WO2015099004A1 - Sliding bearing device - Google Patents

Sliding bearing device Download PDF

Info

Publication number
WO2015099004A1
WO2015099004A1 PCT/JP2014/084230 JP2014084230W WO2015099004A1 WO 2015099004 A1 WO2015099004 A1 WO 2015099004A1 JP 2014084230 W JP2014084230 W JP 2014084230W WO 2015099004 A1 WO2015099004 A1 WO 2015099004A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
grooves
sliding surface
groove
resin material
Prior art date
Application number
PCT/JP2014/084230
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 憲一
則雄 高橋
八鍬 浩
山中 隆司
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to MYPI2016702258A priority Critical patent/MY174184A/en
Priority to JP2015554982A priority patent/JP6422443B2/en
Priority to CN201480070773.5A priority patent/CN105874230B/en
Publication of WO2015099004A1 publication Critical patent/WO2015099004A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/14Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load specially adapted for operating in water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Definitions

  • the present invention relates to a sliding bearing device using a resin material, and more particularly to a sliding bearing device suitably used as a radial bearing of a rotary machine such as a pump.
  • ⁇ Slide bearing devices using resin materials are widely used in rotating machines such as turbomachines and office machines because of the good lubrication performance of the resin.
  • a sliding bearing device using a resin material is used for a pump for handling water contaminated with foreign matter such as earth and sand, foreign matter mixed water may enter the bearing sliding surface. Since the component has higher hardness than the resin material, the resin material is worn. Therefore, excellent wear resistance is required for a sliding bearing device using a resin material.
  • the sliding bearing device may be operated not only when the bearing sliding surface is operated in water but also in the atmosphere. Thus, when the bearing sliding surface of the sliding bearing device is operated under dry conditions where the bearing sliding surface is exposed to the atmosphere, excellent friction and wear characteristics are required under the dry conditions.
  • Patent Document 1 the wear resistance during dry operation is improved by using a slide bearing made of a material in which a long carbon fiber coated with a resin is wound around a shaft core in a coil shape.
  • a slide bearing made of a material in which a long carbon fiber coated with a resin is wound around a shaft core in a coil shape.
  • Patent Document 1 discusses the improvement of the cooling effect of the sliding bearing in order to avoid the high temperature due to the frictional heat of the sliding portion in the operation under dry conditions. There is no discussion in terms of improving the friction and wear resistance of plain bearings.
  • the accumulation of wear powder on the sliding surface may cause a decrease in wear resistance and difficulty in adapting the sliding parts when operating with a high coefficient of friction immediately after startup. It becomes. Therefore, shortening the time for which the abrasion powder stays on the sliding surface leads to shortening the “familiar operation” time for making the sliding parts easy to conform to each other with excellent wear resistance. From the viewpoint of the cooling effect of the sliding bearing, it can be expected that the “familiarity” between the sliding portions proceeds rapidly, and the friction coefficient becomes low and the bearing temperature rise is kept low.
  • a sliding member made of a resin material that does not contain carbon fiber or contains carbon fiber as a reinforcing agent even if it contains carbon fiber has good wear resistance in slurry, It is a problem to suppress the frictional wear characteristics of the material and to increase the temperature due to frictional heat at the sliding part.
  • the present invention has been made in view of the above-described circumstances, and has the disadvantage of a sliding bearing made of a material obtained by winding a conventional long carbon fiber around a shaft in a coil shape, that is, having a low slurry wear resistance.
  • Bearing sliding surface that eliminates foreign matter in water that has been eliminated and has excellent wear resistance, and also has excellent frictional wear characteristics when sliding under dry conditions (in air) and suppresses high temperatures due to frictional heat
  • An object of the present invention is to provide a plain bearing device having Further, the present invention, when used in a dry condition in which the bearing sliding surface of the sliding bearing device is exposed to the atmosphere, can reduce the time that the wear powder stays on the bearing sliding surface and can also remove the wear powder.
  • the purpose of the present invention is to provide a sliding bearing device that prevents the bearing temperature from rising by shortening the time of the familiar operation in which the friction coefficient immediately after start-up is high, and that is excellent in wear resistance. .
  • a sliding bearing device of the present invention is a sliding bearing used in a rotating machine, and the bearing portion is a bearing sliding surface on a resin material not containing carbon fiber or a resin material not containing carbon fiber.
  • the bearing sliding surface is provided with a plurality of axially penetrating grooves, and the plurality of grooves are the entire sliding surface of the bearing sliding surface. It is formed so that the ratio of the total area occupied by the groove to the area of the groove (groove area ratio) is 15 to 50%, and the distance between adjacent grooves is 10 to 60 mm or 5 to 60 mm. It is characterized by being.
  • the carbon fiber is shorter than the circumferential length of the bearing sliding surface.
  • the length of the carbon fiber is preferably 10 ⁇ m to 10 mm.
  • the diameter of the carbon fiber is preferably 5 ⁇ m to 15 ⁇ m.
  • the number of carbon fibers may be any number, but the number of carbon fibers is determined so as to include 5 to 30% by weight of carbon fibers with respect to the total weight of the bearing portion of the slide bearing.
  • the groove area ratio When the groove area ratio is 15% or more, the amount of wear on the bearing sliding surface decreases approximately proportionally. That is, the larger the groove area ratio, the more the wear resistance in foreign matter mixed water tends to be improved. .
  • the lower limit value of the groove area ratio is set to 15%.
  • the upper limit value of the groove area ratio is set to 50%.
  • a slide bearing made of a material in which a long carbon fiber coated with a resin is wound around a shaft in a coil shape has been focused on cooling sliding frictional heat during dry operation.
  • the bearing portion is a resin material that does not include carbon fibers or a composite material that includes a plurality of carbon fibers in a resin material that does not include carbon fibers.
  • the present invention focuses on the fact that foreign substances and wear powder that cause an increase in the coefficient of friction can be quickly removed.
  • the groove area ratio is increased from 25% to 50% or less, and by increasing the groove area ratio, it is possible to quickly remove foreign matters and wear powder, and thus the amount of wear can be reduced. .
  • the shaft behavior was stable even when the groove area ratio was increased to that extent.
  • the lower limit value of the distance between grooves is 10 mm.
  • the smaller the distance between the grooves the smaller the bearing temperature rise value (the value obtained by subtracting the room temperature from the maximum bearing temperature during operation). Therefore, when the PV (P: surface pressure, V: sliding speed) value is high and it is necessary to give priority to the suppression of the bearing temperature rise value, the lower limit value of the distance between adjacent grooves is further set to 5 mm. Temperature rise can be kept low.
  • a cushioning material such as rubber (heat-resistant limit temperature of about 120 ° C) may be arranged on the back of the bearing.
  • heat-resistant limit temperature of about 120 ° C
  • the distance between the grooves needs to be 60 mm or less. Therefore, the upper limit of the distance between grooves is set to 60 mm. In this way, by setting the distance between adjacent grooves to 10 to 60 mm, the time during which the wear powder stays on the sliding surface is shortened, and the wear powder is removed by the groove, resulting in excellent wear resistance and starting.
  • the bearing temperature rise can be suppressed to a low level by the effect of shortening the familiar operation time in which the friction coefficient immediately after the operation is high.
  • the groove width is determined from the relationship between the inner diameter of the bearing, the area ratio of the groove in the range of 15 to 50%, and the distance between the grooves in the range of 10 to 60 mm. Alternatively, when priority is given to the suppression of the bearing temperature rise value, the distance between adjacent grooves may be shortened to 5 mm.
  • the resin material is at least one of PA, POM, PBT, PET, PPE, PC, UHMw-PE, PTFE, PPS, PI, PEEK, PAR, PSF, PEI, PAI, PES.
  • One type is included.
  • the groove is formed so that the depth in the radial direction from the bearing sliding surface is 1.0 mm or more and 2/3 or less of the thickness of the resin material or composite material. It is characterized by.
  • the groove depth in the radial direction from the bearing sliding surface is 1 mm or less, slurry particles or wear powder may clog the groove, so the lower limit of the groove depth is 1 mm. If the groove depth is too large, there will be a problem with the strength of the bearing. Therefore, the upper limit value of the groove depth is set to 2/3 or less of the thickness of the resin material or composite material.
  • the groove depth is not particularly specified when the bearing pad is attached to a part made of a material different from the bearing material.
  • the pump of the present invention is a pump that supports a rotating shaft that supports an impeller by a slide bearing device and is operated in a dry condition in which a bearing slide surface of the slide bearing device is exposed to the atmosphere.
  • the sliding bearing device according to any one of Items 1 to 7 is used.
  • the present invention has the following effects. (1) When the slide bearing device is used in water mixed with foreign matters such as earth and sand, the foreign matter removing effect for removing foreign matters from the bearing sliding surface is high, and the wear resistance is excellent. (2)
  • the bearing portion is not a long carbon fiber, but a composite material including a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material not containing carbon fibers or a resin material not containing carbon fibers. Since the material is used, it is considered that the increase in the amount of slurry wear of the bearing material due to the dropping of the carbon fiber hardly occurs. Therefore, the slurry wear resistance is improved.
  • the bearing portion is not a long carbon fiber, but a composite that includes a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fibers or a resin material that does not contain carbon fibers. Although it was made of a material, the bearing sliding surface was provided with a plurality of axially penetrating grooves so that the distance between adjacent grooves was 10 to 60 mm or 5 to 60 mm. The value can be controlled appropriately.
  • FIG. 1 is a perspective view showing a plain bearing device according to the present invention.
  • 2 is a cross-sectional view of the plain bearing device shown in FIG. 1 taken along line II-II.
  • FIG. 3 is an enlarged view of part III of FIG.
  • FIG. 4 is a graph showing the relationship between the groove area ratio and the wear resistance.
  • FIG. 5 is a graph showing the relationship between the distance between grooves and the wear resistance.
  • FIG. 6 is a graph showing the relationship between the groove distance and the bearing wear rate (bearing inner diameter change rate).
  • FIG. 7 is a graph showing the relationship between the inter-groove distance and the bearing temperature rise value.
  • FIG. 8A is a longitudinal sectional view of the plain bearing device.
  • FIG. 8B is a longitudinal sectional view of the plain bearing device.
  • FIG. 8A is a longitudinal sectional view of the plain bearing device.
  • FIG. 8B is a longitudinal sectional view of the plain bearing device.
  • FIG. 8A is a longitudinal section
  • FIG. 8C is a longitudinal sectional view of the plain bearing device.
  • FIG. 8D is a longitudinal sectional view of the plain bearing device.
  • FIG. 8E is a horizontal sectional view of the plain bearing device.
  • FIG. 8F is a horizontal sectional view of the plain bearing device.
  • FIG. 8G is a horizontal sectional view of the plain bearing device.
  • FIG. 9 is a cross-sectional view showing a vertical mixed flow pump in which the plain bearing device of the present invention is preferably used.
  • FIG. 10 is a diagram showing a usage state of the plain bearing of one embodiment of the present invention.
  • FIG. 1 is a perspective view showing a plain bearing device according to the present invention.
  • the sliding bearing device 1 is made of a resin material that does not contain carbon fibers or a composite material that contains a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fibers. It is formed into a cylindrical shape. Here, it is sufficient that the carbon fiber is shorter than the circumferential length of the bearing sliding surface.
  • the length of the carbon fiber is preferably 10 ⁇ m to 10 mm.
  • the diameter of the carbon fiber is preferably 5 ⁇ m to 15 ⁇ m.
  • the number of carbon fibers may be any number, but the number of carbon fibers is determined so as to include 5 to 30% by weight of carbon fibers with respect to the total weight of the bearing portion of the slide bearing.
  • the resin materials are PA (polyamide), POM (polyacetal), PBT (polybutylene terephthalate), PET (polyethylene terephthalate), PPE (polyphenylone ether), PC (polycarbonate), UHMw-PE (ultra high molecular weight polyethylene), PTFE.
  • PA polyamide
  • POM polyacetal
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PPE polyphenylone ether
  • PC polycarbonate
  • UHMw-PE ultra high molecular weight polyethylene
  • PTFE Polytetrafluoroethylene
  • PPS Polyphenylene sulfide
  • PI Polyimide
  • PEEK Polyether ether Teton
  • PAR Polyarylate
  • PSF Polysulfone
  • PEI Polyetherimide
  • PAI Polyamideimide
  • PES polyethersulfone
  • FIG. 2 is a cross-sectional view taken along the line II-II of the plain bearing device 1 shown in FIG.
  • a plurality of grooves 1 g penetrating in the axial direction are formed on the bearing sliding surface BS of the sliding bearing device 1.
  • FIG. 2 illustrates the case where a plurality of grooves are formed on the bearing sliding surface BS, the number of grooves may be one.
  • the plurality of grooves 1g is the total area occupied by the groove with respect to the entire area of the sliding surface of the bearing sliding surface.
  • the ratio (groove area ratio) is 15 to 50%. In the example shown in FIG.
  • the ratio (groove area ratio) of the total area occupied by the groove to the area of the entire sliding surface of the bearing sliding surface can be expressed as (8w / ⁇ d) ⁇ 100 (%).
  • This formula can be expressed as (nw / ⁇ d) ⁇ 100 (%) when the number of grooves is n (n is a positive integer).
  • the plurality of grooves 1g are formed so that the groove area ratio ((nw / ⁇ d) ⁇ 100 (%)) is 15 to 50%.
  • the groove width w refers to the width of the groove expressed by a circumferential length.
  • the plurality of grooves 1g are formed so that the distance between adjacent grooves (inter-groove distance (L)) is 10 to 60 mm.
  • L inter-groove distance
  • w groove width
  • the inter-groove distance L refers to the circumferential length of the sliding surface between the grooves.
  • FIG. 3 is an enlarged view of part III of FIG.
  • the depth (dp) of the groove 1g and the thickness (T) of the resin material or composite material are shown.
  • Each groove 1g is formed so that the radial depth (dp) from the bearing sliding surface BS is 1.0 mm or more and 2/3 or less of the thickness (T) of the resin material or composite material. That is, 1.0 mm ⁇ dp ⁇ (2/3) T.
  • the bearing is a segment type
  • a groove depth can be formed between adjacent bearing pads, and therefore the groove depth is not particularly defined.
  • FIG. 4 is a graph showing the relationship between the groove area ratio and the wear resistance, the horizontal axis indicates the groove area ratio (%), and the vertical axis indicates the amount of wear of the bearing in the slurry (the amount of change in the inner diameter of the bearing). [Mm] is shown.
  • the groove area ratio is 15% or more, the amount of wear decreases approximately proportionally. That is, the wear resistance tends to improve as the groove area ratio increases.
  • the lower limit value of the groove area ratio is set to 15%.
  • the upper limit value of the groove area ratio is set to 50%.
  • the wear resistance is improved by the effect of removing foreign matters by the grooves and the effect of making it difficult for foreign matters to enter the sliding surface. However, when the area ratio of the grooves is less than 15%, the effect is reduced and the wear resistance is not improved.
  • FIG. 5 is a graph showing the relationship between the distance between the grooves and the wear resistance, the horizontal axis indicates the distance between the grooves (mm), and the vertical axis indicates the amount of wear of the bearing in the slurry (the amount of change in the inner diameter of the bearing) [mm. ] Is shown.
  • the amount of wear of the bearing in the slurry varies and shows a certain tendency. Absent. That is, the ratio of the inter-groove distance to the circumferential length of the bearing sliding surface has no correlation with the wear resistance in the slurry.
  • FIG. 4 and FIG. 5 from the test results, in a plain bearing made of a resin material or a composite material of a resin material and carbon fiber, the area ratio of the groove affects the wear resistance in the slurry. confirmed.
  • FIG. 6 and FIG. 7 show the results of testing using a PEEK material bearing.
  • the test was conducted under the following conditions. Bearing average surface pressure: 0.1 MPa, peripheral speed: 4 m / s, test time: 2 h, atmosphere: air
  • FIG. 6 is a graph showing the relationship between the groove distance and the bearing wear rate, and the horizontal axis is between the grooves. The distance (mm) is shown, and the vertical axis shows the bearing wear rate (bearing inner diameter change rate) ( ⁇ m / h) in atmospheric operation.
  • the bearing wear rate ⁇ m / h
  • the lower limit of the inter-groove distance (L) is 10 mm.
  • the bearing wear rate ( ⁇ m / h) is around 0.8 or less, and the bearing wear rate decreases. Therefore, a more preferable range of the inter-groove distance (L) is 20 to 45 mm.
  • FIG. 6 also shows the relationship between the distance between grooves and the coefficient of friction during steady operation. As shown in FIG. 6, even when the inter-groove distance (L) is changed between 3 and 46 mm, the friction coefficient is substantially constant. Therefore, the inter-groove distance has no correlation with the coefficient of friction during steady operation.
  • FIG. 7 is a graph showing the relationship between the groove distance and the bearing temperature rise value (° C.), where the horizontal axis shows the groove distance (mm), and the vertical axis shows the bearing temperature rise value (operation) in the atmospheric operation.
  • the smaller the inter-groove distance (L) the smaller the bearing temperature rise value.
  • the bearing temperature rise value increases almost linearly.
  • a cushioning material made of a rubber material may be disposed on the back surface of the bearing, and the cushioning material made of the rubber material has a heat resistant limit temperature of 120 ° C.
  • the sliding bearing device at a heat resistant limit temperature (120 ° C.) or lower. Since the ambient temperature in the usage environment of the slide bearing device is assumed to be 40 ° C., the bearing temperature rise value needs to be 80 ° C. or less. As shown in FIG. 7, in order to make the bearing temperature rise value 80 ° C. or less, the upper limit value of the inter-groove distance (L) is set to 60 mm. FIG. 7 also shows the relationship between the inter-groove distance and the friction coefficient immediately after startup, but the friction coefficient is substantially constant even when the inter-groove distance is changed. There is no correlation to the coefficient of friction.
  • the lower limit value of the inter-groove distance is 10 mm from the relationship between the inter-groove distance and the bearing wear rate shown in FIG. 6, and the inter-groove distance and the bearing temperature rise value shown in FIG. Therefore, the upper limit of the inter-groove distance is 60 mm. Therefore, the distance between adjacent grooves (inter-groove distance) is 10 to 60 mm.
  • a more preferable range of the inter-groove distance is 20 to 46 mm, which shows a small bearing wear rate in FIG. As shown in FIG. 7, when the inter-groove distance is 46 mm, the bearing temperature rise value is about 65 ° C.
  • the bearing temperature remains at 115 ° C. and does not adversely affect the cushioning material. If the PV (P: surface pressure, V: sliding speed) value is high and it is desired to prioritize the suppression of the bearing temperature increase value, the distance between adjacent grooves can be reduced to 5 mm, thereby reducing the bearing temperature increase. Good.
  • the accumulation of wear powder on the sliding surface causes a decrease in wear resistance and difficulty in fitting. Therefore, by setting the distance between the grooves to 10 to 60 mm or 5 to 60 mm, the time during which the wear powder stays on the sliding surface is shortened, and the wear powder is removed by the groove, resulting in excellent wear resistance. Due to the effect of shortening the familiar operation time when the friction coefficient is high, the bearing temperature rise can be suppressed low. As shown in FIG. 6 and FIG. 7, from the test results, in the slide bearing made of a resin material or a composite material of a resin material and carbon fiber, the groove distance has an effect on the wear characteristics in the atmosphere and the bearing temperature rise. It was confirmed.
  • the groove width is determined from the relationship between the bearing inner diameter, the groove area ratio in the range of 15 to 50%, and the inter-groove distance in the range of 10 to 60 mm or 5 to 60 mm.
  • (4) Groove depth The groove 1g has a groove depth (dp) because if the groove depth (dp) in the radial direction from the bearing sliding surface is 1 mm or less, slurry particles or wear powder may clog the groove. ) Was 1 mm.
  • the groove depth (dp) has no particular upper limit, but if it is too large, there will be a problem with the strength of the bearing. Therefore, the upper limit of the groove depth (dp) is set to 2 / th of the thickness (T) of the resin material or composite material. 3 or less.
  • T thickness
  • FIGS. 8A to 8G are longitudinal sectional views of the plain bearing device 1, and correspond to FIG. 8E to 8G are horizontal sectional views of the plain bearing device 1.
  • FIG. The plain bearing device 1 shown in FIGS. 8A and 8B is not uniform in the groove width (w) of the groove 1g but is composed of a combination of large, small (FIG. 8A), large, medium, and small (FIG. 8B).
  • the groove width (w) is not uniform, and the positions of the grooves are also shifted. 8E, FIG. 8F, and FIG.
  • the sliding bearing device 1 shown in FIG. 8E is not linear in the shape of the through groove 1g penetrating in the axial direction, but in a linear shape (FIG. 8E) having a step at the center. It has a shape (FIG. 8F) and a mountain shape (FIG. 8G).
  • the distance between the grooves can be freely set within a range of 10 to 60 mm or 5 to 60 mm.
  • the distance between the grooves is a distance parallel to the sliding direction (circumferential direction) and is a distance connecting adjacent edges of adjacent grooves. When there are a plurality of distances connecting adjacent edges of adjacent grooves, or when there are a plurality of inter-groove distances, the average distance is selected.
  • FIG. 9 is a cross-sectional view showing a vertical mixed-flow pump that is an example of a pump used in a drainage station, including a plain bearing device according to the present embodiment.
  • the vertical mixed flow pump has a discharge elbow 30 installed and fixed on the pump installation floor, a suspension pipe 29 connected to the lower end of the discharge elbow 30, and a lower end of the suspension pipe 29.
  • a discharge bowl 28 for storing an impeller 22 to be described later is connected, and a suction bell 27 is connected to the lower end of the discharge bowl 28 for sucking water.
  • shafts 10 and 10 ′ connected to each other by a shaft coupling 26 are disposed at substantially radial center portions of the suspension pipe 29, the discharge bowl 28 and the suction bell 27.
  • the shafts 10 and 10 ′ are supported by the upper bearing 32 and the lower bearing 33.
  • An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the shafts 10 and 10 '.
  • the other ends of the shafts 10 and 10 ′ are connected to a driving motor (not shown) that rotates from the hole provided in the discharge elbow 30 to the outside of the vertical mixed flow pump and rotates the impeller 22.
  • a floating seal 34 is provided between the shafts 10 and 10 'and a hole provided in the discharge elbow 30, whereby water handled by the vertical mixed flow pump flows out of the vertical mixed flow pump. Is prevented.
  • the drive motor is provided on land so that maintenance and inspection can be easily performed, and the rotation of the drive motor is transmitted to the shafts 10 and 10 ′ so that the impeller 22 can be rotated.
  • water is sucked from the suction bell 27, passes through the discharge bowl 28 and the suspension pipe 29, and is discharged from the discharge elbow 30.
  • the vertical mixed flow pump shown in FIG. 9 is operated in a state where there is no fluid inside the pump when the pump is started, that is, in a dry condition. In addition, during steady operation after startup, the pump is operated in a state where there is water mixed with foreign matter inside the pump.
  • FIG. 10 is an enlarged view of the plain bearing device applied to the bearings 32 and 33 according to the present embodiment.
  • the shafts 10 and 10 ′ have sleeves 11 made of stainless steel, sintered metal, or surface-modified metal, which are counterpart materials for the bearing, on the outer periphery thereof.
  • a sliding bearing 1 made of a resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the plain bearing 1 is fixed to a support member 13 connected to a suspension pipe 29 of the pump via a collar portion 12a by a bearing case 12 made of metal or resin.
  • the present inventors arrange the slide bearing device according to the present invention in the bearings 32 and 33 of the vertical mixed flow pump having the structure shown in FIG. Steady operation was performed to drain slurry water mixed. As a result, the wear and friction of the bearings are suppressed, and the removal of foreign matter and abrasive powder in the slurry water is quickly discharged, so that it was possible to perform well even under severe conditions. .
  • the present invention relates to a sliding bearing device using a resin material, and is particularly applicable to a sliding bearing device that is preferably used as a radial bearing of a rotary machine such as a pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention pertains to a sliding bearing device which can be suitably used as a radial bearing in a rotating machine such as a pump. In this sliding bearing used in a rotating machine, the bearing portion comprises a resin material that does not contain carbon fibers, or comprises a composite material wherein several carbon fibers having a length shorter than the circumferential length of the bearing sliding surface (BS) are included with a resin material which does not contain carbon fibers. Multiple grooves (1g) are provided in the bearing sliding surface (BS) so as to pass through the bearing sliding surface in the axial direction, and the multiple grooves (1g) are formed such that the percentage of the total surface area occupied by the grooves (1g) (the percentage surface area of the grooves) with respect to the entire sliding surface area of the bearing sliding surface (BS) is 15-50%, and the distance between adjacent grooves is 10-60 mm.

Description

すべり軸受装置Slide bearing device
 本発明は、樹脂材料を用いたすべり軸受装置に係り、特にポンプ等の回転機械のラジアル軸受として好適に使用されるすべり軸受装置に関する。 The present invention relates to a sliding bearing device using a resin material, and more particularly to a sliding bearing device suitably used as a radial bearing of a rotary machine such as a pump.
 樹脂材料を用いたすべり軸受装置は、樹脂の有する良好な潤滑性能のため、ターボ機械等の回転機械や事務機械に広く使用されている。樹脂材料を用いたすべり軸受装置を土砂等の異物が混入した水を取扱うためのポンプ等に使用する場合には、異物混入水が軸受すべり面に侵入してくることがあるが、土砂の主成分は樹脂材料と比較して硬度が高いため、樹脂材料が摩耗する。そのため、樹脂材料を用いたすべり軸受装置には、優れた耐摩耗性が求められる。また、立形ポンプ等においては、すべり軸受装置は、軸受すべり面が水中で運転される場合ばかりでなく大気中で運転される場合がある。このようにすべり軸受装置の軸受すべり面が大気中に露出するドライ条件で運転される場合には、ドライ条件で優れた摩擦摩耗特性が求められている。 ¡Slide bearing devices using resin materials are widely used in rotating machines such as turbomachines and office machines because of the good lubrication performance of the resin. When a sliding bearing device using a resin material is used for a pump for handling water contaminated with foreign matter such as earth and sand, foreign matter mixed water may enter the bearing sliding surface. Since the component has higher hardness than the resin material, the resin material is worn. Therefore, excellent wear resistance is required for a sliding bearing device using a resin material. In vertical pumps and the like, the sliding bearing device may be operated not only when the bearing sliding surface is operated in water but also in the atmosphere. Thus, when the bearing sliding surface of the sliding bearing device is operated under dry conditions where the bearing sliding surface is exposed to the atmosphere, excellent friction and wear characteristics are required under the dry conditions.
 特許文献1では樹脂コーティングした長尺の炭素繊維を軸芯に対してコイル状に巻回した材料からなるすべり軸受とすることで、ドライ運転時の耐摩耗性を向上させ、また、すべり軸受のすべり面に溝を施すことで異物の除去効果を向上させ、軸受としてのスラリー耐摩耗性を向上させている。
 しかし、長尺の炭素繊維を軸芯に対してコイル状に巻回した材料自体は、異物によって繊維が切断されると繊維が脱落していくため、耐スラリー摩耗性が非常に低い。従って、すべり面に溝を施しても長寿命が期待できないことが課題である。
In Patent Document 1, the wear resistance during dry operation is improved by using a slide bearing made of a material in which a long carbon fiber coated with a resin is wound around a shaft core in a coil shape. By providing grooves on the sliding surface, the effect of removing foreign matters is improved, and the slurry wear resistance as a bearing is improved.
However, the material itself obtained by winding a long carbon fiber around the shaft in a coil shape has very low slurry wear resistance because the fiber falls off when the fiber is cut by a foreign substance. Therefore, it is a problem that long life cannot be expected even if grooves are provided on the sliding surface.
 また、特許文献1では、ドライ条件での運転における摺動部の摩擦熱による高温化を回避するために、すべり軸受の冷却効果の向上に着眼して議論されているが、ドライ条件での運転におけるすべり軸受の耐摩擦摩耗特性の向上という観点での議論はみられない。 Patent Document 1 discusses the improvement of the cooling effect of the sliding bearing in order to avoid the high temperature due to the frictional heat of the sliding portion in the operation under dry conditions. There is no discussion in terms of improving the friction and wear resistance of plain bearings.
特開2001-173660号公報JP 2001-173660 A
 ドライ条件での運転においては、摩耗粉がすべり面に滞留することが、耐摩耗性の低下や、起動直後の摩擦係数が高い状態で運転するときの、摺動部同士のなじみにくさの原因となる。従って、すべり面に摩耗粉が滞留する時間を短くすることは、耐摩耗性に優れた状態にし、摺動部同士をなじみやすくする「なじみ運転」の時間を短くすることにつながる。このことは、すべり軸受の冷却効果の観点からは、摺動部同士の「なじみ」が速やかに進むことにより、摩擦係数が低い状態となって軸受温度上昇を低く抑えることが期待できる。 In operation under dry conditions, the accumulation of wear powder on the sliding surface may cause a decrease in wear resistance and difficulty in adapting the sliding parts when operating with a high coefficient of friction immediately after startup. It becomes. Therefore, shortening the time for which the abrasion powder stays on the sliding surface leads to shortening the “familiar operation” time for making the sliding parts easy to conform to each other with excellent wear resistance. From the viewpoint of the cooling effect of the sliding bearing, it can be expected that the “familiarity” between the sliding portions proceeds rapidly, and the friction coefficient becomes low and the bearing temperature rise is kept low.
 一方、炭素繊維を含まない、あるいは炭素繊維を含むにしても細かい炭素繊維を強化剤として含む程度の樹脂材料の摺動部材は、スラリー中の耐摩耗性が良好なものがあるが、ドライ条件での摩擦摩耗特性の低下や、摺動部における摩擦熱による高温化をおさえることが課題である。 On the other hand, a sliding member made of a resin material that does not contain carbon fiber or contains carbon fiber as a reinforcing agent even if it contains carbon fiber has good wear resistance in slurry, It is a problem to suppress the frictional wear characteristics of the material and to increase the temperature due to frictional heat at the sliding part.
 本発明は、上述の事情に鑑みなされたもので、従来の長尺の炭素繊維を軸芯に対してコイル状に巻回した材料によるすべり軸受の欠点、即ち耐スラリー摩耗性が低いという欠点を解消し、異物が混入した水中での異物除去効果が高く耐摩耗性に優れ、しかもドライ条件(空気中)で摺動時の摩擦摩耗特性に優れ、摩擦熱による高温化を抑制する軸受すべり面を有したすべり軸受装置を提供することを目的とする。
 また、本発明は、すべり軸受装置の軸受すべり面が大気中に露出するドライ条件で用いられる場合、軸受すべり面に摩耗粉が滞留する時間を短くすることができ、かつ摩耗粉を除去する効果が得られ、さらに起動直後の摩擦係数が高い状態で運転するなじみ運転の時間を短くすることにより軸受温度上昇を防止し、耐摩耗性に優れているすべり軸受装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and has the disadvantage of a sliding bearing made of a material obtained by winding a conventional long carbon fiber around a shaft in a coil shape, that is, having a low slurry wear resistance. Bearing sliding surface that eliminates foreign matter in water that has been eliminated and has excellent wear resistance, and also has excellent frictional wear characteristics when sliding under dry conditions (in air) and suppresses high temperatures due to frictional heat An object of the present invention is to provide a plain bearing device having
Further, the present invention, when used in a dry condition in which the bearing sliding surface of the sliding bearing device is exposed to the atmosphere, can reduce the time that the wear powder stays on the bearing sliding surface and can also remove the wear powder. The purpose of the present invention is to provide a sliding bearing device that prevents the bearing temperature from rising by shortening the time of the familiar operation in which the friction coefficient immediately after start-up is high, and that is excellent in wear resistance. .
 上述の目的を達成するため、本発明のすべり軸受装置は、回転機械に使用するすべり軸受であって、軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、軸受すべり面には軸方向に貫通した複数の溝が設けられ、前記複数の溝は、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)が15~50%になるように形成され、かつ隣り合う溝間の距離が10~60mmあるいは5~60mmになるように形成されていることを特徴とする。
 ここで、炭素繊維は、軸受すべり面の円周長さより短ければよく、具体的数値を記すと、炭素繊維の長さは10μm~10mmが好ましい。炭素繊維の直径は、5μm~15μmが好ましい。また、炭素繊維の本数は複数本であればよいが、すべり軸受の軸受部分の全体の重量に対して5~30重量%の炭素繊維を含むように炭素繊維の本数を決定する。このように炭素繊維を選ぶことで、異物によって樹脂中のある炭素繊維が切断されて脱落しても、樹脂中には別の炭素繊維があるため、耐スラリー摩耗性が高い状態を維持できるので長寿命化が可能となる。
In order to achieve the above object, a sliding bearing device of the present invention is a sliding bearing used in a rotating machine, and the bearing portion is a bearing sliding surface on a resin material not containing carbon fiber or a resin material not containing carbon fiber. Made of a composite material containing a plurality of carbon fibers having a length shorter than the circumferential length of the bearing, the bearing sliding surface is provided with a plurality of axially penetrating grooves, and the plurality of grooves are the entire sliding surface of the bearing sliding surface. It is formed so that the ratio of the total area occupied by the groove to the area of the groove (groove area ratio) is 15 to 50%, and the distance between adjacent grooves is 10 to 60 mm or 5 to 60 mm. It is characterized by being.
Here, it is sufficient that the carbon fiber is shorter than the circumferential length of the bearing sliding surface. When a specific numerical value is described, the length of the carbon fiber is preferably 10 μm to 10 mm. The diameter of the carbon fiber is preferably 5 μm to 15 μm. The number of carbon fibers may be any number, but the number of carbon fibers is determined so as to include 5 to 30% by weight of carbon fibers with respect to the total weight of the bearing portion of the slide bearing. By selecting the carbon fiber in this way, even if a carbon fiber in the resin is cut and dropped by a foreign substance, there is another carbon fiber in the resin, so it is possible to maintain a high slurry wear resistance state. Long service life is possible.
 溝の面積率が15%以上になると、軸受すべり面の摩耗量は概略比例的に減少していき、すなわち、溝の面積率が大きいほど異物混入水中での耐摩耗性は向上する傾向を示す。溝の面積率が15%未満の場合、耐摩耗性の効果はあまり変わらないため、溝の面積率の下限値を15%とする。溝の面積率が50%を越える場合、軸を支えるすべり面面積が少な過ぎ、軸の挙動が不安定になるため、溝の面積率の上限値を50%とする。このように溝の面積率を15~50%とすることにより、溝による異物の除去効果およびすべり面に異物が入りにくくなる効果により耐摩耗性が向上する。 When the groove area ratio is 15% or more, the amount of wear on the bearing sliding surface decreases approximately proportionally. That is, the larger the groove area ratio, the more the wear resistance in foreign matter mixed water tends to be improved. . When the groove area ratio is less than 15%, the effect of wear resistance does not change much, so the lower limit value of the groove area ratio is set to 15%. When the groove area ratio exceeds 50%, the sliding surface area supporting the shaft is too small and the shaft behavior becomes unstable. Therefore, the upper limit value of the groove area ratio is set to 50%. By setting the groove area ratio to 15 to 50% in this way, the wear resistance is improved due to the effect of removing foreign matter by the groove and the effect of preventing foreign matter from entering the sliding surface.
 特許文献1では樹脂コーティングした長尺の炭素繊維を軸芯に対してコイル状に巻回した材料からなるすべり軸受では、ドライ運転時の摺動摩擦熱を冷却することに主眼が置かれていたので、伝熱のために、溝でない部分の面積の確保が必要となり、溝の面積率は10~25%までが限界でそれより大きく溝の面積率を設けることはできなかった。
 しかしながら、本発明では、軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に複数本の炭素繊維を含む複合材料として、ドライ運転時の摺動摩擦熱を冷却に主眼をおくよりも、摩擦係数を上昇させる原因となる異物や摩耗粉の除去を速やかに行えることに着眼したものである。そのため、溝の面積率を25%より大きく50%以下まで拡大して溝の面積率の拡大により異物や摩耗粉の除去を速やかに行えることが可能となり、ひいては摩耗量を減少させることができた。尚、溝の面積率をそこまで拡大しても軸の挙動は安定であった。
In Patent Document 1, a slide bearing made of a material in which a long carbon fiber coated with a resin is wound around a shaft in a coil shape has been focused on cooling sliding frictional heat during dry operation. For heat transfer, it is necessary to secure the area of the non-groove portion, and the area ratio of the groove is limited to 10 to 25%, and the area ratio of the groove cannot be set larger than that.
However, in the present invention, the bearing portion is a resin material that does not include carbon fibers or a composite material that includes a plurality of carbon fibers in a resin material that does not include carbon fibers. In particular, the present invention focuses on the fact that foreign substances and wear powder that cause an increase in the coefficient of friction can be quickly removed. For this reason, the groove area ratio is increased from 25% to 50% or less, and by increasing the groove area ratio, it is possible to quickly remove foreign matters and wear powder, and thus the amount of wear can be reduced. . The shaft behavior was stable even when the groove area ratio was increased to that extent.
 隣り合う溝間の距離(溝間距離)が10mm未満では軸受摩耗率が大きいため、溝間距離の下限値を10mmとする。一方、溝間距離が小さいほど軸受温度上昇値(運転中の軸受最大温度から室温を引いた値)は小さくなる。したがって、PV(P:面圧、V:すべり速度)値が高く軸受温度上昇値の抑制を比較的優先する必要のある場合は、隣り合う溝間距離の下限値を更に5mmとすることにより軸受温度上昇を低く抑えることができる。 When the distance between adjacent grooves (distance between grooves) is less than 10 mm, the bearing wear rate is large, so the lower limit value of the distance between grooves is 10 mm. On the other hand, the smaller the distance between the grooves, the smaller the bearing temperature rise value (the value obtained by subtracting the room temperature from the maximum bearing temperature during operation). Therefore, when the PV (P: surface pressure, V: sliding speed) value is high and it is necessary to give priority to the suppression of the bearing temperature rise value, the lower limit value of the distance between adjacent grooves is further set to 5 mm. Temperature rise can be kept low.
 軸受構造は軸受の背面にゴムなどの緩衝材(耐熱限界温度約120℃)を配置する場合があり、この緩衝材の耐熱限界温度以下で使用するため、軸受温度上昇値が80℃以下(雰囲気温度40℃を想定)とするには溝間距離が60mm以下である必要がある。従って溝間距離の上限値を60mmとする。
 このように、隣り合う溝間の距離を10~60mmとすることにより、すべり面に摩耗粉が滞留する時間を短くし、溝によって摩耗粉が除去される効果により、耐摩耗性に優れ、起動直後の摩擦係数が高い状態で運転するなじみ運転の時間を短くする効果により軸受温度上昇を低く抑えることができる。
In the bearing structure, a cushioning material such as rubber (heat-resistant limit temperature of about 120 ° C) may be arranged on the back of the bearing. To assume a temperature of 40 ° C.), the distance between the grooves needs to be 60 mm or less. Therefore, the upper limit of the distance between grooves is set to 60 mm.
In this way, by setting the distance between adjacent grooves to 10 to 60 mm, the time during which the wear powder stays on the sliding surface is shortened, and the wear powder is removed by the groove, resulting in excellent wear resistance and starting. The bearing temperature rise can be suppressed to a low level by the effect of shortening the familiar operation time in which the friction coefficient immediately after the operation is high.
 溝幅は、軸受内径と15~50%の範囲の溝の面積率と10~60mmの範囲の溝間距離との関係から決まる。あるいは、軸受温度上昇値の抑制を優先したい場合は隣り合う溝間距離を5mmまで短くしてもよい。 The groove width is determined from the relationship between the inner diameter of the bearing, the area ratio of the groove in the range of 15 to 50%, and the distance between the grooves in the range of 10 to 60 mm. Alternatively, when priority is given to the suppression of the bearing temperature rise value, the distance between adjacent grooves may be shortened to 5 mm.
 本発明の好ましい態様によれば、前記樹脂材料は、PA,POM,PBT,PET,PPE,PC,UHMw-PE,PTFE,PPS,PI,PEEK,PAR,PSF,PEI,PAI,PESのうち少なくとも1種類を含むものであることを特徴とする。 According to a preferred aspect of the present invention, the resin material is at least one of PA, POM, PBT, PET, PPE, PC, UHMw-PE, PTFE, PPS, PI, PEEK, PAR, PSF, PEI, PAI, PES. One type is included.
 本発明の好ましい態様によれば、前記溝は、軸受すべり面から径方向への深さが1.0mm以上で且つ前記樹脂材料または複合材料の厚さの2/3以下になるように形成されていることを特徴とする。
 前記溝は、軸受すべり面から径方向への溝深さが1mm以下の場合、スラリー粒子や摩耗粉が溝に詰まる恐れがあるため、溝深さの下限値を1mmとする。溝深さは大きすぎると、軸受の強度的に問題が生じるため、溝深さの上限値を樹脂材料又は複合材料の厚さの2/3以下とする。ただし、軸受がセグメントタイプの場合、軸受パッドを軸受材料とは異なる材質の部品に取り付ける場合は、溝深さは特に規定されない。
According to a preferred aspect of the present invention, the groove is formed so that the depth in the radial direction from the bearing sliding surface is 1.0 mm or more and 2/3 or less of the thickness of the resin material or composite material. It is characterized by.
When the groove depth in the radial direction from the bearing sliding surface is 1 mm or less, slurry particles or wear powder may clog the groove, so the lower limit of the groove depth is 1 mm. If the groove depth is too large, there will be a problem with the strength of the bearing. Therefore, the upper limit value of the groove depth is set to 2/3 or less of the thickness of the resin material or composite material. However, when the bearing is a segment type, the groove depth is not particularly specified when the bearing pad is attached to a part made of a material different from the bearing material.
 本発明のポンプは、羽根車を支持する回転軸をすべり軸受装置で支持し、前記すべり軸受装置の軸受すべり面が大気中に露出するドライ条件で運転されるポンプにおいて、前記すべり軸受装置に請求項1乃至7のいずれか1項のすべり軸受装置を用いることを特徴とする。 The pump of the present invention is a pump that supports a rotating shaft that supports an impeller by a slide bearing device and is operated in a dry condition in which a bearing slide surface of the slide bearing device is exposed to the atmosphere. The sliding bearing device according to any one of Items 1 to 7 is used.
 本発明は、以下に列挙する効果を奏する。
(1)すべり軸受装置が土砂等の異物が混入した水中で用いられる場合、軸受すべり面から異物を除去する異物除去効果が高く、耐摩耗性に優れている。
(2)軸受部分は、長尺の炭素繊維ではなく、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料としたので、炭素繊維の脱落による軸受材料のスラリー摩耗量の増大は起こりにくくなると考えられる。そのため、耐スラリー摩耗性は向上する。
(3)軸受部分は、長尺の炭素繊維ではなく、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料としたが、軸受すべり面には軸方向に貫通した複数の溝が設けられ、隣り合う溝間の距離が10~60mmあるいは5~60mmになるようにしたので、軸受摩耗率と軸受温度上昇値が適切にコントロールできる。
(4)隣り合う溝間の距離が10~60mmあるいは5~60mmになるようにしたので、すべり軸受装置の軸受すべり面が大気中に露出するドライ条件で用いられる場合、軸受すべり面に摩耗粉が滞留する時間を短くすることができ、かつ摩耗粉を除去する効果が得られ、さらに起動直後の摩擦係数が高い状態で運転するなじみ運転の時間を短くすることにより軸受温度上昇を防止し耐摩耗性に優れている。
The present invention has the following effects.
(1) When the slide bearing device is used in water mixed with foreign matters such as earth and sand, the foreign matter removing effect for removing foreign matters from the bearing sliding surface is high, and the wear resistance is excellent.
(2) The bearing portion is not a long carbon fiber, but a composite material including a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material not containing carbon fibers or a resin material not containing carbon fibers. Since the material is used, it is considered that the increase in the amount of slurry wear of the bearing material due to the dropping of the carbon fiber hardly occurs. Therefore, the slurry wear resistance is improved.
(3) The bearing portion is not a long carbon fiber, but a composite that includes a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fibers or a resin material that does not contain carbon fibers. Although it was made of a material, the bearing sliding surface was provided with a plurality of axially penetrating grooves so that the distance between adjacent grooves was 10 to 60 mm or 5 to 60 mm. The value can be controlled appropriately.
(4) Since the distance between adjacent grooves is 10 to 60 mm or 5 to 60 mm, when used in dry conditions in which the bearing sliding surface of the sliding bearing device is exposed to the atmosphere, wear dust is The retention time can be shortened, and the effect of removing wear powder can be obtained.Furthermore, by shortening the familiar operation time in which the friction coefficient immediately after startup is high, the bearing temperature rise is prevented and Excellent wear resistance.
図1は、本発明に係るすべり軸受装置を示す斜視図である。FIG. 1 is a perspective view showing a plain bearing device according to the present invention. 図2は、図1に示すすべり軸受装置のII-II線断面図である。2 is a cross-sectional view of the plain bearing device shown in FIG. 1 taken along line II-II. 図3は、図2のIII部拡大図である。FIG. 3 is an enlarged view of part III of FIG. 図4は、溝の面積率と耐摩耗性との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the groove area ratio and the wear resistance. 図5は、溝間距離と耐摩耗性との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the distance between grooves and the wear resistance. 図6は、溝間距離と軸受摩耗率(軸受内径変化率)との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the groove distance and the bearing wear rate (bearing inner diameter change rate). 図7は、溝間距離と軸受温度上昇値との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the inter-groove distance and the bearing temperature rise value. 図8Aは、すべり軸受装置の縦断面図である。FIG. 8A is a longitudinal sectional view of the plain bearing device. 図8Bは、すべり軸受装置の縦断面図である。FIG. 8B is a longitudinal sectional view of the plain bearing device. 図8Cは、すべり軸受装置の縦断面図である。FIG. 8C is a longitudinal sectional view of the plain bearing device. 図8Dは、すべり軸受装置の縦断面図である。FIG. 8D is a longitudinal sectional view of the plain bearing device. 図8Eは、すべり軸受装置の水平断面図である。FIG. 8E is a horizontal sectional view of the plain bearing device. 図8Fは、すべり軸受装置の水平断面図である。FIG. 8F is a horizontal sectional view of the plain bearing device. 図8Gは、すべり軸受装置の水平断面図である。FIG. 8G is a horizontal sectional view of the plain bearing device. 図9は、本発明のすべり軸受装置が好適に使用される立形斜流ポンプを示す断面図である。FIG. 9 is a cross-sectional view showing a vertical mixed flow pump in which the plain bearing device of the present invention is preferably used. 図10は、本発明の一実施形態のすべり軸受の使用状態を示す図である。FIG. 10 is a diagram showing a usage state of the plain bearing of one embodiment of the present invention.
 以下、本発明に係るすべり軸受装置の実施形態を図1乃至図10を参照して説明する。図1乃至図10において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、本発明に係るすべり軸受装置を示す斜視図である。図1に示すように、すべり軸受装置1は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、円筒形状に成形されている。ここで、炭素繊維は、軸受すべり面の円周長さより短ければよく、具体的数値を記すと、炭素繊維の長さは10μm~10mmが好ましい。炭素繊維の直径は、5μm~15μmが好ましい。また、炭素繊維の本数は複数本であればよいが、すべり軸受の軸受部分の全体の重量に対して5~30重量%の炭素繊維を含むように炭素繊維の本数を決定する。このように炭素繊維を選ぶことで、異物によって樹脂中のある炭素繊維が切断されて脱落しても、樹脂中には別の炭素繊維があるため、耐スラリー摩耗性が高い状態を維持できるので長寿命化が可能となる。
 円筒形状のすべり軸受装置1の内周面は軸受すべり面BSを構成している。図1では、軸受すべり面BSに形成された溝は図示を省略している。樹脂材料は、PA(ポリアミド),POM(ポリアセタール),PBT(ポリブチレンテレフタレート),PET(ポリエチレンテレフタレート),PPE(ポリフェニルン・エーテル),PC(ポリカーボネート),UHMw-PE(超高分子ポリエチレン),PTFE(ポリ四フッ化エチレン),PPS(ポリフェニレンサルファイド),PI(ポリイミド),PEEK(ポリ・エーテル・エーテル・テトン),PAR(ポリアリレート),PSF(ポリサルフォン),PEI(ポリエーテルイミド),PAI(ポリアミドイミド),PES(ポリエーテルスルホン)のうち少なくとも一種類を含むものである。
Hereinafter, embodiments of the sliding bearing device according to the present invention will be described with reference to FIGS. 1 to 10. 1 to 10, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a perspective view showing a plain bearing device according to the present invention. As shown in FIG. 1, the sliding bearing device 1 is made of a resin material that does not contain carbon fibers or a composite material that contains a plurality of carbon fibers having a length shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fibers. It is formed into a cylindrical shape. Here, it is sufficient that the carbon fiber is shorter than the circumferential length of the bearing sliding surface. When a specific numerical value is described, the length of the carbon fiber is preferably 10 μm to 10 mm. The diameter of the carbon fiber is preferably 5 μm to 15 μm. The number of carbon fibers may be any number, but the number of carbon fibers is determined so as to include 5 to 30% by weight of carbon fibers with respect to the total weight of the bearing portion of the slide bearing. By selecting the carbon fiber in this way, even if a carbon fiber in the resin is cut and dropped by a foreign substance, there is another carbon fiber in the resin, so it is possible to maintain a high slurry wear resistance state. Long service life is possible.
The inner peripheral surface of the cylindrical slide bearing device 1 constitutes a bearing slide surface BS. In FIG. 1, the grooves formed in the bearing sliding surface BS are not shown. The resin materials are PA (polyamide), POM (polyacetal), PBT (polybutylene terephthalate), PET (polyethylene terephthalate), PPE (polyphenylone ether), PC (polycarbonate), UHMw-PE (ultra high molecular weight polyethylene), PTFE. (Polytetrafluoroethylene), PPS (Polyphenylene sulfide), PI (Polyimide), PEEK (Polyether ether Teton), PAR (Polyarylate), PSF (Polysulfone), PEI (Polyetherimide), PAI ( Polyamideimide) and PES (polyethersulfone) are included.
 図2は、図1に示すすべり軸受装置1のII-II線断面図である。図2に示すように、すべり軸受装置1の軸受すべり面BSには、軸方向に貫通した複数の溝1gが形成されている。図2では、軸受すべり面BSに複数の溝が形成されている場合を図示したが、溝は1本であってもよい。
 本発明においては、すべり軸受装置1の軸受すべり面BSに複数の溝1gが形成されている場合、前記複数の溝1gは、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)が15~50%になるように形成されている。図2に示す例において説明すると、軸受すべり面の内径をdとし、溝幅をwとすると、軸受すべり面には等間隔に8個の溝1gが形成されており、すべり面の円周長さはπdであり、溝の円周長さは8wである。図1に示すように、すべり軸受装置1の軸方向の長さをDとすると、軸受すべり面のすべり面全体の面積はπd×Dであり、溝の占める全面積は8w×Dである。したがって、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)は、(8w/πd)×100(%)と表すことができる。この式を溝の個数をn(nは正の整数)として、より一般化すると、(nw/πd)×100(%)と表すことができる。本発明においては、複数の溝1gは、溝の面積率((nw/πd)×100(%))が15~50%になるように形成されている。ここで、溝幅wとは円周上の長さで表す溝の幅をいう。
FIG. 2 is a cross-sectional view taken along the line II-II of the plain bearing device 1 shown in FIG. As shown in FIG. 2, a plurality of grooves 1 g penetrating in the axial direction are formed on the bearing sliding surface BS of the sliding bearing device 1. Although FIG. 2 illustrates the case where a plurality of grooves are formed on the bearing sliding surface BS, the number of grooves may be one.
In the present invention, when a plurality of grooves 1g are formed on the bearing sliding surface BS of the sliding bearing device 1, the plurality of grooves 1g is the total area occupied by the groove with respect to the entire area of the sliding surface of the bearing sliding surface. The ratio (groove area ratio) is 15 to 50%. In the example shown in FIG. 2, when the inner diameter of the bearing sliding surface is d and the groove width is w, eight grooves 1g are formed at equal intervals on the bearing sliding surface, and the circumferential length of the sliding surface is as follows. The length is πd, and the circumferential length of the groove is 8w. As shown in FIG. 1, when the axial length of the sliding bearing device 1 is D, the entire area of the sliding surface of the bearing sliding surface is πd × D, and the total area occupied by the groove is 8w × D. Therefore, the ratio (groove area ratio) of the total area occupied by the groove to the area of the entire sliding surface of the bearing sliding surface can be expressed as (8w / πd) × 100 (%). This formula can be expressed as (nw / πd) × 100 (%) when the number of grooves is n (n is a positive integer). In the present invention, the plurality of grooves 1g are formed so that the groove area ratio ((nw / πd) × 100 (%)) is 15 to 50%. Here, the groove width w refers to the width of the groove expressed by a circumferential length.
 また、本発明においては、前記複数の溝1gは、隣り合う溝間の距離(溝間距離(L))が10~60mmになるように形成されている。図2では便宜上、L(溝間距離)およびw(溝幅)をすべり面の円周上より半径方向内側に近接させて図示している。ここで、溝間距離Lとは溝と溝との間のすべり面の円周上の長さをいう。 In the present invention, the plurality of grooves 1g are formed so that the distance between adjacent grooves (inter-groove distance (L)) is 10 to 60 mm. In FIG. 2, for the sake of convenience, L (inter-groove distance) and w (groove width) are illustrated closer to the inside in the radial direction than on the circumference of the sliding surface. Here, the inter-groove distance L refers to the circumferential length of the sliding surface between the grooves.
 図3は、図2のIII部拡大図である。図3の拡大図には、溝1gの深さ(dp)と樹脂材料又は複合材料の厚さ(T)が示されている。各溝1gは、軸受すべり面BSから径方向への深さ(dp)が1.0mm以上、樹脂材料又は複合材料の厚さ(T)の2/3以下になるように形成されている。すなわち、1.0mm≦dp≦(2/3)Tである。ただし、軸受がセグメントタイプの場合、軸受パッドを軸受材料とは異なる材質の部品に取り付ける場合には、隣接する軸受パッド間に溝を形成することができるため、溝深さは特に規定されない。 FIG. 3 is an enlarged view of part III of FIG. In the enlarged view of FIG. 3, the depth (dp) of the groove 1g and the thickness (T) of the resin material or composite material are shown. Each groove 1g is formed so that the radial depth (dp) from the bearing sliding surface BS is 1.0 mm or more and 2/3 or less of the thickness (T) of the resin material or composite material. That is, 1.0 mm ≦ dp ≦ (2/3) T. However, when the bearing is a segment type, when the bearing pad is attached to a component made of a material different from the bearing material, a groove depth can be formed between adjacent bearing pads, and therefore the groove depth is not particularly defined.
 次に、溝の面積率、溝間距離、溝幅および溝深さを上記範囲に設定した理由について説明する。
(1)溝の面積率
 PI樹脂と炭素繊維との複合材からなる軸受である炭素繊維複合PI軸受を用いて試験を行った結果を図4および図5に示す。
 試験は下記の条件で行った。
 軸受平均面圧:0.05MPa、周速度:5m/s、試験時間:8h、雰囲気:スラリー中、異物濃度:200ppm
 図4は、溝の面積率と耐摩耗性との関係を示すグラフであり、横軸は溝の面積率(%)を示し、縦軸はスラリー中の軸受の摩耗量(軸受内径変化量)[mm]を示す。図4に示すように、溝の面積率が15%以上になると、摩耗量は概略比例的に減少していく。すなわち、溝の面積率が大きいほど耐摩耗性は向上する傾向を示す。溝の面積率が15%未満の場合、耐摩耗性の効果はあまり変わらないため、溝の面積率の下限値を15%とした。溝の面積率が50%を越える場合、軸を支えるすべり面面積が少な過ぎ、軸の挙動が不安定になるため、溝の面積率の上限値を50%とした。溝による異物の除去効果およびすべり面に異物が入りにくくなる効果により耐摩耗性が向上するが、溝の面積率が15%未満の場合、その効果が小さくなり、耐摩耗性が向上しない。
Next, the reason why the groove area ratio, the inter-groove distance, the groove width, and the groove depth are set in the above ranges will be described.
(1) Area ratio of groove The result of having tested using the carbon fiber composite PI bearing which is a bearing which consists of a composite material of PI resin and carbon fiber is shown in FIG. 4 and FIG.
The test was conducted under the following conditions.
Bearing average surface pressure: 0.05 MPa, peripheral speed: 5 m / s, test time: 8 h, atmosphere: in slurry, foreign matter concentration: 200 ppm
FIG. 4 is a graph showing the relationship between the groove area ratio and the wear resistance, the horizontal axis indicates the groove area ratio (%), and the vertical axis indicates the amount of wear of the bearing in the slurry (the amount of change in the inner diameter of the bearing). [Mm] is shown. As shown in FIG. 4, when the groove area ratio is 15% or more, the amount of wear decreases approximately proportionally. That is, the wear resistance tends to improve as the groove area ratio increases. When the groove area ratio is less than 15%, the effect of wear resistance does not change much, so the lower limit value of the groove area ratio is set to 15%. When the groove area ratio exceeds 50%, the sliding surface area supporting the shaft is too small and the shaft behavior becomes unstable. Therefore, the upper limit value of the groove area ratio is set to 50%. The wear resistance is improved by the effect of removing foreign matters by the grooves and the effect of making it difficult for foreign matters to enter the sliding surface. However, when the area ratio of the grooves is less than 15%, the effect is reduced and the wear resistance is not improved.
 図5は、溝間距離と耐摩耗性との関係を示すグラフであり、横軸は溝間距離(mm)を示し、縦軸はスラリー中の軸受の摩耗量(軸受内径変化量)[mm]を示す。図5に示すように、軸受すべり面の円周長さに対する溝間距離を10~25mmの間で変化させても、スラリー中の軸受の摩耗量はばらついており、一定の傾向を示すことはない。すなわち、軸受すべり面の円周長さに対する溝間距離の割合は、スラリー中の耐摩耗性に対して相関がない。
 図4および図5に示すように、試験結果から、樹脂材料または樹脂材料と炭素繊維の複合材料からなるすべり軸受においては、スラリー中の耐摩耗性には溝の面積率が影響を及ぼすことが確認された。
FIG. 5 is a graph showing the relationship between the distance between the grooves and the wear resistance, the horizontal axis indicates the distance between the grooves (mm), and the vertical axis indicates the amount of wear of the bearing in the slurry (the amount of change in the inner diameter of the bearing) [mm. ] Is shown. As shown in FIG. 5, even when the distance between the grooves with respect to the circumferential length of the bearing sliding surface is changed between 10 and 25 mm, the amount of wear of the bearing in the slurry varies and shows a certain tendency. Absent. That is, the ratio of the inter-groove distance to the circumferential length of the bearing sliding surface has no correlation with the wear resistance in the slurry.
As shown in FIG. 4 and FIG. 5, from the test results, in a plain bearing made of a resin material or a composite material of a resin material and carbon fiber, the area ratio of the groove affects the wear resistance in the slurry. confirmed.
(2)溝間距離
 PEEK系材料製軸受を用いて試験を行った結果を図6および図7に示す。
 試験は、下記の条件で行った。
 軸受平均面圧:0.1MPa、周速度:4m/s、試験時間:2h、雰囲気:大気中
 図6は、溝間距離と軸受摩耗率との関係を示すグラフであり、横軸は溝間距離(mm)を示し、縦軸は大気中運転での軸受摩耗率(軸受内径変化率)(μm/h)を示す。
 図6に示すように、溝間距離(L)が10mm未満では、軸受摩耗率(μm/h)は1.2近傍またはそれ以上であり、軸受摩耗率が増加する。したがって、溝間距離(L)の下限値を10mmとする。溝間距離(L)が20mm~46mmの間では、軸受摩耗率(μm/h)は0.8近傍またはそれ以下であり、軸受摩耗率が減少する。したがって、溝間距離(L)のより好ましい範囲は、20~45mmである。
 また、図6は、溝間距離と定常運転時の摩擦係数との関係も示している。図6に示すように、溝間距離(L)を3~46mmの間で変化させても、摩擦係数は概略一定である。したがって、溝間距離は、定常運転時の摩擦係数に対して相関がない。
(2) Distance between grooves FIG. 6 and FIG. 7 show the results of testing using a PEEK material bearing.
The test was conducted under the following conditions.
Bearing average surface pressure: 0.1 MPa, peripheral speed: 4 m / s, test time: 2 h, atmosphere: air FIG. 6 is a graph showing the relationship between the groove distance and the bearing wear rate, and the horizontal axis is between the grooves. The distance (mm) is shown, and the vertical axis shows the bearing wear rate (bearing inner diameter change rate) (μm / h) in atmospheric operation.
As shown in FIG. 6, when the inter-groove distance (L) is less than 10 mm, the bearing wear rate (μm / h) is in the vicinity of 1.2 or more, and the bearing wear rate increases. Therefore, the lower limit of the inter-groove distance (L) is 10 mm. When the inter-groove distance (L) is between 20 mm and 46 mm, the bearing wear rate (μm / h) is around 0.8 or less, and the bearing wear rate decreases. Therefore, a more preferable range of the inter-groove distance (L) is 20 to 45 mm.
FIG. 6 also shows the relationship between the distance between grooves and the coefficient of friction during steady operation. As shown in FIG. 6, even when the inter-groove distance (L) is changed between 3 and 46 mm, the friction coefficient is substantially constant. Therefore, the inter-groove distance has no correlation with the coefficient of friction during steady operation.
 図7は、溝間距離と軸受温度上昇値(℃)との関係を示すグラフであり、横軸は溝間距離(mm)を示し、縦軸は大気中運転での軸受温度上昇値(運転中の軸受最大温度から室温(雰囲気温度)を引いた値)(℃)を示す。図7に示すように、溝間距離(L)が小さいほど軸受温度上昇値は小さくなり、溝間距離が増加するにつれて軸受温度上昇値はほぼ直線的に増加していく。本発明のすべり軸受装置は、軸受の背面にゴム材からなる緩衝材を配置する場合があり、このゴム材からなる緩衝材は耐熱限界温度が120℃である。したがって、すべり軸受装置を耐熱限界温度(120℃)以下で使用する必要がある。すべり軸受装置の使用環境の雰囲気温度は40℃を想定しているため、軸受温度上昇値を80℃以下とする必要がある。図7に示すように、軸受温度上昇値を80℃以下とするためには、溝間距離(L)の上限値を60mmとする。なお、図7には、溝間距離と起動直後の摩擦係数との関係も示されているが、摩擦係数は溝間距離を変化させても概略一定であり、溝間距離は、起動直後の摩擦係数に対して相関がない。 FIG. 7 is a graph showing the relationship between the groove distance and the bearing temperature rise value (° C.), where the horizontal axis shows the groove distance (mm), and the vertical axis shows the bearing temperature rise value (operation) in the atmospheric operation. The value obtained by subtracting the room temperature (atmosphere temperature) from the maximum bearing temperature inside (in degrees Celsius). As shown in FIG. 7, the smaller the inter-groove distance (L), the smaller the bearing temperature rise value. As the inter-groove distance increases, the bearing temperature rise value increases almost linearly. In the sliding bearing device of the present invention, a cushioning material made of a rubber material may be disposed on the back surface of the bearing, and the cushioning material made of the rubber material has a heat resistant limit temperature of 120 ° C. Therefore, it is necessary to use the sliding bearing device at a heat resistant limit temperature (120 ° C.) or lower. Since the ambient temperature in the usage environment of the slide bearing device is assumed to be 40 ° C., the bearing temperature rise value needs to be 80 ° C. or less. As shown in FIG. 7, in order to make the bearing temperature rise value 80 ° C. or less, the upper limit value of the inter-groove distance (L) is set to 60 mm. FIG. 7 also shows the relationship between the inter-groove distance and the friction coefficient immediately after startup, but the friction coefficient is substantially constant even when the inter-groove distance is changed. There is no correlation to the coefficient of friction.
 図6および図7の結果をまとめると、図6に示す溝間距離と軸受摩耗率との関係から溝間距離の下限値は10mmであり、図7に示す溝間距離と軸受温度上昇値との関係から溝間距離の上限値は60mmである。したがって、隣り合う溝間の距離(溝間距離)は、10~60mmとする。そして、溝間距離のより好ましい範囲は、図6において軸受摩耗率が小さい値を示す20~46mmである。図7に示すように、溝間距離が46mmであるとき、軸受温度上昇値は約65℃である。したがって、たとえ軸受の雰囲気温度が50℃に上昇するような苛酷な使用環境であっても軸受温度は115℃に留まり、緩衝材に悪影響を与えることはない。
 なお、PV(P:面圧、V:すべり速度)値が高く軸受温度上昇値の抑制を優先したい場合は、隣り合う溝間距離を5mmまで短くすることにより、軸受温度上昇を低く抑えてもよい。
6 and 7 are summarized, the lower limit value of the inter-groove distance is 10 mm from the relationship between the inter-groove distance and the bearing wear rate shown in FIG. 6, and the inter-groove distance and the bearing temperature rise value shown in FIG. Therefore, the upper limit of the inter-groove distance is 60 mm. Therefore, the distance between adjacent grooves (inter-groove distance) is 10 to 60 mm. A more preferable range of the inter-groove distance is 20 to 46 mm, which shows a small bearing wear rate in FIG. As shown in FIG. 7, when the inter-groove distance is 46 mm, the bearing temperature rise value is about 65 ° C. Therefore, even in a severe usage environment where the ambient temperature of the bearing rises to 50 ° C., the bearing temperature remains at 115 ° C. and does not adversely affect the cushioning material.
If the PV (P: surface pressure, V: sliding speed) value is high and it is desired to prioritize the suppression of the bearing temperature increase value, the distance between adjacent grooves can be reduced to 5 mm, thereby reducing the bearing temperature increase. Good.
 大気中運転においては、摩耗粉がすべり面に滞留することが、耐摩耗性の低下、なじみにくさの原因となる。従って、溝間距離を10~60mmあるいは5~60mmとすることにより、すべり面に摩耗粉が滞留する時間を短くし、溝によって摩耗粉が除去される効果により耐摩耗性に優れ、起動直後の摩擦係数が高い状態で運転するなじみ運転時間を短くする効果により、軸受温度上昇を低く抑えることができる。
 図6および図7に示すように、試験結果から、樹脂材料または樹脂材料と炭素繊維の複合材料からなるすべり軸受においては、大気中の摩耗特性および軸受温度上昇には溝間距離が影響を及ぼすことが確認された。
During operation in the atmosphere, the accumulation of wear powder on the sliding surface causes a decrease in wear resistance and difficulty in fitting. Therefore, by setting the distance between the grooves to 10 to 60 mm or 5 to 60 mm, the time during which the wear powder stays on the sliding surface is shortened, and the wear powder is removed by the groove, resulting in excellent wear resistance. Due to the effect of shortening the familiar operation time when the friction coefficient is high, the bearing temperature rise can be suppressed low.
As shown in FIG. 6 and FIG. 7, from the test results, in the slide bearing made of a resin material or a composite material of a resin material and carbon fiber, the groove distance has an effect on the wear characteristics in the atmosphere and the bearing temperature rise. It was confirmed.
(3)溝幅
 溝幅は、軸受内径と15~50%の範囲の溝の面積率と10~60mmあるいは5~60mmの範囲の溝間距離との関係から決まる。
(4)溝深さ
 前記溝1gは、軸受すべり面から径方向への溝深さ(dp)が1mm以下の場合、スラリー粒子や摩耗粉が溝に詰まる恐れがあるため、溝深さ(dp)の下限値を1mmとした。溝深さ(dp)は特に上限はないが、大きすぎると軸受の強度的に問題が生じるため、溝深さ(dp)の上限値を樹脂材料又は複合材料の厚さ(T)の2/3以下とした。ただし、軸受がセグメントタイプの場合、軸受パッドを軸受材料とは異なる材質の部品に取り付ける場合には、隣接する軸受パッド間に溝を形成することができるため、溝深さは特に規定されない。
(3) Groove width The groove width is determined from the relationship between the bearing inner diameter, the groove area ratio in the range of 15 to 50%, and the inter-groove distance in the range of 10 to 60 mm or 5 to 60 mm.
(4) Groove depth The groove 1g has a groove depth (dp) because if the groove depth (dp) in the radial direction from the bearing sliding surface is 1 mm or less, slurry particles or wear powder may clog the groove. ) Was 1 mm. The groove depth (dp) has no particular upper limit, but if it is too large, there will be a problem with the strength of the bearing. Therefore, the upper limit of the groove depth (dp) is set to 2 / th of the thickness (T) of the resin material or composite material. 3 or less. However, when the bearing is a segment type, when the bearing pad is attached to a component made of a material different from the bearing material, a groove depth can be formed between adjacent bearing pads, and therefore the groove depth is not particularly defined.
 次に、図2に示すすべり軸受装置と異なる断面形状を有するすべり軸受装置の例を図8A~図8Gに示す。図8A~図8Dは、すべり軸受装置1の縦断面図であり、図2に相当する図である。図8E~図8Gは、すべり軸受装置1の水平断面図である。
 図8A,図8Bに示すすべり軸受装置1は、溝1gの溝幅(w)が均一ではなく大、小(図8A)および大、中、小(図8B)の組み合わせからなっている。図8C,図8Dに示すすべり軸受装置1は、溝幅(w)が均一ではなく、溝の位置もずらして配置している。
 図8E,図8F,図8Gに示すすべり軸受装置1は、軸方向に貫通している貫通溝1gの形状が直線形状ではなく、中央部に段差をもった直線形状(図8E)、波状の形状(図8F)、やまがた状(図8G)である。図8E,図8F,図8Gの溝の場合、溝間距離が10~60mmあるいは5~60mmの範囲になるように自由に配置できる。この場合の溝間距離はすべり方向(周方向)と平行な距離で、隣り合う溝の近接縁を結ぶ距離である。この隣り合う溝の近接縁を結ぶ距離が複数ある場合や、溝間距離が複数ある場合は、平均距離を選ぶものとする。
Next, examples of the sliding bearing device having a cross-sectional shape different from that of the sliding bearing device shown in FIG. 2 are shown in FIGS. 8A to 8G. 8A to 8D are longitudinal sectional views of the plain bearing device 1, and correspond to FIG. 8E to 8G are horizontal sectional views of the plain bearing device 1. FIG.
The plain bearing device 1 shown in FIGS. 8A and 8B is not uniform in the groove width (w) of the groove 1g but is composed of a combination of large, small (FIG. 8A), large, medium, and small (FIG. 8B). In the plain bearing device 1 shown in FIGS. 8C and 8D, the groove width (w) is not uniform, and the positions of the grooves are also shifted.
8E, FIG. 8F, and FIG. 8G, the sliding bearing device 1 shown in FIG. 8E is not linear in the shape of the through groove 1g penetrating in the axial direction, but in a linear shape (FIG. 8E) having a step at the center. It has a shape (FIG. 8F) and a mountain shape (FIG. 8G). In the case of the grooves shown in FIGS. 8E, 8F, and 8G, the distance between the grooves can be freely set within a range of 10 to 60 mm or 5 to 60 mm. In this case, the distance between the grooves is a distance parallel to the sliding direction (circumferential direction) and is a distance connecting adjacent edges of adjacent grooves. When there are a plurality of distances connecting adjacent edges of adjacent grooves, or when there are a plurality of inter-groove distances, the average distance is selected.
 図9は、本実施形態に係るすべり軸受装置を備えた、排水機場で用いられるポンプの例である立形斜流ポンプを示す断面図である。
 図9に示すように、立形斜流ポンプは、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続される吊り下げ管29と、吊り下げ管29の下端に接続され、後述するインペラ22を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続され、水を吸い込むための吸い込みベル27と、を備えている。
FIG. 9 is a cross-sectional view showing a vertical mixed-flow pump that is an example of a pump used in a drainage station, including a plain bearing device according to the present embodiment.
As shown in FIG. 9, the vertical mixed flow pump has a discharge elbow 30 installed and fixed on the pump installation floor, a suspension pipe 29 connected to the lower end of the discharge elbow 30, and a lower end of the suspension pipe 29. A discharge bowl 28 for storing an impeller 22 to be described later is connected, and a suction bell 27 is connected to the lower end of the discharge bowl 28 for sucking water.
 立形斜流ポンプの、吊り下げ管29、吐出ボウル28及び吸い込みベル27の径方向略中心部には、軸継手26によって互いに接続された軸10,10´が配置されている。軸10,10´は、上部軸受32及び下部軸受33によって支持されている。軸10,10´の一端側(吸い込みベル27側)には、水をポンプ内に吸い込むためのインペラ22が接続されている。軸10,10´の他端側は、吐出エルボ30に設けられた孔から立形斜流ポンプの外部へ通じ、インペラ22を回転させる図示しない駆動用モータへ接続される。
 軸10,10´と吐出エルボ30に設けられた孔との間にはフローティングシール34が設けられており、これにより立形斜流ポンプが扱う水が立形斜流ポンプの外部に流出することが防止される。
In the vertical mixed flow pump, shafts 10 and 10 ′ connected to each other by a shaft coupling 26 are disposed at substantially radial center portions of the suspension pipe 29, the discharge bowl 28 and the suction bell 27. The shafts 10 and 10 ′ are supported by the upper bearing 32 and the lower bearing 33. An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the shafts 10 and 10 '. The other ends of the shafts 10 and 10 ′ are connected to a driving motor (not shown) that rotates from the hole provided in the discharge elbow 30 to the outside of the vertical mixed flow pump and rotates the impeller 22.
A floating seal 34 is provided between the shafts 10 and 10 'and a hole provided in the discharge elbow 30, whereby water handled by the vertical mixed flow pump flows out of the vertical mixed flow pump. Is prevented.
 駆動用モータは、保守点検を容易に行うことができるように陸上に設けられ、駆動用モータの回転は軸10,10´に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水は吸込みベル27から吸い込まれ、吐出ボウル28、吊下げ管29を通過して吐出エルボ30から吐出される。 The drive motor is provided on land so that maintenance and inspection can be easily performed, and the rotation of the drive motor is transmitted to the shafts 10 and 10 ′ so that the impeller 22 can be rotated. By the rotation of the impeller 22, water is sucked from the suction bell 27, passes through the discharge bowl 28 and the suspension pipe 29, and is discharged from the discharge elbow 30.
 図9に示す立形斜流ポンプは、ポンプ起動時にはポンプ内部に流体が無い状態、即ちドライ条件で運転される。また、起動後の定常運転時においては、ポンプ内部に異物が混入した水が存在する状態で運転される。 The vertical mixed flow pump shown in FIG. 9 is operated in a state where there is no fluid inside the pump when the pump is started, that is, in a dry condition. In addition, during steady operation after startup, the pump is operated in a state where there is water mixed with foreign matter inside the pump.
 図10は、本実施形態に係る軸受32,33に適用されたすべり軸受装置の拡大図である。図10に示すように、軸10,10´には、その外周に軸受の相手材料であるステンレス鋼、焼結金属又は表面改質された金属からなるスリーブ11を有している。スリーブ11の外周側には、樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプの吊り下げ管29等へ繋がる支持部材13に固定されている。 FIG. 10 is an enlarged view of the plain bearing device applied to the bearings 32 and 33 according to the present embodiment. As shown in FIG. 10, the shafts 10 and 10 ′ have sleeves 11 made of stainless steel, sintered metal, or surface-modified metal, which are counterpart materials for the bearing, on the outer periphery thereof. A sliding bearing 1 made of a resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The plain bearing 1 is fixed to a support member 13 connected to a suspension pipe 29 of the pump via a collar portion 12a by a bearing case 12 made of metal or resin.
 本発明者らは、図9に示す構造の立形斜流ポンプの軸受32,33に、本発明に係るすべり軸受装置を配置し、ポンプ起動時の大気中でのドライ運転、起動後の異物が混入したスラリ水を排水する定常運転を行った。その結果、軸受の摩耗や摩擦が抑えられ、スラリ水中の異物や、摩耗粉の除去が速やかに排出されるようになっているので、過酷な条件であるにもかかわらず良好な運転ができた。 The present inventors arrange the slide bearing device according to the present invention in the bearings 32 and 33 of the vertical mixed flow pump having the structure shown in FIG. Steady operation was performed to drain slurry water mixed. As a result, the wear and friction of the bearings are suppressed, and the removal of foreign matter and abrasive powder in the slurry water is quickly discharged, so that it was possible to perform well even under severe conditions. .
 これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。 The embodiment of the present invention has been described so far, but the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.
 本発明は、樹脂材料を用いたすべり軸受装置に係り、特にポンプ等の回転機械のラジアル軸受として好適に使用されるすべり軸受装置に利用可能である。 The present invention relates to a sliding bearing device using a resin material, and is particularly applicable to a sliding bearing device that is preferably used as a radial bearing of a rotary machine such as a pump.
  1   すべり軸受装置
  1g  溝
  10,10´ 軸
  11 スリーブ
  12 軸受ケース
  12a つば部
  13 支持部材
  22 インペラ
  26 軸継手
  27 吸い込みベル
  28 吐出ボウル
  29 吊り下げ管
  30 吐出エルボ
  32 上部軸受
  33 下部軸受
  34 フローティングシール
  w   溝幅
  L   溝間距離
  dp  溝深さ
  BS  軸受すべり面
DESCRIPTION OF SYMBOLS 1 Slide bearing apparatus 1g Groove 10,10 'Shaft 11 Sleeve 12 Bearing case 12a Collar part 13 Support member 22 Impeller 26 Shaft coupling 27 Suction bell 28 Discharge bowl 29 Suspension pipe 30 Discharge elbow 32 Upper bearing 33 Lower bearing 34 Floating seal w Groove width L Groove distance dp Groove depth BS Bearing sliding surface

Claims (8)

  1.  回転機械に使用するすべり軸受であって、
     軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、軸受すべり面には軸方向に貫通した複数の溝が設けられ、
     前記複数の溝は、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)が15~50%になるように形成され、かつ隣り合う溝間の距離が10~60mmになるように形成されていることを特徴とするすべり軸受装置。
    A plain bearing used in a rotating machine,
    The bearing part is made of a resin material that does not contain carbon fiber or a composite material that contains a plurality of carbon fibers that are shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fiber. Are provided with a plurality of grooves penetrating
    The plurality of grooves are formed such that the ratio of the total area occupied by the grooves to the entire sliding surface of the bearing sliding surface (groove area ratio) is 15 to 50%, and the distance between adjacent grooves A slide bearing device characterized in that is formed to be 10 to 60 mm.
  2.  回転機械に使用するすべり軸受であって、
     軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、軸受すべり面には軸方向に貫通した複数の溝が設けられ、
     前記複数の溝は、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)が15~50%になるように形成され、かつ隣り合う溝間の距離が5~60mmになるように形成されていることを特徴とするすべり軸受装置。
    A plain bearing used in a rotating machine,
    The bearing part is made of a resin material that does not contain carbon fiber or a composite material that contains a plurality of carbon fibers that are shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fiber. Are provided with a plurality of grooves penetrating
    The plurality of grooves are formed such that the ratio of the total area occupied by the grooves to the entire sliding surface of the bearing sliding surface (groove area ratio) is 15 to 50%, and the distance between adjacent grooves A slide bearing device, characterized in that is formed to be 5 to 60 mm.
  3.  回転機械に使用するすべり軸受であって、
     軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、軸受すべり面には軸方向に貫通した複数の溝が設けられ、
     前記複数の溝は、隣り合う溝間の距離が5~60mmになるように形成されていることを特徴とするすべり軸受装置。
    A plain bearing used in a rotating machine,
    The bearing part is made of a resin material that does not contain carbon fiber or a composite material that contains a plurality of carbon fibers that are shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fiber. Are provided with a plurality of grooves penetrating
    The plurality of grooves are formed so that a distance between adjacent grooves is 5 to 60 mm.
  4.  回転機械に使用するすべり軸受であって、
     軸受部分は、炭素繊維を含まない樹脂材料または炭素繊維を含まない樹脂材料に軸受すべり面の円周長さより短い長さの炭素繊維を複数本含む複合材料からなり、軸受すべり面には軸方向に貫通した複数の溝が設けられ、
     前記複数の溝は、軸受すべり面のすべり面全体の面積に対して溝の占める全面積の割合(溝の面積率)が15~50%になるように形成されていることを特徴とするすべり軸受装置。
    A plain bearing used in a rotating machine,
    The bearing part is made of a resin material that does not contain carbon fiber or a composite material that contains a plurality of carbon fibers that are shorter than the circumferential length of the bearing sliding surface in a resin material that does not contain carbon fiber. Are provided with a plurality of grooves penetrating
    The plurality of grooves are formed such that the ratio of the total area occupied by the grooves (groove area ratio) to the total area of the sliding surface of the bearing slide is 15 to 50%. Bearing device.
  5.  前記隣り合う溝間の距離は、10mm~60mmであることを特徴とする請求項3または4記載のすべり軸受装置。 The sliding bearing device according to claim 3 or 4, wherein a distance between the adjacent grooves is 10 mm to 60 mm.
  6.  前記樹脂材料は、PA,POM,PBT,PET,PPE,PC,UHMw-PE,PTFE,PPS,PI,PEEK,PAR,PSF,PEI,PAI,PESのうち少なくとも1種類を含むものであることを特徴とする請求項1乃至5のいずれか1項に記載のすべり軸受装置。 The resin material includes at least one of PA, POM, PBT, PET, PPE, PC, UHMw-PE, PTFE, PPS, PI, PEEK, PAR, PSF, PEI, PAI, and PES. The sliding bearing device according to any one of claims 1 to 5.
  7.  前記溝は、軸受すべり面から径方向への深さが1.0mm以上で且つ前記樹脂材料または複合材料の厚さの2/3以下になるように形成されていることを特徴とする請求項1乃至6のいずれか1項に記載のすべり軸受装置。 The groove is formed so that a depth in a radial direction from a bearing sliding surface is 1.0 mm or more and 2/3 or less of a thickness of the resin material or the composite material. The plain bearing device according to any one of 1 to 6.
  8.  羽根車を支持する回転軸をすべり軸受装置で支持し、前記すべり軸受装置の軸受すべり面が大気中に露出するドライ条件で運転されるポンプにおいて、
     前記すべり軸受装置に請求項1乃至7のいずれか1項のすべり軸受装置を用いることを特徴とするポンプ。
    In a pump that supports a rotating shaft that supports an impeller by a slide bearing device and is operated under dry conditions in which a bearing slide surface of the slide bearing device is exposed to the atmosphere.
    A pump characterized by using the slide bearing device according to any one of claims 1 to 7 for the slide bearing device.
PCT/JP2014/084230 2013-12-27 2014-12-25 Sliding bearing device WO2015099004A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2016702258A MY174184A (en) 2013-12-27 2014-12-25 Sliding bearing device
JP2015554982A JP6422443B2 (en) 2013-12-27 2014-12-25 Slide bearing device
CN201480070773.5A CN105874230B (en) 2013-12-27 2014-12-25 Plain bearing arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-270936 2013-12-27
JP2013270936 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099004A1 true WO2015099004A1 (en) 2015-07-02

Family

ID=53478851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084230 WO2015099004A1 (en) 2013-12-27 2014-12-25 Sliding bearing device

Country Status (4)

Country Link
JP (1) JP6422443B2 (en)
CN (1) CN105874230B (en)
MY (1) MY174184A (en)
WO (1) WO2015099004A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190364A1 (en) * 2014-06-12 2015-12-17 株式会社Ihi Bearing structure and supercharger
RU199606U1 (en) * 2019-12-16 2020-09-09 Публичное акционерное общество "Пролетарский завод" MULTI-STAGE CENTRIFUGAL PUMP

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246706A (en) * 2016-08-21 2016-12-21 无锡商业职业技术学院 Guiding sleeve on power transmission shaft
CN109863323B (en) * 2016-10-24 2020-11-10 Ntn株式会社 Sliding bearing
JP6994194B2 (en) * 2017-11-30 2022-01-14 株式会社荏原製作所 Plain bearing device and pump equipped with it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200946A (en) * 1992-12-29 1994-07-19 Oiles Ind Co Ltd Cylindrical bearing where solid lubricant is embedded and fixed on inner circumferential surface
JPH10131969A (en) * 1996-10-30 1998-05-22 Mitsubishi Heavy Ind Ltd Sliding bearing
JP2001173660A (en) * 1999-12-15 2001-06-26 Ebara Corp Sliding bearing device
JP2004019857A (en) * 2002-06-19 2004-01-22 Hitachi Industries Co Ltd Resin bearing and resin bearing manufacturing method
WO2007122798A1 (en) * 2006-03-29 2007-11-01 Hitachi Powdered Metals Co., Ltd. Sliding bearing
JP2009024798A (en) * 2007-07-20 2009-02-05 Hitachi Powdered Metals Co Ltd Sliding bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216121A (en) * 1988-02-24 1989-08-30 Toray Ind Inc Sliding bearing
CN2152113Y (en) * 1993-03-18 1994-01-05 山东省安丘县大盛玻璃钢厂 Axle bush
EP0894067B1 (en) * 1996-04-18 2002-08-14 Duramax Marine, LLC Grooved staved bearing assembly
FR2783291B1 (en) * 1998-09-16 2000-12-08 Stephanois Rech Mec SLIDING, GREASE LUBRICATED GUIDING BODIES, WITH A LOW COEFFICIENT OF FRICTION AND AN IMPROVED LIFETIME
GB0018904D0 (en) * 2000-08-03 2000-09-20 Dana Corp Bearings
JP4515824B2 (en) * 2004-05-27 2010-08-04 Ntn株式会社 High precision plain bearing
JP5909392B2 (en) * 2012-03-16 2016-04-26 株式会社荏原製作所 Slide bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200946A (en) * 1992-12-29 1994-07-19 Oiles Ind Co Ltd Cylindrical bearing where solid lubricant is embedded and fixed on inner circumferential surface
JPH10131969A (en) * 1996-10-30 1998-05-22 Mitsubishi Heavy Ind Ltd Sliding bearing
JP2001173660A (en) * 1999-12-15 2001-06-26 Ebara Corp Sliding bearing device
JP2004019857A (en) * 2002-06-19 2004-01-22 Hitachi Industries Co Ltd Resin bearing and resin bearing manufacturing method
WO2007122798A1 (en) * 2006-03-29 2007-11-01 Hitachi Powdered Metals Co., Ltd. Sliding bearing
JP2009024798A (en) * 2007-07-20 2009-02-05 Hitachi Powdered Metals Co Ltd Sliding bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190364A1 (en) * 2014-06-12 2015-12-17 株式会社Ihi Bearing structure and supercharger
RU199606U1 (en) * 2019-12-16 2020-09-09 Публичное акционерное общество "Пролетарский завод" MULTI-STAGE CENTRIFUGAL PUMP

Also Published As

Publication number Publication date
CN105874230B (en) 2018-06-22
JPWO2015099004A1 (en) 2017-03-23
JP6422443B2 (en) 2018-11-14
MY174184A (en) 2020-03-12
CN105874230A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6422443B2 (en) Slide bearing device
KR102276081B1 (en) sliding parts
KR102276083B1 (en) sliding parts
JP6603382B2 (en) Vertical shaft pump
AU2015331688B2 (en) Sealing device
RU2501928C2 (en) Downhole device with rotating assemblies resistant to formation of depositions (versions)
JP6193032B2 (en) Sliding bearing device and pump equipped with the same
JP2009222207A (en) Bearing and pump having the same
CN101668970A (en) Ceramic sliding member for pure water
JP5909392B2 (en) Slide bearing device
EP2463536A1 (en) Bearing Assembly
JP2005048605A (en) Pump
JP6411902B2 (en) Vertical shaft pump
JP2009222208A (en) Bearing and pump having the same
JP4330235B2 (en) Vertical pump
CN113915158A (en) Pump and method of operating the same
JPWO2017212534A1 (en) Vertical shaft pump
JP2017166380A (en) Rotating machine
JP2018115706A (en) Sleeve, shaft seal device provided with sleeve, pump provided with shaft seal device, and method for preventing relative rotation to main shaft of sleeve
JP2007231958A (en) Pump
JP2019015194A (en) Vertical shaft pump
JP2017166589A (en) Bearing assembly and vertical shaft pump
JP2017133442A (en) Water injection-free bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874659

Country of ref document: EP

Kind code of ref document: A1