JP5738206B2 - Method for producing carbonate ester - Google Patents

Method for producing carbonate ester Download PDF

Info

Publication number
JP5738206B2
JP5738206B2 JP2012008981A JP2012008981A JP5738206B2 JP 5738206 B2 JP5738206 B2 JP 5738206B2 JP 2012008981 A JP2012008981 A JP 2012008981A JP 2012008981 A JP2012008981 A JP 2012008981A JP 5738206 B2 JP5738206 B2 JP 5738206B2
Authority
JP
Japan
Prior art keywords
reaction
carbonate
carbonate ester
compound
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012008981A
Other languages
Japanese (ja)
Other versions
JP2012162523A (en
Inventor
鈴木 公仁
公仁 鈴木
憲治 中尾
憲治 中尾
藤本 健一郎
健一郎 藤本
冨重 圭一
圭一 冨重
善直 中川
善直 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Steel Corp
Original Assignee
Tohoku University NUC
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Steel Corp filed Critical Tohoku University NUC
Priority to JP2012008981A priority Critical patent/JP5738206B2/en
Publication of JP2012162523A publication Critical patent/JP2012162523A/en
Application granted granted Critical
Publication of JP5738206B2 publication Critical patent/JP5738206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、一価アルコールと二酸化炭素を、固体触媒の存在下で反応させて炭酸エステルを製造する方法に関するものである。   The present invention relates to a method for producing a carbonate ester by reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst.

炭酸エステルとは、炭酸CO(OH)の2原子の水素のうち1原子、あるいは2原子をアルキル基またはアリール基で置換した化合物の総称であり、RO−C(=O)−OR’(R、R’は飽和炭化水素基や不飽和炭化水素基を表す)の構造を持つものである。 Carbonic acid ester is a general term for compounds in which one or two of hydrogen atoms of carbonic acid CO (OH) 2 is substituted with an alkyl group or an aryl group, and RO—C (═O) —OR ′ ( R and R ′ each represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).

炭酸エステルは、オクタン価向上のためのガソリン添加剤、排ガス中のパーティクルを減少させるためのディーゼル燃料添加剤等の添加剤として使われるほか、ポリカーボネートやウレタン、医薬・農薬等の樹脂・有機化合物を合成する際のアルキル化剤、カルボニル化剤、溶剤等、あるいはリチウム電池の電解液、潤滑油原料、ボイラー配管の防錆用の脱酸素剤の原料として使われるなど、非常に有用な化合物である。   Carbonate esters are used as additives such as gasoline additives to improve octane number and diesel fuel additives to reduce particles in exhaust gas, as well as resins and organic compounds such as polycarbonate, urethane, pharmaceuticals and agricultural chemicals. It is an extremely useful compound such as an alkylating agent, a carbonylating agent, a solvent, or the like, or a lithium battery electrolyte, a lubricating oil raw material, or a raw material for an oxygen scavenger for rust prevention of boiler piping.

従来の炭酸エステルの製造方法としては、ホスゲンをカルボニルソースとしてアルコールと直接反応させる方法が主流である。この方法は、極めて有害で腐食性の高いホスゲンを用いるため、その輸送や貯蔵等の取扱に細心の注意が必要であり、製造設備の維持管理及び安全性の確保のために多大なコストがかかっていた。また、本方法で製造する場合、原料や触媒中に塩素などのハロゲンが含まれており、得られる炭酸エステル中には、簡単な精製工程では取り除くことのできない微量のハロゲンが含まれる。ガソリン添加剤、軽油添加剤、電子材料向け用途にあっては、腐食の原因となる懸念も存在するため、微量に存在するハロゲンを極微量にするための徹底的な精製工程が必須となる。さらに、最近では、人体に極めて有害なホスゲンを利用することから、本製造方法での製造設備の新設が許可されないなど行政指導が厳しくなされてきており、ホスゲンを用いない新たな製造方法が強く望まれている。   As a conventional method for producing a carbonate ester, a method in which phosgene is directly reacted with an alcohol using a carbonyl source is the mainstream. This method uses phosgene, which is extremely harmful and highly corrosive, and therefore requires extreme care in handling such as transportation and storage, and it costs a great deal of money to maintain and maintain manufacturing facilities and ensure safety. It was. Moreover, when manufacturing by this method, halogens, such as chlorine, are contained in a raw material and a catalyst, The trace amount halogen which cannot be removed by a simple refinement | purification process is contained in the carbonate ester obtained. In applications for gasoline additives, light oil additives, and electronic materials, there are also concerns that cause corrosion, and therefore a thorough refining process to make trace amounts of halogens extremely small is essential. Furthermore, since phosgene, which is extremely harmful to the human body, has been used recently, administrative guidance has been tightened, such as the establishment of a new production facility for this production method is not permitted, and a new production method that does not use phosgene is strongly desired. It is rare.

こうした中、非特許文献1に記載されているように、ホスゲンを用いない炭酸エステルの製造法として、二酸化炭素をエチレンオキシドなどと反応させて環状炭酸エステルを合成し、更にメタノールと反応させて炭酸ジメチルを得る方法が実用化されてきている。この方法は、塩酸などの腐食性物質を使用したり、発生することがほとんど無く、地球温暖化ガスとして削減を求められている二酸化炭素を骨格に入れることにより削減効果が期待できる環境にやさしい優れた方法である。しかしながら、特許文献1に記載されているように、副生するエチレングリコールなどの有効利用が大きな課題である。またエチレンオキシドの原料であるエチレンや、エチレンオキシドの安全な輸送は困難であるため、これらエチレンとエチレンオキシドの製造工程用プラントに隣接して炭酸エステル製造工程用プラントを立地しなければならないといった制約もある。   Under these circumstances, as described in Non-Patent Document 1, as a method for producing a carbonate ester without using phosgene, a carbonic acid ester is reacted with ethylene oxide to synthesize a cyclic carbonate, and further reacted with methanol to form dimethyl carbonate. A method for obtaining the above has been put into practical use. This method uses environmentally friendly corrosive substances such as hydrochloric acid, is rarely generated, and can be expected to have a reduction effect by incorporating carbon dioxide, which is required to be reduced as a global warming gas, into the skeleton. It is a method. However, as described in Patent Document 1, effective use of by-produced ethylene glycol is a major problem. Further, since it is difficult to safely transport ethylene, which is a raw material for ethylene oxide, and ethylene oxide, there is a restriction that a carbonate ester production process plant must be located adjacent to the ethylene and ethylene oxide production process plant.

また、特許文献2に記載されているように、メタノールと一酸化炭素を塩化第一銅触媒の存在下、液相で酸素酸化することで炭酸ジメチルを製造する方法も開示されている。しかし、本方法では人体に有害な一酸化炭素を取り扱うことや、ホスゲンを用いる製造法と同様、触媒中にハロゲンを含むことにより、得られる炭酸エステルからのハロゲンの精製工程が必須であること、COが少なからず副生するなどの問題が指摘されている。 Further, as described in Patent Document 2, a method for producing dimethyl carbonate by oxidizing methanol and carbon monoxide in a liquid phase in the presence of a cuprous chloride catalyst is also disclosed. However, in this method, carbon monoxide harmful to the human body is handled, and, as in the production method using phosgene, a halogen purification step from the obtained carbonic acid ester is essential by including halogen in the catalyst. Problems such as CO 2 being a by-product have been pointed out.

さらに、非特許文献2に記載されているように、メチルナイトライトと一酸化炭素からPd−Cu系触媒存在下、炭酸ジメチルを製造する方法も実用化されている。本方法では、原料となるメチルナイトライトを炭酸ジメチル製造時に副生する一酸化窒素にメタノールと酸素を反応させて生成するという方法で供給するものであり、プロセスが複雑であることや、人体に有害な一酸化炭素を取り扱うことなどの課題がある。   Furthermore, as described in Non-Patent Document 2, a method for producing dimethyl carbonate from methyl nitrite and carbon monoxide in the presence of a Pd—Cu-based catalyst has been put into practical use. In this method, methyl nitrite, which is a raw material, is supplied by reacting methanol and oxygen with nitric oxide by-produced during the production of dimethyl carbonate. There are issues such as handling harmful carbon monoxide.

それに対し、メタノールと二酸化炭素を固体触媒存在下で反応させて炭酸エステルを直接合成しようとする試みがなされている(非特許文献3)。しかし、本反応は平衡反応であるが、平衡が原料系に大きく偏っているため、メタノール転化率が高々1%程度に留まり、反応率、生産性が低いという克服すべき大きな課題があった。   On the other hand, attempts have been made to directly synthesize carbonate esters by reacting methanol and carbon dioxide in the presence of a solid catalyst (Non-patent Document 3). However, although this reaction is an equilibrium reaction, since the equilibrium is largely biased toward the raw material system, the methanol conversion rate remains at most about 1%, and there is a major problem to be overcome that the reaction rate and productivity are low.

上記の課題を解決すべく、炭酸エステル(炭酸ジメチル)と共に副生する水を系外へ除いて反応制約を解除しようとする試みがなされ、例えば触媒と共に水和剤としてアセタール(非特許文献4)、2,2−ジメトキシプロパン(非特許文献5)を用いた研究が報告されている。しかしながら、この方法では、反応圧力が高くなるに従って反応が進行する特性を有し、低圧では反応収率が非常に低く、極めて高圧でないと高い生産性が得られない。これは、アセタール、2,2−ジメトキシプロパンの水和反応は液相で触媒作用を受けずに進行すると予想されることからCO圧力には依存せず、炭酸ジメチル直接合成反応の反応速度が全体の反応速度を決定するためと推察されるが、反応圧力が各々300気圧(30MPa)、60気圧(6MPa)という高圧でメタノール転化率が高くなるため、昇圧に必要な動力エネルギーが非常に大きくなりエネルギー効率が悪くなるなどの問題があった。 In order to solve the above-mentioned problems, an attempt has been made to remove the reaction restriction by removing water by-produced with carbonate (dimethyl carbonate) out of the system. Research using 2,2-dimethoxypropane (Non-patent Document 5) has been reported. However, this method has a characteristic that the reaction proceeds as the reaction pressure increases, the reaction yield is very low at low pressure, and high productivity cannot be obtained unless the pressure is extremely high. This is because the hydration reaction of acetal and 2,2-dimethoxypropane is expected to proceed without being catalyzed in the liquid phase, so the reaction rate of the direct synthesis reaction of dimethyl carbonate is not dependent on CO 2 pressure. It is presumed to determine the overall reaction rate, but because the methanol conversion rate increases at high pressures of 300 atm (30 MPa) and 60 atm (6 MPa), respectively, the motive energy required for pressurization is very large. There was a problem that energy efficiency became worse.

また、モレキュラーシーブ(固体脱水剤)を用いた研究(非特許文献6)が報告されているが、反応部(高圧)と脱水部(常圧)を分離して循環させるプロセスになることからエネルギー消費が大きく、また大量の固体脱水剤を必要とする問題点があった。   In addition, research using molecular sieves (solid dehydrating agent) (Non-patent Document 6) has been reported, but it is a process that separates and circulates the reaction part (high pressure) and the dehydration part (normal pressure). There was a problem that consumption was large and a large amount of solid dehydrating agent was required.

尚、炭酸エステルの直接合成反応に用いられる固体触媒は、これまでにジメトキシジブチルスズ等のスズ化合物、タリウムメトキシド等のタリウム化合物、酢酸ニッケル等のニッケル化合物、五酸化バナジウム、炭酸カリウム等のアルカリ炭酸塩、及び、Cu/SiO等種々の化合物が検討されている。 Solid catalysts used for the direct synthesis reaction of carbonate ester have so far been tin compounds such as dimethoxydibutyltin, thallium compounds such as thallium methoxide, nickel compounds such as nickel acetate, vanadium pentoxide, potassium carbonate and other alkaline carbonates. Various compounds such as salts and Cu / SiO 2 have been studied.

一方、水和剤としてアセトニトリルを用いた反応として、固体触媒存在下、二価アルコールであるプロピレングリコールと二酸化炭素から環状炭酸エステル(プロピレンカーボネート)を直接合成する反応系に関する研究が報告されている(非特許文献7)。しかし、本反応系でも反応圧力の影響が顕著で、反応圧力が高くなるにしたがって反応が進行する特性を有し、低圧では反応収率が極端に低いが、環状炭酸エステルの直接合成反応が平衡的に有利な高圧で収率が上昇し、反応圧力は100気圧以上が望ましいことが確認され、上記と同様エネルギー効率が悪くなるなどの問題があった。   On the other hand, as a reaction using acetonitrile as a wettable powder, research on a reaction system for directly synthesizing a cyclic carbonate (propylene carbonate) from propylene glycol and carbon dioxide as a dihydric alcohol in the presence of a solid catalyst has been reported ( Non-patent document 7). However, even in this reaction system, the influence of the reaction pressure is significant, and the reaction proceeds as the reaction pressure increases. The reaction yield is extremely low at low pressure, but the direct synthesis reaction of cyclic carbonate is balanced. In particular, it was confirmed that the yield increased at a particularly advantageous high pressure, and the reaction pressure was preferably 100 atm or more, and there was a problem that the energy efficiency was deteriorated as described above.

WO2004/014840号公報WO 2004/014840 EP365,083号公報EP365,083

化学工学 第68巻 第1号 41頁(2004)Chemical Engineering, Vol. 68, No. 1, 41 (2004) 触媒,vol.36,p.127(1994)Catalyst, vol. 36, p. 127 (1994) Catal. Lett., vol.58(1999)などCatal. Lett., Vol. 58 (1999) etc. Polyhedron, vol.19,p.573(2000)Polyhedron, vol. 19, p. 573 (2000) Appl. Catal. A Gen,vol.237,p.103(2002)Appl. Catal. A Gen, vol. 237, p. 103 (2002) ECO INDUSTRY, vol.6,p.11(2001)ECO INDUSTRY, vol. 6, p. 11 (2001) Catalysts Letters, vol.112,p.187(2006)Catalysts Letters, vol. 112, p. 187 (2006)

上記従来技術の問題点に鑑み、本発明の目的は、アルコールと二酸化炭素を固体触媒存在下で反応させて炭酸エステルを直接合成する際に、圧力が比較的低い温和な反応条件下でも、高い反応率を可能にする炭酸エステルの製造方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is high even under mild reaction conditions where the pressure is relatively low when alcohol and carbon dioxide are reacted in the presence of a solid catalyst to directly synthesize carbonate ester. An object of the present invention is to provide a method for producing a carbonate ester which enables a reaction rate.

本発明者らは、炭酸エステルの製造に際し、一価アルコールと二酸化炭素から炭酸エステルを直接合成する方法に着目し、炭酸エステルと共に副生する水を系外へ除く水和剤として、アセトニトリル、ベンゾニトリルを用いることにより、非特許文献4、5に記載されているような30MPa(300気圧)や6MPa(60気圧)といった高圧は不要で、常圧に近い圧力下で反応が促進されるという効果を初めて見出し、特許出願した(特開2009−132673号公報、特開2010−77113号公報)。   The inventors of the present invention focused on a method of directly synthesizing carbonate ester from monohydric alcohol and carbon dioxide in the production of carbonate ester, and used acetonitrile, benzoate as a wettable powder to remove water produced as a byproduct together with carbonate ester out of the system. By using nitrile, high pressure such as 30 MPa (300 atm) or 6 MPa (60 atm) as described in Non-Patent Documents 4 and 5 is unnecessary, and the effect of promoting the reaction under a pressure close to normal pressure. For the first time and filed patent applications (Japanese Patent Laid-Open Nos. 2009-132673 and 2010-77113).

本発明者は、上記知見に基づき更に研究を進めた結果、水和剤としてアセトニトリルを用いた場合には、アセトアミド等の副生物が生成し、それらの用途も限定される場合があることが判明した。そこで、アセトニトリルの代わりにベンゾニトリルを用いたところ、アセトニトリルの場合と同様に、反応系の圧力が常圧に近い圧力下で反応がより進行する現象が見られるのみならず、副生物の種類も少ないことを見出した。また、主な副生物であるベンズアミド自体も多くの用途があることが判明したが、工業化の観点からは反応速度をより高くする必要があった。   As a result of further research based on the above findings, the present inventors have found that when acetonitrile is used as a wettable powder, by-products such as acetamide are produced, and their use may be limited. did. Therefore, when benzonitrile was used instead of acetonitrile, as in the case of acetonitrile, not only a phenomenon in which the reaction proceeds more under the pressure of the reaction system close to normal pressure, but also the types of by-products were observed. Found less. Further, benzamide itself, which is a main by-product, has been found to have many uses, but it was necessary to increase the reaction rate from the viewpoint of industrialization.

上記知見を元に、本発明者らは、更に水和剤の種類について鋭意検討を進めたところ、六員環又は五員環の炭素原子の一部が窒素又は酸素、硫黄元素で置換された化合物(例えば、2−シアノピリジン、シアノピラジン、2−シアノピリミジンなどの六員環含窒素化合物や、チオフェン−2−カルボニトリル、2−フルオニトリルなどの五員環含硫黄、含酸素化合物)のいずれかを用いることで、常圧に近い比較的低い圧力下で反応が進行しやすく、且つ、反応速度が非常に速いことを見出して、本発明を完成するに至った。   Based on the above findings, the present inventors have further studied the types of wettable powder, and as a result, some of the carbon atoms of the six-membered ring or five-membered ring were substituted with nitrogen, oxygen, or sulfur element. Compounds (for example, six-membered nitrogen-containing compounds such as 2-cyanopyridine, cyanopyrazine, and 2-cyanopyrimidine, five-membered sulfur-containing and oxygen-containing compounds such as thiophene-2-carbonitrile and 2-fluoronitrile) By using either of these, it was found that the reaction easily proceeds under a relatively low pressure close to normal pressure, and the reaction rate was very high, and the present invention was completed.

また、固体触媒として触媒を構成する元素、組成に着目して鋭意検討したところ、酸性度が比較的低く塩基性度が比較的高い酸塩基複合機能を有する固体触媒が、水和剤にベンゾニトリルを用いた場合、固体触媒存在下で水和反応によりベンズアミドを生成する反応が促進されて反応系からの脱水が効率よく進み、比較的低圧の温和な条件下でも反応平衡制約を受けることなく炭酸エステルを高い収率で得られることを見出した。さらに、このような触媒の中でも、酸化セリウム、酸化ジルコニウム、酸化セリウムと酸化ジルコニウムの化合物の一種または二種以上からなる酸化物が非常に有効であることを見出し、本発明に至った。   In addition, as a solid catalyst, the inventors have intensively studied focusing on the elements and composition constituting the catalyst. As a result, a solid catalyst having an acid-base complex function having a relatively low acidity and a relatively high basicity has Is used, the reaction to produce benzamide by hydration reaction in the presence of a solid catalyst is promoted, the dehydration from the reaction system proceeds efficiently, and the carbonic acid is not subject to reaction equilibrium constraints even under mild conditions of relatively low pressure. It has been found that the ester can be obtained in high yield. Further, among such catalysts, cerium oxide, zirconium oxide, an oxide composed of one or more compounds of cerium oxide and zirconium oxide was found to be very effective, and the present invention has been achieved.

本発明について、以下に、その特徴(ないし、本発明が含むことができる態様)を示す。   The features of the present invention (or modes that the present invention can include) are described below.

(1)固体触媒と以下の式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造することを特徴とする炭酸エステルの製造方法である。 (1) producing a carbonate by reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and at least one compound selected from the group consisting of the following formulas (1) to (4): It is the manufacturing method of the carbonate ester characterized.

Figure 0005738206
Figure 0005738206

(式中、X、Yは、各々C、Nから選ばれ、Cを少なくとも1原子含む。)   (In the formula, X and Y are each selected from C and N, and contain at least one atom of C.)

Figure 0005738206
Figure 0005738206

(式中、ZはO、Sから選ばれる。)   (In the formula, Z is selected from O and S.)

Figure 0005738206
Figure 0005738206

Figure 0005738206
Figure 0005738206

(式中、RはCHCH、CH(CH、CH=CHからなる群から選ばれる。) (In the formula, R is selected from the group consisting of CH 3 CH 2 , CH 3 (CH 2 ) 2 , and CH 2 = CH.)

(2)固体触媒と以下の式(1)で表される化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造する炭酸エステルの製造方法であって、 (2) A method for producing a carbonate ester, which comprises reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and a compound represented by the following formula (1):

Figure 0005738206
Figure 0005738206

(式中、X、Yは、各々C、Nから選ばれ、Cを少なくとも1原子含む。)
前記式(1)で表される化合物が、2−シアノピリジン、シアノピラジン、2−シアノピリミジンからなる群から選ばれた一種または二種以上からなることを特徴とする炭酸エステルの製造方法である。
(In the formula, X and Y are each selected from C and N, and contain at least one atom of C.)
The compound represented by the formula (1) is a method for producing a carbonate characterized by comprising one or more selected from the group consisting of 2-cyanopyridine, cyanopyrazine and 2-cyanopyrimidine. .

(3)固体触媒と以下の式(2)で表される化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造する炭酸エステルの製造方法であって、   (3) A method for producing a carbonate ester, which comprises reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and a compound represented by the following formula (2):

Figure 0005738206
Figure 0005738206

(式中、ZはO、Sから選ばれる。)   (In the formula, Z is selected from O and S.)

前記式(2)で表される化合物が、チオフェン−2−カルボニトリル、2−フルオニトリルからなる群から選ばれた一種または二種以上からなることを特徴とする(1)又は(2)に記載の炭酸エステルの製造方法である。   (1) or (2) characterized in that the compound represented by the formula (2) comprises one or more selected from the group consisting of thiophene-2-carbonitrile and 2-fluoronitrile. It is a manufacturing method of the carbonate ester of description.

(4)前記固体触媒と前記化合物の存在下で、一価アルコールと二酸化炭素を反応させて、炭酸エステルと水を生成すると共に、前記化合物と前記生成した水との水和反応によりアミド化合物を生成させて、前記生成した水を反応系から除去又は低減することにより、前記炭酸エステルの生成を促進させることを特徴とする(1)〜(3)のいずれかに記載の炭酸エステルの製造方法である。 (4) A monohydric alcohol and carbon dioxide are reacted in the presence of the solid catalyst and the compound to produce a carbonate ester and water, and an amide compound is formed by a hydration reaction between the compound and the produced water. The method for producing a carbonate ester according to any one of (1) to (3), wherein the production of the carbonate ester is promoted by removing or reducing the generated water from the reaction system. It is.

(5)前記固体触媒が、酸化セリウム、酸化ジルコニウム、及び酸化セリウムと酸化ジルコニウムの化合物からなる群から選ばれた一種または二種以上からなることを特徴とする(1)〜(4)のいずれかに記載の炭酸エステルの製造方法である。 (5) Any one of (1) to (4), wherein the solid catalyst is composed of one or more selected from the group consisting of cerium oxide, zirconium oxide, and a compound of cerium oxide and zirconium oxide. It is a manufacturing method of the carbonic acid ester of a crab.

(6)前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする(1)〜(5)のいずれかに記載の炭酸エステルの製造方法である。 (6) The method for producing a carbonate ester according to any one of (1) to (5), wherein the monohydric alcohol is methanol and dimethyl carbonate is produced as a carbonate ester.

(7)前記反応時の圧力が5MPa以下であることを特徴とする(1)〜(6)のいずれかに記載の炭酸エステルの製造方法である。 (7) The method for producing a carbonate ester according to any one of (1) to (6), wherein the pressure during the reaction is 5 MPa or less.

(8)前記反応時の圧力が3MPa以下であることを特徴とする(1)〜(6)のいずれかに記載の炭酸エステルの製造方法である。 (8) The method for producing a carbonate ester according to any one of (1) to (6), wherein the pressure during the reaction is 3 MPa or less.

(9)前記反応時の圧力が0.1〜1MPaであることを特徴とする(1)〜(6) のいずれかに記載の炭酸エステルの製造方法である。 (9) The method for producing a carbonate ester according to any one of (1) to (6), wherein the pressure during the reaction is 0.1 to 1 MPa.

本発明によれば、一価アルコールと二酸化炭素を比較的圧力の低い温和な条件下で反応させて、高い反応速度且つ高い反応率で炭酸エステルを得ることができる。   According to the present invention, a monohydric alcohol and carbon dioxide can be reacted under mild conditions at a relatively low pressure to obtain a carbonate ester at a high reaction rate and a high reaction rate.

以下、具体例を示して、本発明を更に詳細に説明する。
本発明の炭酸エステルの製造方法は、固体触媒と前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の存在下、一価アルコールと二酸化炭素を直接反応させて炭酸エステルを生成するものである。一価アルコールと二酸化炭素を反応させると炭酸エステルの他に水も生成するが、前記化合物が存在することで、生成した水との水和反応によりアミド化合物を生成し、生成した水を反応系から除去又は低減することで、炭酸エステルの生成を促進させることが可能となる。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
The method for producing a carbonate ester according to the present invention comprises a step of directly reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and at least one compound selected from the group consisting of the above formulas (1) to (4). An ester is produced. When a monohydric alcohol and carbon dioxide are reacted, water is produced in addition to the carbonate ester. However, the presence of the compound produces an amide compound by hydration reaction with the produced water, and the produced water is used as a reaction system. It becomes possible to promote the production | generation of carbonate ester by removing or reducing from.

Figure 0005738206
Figure 0005738206

ここで、一価アルコールとしては、第一級アルコール、第二級アルコール、第三級アルコールのうち一種又は二種以上から選ばれたいずれのアルコールも用いることができる。   Here, as the monohydric alcohol, any alcohol selected from one or more of primary alcohol, secondary alcohol, and tertiary alcohol can be used.

また、固体触媒としては、従来検討されているスズ化合物、タリウム化合物、ニッケル化合物、バナジウム化合物、Cu/SiO、アルカリ炭酸塩などの触媒でも良いが、特に酸化セリウム、酸化ジルコニウム、酸化セリウムと酸化ジルコニウムの化合物の一種または二種以上からなるものが好適である。 The solid catalyst may be a conventionally studied catalyst such as a tin compound, a thallium compound, a nickel compound, a vanadium compound, Cu / SiO 2 , an alkali carbonate, etc., but in particular, cerium oxide, zirconium oxide, cerium oxide and an oxide. Those composed of one or more of zirconium compounds are preferred.

本発明者らが鋭意検討した結果、炭酸エステル直接合成に用いる触媒は、酸塩基複合機能を有することが必要であり、特に酸性度が比較的低く且つ塩基性度が比較的高い性質を有することが好ましい。酸性度が高すぎると、炭酸エステルよりもむしろエーテルを多量に合成することになり好ましくない。適度な酸塩基複合機能触媒においては、塩基性点上でR−O−M(Mは触媒)の形でアルコールが解離吸着し、COとの間でRO−C(=O)−O…Mを形成し、他方、酸性点上ではHO−R…Mの形でアルコールが吸着し、両吸着種の間でRO−C(=O)−ORが生成される機構が考えられる。 As a result of intensive studies by the present inventors, the catalyst used for the direct synthesis of carbonic acid ester is required to have an acid-base complex function, and in particular, has a property of relatively low acidity and relatively high basicity. Is preferred. If the acidity is too high, it is not preferable because a large amount of ether is synthesized rather than carbonate. In the moderate acid base complex function catalyst, RO-M on the basic point (M catalyst) alcohol dissociates adsorbed in the form of, between the CO 2 RO-C (= O ) -O ... On the other hand, a mechanism is considered in which alcohol is adsorbed in the form of HO—R... M on the acidic point and RO—C (═O) —OR is generated between both adsorbed species.

次に、本反応系の触媒として望ましい比較的低い酸性度且つ比較的高い塩基性度の酸性度及び塩基性度に関する測定方法を以下に示す。   Next, a measurement method relating to acidity and basicity of a relatively low acidity and a relatively high basicity desirable as a catalyst of the present reaction system will be described below.

酸性度は、一般に、対象とする化合物に室温又は前処理後の降温過程でNH雰囲気下に曝してNHを吸着させた後、TPD(温度制御脱着)法と呼ばれる温度を一定速度で昇温させた際に脱着したNH量を定量することで測定できる。 In general, the acidity is measured by exposing a target compound to an NH 3 atmosphere at room temperature or in the temperature-decreasing process after pretreatment to adsorb NH 3 and then increasing a temperature called a TPD (temperature controlled desorption) method at a constant rate. It can be measured by quantifying the amount of NH 3 desorbed when warmed.

一方、塩基性度は、一般に、上記酸性度測定法で用いたNHの代わりにCOを用い、TPDにより脱着したCO量を定量することにより測定できる。このようにして測定可能な比較的低い酸性度且つ比較的高い塩基性度を有する化合物として、酸化スズや酸化チタン、酸化ニッケルなどの各種金属塩の固体触媒が好適であるが、上記の酸性度と塩基性度のバランスが最も取れていると考えられる酸化セリウム、酸化ジルコニウム、酸化セリウムと酸化ジルコニウムの化合物の一種または二種以上からなることが、より一層好適である。 On the other hand, the basicity can generally be measured by using CO 2 instead of NH 3 used in the acidity measurement method and quantifying the amount of CO 2 desorbed by TPD. As a compound having a relatively low acidity and a relatively high basicity that can be measured in this manner, solid catalysts of various metal salts such as tin oxide, titanium oxide, and nickel oxide are suitable. And cerium oxide, zirconium oxide, and one or more compounds of cerium oxide and zirconium oxide, which are considered to have the most balanced basicity.

また、この固体触媒は、メカニズムは明らかではないが、炭酸エステル合成時に副生する水と前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の水和反応に対しても触媒活性を示すものと思われる。従って、本触媒表面上では炭酸エステル合成反応と水和反応の両者が進行する状態になるが、炭酸エステルの合成反応には平衡的に不利な低圧の条件下でも、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の水和反応は触媒作用を受けて進行し、炭酸エステルの合成反応で副生した水を触媒表面から速やかに脱離することにより炭酸エステルの合成反応の平衡が生成系にシフトして、反応圧力の低い温和な条件下でも炭酸エステル合成反応が平衡制約を受けることなく炭酸エステルの高い反応率を可能にするものと推察する。逆に高圧下では、触媒表面に多量のCO分子が吸着するために、炭酸エステル合成時に生成する水分子との接触が困難になるため、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物との水和反応が進行しにくくなり、平衡制約に近い状態でしか炭酸エステルを生産することができず、結果的に高圧下では生産性が高くならなくなるものと考えられる。 In addition, although the mechanism of this solid catalyst is not clear, it is suitable for the hydration reaction of at least one compound selected from the group consisting of water and by-product generated during carbonic acid ester synthesis and the above formulas (1) to (4). However, it seems to show catalytic activity. Accordingly, both the carbonic ester synthesis reaction and the hydration reaction proceed on the surface of the catalyst, but the above formulas (1) to (1) are obtained even under low pressure conditions which are unfavorably balanced for the carbonic ester synthesis reaction. The hydration reaction of at least one compound selected from the group consisting of (4) proceeds under catalysis, and the carbonate ester is obtained by quickly removing water produced as a by-product from the synthesis reaction of the carbonate ester from the catalyst surface. It is assumed that the equilibrium of the synthesis reaction in the above shifts to the production system, and the carbonate ester synthesis reaction enables a high reaction rate of the carbonate ester without being subjected to equilibrium constraints even under mild conditions with low reaction pressure. On the other hand, since a large amount of CO 2 molecules are adsorbed on the catalyst surface under high pressure, it becomes difficult to contact with water molecules generated during the synthesis of the carbonic acid ester, so that the group consisting of the above formulas (1) to (4) The hydration reaction with at least one compound selected from the above becomes difficult to proceed, and carbonate esters can only be produced under conditions close to equilibrium constraints, resulting in high productivity under high pressure. Conceivable.

上記推察に関し、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の反応の観点から説明すれば、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物は、液相で本発明における固体触媒の触媒作用を受けて、その表面で水和反応が促進される。従って、高圧になると固体触媒の表面がCOで覆われてしまい、主反応で生成した水分子との水和反応に対して触媒作用を受けにくい状態になるため、水和反応速度が低下するものと推察される。一方、非特許文献4、非特許文献5に記載されたアセタールや2,2−ジメトキシプロパンは、液相で触媒作用を何ら受けず、主反応で生成した水分子と水和反応を起こす。従って、主反応が高圧で優位に進行するため、高圧下で水和反応が起こりはじめるものと推察される。 Regarding the above inference, from the viewpoint of the reaction of at least one compound selected from the group consisting of the formulas (1) to (4), it is selected from the group consisting of the formulas (1) to (4). The at least one compound is catalyzed by the solid catalyst in the present invention in the liquid phase, and the hydration reaction is promoted on the surface thereof. Therefore, when the pressure is increased, the surface of the solid catalyst is covered with CO 2 , and the hydration reaction rate is reduced because it becomes difficult to be catalyzed by the hydration reaction with water molecules generated in the main reaction. Inferred. On the other hand, acetal and 2,2-dimethoxypropane described in Non-Patent Document 4 and Non-Patent Document 5 do not undergo any catalytic action in the liquid phase and cause a hydration reaction with water molecules generated in the main reaction. Therefore, since the main reaction proceeds predominantly at high pressure, it is presumed that the hydration reaction begins to occur under high pressure.

また、本発明の触媒の製造法について、下記に例を挙げると、先ず、酸化セリウム(CeO)の場合は、セリウムアセチルアセトナート水和物や水酸化セリウム、硫酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム、炭酸セリウム、蓚酸セリウム、過塩素酸セリウム、燐酸セリウム、ステアリン酸セリウムなどの各種セリウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化セリウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、セリウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 Further, with respect to the method for producing the catalyst of the present invention, the following examples are given. First, in the case of cerium oxide (CeO 2 ), cerium acetylacetonate hydrate, cerium hydroxide, cerium sulfate, cerium acetate, cerium nitrate It can be prepared by firing various cerium compounds such as ammonium cerium nitrate, cerium carbonate, cerium oxalate, cerium perchlorate, cerium phosphate and cerium stearate in an air atmosphere. When cerium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which cerium is dissolved, filtering, drying, and baking.

一方、酸化ジルコニウム(ZrO)の場合は、ジルコニウムエトキシド、ジルコニウムブトキシド、炭酸ジルコニウム、水酸化ジルコニウム、燐酸ジルコニウム、酢酸ジルコニウム、塩化酸化ジルコニウム、酸化二硝酸ジルコニウム、硫酸ジルコニウムなどの各種ジルコニウム化合物を空気雰囲気下で焼成することにより調製できる。また試薬の酸化ジルコニウムを用いる場合は、そのまま若しくは空気雰囲気下で乾燥または焼成することでも使用できる。さらに、ジルコニウムを溶解させた溶液から沈殿させ、濾過、乾燥、焼成することでも使用できる。 On the other hand, in the case of zirconium oxide (ZrO 2 ), various zirconium compounds such as zirconium ethoxide, zirconium butoxide, zirconium carbonate, zirconium hydroxide, zirconium phosphate, zirconium acetate, zirconium chloride oxide, zirconium oxide nitrate, zirconium sulfate, etc. It can be prepared by firing in an atmosphere. When zirconium oxide as a reagent is used, it can be used as it is or by drying or baking in an air atmosphere. Furthermore, it can be used by precipitating from a solution in which zirconium is dissolved, filtering, drying and baking.

また、酸化セリウムと酸化ジルコニウムの化合物の場合は、セリウムとジルコニウムを含んだ溶液に塩基を添加して共沈により水酸化物を形成後、濾過、水洗したものを空気雰囲気下で乾燥、焼成することにより調製できる。また、酸化セリウムと酸化ジルコニウムの粉末同士を物理混合して焼成することでも調製できるが、最終調製品の比表面積が高くならないため、反応がより進み易い共沈法が好ましい。   In the case of a compound of cerium oxide and zirconium oxide, a base is added to a solution containing cerium and zirconium to form a hydroxide by coprecipitation, followed by filtration and washing, followed by drying and firing in an air atmosphere. Can be prepared. Moreover, although it can prepare also by physically mixing and baking the powder of cerium oxide and zirconium oxide, since the specific surface area of a final preparation does not become high, the coprecipitation method with which reaction progresses more is preferable.

これらの方法により、具体的にはCeO−ZrOのような酸化セリウムと酸化ジルコニウムの化合物からなる固体触媒を得ることができる。尚、酸化セリウムからなる触媒や酸化ジルコニウムからなる触媒を調製する場合を含めて、これら各触媒の調製時の焼成温度は、最終調製品の比表面積が高くなる温度を選択することが好ましく、出発原料にもよるが、例えば300℃から1100℃が好ましい。また、本発明による固体触媒については、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。 Specifically, a solid catalyst comprising a compound of cerium oxide and zirconium oxide such as CeO 2 —ZrO 2 can be obtained by these methods. In addition, including the case of preparing a catalyst made of cerium oxide or a catalyst made of zirconium oxide, it is preferable to select a temperature at which the specific surface area of the final preparation is increased as the firing temperature at the time of preparation of each catalyst. Although it depends on the raw material, for example, 300 ° C. to 1100 ° C. is preferable. Further, the solid catalyst according to the present invention may contain inevitable impurities mixed in the catalyst production process in addition to the above elements, but it is desirable that impurities are not mixed as much as possible.

ここで本発明の触媒は、粉体、または成型体のいずれの形態であってもよく、成型体の場合には球状、ペレット状、シリンダー状、リング状、ホイール状、顆粒状などいずれでもよい。   Here, the catalyst of the present invention may be in any form of powder or molded body, and in the case of a molded body, it may be any of spherical, pellet, cylinder, ring, wheel, granule, etc. .

また、本発明で用いる二酸化炭素は、工業ガスとして調製されたものだけでなく、各製品を製造する工場や製鉄所、発電所等からの排出ガスから分離回収したものも用いることができる。   Moreover, the carbon dioxide used in the present invention is not limited to those prepared as industrial gases, but can also be used that separated and recovered from exhaust gases from factories, steel mills, power plants, etc. that manufacture each product.

次に、本発明の固体触媒を用いた炭酸エステルの直接合成反応は、回分反応器、半回分反応器や連続槽型反応器、管型反応器のような流通反応器のいずれを用いてもよい。   Next, the direct synthesis reaction of the carbonic acid ester using the solid catalyst of the present invention may be performed using any of a flow reactor such as a batch reactor, a semi-batch reactor, a continuous tank reactor, and a tubular reactor. Good.

反応温度としては、50〜300℃とすることが好ましい。反応温度が50℃未満の場合は、反応速度が低く、炭酸エステル合成反応、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物による水和反応共にほとんど進行せず、炭酸エステルの生産性が低い傾向がある。また反応温度が300℃を超える場合は、各反応の反応速度は高くなるが、炭酸エステルや水和反応により得られるアミドのモノマーが他のモノマーに変性したり、高分子化を起こしやすくなるため、炭酸エステルの収率が低くなる傾向がある。さらに好ましくは100〜300℃である。但し、この温度は固体触媒の種類や量、原料(一価アルコール、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物)の量や比により異なると考えられるため、適宜最適条件を設定することが望ましい。   The reaction temperature is preferably 50 to 300 ° C. When the reaction temperature is less than 50 ° C., the reaction rate is low, and the carbonic acid ester synthesis reaction and the hydration reaction with at least one compound selected from the group consisting of the above formulas (1) to (4) hardly proceed. , Carbonate ester productivity tends to be low. In addition, when the reaction temperature exceeds 300 ° C., the reaction rate of each reaction is increased, but the amide monomer obtained by the carbonate ester or hydration reaction is easily modified to other monomers or polymerized. The yield of carbonate ester tends to be low. More preferably, it is 100-300 degreeC. However, this temperature is considered to vary depending on the type and amount of the solid catalyst and the amount and ratio of the raw material (monohydric alcohol, at least one compound selected from the group consisting of the above formulas (1) to (4)). It is desirable to set optimal conditions as appropriate.

反応圧力としては、0.1〜5MPa(絶対圧)とすることが好ましい。反応圧力が0.1MPa(絶対圧)未満の場合は、減圧装置が必要となり、設備が複雑且つコスト高になるだけでなく、減圧にするための動力エネルギーが必要となり、エネルギー効率が悪くなる。また反応圧力が5MPaを超える場合は、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物による水和反応が進行しにくくなって炭酸エステルの収率が悪くなるばかりでなく、昇圧に必要な動力エネルギーが必要となり、エネルギー効率が悪くなる。また、炭酸エステルの収率を高くする観点から、反応圧力は0.1〜3MPa(絶対圧)がより好ましく、0.1〜1MPa(絶対圧)がさらに好ましい。   The reaction pressure is preferably 0.1 to 5 MPa (absolute pressure). When the reaction pressure is less than 0.1 MPa (absolute pressure), a pressure reducing device is required, and not only the equipment is complicated and expensive, but also the motive energy for reducing the pressure is required, resulting in poor energy efficiency. On the other hand, when the reaction pressure exceeds 5 MPa, the hydration reaction with at least one compound selected from the group consisting of the above formulas (1) to (4) hardly progresses and the yield of the carbonate ester is deteriorated. In addition, the power energy required for boosting is required, resulting in poor energy efficiency. Further, from the viewpoint of increasing the yield of carbonate ester, the reaction pressure is more preferably 0.1 to 3 MPa (absolute pressure), and further preferably 0.1 to 1 MPa (absolute pressure).

さらに、前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物による水和反応では、アミド化合物が副生する場合がある。さらにアミド化合物が原料の一価アルコールと反応してエステル化合物を副生する場合がある。アミド化合物は、エンジニアリングプラスチック用途、神経系用剤等の医薬用途、除草剤等の農薬用途などでよく用いられることが一般に知られている。この中から目的とする炭酸エステルを単離する場合には、各化合物の沸点差を利用した蒸留操作が好適に用いられるが、他の手法でも構わない。また、反応時間については、最適条件を適宜設定することが望ましい。   Furthermore, in the hydration reaction with at least one compound selected from the group consisting of the formulas (1) to (4), an amide compound may be by-produced. Further, the amide compound may react with the raw material monohydric alcohol to produce an ester compound as a by-product. It is generally known that amide compounds are often used for engineering plastics, pharmaceuticals such as nervous system agents, and agricultural chemicals such as herbicides. In order to isolate the target carbonate ester from these, a distillation operation utilizing the difference in boiling points of the respective compounds is preferably used, but other methods may be used. Regarding the reaction time, it is desirable to set optimal conditions as appropriate.

また水和反応に用いる前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物は、原料のアルコールの体積の0.1倍以上1倍以下で反応前に予め反応器中に導入するのが望ましい。0.1倍未満で導入した場合には、水和反応に寄与する前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物量が少ないために炭酸エステルの収率が悪くなる恐れがある。一方1倍を超えて導入した場合には、反応終了後、生成物である炭酸エステルと反応に関与しなかった多量の前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物との分離が困難になることや、必要以上に多量に加えることは経済的でない。さらに、固体触媒に対する一価アルコール及び前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の量は、固体触媒の種類や量、一価アルコールの種類や前記式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物との比により異なると考えられるため、適宜最適条件を設定することが望ましい。   In addition, at least one compound selected from the group consisting of the above formulas (1) to (4) used for the hydration reaction is a reactor in the range of 0.1 to 1 times the volume of the raw material alcohol before the reaction. It is desirable to introduce it inside. When introduced at less than 0.1 times, the yield of carbonate ester is low because the amount of at least one compound selected from the group consisting of formulas (1) to (4) contributing to the hydration reaction is small. There is a risk of getting worse. On the other hand, when introduced more than 1 time, at least one selected from the group consisting of the above-mentioned formula (1) to formula (4) that did not participate in the reaction with the carbonate ester product after completion of the reaction. It is not economical that it is difficult to separate from the above compound or that it is added in a larger amount than necessary. Furthermore, the amount of the monohydric alcohol relative to the solid catalyst and the at least one compound selected from the group consisting of the above formulas (1) to (4) depends on the type and amount of the solid catalyst, the type of monohydric alcohol and the above formula ( Since it is considered to be different depending on the ratio with at least one compound selected from the group consisting of 1) to formula (4), it is desirable to appropriately set optimum conditions.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
酸化セリウム(第一稀元素製:不純物濃度0.02%以下)を873Kで空気雰囲気下、3時間焼成し、粉末状の固体触媒を得た。そこで、190mlのオートクレーブ(反応器)に磁気攪拌子、上記固体触媒(1mmol)、メタノール(100mmol)及び2−シアノピリジン(20mmol)を導入し、約5gのCOでオートクレーブ内の空気を3回パージした後、所定の量のCOを導入・昇圧した。そのオートクレーブをバンドヒーター、ホットスターラーにより363Kまで攪拌しながら昇温し、目的の温度に達した時間を反応開始時間とした。363Kで2時間反応させた後、オートクレーブを水冷し、室温まで冷えたら減圧して内部標準物質の2−プロパノールを加え、生成物を採取し、GC(ガスクロマトグラフィー)で分析した。このようにして、COの導入量及び反応圧力を変えて表1に示す試験No.1〜9の実験を行った。
Example 1
Cerium oxide (manufactured by the first rare element: impurity concentration of 0.02% or less) was calcined at 873 K in an air atmosphere for 3 hours to obtain a powdered solid catalyst. Therefore, a magnetic stir bar, the above solid catalyst (1 mmol), methanol (100 mmol) and 2-cyanopyridine (20 mmol) were introduced into a 190 ml autoclave (reactor), and the air in the autoclave was blown three times with about 5 g of CO 2. After purging, a predetermined amount of CO 2 was introduced and pressurized. The autoclave was heated to 363 K with a band heater and a hot stirrer, and the time when the target temperature was reached was defined as the reaction start time. After reacting at 363 K for 2 hours, the autoclave was cooled with water, and after cooling to room temperature, the pressure was reduced and 2-propanol as an internal standard substance was added, and the product was collected and analyzed by GC (gas chromatography). Thus, test No. shown in Table 1 was changed by changing the amount of CO 2 introduced and the reaction pressure. Experiments 1 to 9 were performed.

Figure 0005738206
Figure 0005738206

以上の結果より、比較的低い圧力下の1〜2MPaで炭酸ジメチル(DMC)生成量が多く、高収率で得られることが確認された。また副生物の2−ピコリンアミドの生成量はDMCとほぼ同量であり、それ以外の副生物はNo.1〜9の実験では全く検出されなかった。また、No.9に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, it was confirmed that the amount of dimethyl carbonate (DMC) produced was large at 1 to 2 MPa under a relatively low pressure, and the product was obtained in a high yield. The amount of 2-picolinamide produced as a by-product is almost the same as that of DMC. It was not detected at all in experiments 1-9. No. As shown in FIG. 9, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例2)
2−シアノピリジン(CP)を下記表2に示すような量にする他は実施例1と同様にして、反応圧力が1MPaになるようにCO量を80mmol導入した後、383Kで2h反応を行った。その結果を表2に示す。
(Example 2)
In the same manner as in Example 1 except that 2-cyanopyridine (CP) was changed to the amount shown in Table 2 below, 80 mmol of CO 2 was introduced so that the reaction pressure became 1 MPa, and then the reaction was performed at 383 K for 2 h. went. The results are shown in Table 2.

Figure 0005738206
Figure 0005738206

以上の結果より、炭酸ジメチルの生成量は2−シアノピリジンの添加量と共に増加し、非常に速い反応速度で反応が進行することが確認された。また副生物の2−ピコリンアミドの生成量はDMCとほぼ同量であり、それ以外の副生物はNo.13、14で0.3〜0.4mmol程度の僅かの量だけメチルピコリネートが生成された。   From the above results, it was confirmed that the amount of dimethyl carbonate produced increased with the addition amount of 2-cyanopyridine, and the reaction proceeded at a very fast reaction rate. The amount of 2-picolinamide produced as a by-product is almost the same as that of DMC. In 13 and 14, methyl picolinate was produced in a slight amount of about 0.3 to 0.4 mmol.

(実施例3)
2−シアノピリジン(CP)を用い、下記表3に示すような反応温度にする他は実施例1と同様にして、反応圧力が1MPaになるようにCO量を80mmol導入した後、各温度で2h反応を行った。その結果を表2に示す。
(Example 3)
80 mmol of CO 2 was introduced so that the reaction pressure would be 1 MPa in the same manner as in Example 1 except that 2-cyanopyridine (CP) was used and the reaction temperature was as shown in Table 3 below. For 2 h. The results are shown in Table 2.

Figure 0005738206
Figure 0005738206

以上の結果より、393Kで炭酸ジメチルの生成量が最も多く、非常に速い反応速度で反応が進行することが確認された。また副生物の2−ピコリンアミドの生成量はDMCとほぼ同量であり、それ以外の副生物は403K以上の温度のNo.20、21、22、23で温度が高くなるほどメチルピコリネートが0.6mmolから4mmolまで徐々に増加した。   From the above results, it was confirmed that the amount of dimethyl carbonate produced was the largest at 393 K, and the reaction proceeded at a very high reaction rate. The amount of 2-picolinamide produced as a by-product is almost the same as that of DMC. As the temperature increased at 20, 21, 22, and 23, methyl picolinate gradually increased from 0.6 mmol to 4 mmol.

(実施例4)
固体触媒の酸化セリウムを0.17g(1mmol)用い、反応温度を393K、反応圧力が5MPaになるようにCO量を400mmol、脱水剤として2−シアノピリジンを50mmol反応器へ導入し、反応時間を表3に示すように他は実施例1と同様にして反応を行った。その結果を表4に示す。
Example 4
0.17 g (1 mmol) of solid catalyst cerium oxide was used, the reaction temperature was 393 K, the amount of CO 2 was 400 mmol so that the reaction pressure would be 5 MPa, 2-cyanopyridine as a dehydrating agent was introduced into the 50 mmol reactor, and the reaction time As shown in Table 3, the reaction was conducted in the same manner as in Example 1. The results are shown in Table 4.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間に伴い生成量が増加したが、12h経過後はほぼ一定となり、12hでほぼ反応が終了することが確認された。また副生物の2−ピコリンアミドの生成量はDMCとほぼ同量であり、それ以外の副生物はNo.27〜29で0.2〜1mmol程度の僅かの量だけメチルピコリネート及びメチルカーバメートが生成された。   From the above results, it was confirmed that, under these conditions, the amount of dimethyl carbonate produced increased with the reaction time, but became almost constant after 12 hours, and the reaction was almost completed after 12 hours. The amount of 2-picolinamide produced as a by-product is almost the same as that of DMC. From 27 to 29, methyl picolinate and methyl carbamate were produced in a slight amount of about 0.2 to 1 mmol.

(実施例5)
反応圧力が1MPaになるようにCO量を80mmol導入し、反応時間を下記表5に示すようにする他は実施例4と同様にして、393Kで反応を行った。その結果を表5に示す。
(Example 5)
The reaction was carried out at 393 K in the same manner as in Example 4 except that 80 mmol of CO 2 was introduced so that the reaction pressure became 1 MPa and the reaction time was as shown in Table 5 below. The results are shown in Table 5.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜4hで生成量が頭打ちになり、それ以降逆に低下する傾向が見られ、2〜4hでほぼ反応が終了することが確認された。また副生物の2−ピコリンアミドの生成量はDMCとほぼ同量であったが、それ以外の副生物は反応時間と共に増加し、0.7〜11mmol程度まで生成された。   From the above results, it was confirmed that, under this condition, dimethyl carbonate peaked in the reaction time 2h-4h, and then tended to decrease conversely, and the reaction was almost completed in 2-4h. It was. The amount of 2-picolinamide as a by-product was almost the same as that of DMC, but other by-products increased with the reaction time and were produced to about 0.7 to 11 mmol.

(実施例6)
固体触媒の酸化セリウムを0.17g(1mmol)用い、脱水剤として2−シアノピラジンを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表6に示す。
(Example 6)
The reaction was conducted in the same manner as in Example 5 except that 0.17 g (1 mmol) of cerium oxide as a solid catalyst was used and 50 mmol of 2-cyanopyrazine was used as a dehydrating agent. The results are shown in Table 6.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、実施例5の2−シアノピリジンを用いた場合と同様、炭酸ジメチルは反応時間2h〜8hで生成量が頭打ちになり、それ以降逆に低下する傾向が見られ、2〜8hでほぼ反応が終了することが確認された。   From the above results, under this condition, as in the case of using 2-cyanopyridine of Example 5, the amount of dimethyl carbonate reached its peak at reaction times of 2h to 8h, and thereafter it tends to decrease. It was confirmed that the reaction was almost completed in 2 to 8 hours.

(実施例7)
脱水剤として2−シアノピリミジンを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表7に示す。
(Example 7)
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of 2-cyanopyrimidine was used as a dehydrating agent. The results are shown in Table 7.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、実施例4の2−シアノピリジンを用いた場合と同様、炭酸ジメチルは反応時間2h〜4hで生成量が頭打ちになり、それ以降逆に低下する傾向が見られ、2〜4hでほぼ反応が終了することが確認された。   From the above results, under this condition, as in the case of using 2-cyanopyridine in Example 4, the amount of dimethyl carbonate reached its peak at the reaction time of 2h to 4h, and then it tends to decrease on the contrary. It was confirmed that the reaction was almost completed in 2 to 4 hours.

(実施例8)
脱水剤としてチオフェン−2−カルボニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表8に示す。
(Example 8)
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of thiophene-2-carbonitrile was used as a dehydrating agent. The results are shown in Table 8.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜16hで生成量が増加したが、それ以降はほぼ一定となり、12〜16hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under the present conditions, the amount of dimethyl carbonate increased in the reaction time of 2 h to 16 h, but became almost constant thereafter, and the reaction was almost completed in 12 to 16 h.

(実施例9)
脱水剤として2−フルオロニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表9に示す。
Example 9
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of 2-fluoronitrile was used as a dehydrating agent. The results are shown in Table 9.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜12hで生成量が増加したが、それ以降はほぼ一定となり、8〜12hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under this condition, the amount of dimethyl carbonate increased during the reaction time of 2 h to 12 h, but was almost constant after that, and the reaction was almost completed after 8 to 12 h.

(実施例10)
脱水剤としてプロピオニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表10に示す。
(Example 10)
The reaction was performed in the same manner as in Example 5 except that 50 mmol of propionitrile was used as a dehydrating agent. The results are shown in Table 10.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜12hで生成量が増加したが、それ以降はほぼ一定となり、8〜12hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under this condition, the amount of dimethyl carbonate increased during the reaction time of 2 h to 12 h, but was almost constant after that, and the reaction was almost completed after 8 to 12 h.

(実施例11)
脱水剤としてブチロニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表11に示す。
(Example 11)
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of butyronitrile was used as the dehydrating agent. The results are shown in Table 11.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜12hで生成量が増加したが、それ以降はほぼ一定となり、4〜12hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under this condition, the amount of dimethyl carbonate increased in the reaction time of 2 h to 12 h, but was almost constant thereafter, and the reaction was almost completed in 4 to 12 h.

(実施例12)
脱水剤としてアクリロニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表12に示す。
(Example 12)
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of acrylonitrile was used as the dehydrating agent. The results are shown in Table 12.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜8hで生成量が増加したが、それ以降はほぼ一定となり、2〜8hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under the present conditions, the amount of dimethyl carbonate produced increased during the reaction time of 2 h to 8 h, but became almost constant thereafter, and the reaction was almost completed after 2 to 8 h.

(実施例13)
脱水剤としてフェニルアセトニトリルを50mmol用いる他は全て実施例5と同様にして反応を行った。その結果を表13に示す。
(Example 13)
The reaction was conducted in the same manner as in Example 5 except that 50 mmol of phenylacetonitrile was used as a dehydrating agent. The results are shown in Table 13.

Figure 0005738206
Figure 0005738206

以上の結果より、本条件下では、炭酸ジメチルは反応時間2h〜12hで生成量が増加したが、それ以降はほぼ一定となり、8〜12hでほぼ反応が終了することが確認された。   From the above results, it was confirmed that, under this condition, the amount of dimethyl carbonate increased during the reaction time of 2 h to 12 h, but was almost constant after that, and the reaction was almost completed after 8 to 12 h.

(実施例14)
酸化ジルコニウム(ナカライテスク製:不純物濃度0.08%以下)を673Kで空気雰囲気下、3時間焼成したほかは、実施例1と同様にして実験した。尚、この場合は反応温度を443Kにて行った。その結果を表14に示す。
(Example 14)
An experiment was conducted in the same manner as in Example 1 except that zirconium oxide (manufactured by Nacalai Tesque: impurity concentration of 0.08% or less) was baked at 673 K in an air atmosphere for 3 hours. In this case, the reaction temperature was 443K. The results are shown in Table 14.

Figure 0005738206
Figure 0005738206

以上の結果より、低圧ほどDMC生成量が多く、高収率で得られることが確認された。また副生物の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.88に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, it was confirmed that the lower the pressure, the greater the amount of DMC produced and the higher the yield. The amount of by-products produced was almost the same as that of DMC, and no other by-products were detected. Furthermore, no. As shown in 88, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例15)
硝酸セリウムと硝酸ジルコニウムをセリウムが20原子量%となるように溶解させた溶液に水酸化ナトリウムを導入して沈殿物を生成させた後、この沈殿物を濾過、水洗した後、1273Kで空気雰囲気下、3時間焼成し、粉末状の固体触媒を得た。それ以外は実施例1と同様にして実験した。尚、この場合、反応温度は443Kにて行った。その結果を表15に示す。
(Example 15)
Sodium hydroxide was introduced into a solution in which cerium nitrate and zirconium nitrate were dissolved so that the cerium content was 20 atomic% to form a precipitate. The precipitate was filtered, washed with water, and then in an air atmosphere at 1273K. Calcination was performed for 3 hours to obtain a powdery solid catalyst. Otherwise, the experiment was performed in the same manner as in Example 1. In this case, the reaction temperature was 443K. The results are shown in Table 15.

Figure 0005738206
Figure 0005738206

以上の結果より、低圧ほどDMC生成量が多く、高収率で得られることが確認された。また副生物の生成量はDMCとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.93に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, it was confirmed that the lower the pressure, the greater the amount of DMC produced and the higher the yield. The amount of by-products produced was almost the same as that of DMC, and no other by-products were detected. Furthermore, no. As shown in FIG. 93, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例16)
メタノールの代わりにエタノールを用いたほかは、実施例1と同様にして実験した。その結果を表16に示す。
(Example 16)
The experiment was performed in the same manner as in Example 1 except that ethanol was used instead of methanol. The results are shown in Table 16.

Figure 0005738206
Figure 0005738206

以上の結果より、炭酸ジメチルほどではないが、炭酸ジエチル(DEC)の生成量は低圧ほど多く、高収率で得られることが確認された。また副生物の2−ピコリンアミドの生成量はDECとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.98に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, it was confirmed that although the amount of diethyl carbonate (DEC) was not as high as that of dimethyl carbonate, the amount of diethyl carbonate (DEC) produced was higher as the pressure was lower and could be obtained in a higher yield. The amount of 2-picolinamide produced as a by-product was almost the same as DEC, and no other by-products were detected. Furthermore, no. As shown in 98, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例17)
メタノールの代わりにプロパノールを用いたほかは、実施例1と同様にして実験した。その結果を表17に示す。
(Example 17)
The experiment was performed in the same manner as in Example 1 except that propanol was used instead of methanol. The results are shown in Table 17.

Figure 0005738206
Figure 0005738206

以上の結果より、炭酸ジメチル、炭酸ジエチルほどではないが、炭酸ジプロピル(DPC)の生成量は低圧ほど多く、高収率で得られることが確認された。また副生物の2−ピコリンアミドの生成量はDPCとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.103に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, although not as much as dimethyl carbonate and diethyl carbonate, it was confirmed that the amount of dipropyl carbonate (DPC) produced was higher as the pressure was lower and could be obtained in a higher yield. The amount of by-product 2-picolinamide produced was almost the same as DPC, and no other by-products were detected. Furthermore, no. As shown in 103, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例18)
メタノールの代わりにイソプロパノールを用いたほかは、実施例1と同様にして実験した。その結果を表18に示す。
(Example 18)
The experiment was performed in the same manner as in Example 1 except that isopropanol was used instead of methanol. The results are shown in Table 18.

Figure 0005738206
Figure 0005738206

以上の結果より、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピルほどではないが、炭酸ジイソプロピル(DIPC)の生成量は低圧ほど多く、高収率で得られることが確認された。また副生物の2−ピコリンアミドの生成量はDIPCとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.108に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, although not as much as dimethyl carbonate, diethyl carbonate, and dipropyl carbonate, it was confirmed that the amount of diisopropyl carbonate (DIPC) produced was higher at lower pressures and could be obtained in higher yields. The amount of 2-picolinamide produced as a by-product was almost the same as DIPC, and no other by-products were detected. Furthermore, no. As shown in 108, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(実施例19)
メタノールの代わりにt−ブチルアルコールを用いたほかは、実施例1と同様にして実験した。その結果を表19に示す。
(Example 19)
An experiment was conducted in the same manner as in Example 1 except that t-butyl alcohol was used instead of methanol. The results are shown in Table 19.

Figure 0005738206
Figure 0005738206

以上の結果より、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジイソプロピルほどではないが、炭酸ジターシャリーブチル(DTBC)の生成量は低圧ほど多く、比較的高収率で得られることが確認された。また副生物の2−ピコリンアミドの生成量はDTBCとほぼ同量であり、それ以外の副生物は全く検出されなかった。さらに、No.113に示したように、反応圧力が高くなりすぎると、DMC生成量が大きく低下してしまった。   From the above results, although not as much as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and diisopropyl carbonate, it was confirmed that the amount of ditertiary butyl carbonate (DTBC) produced was higher at lower pressures and was obtained in a relatively high yield. The amount of by-product 2-picolinamide produced was almost the same as that of DTBC, and no other by-products were detected. Furthermore, no. As shown at 113, when the reaction pressure was too high, the amount of DMC produced was greatly reduced.

(比較例1)
固体触媒の酸化セリウムを0.17g(1mmol)用い、且つ2−シアノピリジンを用いないほかは実施例1と同様にして実験した。その結果を表20に示す。
(Comparative Example 1)
The experiment was conducted in the same manner as in Example 1 except that 0.17 g (1 mmol) of cerium oxide as a solid catalyst was used and 2-cyanopyridine was not used. The results are shown in Table 20.

Figure 0005738206
Figure 0005738206

以上の結果より、2−シアノピリジンを用いない場合には、炭酸ジメチル直接合成反応の平衡制約により、反応圧力が高くなるほど反応は進行したが、DMC生成量は実施例1に比べてごくわずかにとどまった。   From the above results, when 2-cyanopyridine was not used, the reaction proceeded as the reaction pressure increased due to the equilibrium limitation of the dimethyl carbonate direct synthesis reaction, but the amount of DMC produced was slightly smaller than that in Example 1. Stayed.

(比較例2)
2−シアノピリジンの代わりに2,2−ジメトキシプロパンを20mmol用いたほかは実施例1と同様にして実験した。その結果を表21に示す。
(Comparative Example 2)
The experiment was conducted in the same manner as in Example 1 except that 20 mmol of 2,2-dimethoxypropane was used instead of 2-cyanopyridine. The results are shown in Table 21.

Figure 0005738206
Figure 0005738206

以上の結果より、低圧ではDMC生成量が実施例1に比べて極めて少なかったが、10MPaという高圧で僅かの生産量を示した。   From the above results, the amount of DMC produced was very small compared to Example 1 at a low pressure, but a slight production amount was shown at a high pressure of 10 MPa.

尚、上記実施例では、炭酸エステルと、副生物として炭酸エステルとほぼ同量のアミド化合物、及び若干のメチルカーバメート等が生じたが、蒸留により、目的生成物である炭酸エステル、及び、副生物であり医薬、農薬の原料として利用できる2−ピコリンアミド等を各々単独で回収することができた。   In the above examples, carbonate ester, amide compound of the same amount as carbonate ester, and some methyl carbamate, etc. were produced as by-products. And 2-picolinamide, which can be used as a raw material for pharmaceuticals and agricultural chemicals, could be recovered independently.

上記実施例では、固体触媒として酸化セリウム(CeO)、酸化ジルコニウム(ZrO)、酸化セリウムと酸化ジルコニウムの化合物(CeO−ZrO)に限定して記述したが、2−シアノピリジン、2−シアノピラジン、2−シアノピリミジン、チオフェン−2−カルボニトリル、2−フルオロニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、フェニルアセトニトリルを水和剤として添加する本発明においては、他の固体触媒、特に、酸性度が比較的低く塩基性度が比較的高い酸塩基複合機能を有する固体触媒でも同様に、比較的低圧下においても炭酸エステルの製造を効率よく行うことが可能である。 In the above examples, the solid catalyst is described as being limited to cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), and a compound of cerium oxide and zirconium oxide (CeO 2 —ZrO 2 ). -In the present invention in which cyanopyrazine, 2-cyanopyrimidine, thiophene-2-carbonitrile, 2-fluoronitrile, propionitrile, butyronitrile, acrylonitrile, phenylacetonitrile is added as a wettable powder, other solid catalysts, Similarly, even in the case of a solid catalyst having an acid-base complex function having a relatively low acidity and a relatively high basicity, it is possible to efficiently produce a carbonate ester even under a relatively low pressure.

Claims (9)

固体触媒と以下の式(1)〜式(4)からなる群から選ばれた少なくとも一種の化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造することを特徴とする炭酸エステルの製造方法。
Figure 0005738206
(式中、X、Yは、各々C、Nから選ばれ、Cを少なくとも1原子含む。)
Figure 0005738206
(式中、ZはO、Sから選ばれる。)
Figure 0005738206
Figure 0005738206
(式中、RはCHCH、CH(CH、CH=CHから選ばれる。)
A carbonate is produced by reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and at least one compound selected from the group consisting of the following formulas (1) to (4). A method for producing carbonate ester.
Figure 0005738206
(In the formula, X and Y are each selected from C and N, and contain at least one atom of C.)
Figure 0005738206
(In the formula, Z is selected from O and S.)
Figure 0005738206
Figure 0005738206
(In the formula, R is selected from CH 3 CH 2 , CH 3 (CH 2 ) 2 , and CH 2 = CH.)
固体触媒と以下の式(1)で表される化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造する炭酸エステルの製造方法であって、
Figure 0005738206
(式中、X、Yは、各々C、Nから選ばれ、Cを少なくとも1原子含む。)
前記式(1)で表される化合物が、2−シアノピリジン、シアノピラジン、2−シアノピリミジンからなる群から選ばれた一種または二種以上からなることを特徴とする炭酸エステルの製造方法。
A method for producing a carbonate ester, which comprises reacting a monohydric alcohol and carbon dioxide in the presence of a solid catalyst and a compound represented by the following formula (1):
Figure 0005738206
(In the formula, X and Y are each selected from C and N, and contain at least one atom of C.)
The compound represented by said Formula (1) consists of 1 type, or 2 or more types chosen from the group which consists of 2-cyanopyridine, cyanopyrazine, and 2-cyanopyrimidine, The manufacturing method of carbonate ester characterized by the above-mentioned.
固体触媒と以下の式(2)で表される化合物の存在下で、一価アルコールと二酸化炭素を反応させて炭酸エステルを製造する炭酸エステルの製造方法であって、
Figure 0005738206
(式中、ZはO、Sから選ばれる。)
前記式(2)で表される化合物が、チオフェン−2−カルボニトリル、2−フルオニトリルからなる群から選ばれた一種または二種以上からなることを特徴とする請求項1に記載の炭酸エステルの製造方法。
In the presence of a solid catalyst and a compound represented by the following formula (2), a method for producing a carbonate by reacting a monohydric alcohol and carbon dioxide to produce a carbonate,
Figure 0005738206
(In the formula, Z is selected from O and S.)
2. The carbonate ester according to claim 1, wherein the compound represented by the formula (2) is one or more selected from the group consisting of thiophene-2-carbonitrile and 2-fluoronitrile. Manufacturing method.
前記固体触媒と前記化合物の存在下で、一価アルコールと二酸化炭素を反応させて、炭酸エステルと水を生成すると共に、前記化合物と前記生成した水との水和反応によりアミド化合物を生成させて、前記生成した水を反応系から除去又は低減することにより、前記炭酸エステルの生成を促進させることを特徴とする請求項1〜3のいずれか1項に記載の炭酸エステルの製造方法。   In the presence of the solid catalyst and the compound, a monohydric alcohol and carbon dioxide are reacted to generate a carbonate ester and water, and an amide compound is generated by a hydration reaction between the compound and the generated water. The method for producing a carbonate ester according to any one of claims 1 to 3, wherein the production of the carbonate ester is promoted by removing or reducing the generated water from the reaction system. 前記固体触媒が、酸化セリウム、酸化ジルコニウム、及び酸化セリウムと酸化ジルコニウムの化合物からなる群から選ばれた一種または二種以上からなることを特徴とする請求項1〜4のいずれか1項に記載の炭酸エステルの製造方法。   The said solid catalyst consists of 1 type, or 2 or more types chosen from the group which consists of a compound of a cerium oxide, a zirconium oxide, and a compound of a cerium oxide and a zirconium oxide, The any one of Claims 1-4 characterized by the above-mentioned. Of carbonic acid ester. 前記一価アルコールがメタノールであり、炭酸エステルとして炭酸ジメチルを製造することを特徴とする請求項1〜5のいずれか1項に記載の炭酸エステルの製造方法。   The method for producing a carbonate ester according to any one of claims 1 to 5, wherein the monohydric alcohol is methanol, and dimethyl carbonate is produced as a carbonate ester. 前記反応時の圧力が5MPa以下であることを特徴とする請求項1〜6のいずれか1項に記載の炭酸エステルの製造方法。   The pressure at the time of the said reaction is 5 Mpa or less, The manufacturing method of the carbonate ester of any one of Claims 1-6 characterized by the above-mentioned. 前記反応時の圧力が3MPa以下であることを特徴とする請求項1〜6のいずれか1項に記載の炭酸エステルの製造方法。   The pressure at the time of the said reaction is 3 Mpa or less, The manufacturing method of the carbonate ester of any one of Claims 1-6 characterized by the above-mentioned. 前記反応時の圧力が0.1〜1MPaであることを特徴とする請求項1〜6のいずれか1項に記載の炭酸エステルの製造方法。   The pressure at the time of the reaction is 0.1-1 MPa, The manufacturing method of the carbonate ester of any one of Claims 1-6 characterized by the above-mentioned.
JP2012008981A 2011-01-20 2012-01-19 Method for producing carbonate ester Active JP5738206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008981A JP5738206B2 (en) 2011-01-20 2012-01-19 Method for producing carbonate ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011010159 2011-01-20
JP2011010159 2011-01-20
JP2012008981A JP5738206B2 (en) 2011-01-20 2012-01-19 Method for producing carbonate ester

Publications (2)

Publication Number Publication Date
JP2012162523A JP2012162523A (en) 2012-08-30
JP5738206B2 true JP5738206B2 (en) 2015-06-17

Family

ID=46842303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008981A Active JP5738206B2 (en) 2011-01-20 2012-01-19 Method for producing carbonate ester

Country Status (1)

Country Link
JP (1) JP5738206B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349787B2 (en) * 2014-03-04 2018-07-04 新日鐵住金株式会社 Method for producing carbonate ester
JP6431810B2 (en) * 2015-05-18 2018-11-28 三菱重工エンジニアリング株式会社 Catalyst for synthesis of dibutyl carbonate and method for producing the same
WO2017093472A1 (en) 2015-12-02 2017-06-08 Ait Austrian Institute Of Technology Gmbh Method and device for the continuous production of organic carbonates from co2
US10584092B2 (en) 2016-06-22 2020-03-10 Mitsubishi Gas Chemical Company, Inc. Method for producing aromatic nitrile compound and method for producing carbonate ester
ES2977782T3 (en) 2016-12-21 2024-08-30 Mitsubishi Gas Chemical Co Method for producing an aromatic nitrile compound and method for producing carbonic acid ester
JP6905705B2 (en) * 2017-02-25 2021-07-21 国立大学法人東北大学 Method for producing carbamic acid ester
KR102568451B1 (en) 2017-09-29 2023-08-18 미츠비시 가스 가가쿠 가부시키가이샤 Catalyst regeneration method and carbonic acid ester production method
TWI654178B (en) * 2017-12-28 2019-03-21 財團法人工業技術研究院 Method for preparing dialkyl carbonate
SG11202005684UA (en) * 2018-01-10 2020-07-29 Mitsubishi Gas Chemical Co Method for producing carbonic ester
EP3822251A4 (en) * 2018-07-10 2021-10-13 Nippon Steel Corporation Method for producing carbonate esters, and catalytic structure for producing carbonate esters
JP7367676B2 (en) * 2018-07-27 2023-10-24 三菱瓦斯化学株式会社 Method for producing aromatic nitrile compound and method for producing carbonate ester
KR20210100087A (en) 2018-12-07 2021-08-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing dialkyl carbonate
TWI722719B (en) 2019-12-16 2021-03-21 財團法人工業技術研究院 Catalyst and precursor thereof and method of forming dialkyl carbonate
JPWO2022181670A1 (en) 2021-02-25 2022-09-01
CN115991650A (en) * 2021-10-19 2023-04-21 中国科学院大连化学物理研究所 Method for directly preparing dimethyl carbonate from carbon dioxide and methanol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953048B2 (en) * 2005-10-06 2012-06-13 独立行政法人産業技術総合研究所 Method for producing carbonate ester
JP5252424B2 (en) * 2007-11-02 2013-07-31 新日鐵住金株式会社 Method for producing carbonate ester
JP5458352B2 (en) * 2008-08-27 2014-04-02 新日鐵住金株式会社 Method for producing carbonate ester

Also Published As

Publication number Publication date
JP2012162523A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5738206B2 (en) Method for producing carbonate ester
JP5458352B2 (en) Method for producing carbonate ester
WO2015099053A1 (en) Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus
JP5841295B2 (en) Method for producing chemical compounds from carbon dioxide
TWI747912B (en) Method for producing aromatic nitrile compound and method for producing carbonate
JP5252424B2 (en) Method for producing carbonate ester
Raza et al. Green synthesis of dimethyl carbonate from CO2 and methanol: new strategies and industrial perspective
JP6305989B2 (en) Method for producing dimethyl carbonate
TWI770091B (en) Method for producing aromatic nitrile compound and method for producing carbonate
KR101660560B1 (en) - method for producing -hydroxycarboxylic acid ester
JP6349787B2 (en) Method for producing carbonate ester
CN113683530B (en) Method for preparing heptafluoroisobutyronitrile by gas phase hydrocyanation
JP2021151986A (en) Method and device for producing carbonate ester
JP7487664B2 (en) Method for producing dialkyl carbonate
JP6435728B2 (en) Method and apparatus for producing carbonate ester
Yabushita et al. Thermodynamic and Catalytic Insights into Non‐Reductive Transformation of CO2 with Amines into Organic Urea Derivatives
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
Zhao et al. Macro kinetics for synthesis of dimethyl carbonate from urea and methanol on Zn-containing catalyst
GU CO2 Transformation to Polycarbonates and Carbamates Using CeO2 as a Heterogeneous Catalyst
JP4026521B2 (en) Method for producing alkyl nitrite
O'Neill Synthesis of Organic Carbonates by Direct Condensation of Alcohols with Carbon Dioxide
常陶 Direct Synthesis of Organic Carbonates from Carbon Dioxide and Alcohols over Cerium Oxide Catalyst Assisted by Zeolites and Ketals
CN116867772A (en) Method for producing 2-furancarbonitrile and method for producing carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250