炭酸カリウム等のアルカリ炭酸塩、及び、Cu/SiO等種々の化合物が検討されている。 Solid catalysts used for the direct synthesis reaction of carbonate ester have so far been tin compounds such as dimethoxydibutyltin, thallium compounds such as thallium methoxide, nickel compounds such as nickel acetate, vanadium pentoxide, potassium carbonate and other alkaline carbonates. Various compounds such as salts and Cu / SiO 2 have been studied.
 一方、水和剤としてアセトニトリルを用いた反応として、固体触媒存在下、二価アルコールであるプロピレングリコールと二酸化炭素から環状炭酸エステル(プロピレンカーボネート)を直接合成する反応系に関する研究が報告されている(非特許文献7)。しかし、本反応系でも反応圧力の影響が顕著で、反応圧力が高くなるにしたがって反応が進行する特性を有し、低圧では反応収率が極端に低いが、環状炭酸エステルの直接合成反応が平衡的に有利な高圧で収率が上昇し、反応圧力は100気圧以上が望ましいことが確認され、上記と同様エネルギー効率が悪くなるなどの問題があった。 On the other hand, as a reaction using acetonitrile as a wettable powder, research on a reaction system for directly synthesizing a cyclic carbonate (propylene carbonate) from propylene glycol and carbon dioxide as a dihydric alcohol in the presence of a solid catalyst has been reported ( Non-patent document 7). However, even in this reaction system, the influence of the reaction pressure is significant, and the reaction proceeds as the reaction pressure increases. The reaction yield is extremely low at low pressure, but the direct synthesis reaction of cyclic carbonate is balanced. In particular, it was confirmed that the yield increased at a particularly advantageous high pressure, and the reaction pressure was preferably 100 atm or more, and there was a problem that the energy efficiency was deteriorated as described above.
 本発明者らは、炭酸エステルの製造に際し、一価アルコールと二酸化炭素から炭酸エステルを不均一系触媒を用いて直接合成する方法に着目し、炭酸エステルと共に副生する水を系外へ除く水和剤として、アセトニトリルを用いることにより、非特許文献4、5に記載されているような300気圧や60気圧といった高圧は不要で、常圧に近い圧力下で反応が促進されるという効果を初めて見出した(特許文献3参照)。 The present inventors pay attention to a method of directly synthesizing a carbonate ester from monohydric alcohol and carbon dioxide using a heterogeneous catalyst in the production of carbonate ester, and remove water by-produced with the carbonate ester out of the system. The use of acetonitrile as a compatibilizer eliminates the need for high pressures such as 300 atmospheres and 60 atmospheres as described in Non-Patent Documents 4 and 5, and it is the first effect that the reaction is promoted under a pressure close to normal pressure. (See Patent Document 3).
WO2004/014840号公報WO 2004/014840 EP365,083号公報EP365,083 特開2009-132673号公報JP 2009-132673 A 特開2010-77113号公報JP 2010-77113 A 特開2012-162523号公報JP 2012-162523 A 特開2009-213975号公報JP 2009-213975 A 特開2005-194224号公報JP 2005-194224 A 特開平11-35564号公報JP-A-11-35564
 本発明者はさらに、炭酸エステルの更なる生成量向上のため、水和剤の種類を鋭意検討したところ、2-シアノピリジンまたはベンゾニトリルを用いることにより、アセトニトリルの場合と比べ、炭酸エステルの生成量、生成速度を大幅に改善し、常圧に近い比較的低い圧力下で反応が進行しやすく、且つ、反応速度が非常に速いことを見出した(特許文献4、5参照)。しかし、副生する2-ピコリンアミド及びベンズアミドの処理方法や利用方法に関しては、検討されていなかった。 The present inventor has further studied the types of wettable powders for further improvement in the amount of carbonate produced, and as a result, by using 2-cyanopyridine or benzonitrile, the production of carbonate ester compared to acetonitrile. It was found that the amount and the production rate were greatly improved, the reaction was likely to proceed under a relatively low pressure close to normal pressure, and the reaction rate was very fast (see Patent Documents 4 and 5). However, the treatment method and utilization method of 2-picolinamide and benzamide as a by-product have not been studied.
 本発明で水和剤としている2-シアノピリジン及びベンゾニトリルを始めとするニトリルは、一般的に、溶媒、合成樹脂、染料、医薬中間体等の多くの用途に利用されている。中でも、2-シアノピリジンは医薬品や農薬の原料となる物質で、2位のピリジン、ピペリジン誘導体を合成する際の出発原料として使用される物質である。また、ベンゾニトリルは医薬品や農薬の原料となる物質で、各種誘導体を合成する際の出発原料として使用される物質である。 Nitriles such as 2-cyanopyridine and benzonitrile, which are wettable powders in the present invention, are generally used in many applications such as solvents, synthetic resins, dyes and pharmaceutical intermediates. Among them, 2-cyanopyridine is a material used as a raw material for pharmaceuticals and agricultural chemicals, and is a material used as a starting material when synthesizing a pyridine or piperidine derivative at the 2-position. Benzonitrile is a material used as a raw material for pharmaceuticals and agricultural chemicals, and is a material used as a starting material when various derivatives are synthesized.
 しかしながら、2-シアノピリジンと水との反応により生成する2-ピコリンアミドの用途は一部の医農薬中間体に限定される。同様に、ベンゾニトリルと水との反応により生成するベンズアミドの用途は一部の医農薬中間体に限定される。そのため、2-シアノピリジンまたはベンゾニトリルを水和剤として使用する炭酸エステルの製造においては、副生する2-ピコリンアミドまたはベンズアミドを2-シアノピリジンまたはベンゾニトリルに再生して再利用することが望まれ、この再生反応を選択率高く(副生成物が生じると水和剤として再利用が難しくなると考えられるため)、且つ収率高く(収率が低いと2-ピコリンアミドまたはベンズアミドの残留量が多くなり、2-シアノピリジンまたはベンゾニトリルとの分離処理量が多くなり負荷が高くなるため)行うことが課題となることが判明した。 However, the use of 2-picolinamide produced by the reaction of 2-cyanopyridine and water is limited to some medical and agrochemical intermediates. Similarly, the use of benzamide produced by the reaction of benzonitrile with water is limited to some pharmaceutical and agrochemical intermediates. Therefore, in the production of carbonic acid esters using 2-cyanopyridine or benzonitrile as a wettable powder, it is hoped that 2-picolinamide or benzamide produced as a by-product is regenerated and reused as 2-cyanopyridine or benzonitrile. Rarely, this regeneration reaction is highly selective (because by-products are difficult to reuse as a wettable powder), and the yield is high (if the yield is low, the residual amount of 2-picolinamide or benzamide is low). It has been found that this is a problem because the amount of separation treatment with 2-cyanopyridine or benzonitrile increases and the load increases.
 一般的に、ニトリルの合成方法の一つとして、無機シアン化物による求核置換反応が利用されているが、有毒なシアン化物の使用やハロゲン塩が副生するという問題がある(非特許文献8)。 In general, nucleophilic substitution reaction with inorganic cyanide is used as one of the methods for synthesizing nitriles, but there is a problem that toxic cyanide is used and halogen salts are by-produced (Non-patent Document 8). ).
 また、アンモ酸化法(SOHIO法)という方法で、Mo-Bi系やFe-Sn系の酸化物触媒を用いて、アンモニア存在下で空気を酸化剤とした気相反応が工業化されているが、400℃以上の高い反応温度が必要であり、さらに、アクリロニトリルなどに限定される(非特許文献9)。 In addition, an ammoxidation method (SOHIO method) has been industrialized in a gas phase reaction using air as an oxidant in the presence of ammonia using a Mo—Bi-based or Fe—Sn-based oxide catalyst. A high reaction temperature of 400 ° C. or higher is required, and it is further limited to acrylonitrile and the like (Non-patent Document 9).
 一方、アミドの脱水反応によるニトリルの合成もあり、2-ピコリンアミドまたはベンズアミドの脱水反応では2件報告例があるが、いずれも均一系触媒を使用することから合成後の精製、触媒の分離等の後工程が煩雑になること、強力な試薬(強酸あるいは強塩基)を使用し、また多量の副生物も発生することから環境負荷が大きいことが課題となっている(非特許文献10、11)。 On the other hand, there is also nitrile synthesis by amide dehydration, and there are two reports on 2-picolinamide or benzamide dehydration, both of which use homogeneous catalysts, so purification after synthesis, catalyst separation, etc. The subsequent processes are complicated, and a strong reagent (strong acid or strong base) is used, and a large amount of by-products are generated, so that the environmental load is large (Non-Patent Documents 10 and 11). ).
 また、脱水剤を用いたアミドの脱水反応として、特許文献7及び8には、アミドを水と分液可能な脂肪族ニトリル又は脂環式ニトリルからなる溶媒中、ホスゲン、オキシ塩化リン、塩化チオニル、チオニルクロリド、五塩化リン等を用いたニトリルの製造方法に関する記載があるが、猛毒なシアン化物やハロゲン化物の使用が必要という問題がある。 Further, as dehydration reactions of amides using a dehydrating agent, Patent Documents 7 and 8 disclose phosgene, phosphorus oxychloride, thionyl chloride in a solvent composed of an aliphatic nitrile or an alicyclic nitrile capable of separating an amide from water. Although there is a description on a method for producing a nitrile using thionyl chloride, phosphorus pentachloride, etc., there is a problem that it is necessary to use a highly toxic cyanide or halide.
 また、不均一系触媒を用いたアミドの脱水反応として、特許文献3には、第1級アミドの脱水反応用触媒とそれを用いたニトリルの製造方法に関する記載がある。触媒はバナジウムをハイドロタルサイトに担持した固体触媒で、第1級アミドとしてベンズアミドのような芳香族アミド、ヘテロ環を有するアミド、脂肪族アミドでも活性を有するとされているものの、反応速度が遅く十分でない。これは、一般的にニトリルよりもアミドの方が安定な物質であり、アミドの脱水反応は反応速度が遅いこと、さらに、アミド分子内でアミド基の水素原子と窒素ヘテロ原子間で分子内水素結合を起こすが、アミドは特に分子内水素結合が大きく、安定な物質となり、脱水反応が進行しにくいからだと考えられる。 Further, as a dehydration reaction of an amide using a heterogeneous catalyst, Patent Document 3 describes a catalyst for a dehydration reaction of a primary amide and a method for producing a nitrile using the same. The catalyst is a solid catalyst with vanadium supported on hydrotalcite, and it is said that the primary amide is also active with aromatic amides such as benzamide, amides with heterocycles and aliphatic amides, but the reaction rate is slow. not enough. This is because the amide is generally more stable than the nitrile, and the dehydration reaction of the amide is slower, and the intramolecular hydrogen between the hydrogen atom of the amide group and the nitrogen heteroatom in the amide molecule. This is probably because amides have particularly large intramolecular hydrogen bonds, become stable substances, and are unlikely to undergo dehydration.
 以上のように、ピコリンアミドまたはベンズアミドからシアノピリジンまたはベンゾニトリルへの再生を、強力な試薬を使用せず、且つ、副生物の発生も抑えつつ行う方法に関する報告例はこれまでなかった。 As described above, there has been no report on a method for regenerating picolinamide or benzamide to cyanopyridine or benzonitrile without using a powerful reagent and suppressing the generation of by-products.
 上記従来技術の問題点に鑑み、本発明の目的は、ピコリンアミドまたはベンズアミドからシアノピリジンまたはベンゾニトリルへの再生を、強力な試薬を使用せず、且つ、副生物の発生も抑えつつ行う方法を提供することにある。 In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a method for regenerating picolinamide or benzamide to cyanopyridine or benzonitrile without using a powerful reagent and suppressing the generation of by-products. It is to provide.
 従来、ピコリンアミドの脱水反応は均一系触媒でしか行われていなかったが、副生物を抑え、分離を容易にできる不均一系触媒を検討した。 Conventionally, the dehydration reaction of picolinamide has been carried out only with a homogeneous catalyst, but a heterogeneous catalyst that can suppress separation of by-products and facilitate separation is investigated.
 そこで、先ずは、ベンズアミドの製造では有効と考えられるバナジウムを使用した不均一系触媒で、ピコリンアミドの脱水反応を行ってみたところ、シアノピリジンは殆ど生成されないことが判った。 Therefore, first, when dehydration reaction of picolinamide was performed with a heterogeneous catalyst using vanadium which is considered to be effective in the production of benzamide, it was found that cyanopyridine was hardly produced.
 そこで発明者等は、ピコリンアミド内にあるピリジン環は弱い塩基性を示すため、酸性の触媒を用いると、触媒の活性点にピリジン環が吸着、被毒し、活性低下を起こす可能性があると考え、塩基性となる金属を活性種とする触媒を検討した。 Therefore, the inventors have shown that the pyridine ring in picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity. Therefore, a catalyst using a basic metal as an active species was studied.
 その結果、触媒担体に塩基性の性質を持つアルカリ金属を担持させた触媒を用いると、高活性となることを見出し、発明を為すに至った。 As a result, it has been found that the use of a catalyst in which an alkali metal having basic properties is supported on a catalyst carrier is highly active, leading to the invention.
 さらに、本発明者は、ベンゾニトリルの製造方法についても検討した。従来、ベンズアミドの脱水反応は、金属酸化物粒子のみ(非特許文献12)、若しくは、ハイドロタルサイトと呼ぶ二次元の層状無機化合物担体へ金属酸化物粒子を担持したもの(非特許文献13)などの不均一系触媒で行われていたが、とくにその化合物中の金属-酸素間の二重結合がアミドの脱水反応の活性種として働いていると推定し、同様の二重結合をもつ金属酸化物に焦点を絞って検討した。 Furthermore, the present inventor also examined a method for producing benzonitrile. Conventionally, the dehydration reaction of benzamide is performed only on metal oxide particles (Non-Patent Document 12), or on a two-dimensional layered inorganic compound carrier called hydrotalcite (Non-Patent Document 13). In particular, the metal-oxygen double bond is presumed that the metal-oxygen double bond in the compound acts as an active species for the dehydration reaction of the amide. We focused on things.
 さらに発明者等は、担体として、その表面構造やイオン性、電子状態を鑑み、金属酸化物が最適な存在状態に担持されるという観点から検討した。 Further, the inventors examined from the viewpoint that the metal oxide is supported in an optimum existence state in consideration of the surface structure, ionicity, and electronic state as the carrier.
 その結果、特定の触媒担体に対し、金属-酸素間の二重結合を有する特定の金属を担持させた触媒を用いると、比較的温和な条件下でも高活性となることを見出し、発明を為すに至った。 As a result, it has been found that when a catalyst in which a specific metal having a double bond between metal and oxygen is supported on a specific catalyst carrier, the catalyst becomes highly active even under relatively mild conditions. It came to.
 さらに、本発明者は、上記の知見を炭酸エステルの製造方法に適用することについても検討した。すなわち、本発明者らは、炭酸エステルの製造に際し、一価アルコールと二酸化炭素から炭酸エステルを直接合成する方法に着目し、炭酸エステルと共に副生する水を系外へ除く水和剤として、アセトニトリル、ベンゾニトリルを用いることにより、非特許文献4、5に記載されているような30MPa(300気圧)や6MPa(60気圧)といった高圧は不要で、常圧に近い圧力下で反応が促進されるという効果を初めて見出し、特許出願した(特許文献3、特許文献4)。さらに、2-シアノピリジンを用いることにより、アセトニトリルやベンゾニトリルの場合と比べ、炭酸エステルの生成量、生成速度を大幅に改善し、常圧に近い比較的低い圧力下で反応が進行しやすく、且つ、反応速度が非常に速いことを見出し、特許文献5で特許公開している。いずれの水和剤を用いた場合でも、副生アミドの分離あるいは再利用等の処理方法が検討されておらず、課題であった。 Furthermore, the present inventor also examined application of the above knowledge to a method for producing a carbonate ester. That is, the present inventors paid attention to a method of directly synthesizing a carbonate ester from a monohydric alcohol and carbon dioxide in the production of the carbonate ester, and used acetonitrile as a hydrating agent to remove water by-produced together with the carbonate ester out of the system. By using benzonitrile, a high pressure such as 30 MPa (300 atm) or 6 MPa (60 atm) as described in Non-Patent Documents 4 and 5 is unnecessary, and the reaction is accelerated under a pressure close to normal pressure. For the first time, and applied for a patent (Patent Document 3, Patent Document 4). Furthermore, by using 2-cyanopyridine, the production amount and production rate of carbonate ester are greatly improved compared to the case of acetonitrile and benzonitrile, and the reaction is likely to proceed at a relatively low pressure close to normal pressure. And it discovered that reaction rate was very quick, and patent document 5 is carrying out patent publication. Even when any wettable powder is used, a treatment method such as separation or reuse of by-product amide has not been studied, which is a problem.
 上記知見を元に、本発明者らは、副生物の利用も含めた炭酸エステルの製造方法について検討を進め、常圧に近い比較的低い圧力下で反応が進行しやすく、反応速度が非常に速く、且つ副生物の種類も少ないという、水和剤として優れた特性を有するシアノピリジンまたはベンゾニトリルを、本製造方法に用いることを考えた。 Based on the above knowledge, the present inventors proceeded with a study on a method for producing a carbonate ester including utilization of by-products, and the reaction was likely to proceed under a relatively low pressure close to normal pressure, and the reaction rate was very high. It was considered to use cyanopyridine or benzonitrile, which has excellent properties as a wettable powder, which is fast and has few by-products, in this production method.
 そこで、固体触媒として触媒を構成する元素、組成に着目して鋭意検討したところ、特定の固体触媒が、水和剤にシアノピリジンまたはベンゾニトリルを用いた場合、固体触媒存在下で水和反応によりピコリンアミドまたはベンズアミドを生成する反応が促進されて反応系からの脱水が効率よく進み、比較的低圧の温和な条件下でも反応平衡制約を受けることなく炭酸エステルを高い収率で得られることを見出した。 Therefore, as a solid catalyst, intensive studies were conducted by paying attention to the elements constituting the catalyst and the composition. The reaction to produce picolinamide or benzamide was promoted, and dehydration from the reaction system proceeded efficiently, and it was found that carbonate ester can be obtained in high yield without being subjected to reaction equilibrium constraints even under mild conditions of relatively low pressure. It was.
 さらに、このような触媒の中でも、特定の触媒担体を使用したものが非常に有効であることを見出した。 Furthermore, it has been found that among these catalysts, those using a specific catalyst carrier are very effective.
 また、シアノピリジンまたはベンゾニトリルを水和剤として用いた場合、ピコリンアミドまたはベンズアミドが副生される。これらのピコリンアミドまたはベンズアミドは、用途が限定されて有効活用が難しいという問題があった。そこで、本発明者は、上述した知見を、炭酸エステルの製造方法に適用することで、ピコリンアミドまたはベンズアミドをシアノピリジンまたはベンゾニトリルへ再生させることとした。本発明の要旨は、下記の通りである。 Also, when cyanopyridine or benzonitrile is used as a wettable powder, picolinamide or benzamide is by-produced. These picolinamides or benzamides have a problem that their use is limited and it is difficult to effectively use them. Therefore, the present inventor decided to regenerate picolinamide or benzamide to cyanopyridine or benzonitrile by applying the above-described knowledge to a method for producing carbonate ester. The gist of the present invention is as follows.
(1)アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、ピコリンアミドを加熱して脱水反応させることにより、シアノピリジンを製造することを特徴とする、シアノピリジンの製造方法。 (1) Production of cyanopyridine, characterized in that cyanopyridine is produced by heating and dehydrating a picolinamide in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent. Method.
(2)前記シアノピリジンが2-シアノピリジンであり、前記ピコリンアミドが2-ピコリンアミドであることを特徴とする前記(1)記載のシアノピリジンの製造方法。 (2) The method for producing cyanopyridine according to (1), wherein the cyanopyridine is 2-cyanopyridine and the picolinamide is 2-picolinamide.
(3)前記アルカリ金属酸化物を担持した触媒は、SiO、CeO、ZrOのいずれか1種又は2種以上から成る触媒担体上に、アルカリ金属酸化物を1種又は2種以上担持した触媒であることを特徴とする前記(1)または(2)に記載のシアノピリジンの製造方法。 (3) The catalyst carrying the alkali metal oxide carries one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2. The method for producing cyanopyridine as described in (1) or (2) above, wherein
(4)前記触媒担体が、SiOであることを特徴とする前記(3)に記載のシアノピリジンの製造方法。 (4) The method for producing cyanopyridine according to (3), wherein the catalyst carrier is SiO 2 .
(5)前記アルカリ金属酸化物が、Li、K、Na、Rb、Csのいずれかの酸化物であることを特徴とする前記(1)~4の何れか1項に記載のシアノピリジンの製造方法。 (5) The production of cyanopyridine as described in any one of (1) to (4) above, wherein the alkali metal oxide is an oxide of Li, K, Na, Rb, or Cs. Method.
(6)前記有機溶媒がメシチレンであることを特徴とする前記(1)~(5)のいずれか1項に記載のシアノピリジンの製造方法。 (6) The method for producing cyanopyridine according to any one of (1) to (5), wherein the organic solvent is mesitylene.
(7)前記脱水反応の際に、脱水剤を使用することを特徴とする前記(1)~(6)のいずれか1項に記載のシアノピリジンの製造方法。 (7) The method for producing cyanopyridine according to any one of (1) to (6), wherein a dehydrating agent is used in the dehydration reaction.
(8)CeO及びZrOのいずれか一方又は双方の固体触媒とシアノピリジンとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記シアノピリジンと前記生成した水との水和反応によりピコリンアミドを生成させる第1の反応工程と、
 前記第1の反応工程から前記ピコリンアミドを分離した後、当該ピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、シアノピリジンに再生する第2の反応工程を有し、
 前記第2の反応工程で再生したシアノピリジンを、前記第1の反応工程において使用することを特徴とする炭酸エステルの製造方法。
(8) A monohydric alcohol and carbon dioxide are reacted in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and cyanopyridine to produce a carbonate and water, and the cyanopyridine and the above A first reaction step of generating picolinamide by a hydration reaction with the generated water;
After the picolinamide is separated from the first reaction step, the picolinamide is dehydrated by heating in the presence of a catalyst carrying an alkali metal oxide and in the presence of an organic solvent, whereby cyano Having a second reaction step to regenerate to pyridine,
A method for producing a carbonic acid ester, wherein the cyanopyridine regenerated in the second reaction step is used in the first reaction step.
(9)CeO及びZrOのいずれか一方又は双方の固体触媒と、一価アルコールと、二酸化炭素と、シアノピリジンとを混合して反応させ、炭酸エステルとピコリンアミドとを生成する第1の反応工程と、
 当該第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離する第1の分離工程と、
 前記第1の分離工程の固液分離後の液相の炭酸エステル、未反応のシアノピリジン、及びアルカンをそれぞれに分離する第2の分離工程と、
 前記第1の分離工程の固液分離後の固相の固体触媒及びピコリンアミドを、親水性溶媒で抽出した後に固液分離し、液相のピコリンアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離工程と、
 当該第3の分離工程で分離されたピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、シアノピリジンを生成する第2の反応工程と、
 当該第2の反応工程から排出されるシアノピリジン、未反応のピコリンアミド、及びアルカリ金属酸化物を担持した触媒を、濾過して、固相のアルカリ金属酸化物を担持した触媒を分離する第4の分離工程と、
 当該第4の分離工程で分離後に残ったシアノピリジン、ピコリンアミド、有機溶媒、水をそれぞれに分離する第5の分離工程と、を有し、
 前記第5の分離工程で分離されたシアノピリジンを、前記第1の反応工程において使用することを特徴とする前記(8)に記載の炭酸エステルの製造方法。
(9) A first catalyst that produces a carbonate ester and a picolinamide by mixing and reacting one or both of a solid catalyst of CeO 2 and ZrO 2 , a monohydric alcohol, carbon dioxide, and cyanopyridine. A reaction process;
The carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction step are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine. And a first separation step of separating the alkane and the solid catalyst and picolinamide in solid phase;
A second separation step of separating each of the liquid phase carbonate ester after solid-liquid separation in the first separation step, unreacted cyanopyridine, and alkane;
The solid phase solid catalyst and picolinamide after solid-liquid separation in the first separation step are extracted with a hydrophilic solvent and then solid-liquid separated to obtain a liquid phase picolinamide and a hydrophilic solvent, and a solid phase solid catalyst. A third separation step of separating into
The second reaction in which picolinamide separated in the third separation step is dehydrated by heating in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent to produce cyanopyridine. Process,
The catalyst loaded with cyanopyridine, unreacted picolinamide, and alkali metal oxide discharged from the second reaction step is filtered to separate the catalyst loaded with the solid phase alkali metal oxide. Separation process of
A fifth separation step for separating cyanopyridine, picolinamide, organic solvent, and water remaining after separation in the fourth separation step, respectively.
The method for producing a carbonate ester according to (8), wherein the cyanopyridine separated in the fifth separation step is used in the first reaction step.
(10)前記第3の分離工程で分離された固体触媒を再生する工程を更に有し、再生後の触媒を、前記第1の反応工程で使用することを特徴とする前記(9)に記載の炭酸エステルの製造方法。 (10) The method according to (9), further comprising a step of regenerating the solid catalyst separated in the third separation step, wherein the regenerated catalyst is used in the first reaction step. Of carbonic acid ester.
(11)前記第1の反応工程において未反応の一価アルコールが残留し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応の一価アルコール、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応の一価アルコール、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする前記(9)または(10)に記載の炭酸エステルの製造方法。 (11) Unreacted monohydric alcohol remains in the first reaction step, and carbonate, picolinamide, unreacted monohydric alcohol discharged from the first reaction step in the first separation step Then, the unreacted cyanopyridine and the solid catalyst are subjected to solvent extraction with alkane, followed by solid-liquid separation, and a liquid phase carbonate ester, unreacted monohydric alcohol, unreacted cyanopyridine, and alkane, The method for producing a carbonate ester according to (9) or (10), wherein the solid catalyst and picolinamide are separated.
(12)前記第1の反応工程において副生物としてピコリン酸メチル及びカルバミン酸メチルのうち少なくとも一方が生成し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする前記(9)~(11)のいずれか1項に記載の炭酸エステルの製造方法。 (12) Carbonate, picoline, which is produced from at least one of methyl picolinate and methyl carbamate as a by-product in the first reaction step and is discharged from the first reaction step in the first separation step. The amide, unreacted cyanopyridine, methyl picolinate, methyl carbamate, and the solid catalyst were subjected to solvent extraction with alkane, followed by solid-liquid separation, and the liquid phase carbonate ester, unreacted cyanopyridine, methyl picolinate, carbamine 12. The method for producing a carbonate ester according to any one of (9) to (11), wherein methyl acid and alkane are separated from the solid catalyst and picolinamide in solid phase.
(13)前記第1の反応工程において、未反応の一価アルコールが残留し、かつ副生物としてピコリン酸メチル及びカルバミン酸メチルのうち少なくとも一方が生成し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応の一価アルコール、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応の一価アルコール、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする前記(9)~(12)のいずれか1項に記載の炭酸エステルの製造方法。 (13) In the first reaction step, unreacted monohydric alcohol remains and at least one of methyl picolinate and methyl carbamate is generated as a by-product, and in the first separation step, Carbonic acid ester, picolinamide, unreacted monohydric alcohol, unreacted cyanopyridine, methyl picolinate, methyl carbamate and the solid catalyst discharged from the reaction step 1 are subjected to solid-liquid separation after solvent extraction with alkane. And separating into liquid phase carbonate ester, unreacted monohydric alcohol, unreacted cyanopyridine, methyl picolinate, methyl carbamate, and alkane and the solid catalyst and picolinamide in solid phase. The method for producing a carbonate ester according to any one of (9) to (12) above.
(14)前記溶媒抽出の際に使用するアルカンが、ヘキサンであることを特徴とする前記(9)~(13)の何れか1項に記載の炭酸エステルの製造方法。 (14) The method for producing a carbonate ester as described in any one of (9) to (13) above, wherein the alkane used in the solvent extraction is hexane.
(15)前記親水性溶媒が、アセトンであることを特徴とする前記(9)~(14)のいずれか1項に記載の炭酸エステルの製造方法。 (15) The method for producing a carbonate ester according to any one of (9) to (14), wherein the hydrophilic solvent is acetone.
(16)前記シアノピリジンが2-シアノピリジンであり、前記ピコリンアミドが2-ピコリンアミドであることを特徴とする前記(8)~(15)の何れか1項に記載の炭酸エステルの製造方法。 (16) The method for producing a carbonate ester according to any one of (8) to (15), wherein the cyanopyridine is 2-cyanopyridine and the picolinamide is 2-picolinamide. .
(17)前記アルカリ金属酸化物を担持した触媒は、SiO、CeO、ZrOのいずれか1種又は2種以上から成る触媒担体上に、アルカリ金属酸化物を1種又は2種以上担持した触媒であることを特徴とする前記(8)~(16)のいずれか1項に記載の炭酸エステルの製造方法。 (17) The catalyst carrying the alkali metal oxide carries one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2. The method for producing a carbonate ester according to any one of (8) to (16) above, wherein
(18)前記触媒担体が、SiOであることを特徴とする前記(17)に記載の炭酸エステルの製造方法。 (18) The method for producing a carbonate ester as described in (17) above, wherein the catalyst carrier is SiO 2 .
(19)前記アルカリ金属酸化物が、Li、K、Na、Rb、Csのいずれかの酸化物であることを特徴とする前記(8)~(18)のいずれか1項に記載の炭酸エステルの製造方法。 (19) The carbonate ester according to any one of (8) to (18), wherein the alkali metal oxide is any one of Li, K, Na, Rb, and Cs. Manufacturing method.
(20)前記有機溶媒がメシチレンであることを特徴とする前記(8)~(19)のいずれか1項に記載の炭酸エステルの製造方法。 (20) The method for producing a carbonate ester according to any one of (8) to (19), wherein the organic solvent is mesitylene.
(21)前記脱水反応の際に、脱水剤を使用することを特徴とする前記(8)~(20)のいずれか1項に記載の炭酸エステルの製造方法。 (21) The method for producing a carbonate ester as described in any one of (8) to (20) above, wherein a dehydrating agent is used in the dehydration reaction.
(22)前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする前記(8)~(21)のいずれか1項に記載の炭酸エステルの製造方法。 (22) The method for producing a carbonate ester according to any one of (8) to (21), wherein the monohydric alcohol is methanol and dimethyl carbonate is produced as a carbonate ester.
(23)前記一価アルコールがエタノールであり、炭酸エステルとして炭酸ジエチルを製造することを特徴とする前記(8)~(22)のいずれか1項に記載の炭酸エステルの製造方法。 (23) The method for producing carbonate ester as described in any one of (8) to (22) above, wherein the monohydric alcohol is ethanol and diethyl carbonate is produced as a carbonate ester.
(24)前記(8)~(23)のいずれか1項に記載の炭酸エステルの製造方法に用いる製造装置であって、
 二酸化炭素を加圧する加圧部と、
 CeO及びZrOのいずれか一方又は双方の固体触媒と、シアノピリジンとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記シアノピリジンと前記生成した水との水和反応によりピコリンアミドを生成させる第1の反応部と、
 当該第1の反応部により排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離する第1の分離部と、
 前記第1の分離部による固液分離後の液相の炭酸エステル、未反応のシアノピリジン、及びアルカンをそれぞれに分離する第2の分離部と、
 前記第1の分離部による固液分離後の固体触媒及びピコリンアミドを、親水性溶媒で抽出した後に固液分離し、液相のピコリンアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離部と、
 当該第3の分離部により分離されたピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、シアノピリジンを生成する第2の反応部と、
 当該第2の反応部により排出されるシアノピリジン、未反応のピコリンアミド、及びアルカリ金属酸化物を担持した触媒を、濾過して、固相のアルカリ金属酸化物を担持した触媒を分離する第4の分離部と、
 当該第4の分離部による分離後に残ったシアノピリジン、ピコリンアミド、有機溶媒、水をそれぞれに分離する第5の分離部と、
 前記第5の分離部により分離されたシアノピリジンを、前記第1の反応部へと搬送する搬送部と、を有することを特徴とする炭酸エステルの製造装置。
(24) A production apparatus for use in the method for producing a carbonate according to any one of (8) to (23),
A pressurizing part for pressurizing carbon dioxide;
In the presence of either one or both of CeO 2 and ZrO 2 and a cyanopyridine, a monohydric alcohol and carbon dioxide are reacted to produce a carbonate and water, and the cyanopyridine and the produced catalyst. A first reaction part for generating picolinamide by a hydration reaction with water;
The carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction section are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine. And a first separation part for separating the alkane and the solid catalyst and picolinamide in a solid phase;
A second separation part for separating the carbonate, unreacted cyanopyridine, and alkane in the liquid phase after the solid-liquid separation by the first separation part;
The solid catalyst and picolinamide after solid-liquid separation by the first separation unit are extracted with a hydrophilic solvent and then solid-liquid separated to separate into a liquid phase picolinamide and a hydrophilic solvent and a solid phase solid catalyst. A third separation unit
A second reaction for producing cyanopyridine by subjecting picolinamide separated by the third separation part to a dehydration reaction by heating in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent. And
The catalyst loaded with cyanopyridine, unreacted picolinamide, and alkali metal oxide discharged by the second reaction section is filtered to separate the catalyst loaded with the solid phase alkali metal oxide. A separation part of
A fifth separation unit for separating cyanopyridine, picolinamide, an organic solvent, and water remaining after separation by the fourth separation unit;
An apparatus for producing carbonate ester, comprising: a transport unit that transports the cyanopyridine separated by the fifth separation unit to the first reaction unit.
(25)SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から成る触媒担体上に、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種又は2種以上の金属種の金属酸化物が担持された触媒の存在下、且つ、有機溶媒の存在下で、ベンズアミドを加熱して脱水反応させることにより、ベンゾニトリルを製造することを特徴とするベンゾニトリルの製造方法。 (25) Any one of molybdenum, tungsten, rhenium, titanium and niobium on a catalyst support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 and C Benzonitrile is produced by heating and dehydrating benzamide in the presence of a catalyst on which a metal oxide of two or more metal species is supported and in the presence of an organic solvent. A method for producing benzonitrile.
(26)前記ベンズアミドを加熱して、液相状態で脱水反応させることにより、ベンゾニトリルを製造することを特徴とする前記(25)に記載のベンゾニトリルの製造方法。 (26) The method for producing benzonitrile according to (25), wherein the benzamide is produced by heating the benzamide to cause a dehydration reaction in a liquid phase state.
(27)前記触媒担体が、SiOであることを特徴とする前記(25)又は(26)に記載のベンゾニトリルの製造方法。 (27) The method for producing benzonitrile according to (25) or (26), wherein the catalyst carrier is SiO 2 .
(28)前記触媒が、SiOの担体上にモリブデン酸化物を担持したものであることを特徴とする前記(25)~(27)のいずれか1項に記載のベンゾニトリルの製造方法。 (28) The method for producing benzonitrile according to any one of (25) to (27), wherein the catalyst is a catalyst in which molybdenum oxide is supported on a SiO 2 carrier.
(29)前記有機溶媒がクロロベンゼン、キシレン、メシチレンのいずれか1種又は2種以上からなることを特徴とする前記(25)~(28)のいずれか1項に記載のベンゾニトリルの製造方法。 (29) The method for producing benzonitrile according to any one of the above (25) to (28), wherein the organic solvent comprises one or more of chlorobenzene, xylene and mesitylene.
(30)前記脱水反応の際に、脱水剤を使用することを特徴とする前記(25)~(29)のいずれか1項に記載のベンゾニトリルの製造方法。 (30) The method for producing benzonitrile according to any one of (25) to (29), wherein a dehydrating agent is used in the dehydration reaction.
(31)CeO及びZrOのいずれか一方、又は、双方の固体触媒とベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応工程と、
 前記第1の反応工程から前記ベンズアミドを分離した後、当該ベンズアミドを、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、ベンゾニトリルに再生する第2の反応工程を有し、
 前記第2の反応工程で再生したベンゾニトリルを、前記第1の反応工程において使用することを特徴とする炭酸エステルの製造方法。
(31) A monohydric alcohol and carbon dioxide are reacted in the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile to produce a carbonate and water, and the benzonitrile A first reaction step of generating benzamide by a hydration reaction between the water and the generated water;
After separating the benzamide from the first reaction step, the benzamide is converted into SiO 2 , TiO 2 , a metal oxide of any one or more of molybdenum, tungsten, rhenium, titanium, and niobium. By dehydration reaction by heating in the presence of a catalyst supported on one or more of the catalyst supports of CeO 2 , ZrO 2 , Al 2 O 3 , and C and in the presence of an organic solvent , Having a second reaction step to regenerate to benzonitrile,
Benzonitrile regenerated in the second reaction step is used in the first reaction step.
(32)CeO及びZrOのいずれか一方、又は、双方の固体触媒とベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応工程と、
 前記第1の反応工程から排出される炭酸エステル、ベンズアミド、未反応のベンゾニトリル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンと、固相の前記固体触媒及びベンズアミドとに分離する第1の分離工程と、
 前記固液分離後の液相の、炭酸エステル、未反応のベンゾニトリル、及びアルカンを、それぞれに分離する第2の分離工程と、
 前記固液分離後の固体触媒及びベンズアミドを、親水性溶媒で抽出した後に固液分離し、液相のベンズアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離工程と、
 当該第3の分離工程で分離されたベンズアミドを、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、ベンゾニトリルに再生する第2の反応工程と、
 当該第2の反応工程から排出されるベンゾニトリル、未反応のベンズアミド、及び金属酸化物が触媒担体に担持された触媒を、濾過して、固相の金属酸化物が触媒担体に担持された触媒を分離する第4の分離工程と、
 当該分離後に残ったベンゾニトリル、ベンズアミド、有機溶媒、水をそれぞれに分離する第5の分離工程と、を有し、
 前記分離されたベンゾニトリルを、前記第1の反応工程において使用することを特徴とする前記(31)に記載の炭酸エステルの製造方法。
(32) A monohydric alcohol and carbon dioxide are reacted in the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile to produce a carbonate and water, and the benzonitrile A first reaction step of generating benzamide by a hydration reaction between the water and the generated water;
The carbonate ester, benzamide, unreacted benzonitrile discharged from the first reaction step, and the solid catalyst are subjected to solvent extraction with alkane and then separated into solid and liquid, and the liquid phase carbonate ester, unreacted benzonitrile, And a first separation step of separating the alkane and the solid catalyst and benzamide in a solid phase;
A second separation step of separating the carbonate, unreacted benzonitrile, and alkane in the liquid phase after the solid-liquid separation;
A third separation step in which the solid catalyst and benzamide after the solid-liquid separation are extracted with a hydrophilic solvent, followed by solid-liquid separation, and separated into a liquid phase benzamide and a hydrophilic solvent and a solid phase solid catalyst;
The benzamide separated in the third separation step is a metal oxide of any one or more of molybdenum, tungsten, rhenium, titanium, niobium, or SiO 2 , TiO 2 , CeO 2 , ZrO 2. , And regenerated to benzonitrile by heating and dehydration reaction in the presence of a catalyst supported on one or more catalyst carriers of Al 2 O 3 and C and in the presence of an organic solvent. A second reaction step,
The catalyst in which the solid phase metal oxide is supported on the catalyst support is filtered by filtering the catalyst in which the benzonitrile, unreacted benzamide, and metal oxide supported on the catalyst support are discharged from the second reaction step. A fourth separation step of separating
And a fifth separation step for separating benzonitrile, benzamide, organic solvent, and water remaining after the separation,
The method for producing a carbonate ester as described in (31) above, wherein the separated benzonitrile is used in the first reaction step.
(33)前記分離された固体触媒を再生する工程を更に有し、再生後の触媒を、前記第1の反応工程で使用することを特徴とする前記(32)に記載の炭酸エステルの製造方法。 (33) The method for producing a carbonate ester according to (32), further comprising a step of regenerating the separated solid catalyst, wherein the regenerated catalyst is used in the first reaction step. .
(34)前記溶媒抽出の際に使用するアルカンが、ヘキサンであることを特徴とする前記(32)又は(33)に記載の炭酸エステルの製造方法。 (34) The method for producing a carbonate ester according to (32) or (33), wherein the alkane used in the solvent extraction is hexane.
(35)前記親水性溶媒が、アセトンであることを特徴とする前記(32)~(34)のいずれか1項に記載の炭酸エステルの製造方法。 (35) The method for producing a carbonate ester according to any one of (32) to (34), wherein the hydrophilic solvent is acetone.
(36)前記金属酸化物が担持された触媒担体は、SiO、TiO、CeO、ZrOのいずれか1種又は2種以上であることを特徴とする前記(31)~(35)のいずれか1項に記載の炭酸エステルの製造方法。 (36) The catalyst support on which the metal oxide is supported is any one or more of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 (31) to (35), The manufacturing method of carbonate ester of any one of these.
(37)前記触媒担体が、SiOであることを特徴とする前記(36)に記載の炭酸エステルの製造方法。 (37) The method for producing carbonate ester as described in (36) above, wherein the catalyst carrier is SiO 2 .
(38)前記金属酸化物が、モリブデン酸化物であることを特徴とする前記(31)~(37)のいずれか1項に記載の炭酸エステルの製造方法。 (38) The method for producing a carbonate ester according to any one of (31) to (37), wherein the metal oxide is molybdenum oxide.
(39)前記有機溶媒が、クロロベンゼン、キシレン、メシチレンのいずれか1種又は2種以上からなることを特徴とする前記(31)~(38)のいずれか1項に記載の炭酸エステルの製造方法。 (39) The method for producing a carbonate ester according to any one of (31) to (38), wherein the organic solvent is one or more of chlorobenzene, xylene, and mesitylene. .
(40)前記第2の反応工程において、脱水剤を使用することを特徴とする前記(31)~(39)のいずれか1項に記載の炭酸エステルの製造方法。 (40) The method for producing a carbonate ester as described in any one of (31) to (39) above, wherein a dehydrating agent is used in the second reaction step.
(41)前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする前記(31)~(40)のいずれか1項に記載の炭酸エステルの製造方法。 (41) The method for producing a carbonate ester according to any one of (31) to (40), wherein the monohydric alcohol is methanol and dimethyl carbonate is produced as a carbonate ester.
(42)前記一価アルコールがエタノールであり、炭酸エステルとして炭酸ジエチルを製造することを特徴とする前記(31)~(41)のいずれか1項に記載の炭酸エステルの製造方法。 (42) The method for producing a carbonate ester according to any one of (31) to (41), wherein the monohydric alcohol is ethanol and diethyl carbonate is produced as a carbonate ester.
(43)前記(31)~(42)のいずれか1項に記載の製造方法に用いる炭酸エステルの製造装置であって、
 二酸化炭素を加圧する加圧部と、
 CeO及びZrOのいずれか一方、又は、双方の固体触媒と、ベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応部と、
 当該第1の反応部により排出される炭酸エステル、ベンズアミド、未反応のベンゾニトリル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンと、固相の前記固体触媒及びベンズアミドとに分離する第1の分離部と、
 前記固液分離後の液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンをそれぞれに分離する第2の分離部と、
 前記固液分離後の固体触媒及びベンズアミドを、親水性溶媒で抽出した後に固液分離し、液相のベンズアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離部と、
 当該分離されたベンズアミドを、モリブデン、タングステン、レニウム、バナジウム、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、ベンゾニトリルを生成する第2の反応部と、
 当該第2の反応部により排出されるベンゾニトリル、未反応のベンズアミド、及び金属酸化物が触媒担体に担持された触媒を、濾過して、固相の金属酸化物を担持した触媒を分離する第4の分離部と、
 当該分離後に残ったベンゾニトリル、ベンズアミド、有機溶媒、水をそれぞれに分離する第5の分離部と、
 前記分離されたベンゾニトリルを、前記第1の反応部へと搬送する搬送部と、を有することを特徴とする炭酸エステルの製造装置。
(43) A carbonate ester production apparatus used in the production method according to any one of (31) to (42),
A pressurizing part for pressurizing carbon dioxide;
In the presence of either one or both of CeO 2 and ZrO 2 , and benzonitrile, a monohydric alcohol and carbon dioxide are reacted to form a carbonate and water, and the benzonitrile and the above A first reaction part for producing benzamide by a hydration reaction with the produced water;
The carbonate ester, benzamide, unreacted benzonitrile, and the solid catalyst discharged by the first reaction unit are subjected to solvent extraction with alkane, and then solid-liquid separated to obtain a liquid phase carbonate ester, unreacted benzonitrile, And a first separation part for separating the alkane and the solid catalyst and benzamide in a solid phase;
A second separation unit for separating the carbonate, unreacted benzonitrile, and alkane in the liquid phase after the solid-liquid separation;
The solid catalyst and benzamide after the solid-liquid separation are extracted with a hydrophilic solvent, followed by solid-liquid separation, and a third separation unit that separates into a liquid phase benzamide and a hydrophilic solvent and a solid phase solid catalyst;
The separated benzamide is a metal oxide of any one or more of molybdenum, tungsten, rhenium, vanadium, niobium, or a metal oxide of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , A second reaction section for producing a benzonitrile by heating to cause a dehydration reaction in the presence of a catalyst supported on one or more catalyst supports of C and in the presence of an organic solvent;
The catalyst in which the benzonitrile, unreacted benzamide, and metal oxide supported on the catalyst carrier are discharged by the second reaction unit is filtered to separate the catalyst supporting the solid phase metal oxide. 4 separation parts;
A fifth separation unit for separating benzonitrile, benzamide, an organic solvent, and water remaining after the separation;
A carbonic acid ester producing apparatus, comprising: a conveying unit configured to convey the separated benzonitrile to the first reaction unit.
 以上説明したように本発明によれば、ピコリンアミドまたはベンズアミドからシアノピリジンまたはベンゾニトリルへの再生を、強力な試薬を使用せず、且つ、副生物の発生も抑えつつ行うことができる。 As described above, according to the present invention, regeneration from picolinamide or benzamide to cyanopyridine or benzonitrile can be performed without using a strong reagent and suppressing the generation of by-products.
本発明の炭酸エステルの製造装置の1例である。It is an example of the manufacturing apparatus of the carbonate ester of this invention. 図1の製造装置の各工程における各物質の状態を示すチャートである。It is a chart which shows the state of each substance in each process of the manufacturing apparatus of FIG. 本発明の炭酸エステルの製造装置のもう1つの例である。It is another example of the manufacturing apparatus of the carbonate ester of this invention. 図3の製造装置の各工程における各物質の状態を示すチャートである。It is a chart which shows the state of each substance in each process of the manufacturing apparatus of FIG.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.2-シアノピリジンの製造方法>
 本発明の2-ピコリンアミドの脱水反応による2-シアノピリジンの製造方法は、塩基性金属酸化物を担持した触媒と有機溶媒の存在下で、2-ピコリンアミドを脱水反応させて、2-シアノピリジンを生成するものである。
<Production method of 1.2-cyanopyridine>
The method for producing 2-cyanopyridine by the dehydration reaction of 2-picolinamide of the present invention comprises dehydrating 2-picolinamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent to give 2-cyanopyridine. It produces pyridine.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで本発明で用いる触媒は、塩基性となるアルカリ金属(K、Li、Na、Rb、Cs)の酸化物を用い、担体は一般的に触媒担体となる物質を用いることができるが、様々な担体を検討した結果、SiO、CeO、ZrO、およびこれらの2種以上(例えばCeO-ZrO等)に担持した触媒を用いた場合に、特に高い性能を示すことが判明した。 Here, as the catalyst used in the present invention, a basic alkali metal (K, Li, Na, Rb, Cs) oxide can be used, and as the carrier, a substance that generally becomes a catalyst carrier can be used. As a result of studying a suitable support, it was found that SiO 2 , CeO 2 , ZrO 2 , and a catalyst supported on two or more of these (for example, CeO 2 —ZrO 2 ) exhibited particularly high performance. .
 これは、2-ピコリンアミド内にあるピリジン環が弱い塩基性を示すため、酸性の触媒を用いると、触媒の活性点にピリジン環が吸着、被毒し、活性低下を起こす可能性があるためで、塩基性の性質を持つ金属の酸化物が好ましい。また、本発明者が鋭意検討した結果、SiOにアルカリ金属酸化物を高分散に担持させた触媒を用いることが、特に好ましく、アルカリ金属酸化物は、1種あるいは2種以上担持してもよい。 This is because the pyridine ring in 2-picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity. Thus, metal oxides having basic properties are preferred. Further, as a result of intensive studies by the present inventor, it is particularly preferable to use a catalyst in which an alkali metal oxide is supported in a highly dispersed state on SiO 2 , and one or more alkali metal oxides may be supported. Good.
 ここで使用する担体の製造方法に関して下記に例を挙げると、SiOの場合の一般的な製造方法として、乾式法と湿式法に大別される。乾式法としては燃焼法、アーク法等、湿式法としては沈降法、ゲル法等があり、いずれの製造方法でも触媒担体を製造することは可能であるが、ゲル法を除く上記方法では球状に成形することが技術的、経済的に困難である為、シリカゾルを気体媒体中又は液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法が好ましい。 Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 . The dry method includes a combustion method, an arc method, etc., and the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
 また、CeOの場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 In the case of CeO 2, cerium acetylacetonate hydrate and cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate These various cerium compounds can be prepared by firing in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
 一方、ZrOの場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 On the other hand, in the case of ZrO 2 , various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are fired in an air atmosphere. Can be prepared. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
 また、CeOとZrOの化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、CeOとZrOの粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere. Can be prepared. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
 これらの方法により、具体的にはCeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒担体を得ることができる。尚、酸化セリウムからなる触媒担体や酸化ジルコニウムからなる触媒担体を調製する場合を含めて、これら各触媒担体の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒担体については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Specifically, a solid catalyst carrier made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods. In addition, including the case where a catalyst carrier made of cerium oxide or a catalyst carrier made of zirconium oxide is prepared, the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
 本発明の触媒の製造法について、下記に例を挙げると、担体がSiOの場合、市販の粉末または球状のSiOを使用でき、活性金属を均一に担持できるよう、100mesh(0.15mm)以下に整粒し、水分を除去するために、予備焼成を空気中700℃で1時間行うことが好ましい。また、SiOにも様々な性状のものがあるが、表面積が大きいものほど、活性金属を高分散にでき、2-シアノピリジンの生成量が向上することから好ましい。具体的には、300m/g以上の表面積が好ましい。ただし、調製後の触媒の表面積は、SiOと活性金属との相互作用等により、SiOのみの表面積よりも低下することがある。その場合、製造後の触媒の表面積が、150m/g以上となることが好ましい。活性種となる金属酸化物の担持は、インシピエントウェットネス(Incipient wetness)法や蒸発乾固法等の含浸法によって、担持することができる。 An example of the method for producing the catalyst of the present invention is as follows. When the support is SiO 2 , a commercially available powder or spherical SiO 2 can be used, and 100 mesh (0.15 mm) is used so that the active metal can be uniformly supported. In order to adjust the particle size below and remove moisture, pre-baking is preferably performed in air at 700 ° C. for 1 hour. Also, SiO 2 has various properties, but a larger surface area is preferable because the active metal can be highly dispersed and the amount of 2-cyanopyridine produced is improved. Specifically, a surface area of 300 m 2 / g or more is preferable. However, the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more. The active metal oxide can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
 前駆体となる金属塩は、水溶性であればよく、アルカリ金属であれば例えば、炭酸塩、炭酸水素塩、塩化物塩、硝酸塩、ケイ酸塩などの各種化合物を用いることができる。塩基性金属の前駆体水溶液を担体に含浸した後、乾燥、焼成することで触媒として用いることができ、焼成温度は、使用する前駆体にもよるが、400~600℃が好ましい。 The metal salt used as the precursor may be water-soluble, and various compounds such as carbonates, hydrogen carbonates, chloride salts, nitrates, and silicates can be used as long as they are alkali metals. The carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
 また、触媒の担持量は適宜設定すれば良いが、例えば全触媒重量を基準にアルカリ金属酸化物の金属換算担持量を、0.1~1.5mmol/g程度、特に0.1~1mmol/g程度で設定することが好ましい。担持量がこれより多くなると活性が低下するおそれがある。また、反応時の触媒使用量についても、適宜設定すればよい。 The supported amount of the catalyst may be set as appropriate. For example, the supported metal amount of the alkali metal oxide is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol / g based on the total catalyst weight. It is preferable to set at about g. If the loading amount is larger than this, the activity may decrease. Moreover, what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
 さらに、本発明における触媒は、SiO、CeO、ZrOのいずれか1種又は2種以上から成る担体上に、アルカリ金属酸化物を1種あるいは2種以上のみを担持した触媒からなるが、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わない。しかし、できるだけ不純物が混入しないようにするのが望ましい。 Furthermore, the catalyst in the present invention is composed of a catalyst in which one or more alkali metal oxides are supported on a carrier composed of one or more of SiO 2 , CeO 2 , and ZrO 2. In addition to the above elements, unavoidable impurities mixed in the catalyst production process or the like may be included. However, it is desirable to prevent impurities from entering as much as possible.
 ここで本発明の活性種となる金属酸化物を担体上に担持した触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst in which the metal oxide serving as the active species of the present invention is supported on the support may be in the form of powder or molded body, and in the case of the molded body, it is spherical, pellet-shaped, cylinder-shaped. , Ring shape, wheel shape, granule shape and the like.
 次に、本発明の触媒を用いた2-シアノピリジン製造方法は、反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。 Next, the method for producing 2-cyanopyridine using the catalyst of the present invention is not particularly limited as a reaction mode, and is not limited to a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any flow reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
 本発明の製造方法では、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、還流や蒸留、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、2-ピコリンアミド、有機溶媒を入れて、還流させて常圧で反応することで、2-シアノピリジンの生成量を向上させることが可能である。 In the production method of the present invention, it is desirable to carry out while removing the by-product water produced by the dehydration reaction. For example, while removing the by-product water by installing a dehydrating agent such as reflux, distillation or zeolite in the system. It is desirable to carry out the reaction. As a result of intensive studies by the present inventors, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride as a dehydrating agent was installed in the extraction tube, and a catalyst, 2-picolinamide, organic By adding a solvent, refluxing, and reacting at normal pressure, it is possible to improve the amount of 2-cyanopyridine produced.
 有機溶媒には沸点が130℃以上の物質が好ましく、例えば、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンなどが挙げられる。 The organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, and mesitylene.
 反応条件は、脱水反応速度と溶媒の沸点、並びに、反応の際に発生するCO排出量や経済性の観点で選択するのが望ましい。 The reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and economic efficiency.
 本発明の2-シアノピリジンの製造方法における通常の反応条件としては、反応温度は160~200℃、圧力は常圧、時間は数時間~500時間程度で行うことができるが、特にこれらに制限されるものではない。 The usual reaction conditions in the method for producing 2-cyanopyridine of the present invention can be carried out at a reaction temperature of 160 to 200 ° C., a pressure of normal pressure, and a time of several hours to 500 hours. Is not to be done.
 また、脱水剤として使用するモレキュラーシーブの種類・形状には特に制限されるものはないが、例えば、3A、4A、5A等一般的に吸水性の高いもので、球状やペレット状のものを使用できる。また、事前に乾燥させておくことが好ましく、300~500℃で1時間程乾燥することが好ましい。 The type and shape of the molecular sieve used as the dehydrating agent are not particularly limited. For example, 3A, 4A, 5A, etc., which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 2-ピコリンアミドの脱水反応では、上記のような、2-ピコリンアミドの分解によってピコリン酸やピリジンが副生することが考えられるが、本発明の触媒を用いた脱水反応後は、反応物で微量残った2-ピコリンアミド、生成物である2-シアノピリジン、副生物の水、有機溶媒だけであり、上記のような副生物はほとんど生成しない。 In the dehydration reaction of 2-picolinamide, it is considered that picolinic acid and pyridine are by-produced by the decomposition of 2-picolinamide as described above. However, after the dehydration reaction using the catalyst of the present invention, Only a small amount of 2-picolinamide, 2-cyanopyridine as a product, water as a by-product, and an organic solvent are present, and the above-mentioned by-products are hardly generated.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱する。各物質の融点は、110℃(2-ピコリンアミド)、24℃(2-シアノピリジン)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は143℃(2-ピコリンアミド)、212℃(2-シアノピリジン)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、反応相は、触媒が固体以外はすべて液体となっており、一部気化した、2-ピコリンアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、2-ピコリンアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is heated to 160 to 200 ° C. The melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized. The 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 反応後の系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、蒸留することで容易に分離することが可能である。また、触媒は固体であることから、反応後は必要に応じて分離・回収することができ、通常のろ過などの固液分離方法により容易に回収することができる。 Since the boiling point of each substance present in the system after the reaction is different as described above, it can be easily separated by distillation. Further, since the catalyst is a solid, it can be separated and recovered as necessary after the reaction, and can be easily recovered by a solid-liquid separation method such as ordinary filtration.
 <2.3-、4-シアノピリジンの製造方法>
 2-シアノピリジンの出発物質である2-ピコリンアミドをニコチンアミド、イソニコチンアミドに変更して同様の処理を行うことで、3-シアノピリジン、4-シアノピリジンを合成することができる。
<Method for producing 2.3, 4-cyanopyridine>
3-Cyanopyridine and 4-cyanopyridine can be synthesized by changing 2-picolinamide, which is a starting material of 2-cyanopyridine, to nicotinamide and isonicotinamide and carrying out the same treatment.
 <3.ベンゾニトリルの製造方法>
 ベンゾニトリルの製造方法は、シアノピリジンの製造方法と同様の工程で構成される。具体的には以下のとおりである。
<3. Method for producing benzonitrile>
The method for producing benzonitrile includes the same steps as the method for producing cyanopyridine. Specifically, it is as follows.
 本発明のベンズアミドの脱水反応によるベンゾニトリルの製造方法は、塩基性金属酸化物を担持した触媒と有機溶媒の存在下で、ベンズアミドを脱水反応させて、ベンゾニトリルを生成するものである。 The method for producing benzonitrile by dehydration reaction of benzamide according to the present invention is to produce benzonitrile by dehydration reaction of benzamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで本発明で用いる触媒は、塩基性となる金属(Mo、W、Re、Ti、Nb)の酸化物を用い、担体は一般的に触媒担体となる物質を用いることができるが、様々な担体を検討した結果、SiO、TiO、CeO、ZrO、Al、Cおよびこれらの2種以上の触媒担体に、活性金属種の酸化物を担持した触媒を用いた場合に、特に高い性能を示すことが判明した。 Here, the catalyst used in the present invention may be an oxide of a basic metal (Mo, W, Re, Ti, Nb), and the support may be a substance that generally becomes a catalyst support. As a result of examining the support, when a catalyst supporting an oxide of an active metal species is used on SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , C, and two or more of these catalyst supports It was found to show particularly high performance.
 これは、酸性の触媒を用いると、触媒の活性点にベンゼン環が吸着、被毒し、活性低下を起こす可能性があるためで、塩基性の性質を持つ金属の酸化物が好ましい。また、本発明者が鋭意検討した結果、SiO、TiO、CeO、ZrO、Al、Cの中でも、SiO、TiO、CeO、ZrOのいずれか1種又は2種以上の触媒担体を用いると、より高い性能を示すため好ましい。これは、ベンズアミドとの反応において、金属と酸素の間の二重結合部分が活性を示す可能性があると考えられるため、金属酸化物の中で二重結合を有する金属元素が好ましい。さらには、SiOに上記金属酸化物(特にモリブデン)を高分散に担持させた触媒を用いることが特に好ましく、金属酸化物は、1種あるいは2種以上担持してもよい。金属酸化物の製造方法について以下に説明する。 This is because, when an acidic catalyst is used, a benzene ring is adsorbed and poisoned at the active site of the catalyst, which may cause a decrease in activity. Therefore, a metal oxide having basic properties is preferable. Further, as a result of intensive studies by the present inventors, among SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C, any one or two of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 are used. It is preferable to use more than one type of catalyst support because it shows higher performance. This is because, in the reaction with benzamide, it is considered that the double bond portion between the metal and oxygen may be active, and thus a metal element having a double bond is preferable among the metal oxides. Furthermore, it is particularly preferable to use a catalyst in which the above metal oxide (especially molybdenum) is supported on SiO 2 in a highly dispersed state, and one or more metal oxides may be supported. A method for producing a metal oxide will be described below.
 SiOの場合の一般的な製造方法としては、乾式法と湿式法に大別される。乾式法としては燃焼法、アーク法等、湿式法としては沈降法、ゲル法等があり、いずれの製造方法でも触媒担体を製造することは可能であるが、ゲル法を除く上記方法では球状に成形することが技術的、経済的に困難である為、シリカゾルを気体媒体中又は液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法が好ましい。 The general production method in the case of SiO 2, are roughly classified into a dry method and a wet method. The dry method includes a combustion method, an arc method, etc., and the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
 また、CeOの場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 In the case of CeO 2, cerium acetylacetonate hydrate and cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate These various cerium compounds can be prepared by firing in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
 ZrOの場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 In the case of ZrO 2 , various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are calcined in an air atmosphere. Can be prepared. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
 また、TiOやAlの場合も、一般的な方法で製造することができる。Cは炭素を主体とするものであって、本反応期間中変質しないものであればどんな形態でもよく、例えば活性炭などが望ましいが、これに限定するものではない。 Further, in the case of TiO 2 and Al 2 O 3, it can be prepared by a general method. C is mainly composed of carbon and may be in any form as long as it does not change during the reaction period. For example, activated carbon is preferable, but it is not limited thereto.
 2種類以上の金属種を含む化合物の場合は、2種以上の金属塩を含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、2種以上の酸化物の粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound containing two or more kinds of metal species, a base is added to a solution containing two or more kinds of metal salts to form a hydroxide by coprecipitation, followed by filtration, washing and drying in an air atmosphere. It can be prepared by firing. Moreover, although it can prepare also by physically mixing and baking the powder of 2 or more types of oxides, since the specific surface area of a final preparation does not become high, the coprecipitation method with which reaction progresses more is preferable.
 例えば、CeOとZrOの化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。 For example, in the case of a compound of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere. Can be prepared.
 このような方法により、CeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒担体を得ることができる。尚、酸化セリウムからなる触媒担体や酸化ジルコニウムからなる触媒担体を調製する場合を含めて、これら各触媒担体の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒担体については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 By such a method, a solid catalyst carrier comprising a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained. In addition, including the case where a catalyst carrier made of cerium oxide or a catalyst carrier made of zirconium oxide is prepared, the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
 SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から選ばれる担体は、表面積が大きいものほど、活性金属種を高分散に担持でき、ベンゾニトリルの生成量が向上することから好ましい。具体的には、表面積は担体の種類によるが、表面積がBET法で測定して、10m/g以上であることが好ましい。高分散しているかどうかは、電子顕微鏡(SEM、TEM等)の画像等で確認することができる。 The carrier selected from one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C can support active metal species in a highly dispersed manner as the surface area increases. This is preferable because the amount of nitrile produced is improved. Specifically, the surface area depends on the type of the carrier, but the surface area is preferably 10 m 2 / g or more as measured by the BET method. Whether it is highly dispersed can be confirmed with an image of an electron microscope (SEM, TEM, etc.).
 本発明の触媒の製造は公知の方法で担体に活性種となる金属酸化物を担持すればよい。たとえば、インシピエントウェットネス(Incipient wetness)法や蒸発乾固法等の含浸法によって、担持することができる。 In the production of the catalyst of the present invention, a metal oxide that becomes an active species may be supported on a support by a known method. For example, it can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
 下記に例を挙げると、担体がSiOの場合、市販の粉末または球状のSiOを使用でき、活性金属を均一に担持できるよう、100mesh(0.15mm)以下に整粒し、水分を除去するために、予備焼成を空気中700℃で1時間行うことが好ましい。また、SiOにも様々な性状のものがあるが、表面積が大きいものほど、活性金属を高分散に担持でき、ベンゾニトリルの生成量が向上することから好ましい。具体的には、300m/g以上(BET法)の表面積がより好ましい。ただし、調製後の触媒の表面積は、SiOと活性金属との相互作用等により、SiOのみの表面積よりも低下することがある。その場合、製造後の触媒の表面積が、150m/g以上(BET法)となることがより好ましい。 For example, when the carrier is SiO 2 , commercially available powder or spherical SiO 2 can be used, and the particle size is adjusted to 100 mesh (0.15 mm) or less to remove the moisture so that the active metal can be uniformly supported. In order to achieve this, it is preferable to perform pre-baking in air at 700 ° C. for 1 hour. Moreover, although SiO 2 has various properties, it is preferable that the surface area is large because the active metal can be supported in a highly dispersed manner and the amount of benzonitrile produced is improved. Specifically, a surface area of 300 m 2 / g or more (BET method) is more preferable. However, the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is more preferable that the surface area of the catalyst after production is 150 m 2 / g or more (BET method).
 活性種となる金属酸化物の前駆体となる金属塩は、水溶性であればよく、例えば、炭酸塩、炭酸水素塩、塩化物塩、硝酸塩、ケイ酸塩などの各種化合物を用いることができる。塩基性金属の前駆体水溶液を担体に含浸した後、乾燥、焼成することで触媒として用いることができ、焼成温度は、使用する前駆体にもよるが、400~600℃が好ましい。 The metal salt that is a precursor of the metal oxide that becomes the active species may be water-soluble. For example, various compounds such as carbonate, bicarbonate, chloride, nitrate, and silicate can be used. . The carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
 また、金属酸化物の担持量は適宜設定すれば良いが、例えば全触媒重量を基準に金属酸化物の金属換算担持量を、0.1~1.5mmol/g程度、特に0.1~1mmol/g程度、さらには0.2~0.8mmol/g程度で設定することが好ましい。担持量がより多くなると金属酸化物の粗大化により活性が低下するおそれがある。また、反応時の触媒使用量についても、適宜設定すればよい。 The amount of metal oxide supported may be set as appropriate. For example, the amount of metal oxide supported in terms of metal based on the total catalyst weight is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol. / G, preferably about 0.2 to 0.8 mmol / g. When the loading amount is larger, the activity may be reduced due to the coarsening of the metal oxide. Moreover, what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
 さらに、本発明における触媒は、SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から成る担体上に、金属酸化物を1種あるいは2種以上のみを担持した触媒からなるが、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わない。しかし、できるだけ不純物が混入しないようにするのが望ましい。通常の場合、不純物は触媒全体の1質量%未満であることが好ましい。 Furthermore, the catalyst in the present invention is one or two kinds of metal oxides on a support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C. Although it consists of the catalyst which carry | supported only the above, you may contain the unavoidable impurity mixed in a catalyst manufacturing process etc. other than said element. However, it is desirable to prevent impurities from entering as much as possible. In normal cases, the impurities are preferably less than 1% by weight of the total catalyst.
 ここで本発明の活性種となる金属酸化物を担体上に担持した触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst in which the metal oxide serving as the active species of the present invention is supported on the support may be in the form of powder or molded body, and in the case of the molded body, it is spherical, pellet-shaped, cylinder-shaped. , Ring shape, wheel shape, granule shape and the like.
 次に、本発明の触媒を用いたベンゾニトリルの製造方法は、反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。 Next, the method for producing benzonitrile using the catalyst of the present invention is not particularly limited as a reaction mode, such as a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any of the flow reactors may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
 有機溶媒には、沸点が130℃以上の物質が好ましく、例えば、クロロベンゼン、(o-,m-,p-)キシレン、メシチレン、フルフラール、ヘプタデカンなどが挙げられるが、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンが好ましい。 The organic solvent is preferably a substance having a boiling point of 130 ° C. or more, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene, furfural, heptadecane and the like. , P-) xylene and mesitylene are preferred.
 反応条件は、脱水反応速度と溶媒の沸点、並びに、反応の際に発生するCO排出量や経済性の観点で選択するのが望ましい。 The reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and economic efficiency.
 本発明のベンゾニトリルの製造方法における通常の反応条件としては、反応温度は160~200℃、圧力は常圧、時間は数時間~24時間程度で行うことができるが、特にこれらに制限されるものではない。 As usual reaction conditions in the method for producing benzonitrile of the present invention, the reaction temperature is 160 to 200 ° C., the pressure is normal pressure, and the time is several hours to 24 hours. It is not a thing.
 本発明の製造方法では、長時間反応させるためには、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、ベンズアミド、有機溶媒を入れて、還流させて常圧で反応することで、ベンゾニトリルの生成量を向上させることが可能である。 In the production method of the present invention, in order to react for a long time, it is preferable to remove by-product water generated by the dehydration reaction. For example, a dehydrating agent such as zeolite is installed in the system, and the by-product water is removed. It is desirable to carry out the reaction while removing. As a result of intensive studies by the present inventor, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride was installed in the extraction tube as a dehydrating agent, and a catalyst, benzamide, and an organic solvent were placed in the reaction tube. The amount of benzonitrile produced can be improved by reacting at normal pressure with reflux.
 また、脱水剤として使用するモレキュラーシーブの種類・形状には特に制限されるものはないが、例えば、3A、4A、5A等一般的に吸水性の高いもので、球状やペレット状のものを使用できる。また、事前に乾燥させておくことが好ましく、300~500℃で1時間程乾燥することが好ましい。 The type and shape of the molecular sieve used as the dehydrating agent are not particularly limited. For example, 3A, 4A, 5A, etc., which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ベンズアミドの脱水反応では、上記のような、ベンズアミドの分解によって安息香酸が副生することが考えられるが、本発明の触媒を用いた脱水反応後は、反応物で微量残ったベンズアミド、生成物であるベンゾニトリル、副生物の水、有機溶媒だけであり、上記のような副生物はほとんど生成しない。また、生成したとしても極少量であり、蒸留操作で分離して、医薬用途として用いることができる。 In the dehydration reaction of benzamide, benzoic acid may be produced as a by-product due to the decomposition of benzamide as described above. However, after the dehydration reaction using the catalyst of the present invention, a small amount of benzamide and product remained in the reaction product. There are only some benzonitriles, by-product water, and organic solvents, and these by-products are hardly produced. Moreover, even if it produces | generates, it is very small amount, can isolate | separate by distillation operation and can use it for a pharmaceutical use.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応温度は、ベンズアミドの脱水反応が液相で行われる条件であることが好ましい。反応効率を考慮すると液相条件下でより高温であることが好ましく、常圧下で反応させる場合、反応管周辺を160~200℃に加熱することが好ましい。典型例の反応系における各物質の融点は、127℃(ベンズアミド)、-13℃(ベンゾニトリル)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は288℃(ベンズアミド)、188℃(ベンゾニトリル)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、上記の温度であれば、反応相は、触媒が固体以外は殆どが液体となっており、一部気化した、ベンズアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、ベンズアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the reaction temperature is preferably a condition under which the benzamide dehydration reaction is performed in a liquid phase. Considering the reaction efficiency, it is preferable that the temperature is higher under liquid phase conditions. When the reaction is performed under normal pressure, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C. The melting point of each substance in a typical reaction system is 127 ° C. (benzamide), −13 ° C. (benzonitrile), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C. (benzamide), 188 Since it is ℃ (benzonitrile), 100 ℃ (water), 165 ℃ (organic solvent, for example, mesitylene), at the above temperature, the reaction phase is almost liquid except for the solid catalyst, The partially vaporized benzamide, by-product water, and organic solvent are cooled by a cooler, and the by-product water is adsorbed by the dehydrating agent, and the benzamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 反応後の系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、蒸留することで容易に分離することが可能である。また、触媒は固体であることから、反応後は必要に応じて分離・回収することができ、通常のろ過などの固液分離方法により容易に回収することができる。 Since the boiling point of each substance present in the system after the reaction is different as described above, it can be easily separated by distillation. Further, since the catalyst is a solid, it can be separated and recovered as necessary after the reaction, and can be easily recovered by a solid-liquid separation method such as ordinary filtration.
 <4.2-シアノピリジンを用いた炭酸エステルの製造方法>
 上記の通り、本発明者は、2-ピコリンアミドから2-シアノピリジンへの再生を、強力な試薬を使用せず、且つ、副生物の発生も抑えつつ行う方法に想到することができた。そして、本発明者は、この知見を炭酸エステルの製造方法に応用することで、以下に説明する炭酸エステルの製造方法に想到することができた。
<Method for producing carbonate ester using 4.2-cyanopyridine>
As described above, the present inventor was able to conceive of a method for regenerating 2-picolinamide to 2-cyanopyridine without using a powerful reagent and suppressing the generation of by-products. And this inventor was able to think of the manufacturing method of carbonate ester demonstrated below by applying this knowledge to the manufacturing method of carbonate ester.
 (第1の反応工程)
 本発明の炭酸エステルの製造方法における第1の反応工程は、CeO及びZrOのいずれか一方又は双方の固体触媒と2-シアノピリジンとの存在下、一価アルコールと二酸化炭素を直接反応させて炭酸エステルを生成するものである。
(First reaction step)
The first reaction step in the method for producing a carbonate ester of the present invention involves directly reacting a monohydric alcohol and carbon dioxide in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and 2-cyanopyridine. This produces a carbonate ester.
 本工程では、一価アルコールと二酸化炭素を反応させると炭酸エステルの他に水も生成するが、2-シアノピリジンが存在することで、生成した水との水和反応により2-ピコリンアミドを生成し、生成した水を反応系から除去又は低減することで、炭酸エステルの生成を促進させることが可能となる。 In this process, when monohydric alcohol and carbon dioxide are reacted, water is produced in addition to carbonate ester, but 2-picolinamide is produced by the hydration reaction with the produced water due to the presence of 2-cyanopyridine. And it becomes possible to promote the production | generation of carbonate ester by removing or reducing the produced | generated water from a reaction system.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (一価アルコール)
 ここで、一価アルコールとしては、第一級アルコール、第二級アルコール、第三級アルコールのうち一種又は二種以上から選ばれたいずれのアルコールも用いることができ、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、アリルアルコール、2-メチル-1-プロパノール、シクロヘキサンメタノール、ベンジルアルコールを用いた場合が、生成物の収率が高く、反応速度も速いので好ましい。この時、生成する炭酸エステルはそれぞれ、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジイソプロピル、炭酸ジブチル、炭酸ジペンチル、炭酸ジヘキシル、炭酸ジヘプチル、炭酸ジオクチル、炭酸ジノナン、炭酸ジアリル、炭酸ジ2-メチル-プロピル、炭酸ジシクロヘキサンメチル、炭酸ジベンジルとなる。
(Monohydric alcohol)
Here, as the monohydric alcohol, any alcohol selected from one or more of primary alcohol, secondary alcohol, and tertiary alcohol can be used, and methanol, ethanol, 1-propanol can be used. , Isopropanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, allyl alcohol, 2-methyl-1-propanol, cyclohexane methanol, benzyl alcohol This is preferable because the yield of the product is high and the reaction rate is fast. At this time, the produced carbonates are dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, diheptyl carbonate, dioctyl carbonate, dinonane carbonate, diallyl carbonate, di-2-methyl-propyl carbonate, respectively. To dicyclohexane methyl carbonate and dibenzyl carbonate.
 (炭酸エステル製造触媒)
 また、CeO及びZrOのいずれか一方又は双方の固体触媒は、CeOのみ、ZrOのみ、CeOとZrOの混合物、あるいはCeOとZrOの固溶体や複合酸化物であり、特にCeOのみが好ましい。また、CeOとZrOの固溶体や複合酸化物は、CeOとZrOの混合比が50:50を基本とするが、混合比は適宜変更可能である。
(Carbonate production catalyst)
Moreover, either or both of the solid catalyst of CeO 2 and ZrO 2, only CeO 2, only ZrO 2, a CeO 2 and mixtures of ZrO 2, or CeO 2 solid solution or a composite oxide of ZrO 2, in particular Only CeO 2 is preferred. Further, CeO 2 and ZrO 2 solid solutions and composite oxides are basically based on a mixing ratio of CeO 2 and ZrO 2 of 50:50, but the mixing ratio can be changed as appropriate.
 本発明者らが鋭意検討した結果、炭酸エステル直接合成に用いる触媒は、酸塩基複合機能を有することが必要であり、特に酸性度が比較的低く且つ塩基性度が比較的高い性質を有することが好ましい。酸性度が高すぎると、炭酸エステルよりもむしろエーテルを多量に合成することになり好ましくない。適度な酸塩基複合機能触媒においては、塩基点上でR-O-M(Mは触媒)の形でアルコールが解離吸着し、COとの間でRO-C(=O)-O…Mを形成し、他方、酸点上ではHO-R…Mの形でアルコールが吸着し、両吸着種の間でRO-C(=O)-ORが生成される機構が考えられる。 As a result of intensive studies by the present inventors, the catalyst used for the direct synthesis of carbonic acid ester is required to have an acid-base complex function, and in particular, has a property of relatively low acidity and relatively high basicity. Is preferred. If the acidity is too high, it is not preferable because a large amount of ether is synthesized rather than carbonate. In the moderate acid base complex function catalyst, RO-M on base point (M catalyst) alcohol dissociates adsorbed in the form of, RO-C (= O) with the CO 2 -O ... M On the other hand, on the acid point, alcohol is adsorbed in the form of HO—R... M, and RO—C (═O) —OR is generated between both adsorbed species.
 また、この固体触媒は、炭酸エステル合成時に副生する水と2-シアノピリジンの水和反応に対しても触媒活性を示す。従って、本触媒表面上では炭酸エステル合成反応と水和反応の両者が進行する状態になるが、炭酸エステルの合成反応には平衡的に不利な低圧の条件下でも、2-シアノピリジンの水和反応は触媒作用を受けて進行し、炭酸エステルの合成反応で副生した水を触媒表面から速やかに脱離することにより炭酸エステルの合成反応の平衡が生成系にシフトして、反応圧力の低い温和な条件下でも炭酸エステル合成反応が平衡制約を受けることなく炭酸エステルの高い反応率を可能にするものと推察する。逆に高圧下では、触媒表面に多量のCO分子が吸着するために、炭酸エステル合成時に生成する水分子との接触が困難になるため、2-シアノピリジンとの水和反応が進行しにくくなり、平衡制約に近い状態でしか炭酸エステルを生産することができず、結果的に高圧下では生産性が高くならなくなるものと考えられる。 This solid catalyst also exhibits catalytic activity for the hydration reaction of water and 2-cyanopyridine, which are by-produced during the synthesis of carbonate ester. Therefore, although both the carbonate ester synthesis reaction and the hydration reaction proceed on the surface of the catalyst, the hydration of 2-cyanopyridine is carried out even under low pressure conditions, which is unfavorably balanced for the carbonate ester synthesis reaction. The reaction proceeds under catalysis, and the water generated as a by-product from the synthesis reaction of the carbonate ester is rapidly eliminated from the catalyst surface, so that the equilibrium of the synthesis reaction of the carbonate ester shifts to the production system and the reaction pressure is low. It is inferred that the carbonate ester synthesis reaction is allowed to have a high reaction rate without being subjected to equilibrium constraints even under mild conditions. On the other hand, under high pressure, a large amount of CO 2 molecules are adsorbed on the catalyst surface, making it difficult to contact with water molecules generated during the synthesis of carbonic acid ester, so that the hydration reaction with 2-cyanopyridine does not proceed easily. Therefore, it is considered that the carbonate ester can be produced only in a state close to the equilibrium constraint, and as a result, the productivity is not increased under high pressure.
 上記推察に関し、2-シアノピリジンの反応の観点から説明すれば、2-シアノピリジンは、液相で本発明における固体触媒の触媒作用を受けて、その表面で水和反応が促進される。従って、高圧になると固体触媒の表面がCOで覆われてしまい、主反応で生成した水分子との水和反応に対して触媒作用を受けにくい状態になるため、水和反応速度が低下するものと推察される。一方、非特許文献4、非特許文献5に記載されたアセタールや2,2-ジメトキシプロパンは、液相で触媒作用を何ら受けず、主反応で生成した水分子と水和反応を起こす。従って、主反応が高圧で優位に進行するため、高圧下で水和反応が起こりはじめるものと推察される。 Regarding the above inference, from the viewpoint of the reaction of 2-cyanopyridine, 2-cyanopyridine is catalyzed by the solid catalyst of the present invention in the liquid phase, and the hydration reaction is promoted on the surface thereof. Therefore, when the pressure is increased, the surface of the solid catalyst is covered with CO 2 , and the hydration reaction rate is reduced because it becomes difficult to be catalyzed by the hydration reaction with water molecules generated in the main reaction. Inferred. On the other hand, acetal and 2,2-dimethoxypropane described in Non-Patent Document 4 and Non-Patent Document 5 do not undergo any catalytic action in the liquid phase and cause a hydration reaction with water molecules generated in the main reaction. Therefore, since the main reaction proceeds predominantly at high pressure, it is presumed that the hydration reaction begins to occur under high pressure.
 また、本発明の触媒の製造法について、下記に例を挙げると、先ず、CeOの場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 As for the production method of the catalyst of the present invention, for example, first, in the case of CeO 2 , cerium acetylacetonate hydrate, cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate, ammonium cerium nitrate, It can be prepared by firing various cerium compounds such as cerium carbonate, cerium oxalate, cerium perchlorate, cerium phosphate and cerium stearate in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
 一方、酸化ジルコニウム(ZrO)の場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 On the other hand, in the case of zirconium oxide (ZrO 2 ), various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium oxide dinitrate, zirconium sulfate and the like are mixed with air. It can be prepared by firing in an atmosphere. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
 また、CeOとZrOの固溶体や複合酸化物のような化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、CeOとZrOの粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound such as a solid solution or composite oxide of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing with water. It can be prepared by drying and firing in an air atmosphere. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
 これらの方法により、具体的にはCeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒を得ることができる。尚、酸化セリウムからなる触媒や酸化ジルコニウムからなる触媒を調製する場合を含めて、これら各触媒の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Specifically, a solid catalyst made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods. In addition, including the case of preparing a catalyst made of cerium oxide or a catalyst made of zirconium oxide, it is preferable to select a temperature at which the specific surface area of the final preparation is increased as the firing temperature at the time of preparation of each catalyst. Although it depends on the raw material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst according to the present invention may contain inevitable impurities mixed in the catalyst production process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
 ここで本発明の触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst of the present invention may be in any form of powder or molded body, and in the case of a molded body, it may be any of spherical, pellet, cylinder, ring, wheel, granule, etc. .
 (二酸化炭素)
 また、本発明で用いる二酸化炭素は、工業ガスとして調製されたものだけでなく、各製品を製造する工場や製鉄所、発電所等からの排出ガスから分離回収したものも用いることができる。
(carbon dioxide)
Moreover, the carbon dioxide used in the present invention is not limited to those prepared as industrial gases, but can also be used that separated and recovered from exhaust gases from factories, steel mills, power plants, etc. that manufacture each product.
 (固液分離)
 一価アルコールの転化率が100%で、ピコリン酸メチルやカルバミン酸メチルのような副生物が生成しない条件では、反応後は主生成物である炭酸エステル、副生成物である2-ピコリンアミド、未反応の2-シアノピリジン、CeO等の固体触媒となる。これらを分離するためには、まず、有機溶剤による抽出工程で液体成分(炭酸エステル、2-シアノピリジン)を抽出し、固定成分(2-ピコリンアミドと固定触媒)とフィルターで分離できる。ここで使用する有機溶剤は炭酸エステルが溶解できるアルカンが好ましく、さらに、ヘキサン、オクタン、ノナン、デカン、ウンデカンがより好ましい。
(Solid-liquid separation)
Under the conditions where the conversion rate of monohydric alcohol is 100% and no by-products such as methyl picolinate and methyl carbamate are formed, carbonate ester as the main product, 2-picolinamide as the by-product after the reaction, It becomes a solid catalyst such as unreacted 2-cyanopyridine, CeO 2 or the like. In order to separate them, first, a liquid component (carbonate ester, 2-cyanopyridine) is extracted in an extraction step using an organic solvent, and can be separated from a fixed component (2-picolinamide and a fixed catalyst) and a filter. The organic solvent used here is preferably an alkane that can dissolve the carbonate, and more preferably hexane, octane, nonane, decane, and undecane.
 (液体成分の分離)
 次に、分離された液体成分には、炭酸エステル、2-シアノピリジン、有機溶剤が含まれているが、各物質の融点及び沸点が、炭酸エステルには、4℃及び90℃(炭酸ジメチル)、-43℃及び128℃(炭酸ジエチル)、-41℃及び167℃(炭酸ジプロピル)、25℃以下及び207℃(炭酸ジブチル)等があり、また、24℃及び215℃(2-シアノピリジン)、-95℃及び69℃(例えば、ヘキサン)であることから、炭酸エステルを蒸留により分離することが可能であり、製品である炭酸エステルを高純度で回収することが可能である。また、蒸留以外にも、段階的に冷却して融点以下になり固化したものを、フィルター分離して回収することも可能である。
(Separation of liquid components)
Next, the separated liquid component contains carbonate ester, 2-cyanopyridine, and an organic solvent. The melting point and boiling point of each substance are 4 ° C and 90 ° C (dimethyl carbonate). -43 ° C and 128 ° C (diethyl carbonate), -41 ° C and 167 ° C (dipropyl carbonate), 25 ° C or less and 207 ° C (dibutyl carbonate), and 24 ° C and 215 ° C (2-cyanopyridine) , −95 ° C. and 69 ° C. (for example, hexane), the carbonate ester can be separated by distillation, and the product carbonate ester can be recovered with high purity. In addition to distillation, it is also possible to filter and recover what is solidified by cooling stepwise to below the melting point.
 (固体成分の分離)
 また、固体成分として分離された2-ピコリンアミドと固体触媒は、親水性溶媒で2-ピコリンアミドのみを抽出し、固体触媒とフィルターで分離できる。ここで使用する親水性溶媒は、アセトン、エタノール、エーテル、水であることが、取扱い易さや後段での分離を考えると好ましい。親水性溶媒に溶けた2-ピコリンアミドは蒸留によって分離でき、副生した2-ピコリンアミドを高純度で精製することが可能である。
(Separation of solid components)
Further, 2-picolinamide and solid catalyst separated as solid components can be separated from the solid catalyst and a filter by extracting only 2-picolinamide with a hydrophilic solvent. The hydrophilic solvent used here is preferably acetone, ethanol, ether, or water in view of ease of handling and separation at a later stage. The 2-picolinamide dissolved in the hydrophilic solvent can be separated by distillation, and the by-produced 2-picolinamide can be purified with high purity.
 (分離された固体触媒の再生処理)
 分離された固体触媒は、触媒を再生する工程で再生処理され、第1の反応工程で再利用すること可能である。触媒再生工程は加熱して、固体触媒上の不純物等を焼き飛ばす工程であり、400~700℃、好ましくは500~600℃で3時間程度焼成する。急激な昇温により固体触媒の構造破壊を防ぐため、焼成前に乾燥工程を踏まえた方がよく、110℃で2時間程度乾燥させることが好ましい。
(Regeneration treatment of the separated solid catalyst)
The separated solid catalyst is regenerated in the step of regenerating the catalyst and can be reused in the first reaction step. The catalyst regeneration step is a step in which impurities on the solid catalyst are heated to burn off, and is baked at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
 (残留成分)
 また、未反応の一価アルコールが残留した場合、または、反応温度が130℃以上の高温、あるいは、反応時間が24時間以上の長時間となり、ピコリン酸メチルやカルバミン酸メチルのような副生物が生成してしまった場合には、融点及び沸点がそれぞれ、一価アルコールでは、-97℃及び65℃(メタノール)、-114℃及び78℃(エタノール)、-126℃及び97℃(1-プロパノール)、-90℃及び117℃(1-ブタノール)等があり、また、103℃及び233℃(ピコリン酸メチル)、52℃及び177℃(カルバミン酸メチル)であることから、前述の蒸留で180℃程度まで段階的に上昇させることで、一価アルコール、有機溶剤、炭酸エステル、及びカルバミン酸メチルと、ピコリン酸メチル、及び2-シアノピリジンとを分離でき、その後、30~100℃に冷却することで、固化したピコリン酸メチルをフィルターによって、2-シアノピリジンと分離することができる。
(Residual components)
In addition, when unreacted monohydric alcohol remains, or the reaction temperature is as high as 130 ° C. or higher, or the reaction time is as long as 24 hours or more, by-products such as methyl picolinate and methyl carbamate are formed. If they are produced, the melting point and boiling point are -97 ° C and 65 ° C (methanol), -114 ° C and 78 ° C (ethanol), -126 ° C and 97 ° C (1-propanol) for monohydric alcohols, respectively. ), −90 ° C. and 117 ° C. (1-butanol) and the like, and 103 ° C. and 233 ° C. (methyl picolinate), 52 ° C. and 177 ° C. (methyl carbamate). By gradually increasing the temperature to about 0 ° C., monohydric alcohol, organic solvent, carbonate ester, methyl carbamate, methyl picolinate, and 2-sia Can separate and pyridine, followed by cooling to 30 ~ 100 ° C., the solidified picolinate by the filter, it can be separated from 2-cyanopyridine.
 一価アルコール及び有機溶剤は、大半が有機溶剤であるため、有機溶剤での抽出工程で再利用が可能である。しかしながら、副生物が少ない方が、系外へ分離した後の処理工程の手間が生じ難いため、好ましい。 Since most of monohydric alcohols and organic solvents are organic solvents, they can be reused in the extraction process with organic solvents. However, it is preferable that there are few by-products because it is difficult for the processing step after separation to the outside of the system to occur.
 (第2の反応工程)
 次に、本発明における第2の反応工程においては、第1の反応工程で副生した2-ピコリンアミドを、炭酸エステル生成反応後の系から分離した後、脱水反応によって、2-シアノピリジンを製造する。第2の反応工程は、上述した2-シアノピリジンの製造方法に相当するものである。
(Second reaction step)
Next, in the second reaction step of the present invention, 2-picolinamide by-produced in the first reaction step is separated from the system after the carbonic acid ester formation reaction, and then 2-cyanopyridine is converted by dehydration reaction. To manufacture. The second reaction step corresponds to the above-described method for producing 2-cyanopyridine.
 この2-シアノピリジンの製造においては、塩基性金属酸化物を担持した触媒と有機溶媒の存在下で、2-ピコリンアミドを脱水反応させて、2-シアノピリジンを生成する。 In the production of 2-cyanopyridine, 2-picolinamide is dehydrated in the presence of a catalyst supporting a basic metal oxide and an organic solvent to produce 2-cyanopyridine.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ここで本発明で用いる触媒は、塩基性となるアルカリ金属(K、Li、Na、Rb、Cs)の酸化物を、一般的に触媒担体となる物質に担持した触媒を用いることができるが、様々な担体を検討した結果、SiO、CeO、ZrO、及びこれらの2種以上(例えば、CeO-ZrO等)に担持した触媒を用いた場合に、特に高い性能を示すことが判明した。 Here, as the catalyst used in the present invention, a catalyst in which an oxide of a basic alkali metal (K, Li, Na, Rb, Cs) is generally supported on a substance serving as a catalyst carrier can be used. As a result of studying various supports, particularly high performance is exhibited when a catalyst supported on SiO 2 , CeO 2 , ZrO 2 , or two or more of these (for example, CeO 2 —ZrO 2 ) is used. found.
 これは、2-ピコリンアミド内にあるピリジン環が弱い塩基性を示すため、酸性の触媒を用いると、触媒の活性点にピリジン環が吸着、被毒し、活性低下を起こす可能性があるためで、塩基性の性質を持つ金属が好ましい。また、本発明者が鋭意検討した結果、SiOにアルカリ金属を高分散に担持させた触媒を用いることが、特に好ましく、アルカリ金属は、1種あるいは2種以上担持してもよい。 This is because the pyridine ring in 2-picolinamide is weakly basic, so if an acidic catalyst is used, the pyridine ring may be adsorbed and poisoned at the active site of the catalyst, causing a decrease in activity. A metal having basic properties is preferable. In addition, as a result of intensive studies by the present inventors, it is particularly preferable to use a catalyst in which an alkali metal is supported on SiO 2 in a highly dispersed state, and one or more alkali metals may be supported.
 ここで使用する担体の製造方法に関して下記に例を挙げると、SiOの場合の一般的な製造方法として、乾式法と湿式法に大別される。乾式法としては燃焼法、アーク法等、湿式法としては沈降法、ゲル法等があり、いずれの製造方法でも触媒担体を製造することは可能であるが、ゲル法を除く上記方法では球状に成形することが技術的、経済的に困難である為、シリカゾルを気体媒体中又は液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法が好ましい。 Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 . The dry method includes a combustion method, an arc method, etc., and the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
 また、CeOの場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 In the case of CeO 2, cerium acetylacetonate hydrate and cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate These various cerium compounds can be prepared by firing in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
 一方、ZrOの場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 On the other hand, in the case of ZrO 2 , various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are fired in an air atmosphere. Can be prepared. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
 また、CeOとZrOの化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、CeOとZrOの粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere. Can be prepared. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
 これらの方法により、具体的にはCeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒担体を得ることができる。尚、酸化セリウムからなる触媒担体や酸化ジルコニウムからなる触媒担体を調製する場合を含めて、これら各触媒担体の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒担体については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Specifically, a solid catalyst carrier made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods. In addition, including the case where a catalyst carrier made of cerium oxide or a catalyst carrier made of zirconium oxide is prepared, the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
 本発明の触媒の製造法について、下記に例を挙げると、担体がSiOの場合、市販の粉末または球状のSiOを使用でき、活性金属を均一に担持できるよう、100mesh(0.15mm)以下に整粒し、水分を除去するために、予備焼成を空気中700℃で1時間行うことが好ましい。また、SiOにも様々な性状のものがあるが、表面積が大きいものほど、活性金属を高分散にでき、2-シアノピリジンの生成量が向上することから好ましい。具体的には、300m/g以上の表面積が好ましい。ただし、調製後の触媒の表面積は、SiOと活性金属との相互作用等により、SiOのみの表面積よりも低下することがある。その場合、製造後の触媒の表面積が、150m/g以上となることが好ましい。活性種となる金属酸化物の担持は、インシピエントウェットネス(Incipient wetness)法や蒸発乾固法等の含浸法によって、担持することができる。 An example of the method for producing the catalyst of the present invention is as follows. When the support is SiO 2 , a commercially available powder or spherical SiO 2 can be used, and 100 mesh (0.15 mm) is used so that the active metal can be uniformly supported. In order to adjust the particle size below and remove moisture, pre-baking is preferably performed in air at 700 ° C. for 1 hour. Also, SiO 2 has various properties, but a larger surface area is preferable because the active metal can be highly dispersed and the amount of 2-cyanopyridine produced is improved. Specifically, a surface area of 300 m 2 / g or more is preferable. However, the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more. The active metal oxide can be supported by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
 前駆体となる金属塩は、水溶性であればよく、アルカリ金属であれば例えば、炭酸塩、炭酸水素塩、塩化物塩、硝酸塩、ケイ酸塩などの各種化合物を用いることができる。塩基性金属の前駆体水溶液を担体に含浸した後、乾燥、焼成することで触媒として用いることができ、焼成温度は、使用する前駆体にもよるが、400~600℃が好ましい。 The metal salt used as the precursor may be water-soluble, and various compounds such as carbonates, hydrogen carbonates, chloride salts, nitrates, and silicates can be used as long as they are alkali metals. The carrier can be used as a catalyst by impregnating a carrier with an aqueous precursor of a basic metal, and then dried and calcined, and the calcining temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
 また、本発明による触媒については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Further, the catalyst according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above-mentioned elements, but it is desirable that impurities are not mixed as much as possible.
 ここで本発明の担体上に担持した触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst supported on the carrier of the present invention may be in the form of a powder or a molded body. In the case of a molded body, a spherical shape, a pellet shape, a cylinder shape, a ring shape, a wheel shape, a granule Any shape may be used.
 (反応形式)
 次に、本発明の触媒を用いた2-シアノピリジン製造方法は、反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。
(Reaction format)
Next, the method for producing 2-cyanopyridine using the catalyst of the present invention is not particularly limited as a reaction mode, and is not limited to a batch reactor, a semi-batch reactor, a continuous tank reactor or a tube reactor. Any flow reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
 (脱水)
 本発明の製造方法における副生した2-ピコリンアミドから2-シアノピリジンを生成(再生)する第2の反応工程においても、炭酸エステル製造する工程と同様に、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、還流や蒸留、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、2-ピコリンアミド、有機溶媒を入れて、還流させて常圧で反応することで、2-シアノピリジンの生成量を向上させることが可能である。
(dehydration)
In the second reaction step of producing (regenerating) 2-cyanopyridine from 2-picolinamide by-produced in the production method of the present invention, as well as by-product water produced by the dehydration reaction, It is desirable to carry out the reaction while removing it. For example, it is desirable to carry out the reaction while removing by-product water by installing a dehydrating agent such as reflux, distillation or zeolite in the system. As a result of intensive studies by the present inventors, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride as a dehydrating agent was installed in the extraction tube, and a catalyst, 2-picolinamide, organic By adding a solvent, refluxing, and reacting at normal pressure, it is possible to improve the amount of 2-cyanopyridine produced.
 (有機溶媒)
 脱水反応に用いる有機溶媒には沸点が130℃以上の物質が好ましく、例えば、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンなどが挙げられるが、特にメシチレンが好ましい。
(Organic solvent)
The organic solvent used for the dehydration reaction is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like, and mesitylene is particularly preferable.
 (反応の条件)
 本発明の触媒を用いた2-シアノピリジンの製造方法において、反応条件は脱水反応速度と溶媒の沸点、並びに、反応の際に発生するCO排出量や経済性の観点で選択するのが望ましく、例えば、その反応温度は160~200℃、反応圧力は常圧、反応時間は数時間~500時間程度で行うことができるが、特にこれらに制限されるものではない。
(Reaction conditions)
In the method for producing 2-cyanopyridine using the catalyst of the present invention, the reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 generated during the reaction, and economic efficiency. For example, the reaction temperature may be 160 to 200 ° C., the reaction pressure may be normal pressure, and the reaction time may be several hours to 500 hours, but is not particularly limited thereto.
 また、脱水剤として使用するモレキュラーシーブの種類・形状には特に制限されるものはないが、例えば、3A、4A、5A等一般的に吸水性の高いもので、球状やペレット状のものを使用できる。また、事前に乾燥させておくことが好ましく、300~500℃で1時間程乾燥することが好ましい。 The type and shape of the molecular sieve used as the dehydrating agent are not particularly limited. For example, 3A, 4A, 5A, etc., which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (反応生成物)
 2-ピコリンアミドの脱水反応では、上記のような、2-ピコリンアミドの分解によってピコリン酸やピリジンが副生することが考えられるが、本発明の触媒を用いた脱水反応後は、反応物で微量残った2-ピコリンアミド、生成物である2-シアノピリジン、副生物の水、有機溶媒だけであり、上記のような副生物はほとんど生成しない。
(Reaction product)
In the dehydration reaction of 2-picolinamide, it is considered that picolinic acid and pyridine are by-produced by the decomposition of 2-picolinamide as described above. However, after the dehydration reaction using the catalyst of the present invention, Only a small amount of 2-picolinamide, 2-cyanopyridine as a product, water as a by-product, and an organic solvent are present, and the above-mentioned by-products are hardly generated.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱する。各物質の融点は、110℃(2-ピコリンアミド)、24℃(2-シアノピリジン)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は143℃(2-ピコリンアミド)、212℃(2-シアノピリジン)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、反応相は、触媒が固体以外はすべて液体となっており、一部気化した、2-ピコリンアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、2-ピコリンアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is heated to 160 to 200 ° C. The melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized. The 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 (2-シアノピリジンの再利用)
 第2の反応工程で再生された2-シアノピリジンは、第1の反応工程に再利用することができる。
(Reuse of 2-cyanopyridine)
The 2-cyanopyridine regenerated in the second reaction step can be reused in the first reaction step.
 <5.炭酸エステルの製造装置>
 次に、以下に具体例を示して、本発明の製造装置を更に詳細に説明する。図1は本発明の好適な設備の一例である。また、図1における本設備での各工程における各物質の状態を図2に示す。本設備は、一価アルコールの転化率が100%で、ピコリン酸メチルやカルバミン酸メチルの副生成物が生成しない反応条件の場合に使用できる。
<5. Carbonate ester production equipment>
Next, the production apparatus of the present invention will be described in more detail with reference to specific examples. FIG. 1 is an example of a suitable facility of the present invention. Moreover, the state of each substance in each process in this equipment in FIG. 1 is shown in FIG. This equipment can be used in the case of reaction conditions in which the conversion rate of monohydric alcohol is 100% and by-products of methyl picolinate and methyl carbamate are not generated.
 (第1の反応工程)
 第1の反応工程においては、第1反応塔1(第1の反応部)に、CeO及びZrOのいずれか一方又は双方の固体触媒(固相)、一価アルコール12(液相)、2-シアノピリジン13(液相)、昇圧ブロワー10(加圧部)を介して二酸化炭素(気相)を充填する。固体触媒は反応前に新規に充填、あるいは再生塔6で再生された固体触媒14(固相)を使用することができる。また、2-シアノピリジンは反応開始時には新品を使用するが、第1蒸留塔3で精製された未反応の2-シアノピリジン20(液相)と第3蒸留塔9で精製された、2-ピコリンアミドから再生された2-シアノピリジンを再利用できる。
(First reaction step)
In the first reaction step, in the first reaction column 1 (first reaction section), one or both of the solid catalyst (solid phase) of CeO 2 and ZrO 2 , the monohydric alcohol 12 (liquid phase), Carbon dioxide (gas phase) is charged through 2-cyanopyridine 13 (liquid phase) and pressure blower 10 (pressure part). As the solid catalyst, a solid catalyst 14 (solid phase) newly charged before the reaction or regenerated in the regeneration tower 6 can be used. In addition, although 2-cyanopyridine is a new one at the start of the reaction, it is purified by unreacted 2-cyanopyridine 20 (liquid phase) purified in the first distillation column 3 and in the third distillation column 9. 2-Cyanopyridine regenerated from picolinamide can be reused.
 次に、本発明のCeO及びZrOのいずれか一方又は双方の固体触媒を用いた炭酸エステルの直接合成装置は、回分式反応器、半回分式反応器や連続槽型反応器、管型反応器のような流通反応器のいずれを用いてもよい。 Next, the carbon dioxide ester direct synthesis apparatus using the solid catalyst of either or both of CeO 2 and ZrO 2 of the present invention is a batch reactor, a semi-batch reactor, a continuous tank reactor, a tube type, or the like. Any flow reactor such as a reactor may be used.
 (反応温度)
 第1反応塔1における反応温度としては、50~300℃とすることが好ましい。反応温度が50℃未満の場合は、反応速度が低く、炭酸エステル合成反応、2-シアノピリジンによる水和反応共にほとんど進行せず、炭酸エステルの生産性が低い傾向がある。また反応温度が150℃を超える場合は、各反応の反応速度は高くなるが、炭酸エステルの分解や変性、2-ピコリンアミドが一価アルコールと反応しやすくなるため、炭酸エステルの収率が低くなる傾向がある。さらに好ましくは100~150℃である。但し、この温度は固体触媒の種類や量、原料(一価アルコール、2-シアノピリジン)の量や比により異なると考えられるため、適宜最適条件を設定することが望ましい。好ましい反応温度が100~150℃であることから、第1反応塔の前段で、原料(一価アルコール、2-シアノピリジン)をスチーム等で予備加熱することが望ましい。
(Reaction temperature)
The reaction temperature in the first reaction column 1 is preferably 50 to 300 ° C. When the reaction temperature is less than 50 ° C., the reaction rate is low, the carbonate ester synthesis reaction and the hydration reaction with 2-cyanopyridine hardly proceed, and the carbonate ester productivity tends to be low. On the other hand, when the reaction temperature exceeds 150 ° C., the reaction rate of each reaction increases, but decomposition and modification of the carbonate ester, and 2-picolinamide easily react with the monohydric alcohol, resulting in a low carbonate ester yield. Tend to be. More preferably, it is 100 to 150 ° C. However, since this temperature is considered to vary depending on the type and amount of the solid catalyst and the amount and ratio of the raw materials (monohydric alcohol, 2-cyanopyridine), it is desirable to set optimum conditions appropriately. Since the preferable reaction temperature is 100 to 150 ° C., it is desirable to preheat the raw material (monohydric alcohol, 2-cyanopyridine) with steam or the like before the first reaction column.
 (反応圧力)
 反応圧力としては、0.1~5MPa(絶対圧)とすることが好ましい。反応圧力が0.1MPa(絶対圧)未満の場合は、減圧装置が必要となり、設備が複雑且つコスト高になるだけでなく、減圧にするための動力エネルギーが必要となり、エネルギー効率が悪くなる。また反応圧力が5MPaを超える場合は、2-シアノピリジンによる水和反応が進行しにくくなって炭酸エステルの収率が悪くなるばかりでなく、昇圧に必要な動力エネルギーが必要となり、エネルギー効率が悪くなる。また、炭酸エステルの収率を高くする観点から、反応圧力は0.1~4MPa(絶対圧)がより好ましく、0.2~2MPa(絶対圧)がさらに好ましい。
(Reaction pressure)
The reaction pressure is preferably 0.1 to 5 MPa (absolute pressure). When the reaction pressure is less than 0.1 MPa (absolute pressure), a pressure reducing device is required, and not only the equipment is complicated and expensive, but also the motive energy for reducing the pressure is required, resulting in poor energy efficiency. On the other hand, when the reaction pressure exceeds 5 MPa, the hydration reaction with 2-cyanopyridine is difficult to proceed and not only the yield of the carbonate ester is deteriorated, but also the kinetic energy necessary for pressurization is required and the energy efficiency is poor. Become. Further, from the viewpoint of increasing the yield of carbonate ester, the reaction pressure is more preferably 0.1 to 4 MPa (absolute pressure), and further preferably 0.2 to 2 MPa (absolute pressure).
 (2-シアノピリジンの用量)
 また水和反応に用いる2-シアノピリジンは、原料のアルコールの体積の0.1倍以上1倍以下で反応前に予め反応器中に導入するのが望ましい。0.1倍未満で導入した場合には、水和反応に寄与する2-シアノピリジンが少ないために炭酸エステルの収率が悪くなる恐れがある。一方1倍を超えて導入した場合にも、反応終了後、生成物との分離が容易で、再利用が可能であるので、特に問題ない。さらに、固体触媒に対する一価アルコール及び2-シアノピリジンの量は、固体触媒の種類や量、一価アルコールの種類や2-シアノピリジンとの比により異なると考えられるため、適宜最適条件を設定することが望ましい。
(2-cyanopyridine dose)
The 2-cyanopyridine used for the hydration reaction is desirably introduced into the reactor in advance at a rate of 0.1 to 1 times the volume of the starting alcohol prior to the reaction. If it is introduced at less than 0.1 times, the yield of carbonate ester may be deteriorated because of the small amount of 2-cyanopyridine contributing to the hydration reaction. On the other hand, when it is introduced more than 1 time, there is no particular problem because it can be easily separated from the product after the completion of the reaction and reused. Furthermore, the amount of monohydric alcohol and 2-cyanopyridine with respect to the solid catalyst is considered to vary depending on the type and amount of the solid catalyst, the type of monohydric alcohol and the ratio with 2-cyanopyridine. It is desirable.
 (反応生成物の分離)
 第1反応塔1での反応後の反応液15は、第1抽出塔2(第1の分離部)にて液相と固相に分離する。反応液15に含まれる物質は、炭酸エステル(液相)、未反応の2-シアノピリジン(液相)と2-ピコリンアミド(固相)、固体触媒(固相)であり、有機溶媒(液相)によって抽出する。ここで使用する有機溶媒はアルカンが適しており、後段での蒸留による分離のしやすさから、ヘキサン、オクタン、ノナン、デカン、ウンデカンが好ましい。第1抽出塔2での抽出工程は、エネルギー消費を抑えるために、抽出時の温度は常温で行うことが好ましいが、有機溶媒の沸点より低い温度(例えば、ヘキサンの場合、沸点が69℃なので、50℃程度に加熱)であれば、加熱することで抽出時間を短縮化することもできる。
(Reaction product separation)
The reaction liquid 15 after the reaction in the first reaction tower 1 is separated into a liquid phase and a solid phase in the first extraction tower 2 (first separation section). The substances contained in the reaction solution 15 are carbonate ester (liquid phase), unreacted 2-cyanopyridine (liquid phase) and 2-picolinamide (solid phase), solid catalyst (solid phase), and organic solvent (liquid phase). Phase). Alkane is suitable for the organic solvent used here, and hexane, octane, nonane, decane, and undecane are preferable from the viewpoint of ease of separation by distillation in the subsequent stage. In order to reduce energy consumption, the extraction process in the first extraction column 2 is preferably performed at room temperature, but the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
 第1抽出塔2で抽出された抽出液17は、炭酸エステル、未反応の2-シアノピリジン、アルカンを含んでいる。第1蒸留塔3(第2の分離部)にて各物質の沸点が、90℃(例えば炭酸ジメチルの場合)、215℃(2-シアノピリジン)、69℃(例えばヘキサンの場合)であることを利用して蒸留され、製品である炭酸エステル19、未反応の2-シアノピリジン20、抽出に用いられたアルカン16に分離される。 The extract 17 extracted in the first extraction tower 2 contains carbonate ester, unreacted 2-cyanopyridine, and alkane. The boiling point of each substance in the first distillation column 3 (second separation section) is 90 ° C. (for example, dimethyl carbonate), 215 ° C. (2-cyanopyridine), 69 ° C. (for example, hexane). The product is distilled into carbonic acid ester 19, unreacted 2-cyanopyridine 20, and alkane 16 used for extraction.
 一方、第1抽出塔2で分離された固相18には、2-ピコリンアミドと固体触媒が含まれており、第2抽出塔4(第3の分離部)にて分離される。ここで使用する溶媒は、2-ピコリンアミドを溶解できる親水性溶媒(液相)が適しており、後段での蒸留による分離のしやすさから、アセトン、エタノール、エーテル、水が望ましい。第2抽出塔4での抽出工程も、エネルギー消費を抑えるために、抽出時の温度は常温で行うことが好ましいが、親水性溶媒の沸点より低い温度(例えば、アセトンの場合、沸点が56.5℃なので、40℃程度に加熱)であれば、加熱することで抽出時間を短縮化することもできる。 On the other hand, the solid phase 18 separated in the first extraction tower 2 contains 2-picolinamide and a solid catalyst, and is separated in the second extraction tower 4 (third separation section). As the solvent used here, a hydrophilic solvent (liquid phase) capable of dissolving 2-picolinamide is suitable, and acetone, ethanol, ether, and water are preferable because they are easily separated by distillation at a later stage. The extraction step in the second extraction tower 4 is also preferably performed at room temperature for extraction in order to suppress energy consumption. However, the temperature is lower than the boiling point of the hydrophilic solvent (for example, in the case of acetone, the boiling point is 56.56). If it is 5 [deg.] C. and heated to about 40 [deg.] C.), the extraction time can be shortened by heating.
 2-ピコリンアミドと親水性溶媒を含んだ抽出液21は、第2蒸留塔5にて蒸留され、各物質の沸点が143℃(2-ピコリンアミド)と57℃(例えばアセトンの場合)とに分離される。 The extract solution 21 containing 2-picolinamide and a hydrophilic solvent is distilled in the second distillation column 5 so that the boiling points of the substances are 143 ° C. (2-picolinamide) and 57 ° C. (for example, in the case of acetone). To be separated.
 また、第2抽出塔4で分離された固体触媒22(固相)は、触媒再生塔6で再生処理され、第1反応塔1に戻すことが可能である。触媒再生は加熱して、固体触媒上の不純物等を焼き飛ばす工程であり、400~700℃、好ましくは500~600℃で3時間程度焼成する。急激な昇温により固体触媒の構造破壊を防ぐため、焼成前に乾燥工程を踏まえた方がよく、110℃で2時間程度乾燥させることが好ましい。 Further, the solid catalyst 22 (solid phase) separated in the second extraction tower 4 can be regenerated in the catalyst regeneration tower 6 and returned to the first reaction tower 1. The catalyst regeneration is a step of heating to burn off impurities on the solid catalyst, and is fired at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
 第2蒸留塔5で精製された2-ピコリンアミド23(固相)は、2-シアノピリジンへの再生のため、第2反応塔7(第2の反応部)へ移送するが、配管内での閉塞をさけるため、配管は低圧スチーム等で融点である103℃以上に加熱することが望ましい。 The 2-picolinamide 23 (solid phase) purified in the second distillation column 5 is transferred to the second reaction column 7 (second reaction section) for regeneration to 2-cyanopyridine. In order to avoid blockage, it is desirable to heat the pipe to a melting point of 103 ° C. or higher with low-pressure steam or the like.
 反応後の溶液は、触媒分離装置8においてフィルターでろ過することで固体である触媒のみ分離して、使用済み触媒26として回収できる。この際、通常のろ過などの固液分離方法により容易に回収することができる。触媒分離後は、系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、第3蒸留塔9で蒸留することで、2-シアノピリジン、有機溶媒、2-ピコリンアミド、水に容易に分離することが可能であり、有機溶媒27、2-ピコリンアミド28は、2-ピコリンアミドの脱水反応にリサイクル利用することができる。また、精製した2-シアノピリジン13は、炭酸エステルの製造を行う反応で再利用することができる。 The solution after the reaction can be recovered as a used catalyst 26 by separating only the solid catalyst by filtering with a filter in the catalyst separation device 8. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. Since the boiling point of each substance present in the system is different as described above after the catalyst separation, 2-cyanopyridine, organic solvent, 2-picolinamide, water are distilled by distillation in the third distillation column 9. The organic solvent 27 and 2-picolinamide 28 can be recycled for the dehydration reaction of 2-picolinamide. The purified 2-cyanopyridine 13 can be reused in a reaction for producing a carbonate ester.
 (第2の反応工程)
 第2の反応工程においては、第2反応塔7にて、2-ピコリンアミドの脱水反応により2-シアノピリジンが生成される。本発明の製造装置は、塩基性金属酸化物を担持した触媒と有機溶媒の存在下で、2-ピコリンアミドを脱水反応させて、2-シアノピリジンを生成する装置である。反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。第2反応塔7の温度は、反応形式に応じて変更可能であるが、ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱することが好ましい。本発明の製造装置では、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、還流や蒸留、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、2-ピコリンアミド、有機溶媒を入れて、還流させて常圧で反応することで、2-シアノピリジンの生成量を向上させることが可能である。有機溶媒には沸点が130℃以上の物質が好ましく、例えば、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンなどが挙げられる。
(Second reaction step)
In the second reaction step, 2-cyanopyridine is produced in the second reaction column 7 by the dehydration reaction of 2-picolinamide. The production apparatus of the present invention is an apparatus for producing 2-cyanopyridine by dehydrating 2-picolinamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent. The reaction format is not particularly limited, and any of a batch reactor, a semi-batch reactor, a flow reactor such as a continuous tank reactor and a tubular reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst. The temperature of the second reaction column 7 can be changed according to the reaction mode, but in the case of reflux using a Soxhlet extraction tube and a cooler, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C. In the production apparatus of the present invention, it is desirable to carry out while removing the by-product water produced by the dehydration reaction. For example, a dehydrating agent such as reflux, distillation or zeolite is installed in the system to remove the by-product water. It is desirable to carry out the reaction. As a result of intensive studies by the present inventors, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride as a dehydrating agent was installed in the extraction tube, and a catalyst, 2-picolinamide, organic By adding a solvent, refluxing, and reacting at normal pressure, it is possible to improve the amount of 2-cyanopyridine produced. The organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱する。各物質の融点は、110℃(2-ピコリンアミド)、24℃(2-シアノピリジン)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は143℃(2-ピコリンアミド)、212℃(2-シアノピリジン)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、反応相は、触媒が固体以外はすべて液体となっており、一部気化した、2-ピコリンアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、2-ピコリンアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is heated to 160 to 200 ° C. The melting point of each substance is 110 ° C. (2-picolinamide), 24 ° C. (2-cyanopyridine), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 143 ° C. (2-picolinamide), Since it is 212 ° C. (2-cyanopyridine), 100 ° C. (water), and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and is partially vaporized. The 2-picolinamide, by-product water, and the organic solvent are cooled by the cooler, and the by-product water is adsorbed by the dehydrating agent, and the 2-picolinamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 反応後の溶液は、低圧スチーム等で2-ピコリンアミドの融点である103℃以上に加熱したまま、触媒分離塔8(第4の分離部)で触媒のみ分離して、使用済み触媒26として回収する。この際、通常のろ過などの固液分離方法により容易に回収することができる。触媒分離後は、系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、第3蒸留塔9(第5の分離部)にて蒸留することで、2-シアノピリジン13、有機溶媒27、2-ピコリンアミド28、水29に容易に分離することが可能であり、有機溶媒27、2-ピコリンアミド28は、第3反応塔7の前段に戻し、リサイクル利用することができる。また、精製した2-シアノピリジン13は、搬送部によって炭酸エステルの製造を行う第1反応塔1に搬送され、第1反応塔1で再利用される。 The solution after the reaction is recovered as a used catalyst 26 by separating only the catalyst in the catalyst separation column 8 (fourth separation section) while being heated to 103 ° C. or higher, which is the melting point of 2-picolinamide, with low-pressure steam or the like. To do. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. After the catalyst separation, the boiling points of the substances present in the system are different from each other as described above. Therefore, by distilling in the third distillation column 9 (fifth separation part), 2-cyanopyridine 13, The organic solvent 27, 2-picolinamide 28 and water 29 can be easily separated, and the organic solvent 27 and 2-picolinamide 28 can be returned to the previous stage of the third reaction column 7 and recycled. . The purified 2-cyanopyridine 13 is transported to the first reaction column 1 where the carbonate ester is produced by the transport unit, and is reused in the first reaction column 1.
 (炭酸エステルの製造方法および装置の他の例)
 また、図3は本発明の好適な設備の他の一例であり、図4は図3の設備での各工程における各物質の状態である。本設備は、未反応の一価アルコールが残留し、ピコリン酸メチルやカルバミン酸メチルの副生成物が生成してしまう反応条件の場合にも使用できる。基本的な構成は前述の図1の場合と同じであるが、第1抽出塔2で抽出された抽出液17には、炭酸エステル、未反応の2-シアノピリジン、アルカン、一価アルコールの他、カルバミン酸メチルとピコリン酸メチルを含んでいる。第1蒸留塔3にて各物質の沸点が、90℃(例えば炭酸ジメチルの場合)、215℃(2-シアノピリジン)、69℃(例えばヘキサンの場合)、65℃(例えばメタノールの場合)、177℃(カルバミン酸メチル)、233℃(ピコリン酸メチル)であることを利用して、180℃程度まで段階的に温度上昇することで蒸留され、製品である炭酸エステル19、抽出に用いられたアルカンと未反応一価アルコールの混合物33、カルバミン酸メチル32に分離される。また、蒸留後、30~100℃程度に冷却することで、融点が103℃であるピコリン酸メチルが固化することから、フィルター30等で固液分離することができ、未反応の2-シアノピリジン20、ピコリン酸メチル31に分離することができる。また、アルカンと一価アルコールの混合物33は、大半がアルカンであるため、抽出用の溶媒として再利用が可能である。
(Other examples of carbonic acid ester production method and apparatus)
FIG. 3 shows another example of the preferred equipment of the present invention, and FIG. 4 shows the state of each substance in each process in the equipment of FIG. This equipment can also be used in the case of reaction conditions where unreacted monohydric alcohol remains and byproducts of methyl picolinate and methyl carbamate are generated. The basic configuration is the same as in the case of FIG. 1 described above, but the extract 17 extracted in the first extraction tower 2 includes carbonate ester, unreacted 2-cyanopyridine, alkane, and monohydric alcohol. Contains methyl carbamate and methyl picolinate. The boiling point of each substance in the first distillation column 3 is 90 ° C. (for example, dimethyl carbonate), 215 ° C. (2-cyanopyridine), 69 ° C. (for example, hexane), 65 ° C. (for example, methanol), Utilizing the fact that it is 177 ° C (methyl carbamate) and 233 ° C (methyl picolinate), it was distilled by gradually increasing the temperature to about 180 ° C, and was used as a product, carbonate 19, The mixture is separated into a mixture 33 of alkane and unreacted monohydric alcohol 33 and methyl carbamate 32. Further, after distillation, cooling to about 30 to 100 ° C. solidifies methyl picolinate having a melting point of 103 ° C., so that it can be separated into solid and liquid with a filter 30 or the like, and unreacted 2-cyanopyridine. 20 and methyl picolinate 31. Moreover, since the mixture 33 of alkane and monohydric alcohol is mostly alkane, it can be reused as a solvent for extraction.
 <6.3-、4-シアノピリジンを用いた炭酸エステルの製造方法及び製造装置>
 上述した炭酸エステルの製造方法及び製造装置において、2-シアノピリジンの代わりに3-シアノピリジンまたは4-シアノピリジンを用いてもよい。
<Manufacturing method and manufacturing apparatus for carbonate ester using 3-, 4-cyanopyridine>
In the carbonic acid ester production method and production apparatus described above, 3-cyanopyridine or 4-cyanopyridine may be used instead of 2-cyanopyridine.
 <7.ベンゾニトリルを用いた炭酸エステルの製造方法>
 上記の通り、本発明者は、ベンズアミドからベンゾニトリルへの再生を、強力な試薬を使用せず、且つ、副生物の発生も抑えつつ行う方法に想到することができた。そして、本発明者は、この知見を炭酸エステルの製造方法に応用することで、以下に説明する炭酸エステルの製造方法に想到することができた。
<7. Method for producing carbonate ester using benzonitrile>
As described above, the present inventor was able to conceive of a method for regenerating benzamide to benzonitrile without using a strong reagent and suppressing the generation of by-products. And this inventor was able to think of the manufacturing method of carbonate ester demonstrated below by applying this knowledge to the manufacturing method of carbonate ester.
 (第1の反応工程)
 本発明の炭酸エステルの製造方法における第1の反応工程は、CeO及びZrOのいずれか一方又は双方の固体触媒とベンゾニトリルとの存在下、一価アルコールと二酸化炭素を直接反応させて炭酸エステルを生成するものである。
(First reaction step)
The first reaction step in the method for producing a carbonate ester of the present invention involves directly reacting a monohydric alcohol and carbon dioxide in the presence of one or both of a solid catalyst of CeO 2 and ZrO 2 and benzonitrile to produce carbonic acid. An ester is produced.
 本工程では、一価アルコールと二酸化炭素を反応させると炭酸エステルの他に水も生成するが、ベンゾニトリルが存在することで、生成した水との水和反応によりベンズアミドを生成し、生成した水を反応系から除去又は低減することで、炭酸エステルの生成を促進させることが可能となる。 In this step, when monohydric alcohol and carbon dioxide are reacted, water is produced in addition to the carbonate ester. However, the presence of benzonitrile produces benzamide by hydration reaction with the produced water. It becomes possible to promote the production | generation of carbonate ester by removing or reducing from a reaction system.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (一価アルコール)
 ここで、一価アルコールとしては、第一級アルコール、第二級アルコール、第三級アルコールのうち一種又は二種以上から選ばれたいずれのアルコールも用いることができ、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、アリルアルコール、2-メチル-1-プロパノール、シクロヘキサンメタノール、ベンジルアルコールを用いた場合が、生成物の収率が高く、反応速度も速いので好ましい。この時、生成する炭酸エステルはそれぞれ、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジイソプロピル、炭酸ジブチル、炭酸ジペンチル、炭酸ジヘキシル、炭酸ジヘプチル、炭酸ジオクチル、炭酸ジノナン、炭酸ジアリル、炭酸ジ2-メチル-プロピル、炭酸ジシクロヘキサンメチル、炭酸ジベンジルとなる。
(Monohydric alcohol)
Here, as the monohydric alcohol, any alcohol selected from one or more of primary alcohol, secondary alcohol, and tertiary alcohol can be used, and methanol, ethanol, 1-propanol can be used. , Isopropanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, allyl alcohol, 2-methyl-1-propanol, cyclohexane methanol, benzyl alcohol This is preferable because the yield of the product is high and the reaction rate is fast. At this time, the produced carbonates are dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, diheptyl carbonate, dioctyl carbonate, dinonane carbonate, diallyl carbonate, di-2-methyl-propyl carbonate, respectively. To dicyclohexane methyl carbonate and dibenzyl carbonate.
 (炭酸エステル製造触媒)
 また、CeO及びZrOのいずれか一方又は双方の固体触媒は、CeOのみ、ZrOのみ、CeOとZrOの混合物、あるいはCeOとZrOの固溶体や複合酸化物であり、特にCeOのみが好ましい。また、CeOとZrOの固溶体や複合酸化物に関しては、CeOとZrOの混合比(モル比)は、特に限定されず、たとえば、1:99~99:1であることができ、例えば、50:50のモル比であってもよい。
(Carbonate production catalyst)
Moreover, either or both of the solid catalyst of CeO 2 and ZrO 2, only CeO 2, only ZrO 2, a CeO 2 and mixtures of ZrO 2, or CeO 2 solid solution or a composite oxide of ZrO 2, in particular Only CeO 2 is preferred. As for the CeO 2 and ZrO 2 solid solution or a composite oxide, the mixing ratio of CeO 2 and ZrO 2 (molar ratio) is not particularly limited, for example, 1:99 to 99: it can be a 1, For example, the molar ratio may be 50:50.
 本発明者らが鋭意検討した結果、炭酸エステル直接合成に用いる触媒は、酸塩基複合機能を有することが必要であり、特に酸性度が比較的低く且つ塩基性度が比較的高い性質を有することが好ましい。酸性度が高すぎると、炭酸エステルよりもむしろエーテルを多量に合成することになり好ましくない。適度な酸塩基複合機能触媒においては、塩基点上でR-O-M(Mは触媒)の形でアルコールが解離吸着し、COとの間でRO-C(=O)-O…Mを形成し、他方、酸点上ではHO-R…Mの形でアルコールが吸着し、両吸着種の間でRO-C(=O)-ORが生成される機構が考えられる。 As a result of intensive studies by the present inventors, the catalyst used for the direct synthesis of carbonic acid ester is required to have an acid-base complex function, and in particular, has a property of relatively low acidity and relatively high basicity. Is preferred. If the acidity is too high, it is not preferable because a large amount of ether is synthesized rather than carbonate. In the moderate acid base complex function catalyst, RO-M on base point (M catalyst) alcohol dissociates adsorbed in the form of, RO-C (= O) with the CO 2 -O ... M On the other hand, on the acid point, alcohol is adsorbed in the form of HO—R... M, and RO—C (═O) —OR is generated between both adsorbed species.
 また、この固体触媒は、炭酸エステル合成時に副生する水とベンゾニトリルの水和反応に対しても触媒活性を示す。従って、本触媒表面上では炭酸エステル合成反応と水和反応の両者が進行する状態になるが、炭酸エステルの合成反応には平衡的に不利な低圧の条件下でも、ベンゾニトリルの水和反応は触媒作用を受けて進行し、炭酸エステルの合成反応で副生した水を触媒表面から速やかに脱離することにより炭酸エステルの合成反応の平衡が生成系にシフトして、反応圧力の低い温和な条件下でも炭酸エステル合成反応が平衡制約を受けることなく炭酸エステルの高い反応率を可能にするものと推察する。逆に高圧下では、触媒表面に多量のCO分子が吸着するために、炭酸エステル合成時に生成する水分子との接触が困難になるため、ベンゾニトリルとの水和反応が進行しにくくなり、平衡制約に近い状態でしか炭酸エステルを生産することができず、結果的に高圧下では生産性が高くならなくなるものと考えられる。 This solid catalyst also exhibits catalytic activity for the hydration reaction of water and benzonitrile by-produced during the synthesis of the carbonate ester. Therefore, although both carbonate synthesis reaction and hydration reaction proceed on the surface of this catalyst, the hydration reaction of benzonitrile does not occur even under low pressure conditions, which is unfavorably balanced for the synthesis reaction of carbonate ester. The reaction proceeds under catalysis, and water generated as a by-product in the synthesis reaction of the carbonate ester is quickly eliminated from the catalyst surface, so that the equilibrium of the synthesis reaction of the carbonate ester shifts to the production system, and the mild reaction pressure is low. It is presumed that the carbonic acid ester synthesis reaction enables a high reaction rate of the carbonic acid ester without being subjected to equilibrium constraints even under conditions. On the other hand, under high pressure, a large amount of CO 2 molecules are adsorbed on the catalyst surface, making it difficult to contact with water molecules generated during the synthesis of the carbonic acid ester, making it difficult for the hydration reaction with benzonitrile to proceed. Carbonic acid ester can only be produced under conditions close to equilibrium constraints, and as a result, it is considered that productivity does not increase under high pressure.
 上記推察に関し、ベンゾニトリルの反応の観点から説明すれば、ベンゾニトリルは、液相で本発明における固体触媒の触媒作用を受けて、その表面で水和反応が促進される。従って、高圧になると固体触媒の表面がCOで覆われてしまい、主反応で生成した水分子との水和反応に対して触媒作用を受けにくい状態になるため、水和反応速度が低下するものと推察される。一方、非特許文献4、非特許文献5に記載されたアセタールや2,2-ジメトキシプロパンは、液相で触媒作用を何ら受けず、主反応で生成した水分子と水和反応を起こす。従って、主反応が高圧で優位に進行するため、高圧下で水和反応が起こりはじめるものと推察される。 Regarding the above inference, from the viewpoint of the reaction of benzonitrile, benzonitrile is catalyzed by the solid catalyst in the present invention in the liquid phase, and the hydration reaction is promoted on the surface thereof. Therefore, when the pressure is increased, the surface of the solid catalyst is covered with CO 2 , and the hydration reaction rate is reduced because it becomes difficult to be catalyzed by the hydration reaction with water molecules generated in the main reaction. Inferred. On the other hand, acetal and 2,2-dimethoxypropane described in Non-Patent Document 4 and Non-Patent Document 5 do not undergo any catalytic action in the liquid phase and cause a hydration reaction with water molecules generated in the main reaction. Therefore, since the main reaction proceeds predominantly at high pressure, it is presumed that the hydration reaction begins to occur under high pressure.
 また、本発明の触媒の製造法について、下記に例を挙げると、先ず、酸化セリウム(CeO)の場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。
 一方、酸化ジルコニウム(ZrO)の場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。
Further, with respect to the method for producing the catalyst of the present invention, the following examples are given. First, in the case of cerium oxide (CeO 2 ), cerium acetylacetonate hydrate, cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate It can be prepared by firing various cerium compounds such as ammonium cerium nitrate, cerium carbonate, cerium oxalate, cerium perchlorate, cerium phosphate and cerium stearate in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
On the other hand, in the case of zirconium oxide (ZrO 2 ), various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium oxide nitrate, zirconium sulfate, etc. It can be prepared by firing in an atmosphere. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
 また、CeOとZrOの固溶体や複合酸化物のような化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、CeOとZrOの粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound such as a solid solution or composite oxide of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing with water. It can be prepared by drying and firing in an air atmosphere. Although the powder particles of CeO 2 and ZrO 2 can also be prepared by firing the physical mixture, the specific surface area of the final preparation is not high, preferably easily coprecipitation reaction proceeds more.
 これらの方法により、具体的にはCeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒を得ることができる。尚、酸化セリウムからなる触媒や酸化ジルコニウムからなる触媒を調製する場合を含めて、これら各触媒の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。不純物は触媒に対して1質量%未満が好ましい。 Specifically, a solid catalyst made of a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods. In addition, including the case of preparing a catalyst made of cerium oxide or a catalyst made of zirconium oxide, it is preferable to select a temperature at which the specific surface area of the final preparation is increased as the firing temperature at the time of preparation of each catalyst. Although it depends on the raw material, for example, 300 to 1100 ° C. is preferable. Further, the solid catalyst according to the present invention may contain inevitable impurities mixed in the catalyst production process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible. The impurities are preferably less than 1% by mass with respect to the catalyst.
 ここで本発明の触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst of the present invention may be in any form of powder or molded body, and in the case of a molded body, it may be any of spherical, pellet, cylinder, ring, wheel, granule, etc. .
 (二酸化炭素)
 また、本発明で用いる二酸化炭素は、工業ガスとして調製されたものだけでなく、各製品を製造する工場や製鉄所、発電所等からの排出ガスから分離回収したものも用いることができる。
(carbon dioxide)
Moreover, the carbon dioxide used in the present invention is not limited to those prepared as industrial gases, but can also be used that separated and recovered from exhaust gases from factories, steel mills, power plants, etc. that manufacture each product.
 (固液分離)
 一価アルコールの転化率が100%で、安息香酸メチルやカルバミン酸メチルのような副生物が生成しない条件では、反応後は主生成物である炭酸エステル、副生成物であるベンズアミド、未反応のベンゾニトリル、CeO等の固体触媒となる。これらを分離するためには、まず、有機溶剤による抽出工程で液体成分(炭酸エステル、ベンゾニトリル)を抽出し、固体成分(ベンズアミドと固定触媒)とフィルターで分離できる。ここで使用する有機溶剤は炭酸エステルが溶解できるアルカンが好ましく、さらに、ヘキサン、オクタン、ノナン、デカン、ウンデカンがより好ましい。
(Solid-liquid separation)
Under the conditions where the conversion rate of monohydric alcohol is 100% and no by-products such as methyl benzoate and methyl carbamate are produced, the main product carbonate ester, by-product benzamide, unreacted It becomes a solid catalyst such as benzonitrile and CeO 2 . In order to separate them, first, a liquid component (carbonate ester, benzonitrile) is extracted in an extraction step using an organic solvent, and can be separated from a solid component (benzamide and a fixed catalyst) with a filter. The organic solvent used here is preferably an alkane that can dissolve the carbonate, and more preferably hexane, octane, nonane, decane, and undecane.
 (液体成分の分離)
 次に、分離された液体成分には、炭酸エステル、ベンゾニトリル、有機溶剤が含まれているが、各物質の融点及び沸点が、炭酸エステルは、4℃及び90℃(炭酸ジメチル)、-43℃及び128℃(炭酸ジエチル)、-41℃及び167℃(炭酸ジプロピル)、25℃以下及び207℃(炭酸ジブチル)等があり、また、-13℃及び188℃(ベンゾニトリル)、-95℃及び69℃(例えば、ヘキサン)であることから、炭酸エステルを蒸留により分離することが可能であり、製品である炭酸エステルを高純度で回収することが可能である。また、蒸留以外にも、段階的に冷却して融点以下になり固化したものを、フィルター分離して回収することも可能である。
(Separation of liquid components)
Next, the separated liquid component contains carbonate ester, benzonitrile, and organic solvent. The melting point and boiling point of each substance are 4 ° C and 90 ° C (dimethyl carbonate), -43 ℃ and 128 ℃ (diethyl carbonate), -41 ℃ and 167 ℃ (dipropyl carbonate), 25 ℃ or less and 207 ℃ (dibutyl carbonate), -13 ℃ and 188 ℃ (benzonitrile), -95 ℃ And 69 ° C. (for example, hexane), the carbonate ester can be separated by distillation, and the product carbonate ester can be recovered with high purity. In addition to distillation, it is also possible to filter and recover what is solidified by cooling stepwise to below the melting point.
 (固体成分の分離)
 また、固体成分として分離されたベンズアミドと固体触媒は、親水性溶媒でベンズアミドのみを抽出し、固体触媒とフィルターで分離できる。ここで使用する親水性溶媒は、アセトン、エタノール、エーテル、水であることが、取扱い易さや後段での分離を考えると好ましい。親水性溶媒に溶けたベンズアミドは蒸留によって分離でき、副生したベンズアミドを高純度で精製することが可能である。
(Separation of solid components)
The benzamide and the solid catalyst separated as solid components can be separated from the solid catalyst and the filter by extracting only benzamide with a hydrophilic solvent. The hydrophilic solvent used here is preferably acetone, ethanol, ether, or water in view of ease of handling and separation at a later stage. The benzamide dissolved in the hydrophilic solvent can be separated by distillation, and the by-product benzamide can be purified with high purity.
 また、親水性溶媒に溶けたベンズアミドの分離は、蒸留以外にも、冷却して融点以下になり固化したベンズアミドを、液体の親水性溶媒と、フィルター分離して回収することも可能である。 In addition to the separation of benzamide dissolved in a hydrophilic solvent, it is also possible to collect the benzamide that has cooled to a melting point or lower and solidified by cooling with a liquid hydrophilic solvent, in addition to distillation.
 (分離された固体触媒の再生処理)
 分離された固体触媒は、触媒を再生する工程で再生処理され、第1の反応工程で再利用すること可能である。触媒再生工程は加熱して、固体触媒上の不純物等を焼き飛ばす工程であり、好ましくは400~700℃、より好ましくは500~600℃で3時間程度焼成する。急激な昇温により固体触媒の構造破壊を防ぐため、焼成前に乾燥工程を踏まえた方がよく、110℃で2時間程度乾燥させることが好ましい。
(Regeneration treatment of the separated solid catalyst)
The separated solid catalyst is regenerated in the step of regenerating the catalyst and can be reused in the first reaction step. The catalyst regeneration step is a step of heating to burn off impurities etc. on the solid catalyst, and is preferably calcined at 400 to 700 ° C., more preferably at 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
 (残留成分)
 また、未反応の一価アルコールが残留した場合、または、反応温度が130℃以上の高温、あるいは、反応時間が24時間以上の長時間となり、安息香酸メチルやカルバミン酸メチルのような副生物が生成してしまった場合、融点及び沸点がそれぞれ、一価アルコールでは、-97℃及び65℃(メタノール)、-114℃及び78℃(エタノール)、-126℃及び97℃(1-プロパノール)、-90℃及び117℃(1-ブタノール)等があり、また、-15℃及び198℃(安息香酸メチル)、52℃及び177℃(カルバミン酸メチル)であることから、前述の蒸留で180℃程度まで段階的に上昇させることで、一価アルコール、有機溶剤、炭酸エステル、及びカルバミン酸メチルと、安息香酸メチル、及びベンゾニトリルとを分離でき、その後、冷却することで、固化した安息香酸メチルをフィルターによって、ベンゾニトリルと分離することができる。
(Residual components)
Further, when unreacted monohydric alcohol remains, or the reaction temperature is as high as 130 ° C. or higher, or the reaction time is as long as 24 hours or longer, by-products such as methyl benzoate and methyl carbamate are formed. If it has been produced, the melting point and boiling point are -97 ° C and 65 ° C (methanol), -114 ° C and 78 ° C (ethanol), -126 ° C and 97 ° C (1-propanol), -90 ° C and 117 ° C (1-butanol), etc., and -15 ° C and 198 ° C (methyl benzoate), 52 ° C and 177 ° C (methyl carbamate). By gradually increasing to a certain extent, monohydric alcohol, organic solvent, carbonate, and methyl carbamate, methyl benzoate, and benzonitrile Can release, then, by cooling, the solidified methylbenzoic acid by the filter, can be separated from the benzonitrile.
 一価アルコール及び有機溶剤は、大半が有機溶剤であるため、有機溶剤での抽出工程で再利用が可能である。しかしながら、副生物が少ない方が、系外へ分離した後の処理工程の手間が生じ難いため、好ましい。 Since most of monohydric alcohols and organic solvents are organic solvents, they can be reused in the extraction process with organic solvents. However, it is preferable that there are few by-products because it is difficult for the processing step after separation to the outside of the system to occur.
 (第2の反応工程)
 次に、本発明における第2の反応工程においては、第1の反応工程で副生したベンズアミドを、炭酸エステル生成反応後の系から分離した後、脱水反応によって、ベンゾニトリルを製造する。第2の反応工程は、上述したベンゾニトリルの製造方法に相当するものである。
(Second reaction step)
Next, in the second reaction step of the present invention, the benzamide produced as a by-product in the first reaction step is separated from the system after the carbonic acid ester formation reaction, and then benzonitrile is produced by a dehydration reaction. The second reaction step corresponds to the above-described method for producing benzonitrile.
 このベンゾニトリルの製造においては、塩基性金属酸化物を担持した触媒と有機溶媒の存在下で、ベンズアミドを脱水反応させて、ベンゾニトリルを生成する。 In the production of benzonitrile, benzamide is produced by dehydrating benzamide in the presence of a catalyst supporting a basic metal oxide and an organic solvent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(ベンゾニトリル製造触媒)
 ここで本発明で用いる触媒は、金属と酸素の間が二重結合を有する金属種(モリブデン、タングステン、レニウム、チタン、ニオブ)の酸化物(金属酸化物)を、一般的に触媒担体となる物質に担持した触媒を用いることができるが、様々な担体を検討した結果、SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から成る触媒担体に担持した触媒を用いた場合に、高い性能を示すことが判明した。
(Benzonitrile production catalyst)
Here, the catalyst used in the present invention is generally an oxide (metal oxide) of a metal species (molybdenum, tungsten, rhenium, titanium, niobium) having a double bond between the metal and oxygen as a catalyst carrier. Although a catalyst supported on a substance can be used, as a result of examining various supports, a catalyst composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C is used. It has been found that high performance is exhibited when a catalyst supported on a carrier is used.
 特に、SiO、TiO、CeO、ZrOのいずれか1種又は2種以上の触媒担体を用いると、より高い性能を示すため好ましい。これは、ベンズアミドとの反応において、金属と酸素の間の二重結合部分が活性を示す可能性があると考えられるため、金属酸化物の中で二重結合を有する金属元素が好ましい。 In particular, it is preferable to use any one or two or more catalyst carriers of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 because higher performance is exhibited. This is because, in the reaction with benzamide, it is considered that the double bond portion between the metal and oxygen may be active, and thus a metal element having a double bond is preferable among the metal oxides.
 また、本発明者が鋭意検討した結果、SiOにモリブデンを高分散に担持させた触媒を用いることが、特に好ましい。高分散しているかどうかは、電子顕微鏡(SEM、TEM等)の画像等で確認することができる。 Further, as a result of intensive studies by the present inventors, it is particularly preferable to use a catalyst in which molybdenum is supported on SiO 2 in a highly dispersed state. Whether it is highly dispersed can be confirmed with an image of an electron microscope (SEM, TEM, etc.).
 ここで使用する担体の製造方法に関して下記に例を挙げると、SiOの場合の一般的な製造方法として、乾式法と湿式法に大別される。乾式法としては燃焼法、アーク法等、湿式法としては沈降法、ゲル法等があり、いずれの製造方法でも触媒担体を製造することは可能であるが、ゲル法を除く上記方法では球状に成形することが技術的、経済的に困難である為、シリカゾルを気体媒体中又は液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法が好ましい。 Examples of the carrier production method used here are roughly divided into a dry method and a wet method as general production methods in the case of SiO 2 . The dry method includes a combustion method, an arc method, etc., and the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method is preferred in which silica sol can be easily formed into a spherical shape by spraying in a gas medium or a liquid medium.
 また、CeOの場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 In the case of CeO 2, cerium acetylacetonate hydrate and cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium carbonate, cerium oxalate, perchlorate cerium, cerium phosphate, cerium stearate These various cerium compounds can be prepared by firing in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.
 ZrOの場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。
 TiOやAlの場合も、一般的な方法で製造することができる。Cは炭素を主体とするものであって、本反応期間中変質しないものであればどんな形態でもよく、例えば活性炭などが望ましいが、これに限定するものではない。
In the case of ZrO 2 , various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium dinitrate, zirconium sulfate and the like are calcined in an air atmosphere. Can be prepared. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.
In the case of TiO 2 or Al 2 O 3 , it can be produced by a general method. C is mainly composed of carbon and may be in any form as long as it does not change during the reaction period. For example, activated carbon is preferable, but it is not limited thereto.
 また、2種類以上の金属種を含む化合物の場合は、2種以上の金属塩を含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、2種以上の酸化物の粉末同士を物理混合して焼成することでも調製できるが、最終調製品の成分の均質性が高くならないため、反応がより進み易い共沈法が好ましい。 In the case of a compound containing two or more metal species, a base is added to a solution containing two or more metal salts to form a hydroxide by coprecipitation, followed by filtration and washing in an air atmosphere. Can be prepared by drying and baking. Moreover, although it can prepare also by physically mixing and baking the powder of 2 or more types of oxides, since the homogeneity of the component of a final preparation does not become high, the coprecipitation method with which reaction progresses more is preferable.
 例えば、CeOとZrOの化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。 For example, in the case of a compound of CeO 2 and ZrO 2 , a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere. Can be prepared.
 このような方法により、CeO-ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒担体を得ることができる。尚、酸化セリウムからなる触媒担体や酸化ジルコニウムからなる触媒担体を調製する場合を含めて、これら各触媒担体の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒担体については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 By such a method, a solid catalyst carrier comprising a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained. In addition, including the case where a catalyst carrier made of cerium oxide or a catalyst carrier made of zirconium oxide is prepared, the firing temperature at the time of preparation of each of these catalyst carriers may be selected at a temperature at which the specific surface area of the final preparation is increased. Although it depends on the starting material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst carrier according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.
 SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から選ばれる担体は、表面積が大きいものほど、活性金属種を高分散に担持でき、ベンゾニトリルの生成量が向上することから好ましい。具体的には、表面積は担体の種類によるが、表面積がBET法で測定して、10m/g以上であることが好ましい。 The carrier selected from one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C can support active metal species in a highly dispersed manner as the surface area increases. This is preferable because the amount of nitrile produced is improved. Specifically, the surface area depends on the type of the carrier, but the surface area is preferably 10 m 2 / g or more as measured by the BET method.
 本発明の触媒の製造法は公知の方法で担体に活性種となる金属酸化物を担持すればよい。一般的な溶液を用いた沈殿担持法のほか、たとえば、インシピエントウェットネス(Incipient wetness)法や蒸発乾固法等の含浸法によって、担持することができる。 In the production method of the catalyst of the present invention, a metal oxide that becomes an active species may be supported on a support by a known method. In addition to the precipitation loading method using a general solution, for example, it can be loaded by an impregnation method such as an incipient wetness method or an evaporation to dryness method.
 下記に好ましい例を挙げる。担体がSiOの場合、市販の粉末または球状のSiOを使用でき、活性金属を均一に担持できるよう、100mesh(0.15mm)以下に整粒し、水分を除去するために、予備焼成を空気中700℃で1時間行うことが好ましい。また、SiOにも様々な性状のものがあるが、表面積が大きいものほど、活性金属を高分散にでき、ベンゾニトリルの生成量が向上することから好ましい。具体的には、300m/g以上の表面積がより好ましい。ただし、調製後の触媒の表面積は、SiOと活性金属との相互作用等により、SiOのみの表面積よりも低下することがある。その場合、製造後の触媒の表面積が、150m/g以上となることがより好ましい。 Preferred examples are given below. When the carrier is SiO 2 , a commercially available powder or spherical SiO 2 can be used, and pre-baking is performed to adjust the particle size to 100 mesh (0.15 mm) or less and to remove moisture so that the active metal can be uniformly supported. It is preferable to carry out at 700 degreeC in air for 1 hour. Moreover, although SiO 2 has various properties, it is preferable that the surface area is large because the active metal can be highly dispersed and the amount of benzonitrile produced is improved. Specifically, a surface area of 300 m 2 / g or more is more preferable. However, the surface area of the catalyst after preparation may be lower than the surface area of only SiO 2 due to the interaction between SiO 2 and the active metal. In that case, it is more preferable that the surface area of the catalyst after manufacture is 150 m 2 / g or more.
 活性種となる金属酸化物の前駆体となる金属塩は、各種溶媒への溶解度が高ければよく、例えば、炭酸塩、炭酸水素塩、塩化物塩、硝酸塩、硫酸塩、ケイ酸塩、酢酸塩などの各種化合物を用いることができる。金属化合物の前駆体溶液を担体に含浸した後、乾燥、焼成することで触媒として用いることができ、焼成温度は、使用する前駆体にもよるが、400~600℃が好ましい。 The metal salt that is the precursor of the metal oxide that becomes the active species only needs to have high solubility in various solvents. For example, carbonate, bicarbonate, chloride, nitrate, sulfate, silicate, acetate Various compounds such as can be used. After impregnating the precursor solution of the metal compound into the support, it can be used as a catalyst by drying and firing, and the firing temperature is preferably 400 to 600 ° C., although it depends on the precursor used.
 また、金属酸化物の担持量は適宜設定すれば良いが、例えば全触媒重量を基準に金属酸化物の金属換算担持量を、0.1~1.5mmol/g程度、特に0.1~1mmol/g程度、さらには0.2~0.8mmol/g程度で設定することが好ましい。担持量がより多くなると金属酸化物の粗大化により活性が低下するおそれがある。また、反応時の触媒使用量についても、適宜設定すればよい。 The amount of metal oxide supported may be set as appropriate. For example, the amount of metal oxide supported in terms of metal based on the total catalyst weight is about 0.1 to 1.5 mmol / g, particularly 0.1 to 1 mmol. / G, preferably about 0.2 to 0.8 mmol / g. When the loading amount is larger, the activity may be reduced due to the coarsening of the metal oxide. Moreover, what is necessary is just to set suitably about the usage-amount of the catalyst at the time of reaction.
 また、本発明による触媒については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Further, the catalyst according to the present invention may contain inevitable impurities that are mixed in the catalyst manufacturing process in addition to the above-mentioned elements, but it is desirable that impurities are not mixed as much as possible.
 ここで本発明の担体上に担持した触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。 Here, the catalyst supported on the carrier of the present invention may be in the form of a powder or a molded body. In the case of a molded body, a spherical shape, a pellet shape, a cylinder shape, a ring shape, a wheel shape, a granule Any shape may be used.
 (有機溶媒)
 脱水反応に用いる有機溶媒には、沸点が130℃以上の各種の物質が好ましく用いられるが、中でも、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンなどがより好ましく用いられ、特にメシチレンが好ましい。
(Organic solvent)
As the organic solvent used in the dehydration reaction, various substances having a boiling point of 130 ° C. or higher are preferably used. Among them, chlorobenzene, (o-, m-, p-) xylene, mesitylene, and the like are more preferably used, and in particular, mesitylene. Is preferred.
 (反応の条件)
 本発明の触媒を用いたベンゾニトリルの製造方法において、反応条件は脱水反応速度と溶媒の沸点、並びに、反応の際に発生するCO排出量や経済性の観点で選択するのが望ましく、例えば、その反応温度は160~200℃、反応圧力は常圧、反応時間は数時間~24時間程度で行うことができるが、特にこれらに制限されるものではない。
(Reaction conditions)
In the method for producing benzonitrile using the catalyst of the present invention, the reaction conditions are preferably selected from the viewpoints of the dehydration reaction rate, the boiling point of the solvent, the amount of CO 2 emitted during the reaction, and the economy. The reaction temperature may be 160 to 200 ° C., the reaction pressure may be normal pressure, and the reaction time may be several hours to 24 hours, but is not particularly limited thereto.
 (反応形式)
 次に、本発明の触媒を用いたベンゾニトリル製造方法は、反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。
(Reaction format)
Next, the method for producing benzonitrile using the catalyst of the present invention is not particularly limited as a reaction format, and is distributed as a batch reactor, a semi-batch reactor, a continuous tank reactor or a tubular reactor. Any of the type reactors may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst.
 (脱水)
 本発明の製造方法における副生したベンズアミドからベンゾニトリルを生成(再生)する第2の反応工程においても、炭酸エステル製造する工程と同様に、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、ベンズアミド、有機溶媒を入れて、還流させて常圧で反応することで、ベンゾニトリルの生成量を向上させることが可能である。
(dehydration)
In the second reaction step of producing (regenerating) benzonitrile from the by-produced benzamide in the production method of the present invention, it is carried out while removing the by-product water produced by the dehydration reaction, as in the step of producing carbonate ester. For example, it is desirable to install a dehydrating agent such as zeolite in the system and perform the reaction while removing by-product water. As a result of intensive studies by the present inventor, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride was installed in the extraction tube as a dehydrating agent, and a catalyst, benzamide, and an organic solvent were placed in the reaction tube. The amount of benzonitrile produced can be improved by reacting at normal pressure with reflux.
 また、脱水剤として使用するモレキュラーシーブの種類・形状には特に制限されるものはないが、例えば、3A、4A、5A等一般的に吸水性の高いもので、球状やペレット状のものを使用できる。また、事前に乾燥させておくことが好ましく、300~500℃で1時間程乾燥することが好ましい。 The type and shape of the molecular sieve used as the dehydrating agent are not particularly limited. For example, 3A, 4A, 5A, etc., which are generally highly water-absorbing, such as spherical or pellets are used. it can. Further, it is preferably dried in advance, and is preferably dried at 300 to 500 ° C. for about 1 hour.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (反応生成物)
 ベンズアミドの脱水反応では、上記のような、ベンズアミドの分解によって安息香酸が副生することが考えられるが、本発明の触媒を用いた脱水反応後は、反応物で微量残ったベンズアミド、生成物であるベンゾニトリル、副生物の水、有機溶媒だけであり、上記のような副生物はほとんど生成しない。
(Reaction product)
In the dehydration reaction of benzamide, benzoic acid may be produced as a by-product due to the decomposition of benzamide as described above. However, after the dehydration reaction using the catalyst of the present invention, a small amount of benzamide and product remained in the reaction product. There are only some benzonitriles, by-product water, and organic solvents, and these by-products are hardly produced.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応温度は、ベンズアミドの脱水反応が液相で行われる条件であることが好ましい。反応効率を考慮すると液相条件下でより高温であることが好ましく、常圧下で反応させる場合、反応管周辺を160~200℃に加熱することが好ましい。典型例の反応系における各物質の融点は、127℃(ベンズアミド)、-13℃(ベンゾニトリル)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は288℃(ベンズアミド)、188℃(ベンゾニトリル)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、上記の温度であれば、反応相は、触媒が固体以外は殆どが液体となっており、一部気化した、ベンズアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、ベンズアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the reaction temperature is preferably a condition under which the benzamide dehydration reaction is performed in a liquid phase. Considering the reaction efficiency, it is preferable that the temperature is higher under liquid phase conditions. When the reaction is performed under normal pressure, it is preferable to heat the periphery of the reaction tube to 160 to 200 ° C. The melting point of each substance in a typical reaction system is 127 ° C. (benzamide), −13 ° C. (benzonitrile), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C. (benzamide), 188 Since it is ℃ (benzonitrile), 100 ℃ (water), 165 ℃ (organic solvent, for example, mesitylene), at the above temperature, the reaction phase is almost liquid except for the solid catalyst, The partially vaporized benzamide, by-product water, and organic solvent are cooled by a cooler, and the by-product water is adsorbed by the dehydrating agent, and the benzamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 (ベンゾニトリルの再利用)
 第2の反応工程で再生されたベンゾニトリルは、第1の反応工程に再利用することができる。
(Reuse of benzonitrile)
The benzonitrile regenerated in the second reaction step can be reused in the first reaction step.
 <8.炭酸エステルの製造装置>
 次に、以下に具体例を示して、本発明の炭酸エステルの製造方法で使用する製造装置および操業条件(反応条件)の例を更に詳細に説明する。ここで、ベンゾニトリルを用いた炭酸エステルの製造装置は、2-シアノピリジンを用いた製造装置と実質的に同じ構成を有する。概略的には、ベンゾニトリルを用いた炭酸エステルの製造装置は、図1等における2-シアノピリジン及び2-ピコリンアミドをベンゾニトリル及びベンズアミドに置き換えたものである。そこで、以下では、図1~図4を用いて、ベンゾニトリルを用いた炭酸エステルの製造装置を説明する。
<8. Carbonate ester production equipment>
Next, a specific example is shown below and the example of the manufacturing apparatus and operation conditions (reaction conditions) used with the manufacturing method of the carbonate ester of this invention is demonstrated still in detail. Here, the apparatus for producing carbonate ester using benzonitrile has substantially the same configuration as the apparatus for producing 2-cyanopyridine. Schematically, an apparatus for producing a carbonate ester using benzonitrile is such that 2-cyanopyridine and 2-picolinamide in FIG. 1 and the like are replaced with benzonitrile and benzamide. Therefore, in the following, an apparatus for producing a carbonate using benzonitrile will be described with reference to FIGS.
 図1は本発明の好適な設備の一例である。また、図1における本設備での各工程における各物質の状態を図2に示す。本設備は、一価アルコールの転化率が100%で、安息香酸メチルやカルバミン酸メチルの副生成物が生成しない反応条件の場合に使用できる。 FIG. 1 is an example of a suitable facility of the present invention. Moreover, the state of each substance in each process in this equipment in FIG. 1 is shown in FIG. This equipment can be used in the case of reaction conditions in which the conversion rate of monohydric alcohol is 100% and byproducts of methyl benzoate and methyl carbamate are not generated.
 (第1の反応工程)
 第1の反応工程においては、第1反応塔1(第1の反応部)に、CeO及びZrOのいずれか一方又は双方の固体触媒(固相)、一価アルコール12(液相)、ベンゾニトリル13(液相)、昇圧ブロワー10(加圧部)を介して二酸化炭素(気相)を充填する。固体触媒は反応前に新規に充填、あるいは再生塔6で再生された固体触媒14(固相)を使用することができる。また、ベンゾニトリルは反応開始時には新品を使用するが、第1蒸留塔3で精製された未反応のベンゾニトリル20(液相)と第3蒸留塔9で精製された、ベンズアミドから再生されたベンゾニトリルを再利用できる。
(First reaction step)
In the first reaction step, in the first reaction column 1 (first reaction section), one or both of the solid catalyst (solid phase) of CeO 2 and ZrO 2 , the monohydric alcohol 12 (liquid phase), Carbon dioxide (gas phase) is filled through the benzonitrile 13 (liquid phase) and the pressure booster 10 (pressure part). As the solid catalyst, a solid catalyst 14 (solid phase) newly charged before the reaction or regenerated in the regeneration tower 6 can be used. Also, a new benzonitrile is used at the start of the reaction, but the unreacted benzonitrile 20 (liquid phase) purified in the first distillation column 3 and the benzamide regenerated from the benzamide purified in the third distillation column 9 are used. Nitriles can be reused.
 次に、本発明のCeO及びZrOのいずれか一方又は双方の固体触媒を用いた炭酸エステルの直接合成装置は、回分式反応器、半回分式反応器や連続槽型反応器、管型反応器のような流通反応器のいずれを用いてもよい。 Next, the carbon dioxide ester direct synthesis apparatus using the solid catalyst of either or both of CeO 2 and ZrO 2 of the present invention is a batch reactor, a semi-batch reactor, a continuous tank reactor, a tube type, or the like. Any flow reactor such as a reactor may be used.
 (反応温度)
 第1反応塔1における反応温度としては、50~300℃とすることが好ましい。反応温度が50℃未満の場合は、反応速度が低く、炭酸エステル合成反応、ベンゾニトリルによる水和反応共にほとんど進行せず、炭酸エステルの生産性が低い傾向がある。また反応温度が150℃を超える場合は、各反応の反応速度は高くなるが、炭酸エステルの分解や変性、ベンズアミドが一価アルコールと反応しやすくなるため、炭酸エステルの収率が低くなる傾向がある。さらに好ましくは100~150℃である。但し、この温度は固体触媒の種類や量、原料(一価アルコール、ベンゾニトリル)の量や比により異なると考えられるため、適宜最適条件を設定することが望ましい。好ましい反応温度が100~150℃であることから、第1反応塔の前段で、原料(一価アルコール、ベンゾニトリル)をスチーム等で予備加熱することが望ましい。
(Reaction temperature)
The reaction temperature in the first reaction column 1 is preferably 50 to 300 ° C. When the reaction temperature is less than 50 ° C., the reaction rate is low, the carbonate ester synthesis reaction and the hydration reaction with benzonitrile hardly proceed, and the carbonate ester productivity tends to be low. When the reaction temperature exceeds 150 ° C., the reaction rate of each reaction increases, but decomposition and modification of the carbonate ester, and benzamide easily react with the monohydric alcohol, so that the yield of the carbonate ester tends to decrease. is there. More preferably, it is 100 to 150 ° C. However, since this temperature is considered to vary depending on the type and amount of the solid catalyst and the amount and ratio of the raw materials (monohydric alcohol and benzonitrile), it is desirable to appropriately set the optimum conditions. Since the preferred reaction temperature is 100 to 150 ° C., it is desirable to preheat the raw material (monohydric alcohol, benzonitrile) with steam or the like before the first reaction column.
 (反応圧力)
 反応圧力としては、0.1~5MPa(絶対圧)とすることが好ましい。反応圧力が0.1MPa(絶対圧)未満の場合は、減圧装置が必要となり、設備が複雑且つコスト高になるだけでなく、減圧にするための動力エネルギーが必要となり、エネルギー効率が悪くなる。また反応圧力が5MPaを超える場合は、ベンゾニトリルによる水和反応が進行しにくくなって炭酸エステルの収率が悪くなるばかりでなく、昇圧に必要な動力エネルギーが必要となり、エネルギー効率が悪くなる。また、炭酸エステルの収率を高くする観点から、反応圧力は0.1~4MPa(絶対圧)がより好ましく、0.2~2MPa(絶対圧)がさらに好ましい。
(Reaction pressure)
The reaction pressure is preferably 0.1 to 5 MPa (absolute pressure). When the reaction pressure is less than 0.1 MPa (absolute pressure), a pressure reducing device is required, and not only the equipment is complicated and expensive, but also the motive energy for reducing the pressure is required, resulting in poor energy efficiency. On the other hand, when the reaction pressure exceeds 5 MPa, the hydration reaction by benzonitrile is difficult to proceed and not only the yield of the carbonate ester is deteriorated, but also the kinetic energy necessary for pressurization is required and the energy efficiency is deteriorated. Further, from the viewpoint of increasing the yield of carbonate ester, the reaction pressure is more preferably 0.1 to 4 MPa (absolute pressure), and further preferably 0.2 to 2 MPa (absolute pressure).
 (ベンゾニトリルの用量)
 また水和反応に用いるベンゾニトリルは、原料のアルコールの体積の0.1倍以上1倍以下で反応前に予め反応器中に導入するのが望ましい。0.1倍未満で導入した場合には、水和反応に寄与するベンゾニトリルが少ないために炭酸エステルの収率が悪くなる恐れがある。一方1倍を超えて導入した場合にも、反応終了後、生成物との分離が容易で、再利用が可能であるので、特に問題ない。さらに、固体触媒に対する一価アルコール及びベンゾニトリルの量は、固体触媒の種類や量、一価アルコールの種類やベンゾニトリルとの比により異なると考えられるため、適宜最適条件を設定することが望ましい。
(Dose of benzonitrile)
The benzonitrile used for the hydration reaction is preferably introduced into the reactor in advance at a rate of 0.1 to 1 times the volume of the starting alcohol prior to the reaction. If it is introduced at less than 0.1 times, the yield of the carbonate ester may be deteriorated because there is little benzonitrile contributing to the hydration reaction. On the other hand, when it is introduced more than 1 time, there is no particular problem because it can be easily separated from the product after the completion of the reaction and reused. Furthermore, the amount of monohydric alcohol and benzonitrile with respect to the solid catalyst is considered to vary depending on the type and amount of the solid catalyst, the type of monohydric alcohol and the ratio with benzonitrile, and therefore it is desirable to appropriately set optimum conditions.
 (反応生成物の分離)
 第1反応塔1での反応後の反応液15は、第1抽出塔2(第1の分離部)にて液相と固相に分離する。反応液15に含まれる物質は、炭酸エステル(液相)、未反応のベンゾニトリル(液相)とベンズアミド(固相)、固体触媒(固相)であり、有機溶媒(液相)によって抽出する。ここで使用する有機溶媒はアルカンが適しており、後段での蒸留による分離のしやすさから、ヘキサン、オクタン、ノナン、デカン、ウンデカンが好ましい。第1抽出塔2での抽出工程は、エネルギー消費を抑えるために、抽出時の温度は常温で行うことが好ましいが、有機溶媒の沸点より低い温度(例えば、ヘキサンの場合、沸点が69℃なので、50℃程度に加熱)であれば、加熱することで抽出時間を短縮化することもできる。
(Reaction product separation)
The reaction liquid 15 after the reaction in the first reaction tower 1 is separated into a liquid phase and a solid phase in the first extraction tower 2 (first separation section). The substances contained in the reaction solution 15 are carbonate ester (liquid phase), unreacted benzonitrile (liquid phase), benzamide (solid phase), and solid catalyst (solid phase), and are extracted with an organic solvent (liquid phase). . Alkane is suitable for the organic solvent used here, and hexane, octane, nonane, decane, and undecane are preferable from the viewpoint of ease of separation by distillation in the subsequent stage. In order to reduce energy consumption, the extraction process in the first extraction column 2 is preferably performed at room temperature, but the temperature is lower than the boiling point of the organic solvent (for example, in the case of hexane, the boiling point is 69 ° C.). If it is heated to about 50 ° C., the extraction time can be shortened by heating.
 第1抽出塔2で抽出された抽出液17は、炭酸エステル、未反応のベンゾニトリル、アルカンを含んでいる。第1蒸留塔3(第2の分離部)にて各物質の沸点が、90℃(例えば炭酸ジメチルの場合)、188℃(ベンゾニトリル)、69℃(例えばヘキサンの場合)であることを利用して蒸留され、製品である炭酸エステル19、未反応のベンゾニトリル20、抽出に用いられたアルカン16に分離される。 The extract 17 extracted in the first extraction tower 2 contains carbonate ester, unreacted benzonitrile, and alkane. Utilizing that the boiling point of each substance is 90 ° C. (for example, dimethyl carbonate), 188 ° C. (benzonitrile), 69 ° C. (for example, hexane) in the first distillation column 3 (second separation section). The product is then distilled and separated into the product carbonate 19, unreacted benzonitrile 20, and alkane 16 used for extraction.
 一方、第1抽出塔2で分離された固相18には、ベンズアミドと固体触媒が含まれており、第2抽出塔4(第3の分離部)にて分離される。ここで使用する溶媒は、ベンズアミドを溶解できる親水性溶媒(液相)が適しており、後段での蒸留による分離のしやすさから、アセトン、エタノール、エーテル、水が望ましい。第2抽出塔4での抽出工程も、エネルギー消費を抑えるために、抽出時の温度は常温で行うことが好ましいが、親水性溶媒の沸点より低い温度(例えば、アセトンの場合、沸点が56.5℃なので、40℃程度に加熱)であれば、加熱することで抽出時間を短縮化することもできる。 On the other hand, the solid phase 18 separated in the first extraction tower 2 contains benzamide and a solid catalyst, and is separated in the second extraction tower 4 (third separation section). As the solvent used here, a hydrophilic solvent (liquid phase) capable of dissolving benzamide is suitable, and acetone, ethanol, ether, and water are preferable because they are easily separated by distillation at a later stage. The extraction step in the second extraction tower 4 is also preferably performed at room temperature for extraction in order to suppress energy consumption. However, the temperature is lower than the boiling point of the hydrophilic solvent (for example, in the case of acetone, the boiling point is 56.56). If it is 5 [deg.] C. and heated to about 40 [deg.] C.), the extraction time can be shortened by heating.
 ベンズアミドと親水性溶媒を含んだ抽出液21は、第2蒸留塔5にて蒸留され、各物質の沸点が127℃(ベンズアミド)と57℃(例えばアセトンの場合)とに分離される。
 また、第2抽出塔4で分離された固体触媒22(固相)は、触媒再生塔6で再生処理され、第1反応塔1に戻すことが可能である。触媒再生は加熱して、固体触媒上の不純物等を焼き飛ばす工程であり、400~700℃、好ましくは500~600℃で3時間程度焼成する。急激な昇温により固体触媒の構造破壊を防ぐため、焼成前に乾燥工程を踏まえた方がよく、110℃で2時間程度乾燥させることが好ましい。
The extract 21 containing benzamide and a hydrophilic solvent is distilled in the second distillation column 5, and the boiling point of each substance is separated into 127 ° C. (benzamide) and 57 ° C. (for example, in the case of acetone).
Further, the solid catalyst 22 (solid phase) separated by the second extraction tower 4 can be regenerated by the catalyst regeneration tower 6 and returned to the first reaction tower 1. The catalyst regeneration is a step of heating to burn off impurities on the solid catalyst, and is fired at 400 to 700 ° C., preferably 500 to 600 ° C. for about 3 hours. In order to prevent structural destruction of the solid catalyst due to rapid temperature rise, it is better to consider the drying step before firing, and it is preferable to dry at 110 ° C. for about 2 hours.
 第2蒸留塔5で精製されたベンズアミド23(固相)は、ベンゾニトリルへの再生のため、第2反応塔7(第2の反応部)へ移送するが、配管内での閉塞をさけるため、配管は低圧スチーム等で融点である127℃以上に加熱することが望ましい。 The benzamide 23 (solid phase) purified in the second distillation column 5 is transferred to the second reaction column 7 (second reaction part) for regeneration to benzonitrile, but in order to avoid blockage in the piping. The piping is preferably heated to 127 ° C. or higher, which is the melting point, with low pressure steam or the like.
 反応後の溶液は、触媒分離装置8においてフィルターでろ過することで固体である触媒のみ分離して、使用済み触媒26として回収できる。この際、通常のろ過などの固液分離方法により容易に回収することができる。触媒分離後は、系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、蒸留することで、ベンゾニトリル、有機溶媒、ベンズアミド、水に容易に分離することが可能であり、有機溶媒27、ベンズアミド28は、ベンズアミドの脱水反応にリサイクル利用することができる。また、精製したベンゾニトリル13は、炭酸エステルの製造を行う反応で再利用することができる。 The solution after the reaction can be recovered as a used catalyst 26 by separating only the solid catalyst by filtering with a filter in the catalyst separation device 8. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. Since the boiling point of each substance present in the system is different as described above after the catalyst separation, it can be easily separated into benzonitrile, organic solvent, benzamide, and water by distillation. The organic solvent 27 and the benzamide 28 can be recycled for the dehydration reaction of benzamide. The purified benzonitrile 13 can be reused in a reaction for producing a carbonate ester.
 (第2の反応工程)
 第2の反応工程においては、第2反応塔7にて、ベンズアミドの脱水反応によりベンゾニトリルが生成される。本発明の製造装置は、二重結合を有する金属酸化物を担持した触媒と有機溶媒の存在下で、ベンズアミドを脱水反応させて、ベンゾニトリルを生成する装置である。反応形式としては特に制限されず、回分式反応器、半回分式反応器、連続槽型反応器や管型反応器のような流通式反応器のいずれを用いてもよい。また、触媒は、固定床、スラリー床等のいずれも適用することができる。第2反応塔の温度は、反応形式に応じて変更可能であるが、ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱することが好ましい。本発明の製造装置では、脱水反応により生成する副生水を除去しながら行うことが望ましく、例えば、還流や蒸留、ゼオライト等の脱水剤を系内に設置して、副生水を除去しながら反応を行うことが望ましい。本発明者が鋭意検討した結果、ソックスレー抽出管及び冷却器を用いて、脱水剤としてゼオライト(モレキュラーシーブ)や水素化カルシウムを抽出管内に設置して、反応管に触媒、ベンズアミド、有機溶媒を入れて、還流させて常圧で反応することで、ベンゾニトリルの生成量を向上させることが可能である。有機溶媒には沸点が130℃以上の物質が好ましく、例えば、クロロベンゼン、(o-,m-,p-)キシレン、メシチレンなどが挙げられる。
(Second reaction step)
In the second reaction step, benzonitrile is generated in the second reaction column 7 by a dehydration reaction of benzamide. The production apparatus of the present invention is an apparatus for producing benzonitrile by dehydrating benzamide in the presence of a catalyst supporting a metal oxide having a double bond and an organic solvent. The reaction format is not particularly limited, and any of a batch reactor, a semi-batch reactor, a flow reactor such as a continuous tank reactor and a tubular reactor may be used. Moreover, any of a fixed bed, a slurry bed, etc. can be applied to the catalyst. The temperature of the second reaction column can be changed according to the reaction mode, but in the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is preferably heated to 160 to 200 ° C. In the production apparatus of the present invention, it is desirable to carry out while removing the by-product water produced by the dehydration reaction. For example, a dehydrating agent such as reflux, distillation or zeolite is installed in the system to remove the by-product water. It is desirable to carry out the reaction. As a result of intensive studies by the present inventor, using a Soxhlet extraction tube and a cooler, zeolite (molecular sieve) or calcium hydride was installed in the extraction tube as a dehydrating agent, and a catalyst, benzamide, and an organic solvent were placed in the reaction tube. The amount of benzonitrile produced can be improved by reacting at normal pressure with reflux. The organic solvent is preferably a substance having a boiling point of 130 ° C. or higher, and examples thereof include chlorobenzene, (o-, m-, p-) xylene, mesitylene and the like.
 ソックスレー抽出管及び冷却器を用いた還流の場合、反応管周辺を160~200℃に加熱する。各物質の融点は、127℃(ベンズアミド)、-13℃(ベンゾニトリル)、-45℃(有機溶媒、例えばメシチレン)であり、また、沸点は288℃(ベンズアミド)、188℃(ベンゾニトリル)、100℃(水)、165℃(有機溶媒、例えばメシチレン)であることから、反応相は、触媒が固体以外はすべて液体となっており、一部気化した、ベンズアミド、副生水、有機溶媒が冷却器で冷却され、副生水が脱水剤で吸着され、ベンズアミド及び有機溶媒は反応管に戻り、再び反応に寄与する。 In the case of reflux using a Soxhlet extraction tube and a cooler, the periphery of the reaction tube is heated to 160 to 200 ° C. The melting point of each substance is 127 ° C. (benzamide), −13 ° C. (benzonitrile), −45 ° C. (organic solvent such as mesitylene), and the boiling point is 288 ° C. (benzamide), 188 ° C. (benzonitrile), Since the reaction phase is 100 ° C. (water) and 165 ° C. (organic solvent such as mesitylene), the reaction phase is all liquid except for the solid catalyst, and partially evaporated benzamide, by-product water, Cooled by a cooler, by-product water is adsorbed by a dehydrating agent, and benzamide and the organic solvent return to the reaction tube and contribute to the reaction again.
 反応後の溶液は、低圧スチーム等でベンズアミドの融点である288℃以上に加熱したまま、触媒分離塔8(第4の分離部)で触媒のみ分離して、使用済み触媒26として回収する。この際、通常のろ過などの固液分離方法により容易に回収することができる。触媒分離後は、系内に存在する各物質の沸点が、上述のようにそれぞれ異なることから、第3蒸留塔9(第5の分離部)にて蒸留することで、ベンゾニトリル13、有機溶媒27、ベンズアミド28、水29に容易に分離することが可能であり、有機溶媒27、ベンズアミド28は、第3反応塔7の前段に戻し、リサイクル利用することができる。また、精製したベンゾニトリル13は、搬送部によって炭酸エステルの製造を行う第1反応塔1に搬送され、第1反応塔1で再利用される。 The solution after the reaction is recovered as a used catalyst 26 by separating only the catalyst in the catalyst separation tower 8 (fourth separation section) while being heated to 288 ° C. or higher, which is the melting point of benzamide, with low-pressure steam or the like. At this time, it can be easily recovered by a solid-liquid separation method such as normal filtration. After the catalyst separation, the boiling point of each substance present in the system is different as described above. Therefore, by distilling in the third distillation column 9 (fifth separation section), the benzonitrile 13 and the organic solvent are separated. 27, benzamide 28, and water 29 can be easily separated, and the organic solvent 27 and benzamide 28 can be returned to the previous stage of the third reaction column 7 and recycled. Further, the purified benzonitrile 13 is transported to the first reaction column 1 where the carbonate is produced by the transport unit, and is reused in the first reaction column 1.
 (炭酸エステルの製造方法および装置の他の例)
 また、図3は本発明の好適な設備の他の一例であり、図4は図3の設備での各工程における各物質の状態である。本設備は、未反応の一価アルコールが残留し、安息香酸メチルやカルバミン酸メチルの副生成物が生成してしまう反応条件の場合にも使用できる。基本的な構成は前述の図1の場合と同じであるが、第1抽出塔2で抽出された抽出液17には、炭酸エステル、未反応のベンゾニトリル、アルカンの他、カルバミン酸メチルと安息香酸メチルを含んでいる。第1蒸留塔3にて各物質の沸点が、90℃(例えば炭酸ジメチルの場合)、215℃(ベンゾニトリル)、69℃(例えばヘキサンの場合)、65℃(例えばメタノールの場合)、177℃(カルバミン酸メチル)、233℃(安息香酸メチル)であることを利用して、180℃程度まで段階的に温度上昇することで蒸留され、製品である炭酸エステル19、抽出に用いられたアルカンと未反応一価アルコールの混合物33、カルバミン酸メチル32に分離される。また、蒸留後、30~100℃程度に冷却することで、融点が103℃である安息香酸メチルが固化することから、フィルター30等で固液分離することができ、未反応のベンゾニトリル20、安息香酸メチル31に分離することができる。また、アルカンと一価アルコールの混合物33は、大半がアルカンであるため、抽出用の溶媒として再利用が可能である。
(Other examples of carbonic acid ester production method and apparatus)
FIG. 3 shows another example of the preferred equipment of the present invention, and FIG. 4 shows the state of each substance in each process in the equipment of FIG. This equipment can also be used in the case of reaction conditions in which unreacted monohydric alcohol remains and by-products of methyl benzoate and methyl carbamate are generated. The basic configuration is the same as in the case of FIG. 1 described above, but the extract 17 extracted in the first extraction tower 2 includes carbonate, unreacted benzonitrile, alkane, methyl carbamate and benzoic acid. Contains methyl acid. The boiling point of each substance in the first distillation column 3 is 90 ° C. (for example, dimethyl carbonate), 215 ° C. (benzonitrile), 69 ° C. (for example, hexane), 65 ° C. (for example, methanol), 177 ° C. (Methyl carbamate) 233 ° C. (methyl benzoate), which is distilled by gradually increasing the temperature up to about 180 ° C., and the product carbonate 19 and the alkane used for extraction The mixture is separated into a mixture 33 of unreacted monohydric alcohol and methyl carbamate 32. Further, after distillation, cooling to about 30 to 100 ° C. solidifies methyl benzoate having a melting point of 103 ° C., so that it can be separated into solid and liquid with the filter 30 or the like, and unreacted benzonitrile 20, It can be separated into methyl benzoate 31. Moreover, since the mixture 33 of alkane and monohydric alcohol is mostly alkane, it can be reused as a solvent for extraction.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。まず、シアノピリジンの製造方法の実施例及び比較例について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. First, the Example and comparative example of the manufacturing method of cyanopyridine are demonstrated.
 (実施例1)
 担体となるSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)を100mesh以下に整粒し、700℃で約1時間、予備焼成した。その後、アルカリ金属としてNaを担持するために、最終的にNa金属担持量が0.5mmol/gとなるようにNaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、NaO/SiO触媒を得た。
Example 1
SiO 2 as a carrier (manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in order to carry the Na as the alkali metal, finally Na 2 CO 3 as Na amount of metal supported is 0.5 mmol / g (manufactured by Kanto Kagaku, special grade) was used to adjust the aqueous solution, SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O / SiO 2 catalyst.
 そこで、試験管に磁気撹拌子、上記触媒(0.1g)、2-ピコリンアミド(2-PA、1mmol)、メシチレン(20ml)を導入し、モレキュラーシーブ4A(300℃で1時間事前乾燥)を充填したソックスレー抽出器、リービッヒ冷却器を接続し、冷却器の温度は10℃に、磁気撹拌装置は約200℃、600rpmに設定した。Arガスで冷却器、ソックスレー抽出管、試験管内をパージした後、溶液が蒸発し始めた時間を反応開始時間とし、24時間反応させた。
 反応後、試験管(溶液)を室温まで冷却し、反応溶液にエタノール20ml、内部標準物質としてアントラセン(0.1g)を加えて、サンプルを採取し、GC-MS(ガスクロマトグラフ-質量分析計)で定性分析、FID-GCで定量分析した。その結果、表1に示すように、2-シアノピリジン(2-CP)は0.42mmol生成した。副生物は水しかなく、収率は42%、選択率は100%となった。
Therefore, a magnetic stir bar, the above catalyst (0.1 g), 2-picolinamide (2-PA, 1 mmol), and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (preliminarily dried at 300 ° C. for 1 hour). A filled Soxhlet extractor and Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm. After purging the cooler, the Soxhlet extraction tube, and the inside of the test tube with Ar gas, the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 24 hours.
After the reaction, the test tube (solution) is cooled to room temperature, 20 ml of ethanol and anthracene (0.1 g) as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC. As a result, as shown in Table 1, 0.42 mmol of 2-cyanopyridine (2-CP) was produced. The byproduct was only water, yield was 42%, and selectivity was 100%.
 (実施例2)
 実施例1と同様であるが、触媒調製において、最終的にLi金属担持量が0.5mmol/gとなるようにLiCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、LiO/SiO触媒を得た。LiO/SiO触媒を用いること以外は実施例1と同様にして2-PAから2-CPを製造した。その結果、表1に示すように、2-CPは0.43mmol生成した。副生物は水しかなく、収率は43%、選択率は100%となった。
(Example 2)
Is similar to Example 1, the catalyst preparation, eventually Li metal support amount 0.5 mmol / g and composed as Li 2 CO 3 (manufactured by Kanto Kagaku, special grade) to adjust the aqueous solution with, SiO 2 was impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Li 2 O / SiO 2 catalyst. 2-CP was produced from 2-PA in the same manner as in Example 1 except that a Li 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.43 mmol of 2-CP was produced. By-product was only water, yield was 43%, and selectivity was 100%.
 (実施例3)
 実施例1と同様であるが、触媒調製において、最終的にK金属担持量が0.5mmol/gとなるようにKCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、KO/SiO触媒を得た。KO/SiO触媒を用いること以外は実施例1と同様にして2-PAから2-CPを製造した。その結果、表1に示すように、2-CPは0.42mmol生成した。副生物は水しかなく、収率は42%、選択率は100%となった。
Example 3
As in Example 1, but in the catalyst preparation, an aqueous solution was prepared using K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the amount of supported K metal was 0.5 mmol / g, and SiO 2 It was impregnated to 2. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain K 2 O / SiO 2 catalyst. 2-CP was produced from 2-PA in the same manner as in Example 1 except that a K 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.42 mmol of 2-CP was produced. The byproduct was only water, yield was 42%, and selectivity was 100%.
 (実施例4)
 実施例1と同様であるが、触媒調製において、最終的にRb金属担持量が0.5mmol/gとなるようにRbCO(関東化学製)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、RbO/SiO触媒を得た。RbO/SiO触媒を用いること以外は実施例1と同様にして2-PAから2-CPを製造した。その結果、表1に示すように、2-CPは0.43mmol生成した。副生物は水しかなく、収率は43%、選択率は100%となった。
Example 4
Is similar to Example 1, the catalyst preparation, finally Rb amount of metal supported is adjusted aqueous solution using a Rb 2 CO 3 (manufactured by Kanto Chemical) as a 0.5 mmol / g, the SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain Rb 2 O / SiO 2 catalyst. 2-CP was produced from 2-PA in the same manner as in Example 1 except that the Rb 2 O / SiO 2 catalyst was used. As a result, as shown in Table 1, 0.43 mmol of 2-CP was produced. By-product was only water, yield was 43%, and selectivity was 100%.
 (実施例5)
 実施例1と同様であるが、触媒調製において、最終的にCs金属担持量が0.5mmol/gとなるようにCsCO(関東化学製、4N)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、CsO/SiO触媒を得た。CsO/SiO触媒を用いること以外は実施例1と同様にして2-PAから2-CPを製造した。その結果、表1に示すように、2-CPは0.45mmol生成した。副生物は水しかなく、収率は45%、選択率は100%となった。
(Example 5)
Although it is the same as that of Example 1, in the catalyst preparation, the aqueous solution was adjusted using Cs 2 CO 3 (manufactured by Kanto Chemical Co., 4N) so that the Cs metal loading was finally 0.5 mmol / g, and SiO 2 2 was impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain Cs 2 O / SiO 2 catalyst. Cs but using 2 O / SiO 2 catalyst was prepared 2-CP from 2-PA as in Example 1. As a result, as shown in Table 1, 0.45 mmol of 2-CP was produced. The byproduct was only water, yield was 45%, and selectivity was 100%.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (実施例6)
 実施例1と同様であるが、触媒調製において、最終的にNa金属担持量とK金属担持量の総量が0.5mmol/gとなるようにNaCO(関東化学製、特級)とKCO(関東化学製、特級)を用いて、モル比を変化させて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、NaO-KO/SiO触媒を得た。NaO-KO/SiO触媒を用いること以外は実施例1と同様にして2-PAから2-CPを製造した。その結果、表2に示すように、いずれのモル比でも、2-CPは生成し、副生物は水しかなく、収率は41~43%、選択率は100%となった。以上の結果から、市場の価格に応じて、アルカリ金属の使用量を変化させることが可能であることがわかった。
(Example 6)
As in Example 1, but in the catalyst preparation, Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) and K are used so that the total amount of Na metal loading and K metal loading is finally 0.5 mmol / g. Using 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade), the molar ratio was changed to prepare an aqueous solution, and SiO 2 was impregnated. Thereafter, it was dried at 110 ° C. for about 6 hours and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O—K 2 O / SiO 2 catalyst. 2-CP was produced from 2-PA in the same manner as in Example 1 except that a Na 2 O—K 2 O / SiO 2 catalyst was used. As a result, as shown in Table 2, 2-CP was produced at any molar ratio, the byproduct was only water, the yield was 41 to 43%, and the selectivity was 100%. From the above results, it was found that the amount of alkali metal used can be changed according to the market price.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (比較例1)
 触媒として、100mesh以下に整粒し、700℃で約1時間、予備焼成したSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)のみを用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPは0.03mmolしか生成せず、非常に活性が低かった。
(Comparative Example 1)
Example 1 except that only SiO 2 (Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) preliminarily calcined at 700 ° C. for about 1 hour was used as the catalyst. And so on. As a result, as shown in Table 3, 2-CP produced only 0.03 mmol and was very low in activity.
 (比較例2)
 触媒として、NaCO(関東化学製、特級)のみを1mmol用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPは全く生成しなかった。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that 1 mmol of Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-CP was not generated at all.
 (比較例3)
 触媒として、LiCO(関東化学製、特級)のみを1mmol用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPは0.01mmolしか生成しなかった。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that 1 mmol of Li 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-0.01 produced 2-CP only.
 (比較例4)
 触媒として、KCO(関東化学製、特級)のみを1mmol用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPは全く生成しなかった。
(Comparative Example 4)
The same procedure as in Example 1 was conducted except that 1 mmol of K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst. As a result, as shown in Table 3, 2-CP was not generated at all.
 (比較例5)
 触媒として、RbCO(関東化学製)のみを1mmol用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPはほとんど生成しなかった。
(Comparative Example 5)
The same procedure as in Example 1 was carried out except that 1 mmol of Rb 2 CO 3 (manufactured by Kanto Chemical) was used as the catalyst. As a result, as shown in Table 3, 2-CP was hardly generated.
 (比較例6)
 触媒として、CsCO(関東化学製、4N)のみを1mmol用いること以外は、実施例1と同様にした。その結果、表3に示すように、2-CPは0.01mmolしか生成せず、非常に活性が低かった。
 以上の結果より、SiO担体にアルカリ金属酸化物を担持した触媒が効果的であることがわかった。
(Comparative Example 6)
The same procedure as in Example 1 was performed except that 1 mmol of Cs 2 CO 3 (manufactured by Kanto Chemical Co., 4N) alone was used as the catalyst. As a result, as shown in Table 3, 2-CP produced only 0.01 mmol, and its activity was very low.
From the above results, it was found that a catalyst having an alkali metal oxide supported on a SiO 2 carrier is effective.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (実施例7)
 触媒調製において、最終的なNa金属担持量を表4に示すようにし、2-ピコリンアミド(PA)を5mmol導入し、反応時間を4時間とする以外は、実施例1と同様にした。その結果を表4に示す。
(Example 7)
In the catalyst preparation, the final amount of Na metal supported was as shown in Table 4, and 5 mmol of 2-picolinamide (PA) was introduced, and the reaction time was 4 hours. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以上の結果から、Na担持量は0.1~1mmol/gでは高い活性を示し、特に0.5mmol/g程度が好適な担持量であることがわかった。 From the above results, it was found that the amount of Na supported was high at 0.1 to 1 mmol / g, and about 0.5 mmol / g was particularly suitable.
 (実施例8)
 触媒調製において、担体にCeO(第一稀元素製、HS、表面積:74m/g)を100mesh以下に整粒し、500℃で約3時間、予備焼成したものを用いる以外は、実施例5と同様にした。その結果、表5に示すように、2-CPは0.11mmol生成した。副生物は水しかなく、収率は11%、選択率は100%となった。
(Example 8)
In the catalyst preparation, Examples were used except that CeO 2 (manufactured by 1st rare element, HS, surface area: 74 m 2 / g) was sized to 100 mesh or less and pre-fired at 500 ° C. for about 3 hours. Same as 5. As a result, as shown in Table 5, 0.11 mmol of 2-CP was produced. The byproduct was only water, yield was 11%, and selectivity was 100%.
 (実施例9)
 触媒調製において、担体にZrO(第一稀元素製、表面積:88m/g)を100mesh以下に整粒し、予備焼成せずに用いる以外は、実施例5と同様にした。その結果、表5に示すように、2-CPは0.10mmol生成した。副生物は水しかなく、収率は10%、選択率は100%となった。
Example 9
In the preparation of the catalyst, the same procedure as in Example 5 was performed except that ZrO 2 (manufactured by the first rare element, surface area: 88 m 2 / g) was sized to 100 mesh or less and used without preliminary firing. As a result, as shown in Table 5, 0.10 mmol of 2-CP was produced. The byproduct was only water, yield was 10%, and selectivity was 100%.
 (実施例10)
 触媒調製において、担体としてCeO-ZrO固溶体を用いるため、Ce(NO(関東化学製)とZr(NO(関東化学製)をCeが20原子量%となるように溶解させた溶液にNaOH水溶液を導入して沈殿物を生成させた後、この沈殿物を濾過、水洗し、1000℃で空気雰囲気下、3時間焼成後、粉末状の固溶体(表面積:65m/g)を得た。本固溶体を100mesh以下に整粒し、500℃で約3時間、予備焼成したものを用いる以外は、実施例5と同様にした。その結果、表5に示すように、2-CPは0.11mmol生成した。副生物は水しかなく、収率は11%、選択率は100%となった。
(Example 10)
In the catalyst preparation, for using the CeO 2 -ZrO 2 solid solution as a carrier, Ce (NO 3) 3 (manufactured by Kanto Chemical Co., Inc.) and Zr (NO 3) 4 dissolved (manufactured by Kanto Chemical) and so Ce is 20 atomic weight% An aqueous NaOH solution was introduced into the resulting solution to form a precipitate, which was filtered, washed with water, fired at 1000 ° C. in an air atmosphere for 3 hours, and then powdered solid solution (surface area: 65 m 2 / g ) This solid solution was sized to 100 mesh or less, and the same procedure as in Example 5 was used except that a pre-baked product was used at 500 ° C. for about 3 hours. As a result, as shown in Table 5, 0.11 mmol of 2-CP was produced. The byproduct was only water, yield was 11%, and selectivity was 100%.
 (比較例7)
 触媒調製において、担体にα-Al(住友化学製、KHO-24、表面積:10m/g)を100mesh以下に整粒し、1150℃で約3時間、予備焼成したものを用いる以外は、実施例5と同様にした。その結果、表5に示すように、2-CPは0.03mmolしか生成せず、非常に活性が低かった。
(Comparative Example 7)
In catalyst preparation, α-Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd., KHO-24, surface area: 10 m 2 / g) is sized to 100 mesh or less and pre-calcined at 1150 ° C. for about 3 hours. Were the same as in Example 5. As a result, as shown in Table 5, 2-CP produced only 0.03 mmol, and the activity was very low.
 (比較例8)
 触媒調製において、担体にMgO(宇部興産製、500A、表面積:30m/g)を100mesh以下に整粒し、予備焼成せずに用いる以外は、実施例5と同様にした。その結果、表5に示すように、2-CPは0.004mmolしか生成せず、ほとんど反応しなかった。
(Comparative Example 8)
In the catalyst preparation, MgO (Ube Industries, 500A, surface area: 30 m 2 / g) was sized to 100 mesh or less and used in the same manner as in Example 5 except that it was used without preliminary firing. As a result, as shown in Table 5, 2-CP produced only 0.004 mmol and hardly reacted.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (実施例11)
 反応物の2-ピコリンアミド(2-PA)を5mmol導入し、反応時間を表6に示すようにする以外は、実施例1と同様にした。その結果を表6に示す。
(Example 11)
Example 1 was repeated except that 5 mmol of 2-picolinamide (2-PA) as a reaction product was introduced and the reaction time was as shown in Table 6. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 以上の結果から、長時間反応するほど、2-シアノピリジンの生成量が増加し、500時間反応させた場合、収率は90%、選択率は99%となることを確認した。 From the above results, it was confirmed that the longer the reaction was, the more 2-cyanopyridine was produced, and when the reaction was carried out for 500 hours, the yield was 90% and the selectivity was 99%.
 (実施例12)
 溶媒をo-キシレン、m-キシレン、p-キシレンを用いる以外は、すべて実施例1と同じ条件で反応を行い、2-PAから2-CPを製造した。その結果、表4に示すように、いずれの担体でも、2-CPは一定量生成した。
Example 12
Except for using o-xylene, m-xylene and p-xylene as solvents, the reaction was carried out under the same conditions as in Example 1 to produce 2-CP from 2-PA. As a result, as shown in Table 4, a certain amount of 2-CP was produced with any carrier.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (実施例13)
 2-PAの代わりに、ニコチンアミド、イソニコチンアミドを反応物とする以外は、実施例1と同じ条件で反応を行い、3-シアノピリジン(3-CP)、4-シアノピリジン(4-CP)を製造した。その結果、表8に示すように、ニコチンアミドまたはイソニコチンアミドのどちらを反応物とした場合でも、CPが生成し、本発明のアルカリ金属酸化物をSiO等に担持した触媒が、アミドの脱水反応によるシアノピリジンの製造に有効であることがわかった。
(Example 13)
The reaction was carried out under the same conditions as in Example 1 except that nicotinamide and isonicotinamide were used as reactants instead of 2-PA, and 3-cyanopyridine (3-CP), 4-cyanopyridine (4-CP) ) Was manufactured. As a result, as shown in Table 8, regardless of whether nicotinamide or isonicotinamide was used as the reaction product, CP was generated, and the catalyst having the alkali metal oxide of the present invention supported on SiO 2 or the like was It was found to be effective for the production of cyanopyridine by dehydration reaction.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (比較例9)
 触媒調製において、最終的にCa金属担持量が0.5mmol/gとなるようにCaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、CaO/SiO触媒を得た。CaO/SiO触媒を用いること以外は実施例1と同様にした。その結果、表8aに示すように、2-CPは0.06mmolしか生成せず、非常に活性が低かった。
(比較例10)
 触媒調製において、最終的にBa金属担持量が0.5mmol/gとなるようにBaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、BaO/SiO触媒を得た。BaO/SiO触媒を用いること以外は実施例1と同様にした。その結果、表8aに示すように、2-CPは0.07mmolしか生成せず、非常に活性が低かった。
 以上の結果から、アルカリ金属酸化物と同様に塩基性となるアルカリ土類金属酸化物を担持した触媒では、活性が低いことが確認でき、SiOにアルカリ金属酸化物を担持した触媒が、有効であることがわかった。
(比較例11)
 触媒調製において、最終的にV金属担持量が0.5mmol/gとなるようにNHVO(Sigma-Aldrich製)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、V/SiO触媒を得た。V/SiO触媒を用いること以外は実施例1と同様にした。その結果、表8aに示すように、2-CPは0.06mmolしか生成せず、比較例1のSiOのみの場合と同レベルで非常に活性が低かった。
Figure JPOXMLDOC01-appb-T000019
(Comparative Example 9)
In the catalyst preparation, finally CaCO 3 as Ca amount of metal supported is 0.5 mmol / g (manufactured by Kanto Kagaku, special grade) to adjust the aqueous solution was used to impregnate the SiO 2. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a CaO / SiO 2 catalyst. Example 1 was repeated except that a CaO / SiO 2 catalyst was used. As a result, as shown in Table 8a, 2-CP produced only 0.06 mmol and was very low in activity.
(Comparative Example 10)
In the catalyst preparation, an aqueous solution was prepared using BaCO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the final supported amount of Ba metal was 0.5 mmol / g, and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a BaO / SiO 2 catalyst. Example 1 was repeated except that a BaO / SiO 2 catalyst was used. As a result, as shown in Table 8a, 2-CP produced only 0.07 mmol and was very low in activity.
From the above results, it can be confirmed that the catalyst supporting the alkaline earth metal oxide that is basic as well as the alkali metal oxide has low activity, and the catalyst supporting the alkali metal oxide on SiO 2 is effective. I found out that
(Comparative Example 11)
In the catalyst preparation, an aqueous solution was prepared using NH 4 VO 3 (manufactured by Sigma-Aldrich) so that the V metal loading was finally 0.5 mmol / g, and SiO 2 was impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a V 2 O 5 / SiO 2 catalyst. Example 1 was repeated except that a V 2 O 5 / SiO 2 catalyst was used. As a result, as shown in Table 8a, 2-CP is 0.06mmol only not produce very activity was lower in the case of the same level of only SiO 2 of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000019
 以上の結果から、ベンズアミドの脱水反応では活性の高いV系の触媒を、2-ピコリンアミドの脱水反応に使用しても、ほとんど反応が進行しないことがわかった。
 上記実施例では、2-シアノピリジンと水が副生しただけで、他の副生物は生成しなかったことから、蒸留により、目的生成物である2-シアノピリジン、副生物である水、未反応の2-ピコリンアミドを単独で回収でき、未反応の2-ピコリンアミドは再び反応物として使用できる。
From the above results, it was found that even when a V-type catalyst having high activity in the dehydration reaction of benzamide was used for the dehydration reaction of 2-picolinamide, the reaction hardly proceeded.
In the above example, only 2-cyanopyridine and water were produced as by-products, and no other by-products were produced. Therefore, by distillation, 2-cyanopyridine, which is the desired product, The reacted 2-picolinamide can be recovered alone, and the unreacted 2-picolinamide can be used again as a reactant.
(実施例14)
 つぎに、ベンゾニトリルの実施例及び比較例について説明する。担体となるSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)を100mesh以下に整粒し、700℃で約1時間、予備焼成した。その後、金属としてMoを担持するために、最終的にMo担持量が0.5mmol/gとなるように(NHMo24(関東化学製、特級)を用いて水溶液を調製し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、MoO/SiO触媒を得た。
(Example 14)
Next, examples and comparative examples of benzonitrile will be described. SiO 2 as a carrier (manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in order to support Mo as a metal, an aqueous solution was prepared using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Kagaku, special grade) so that the Mo support amount was finally 0.5 mmol / g. And impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a MoO 3 / SiO 2 catalyst.
 そこで、試験管に磁気撹拌子、上記触媒(0.1g)、ベンズアミド(以下、BAと記す。20mmol)、メシチレン(20ml)を導入し、モレキュラーシーブ4A(300℃で1時間事前乾燥)を充填したソックスレー抽出器、リービッヒ冷却器を接続し、冷却器の温度は10℃に、磁気撹拌装置は約200℃、600rpmに設定した。Arガスで冷却器、ソックスレー抽出管、試験管内をパージした後、溶液が蒸発し始めた時間を反応開始時間とし、24時間反応させた。 Therefore, a magnetic stir bar, the above catalyst (0.1 g), benzamide (hereinafter referred to as BA. 20 mmol), and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (pre-dried at 300 ° C. for 1 hour) was filled. The Soxhlet extractor and Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm. After purging the cooler, the Soxhlet extraction tube, and the inside of the test tube with Ar gas, the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 24 hours.
 反応後、試験管(溶液)を室温まで冷却し、反応溶液にエタノール20ml、内部標準物質としてアントラセン(0.1g)を加えて、サンプルを採取し、GC-MS(ガスクロマトグラフ-質量分析計)で定性分析、FID-GCで定量分析した。その結果、表9に示すように、ベンゾニトリル(以下、BNと記す)は5mmol生成した。副生物は水しかなく、収率は25%、選択率は100%となった。 After the reaction, the test tube (solution) is cooled to room temperature, 20 ml of ethanol and anthracene (0.1 g) as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC. As a result, as shown in Table 9, 5 mmol of benzonitrile (hereinafter referred to as BN) was produced. The byproduct was only water, yield was 25%, and selectivity was 100%.
(実施例15)
 実施例14と同様であるが、触媒調製において、最終的にW担持量が0.5mmol/gとなるように(NH1241(関東化学製、鹿一級)を用いて水溶液を調製し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、WO/SiO触媒を得た。WO/SiO触媒を用いること以外は実施例14と同様にしてBAからBNを製造した。その結果、表9に示すように、BNは3mmol生成した。副生物は水しかなく、収率は15%、選択率は100%となった。
(Example 15)
Similar to Example 14, but in the catalyst preparation, an aqueous solution was used using (NH 4 ) 6 W 12 O 41 (manufactured by Kanto Chemical Co., Ltd., deer grade 1) so that the final W loading was 0.5 mmol / g. Was prepared and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain WO 3 / SiO 2 catalyst. BN was produced from BA in the same manner as in Example 14 except that a WO 3 / SiO 2 catalyst was used. As a result, as shown in Table 9, 3 mmol of BN was generated. By-product was only water, yield was 15%, and selectivity was 100%.
(実施例16)
 実施例14と同様であるが、触媒調製において、最終的にRe担持量が0.5mmol/gとなるようにNHReO(三津和化学薬品製)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、Re/SiO触媒を得た。Re/SiO触媒を用いること以外は実施例14と同様にしてベンズアミド(BA)からベンゾニトリル(BN)を製造した。その結果、表9に示すように、BNは1mmol生成した。副生物は水しかなく、収率は5%、選択率は100%となった。
(Example 16)
As in Example 14, but in the catalyst preparation, the aqueous solution was adjusted using NH 4 ReO 4 (manufactured by Mitsuwa Chemicals) so that the final amount of Re supported was 0.5 mmol / g, and SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Re 2 O 7 / SiO 2 catalyst. Benzonitrile (BN) was produced from benzamide (BA) in the same manner as in Example 14 except that the Re 2 O 7 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
(実施例17)
 実施例14と同様であるが、触媒調製において、最終的にTi担持量が0.5mmol/gとなるようにTiCl(関東化学製、鹿一級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、TiO/SiO触媒を得た。TiO/SiO触媒を用いること以外は実施例14と同様にしてBAからBNを製造した。その結果、表9に示すように、BNは1mmol生成した。副生物は水しかなく、収率は5%、選択率は100%となった。
(Example 17)
As in Example 14, except that in the catalyst preparation, an aqueous solution was prepared using TiCl 3 (manufactured by Kanto Chemical Co., Ltd., deer grade 1) so that the Ti loading amount was finally 0.5 mmol / g, and the SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a TiO 2 / SiO 2 catalyst. BN was produced from BA in the same manner as in Example 14 except that a TiO 2 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
(実施例18)
 実施例14と同様であるが、触媒調製において、最終的にNb担持量が0.5mmol/gとなるように(NH(NbO(C)(シグマ-アルドリッチ製、4N)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、Nb/SiO触媒を得た。Nb/SiO触媒を用いること以外は実施例14と同様にしてBAからBNを製造した。その結果、表9に示すように、BNは1mmol生成した。副生物は水しかなく、収率は5%、選択率は100%となった。
(Example 18)
As in Example 14, but in the catalyst preparation, (NH 4 ) 3 (NbO (C 2 O 4 ) 3 ) (manufactured by Sigma-Aldrich, so that the Nb supported amount is finally 0.5 mmol / g, The aqueous solution was prepared using 4N) and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Nb 2 O 5 / SiO 2 catalyst. BN was produced from BA in the same manner as in Example 14 except that the Nb 2 O 5 / SiO 2 catalyst was used. As a result, as shown in Table 9, 1 mmol of BN was generated. The byproduct was only water, yield was 5%, and selectivity was 100%.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(実施例19)
 担体となるSiO(富士シリシア製、CARiACT、G-3、表面積:700m/g)を100mesh以下に整粒し、700℃で約1時間、予備焼成した。その後、触媒調製において、最終的にMo担持量を表10となるように(NHMo24(関東化学製、特級)を用いて、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、MoO/SiO触媒を得た。MoO/SiO触媒の担持量を変えること以外は実施例14と同様にしてBAからBNを製造した。その結果、表10に示すように、いずれのモル比でも、BNは生成し、副生物は水しかなく、Mo担持量が多くに従い生成量は多くなるが、一定以上では飽和する傾向が見られた。
Figure JPOXMLDOC01-appb-T000021
(Example 19)
SiO 2 (manufactured by Fuji Silysia, CARiACT, G-3, surface area: 700 m 2 / g) serving as a carrier was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in catalyst preparation, SiO 2 was impregnated using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the Mo loading amount finally became as shown in Table 10. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a MoO 3 / SiO 2 catalyst. BN was produced from BA in the same manner as in Example 14 except that the supported amount of the MoO 3 / SiO 2 catalyst was changed. As a result, as shown in Table 10, at any molar ratio, BN is generated, the byproduct is only water, and the amount of generation increases as the amount of Mo loaded increases, but there is a tendency to saturate above a certain level. It was.
Figure JPOXMLDOC01-appb-T000021
(実施例20)
 担体をTiO(日本アエロジル製、P25、表面積:50m/g)、ZrO(第一稀元素製、表面積:88m/g)、CeO(第一稀元素製、表面積:74m/g)、Al(住友化学製、KHO、表面積:10m/g)、カーボンブラック(キャボット製、Vulcan、XC-72、表面積:254m/g)を用い、Mo担持量が0.19mmol/gとなるように(NHMo24(関東化学製、特級)を用いて、各担体に含浸した。このようにして調製した触媒を用い、実施例14と同様にしてBAからBNを製造した。その結果、表11に示すように、いずれの担体でも、BNは一定量生成した。
Figure JPOXMLDOC01-appb-T000022
(Example 20)
Carrier TiO 2 (manufactured by Nippon Aerosil Co., P25, surface area: 50m 2 / g), ZrO 2 ( Daiichi Kigenso made, surface area: 88m 2 / g), CeO 2 ( Daiichi Kigenso made, surface area: 74m 2 / g), Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd., KHO, surface area: 10 m 2 / g), carbon black (manufactured by Cabot, Vulcan, XC-72, surface area: 254 m 2 / g), and the amount of supported Mo is 0. Each support was impregnated with (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Chemical Co., Ltd., special grade) so as to be 19 mmol / g. BN was produced from BA in the same manner as in Example 14 using the catalyst thus prepared. As a result, as shown in Table 11, a fixed amount of BN was produced with any carrier.
Figure JPOXMLDOC01-appb-T000022
(実施例21)
 溶媒をo-キシレン、m-キシレン、p-キシレン、クロロベンゼンを用いる以外は、すべて実施例14と同じ条件で反応を行い、BAからBNを製造した。その結果、表12に示すように、いずれの担体でも、BNは一定量生成した。
Figure JPOXMLDOC01-appb-T000023
(Example 21)
Except for using o-xylene, m-xylene, p-xylene and chlorobenzene as the solvent, the reaction was carried out under the same conditions as in Example 14 to produce BN from BA. As a result, as shown in Table 12, a fixed amount of BN was produced with any carrier.
Figure JPOXMLDOC01-appb-T000023
(実施例22)
 脱水剤を用いない以外は、実施例14と全く同様にして評価した。その結果、24時間反応後では、収率は10%、選択率はほぼ100%となった。
(Example 22)
Evaluation was performed in the same manner as in Example 14 except that no dehydrating agent was used. As a result, after the reaction for 24 hours, the yield was 10% and the selectivity was almost 100%.
(比較例12)
 触媒として、Mn、Ce、ZrをMn(NO、Ce(NH(NO、ZrO(NOの各水溶液を用いて0.5mmol担持すること以外は、実施例14と同様にした。その結果、いずれの場合もBNは検出されず、活性を示さなかった。
(Comparative Example 12)
Except carrying 0.5 mmol of Mn, Ce, and Zr as respective catalysts using respective aqueous solutions of Mn (NO 3 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , and ZrO (NO 3 ) 2 Same as Example 14. As a result, BN was not detected in any case and showed no activity.
(比較例13)
 触媒として、VをNHVO(Sigma-Aldrich製)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、V/SiO触媒を得た。V/SiO触媒を用いること以外は実施例14と同様にした。その結果、BNは0.01mmolしか生成せず、非常に活性が低かった。本結果から、非特許文献5に記載のあるようなV系の触媒であっても、本反応条件のような温和な条件下では、ベンズアミドの脱水反応がほとんど進行しないことがわかった。
(Comparative Example 13)
An aqueous solution was prepared using NH 4 VO 3 (manufactured by Sigma-Aldrich) as a catalyst, and V 2 was impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a V 2 O 5 / SiO 2 catalyst. The same operation as in Example 14 was performed except that a V 2 O 5 / SiO 2 catalyst was used. As a result, BN produced only 0.01 mmol and was very low in activity. From these results, it was found that even with a V-type catalyst as described in Non-Patent Document 5, the benzamide dehydration reaction hardly progressed under mild conditions such as the present reaction conditions.
(比較例14)
 触媒として、100mesh以下に整粒し、700℃で約1時間、予備焼成したMgO(宇部興産製、500A、表面積:28m/g)のみを用いること以外は、実施例14と同様にした。その結果、BNは全く生成しなかった。
(Comparative Example 14)
The same procedure as in Example 14 was performed, except that only MgO (sized by Ube Industries, 500A, surface area: 28 m 2 / g) which had been sized to 100 mesh or less and pre-fired at 700 ° C. for about 1 hour was used as the catalyst. As a result, BN was not generated at all.
 上記実施例では、ベンゾニトリルと水が副生しただけで、他の副生物は生成しなかったことから、蒸留により、目的生成物であるベンゾニトリル、副生物である水、未反応のベンズアミドを単独で回収でき、未反応のベンズアミドは再び反応物として使用できる。 In the above examples, benzonitrile and water were only produced as by-products, but no other by-products were produced. Therefore, by distillation, the target product, benzonitrile, by-product water, and unreacted benzamide were obtained. It can be recovered alone and unreacted benzamide can be used again as a reactant.
 (実施例23)
 次に、シアノピリジンを用いた炭酸エステルの製造方法の実施例について説明する。図1に示した製造装置を用いて、炭酸エステルの製造を行った。CeO(第一稀元素製:不純物濃度0.02%以下)を873Kで空気雰囲気下、3時間焼成し、粉末状の固体触媒を得た。そこで、190mlのオートクレーブ(反応器)に磁気攪拌子、上記固体触媒(1mmol)、メタノール(100mmol)及び2-シアノピリジン(2-CP、50mmol)を導入し、約5gのCOでオートクレーブ内の空気を3回パージした後、所定の量のCOを導入・昇圧した。そのオートクレーブをバンドヒーター、ホットスターラーにより120℃まで攪拌しながら昇温し、目的の温度に達した時間を反応開始時間とした。120℃で12時間反応させた後、オートクレーブを水冷し、室温まで冷えたら減圧して内部標準物質の1-ヘキサノールを0.2mL加え、生成物を採取し、GC(ガスクロマトグラフィー)で分析した。このようにして、COの導入量及び反応圧力を変えて表13に示す試験No.37~40の実験を行った。
(Example 23)
Next, the Example of the manufacturing method of carbonate ester using cyanopyridine is demonstrated. Carbonate was produced using the production apparatus shown in FIG. CeO 2 (manufactured by the first rare element: impurity concentration of 0.02% or less) was calcined at 873 K in an air atmosphere for 3 hours to obtain a powdered solid catalyst. Therefore, a magnetic stirrer, the above solid catalyst (1 mmol), methanol (100 mmol) and 2-cyanopyridine (2-CP, 50 mmol) were introduced into a 190 ml autoclave (reactor), and about 5 g of CO 2 in the autoclave. After purging air three times, a predetermined amount of CO 2 was introduced and pressurized. The autoclave was heated to 120 ° C. with a band heater and a hot stirrer, and the time when the target temperature was reached was defined as the reaction start time. After reacting at 120 ° C. for 12 hours, the autoclave was cooled with water, and after cooling to room temperature, the pressure was reduced and 0.2 mL of 1-hexanol as an internal standard substance was added, and the product was collected and analyzed by GC (gas chromatography). . In this way, test Nos. Shown in Table 13 were performed by changing the amount of CO 2 introduced and the reaction pressure. 37-40 experiments were performed.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 その結果、常圧以下の0.08MPaでも炭酸ジメチル(DMC)が生成し、メタノールベースでのDMC収率は、0.08MPa時に34.8%、0.2MPa時に44.4%、1MPa時に58%、5MPa時に86%で得られることが確認された。また副生物の2-ピコリンアミド(2-PA)の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 As a result, dimethyl carbonate (DMC) was produced even at 0.08 MPa below normal pressure, and the DMC yield based on methanol was 34.8% at 0.08 MPa, 44.4% at 0.2 MPa, 58 at 1 MPa. %, It was confirmed that it was obtained at 86% at 5 MPa. The amount of by-product 2-picolinamide (2-PA) produced was almost the same as DMC, and no other by-products were detected.
 ここで、メタノール(アルコール)ベースの収率は、化学量論比でアルコール:炭酸エステル=2:1であることから、以下の式により算出した。 Here, the yield based on methanol (alcohol) was calculated by the following formula because the stoichiometric ratio was alcohol: carbonate = 2: 1.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 次に、各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DMC、2-CP、メタノール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、120℃程度まで段階的に温度を上昇させる蒸留により、DMC、2-CP、ヘキサン及びメタノールへと分離し、純度96%以上のDMCを回収することができた。また、固体成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid includes DMC, 2-CP, methanol, and hexane, and the solid includes 2-PA and CeO 2 . The liquid component after solvent extraction with hexane can be separated into DMC, 2-CP, hexane and methanol by distillation that gradually increases the temperature to about 120 ° C., and DMC with a purity of 96% or more can be recovered. It was. In addition, 2-PA and CeO 2 in the solid component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生について以下に記す。担体となるSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)を100mesh以下に整粒し、700℃で約1時間、予備焼成した。その後、アルカリ金属としてNaを担持するために、最終的にNa金属担持量が0.5mmol/gとなるようにNaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、NaO/SiO触媒を得た。そこで、試験管に磁気撹拌子、上記触媒(0.1g)、DMC生成で副生した2-PA、メシチレン(20ml)を導入し、モレキュラーシーブ4A(300℃で1時間事前乾燥)を充填したソックスレー抽出器、リービッヒ冷却器を接続し、冷却器の温度は10℃に、磁気撹拌装置は約200℃、600rpmに設定した。Arガスで冷却器、ソックスレー抽出管、試験管内をパージした後、溶液が蒸発し始めた時間を反応開始時間とし、500時間反応させた。反応後、試験管(溶液)を室温まで冷却し、反応溶液にエタノール20ml、内部標準物質としてアントラセン(0.1g)を加えて、サンプルを採取し、GC-MS(ガスクロマトグラフ-質量分析計)で定性分析、FID-GCで定量分析した。このようにして、表13に示すように試験No.37~40を行ったところ、2-CPはそれぞれ16.1、20.7、26.6、37.8mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%、選択率は100%となった。 Subsequently, the recovery from the recovered 2-PA to 2-CP will be described below. SiO 2 as a carrier (manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in order to carry the Na as the alkali metal, finally Na 2 CO 3 as Na amount of metal supported is 0.5 mmol / g (manufactured by Kanto Kagaku, special grade) was used to adjust the aqueous solution, SiO 2 Impregnated. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O / SiO 2 catalyst. Therefore, a magnetic stir bar, the above catalyst (0.1 g), 2-PA produced as a byproduct of DMC generation, and mesitylene (20 ml) were introduced into a test tube, and molecular sieve 4A (pre-dried at 300 ° C. for 1 hour) was filled. A Soxhlet extractor and a Liebig condenser were connected, the temperature of the condenser was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm. After purging the cooler, the Soxhlet extraction tube, and the test tube with Ar gas, the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 500 hours. After the reaction, the test tube (solution) is cooled to room temperature, 20 ml of ethanol and anthracene (0.1 g) as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC. In this way, as shown in Table 13, the test No. When 37 to 40 were carried out, 2-CP was produced at 16.1, 20.7, 26.6, and 37.8 mmol, respectively. In all experiments, water was the only byproduct, yield was 90%, and selectivity was 100%.
 上記試験後の固液共存物質を120℃の加熱下、フィルターでろ過して、液体と固体(触媒)を分離した。液体には、2-CP、水、未反応の2-PA、メシチレンが含まれる。この液体成分を、180℃程度まで段階的に温度を上昇させる蒸留により、2-CP、水、未反応の2-PA、メシチレンへと分離し、純度98%以上の2-CPを回収することができた。また、分離した未反応の2-PAとメシチレンは、再び2-PAの脱水反応にリサイクル利用が可能である。 The solid-liquid coexisting substance after the above test was filtered with a filter under heating at 120 ° C. to separate the liquid and the solid (catalyst). Liquids include 2-CP, water, unreacted 2-PA, and mesitylene. This liquid component is separated into 2-CP, water, unreacted 2-PA, and mesitylene by distillation that gradually increases the temperature to about 180 ° C., and 2-CP having a purity of 98% or more is recovered. I was able to. The separated unreacted 2-PA and mesitylene can be recycled again for 2-PA dehydration reaction.
 このようにして再生した2-CPを用いて、2回目のDMC生成反応を行った。反応条件は同じで、2-CPの量が50mmolとなるよう、1回目の反応で未反応だった2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DMCが高収率で得られることが確認され、また副生物の2-PAの生成量もDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 A second DMC production reaction was performed using 2-CP regenerated in this way. The reaction conditions were the same, and a small amount of new 2-CP was added to 2-CP that was regenerated and 2-CP that had not been reacted in the first reaction, so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DMC was obtained in a high yield, and the amount of 2-PA produced as a by-product was almost the same as DMC, and other by-products were not detected at all. There wasn't.
 上記の結果から、反応開始時には、新品の2-CPが50mmol必要であるが、分離した未反応の2-CPと副生した2-PAから2-CPへと再生して再利用することにより、従来、DMCの生成に必要な2-CPのほとんどを削減することが可能となる。また、2-PAは医農薬の中間体としての利用方法もあり得るが、それ程使用量も多くなく、処分費用が大きくかかっていたところを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DMC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 From the above results, 50 mmol of new 2-CP is required at the start of the reaction, but it can be recovered by reusing from separated unreacted 2-CP and by-produced 2-PA to 2-CP. Conventionally, it is possible to reduce most of 2-CP required for generating DMC. In addition, 2-PA can be used as an intermediate for medicines and agrochemicals, but the amount used is not so much, and the disposal cost was high, and it was possible to reduce more than 90%. Furthermore, since the temperature is raised to about 180 ° C. when regenerated and distilled from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DMC production. Heat can be used.
(実施例24)
 一価アルコールでエタノール(100mmol)を用いること以外は、実施例23と同様にした。
(Example 24)
Example 23 was repeated except that ethanol (100 mmol) was used as a monohydric alcohol.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表14の結果より、炭酸ジエチル(DEC)の場合もDMC程ではないが、エタノールベースでのDEC収率は、0.08MPa時に32.8%、0.2MPa時に41.8%、1MPa時に50%、5MPa時に81%で得られることが確認された。また副生物の2-PAの生成量はDECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results shown in Table 14, in the case of diethyl carbonate (DEC), the DEC yield based on ethanol is 32.8% at 0.08 MPa, 41.8% at 0.2 MPa, 50 at 1 MPa. % And 5 MPa, it was confirmed to be obtained at 81%. The amount of 2-PA produced as a by-product was almost the same as DEC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DEC、2-CP、エタノール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、130℃程度まで段階的に温度を上昇させる蒸留により、DEC、2-CP、ヘキサン及びエタノールへと分離し、純度96%以上のDECを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. Liquids, DEC, 2-CP, ethanol, hexane, the solid, include 2-PA and CeO 2. The liquid component after solvent extraction with hexane can be separated into DEC, 2-CP, hexane and ethanol by distillation that gradually increases the temperature to about 130 ° C, and DEC with a purity of 96% or more can be recovered. It was. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生についても、実施例23と同様に行った。その結果、表14に示すように試験No.41~44を行ったところ、2-CPはそれぞれ、15.5、19.9、21.8、39.1mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。 Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 23. As a result, as shown in Table 14, test no. When 41 to 44 were carried out, 2-CP was produced at 15.5, 19.9, 21.8, and 39.1 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例1と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 1, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDEC生成反応を行った。実施例1と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DECが高収率で得られることが確認され、また副生物の2-PAの生成量もDECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DEC generation reaction was performed. The reaction conditions were the same as in Example 1, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DEC was obtained in a high yield, and the amount of 2-PA produced as a by-product was almost the same as DEC, and other by-products were not detected at all. There wasn't.
 一価アルコールがエタノールで、生成物がDECの場合も、従来、DECの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DEC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is ethanol and the product is DEC, it is possible to reduce most of the 2-CP required to produce DEC, and reduce 90% or more of 2-PA, which has been discarded. It has become possible. Furthermore, since the temperature is increased to about 180 ° C when regenerating and distilling from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DEC production. Heat can be used.
(実施例25)
 一価アルコールで1-プロパノール(100mmol)を用いて、24時間反応すること以外は、実施例23と同様にした。
(Example 25)
The same procedure as in Example 23 was performed except that 1-propanol (100 mmol) was used as the monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表15の結果より、炭酸ジプロピル(DPrC)の場合もDMC程ではないが、1-プロパノールベースでのDPrC収率は、0.08MPa時に18.2%、0.2MPa時に23.2%、1MPa時に30.8%、5MPa時に45%で得られることが確認された。また副生物の2-PAの生成量はDPrCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results in Table 15, the yield of DPrC based on 1-propanol is 18.2% at 0.08 MPa, 23.2% at 0.2 MPa, 1 MPa, although not as much as DMC in the case of dipropyl carbonate (DPrC). It was confirmed that it was sometimes obtained at 30.8% and at 45 MPa at 5 MPa. The amount of 2-PA produced as a by-product was almost the same as DPrC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DPrC、2-CP、1-プロパノール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、170℃程度まで段階的に温度を上昇させる蒸留により、DPrC、2-CP、ヘキサン、1-プロパノールへと分離し、純度96%以上のDPrCを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。
 続いて、回収した2-PAから2-CPへの再生についても、実施例1と同様に行った。その結果、表15に示すように試験No.45~48を行ったところ、2-CPはそれぞれ9.5、12.2、15.4、21.4mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。
Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. The liquid contains DPrC, 2-CP, 1-propanol and hexane, and the solid contains 2-PA and CeO 2 . The liquid component after solvent extraction with hexane is separated into DPrC, 2-CP, hexane, and 1-propanol by distillation that gradually increases the temperature to about 170 ° C., and DPrC having a purity of 96% or more is recovered. I was able to. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 1. As a result, as shown in Table 15, test no. When 45 to 48 were carried out, 2-CP was produced at 9.5, 12.2, 15.4 and 21.4 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例1と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 1, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDPrC生成反応を行った。実施例1と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DPrCが高収率で得られることが確認され、また副生物の2-PAの生成量もDPrCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DPrC production reaction was performed. The reaction conditions were the same as in Example 1, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DPrC was obtained in high yield, and the amount of 2-PA produced as a by-product was almost the same as DPrC, and other by-products were not detected at all. There wasn't.
 一価アルコールが1-プロパノールで、生成物がDPrCの場合も、従来、DPrCの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DPrC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is 1-propanol and the product is DPrC, it is possible to reduce most of the 2-CP required for the production of DPrC. More reductions were possible. Furthermore, since the temperature is raised to about 180 ° C. when regenerated and distilled from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DPrC production. Heat can be used.
(実施例26)
 一価アルコールで2-プロパノール(100mmol)を用いて、24時間反応すること以外は、実施例23と同様にした。
(Example 26)
Example 23 was repeated except that 2-propanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表16の結果より、炭酸ジイソプロピル(DiPrC)の場合も他の炭酸エステル程ではないが、2-プロパノールベースでのDPrC収率は、0.08MPa時に4.4%、0.2MPa時に5.6%、1MPa時に7.2%、5MPa時に10.8%で得られることが確認された。また副生物の2-PAの生成量はDiPrCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results shown in Table 16, in the case of diisopropyl carbonate (DiPrC), the DPrC yield based on 2-propanol was 4.4% at 0.08 MPa and 5.6 at 0.2 MPa. %, 1 MPa, 7.2%, and 5 MPa, 10.8%. The amount of 2-PA produced as a by-product was almost the same as DiPrC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DiPrC、2-CP、2-プロパノール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、170℃程度まで段階的に温度を上昇させる蒸留により、DiPrC、2-CP、ヘキサン、2-プロパノールへと分離し、純度96%以上のDiPrCを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. The liquid includes DiPrC, 2-CP, 2-propanol, and hexane, and the solid includes 2-PA and CeO 2 . The liquid component after solvent extraction with hexane is separated into DiPrC, 2-CP, hexane, and 2-propanol by distillation that gradually increases the temperature to about 170 ° C., and DiPrC having a purity of 96% or more is recovered. I was able to. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. As a result, 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生についても、実施例23と同様に行った。その結果、表16に示すように試験No.49~52を行ったところ、2-CPはそれぞれ2.1、2.7、3.4、4.7mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。 Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 23. As a result, as shown in Table 16, test no. When 49 to 52 were conducted, 2-CP was produced in 2.1, 2.7, 3.4, and 4.7 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例23と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDiPrC生成反応を行った。実施例23と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DiPrCが高収率で得られることが確認され、また副生物の2-PAの生成量もDiPrCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DiPrC production reaction was performed. The reaction conditions were the same as in Example 23, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DiPrC was obtained in a high yield, and the amount of 2-PA produced as a by-product was almost the same as DiPrC, and other by-products were not detected at all. There wasn't.
 一価アルコールが2-プロパノールで、生成物がDiPrCの場合も、従来、DiPrCの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DiPrC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is 2-propanol and the product is DiPrC, it is possible to reduce most of the 2-CP required for the production of DiPrC. More reductions were possible. Furthermore, since the temperature is raised to about 180 ° C. when regenerated and distilled from 2-PA to 2-CP, this can be achieved by supplying it through a heat-insulated pipe when reused for DiPrC production. Heat can be used.
(実施例27)
 一価アルコールで1-ブタノール(100mmol)を用いて、24時間反応すること以外は、実施例23と同様にした。
(Example 27)
Example 23 was repeated except that 1-butanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表17の結果より、炭酸ジブチル(DBtC)の場合もDMC程ではないが、1-ブタノールベースでのDBtC収率は、0.08MPa時に16.4%、0.2MPa時に21.0%、1MPa時に29.0%、5MPa時に40.6%で得られることが確認された。また副生物の2-PAの生成量はDBtCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results shown in Table 17, the yield of DBtC based on 1-butanol is 16.4% at 0.08 MPa, 21.0% at 0.2 MPa, 1 MPa, although not as high as DMC in the case of dibutyl carbonate (DBtC). It was confirmed that 29.0% was sometimes obtained and 40.6% was obtained at 5 MPa. The amount of 2-PA produced as a by-product was almost the same as DBtC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DBtC、2-CP、1-ブタノール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、まず、120℃程度まで段階的に温度を上昇させる蒸留により、ヘキサン、1-ブタノールを分離し、その後、約0℃まで冷却することで、2-CPを析出させ、純度96%以上のDBCを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンとを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. The liquid contains DBtC, 2-CP, 1-butanol and hexane, and the solid contains 2-PA and CeO 2 . The liquid component after solvent extraction with hexane first separates hexane and 1-butanol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. As a result, DBC having a purity of 96% or more was recovered. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. The 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生についても、実施例23と同様に行った。その結果、表17に示すように試験No.53~56を行ったところ、2-CPはそれぞれ8.8、11.3、14.1、20.3mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。 Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 23. As a result, as shown in Table 17, test no. When 53 to 56 were conducted, 2-CP was produced at 8.8, 11.3, 14.1, and 20.3 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例23と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDBtC生成反応を行った。実施例23と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DBtCが高収率で得られることが確認され、また副生物の2-PAの生成量もDBtCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DBtC production reaction was performed. The reaction conditions were the same as in Example 23, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DBtC was obtained in high yield, and the amount of 2-PA produced as a by-product was almost the same as DBtC, and other by-products were not detected at all. There wasn't.
 一価アルコールが1-ブタノールで、生成物がDBtCの場合も、従来、DBtCの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DBtC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even in the case where the monohydric alcohol is 1-butanol and the product is DBtC, it is possible to reduce most of the 2-CP required for the production of DBtC. More reductions were possible. Furthermore, since the temperature is increased to about 180 ° C. when regenerating and distilling from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DBtC production. Heat can be used.
 (実施例28)
 一価アルコールでアリルアルコール(100mmol)を用いて、24時間反応すること以外は、実施例23と同様にした。
(Example 28)
The same procedure as in Example 23 was performed except that allyl alcohol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表18の結果より、炭酸ジアリル(DAC)の場合もDMC程ではないが、アリルアルコールベースでのDAC収率は、0.08MPa時に8.8%、0.2MPa時に11.2%、1MPa時に14.6%、5MPa時に21.6%で得られることが確認された。また副生物の2-PAの生成量はDACとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results of Table 18, the case of diallyl carbonate (DAC) is not as high as that of DMC, but the DAC yield based on allyl alcohol is 8.8% at 0.08 MPa, 11.2% at 0.2 MPa, and 1 MPa at 0.2 MPa. It was confirmed that it was obtained at 21.6% at 14.6% and 5 MPa. The amount of 2-PA produced as a by-product was almost the same as that of DAC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DAC、2-CP、アリルアルコール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、まず、120℃程度まで段階的に温度を上昇させる蒸留により、ヘキサン、アリルアルコールを分離し、その後、約0℃まで冷却することで、2-CPを析出させ、純度96%以上のDACを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンとを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. The liquid contains DAC, 2-CP, allyl alcohol, and hexane, and the solid contains 2-PA and CeO 2 . The liquid component after solvent extraction with hexane first separates hexane and allyl alcohol by distillation that gradually increases the temperature to about 120 ° C, and then cools to about 0 ° C to precipitate 2-CP. As a result, DAC having a purity of 96% or more was recovered. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. The 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生についても、実施例23と同様に行った。その結果、表18に示すように試験No.57~60を行ったところ、2-CPはそれぞれ4.1、5.3、6.8、9.5mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。 Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 23. As a result, as shown in Table 18, test no. When 57 to 60 were carried out, 4.1, 5.3, 6.8, and 9.5 mmol of 2-CP were produced, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例23と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDAC生成反応を行った。実施例23と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DACが高収率で得られることが確認され、また副生物の2-PAの生成量もDACとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DAC generation reaction was performed. The reaction conditions were the same as in Example 23, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DAC was obtained in high yield, and the amount of 2-PA produced as a by-product was almost the same as DAC, and other by-products were not detected at all. There wasn't.
 一価アルコールがアリルアルコールで、生成物がDACの場合も、従来、DACの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DAC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is allyl alcohol and the product is DAC, it is possible to reduce most of the 2-CP required to produce DAC, and more than 90% of 2-PA that has been disposed of in the past. It became possible to reduce. Furthermore, since the temperature is raised to about 180 ° C. when regenerated and distilled from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DAC production. Heat can be used.
(実施例29)
 一価アルコールでベンジルアルコール(100mmol)を用いて、24時間反応すること以外は、実施例23と同様にした。
(Example 29)
The same procedure as in Example 23 was performed except that benzyl alcohol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表19の結果より、炭酸ジベンジル(DBnC)の場合もDMC程ではないが、ベンジルアルコールベースでのDBnC収率は、0.08MPa時に13.0%、0.2MPa時に16.6%、1MPa時に21.8%、5MPa時に32.2%で得られることが確認された。また副生物の2-PAの生成量はDBnCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results in Table 19, the yield of DBnC based on benzyl alcohol is 13.0% at 0.08 MPa, 16.6% at 0.2 MPa, 16.6% at 1 MPa, and 1 MPa at the time of dibenzyl carbonate (DBnC). It was confirmed that it was obtained at 31.8% at 21.8% and 5 MPa. The amount of 2-PA produced as a by-product was almost the same as that of DBnC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DBnC、2-CP、ベンジルアルコール、ヘキサンが、固体には、2-PAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、まず、120℃程度まで段階的に温度を上昇させる蒸留により、ヘキサン、ベンジルアルコールを分離し、その後、約0℃まで冷却することで、2-CPを析出させ、純度96%以上のDBnCを回収することができた。また、固定成分中の2-PAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOと2-PA及びアセトンとを分離し、さらに2-PAとアセトンは蒸留により、それぞれ分離し、純度97%以上の2-PAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. Liquids, DBnC, 2-CP, benzyl alcohol, hexane, the solid, include 2-PA and CeO 2. The liquid component after solvent extraction with hexane first separates hexane and benzyl alcohol by distillation that gradually increases the temperature to about 120 ° C, and then cools to about 0 ° C to precipitate 2-CP. DBnC having a purity of 96% or higher was recovered. In addition, 2-PA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , 2-PA and acetone, and 2-PA and acetone are separated by distillation. The 2-PA having a purity of 97% or more was recovered.
 続いて、回収した2-PAから2-CPへの再生についても、実施例23と同様に行った。その結果、表19に示すように試験No.61~64を行ったところ、2-CPはそれぞれ6.2、7.9、10.2、14.2mmol生成した。いずれの実験でも副生物は水しかなく、収率は90%以上、選択率は100%となった。 Subsequently, regeneration from the recovered 2-PA to 2-CP was performed in the same manner as in Example 23. As a result, as shown in Table 19, test no. When 61 to 64 were conducted, 2-CP was produced in 6.2, 7.9, 10.2, and 14.2 mmol, respectively. In all experiments, the byproduct was only water, yield was 90% or more, and selectivity was 100%.
 上記試験後の固液共存物質についても実施例23と同様に各液体及び固体を分離し、純度98%以上の2-CPを回収することができた。 As for the solid-liquid coexisting substance after the above test, each liquid and solid was separated in the same manner as in Example 23, and 2-CP having a purity of 98% or more could be recovered.
 このようにして再生した2-CPを用いて、2回目のDBnC生成反応を行った。実施例23と同様に反応条件は同じで、2-CPの量が50mmolとなるよう、未反応の2-CPと再生して得られた2-CPに、少量の新品の2-CPを追加した。その結果、1回目と同様に、DBnCが高収率で得られることが確認され、また副生物の2-PAの生成量もDBnCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the 2-CP regenerated in this way, a second DBnC production reaction was performed. The reaction conditions were the same as in Example 23, and a small amount of new 2-CP was added to 2-CP obtained by regeneration with unreacted 2-CP so that the amount of 2-CP was 50 mmol. did. As a result, as in the first time, it was confirmed that DBnC was obtained in a high yield, and the amount of 2-PA produced as a by-product was almost the same as DBnC, and other by-products were not detected at all. There wasn't.
 一価アルコールがベンジルアルコールで、生成物がDBnCの場合も、従来、DBnCの生成に必要な2-CPのほとんどを削減することが可能となり、廃棄処分となっていた2-PAを9割以上削減可能となった。さらに、2-PAから2-CPへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DAC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is benzyl alcohol and the product is DBnC, it is possible to reduce most of the 2-CP required for the production of DBnC. It became possible to reduce. Furthermore, since the temperature is raised to about 180 ° C. when regenerated and distilled from 2-PA to 2-CP, this can be achieved by supplying it through a heated pipe when reusing it for DAC production. Heat can be used.
(実施例30)
 回収した2-PAから2-CPへの再生での触媒調製において、触媒をLiO/SiO、KO/SiO、RbO/SiO、CsO/SiOとした他は、実施例23と同様の試験NO.65~72を行った。なお、触媒担体は上述したものを使用し、触媒担体への触媒の担持は上述した方法に倣って行った。
(Example 30)
In the catalyst preparation in reproduction from the recovered 2-PA to 2-CP, the other catalyst was a Li 2 O / SiO 2, K 2 O / SiO 2, Rb 2 O / SiO 2, Cs 2 O / SiO 2 Is the same test No. as in Example 23. 65-72 was performed. The catalyst carrier described above was used, and the catalyst was supported on the catalyst carrier according to the method described above.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表20の結果より、アルカリ金属をLi、K、Rb、Csとした場合も、収率は90%前後で選択率は100%となることがわかった。 From the results in Table 20, it was found that even when the alkali metal was Li, K, Rb, or Cs, the yield was around 90% and the selectivity was 100%.
(実施例31)
 回収した2-PAから2-CPへの再生での触媒調製において、最終的にNa金属担持量とK金属担持量の総量が0.5mmol/gとなるようにNaCO(関東化学製、特級)とKCO(関東化学製、特級)を用いて、モル比を変化させて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、NaO-KO/SiO触媒を得た。NaO-KO/SiO触媒を用いること以外は実施例23と同様にNO.73~80の試験を行った。その結果、表21に示すように、いずれのモル比でも、2-CPは生成し、副生物は水しかなく、収率は90%前後、選択率は100%となった。以上の結果から、市場の価格に応じて、アルカリ金属の使用量を変化させることが可能であることがわかった。
(Example 31)
In the catalyst preparation in the regeneration from the recovered 2-PA to 2-CP, Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd.) so that the total amount of the Na metal loading and the K metal loading is finally 0.5 mmol / g. , Special grade) and K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) were used to adjust the aqueous solution by changing the molar ratio and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a Na 2 O-K 2 O / SiO 2 catalyst. As in Example 23, except that a Na 2 O—K 2 O / SiO 2 catalyst was used, NO. 73-80 tests were conducted. As a result, as shown in Table 21, 2-CP was produced at any molar ratio, the by-product was only water, the yield was around 90%, and the selectivity was 100%. From the above results, it was found that the amount of alkali metal used can be changed according to the market price.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
(実施例32)
 回収した2-PAから2-CPへの再生での触媒調製において、最終的なNa金属担持量を表22に示すようにし、反応圧力を1MPaのみとする以外は、実施例23と同様にNO.81~88の試験を行った。その結果、表22に示すように、Na担持量は0.1~1mmolでは高い活性を示し、0.5mmol程度が好適な担持量であることがわかった。一方、担持量を多くしすぎると、活性が低下することが確認され、これは、Na酸化物が多量に担持されることで、SiO担体の構造が変化し、表面積が大きく低下し、Na酸化物も大きな凝集体となっているためと推察した。
(Example 32)
In the catalyst preparation in the regeneration from recovered 2-PA to 2-CP, NO is the same as in Example 23 except that the final amount of supported Na metal is as shown in Table 22 and the reaction pressure is only 1 MPa. . 81-88 tests were conducted. As a result, as shown in Table 22, it was found that Na supported amount showed high activity at 0.1 to 1 mmol, and about 0.5 mmol was a suitable supported amount. On the other hand, it is confirmed that when the loading amount is too large, the activity is lowered. This is because the structure of the SiO 2 carrier is changed due to the loading of a large amount of Na oxide, and the surface area is greatly reduced. It was assumed that the oxide was also a large aggregate.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 なお、上記実施例23~29では、2-PAから2-CPへの再生反応において、NaO/SiO触媒を用いたが、アルカリ金属として、Li、Na、K、Rb、Csのいずれか1種類または2種類を、最終的に0.5mmol/gとなるように水溶液を調整後、SiOに含浸し、110℃で約6時間乾燥、500℃で約3時間焼成して得られる触媒を用いても、同様の効果が得られた。また、担体にはSiO以外にも、CeO、ZrO、CeO-ZrOを用いても、同様の効果が得られた。 In Examples 23 to 29, Na 2 O / SiO 2 catalyst was used in the regeneration reaction from 2-PA to 2-CP, but any of Li, Na, K, Rb, and Cs was used as the alkali metal. One or two of these are prepared by adjusting the aqueous solution so that the final concentration is 0.5 mmol / g, then impregnating with SiO 2 , drying at 110 ° C. for about 6 hours, and baking at 500 ° C. for about 3 hours. Even when a catalyst was used, the same effect was obtained. In addition to SiO 2 , the same effect was obtained when CeO 2 , ZrO 2 , or CeO 2 —ZrO 2 was used in addition to SiO 2 .
 (比較例15)
 DMC製造反応において、水和剤としてアセトニトリル(AN、300mmol)を導入し、150℃で24時間反応させること以外は、実施例23と同様にした。
(Comparative Example 15)
In the DMC production reaction, the same procedure as in Example 23 was performed except that acetonitrile (AN, 300 mmol) was introduced as a wettable powder and the reaction was performed at 150 ° C. for 24 hours.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表23の結果より、ANの用いると2-CPの場合と比較して、DMC生成量が約1/10と低くなり、メタノールベースでのDMC収率は、0.5MPa時に8.2%が最高であることから、本発明の方が高効率であることがわかった。また副生物のアセトアミド(AA)の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results of Table 23, when AN is used, the amount of DMC produced is about 1/10 lower than that of 2-CP, and the DMC yield based on methanol is 8.2% at 0.5 MPa. The best results indicate that the present invention is more efficient. The amount of by-product acetamide (AA) produced was almost the same as that of DMC, and no other by-products were detected.
 次に、実施例23と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DMC、未反応のAN、メタノール、ヘキサンが、固体には、AAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、ANの融点と沸点がそれぞれ-45℃と82℃であることから、蒸留ではDMCとANとを分離することができないため、一旦-30~0℃に冷却し、析出したDMCを分離することは可能である。その後、70℃程度まで温度を上昇させて蒸留した際、メタノールとヘキサンの混合物と未反応ANとを分離でき、未反応ANは、DMC生成反応へと再利用可能であるが、メタノールとヘキサンの混合物中に含まれるメタノール濃度が高いため、抽出用の溶媒として再利用が難しく、廃棄処理する必要がある。また、固定成分中のAAとCeOはアセトン100mlに溶解後、フィルターでろ過することで、CeOとAA及びアセトンを分離し、さらにAAとアセトンは70℃程度まで加熱した蒸留により、それぞれ分離し、純度95%以上のAAを回収できた。 Next, in the same manner as in Example 23, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, followed by stirring, solvent extraction, and filtration through a filter to separate the liquid and the solid. The liquid contains DMC, unreacted AN, methanol, and hexane, and the solid contains AA and CeO 2 . Since the liquid component after solvent extraction with hexane has a melting point and boiling point of AN of -45 ° C and 82 ° C, respectively, DMC and AN cannot be separated by distillation, so it is once cooled to -30 to 0 ° C It is possible to separate the precipitated DMC. Thereafter, when distillation is performed by raising the temperature to about 70 ° C., a mixture of methanol and hexane and unreacted AN can be separated. The unreacted AN can be reused for the DMC formation reaction. Since the concentration of methanol contained in the mixture is high, it is difficult to reuse it as a solvent for extraction, and it is necessary to dispose of it. In addition, AA and CeO 2 in the fixed component are dissolved in 100 ml of acetone and filtered through a filter to separate CeO 2 , AA and acetone, and AA and acetone are separated by distillation heated to about 70 ° C. As a result, AA having a purity of 95% or more was recovered.
 続いて、回収したAAからANへの再生についても、実施例23と同様に行った。その結果、表23に示すように試験No.89~91を行ったところ、ほとんど反応しなかった。これは、固体触媒が塩基性であるのに対し、AAが酸性であることから、固体触媒上の活性点をAAが被毒することになり、反応が進行しないと考えられる。 Subsequently, regeneration from the collected AA to AN was performed in the same manner as in Example 23. As a result, as shown in Table 23, the test No. When 89 to 91 were performed, there was almost no reaction. This is considered that since the solid catalyst is basic while AA is acidic, AA poisons the active sites on the solid catalyst and the reaction does not proceed.
 したがって、副生したAAを脱水して、ANを再生することはできなかったため、2回目のDMC生成反応は、未反応のANに新品のANを追加し、ANの量が300mmolとなるようにして、150℃で24時間反応させること以外は、実施例23と同様に反応させた。その結果、1回目と同様に、2-CPの場合と比較して、DMC生成量が約1/10と低くなり、メタノールベースでのDMC収率は、0.5MPa時に8.0%が最高となった。 Therefore, since the AA produced as a by-product could not be dehydrated and the AN could not be regenerated, the second DMC formation reaction was performed by adding new AN to the unreacted AN so that the amount of AN was 300 mmol. The reaction was conducted in the same manner as in Example 23 except that the reaction was performed at 150 ° C. for 24 hours. As a result, as in the first time, the amount of DMC produced was reduced to about 1/10 compared to the case of 2-CP, and the DMC yield based on methanol was the highest at 8.0% at 0.5 MPa. It became.
 (比較例16)
 2-PAから2-CPへの再生工程、再生工程後の分離工程を行わないこと以外は、実施例23と同様の条件で試験NO.92、93を行った。その結果、純度96%以上のDMCと、純度97%以上の2-PAを回収できたが、2-PAは利用用途がほとんどなく、産業廃棄物として処理することとなった。また、2回目のDMC生成反応には、新規に少なくとも29.2または42.0mmolの2-CPが必要となり、原料コストの増加にも繋がった。
(Comparative Example 16)
Test NO. 2 was conducted under the same conditions as in Example 23 except that the regeneration step from 2-PA to 2-CP and the separation step after the regeneration step were not performed. 92 and 93 were performed. As a result, DMC with a purity of 96% or more and 2-PA with a purity of 97% or more could be recovered, but 2-PA had almost no use and was treated as industrial waste. In addition, the second DMC production reaction newly required at least 29.2 or 42.0 mmol of 2-CP, leading to an increase in raw material costs.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(比較例17)
 回収した2-PAから2-CPへの再生反応において、触媒として、100mesh以下に整粒し、700℃で約1時間、予備焼成したSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)のみを用い、反応圧力を1MPaのみとすること以外は、実施例23と同様にした。その結果、表25(NO.94)に示すように、2-CPは0.05mmolしか生成せず、非常に活性が低かった。
(Comparative Example 17)
In the regeneration reaction from the recovered 2-PA to 2-CP, SiO 2 (size of 100 mesh or less and pre-calcined at 700 ° C. for about 1 hour as a catalyst (carried by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was used, and the same procedure as in Example 23 was performed except that the reaction pressure was only 1 MPa. As a result, as shown in Table 25 (NO. 94), 2-CP produced only 0.05 mmol, and its activity was very low.
(比較例18)
 回収した2-PAから2-CPへの再生反応において、触媒として、NaCO(関東化学製、特級)のみを1mmol用い、反応圧力を1MPaのみとすること以外は、実施例23と同様にした。その結果、表25(NO.95)に示すように、2-CPは全く生成しなかった。
(Comparative Example 18)
In the regeneration reaction from recovered 2-PA to 2-CP, the same as Example 23, except that only 1 mmol of Na 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst, and the reaction pressure was only 1 MPa. I made it. As a result, as shown in Table 25 (NO. 95), 2-CP was not produced at all.
(比較例19)
 回収した2-PAから2-CPへの再生反応において、触媒として、KCO(関東化学製、特級)のみを1mmol用い、反応圧力を1MPaのみとすること以外は、実施例23と同様にした。その結果、表25(NO.96)に示すように、2-CPは全く生成しなかった。
(Comparative Example 19)
In the regeneration reaction from recovered 2-PA to 2-CP, the same as Example 23, except that 1 mmol of K 2 CO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) was used as the catalyst, and the reaction pressure was only 1 MPa. I made it. As a result, as shown in Table 25 (NO. 96), 2-CP was not produced at all.
(比較例20)
 回収した2-PAから2-CPへの再生反応において、触媒として、RbCO(関東化学製)のみを1mmol用い、反応圧力を1MPaのみとすること以外は、実施例23と同様にした。その結果、表25(NO.97)に示すように、2-CPはほとんど生成しなかった。
(Comparative Example 20)
In the regeneration reaction from recovered 2-PA to 2-CP, the same procedure as in Example 23 was performed except that 1 mmol of Rb 2 CO 3 (manufactured by Kanto Chemical Co., Inc.) was used as the catalyst and the reaction pressure was only 1 MPa. . As a result, 2-CP was hardly generated as shown in Table 25 (NO. 97).
(比較例21)
 回収した2-PAから2-CPへの再生反応において、触媒として、CsCO(関東化学製、4N)のみを1mmol用い、反応圧力を1MPaのみとすること以外は、実施例23と同様にした。その結果、表25(NO.98)に示すように、2-CPは0.01mmolしか生成せず、非常に活性が低かった。
(Comparative Example 21)
In the regeneration reaction from recovered 2-PA to 2-CP, the same as Example 23, except that only 1 mmol of Cs 2 CO 3 (manufactured by Kanto Chemical Co., 4N) was used as the catalyst, and the reaction pressure was only 1 MPa. I made it. As a result, as shown in Table 25 (NO. 98), 2-CP produced only 0.01 mmol, and its activity was very low.
 以上の結果より、SiO担体にアルカリ金属酸化物を担持した触媒が、2-PAからの2-CPへの再生には効果的であることがわかった。 From the above results, it was found that a catalyst in which an alkali metal oxide was supported on a SiO 2 carrier was effective for the regeneration from 2-PA to 2-CP.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
(比較例22)
 回収した2-PAから2-CPへの再生反応において、触媒調製で、最終的にCa金属担持量が0.5mmol/gとなるようにCaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、CaO/SiO触媒を得た。CaO/SiO触媒を用い、反応圧力を1MPaのみとすること以外は実施例23と同様にした。その結果、表26(NO.99)に示すように、2-CPは0.11mmolしか生成せず、非常に活性が低かった。
(Comparative Example 22)
In the regeneration reaction from recovered 2-PA to 2-CP, an aqueous solution was prepared using CaCO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the amount of Ca metal supported was 0.5 mmol / g in the catalyst preparation. Prepared and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a CaO / SiO 2 catalyst. The same procedure as in Example 23 was performed except that a CaO / SiO 2 catalyst was used and the reaction pressure was only 1 MPa. As a result, as shown in Table 26 (NO. 99), 2-CP produced only 0.11 mmol and was very low in activity.
(比較例23)
 回収した2-PAから2-CPへの再生反応において、触媒調製で、最終的にBa金属担持量が0.5mmol/gとなるようにBaCO(関東化学製、特級)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、BaO/SiO触媒を得た。BaO/SiO触媒を用い、反応圧力を1MPaのみとすること以外は実施例23と同様にした。その結果、表26(NO.100)に示すように、2-CPは0.13mmolしか生成せず、非常に活性が低かった。
 以上の結果から、アルカリ金属酸化物と同様に塩基性となるアルカリ土類金属酸化物を担持した触媒では、活性が低いことが確認でき、SiOにアルカリ金属酸化物を担持した触媒が、有効であることがわかった。
(Comparative Example 23)
In the regeneration reaction from the recovered 2-PA to 2-CP, an aqueous solution was prepared using BaCO 3 (manufactured by Kanto Chemical Co., Ltd., special grade) so that the final amount of supported Ba metal was 0.5 mmol / g in the catalyst preparation. Prepared and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours to obtain a BaO / SiO 2 catalyst. The same procedure as in Example 23 was performed except that a BaO / SiO 2 catalyst was used and the reaction pressure was only 1 MPa. As a result, as shown in Table 26 (NO. 100), 2-CP produced only 0.13 mmol and was very low in activity.
From the above results, it can be confirmed that the catalyst supporting the alkaline earth metal oxide that is basic as well as the alkali metal oxide has low activity, and the catalyst supporting the alkali metal oxide on SiO 2 is effective. I found out that
(比較例24)
 回収した2-PAから2-CPへの再生反応において、触媒調製で、最終的にV金属担持量が0.5mmol/gとなるようにNHVO(Sigma-Aldrich製)を用いて水溶液を調整し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、V/SiO触媒を得た。V/SiO触媒を用い、反応圧力を1MPaのみとすること以外は実施例23と同様にした。その結果、表26(NO.101)に示すように、2-CPは0.11mmolしか生成せず、比較例17のSiOのみの場合と同レベルで非常に活性が低かった。
(Comparative Example 24)
In the regeneration reaction from recovered 2-PA to 2-CP, in catalyst preparation, finally V metal support amount with NH 4 VO 3 (manufactured by Sigma-Aldrich) as a 0.5 mmol / g solution Was adjusted and impregnated with SiO 2 . Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a V 2 O 5 / SiO 2 catalyst. The same procedure as in Example 23 was performed except that a V 2 O 5 / SiO 2 catalyst was used and the reaction pressure was only 1 MPa. As a result, as shown in Table 26 (NO. 101), 2-CP produced only 0.11 mmol, and the activity was very low at the same level as in the case of only SiO 2 of Comparative Example 17.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 以上の結果から、ベンズアミドの脱水反応では活性の高いV系の触媒を、2-ピコリンアミドの脱水反応に使用しても、ほとんど反応が進行しないことがわかった。 From the above results, it was found that even when a V-type catalyst having high activity in the dehydration reaction of benzamide was used for the dehydration reaction of 2-picolinamide, the reaction hardly proceeded.
 (実施例33)
 回収した2-PAから2-CPへの再生での触媒調製において、担体にCeO(第一稀元素製、HS、表面積:74m/g)を100mesh以下に整粒し、500℃で約3時間、予備焼成したものを用い、実施例30(NO.71)と同様にした。その結果、表27(NO.102)に示すように、2-CPは3.3mmol生成した。副生物は水しかなく、収率は11.2%、選択率は100%となった。
(Example 33)
In catalyst preparation by regeneration from recovered 2-PA to 2-CP, CeO 2 (manufactured by 1st rare element, HS, surface area: 74 m 2 / g) is sized to 100 mesh or less at a carrier, and about 500 ° C. The same material as Example 30 (NO. 71) was used after pre-baking for 3 hours. As a result, 3.3 mmol of 2-CP was produced as shown in Table 27 (NO. 102). The byproduct was only water, yield was 11.2%, and selectivity was 100%.
 (実施例34)
 回収した2-PAから2-CPへの再生での触媒調製において、担体にZrO(第一稀元素製、HS、表面積:88m/g)を100mesh以下に整粒し、500℃で約3時間、予備焼成したものを用い、実施例30(NO.71)と同様にした。その結果、表27(NO.103)に示すように、2-CPは3.0mmol生成した。副生物は水しかなく、収率は10.2%、選択率は100%となった。
(Example 34)
In catalyst preparation by regeneration from recovered 2-PA to 2-CP, ZrO 2 (manufactured by Daiichi Rare Element, HS, surface area: 88 m 2 / g) is sized to 100 mesh or less on the support, and about 500 ° C. The same material as Example 30 (NO. 71) was used after pre-baking for 3 hours. As a result, as shown in Table 27 (NO. 103), 3.0 mmol of 2-CP was produced. The byproduct was only water, yield was 10.2%, and selectivity was 100%.
(実施例35)
 回収した2-PAから2-CPへの再生での触媒調製において、担体としてCeO-ZrO固溶体を用いるため、Ce(NO(関東化学製)とZr(NO(関東化学製)をCeが20原子量%となるように溶解させた溶液にNaOH水溶液を導入して沈殿物を生成させた後、この沈殿物を濾過、水洗し、1000℃で空気雰囲気下、3時間焼成後、粉末状の固溶体(表面積:65m/g)を得た。本固溶体を100mesh以下に整粒し、500℃で約3時間、予備焼成したものを用い、実施例30(NO.71)と同様にした。その結果、表27(NO.104)に示すように、2-CPは3.2mmol生成した。副生物は水しかなく、収率は10.8%、選択率は100%となった。
(Example 35)
Ce (NO 3 ) 3 (manufactured by Kanto Chemical Co., Ltd.) and Zr (NO 3 ) 4 (Kanto) are used in the catalyst preparation in the regeneration from the recovered 2-PA to 2-CP, because CeO 2 —ZrO 2 solid solution is used as a support. (Chemical) was dissolved in a solution of Ce at 20 atomic% to introduce an aqueous NaOH solution to form a precipitate. The precipitate was filtered and washed with water at 1000 ° C. in an air atmosphere for 3 hours. After firing, a powdered solid solution (surface area: 65 m 2 / g) was obtained. This solid solution was sized to 100 mesh or less, pre-baked at 500 ° C. for about 3 hours, and the same as in Example 30 (NO. 71). As a result, 3.2 mmol of 2-CP was produced as shown in Table 27 (NO. 104). The byproduct was only water, yield was 10.8%, and selectivity was 100%.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 以上の結果から、2-PAから2-CPへの再生固定における触媒として、担体にCeO、ZrO、CeO-ZrOを用いても、有効であることがわかった。 From the above results, it was found that it is effective to use CeO 2 , ZrO 2 , or CeO 2 —ZrO 2 as a support as a catalyst for regeneration and fixation from 2-PA to 2-CP.
(実施例36)
 回収した2-PAから2-CPへの再生工程において、有機溶媒にメシチレンの代わりにo-キシレン(20ml)を用い、反応圧力を1MPaのみとすること以外は、実施例1と同様にした。その結果、表28(NO.105)に示すように、2-CPは9.5mmol生成した。副生物は水しかなく、収率は32.2%、選択率は100%となった。
(Example 36)
In the recovery step from recovered 2-PA to 2-CP, the same procedure as in Example 1 was performed except that o-xylene (20 ml) was used instead of mesitylene as the organic solvent and the reaction pressure was only 1 MPa. As a result, as shown in Table 28 (NO. 105), 9.5 mmol of 2-CP was produced. By-product was only water, yield was 32.2%, and selectivity was 100%.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 以上の結果から、有機溶媒にo-キシレンを用いても、比較例17~24に示すような、SiO担体のみ、アルカリ金属のみ(炭酸塩)、アルカリ土類金属担持SiO触媒、V系触媒よりも、高い収率で反応することがわかった。なお、m-キシレン、p-キシレンでも同様の効果が得られた。 From the above results, even when o-xylene is used as the organic solvent, as shown in Comparative Examples 17 to 24, only the SiO 2 carrier, only the alkali metal (carbonate), the alkaline earth metal-supported SiO 2 catalyst, V system It was found that the reaction was higher in yield than the catalyst. Similar effects were obtained with m-xylene and p-xylene.
(実施例37)
 つぎに、ベンゾニトリルを用いた炭酸エステルの製造方法の実施例及び比較例を説明する。図1に示す製造装置を用いて、炭酸エステルの製造を行った。CeO(第一稀元素製:不純物濃度0.02%以下)を873Kで空気雰囲気下、3時間焼成し、粉末状の固体触媒を得た。そこで、190mlのオートクレーブ(反応器)に磁気攪拌子、上記固体触媒(1mmol)、メタノール(100mmol)及びベンゾニトリル(BN、50mmol)を導入し、約5gのCOでオートクレーブ内の空気を3回パージした後、所定の量のCOを導入・昇圧した。そのオートクレーブをバンドヒーター、ホットスターラーにより150℃まで攪拌しながら昇温し、目的の温度に達した時間を反応開始時間とした。150℃で12時間反応させた後、オートクレーブを水冷し、室温まで冷えたら減圧して内部標準物質の2-プロパノールを加え、生成物を採取し、GC(ガスクロマトグラフィー)で分析した。このようにして、COの導入量及び反応圧力を変えて表1に示す試験No.106~112の実験を行った。
(Example 37)
Next, Examples and Comparative Examples of the method for producing carbonate ester using benzonitrile will be described. Carbonate ester was produced using the production apparatus shown in FIG. CeO 2 (manufactured by the first rare element: impurity concentration of 0.02% or less) was calcined at 873 K in an air atmosphere for 3 hours to obtain a powdered solid catalyst. Therefore, a magnetic stirrer, the solid catalyst (1 mmol), methanol (100 mmol) and benzonitrile (BN, 50 mmol) were introduced into a 190 ml autoclave (reactor), and the air in the autoclave was blown 3 times with about 5 g of CO 2. After purging, a predetermined amount of CO 2 was introduced and pressurized. The autoclave was heated up to 150 ° C. with a band heater and a hot stirrer, and the time when the target temperature was reached was defined as the reaction start time. After reacting at 150 ° C. for 12 hours, the autoclave was cooled with water, and when cooled to room temperature, the pressure was reduced and 2-propanol as an internal standard substance was added, and the product was collected and analyzed by GC (gas chromatography). Thus, test No. shown in Table 1 was changed by changing the amount of CO 2 introduced and the reaction pressure. Experiments 106-112 were conducted.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 その結果、比較的低い圧力下の0.08や0.1MPaでも炭酸ジメチル(DMC)生成量が多く、メタノールベースでのDMC収率は、0.1MPa時に6%、5MPa時に8%で得られることが確認された。また副生物のベンズアミド(BA)の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 As a result, a large amount of dimethyl carbonate (DMC) is produced even at a relatively low pressure of 0.08 or 0.1 MPa, and a DMC yield based on methanol is obtained at 6% at 0.1 MPa and 8% at 5 MPa. It was confirmed. The amount of by-product benzamide (BA) produced was almost the same as DMC, and no other by-products were detected.
 ここで、メタノール(アルコール)ベースの収率は、化学両論比でアルコール:炭酸エステル=2:1であることから、以下の式により算出した。 Here, the yield based on methanol (alcohol) was calculated by the following formula because the stoichiometric ratio was alcohol: carbonate = 2: 1.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 次に、各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DMC、BN、メタノール、ヘキサンが、固体には、BAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、120℃程度まで段階的に温度を上昇させる蒸留により、DMC、BN、ヘキサン及びメタノールへと分離し、純度96%以上のDMCを回収することができた。また、固定成分中のBAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOとBA及びアセトンを分離し、さらにBAとアセトンは蒸留により、それぞれ分離し、純度97%以上のBAを回収できた。 Next, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid contains DMC, BN, methanol, and hexane, and the solid contains BA and CeO 2 . The liquid component after solvent extraction with hexane was separated into DMC, BN, hexane and methanol by distillation that gradually increased the temperature to about 120 ° C., and DMC with a purity of 96% or more could be recovered. Further, BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
 続いて、回収したBAからBNへの再生について以下に記す。担体となるSiO(富士シリシア製、CARiACT、G-6、表面積:535m/g)を100mesh以下に整粒し、700℃で約1時間、予備焼成した。その後、金属としてMoを担持するために、最終的にMo金属担持量が0.5mmol/gとなるように(NHMo24(関東化学製、特級)を用いて水溶液を調製し、SiOに含浸した。その後、110℃で約6時間乾燥、500℃で約3時間焼成して、MoO/SiO触媒を得た。そこで、試験管に磁気撹拌子、上記触媒(0.1g)、DMC生成で副生したBA、メシチレン(20ml)を導入し、モレキュラーシーブ4A(300℃で1時間事前乾燥)を充填したソックスレー抽出器、リービッヒ冷却器を接続し、冷却器の温度は10℃に、磁気撹拌装置は約200℃、600rpmに設定した。Arガスで冷却器、ソックスレー抽出管、試験管内をパージした後、溶液が蒸発し始めた時間を反応開始時間とし、500時間反応させた。反応後、試験管(溶液)を室温まで冷却し、反応溶液にエタノール20ml、内部標準物質としてアントラセン(0.1g)を加えて、サンプルを採取し、GC-MS(ガスクロマトグラフ-質量分析計)で定性分析、FID-GCで定量分析した。このようにして、表29に示すように試験No.106~112を行ったところ、BNはそれぞれ1.5mmol、2.6mmol、3.3mmol、5.1mmol、6.3mmol、6.0mmol、3.5mmol生成した。いずれの実験でも副生物は水しかなく、収率は約90%、選択率はほぼ100%となった。 Subsequently, regeneration from the recovered BA to BN will be described below. SiO 2 as a carrier (manufactured by Fuji Silysia, CARiACT, G-6, surface area: 535 m 2 / g) was sized to 100 mesh or less and pre-baked at 700 ° C. for about 1 hour. Thereafter, in order to support Mo as a metal, an aqueous solution is prepared using (NH 4 ) 6 Mo 7 O 24 (manufactured by Kanto Kagaku, special grade) so that the amount of Mo metal supported is finally 0.5 mmol / g. and it was impregnated in SiO 2. Thereafter, about 6 hours drying at 110 ° C., and calcined at 500 ° C. for about 3 hours, to obtain a MoO 3 / SiO 2 catalyst. So, a magnetic stir bar, the above catalyst (0.1 g), BA produced as a by-product of DMC generation, and mesitylene (20 ml) were introduced into a test tube, and Soxhlet extraction was packed with molecular sieve 4A (pre-dried at 300 ° C. for 1 hour). The temperature of the cooler was set to 10 ° C., and the magnetic stirrer was set to about 200 ° C. and 600 rpm. After purging the cooler, the Soxhlet extraction tube, and the test tube with Ar gas, the reaction start time was defined as the time when the solution started to evaporate, and the reaction was performed for 500 hours. After the reaction, the test tube (solution) is cooled to room temperature, 20 ml of ethanol and anthracene (0.1 g) as an internal standard substance are added to the reaction solution, a sample is taken, and GC-MS (gas chromatograph-mass spectrometer) And quantitative analysis by FID-GC. In this way, as shown in Table 29, the test No. When 106 to 112 were performed, BN was produced in a proportion of 1.5 mmol, 2.6 mmol, 3.3 mmol, 5.1 mmol, 6.3 mmol, 6.0 mmol, and 3.5 mmol, respectively. In all experiments, water was the only byproduct, yield was about 90%, and selectivity was almost 100%.
 上記試験後の固液共存物質を120℃の加熱下、フィルターでろ過して、液体と固体(触媒)を分離した。液体には、BN、水、未反応のBA、メシチレンが含まれる。この液体成分を、180℃程度まで段階的に温度を上昇させる蒸留により、BN、水、未反応のBA、メシチレンへと分離し、純度98%以上のBNを回収することができた。また、分離した未反応のBAとメシチレンは、再びBAの脱水反応にリサイクル利用が可能である。 The solid-liquid coexisting substance after the above test was filtered with a filter under heating at 120 ° C. to separate the liquid and the solid (catalyst). The liquid includes BN, water, unreacted BA, and mesitylene. This liquid component was separated into BN, water, unreacted BA, and mesitylene by distillation that gradually increased the temperature to about 180 ° C., and BN having a purity of 98% or more could be recovered. The separated unreacted BA and mesitylene can be recycled again for the dehydration reaction of BA.
 このようにして再生したBNを用いて、2回目のDMC生成反応を行った。反応条件は同じで、BNの量が50mmolとなるよう、1回目の反応で未反応だったBNと再生して得られたBNに、少量の新品のBNを追加した。その結果、1回目と同様に、DMCが高収率で得られることが確認され、また副生物のBAの生成量もDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the BN regenerated in this way, a second DMC production reaction was performed. The reaction conditions were the same, and a small amount of new BN was added to the BN obtained by regeneration and the unreacted BN in the first reaction so that the amount of BN was 50 mmol. As a result, as in the first time, it was confirmed that DMC was obtained in a high yield, and the amount of BA produced as a by-product was almost the same as DMC, and no other by-products were detected. .
 上記の結果から、反応開始時には、新品のBNが50mmol必要であるが、分離した未反応のBNと副生したBAからBNへと再生して再利用することにより、従来、DMCの生成に必要なBNのほとんどを削減することが可能となる。また、BAは医農薬の中間体としての利用方法もあり得るが、それ程使用量も多くなく、処分費用が大きくかかっていたところを9割以上削減可能となった。さらに、BAからBNへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DMC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 From the above results, 50 mmol of new BN is required at the start of the reaction. However, it is conventionally necessary to generate DMC by reusing and reusing separated unreacted BN and by-product BA to BN. Most BN can be reduced. In addition, BA may be used as an intermediate for medicines and agrochemicals, but the amount used is not so much, and it was possible to reduce more than 90% of the place where disposal costs were high. Furthermore, when regenerating and distilling from BA to BN, the temperature is increased to about 180 ° C., so this heat is used by supplying it through a heated pipe when reusing it for DMC production. be able to.
 (実施例38)
 一価アルコールでエタノール(100mmol)を用いること以外は、実施例37と同様にした。
(Example 38)
Example 37 was repeated except that ethanol (100 mmol) was used as a monohydric alcohol.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表30の結果より、炭酸ジエチル(DEC)の場合もDMCほどではないが、エタノールベースでのDEC収率は、1MPa時に13%、5MPa時に7%で得られることが確認された。また副生物のBAの生成量はDECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results in Table 30, it was confirmed that the DEC yield based on ethanol was 13% at 1 MPa and 7% at 5 MPa, although not as high as DMC in the case of diethyl carbonate (DEC). The amount of BA produced as a by-product was almost the same as that of DEC, and no other by-products were detected.
 次に、実施例37と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DEC、BN、エタノール、ヘキサンが、固体には、BAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、130℃程度まで段階的に温度を上昇させる蒸留により、DEC、BN、ヘキサン及びエタノールへと分離し、純度96%以上のDECを回収することができた。また、固定成分中のBAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOとBA及びアセトンを分離し、さらにBAとアセトンは蒸留により、それぞれ分離し、純度97%以上のBAを回収できた。 Next, in the same manner as in Example 37, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid includes DEC, BN, ethanol, and hexane, and the solid includes BA and CeO 2 . The liquid component after solvent extraction with hexane was separated into DEC, BN, hexane and ethanol by distillation that gradually increased the temperature to about 130 ° C., and DEC having a purity of 96% or more could be recovered. Further, BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
 続いて、回収したBAからBNへの再生についても、実施例37と同様に行った。その結果、表30に示すように試験No.113~114を行ったところ、BNはそれぞれ6.0mmol、3.2mmol生成した。いずれの実験でも副生物は水しかなく、収率は約90%以上、選択率はほぼ100%となった。 Subsequently, regeneration from the recovered BA to BN was performed in the same manner as in Example 37. As a result, as shown in Table 30, test no. When 113 to 114 were performed, BN produced 6.0 mmol and 3.2 mmol, respectively. In all experiments, the only by-product was water, yield was about 90% or more, and selectivity was almost 100%.
 上記試験後の固液共存物質についても実施例37と同様に各液体及び固体を分離し、純度98%以上のBNを回収することができた。 As for the solid-liquid coexisting substance after the test, each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
 このようにして再生したBNを用いて、2回目のDEC生成反応を行った。実施例37と同様に反応条件は同じで、BNの量が50mmolとなるよう、未反応のBNと再生して得られたBNに、少量の新品のBNを追加した。その結果、1回目と同様に、DECが高収率で得られることが確認され、また副生物のBAの生成量もDECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the BN regenerated in this way, a second DEC generation reaction was performed. The reaction conditions were the same as in Example 37, and a small amount of new BN was added to BN obtained by regeneration with unreacted BN so that the amount of BN was 50 mmol. As a result, as in the first time, it was confirmed that DEC was obtained in high yield, and the amount of BA produced as a by-product was almost the same as DEC, and no other by-products were detected. .
 一価アルコールがエタノールで、生成物がDECの場合も、従来、DECの生成に必要なBNのほとんどを削減することが可能となり、廃棄処分となっていたBAを9割以上削減可能となった。さらに、BAからBNへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DEC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even when the monohydric alcohol is ethanol and the product is DEC, it has become possible to reduce most of the BN conventionally required for the production of DEC and to reduce the amount of BA that has been disposed of by more than 90%. . Furthermore, when regenerating and distilling from BA to BN, the temperature is raised to about 180 ° C., so this heat is used by supplying it through the insulated pipe when reusing it for DEC production. be able to.
 (実施例39)
 一価アルコールで1-プロパノール(100mmol)を用いて、24時間反応すること以外は、実施例37と同様にした。
(Example 39)
The same procedure as in Example 37 was performed, except that 1-propanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表31の結果より、炭酸ジプロピル(DPrC)の場合もDMCほどではないが、1-プロパノールベースでのDPrC収率は、1MPa時に12.4%、5MPa時に6.4%で得られることが確認された。また副生物のBAの生成量はDPrCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results in Table 31, it is confirmed that the yield of DPrC based on 1-propanol is 12.4% at 1 MPa and 6.4% at 5 MPa, although not as much as DMC in the case of dipropyl carbonate (DPrC). It was done. The amount of BA produced as a by-product was almost the same as DPrC, and no other by-products were detected.
 次に、実施例37と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DPC、BN、1-プロパノール、ヘキサンが、固体には、BAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、170℃程度まで段階的に温度を上昇させる蒸留により、DPC、BN、ヘキサン、1-プロパノールへと分離し、純度96%以上のDPCを回収することができた。また、固定成分中のBAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOとBA及びアセトンを分離し、さらにBAとアセトンは蒸留により、それぞれ分離し、純度97%以上のBAを回収できた。 Next, in the same manner as in Example 37, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid includes DPC, BN, 1-propanol, and hexane, and the solid includes BA and CeO 2 . The liquid component after solvent extraction with hexane can be separated into DPC, BN, hexane, and 1-propanol by distillation that gradually increases the temperature to about 170 ° C., and DPC with a purity of 96% or more can be recovered. It was. Further, BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
 続いて、回収したBAからBNへの再生についても、実施例37と同様に行った。その結果、表31に示すように試験No.115、116を行ったところ、BNはそれぞれ5.9mmol、2.8mmol生成した。いずれの実験でも副生物は水しかなく、収率は約90%以上、選択率はほぼ100%となった。 Subsequently, regeneration from the recovered BA to BN was performed in the same manner as in Example 37. As a result, as shown in Table 31, test no. When 115 and 116 were performed, BN produced | generated 5.9 mmol and 2.8 mmol, respectively. In all experiments, the only by-product was water, yield was about 90% or more, and selectivity was almost 100%.
 上記試験後の固液共存物質についても実施例37と同様に各液体及び固体を分離し、純度98%以上のBNを回収することができた。 As for the solid-liquid coexisting substance after the test, each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
 このようにして再生したBNを用いて、2回目のDPC生成反応を行った。実施例37と同様に反応条件は同じで、BNの量が50mmolとなるよう、未反応のBNと再生して得られたBNに、少量の新品のBNを追加した。その結果、1回目と同様に、DPCが高収率で得られることが確認され、また副生物のBAの生成量もDPCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the BN thus regenerated, a second DPC generation reaction was performed. The reaction conditions were the same as in Example 37, and a small amount of new BN was added to BN obtained by regeneration with unreacted BN so that the amount of BN was 50 mmol. As a result, as in the first time, it was confirmed that DPC was obtained in high yield, the amount of BA produced as a by-product was almost the same as DPC, and no other by-products were detected. .
 一価アルコールが1-プロパノールで、生成物がDPCの場合も、従来、DPCの生成に必要なBNのほとんどを削減することが可能となり、廃棄処分となっていたBAを9割以上削減可能となった。さらに、BAからBNへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DPC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even in the case where the monohydric alcohol is 1-propanol and the product is DPC, it is possible to reduce most of the BN required for the production of DPC, and to reduce the amount of BA that has been disposed of by 90% or more. became. Furthermore, when regenerating and distilling from BA to BN, the temperature is raised to about 180 ° C., so this heat is used by supplying it through a heated pipe when reusing it for DPC production. be able to.
 (実施例40)
 一価アルコールで1-ブタノール(100mmol)を用いて、24時間反応すること以外は、実施例37と同様にした。
(Example 40)
The same procedure as in Example 37 was performed, except that 1-butanol (100 mmol) was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表32の結果より、炭酸ジブチル(DBC)の場合もDMCほどではないが、1-ブタノールベースでのDBC収率は、1MPa時に11.4%、5MPa時に5.8%で得られることが確認された。また副生物のBAの生成量はDBCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results of Table 32, it is confirmed that the yield of DBC based on 1-butanol is 11.4% at 1 MPa and 5.8% at 5 MPa, although not as high as DMC in the case of dibutyl carbonate (DBC). It was done. The amount of BA produced as a by-product was almost the same as that of DBC, and no other by-products were detected.
 次に、実施例37と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DBC、BN、1-ブタノール、ヘキサンが、固体には、BAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、まず、120℃程度まで段階的に温度を上昇させる蒸留により、ヘキサン、1-ブタノールを分離し、その後、約0℃まで冷却することで、BNを析出させ、純度96%以上のDBCを回収することができた。また、固定成分中のBAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOとBA及びアセトンを分離し、さらにBAとアセトンは蒸留により、それぞれ分離し、純度97%以上のBAを回収できた。 Next, in the same manner as in Example 37, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid contains DBC, BN, 1-butanol and hexane, and the solid contains BA and CeO 2 . The liquid component after solvent extraction with hexane first separates hexane and 1-butanol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. to precipitate BN. It was possible to recover DBC having a purity of 96% or more. Further, BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
 続いて、回収したBAからBNへの再生についても、実施例37と同様に行った。その結果、表32に示すように試験No.117、118を行ったところ、BNはそれぞれ5.5mmol、2.6mmol生成した。いずれの実験でも副生物は水しかなく、収率は約90%以上、選択率はほぼ100%となった。 Subsequently, regeneration from the recovered BA to BN was performed in the same manner as in Example 37. As a result, as shown in Table 32, Test No. When 117 and 118 were performed, 5.5 mmol and 2.6 mmol of BN were formed, respectively. In all experiments, the only by-product was water, yield was about 90% or more, and selectivity was almost 100%.
 上記試験後の固液共存物質についても実施例37と同様に各液体及び固体を分離し、純度98%以上のBNを回収することができた。 As for the solid-liquid coexisting substance after the test, each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
 このようにして再生したBNを用いて、2回目のDBC生成反応を行った。実施例37と同様に反応条件は同じで、BNの量が50mmolとなるよう、未反応のBNと再生して得られたBNに、少量の新品のBNを追加した。その結果、1回目と同様に、DBCが高収率で得られることが確認され、また副生物のBAの生成量もDBCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the BN regenerated in this way, a second DBC production reaction was performed. The reaction conditions were the same as in Example 37, and a small amount of new BN was added to BN obtained by regeneration with unreacted BN so that the amount of BN was 50 mmol. As a result, as in the first time, it was confirmed that DBC was obtained in a high yield, and the amount of BA produced as a by-product was almost the same as DBC, and no other by-products were detected. .
 一価アルコールが1-ブタノールで、生成物がDBCの場合も、従来、DBCの生成に必要なBNのほとんどを削減することが可能となり、廃棄処分となっていたBAを9割以上削減可能となった。さらに、BAからBNへと再生、蒸留した際、180℃程度まで温度を上昇させていることから、DBC製造への再利用の際に、保温した配管を通じて供給することで、この熱を利用することができる。 Even in the case where the monohydric alcohol is 1-butanol and the product is DBC, it is possible to reduce most of the BN conventionally required for DBC generation, and the amount of BA that has been disposed of can be reduced by 90% or more. became. Furthermore, when regenerating and distilling from BA to BN, the temperature is increased to about 180 ° C., so this heat is used by supplying it through a heated pipe when reusing it for DBC production. be able to.
 (実施例41)
 一価アルコールでベンジルアルコール、アリルアルコール、2-プロパノールを各100mmolを用いて、24時間反応すること以外は、実施例37と同様にした。
(Example 41)
The same procedure as in Example 37 was performed except that 100 mmol each of benzyl alcohol, allyl alcohol, and 2-propanol was used as a monohydric alcohol and the reaction was performed for 24 hours.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表33の結果より、一連の炭酸エステル(EC)はDMCほどではないが、ベンチルアルコール、アリルアルコール、2-プロパノールの各アルコールベースでのEC収率は、1MPa時に、各々、6.0%、5.6%、13.4%で得られることが確認された。また副生物のBAの生成量は各ECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results shown in Table 33, although a series of carbonic acid esters (EC) are not as much as DMC, the EC yield based on each alcohol of benzyl alcohol, allyl alcohol, and 2-propanol is 6.0% at 1 MPa, respectively. It was confirmed that 5.6% and 13.4% were obtained. The amount of BA produced as a by-product was almost the same as that of each EC, and no other by-products were detected.
 次に、実施例37と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、EC、BNと各アルコール成分、ヘキサンが、固体には、BAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、まず、120℃程度まで段階的に温度を上昇させる蒸留により、ヘキサンと各アルコールを分離し、その後、約0℃まで冷却することで、BNを析出させ、純度96%以上のECを回収することができた。また、固定成分中のBAとCeOはアセトン200mlに溶解後、フィルターでろ過することで、CeOとBA及びアセトンを分離し、さらにBAとアセトンは蒸留により、それぞれ分離し、純度97%以上のBAを回収できた。 Next, in the same manner as in Example 37, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid contains EC, BN and each alcohol component, and hexane, and the solid contains BA and CeO 2 . The liquid component after solvent extraction with hexane first separates hexane and each alcohol by distillation that gradually increases the temperature to about 120 ° C., and then cools to about 0 ° C. to precipitate BN, EC with a purity of 96% or more could be recovered. Further, BA and CeO 2 in the fixed component are dissolved in 200 ml of acetone and then filtered through a filter to separate CeO 2 , BA and acetone, and further, BA and acetone are separated by distillation, respectively, and purity is 97% or more. Of BA could be recovered.
 続いて、回収したBAからBNへの再生についても、実施例37と同様に行った。その結果、表33に示すように試験No.119~121を行ったところ、BNはそれぞれ2.6mmol、2.5mmol、6.5mmol生成した。いずれの実験でも副生物は水しかなく、収率は約90%以上、選択率はほぼ100%となった。 Subsequently, regeneration from the recovered BA to BN was performed in the same manner as in Example 37. As a result, as shown in Table 33, test No. When 119 to 121 were performed, BN was produced in 2.6 mmol, 2.5 mmol, and 6.5 mmol, respectively. In all experiments, the only by-product was water, yield was about 90% or more, and selectivity was almost 100%.
 上記試験後の固液共存物質についても実施例37と同様に各液体及び固体を分離し、純度98%以上のBNを回収することができた。 As for the solid-liquid coexisting substance after the test, each liquid and solid was separated in the same manner as in Example 37, and BN having a purity of 98% or more could be recovered.
 このようにして再生したBNを用いて、2回目のEC生成反応を行った。実施例37と同様に反応条件は同じで、BNの量が50mmolとなるよう、未反応のBNと再生して得られたBNに、少量の新品のBNを追加した。その結果、1回目と同様に、ECが高収率で得られることが確認され、また副生物のBAの生成量もECとほぼ同量であり、それ以外の副生物は全く検出されなかった。 Using the BN regenerated in this way, a second EC generation reaction was performed. The reaction conditions were the same as in Example 37, and a small amount of new BN was added to BN obtained by regeneration with unreacted BN so that the amount of BN was 50 mmol. As a result, as in the first time, it was confirmed that EC was obtained in a high yield, the amount of BA produced as a by-product was almost the same as that of EC, and no other by-products were detected. .
 (実施例42)
 回収したBAからBNへの再生での触媒調製において、触媒をMoO/TiO、Re/CeO、WO/SiO、Nb/ZrOとした他は、実施例37と同様の試験NO.122~129を行った。なお、触媒担体は上述したものを使用し、触媒担体への触媒の担持は上述した方法に倣って行った。
(Example 42)
In the catalyst preparation in the regeneration from the recovered BA to BN, the catalyst was MoO 3 / TiO 2 , Re 2 O 7 / CeO 2 , WO 3 / SiO 2 , Nb 2 O 5 / ZrO 2 Test NO. 122-129 were performed. The catalyst carrier described above was used, and the catalyst was supported on the catalyst carrier according to the method described above.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表34の結果より、金属元素をMo、Re、W、Nbとした場合も、収率は90%前後で選択率はほぼ100%となることがわかった。 From the results of Table 34, it was found that the yield was around 90% and the selectivity was almost 100% even when the metal element was Mo, Re, W, or Nb.
 (実施例43)
 回収したBAからBNへの再生での触媒調製において、最終的なMo担持量が表35に示すようにし、反応圧力を1MPaのみとする以外は、実施例37と同様にNO.130~135の試験を行った。その結果、表35に示すように、Mo担持量は0.1~1mmolでは高い活性を示し、0.6mmol程度が好適な担持量であることがわかった。一方、担持量を多くしすぎると、活性が相対的に低下したが、これは、Mo酸化物が多量に担持されることで、SiO担体上のMo酸化物が大きな凝集体となるためと推察される。
(Example 43)
In the catalyst preparation in the regeneration from the recovered BA to BN, NO. Is the same as in Example 37 except that the final Mo loading is as shown in Table 35 and the reaction pressure is only 1 MPa. 130-135 tests were performed. As a result, as shown in Table 35, it was found that Mo loading was high at 0.1 to 1 mmol, and about 0.6 mmol was a suitable loading amount. On the other hand, when the loading amount was excessively increased, the activity was relatively lowered. This is because the Mo oxide on the SiO 2 carrier becomes a large aggregate because the Mo oxide is loaded in a large amount. Inferred.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 なお、上記実施例37~41では、BAからBNへの再生反応において、MoO/SiO触媒を用いたが、金属元素として、W、Re、Nbのいずれか1種類または2種類を、最終的に0.5mmol/gとなるように水溶液を調整後、SiOに含浸し、110℃で約6時間乾燥、500℃で約3時間焼成して得られる触媒を用いても、同様の効果が得られた。また、担体にはSiO以外にも、CeO、ZrO、CeO-ZrOを用いても、同様の効果が得られた。 In Examples 37 to 41, the MoO 3 / SiO 2 catalyst was used in the regeneration reaction from BA to BN, but one or two of W, Re, and Nb were used as metal elements in the final reaction. The same effect can be obtained by using a catalyst obtained by adjusting an aqueous solution to 0.5 mmol / g, then impregnating with SiO 2 , drying at 110 ° C. for about 6 hours, and calcining at 500 ° C. for about 3 hours. was gotten. In addition to SiO 2 , the same effect was obtained when CeO 2 , ZrO 2 , or CeO 2 —ZrO 2 was used in addition to SiO 2 .
 (実施例44)
 回収したBAからBNへの再生工程において、有機溶媒にメシチレンの代わりにo-キシレン(20ml)を用い、反応圧力を1MPaのみとすること以外は、実施例37と同様にした。その結果、表36(NO.136)に示すように、BNは3.2mmol生成した。副生物は水しかなく、収率は42.7%、選択率はほぼ100%となった。
(Example 44)
In the recovered BA to BN regeneration step, the procedure was the same as Example 37, except that o-xylene (20 ml) was used instead of mesitylene as the organic solvent, and the reaction pressure was only 1 MPa. As a result, as shown in Table 36 (NO. 136), 3.2 mmol of BN was generated. By-product was only water, yield was 42.7%, and selectivity was almost 100%.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 以上の結果から、有機溶媒にo-キシレンを用いても、高い収率で反応することがわかった。なお、m-キシレン、p-キシレンでも同様の効果が得られた。 From the above results, it was found that even when o-xylene was used as the organic solvent, the reaction was performed in a high yield. Similar effects were obtained with m-xylene and p-xylene.
 (比較例25)
 DMC製造反応において、水和剤としてアセトニトリル(AN、300mmol)を導入し、150℃で24時間反応させること以外は、実施例37と同様にした。
(Comparative Example 25)
In the DMC production reaction, the same procedure as in Example 37 was carried out except that acetonitrile (AN, 300 mmol) was introduced as a wettable powder and allowed to react at 150 ° C. for 24 hours.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表37の結果より、ANの用いるとBNの場合と比較して、DMC生成量が約1/10と低くなり、メタノールベースでのDMC収率は、0.5MPa時に8.2%が最高であることから、本発明の方が高効率であることがわかった。また副生物のアセトアミド(AA)の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。 From the results in Table 37, when AN is used, the amount of DMC produced is about 1/10 lower than that of BN, and the DMC yield based on methanol is highest at 8.2% at 0.5 MPa. From this, it was found that the present invention is more efficient. The amount of by-product acetamide (AA) produced was almost the same as that of DMC, and no other by-products were detected.
 次に、実施例37と同様に各試験後の固液共存物質にヘキサン200mlを加えて撹拌し、溶媒抽出し、フィルターでろ過して、液体と固体を分離した。液体には、DMC、未反応のAN、メタノール、ヘキサンが、固体には、AAとCeOが含まれる。ヘキサンで溶媒抽出後の液体成分は、ANの融点と沸点がそれぞれ-45℃と82℃であることから、蒸留ではDMCとANとを分離することができないため、一旦-30~0℃に冷却し、析出したDMCを分離することは可能である。その後、70℃程度まで温度を上昇させて蒸留した際、メタノールとヘキサンの混合物が未反応ANとを分離でき、未反応ANは、DMC生成反応へと再利用可能であるが、メタノールとヘキサンの混合物中に含まれるメタノール濃度が高いため、抽出用の溶媒として再利用が難しく、廃棄処理する必要がある。また、固定成分中のAAとCeOはアセトン100mlに溶解後、フィルターでろ過することで、CeOとAA及びアセトンを分離し、さらにAAとアセトンは70℃程度まで加熱した蒸留により、それぞれ分離し、純度95%以上のAAを回収できた。 Next, in the same manner as in Example 37, 200 ml of hexane was added to the solid-liquid coexisting substance after each test, and the mixture was stirred, extracted with a solvent, and filtered through a filter to separate a liquid and a solid. The liquid contains DMC, unreacted AN, methanol, and hexane, and the solid contains AA and CeO 2 . Since the liquid component after solvent extraction with hexane has a melting point and boiling point of AN of -45 ° C and 82 ° C, respectively, DMC and AN cannot be separated by distillation, so it is once cooled to -30 to 0 ° C It is possible to separate the precipitated DMC. Thereafter, when the temperature is increased to about 70 ° C. and distillation is performed, a mixture of methanol and hexane can separate the unreacted AN, and the unreacted AN can be reused for the DMC formation reaction. Since the concentration of methanol contained in the mixture is high, it is difficult to reuse as a solvent for extraction and it is necessary to dispose of it. In addition, AA and CeO 2 in the fixed component are dissolved in 100 ml of acetone and filtered through a filter to separate CeO 2 , AA and acetone, and AA and acetone are separated by distillation heated to about 70 ° C. As a result, AA having a purity of 95% or more was recovered.
 続いて、回収したAAからANへの再生についても、実施例37と同様に行った。その結果、表37に示すように試験No.137、138を行ったところ、ほとんど反応しなかった。これは、固体触媒が塩基性であるのに対し、AAが酸性であることから、固体触媒上の活性点をAAが被毒することになり、反応が進行しないと考えられる。 Subsequently, regeneration from the collected AA to AN was performed in the same manner as in Example 37. As a result, as shown in Table 37, test No. When 137 and 138 were performed, there was almost no reaction. This is considered that since the solid catalyst is basic while AA is acidic, AA poisons the active sites on the solid catalyst and the reaction does not proceed.
 したがって、副生したAAを脱水して、ANを再生することはできなかったため、2回目のDMC生成反応は、未反応のANに新品のANを追加し、ANの量が300mmolとなるようにして、150℃で24時間反応させること以外は、実施例37と同様に反応させた。その結果、1回目と同様に、BNの場合と比較して、DMC生成量が約1/10と低くなり、メタノールベースでのDMC収率は、0.5MPa時に1.7%が最高となった。 Therefore, since the AA produced as a by-product could not be dehydrated and the AN could not be regenerated, the second DMC formation reaction was performed by adding new AN to the unreacted AN so that the amount of AN was 300 mmol. The reaction was conducted in the same manner as in Example 37 except that the reaction was performed at 150 ° C. for 24 hours. As a result, as in the first time, the amount of DMC produced was reduced to about 1/10 compared to the case of BN, and the DMC yield based on methanol reached 1.7% at 0.5 MPa. It was.
 (比較例26)
 BAからBNへの再生工程(及び再生工程後の分離工程)を行わないこと以外は、実施例37と同様の条件で試験NO.139、140を行った。その結果、純度96%以上のDMCと、純度97%以上のBAを回収できたが、大量に副生したBAは利用用途がほとんどなく、産業廃棄物として処理することとなった。また、2回目のDMC生成反応には、新規に少なくとも7.7または4.3mmolのBNが必要となり、原料コストの増加にも繋がった。
(Comparative Example 26)
Except that the regeneration step from BA to BN (and the separation step after the regeneration step) is not performed, the test NO. 139 and 140 were performed. As a result, DMC with a purity of 96% or more and BA with a purity of 97% or more could be recovered, but a large amount of by-produced BA had little use and was treated as industrial waste. In addition, at least 7.7 or 4.3 mmol of BN was newly required for the second DMC production reaction, which led to an increase in raw material costs.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 (比較例27)
 回収したBAからBNへの再生反応において、触媒として表39に示すような触媒を調製して用い、反応圧力を1MPaのみとすること以外は、実施例37と同様にした。その結果、表39(NO.141~143)に示すように、BNの生成量が少なく、活性が低かった。
(Comparative Example 27)
In the regeneration reaction from the recovered BA to BN, a catalyst as shown in Table 39 was prepared and used as the catalyst, and the same reaction as in Example 37 was performed except that the reaction pressure was only 1 MPa. As a result, as shown in Table 39 (NO. 141 to 143), the amount of BN produced was small and the activity was low.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
1 第1反応塔、2 第1抽出塔、3 第1蒸留塔、4 第2抽出塔、5 第2蒸留塔、6 触媒再生塔、7 第2反応塔、8 触媒分離塔、9 第3蒸留塔、10 CO昇圧ブロワー、11 CO、12 一価アルコール、13 2-シアノピリジン、ベンゾニトリル、14 固体触媒、15 反応液、16 アルカン、17、21 抽出液、18 固相物質、19 炭酸エステル、20 未反応2-シアノピリジン、未反応ベンゾニトリル、22 使用済固体触媒、23 2-ピコリンアミド、ベンズアミド、24 親水性溶媒、25 固体触媒、26 使用済固体触媒、27 有機溶媒、28 未反応2-ピコリンアミド、未反応ベンズアミド、29 水、30 ろ過塔、31 ピコリン酸メチル、安息香酸メチル、32 カルバミン酸メチル、33 アルカン及び未反応一価アルコール
 
1 first reaction tower, 2 first extraction tower, 3 first distillation tower, 4 second extraction tower, 5 second distillation tower, 6 catalyst regeneration tower, 7 second reaction tower, 8 catalyst separation tower, 9 third distillation Tower, 10 CO 2 pressure blower, 11 CO 2 , 12 monohydric alcohol, 13 2-cyanopyridine, benzonitrile, 14 solid catalyst, 15 reaction solution, 16 alkane, 17, 21 extract, 18 solid phase material, 19 carbonic acid Ester, 20 Unreacted 2-cyanopyridine, Unreacted benzonitrile, 22 Used solid catalyst, 23 2-Picolinamide, Benzamide, 24 Hydrophilic solvent, 25 Solid catalyst, 26 Used solid catalyst, 27 Organic solvent, 28 Not yet used Reaction 2-picolinamide, unreacted benzamide, 29 water, 30 filtration tower, 31 methyl picolinate, methyl benzoate, 32 methyl carbamate, 33 alkane and unreacted one Alcohol

Claims (43)

  1.  アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、ピコリンアミドを加熱して脱水反応させることにより、シアノピリジンを製造することを特徴とする、シアノピリジンの製造方法。 A process for producing cyanopyridine, characterized in that cyanopyridine is produced by heating and dehydrating picolinamide in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent.
  2.  前記シアノピリジンが2-シアノピリジンであり、前記ピコリンアミドが2-ピコリンアミドであることを特徴とする請求項1記載のシアノピリジンの製造方法。 The method for producing cyanopyridine according to claim 1, wherein the cyanopyridine is 2-cyanopyridine and the picolinamide is 2-picolinamide.
  3.  前記アルカリ金属酸化物を担持した触媒は、SiO、CeO、ZrOのいずれか1種又は2種以上から成る触媒担体上に、アルカリ金属酸化物を1種又は2種以上担持した触媒であることを特徴とする請求項1または2に記載のシアノピリジンの製造方法。 The catalyst carrying the alkali metal oxide is a catalyst carrying one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2. The method for producing cyanopyridine according to claim 1 or 2, wherein:
  4.  前記触媒担体が、SiOであることを特徴とする請求項3に記載のシアノピリジンの製造方法。 The method for producing cyanopyridine according to claim 3, wherein the catalyst support is SiO 2 .
  5.  前記アルカリ金属酸化物が、Li、K、Na、Rb、Csのいずれかの酸化物であることを特徴とする請求項1~4の何れか1項に記載のシアノピリジンの製造方法。 The method for producing cyanopyridine according to any one of claims 1 to 4, wherein the alkali metal oxide is an oxide of Li, K, Na, Rb, or Cs.
  6.  前記有機溶媒がメシチレンであることを特徴とする請求項1~5のいずれか1項に記載のシアノピリジンの製造方法。 The method for producing cyanopyridine according to any one of claims 1 to 5, wherein the organic solvent is mesitylene.
  7.  前記脱水反応の際に、脱水剤を使用することを特徴とする請求項1~6のいずれか1項に記載のシアノピリジンの製造方法。 The method for producing cyanopyridine according to any one of claims 1 to 6, wherein a dehydrating agent is used in the dehydration reaction.
  8.  CeO及びZrOのいずれか一方又は双方の固体触媒とシアノピリジンとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記シアノピリジンと前記生成した水との水和反応によりピコリンアミドを生成させる第1の反応工程と、
     前記第1の反応工程から前記ピコリンアミドを分離した後、当該ピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、シアノピリジンに再生する第2の反応工程を有し、
     前記第2の反応工程で再生したシアノピリジンを、前記第1の反応工程において使用することを特徴とする炭酸エステルの製造方法。
    In the presence of one or both of the solid catalyst of CeO 2 and ZrO 2 and cyanopyridine, a monohydric alcohol and carbon dioxide are reacted to generate a carbonate and water, and the cyanopyridine and the generated water A first reaction step of generating picolinamide by a hydration reaction with
    After the picolinamide is separated from the first reaction step, the picolinamide is dehydrated by heating in the presence of a catalyst carrying an alkali metal oxide and in the presence of an organic solvent, whereby cyano Having a second reaction step to regenerate to pyridine,
    A method for producing a carbonic acid ester, wherein the cyanopyridine regenerated in the second reaction step is used in the first reaction step.
  9.  CeO及びZrOのいずれか一方又は双方の固体触媒と、一価アルコールと、二酸化炭素と、シアノピリジンとを混合して反応させ、炭酸エステルとピコリンアミドとを生成する第1の反応工程と、
     当該第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離する第1の分離工程と、
     前記第1の分離工程の固液分離後の液相の炭酸エステル、未反応のシアノピリジン、及びアルカンをそれぞれに分離する第2の分離工程と、
     前記第1の分離工程の固液分離後の固相の固体触媒及びピコリンアミドを、親水性溶媒で抽出した後に固液分離し、液相のピコリンアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離工程と、
     当該第3の分離工程で分離されたピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、シアノピリジンを生成する第2の反応工程と、
     当該第2の反応工程から排出されるシアノピリジン、未反応のピコリンアミド、及びアルカリ金属酸化物を担持した触媒を、濾過して、固相のアルカリ金属酸化物を担持した触媒を分離する第4の分離工程と、
     当該第4の分離工程で分離後に残ったシアノピリジン、ピコリンアミド、有機溶媒、水をそれぞれに分離する第5の分離工程と、を有し、
     前記第5の分離工程で分離されたシアノピリジンを、前記第1の反応工程において使用することを特徴とする請求項8に記載の炭酸エステルの製造方法。
    A first reaction step in which one or both of CeO 2 and ZrO 2 , a monohydric alcohol, carbon dioxide, and cyanopyridine are mixed and reacted to produce carbonate and picolinamide; ,
    The carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction step are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine. And a first separation step of separating the alkane and the solid catalyst and picolinamide in solid phase;
    A second separation step of separating each of the liquid phase carbonate ester after solid-liquid separation in the first separation step, unreacted cyanopyridine, and alkane;
    The solid phase solid catalyst and picolinamide after solid-liquid separation in the first separation step are extracted with a hydrophilic solvent and then solid-liquid separated to obtain a liquid phase picolinamide and a hydrophilic solvent, and a solid phase solid catalyst. A third separation step of separating into
    The second reaction in which picolinamide separated in the third separation step is dehydrated by heating in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent to produce cyanopyridine. Process,
    The catalyst loaded with cyanopyridine, unreacted picolinamide, and alkali metal oxide discharged from the second reaction step is filtered to separate the catalyst loaded with the solid phase alkali metal oxide. Separation process of
    A fifth separation step for separating cyanopyridine, picolinamide, organic solvent, and water remaining after separation in the fourth separation step, respectively.
    The method for producing a carbonate ester according to claim 8, wherein the cyanopyridine separated in the fifth separation step is used in the first reaction step.
  10.  前記第3の分離工程で分離された固体触媒を再生する工程を更に有し、再生後の触媒を、前記第1の反応工程で使用することを特徴とする請求項9に記載の炭酸エステルの製造方法。 The carbonate ester according to claim 9, further comprising a step of regenerating the solid catalyst separated in the third separation step, wherein the regenerated catalyst is used in the first reaction step. Production method.
  11.  前記第1の反応工程において未反応の一価アルコールが残留し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応の一価アルコール、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応の一価アルコール、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする請求項9または10に記載の炭酸エステルの製造方法。 Unreacted monohydric alcohol remains in the first reaction step, and carbonate ester, picolinamide, unreacted monohydric alcohol and unreacted discharged from the first reaction step in the first separation step. The cyanopyridine and the solid catalyst were subjected to solvent extraction with alkane and then solid-liquid separation, and the liquid phase carbonate ester, unreacted monohydric alcohol, unreacted cyanopyridine, and alkane, and the solid catalyst in the solid phase The method for producing a carbonate ester according to claim 9 or 10, wherein the carbonate ester is separated into picolinamide.
  12.  前記第1の反応工程において副生物としてピコリン酸メチル及びカルバミン酸メチルのうち少なくとも一方が生成し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする請求項9~11のいずれか1項に記載の炭酸エステルの製造方法。 In the first reaction step, at least one of methyl picolinate and methyl carbamate is generated as a by-product, and in the first separation step, a carbonate ester, picolinamide, unreacted product discharged from the first reaction step is formed. The reaction cyanopyridine, methyl picolinate, methyl carbamate, and the solid catalyst were subjected to solvent extraction with alkane, followed by solid-liquid separation, and a liquid phase carbonate ester, unreacted cyanopyridine, methyl picolinate, methyl carbamate, The method for producing a carbonate ester according to any one of claims 9 to 11, wherein the carbonic acid ester and alkane are separated into the solid catalyst and picolinamide in solid phase.
  13.  前記第1の反応工程において、未反応の一価アルコールが残留し、かつ副生物としてピコリン酸メチル及びカルバミン酸メチルのうち少なくとも一方が生成し、前記第1の分離工程で、前記第1の反応工程から排出される炭酸エステル、ピコリンアミド、未反応の一価アルコール、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応の一価アルコール、未反応のシアノピリジン、ピコリン酸メチル、カルバミン酸メチル、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離することを特徴とする請求項9~12のいずれか1項に記載の炭酸エステルの製造方法。 In the first reaction step, unreacted monohydric alcohol remains and at least one of methyl picolinate and methyl carbamate is generated as a by-product, and in the first separation step, the first reaction Carbonate ester, picolinamide, unreacted monohydric alcohol, unreacted cyanopyridine, methyl picolinate, methyl carbamate, and the solid catalyst discharged from the process are subjected to solvent extraction with alkane, followed by solid-liquid separation. A phase carbonate ester, unreacted monohydric alcohol, unreacted cyanopyridine, methyl picolinate, methyl carbamate, and alkane, and the solid catalyst and picolinamide in solid phase are separated. The method for producing a carbonate ester according to any one of 9 to 12.
  14.  前記溶媒抽出の際に使用するアルカンが、ヘキサンであることを特徴とする請求項9~13の何れか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 9 to 13, wherein the alkane used in the solvent extraction is hexane.
  15.  前記親水性溶媒が、アセトンであることを特徴とする請求項9~14のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 9 to 14, wherein the hydrophilic solvent is acetone.
  16.  前記シアノピリジンが2-シアノピリジンであり、前記ピコリンアミドが2-ピコリンアミドであることを特徴とする請求項8~15の何れか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 15, wherein the cyanopyridine is 2-cyanopyridine and the picolinamide is 2-picolinamide.
  17.  前記アルカリ金属酸化物を担持した触媒は、SiO、CeO、ZrOのいずれか1種又は2種以上から成る触媒担体上に、アルカリ金属酸化物を1種又は2種以上担持した触媒であることを特徴とする請求項8~16のいずれか1項に記載の炭酸エステルの製造方法。 The catalyst carrying the alkali metal oxide is a catalyst carrying one or more alkali metal oxides on a catalyst carrier composed of one or more of SiO 2 , CeO 2 and ZrO 2. The method for producing a carbonate ester according to any one of claims 8 to 16, wherein:
  18.  前記触媒担体が、SiOであることを特徴とする請求項17に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to claim 17, wherein the catalyst support is SiO 2 .
  19.  前記アルカリ金属酸化物が、Li、K、Na、Rb、Csのいずれかの酸化物であることを特徴とする請求項8~18のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 18, wherein the alkali metal oxide is any one of Li, K, Na, Rb, and Cs.
  20.  前記有機溶媒がメシチレンであることを特徴とする請求項8~19のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 19, wherein the organic solvent is mesitylene.
  21.  前記脱水反応の際に、脱水剤を使用することを特徴とする請求項8~20のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 20, wherein a dehydrating agent is used in the dehydration reaction.
  22.  前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする請求項8~21のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 21, wherein the monohydric alcohol is methanol and dimethyl carbonate is produced as a carbonate ester.
  23.  前記一価アルコールがエタノールであり、炭酸エステルとして炭酸ジエチルを製造することを特徴とする請求項8~22のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 8 to 22, wherein the monohydric alcohol is ethanol and diethyl carbonate is produced as a carbonate ester.
  24.  請求項8~23のいずれか1項に記載の炭酸エステルの製造方法に用いる製造装置であって、
     二酸化炭素を加圧する加圧部と、
     CeO及びZrOのいずれか一方又は双方の固体触媒と、シアノピリジンとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記シアノピリジンと前記生成した水との水和反応によりピコリンアミドを生成させる第1の反応部と、
     当該第1の反応部により排出される炭酸エステル、ピコリンアミド、未反応のシアノピリジン、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のシアノピリジン、及びアルカンと、固相の前記固体触媒及びピコリンアミドとに分離する第1の分離部と、
     前記第1の分離部による固液分離後の液相の炭酸エステル、未反応のシアノピリジン、及びアルカンをそれぞれに分離する第2の分離部と、
     前記第1の分離部による固液分離後の固体触媒及びピコリンアミドを、親水性溶媒で抽出した後に固液分離し、液相のピコリンアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離部と、
     当該第3の分離部により分離されたピコリンアミドを、アルカリ金属酸化物を担持した触媒存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、シアノピリジンを生成する第2の反応部と、
     当該第2の反応部により排出されるシアノピリジン、未反応のピコリンアミド、及びアルカリ金属酸化物を担持した触媒を、濾過して、固相のアルカリ金属酸化物を担持した触媒を分離する第4の分離部と、
     当該第4の分離部による分離後に残ったシアノピリジン、ピコリンアミド、有機溶媒、水をそれぞれに分離する第5の分離部と、
     前記第5の分離部により分離されたシアノピリジンを、前記第1の反応部へと搬送する搬送部と、を有することを特徴とする炭酸エステルの製造装置。
    A production apparatus for use in the method for producing a carbonate ester according to any one of claims 8 to 23,
    A pressurizing part for pressurizing carbon dioxide;
    In the presence of either one or both of CeO 2 and ZrO 2 and a cyanopyridine, a monohydric alcohol and carbon dioxide are reacted to produce a carbonate and water, and the cyanopyridine and the produced catalyst. A first reaction part for generating picolinamide by a hydration reaction with water;
    The carbonate ester, picolinamide, unreacted cyanopyridine, and the solid catalyst discharged from the first reaction section are subjected to solvent extraction with alkane, and then solid-liquid separation is performed to obtain a liquid phase carbonate ester and unreacted cyanopyridine. And a first separation part for separating the alkane and the solid catalyst and picolinamide in a solid phase;
    A second separation part for separating the carbonate, unreacted cyanopyridine, and alkane in the liquid phase after the solid-liquid separation by the first separation part;
    The solid catalyst and picolinamide after solid-liquid separation by the first separation unit are extracted with a hydrophilic solvent and then solid-liquid separated to separate into a liquid phase picolinamide and a hydrophilic solvent and a solid phase solid catalyst. A third separation unit
    A second reaction for producing cyanopyridine by subjecting picolinamide separated by the third separation part to a dehydration reaction by heating in the presence of a catalyst supporting an alkali metal oxide and in the presence of an organic solvent. And
    The catalyst loaded with cyanopyridine, unreacted picolinamide, and alkali metal oxide discharged by the second reaction section is filtered to separate the catalyst loaded with the solid phase alkali metal oxide. A separation part of
    A fifth separation unit for separating cyanopyridine, picolinamide, an organic solvent, and water remaining after separation by the fourth separation unit;
    An apparatus for producing carbonate ester, comprising: a transport unit that transports the cyanopyridine separated by the fifth separation unit to the first reaction unit.
  25.  SiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上から成る触媒担体上に、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種又は2種以上の金属種の金属酸化物が担持された触媒の存在下、且つ、有機溶媒の存在下で、ベンズアミドを加熱して脱水反応させることにより、ベンゾニトリルを製造することを特徴とするベンゾニトリルの製造方法。 On a catalyst support composed of one or more of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , and C, any one or two of molybdenum, tungsten, rhenium, titanium, and niobium Benzonitrile is produced by heating and dehydrating benzamide in the presence of a catalyst on which a metal oxide of at least one metal species is supported and in the presence of an organic solvent. Manufacturing method.
  26.  前記ベンズアミドを加熱して、液相状態で脱水反応させることにより、ベンゾニトリルを製造することを特徴とする請求項25に記載のベンゾニトリルの製造方法。 26. The method for producing benzonitrile according to claim 25, wherein the benzonitrile is produced by heating the benzamide to cause a dehydration reaction in a liquid phase state.
  27.  前記触媒担体が、SiOであることを特徴とする請求項25又は26に記載のベンゾニトリルの製造方法。 The catalyst support, a manufacturing method of benzonitrile according to claim 25 or 26, characterized in that a SiO 2.
  28.  前記触媒が、SiOの担体上にモリブデン酸化物を担持したものであることを特徴とする請求項25~27のいずれか1項に記載のベンゾニトリルの製造方法。 The method for producing benzonitrile according to any one of claims 25 to 27, wherein the catalyst has molybdenum oxide supported on a support of SiO 2 .
  29.  前記有機溶媒がクロロベンゼン、キシレン、メシチレンのいずれか1種又は2種以上からなることを特徴とする請求項25~28のいずれか1項に記載のベンゾニトリルの製造方法。 The method for producing benzonitrile according to any one of claims 25 to 28, wherein the organic solvent comprises one or more of chlorobenzene, xylene and mesitylene.
  30.  前記脱水反応の際に、脱水剤を使用することを特徴とする請求項25~29のいずれか1項に記載のベンゾニトリルの製造方法。 The method for producing benzonitrile according to any one of claims 25 to 29, wherein a dehydrating agent is used in the dehydration reaction.
  31.  CeO及びZrOのいずれか一方、又は、双方の固体触媒とベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応工程と、
     前記第1の反応工程から前記ベンズアミドを分離した後、当該ベンズアミドを、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、ベンゾニトリルに再生する第2の反応工程を有し、
     前記第2の反応工程で再生したベンゾニトリルを、前記第1の反応工程において使用することを特徴とする炭酸エステルの製造方法。
    In the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile, a monohydric alcohol and carbon dioxide are reacted to produce a carbonate and water, and the benzonitrile and the production. A first reaction step of producing benzamide by hydration reaction with purified water;
    After separating the benzamide from the first reaction step, the benzamide is converted into SiO 2 , TiO 2 , a metal oxide of any one or more of molybdenum, tungsten, rhenium, titanium, and niobium. By dehydration reaction by heating in the presence of a catalyst supported on one or more of the catalyst supports of CeO 2 , ZrO 2 , Al 2 O 3 , and C and in the presence of an organic solvent , Having a second reaction step to regenerate to benzonitrile,
    Benzonitrile regenerated in the second reaction step is used in the first reaction step.
  32.  CeO及びZrOのいずれか一方、又は、双方の固体触媒とベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応工程と、
     前記第1の反応工程から排出される炭酸エステル、ベンズアミド、未反応のベンゾニトリル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンと、固相の前記固体触媒及びベンズアミドとに分離する第1の分離工程と、
     前記固液分離後の液相の、炭酸エステル、未反応のベンゾニトリル、及びアルカンを、それぞれに分離する第2の分離工程と、
     前記固液分離後の固体触媒及びベンズアミドを、親水性溶媒で抽出した後に固液分離し、液相のベンズアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離工程と、
     当該第3の分離工程で分離されたベンズアミドを、モリブデン、タングステン、レニウム、チタン、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応することにより、ベンゾニトリルに再生する第2の反応工程と、
     当該第2の反応工程から排出されるベンゾニトリル、未反応のベンズアミド、及び金属酸化物が触媒担体に担持された触媒を、濾過して、固相の金属酸化物が触媒担体に担持された触媒を分離する第4の分離工程と、
     当該分離後に残ったベンゾニトリル、ベンズアミド、有機溶媒、水をそれぞれに分離する第5の分離工程と、を有し、
     前記分離されたベンゾニトリルを、前記第1の反応工程において使用することを特徴とする請求項31に記載の炭酸エステルの製造方法。
    In the presence of either one or both of CeO 2 and ZrO 2 and benzonitrile, a monohydric alcohol and carbon dioxide are reacted to produce a carbonate and water, and the benzonitrile and the production. A first reaction step of producing benzamide by hydration reaction with purified water;
    The carbonate ester, benzamide, unreacted benzonitrile discharged from the first reaction step, and the solid catalyst are subjected to solvent extraction with alkane and then separated into solid and liquid, and the liquid phase carbonate ester, unreacted benzonitrile, And a first separation step of separating the alkane and the solid catalyst and benzamide in a solid phase;
    A second separation step of separating the carbonate, unreacted benzonitrile, and alkane in the liquid phase after the solid-liquid separation;
    A third separation step in which the solid catalyst and benzamide after the solid-liquid separation are extracted with a hydrophilic solvent, followed by solid-liquid separation, and separated into a liquid phase benzamide and a hydrophilic solvent and a solid phase solid catalyst;
    The benzamide separated in the third separation step is a metal oxide of any one or more of molybdenum, tungsten, rhenium, titanium, niobium, or SiO 2 , TiO 2 , CeO 2 , ZrO 2. , And regenerated to benzonitrile by heating and dehydration reaction in the presence of a catalyst supported on one or more catalyst carriers of Al 2 O 3 and C and in the presence of an organic solvent. A second reaction step,
    The catalyst in which the solid phase metal oxide is supported on the catalyst support is filtered by filtering the catalyst in which the benzonitrile, unreacted benzamide, and metal oxide supported on the catalyst support are discharged from the second reaction step. A fourth separation step of separating
    And a fifth separation step for separating benzonitrile, benzamide, organic solvent, and water remaining after the separation,
    32. The method for producing a carbonate ester according to claim 31, wherein the separated benzonitrile is used in the first reaction step.
  33.  前記分離された固体触媒を再生する工程を更に有し、再生後の触媒を、前記第1の反応工程で使用することを特徴とする請求項32に記載の炭酸エステルの製造方法。 33. The method for producing a carbonate ester according to claim 32, further comprising a step of regenerating the separated solid catalyst, wherein the regenerated catalyst is used in the first reaction step.
  34.  前記溶媒抽出の際に使用するアルカンが、ヘキサンであることを特徴とする請求項32又は33に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to claim 32 or 33, wherein the alkane used in the solvent extraction is hexane.
  35.  前記親水性溶媒が、アセトンであることを特徴とする請求項32~34のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 32 to 34, wherein the hydrophilic solvent is acetone.
  36.  前記金属酸化物が担持された触媒担体は、SiO、TiO、CeO、ZrOのいずれか1種又は2種以上であることを特徴とする請求項31~35のいずれか1項に記載の炭酸エステルの製造方法。 The catalyst support on which the metal oxide is supported is one or more of SiO 2 , TiO 2 , CeO 2 , and ZrO 2 , according to any one of claims 31 to 35, The manufacturing method of carbonate ester of description.
  37.  前記触媒担体が、SiOであることを特徴とする請求項36に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to claim 36, wherein the catalyst support is SiO 2 .
  38.  前記金属酸化物が、モリブデン酸化物であることを特徴とする請求項31~37のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 31 to 37, wherein the metal oxide is molybdenum oxide.
  39.  前記有機溶媒が、クロロベンゼン、キシレン、メシチレンのいずれか1種又は2種以上からなることを特徴とする請求項31~38のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 31 to 38, wherein the organic solvent comprises one or more of chlorobenzene, xylene, and mesitylene.
  40.  前記第2の反応工程において、脱水剤を使用することを特徴とする請求項31~39のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 31 to 39, wherein a dehydrating agent is used in the second reaction step.
  41.  前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする請求項31~40のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 31 to 40, wherein the monohydric alcohol is methanol and dimethyl carbonate is produced as a carbonate ester.
  42.  前記一価アルコールがエタノールであり、炭酸エステルとして炭酸ジエチルを製造することを特徴とする請求項31~41のいずれか1項に記載の炭酸エステルの製造方法。 The method for producing a carbonate ester according to any one of claims 31 to 41, wherein the monohydric alcohol is ethanol and diethyl carbonate is produced as a carbonate ester.
  43.  請求項31~42のいずれか1項に記載の製造方法に用いる炭酸エステルの製造装置であって、
     二酸化炭素を加圧する加圧部と、
     CeO及びZrOのいずれか一方、又は、双方の固体触媒と、ベンゾニトリルとの存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルと水を生成すると共に、前記ベンゾニトリルと前記生成した水との水和反応によりベンズアミドを生成させる第1の反応部と、
     当該第1の反応部により排出される炭酸エステル、ベンズアミド、未反応のベンゾニトリル、及び前記固体触媒を、アルカンで溶媒抽出した後に固液分離し、液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンと、固相の前記固体触媒及びベンズアミドとに分離する第1の分離部と、
     前記固液分離後の液相の炭酸エステル、未反応のベンゾニトリル、及びアルカンをそれぞれに分離する第2の分離部と、
     前記固液分離後の固体触媒及びベンズアミドを、親水性溶媒で抽出した後に固液分離し、液相のベンズアミド及び親水性溶媒と、固相の固体触媒とに分離する第3の分離部と、
     当該分離されたベンズアミドを、モリブデン、タングステン、レニウム、バナジウム、ニオブのいずれか1種または2種以上の金属種の金属酸化物がSiO、TiO、CeO、ZrO、Al、Cのいずれか1種又は2種以上の触媒担体に担持された触媒の存在下、且つ、有機溶媒の存在下で、加熱して脱水反応させ、ベンゾニトリルを生成する第2の反応部と、
     当該第2の反応部により排出されるベンゾニトリル、未反応のベンズアミド、及び金属酸化物が触媒担体に担持された触媒を、濾過して、固相の金属酸化物を担持した触媒を分離する第4の分離部と、
     当該分離後に残ったベンゾニトリル、ベンズアミド、有機溶媒、水をそれぞれに分離する第5の分離部と、
     前記分離されたベンゾニトリルを、前記第1の反応部へと搬送する搬送部と、を有することを特徴とする炭酸エステルの製造装置。
     
     
     
    An apparatus for producing a carbonate ester used in the production method according to any one of claims 31 to 42,
    A pressurizing part for pressurizing carbon dioxide;
    In the presence of either one or both of CeO 2 and ZrO 2 , and benzonitrile, a monohydric alcohol and carbon dioxide are reacted to form a carbonate and water, and the benzonitrile and the above A first reaction part for producing benzamide by a hydration reaction with the produced water;
    The carbonate ester, benzamide, unreacted benzonitrile, and the solid catalyst discharged by the first reaction unit are subjected to solvent extraction with alkane, and then solid-liquid separated to obtain a liquid phase carbonate ester, unreacted benzonitrile, And a first separation part for separating the alkane and the solid catalyst and benzamide in a solid phase;
    A second separation unit for separating the carbonate, unreacted benzonitrile, and alkane in the liquid phase after the solid-liquid separation;
    The solid catalyst and benzamide after the solid-liquid separation are extracted with a hydrophilic solvent, followed by solid-liquid separation, and a third separation unit that separates into a liquid phase benzamide and a hydrophilic solvent and a solid phase solid catalyst;
    The separated benzamide is a metal oxide of any one or more of molybdenum, tungsten, rhenium, vanadium, niobium, or a metal oxide of SiO 2 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 , A second reaction section for producing a benzonitrile by heating to cause a dehydration reaction in the presence of a catalyst supported on one or more catalyst supports of C and in the presence of an organic solvent;
    The catalyst in which the benzonitrile, unreacted benzamide, and metal oxide supported on the catalyst carrier are discharged by the second reaction unit is filtered to separate the catalyst supporting the solid phase metal oxide. 4 separation parts;
    A fifth separation unit for separating benzonitrile, benzamide, an organic solvent, and water remaining after the separation;
    A carbonic acid ester producing apparatus, comprising: a conveying unit configured to convey the separated benzonitrile to the first reaction unit.


PCT/JP2014/084331 2013-12-27 2014-12-25 Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus WO2015099053A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-273184 2013-12-27
JP2013273184A JP6176108B2 (en) 2013-12-27 2013-12-27 Method for producing 2-cyanopyridine
JP2014042007A JP6349787B2 (en) 2014-03-04 2014-03-04 Method for producing carbonate ester
JP2014-042007 2014-03-04
JP2014-183657 2014-09-09
JP2014-183655 2014-09-09
JP2014183655A JP6435727B2 (en) 2014-09-09 2014-09-09 Method for producing benzonitrile
JP2014183657A JP6435728B2 (en) 2014-09-09 2014-09-09 Method and apparatus for producing carbonate ester

Publications (1)

Publication Number Publication Date
WO2015099053A1 true WO2015099053A1 (en) 2015-07-02

Family

ID=53478898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084331 WO2015099053A1 (en) 2013-12-27 2014-12-25 Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus

Country Status (2)

Country Link
TW (2) TW201531460A (en)
WO (1) WO2015099053A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106831548A (en) * 2017-03-24 2017-06-13 福建工程学院 The processing method and its device of a kind of electronic waste epoxy resin
WO2017221908A1 (en) 2016-06-22 2017-12-28 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing ester carbonate
WO2018021010A1 (en) * 2016-07-28 2018-02-01 昭和電工株式会社 Method for producing glycine
WO2018116775A1 (en) 2016-12-21 2018-06-28 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
JP2018140942A (en) * 2017-02-25 2018-09-13 国立大学法人東北大学 Method for producing carbamate
CN108689850A (en) * 2018-07-01 2018-10-23 北京化工大学 A kind of method of cerium zirconium oxide/molecular sieve catalytic synthesizing diethyl carbonate
WO2019065549A1 (en) 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 Method for regenerating catalyst and method for producing carbonate ester
WO2020022416A1 (en) 2018-07-27 2020-01-30 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
EP3689451A1 (en) * 2019-01-29 2020-08-05 Evonik Operations GmbH Catalyst for the synthesis of alkyl mercaptan and process for its preparation
CN111601785A (en) * 2018-01-10 2020-08-28 三菱瓦斯化学株式会社 Method for producing carbonate ester
CN111655667A (en) * 2018-02-06 2020-09-11 东丽株式会社 Method for producing nitrile
CN113149903A (en) * 2021-04-30 2021-07-23 安徽国星生物化学有限公司 Synthesis method and device of cyanopyridine
WO2022181670A1 (en) 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Method for producing 2-furonitrile and method for producing carbonic acid ester
RU2785279C1 (en) * 2019-01-29 2022-12-05 Эвоник Оперейшенс ГмбХ Catalyst for synthesising alkyl mercaptan and method for production thereof
WO2023118406A1 (en) * 2021-12-23 2023-06-29 Totalenergies Onetech Process for catalytic co2 desorption and catalyst for said process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI654178B (en) 2017-12-28 2019-03-21 財團法人工業技術研究院 Method for preparing dialkyl carbonate
CN113817153B (en) * 2021-09-30 2022-10-11 大连理工大学 Cyano-functionalized carbonate monomer, cyano-functionalized polycarbonate and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252845A (en) * 2002-03-01 2003-09-10 Japan Science & Technology Corp Method for producing nitrile and catalyst for nitrile production
JP2010077113A (en) * 2008-08-27 2010-04-08 Nippon Steel Corp Method for producing carbonic acid ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252845A (en) * 2002-03-01 2003-09-10 Japan Science & Technology Corp Method for producing nitrile and catalyst for nitrile production
JP2010077113A (en) * 2008-08-27 2010-04-08 Nippon Steel Corp Method for producing carbonic acid ester

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAMPBELL, JACQUELINE A. ET AL.: "Laboratory- Scale Synthesis of Nitriles by Catalysed Dehydration of Amides and Oximes under Flash Vacuum Pyrolysis (FVP) Conditions", SYNTHESIS, vol. 20, 2007, pages 3179 - 3184 *
HONDA, MASAYOSHI ET AL.: "Ceria-Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2-Cyanopyridine", CHEMSUSCHEM, vol. 6, no. 8, 2013, pages 1341 - 1344 *
JOSHI, GOPAL W. ET AL.: "Dehydration of carboxamides to nitriles with a zirconia catalyst", CHEMISTRY AND INDUSTRY, vol. 24, 1986, pages 876 - 877 *
YOSHINAO NAKAGAWA: "Nitrile-rui o Dassuizai ni Mochiita Ceria Shokubai ni yoru Nisankatanso to Methanol kara no Tansan Dimethyl Gosei", DAI 110 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 14 September 2012 (2012-09-14), pages 145 - 146 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092305B2 (en) 2016-06-22 2022-06-28 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
US20190185408A1 (en) * 2016-06-22 2019-06-20 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
CN109311815B (en) * 2016-06-22 2022-11-18 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
KR102460771B1 (en) * 2016-06-22 2022-10-28 미츠비시 가스 가가쿠 가부시키가이샤 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
RU2739444C2 (en) * 2016-06-22 2020-12-24 Мицубиси Газ Кемикал Компани, Инк. Method of producing an aromatic nitrile compound and a method of producing carbonate ester
US10584092B2 (en) 2016-06-22 2020-03-10 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
CN109311815A (en) * 2016-06-22 2019-02-05 三菱瓦斯化学株式会社 The manufacturing method of aromatic nitrile compound and the manufacturing method of carbonic ester
KR20190018674A (en) 2016-06-22 2019-02-25 미츠비시 가스 가가쿠 가부시키가이샤 METHOD FOR PRODUCING AROMATIC NITRILE COMPOUND AND METHOD FOR PRODUCING CARBONATE ESTER
EP3476834A4 (en) * 2016-06-22 2019-11-20 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing ester carbonate
JPWO2017221908A1 (en) * 2016-06-22 2019-04-11 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
WO2017221908A1 (en) 2016-06-22 2017-12-28 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing ester carbonate
JPWO2018021010A1 (en) * 2016-07-28 2019-05-09 昭和電工株式会社 Method for producing glycine
US11319278B2 (en) 2016-07-28 2022-05-03 Showa Denko K.K. Method for producing glycine
WO2018021010A1 (en) * 2016-07-28 2018-02-01 昭和電工株式会社 Method for producing glycine
KR20190094196A (en) 2016-12-21 2019-08-12 미츠비시 가스 가가쿠 가부시키가이샤 Method for producing aromatic nitrile compound and method for producing carbonate ester
JPWO2018116775A1 (en) * 2016-12-21 2019-10-24 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
EP3560912A4 (en) * 2016-12-21 2019-11-13 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonic acid ester
US11161816B2 (en) 2016-12-21 2021-11-02 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonic acid ester
JP7021642B2 (en) 2016-12-21 2022-02-17 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
US10793524B2 (en) 2016-12-21 2020-10-06 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonic acid ester
WO2018116775A1 (en) 2016-12-21 2018-06-28 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
JP2018140942A (en) * 2017-02-25 2018-09-13 国立大学法人東北大学 Method for producing carbamate
CN106831548A (en) * 2017-03-24 2017-06-13 福建工程学院 The processing method and its device of a kind of electronic waste epoxy resin
WO2019065549A1 (en) 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 Method for regenerating catalyst and method for producing carbonate ester
US11596936B2 (en) 2017-09-29 2023-03-07 Mitsubishi Gas Chemical Company, Inc. Method for regenerating catalyst and method for producing carbonate ester
KR20200062250A (en) 2017-09-29 2020-06-03 미츠비시 가스 가가쿠 가부시키가이샤 Catalyst regeneration method and carbonic acid ester production method
CN111601785A (en) * 2018-01-10 2020-08-28 三菱瓦斯化学株式会社 Method for producing carbonate ester
CN111601785B (en) * 2018-01-10 2023-03-28 三菱瓦斯化学株式会社 Method for producing carbonate ester
CN111655667A (en) * 2018-02-06 2020-09-11 东丽株式会社 Method for producing nitrile
CN108689850A (en) * 2018-07-01 2018-10-23 北京化工大学 A kind of method of cerium zirconium oxide/molecular sieve catalytic synthesizing diethyl carbonate
US11673856B2 (en) 2018-07-27 2023-06-13 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
JP7367676B2 (en) 2018-07-27 2023-10-24 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
WO2020022416A1 (en) 2018-07-27 2020-01-30 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
KR20210040392A (en) 2018-07-27 2021-04-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 A method for producing an aromatic nitrile compound, and a method for producing a carbonate ester
RU2804510C2 (en) * 2018-07-27 2023-10-02 Мицубиси Газ Кемикал Компани, Инк. Method for producing aromatic nitrile compound and method for producing carbonate ether
CN112469700A (en) * 2018-07-27 2021-03-09 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
EP3831813A4 (en) * 2018-07-27 2021-06-09 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
EP4201925A1 (en) 2018-07-27 2023-06-28 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
JPWO2020022416A1 (en) * 2018-07-27 2021-08-02 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonic acid ester
WO2020156992A1 (en) * 2019-01-29 2020-08-06 Evonik Operations Gmbh Catalyst for the synthesis of alkyl mercaptan and process for its preparation
EP3689451A1 (en) * 2019-01-29 2020-08-05 Evonik Operations GmbH Catalyst for the synthesis of alkyl mercaptan and process for its preparation
RU2785279C1 (en) * 2019-01-29 2022-12-05 Эвоник Оперейшенс ГмбХ Catalyst for synthesising alkyl mercaptan and method for production thereof
WO2022181670A1 (en) 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Method for producing 2-furonitrile and method for producing carbonic acid ester
KR20230151985A (en) 2021-02-25 2023-11-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing 2-furonitrile, and method for producing carbonate ester
CN113149903B (en) * 2021-04-30 2023-02-10 安徽国星生物化学有限公司 Method and device for synthesizing cyanopyridine
CN113149903A (en) * 2021-04-30 2021-07-23 安徽国星生物化学有限公司 Synthesis method and device of cyanopyridine
WO2023118406A1 (en) * 2021-12-23 2023-06-29 Totalenergies Onetech Process for catalytic co2 desorption and catalyst for said process

Also Published As

Publication number Publication date
TW201531460A (en) 2015-08-16
TW201615624A (en) 2016-05-01
TWI562988B (en) 2016-12-21
TWI593676B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2015099053A1 (en) Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus
Zhang et al. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts
JP5738206B2 (en) Method for producing carbonate ester
JP5458352B2 (en) Method for producing carbonate ester
JP6629394B2 (en) Improved selective ammoxidation catalyst
TWI630955B (en) Pre calcination additives for mixed metal oxide ammoxidation catalysts
JP5846388B2 (en) Novel glycerin dehydration catalyst and process for producing the same
TWI747912B (en) Method for producing aromatic nitrile compound and method for producing carbonate
JP6349787B2 (en) Method for producing carbonate ester
JP5252424B2 (en) Method for producing carbonate ester
KR101660560B1 (en) - method for producing -hydroxycarboxylic acid ester
KR20170015900A (en) Improved selective ammoxidation catalysts
JP6435728B2 (en) Method and apparatus for producing carbonate ester
JP6435727B2 (en) Method for producing benzonitrile
KR102513071B1 (en) A method for producing an aromatic nitrile compound and a method for producing a carbonic acid ester
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
WO2020022416A1 (en) Method for producing aromatic nitrile compound and method for producing carbonate ester
JP2021151986A (en) Method and device for producing carbonate ester
JP6552355B2 (en) Process for producing unsaturated alcohol and catalyst
EP3315194A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
RU2804510C2 (en) Method for producing aromatic nitrile compound and method for producing carbonate ether
KR20230151985A (en) Method for producing 2-furonitrile, and method for producing carbonate ester
Lloyd et al. Oxidation catalysts
JP2011207843A (en) Method for producing alcohol having two or more carbon atoms
WO2017111392A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14874723

Country of ref document: EP

Kind code of ref document: A1