WO2015098937A1 - Overvoltage protection circuit and power conversion device provided therewith - Google Patents

Overvoltage protection circuit and power conversion device provided therewith Download PDF

Info

Publication number
WO2015098937A1
WO2015098937A1 PCT/JP2014/084101 JP2014084101W WO2015098937A1 WO 2015098937 A1 WO2015098937 A1 WO 2015098937A1 JP 2014084101 W JP2014084101 W JP 2014084101W WO 2015098937 A1 WO2015098937 A1 WO 2015098937A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
impedance
switch
overvoltage protection
Prior art date
Application number
PCT/JP2014/084101
Other languages
French (fr)
Japanese (ja)
Inventor
俊彰 佐藤
矢吹 俊生
田口 泰貴
淳也 三井
康平 森田
敬之 畑山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480070190.2A priority Critical patent/CN105874673B/en
Publication of WO2015098937A1 publication Critical patent/WO2015098937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage

Definitions

  • the present invention relates to an overvoltage protection circuit and a power conversion device including the same.
  • an overvoltage protection circuit as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-207329) is provided. This overvoltage protection circuit is configured to shut off the power supply with a relay when the voltage is equal to or higher than a predetermined voltage.
  • the time required for the power supply voltage to become excessive is extremely short, and it is difficult to reliably protect with a slow response due to the interruption by the relay.
  • a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay.
  • increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
  • an object of the present invention is to provide a small-sized and low-cost overvoltage protection circuit that protects a device from a momentary excessive voltage, and a power conversion device including the same.
  • An overvoltage protection circuit is an overvoltage protection circuit connected between a power source and a device supplied with power from the power source, and includes an impedance circuit, a voltage detector, a bypass circuit, It has.
  • the impedance circuit is connected in series with the device on a power line connecting the power source and the device.
  • the voltage detector detects the voltage of the power supply.
  • the bypass circuit is a circuit that bypasses the impedance circuit.
  • the bypass circuit has a switch for opening and closing the bypass circuit. The switch normally closes the bypass circuit, and shuts off the bypass circuit when the value detected by the voltage detector exceeds a predetermined threshold value.
  • the overvoltage protection circuit according to the second aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a second switch for opening and closing the power supply line.
  • the second switch normally turns on the power supply line, and shuts off the power supply line after operation of the switch when the value detected by the voltage detector exceeds a predetermined threshold.
  • the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
  • the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit.
  • impedance overheating can be suppressed and the power rating can be reduced.
  • the overvoltage protection circuit according to the third aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a second switch for opening and closing the power supply line.
  • the second switch normally turns on the power supply line, and when the time when the value detected by the voltage detector exceeds a predetermined threshold becomes longer than the predetermined duration determination value, Shut off the line.
  • the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
  • the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit.
  • impedance overheating can be suppressed and the power rating can be reduced.
  • An overvoltage protection circuit is the overvoltage protection circuit according to the first aspect, further comprising: a second switch that opens and closes a power supply line; and a device voltage detector that detects a voltage applied to the device. I have.
  • the second switch normally turns on the power line, and shuts off the power line after the operation of the switch when the value detected by the device voltage detector exceeds a predetermined third threshold.
  • the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
  • the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit.
  • impedance overheating can be suppressed and the power rating can be reduced.
  • An overvoltage protection circuit is an overvoltage protection circuit connected between a power supply and a device supplied with power from the power supply, and includes a variable impedance circuit and a voltage detector. .
  • the variable impedance circuit is connected in series with the device on a power line connecting the power source and the device.
  • the voltage detector detects the voltage of the power supply. Further, the variable impedance circuit makes the impedance value larger than the normal value when the value detected by the voltage detector exceeds a predetermined threshold value.
  • the impedance value is normally set to a small value (including 0), so the power consumption in the variable impedance circuit is suppressed, the voltage drop in the variable impedance circuit is small, and the application to the device It can also be suppressed that the voltage is lowered by the voltage drop in the variable impedance circuit.
  • the impedance value is set to a large value during overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from overvoltage.
  • the overvoltage protection circuit according to the sixth aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit continuously changes the impedance value according to the change in the detection value by the voltage detector.
  • the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from the overvoltage.
  • the overvoltage protection circuit according to the seventh aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit changes the impedance value stepwise in accordance with the change of the detection value by the voltage detector.
  • the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from the overvoltage.
  • the overvoltage protection circuit according to the eighth aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit selectively uses a plurality of impedance elements.
  • the plurality of impedance elements includes a first impedance element and a second impedance element.
  • the first impedance element has a first impedance value.
  • the second impedance element has a second impedance value that is greater than the first impedance value.
  • the variable impedance circuit switches the impedance element to be used from the first impedance element to the second impedance element when the value detected by the voltage detector exceeds a predetermined threshold value when the first impedance element is used.
  • the overvoltage protection circuit according to the ninth aspect of the present invention is the overvoltage protection circuit according to any one of the fifth to eighth aspects, and further includes a second switch that opens and closes the power supply line.
  • the second switch normally turns on the power supply line, and shuts off the power supply line when the value detected by the voltage detector exceeds a predetermined second threshold.
  • the overvoltage protection circuit according to the tenth aspect of the present invention is the overvoltage protection circuit according to any one of the fifth to eighth aspects, and further includes a second switch that opens and closes the power supply line.
  • the second switch normally turns on the power line, and shuts off the power line when the time when the value detected by the voltage detector exceeds a predetermined threshold becomes longer than a predetermined duration determination value. .
  • An overvoltage protection circuit is the overvoltage protection circuit according to any one of the fifth to eighth aspects, the second switch for opening and closing the power supply line, and the voltage applied to the device And a device voltage detector.
  • the second switch normally turns on the power line, and shuts off the power line when the value detected by the device voltage detector exceeds a predetermined third threshold.
  • the overvoltage protection circuit according to the twelfth aspect of the present invention is the overvoltage protection circuit according to any one of the first to eleventh aspects, and the power supply is an AC power supply.
  • the overvoltage protection circuit according to the thirteenth aspect of the present invention is the overvoltage protection circuit according to any one of the first to eleventh aspects, and the power source is a DC power source.
  • the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the cost of the switch can be reduced.
  • the power conversion device includes a converter circuit, an inverter circuit, and any one of the overvoltage protection circuits according to the first to tenth aspects.
  • the converter circuit is connected to an AC power source and converts an AC voltage into a DC voltage.
  • the inverter circuit converts a DC voltage into an AC voltage.
  • the overvoltage protection circuit can protect the converter circuit from excessively applied alternating voltage or the inverter circuit from transiently applied excessive DC voltage.
  • the bypass circuit since the bypass circuit is normally closed, power is not consumed by the impedance circuit, and the voltage applied to the device is lowered by the voltage drop at the impedance. It can also be avoided. On the other hand, at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop of the impedance of the impedance circuit, and the device can be protected from overvoltage.
  • the bypass circuit since the bypass circuit is normally closed, power is not consumed in the impedance circuit, and the voltage applied to the device is only the voltage drop in the impedance circuit. Lowering can also be avoided.
  • the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
  • the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit.
  • impedance overheating can be suppressed and the power rating can be reduced.
  • the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage. Further, after the switch is operated, the second switch is operated to cut off the power supply line, thereby stopping the power consumption in the impedance circuit. As a result, the power rating of the impedance can be reduced.
  • the impedance value is normally set to a small value (including 0)
  • the power consumption in the impedance circuit is suppressed, and the voltage drop in the impedance circuit is also small. It is also possible to suppress the voltage applied to the device from being lowered by the voltage drop in the impedance circuit.
  • the impedance value is set to a large value during overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
  • the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, Equipment can be protected from overvoltage.
  • the overvoltage protection circuit since it is normally connected to the first impedance element having the smaller impedance value, the power consumption in the impedance circuit is suppressed, and the voltage drop in the impedance circuit is also small. It is also possible to suppress the voltage applied to the device from being lowered by the voltage drop in the impedance circuit.
  • the power consumption in the impedance circuit is stopped by operating the second switch to cut off the power line.
  • impedance overheating can be suppressed and the power rating can be reduced.
  • the overvoltage protection circuit In the overvoltage protection circuit according to the twelfth aspect of the present invention, even if the supply voltage from the AC power supply is an excessive voltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
  • the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the low cost of the switch Can be achieved.
  • the overvoltage protection circuit protects the converter circuit from excessively applied alternating voltage or protects the inverter circuit from transiently applied excessive DC voltage. be able to.
  • the graph which shows the change of the voltage V when an impedance contains an inductance component.
  • the circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 3rd Embodiment of this invention.
  • the graph which shows the change of the voltage V when an impedance is only resistance The graph which shows the change of the voltage V when an impedance is only resistance.
  • the circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on another modification.
  • the circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention.
  • the graph which shows the change of the voltage V when an impedance is only a variable resistance and an impedance increases continuously.
  • the graph which shows the change of the voltage V when an impedance is only a variable resistance and an impedance increases in steps.
  • the circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 6th Embodiment of this invention.
  • the graph which shows the change of the voltage V when an impedance is only resistance The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on another modification.
  • the circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention.
  • the circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 9th Embodiment of this invention.
  • FIG. 1 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the first embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an impedance circuit 20, a voltage detector 33, and a bypass circuit 35.
  • Impedance circuit 20 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z.
  • the impedance circuit 20 is connected between the commercial power supply 90 and the device 30 on the power supply line 902.
  • FIG. 2 is a circuit diagram of a general voltage detector 33.
  • the voltage detector 33 includes a transformer circuit 331 and a converter circuit 332.
  • the transformer circuit 331 is located on the input side and includes a primary winding 331a and a secondary winding 331b.
  • the converter circuit 332 is a circuit in which a rectifying unit 332a composed of a rectifying diode and a smoothing capacitor 332b are connected in parallel.
  • the voltage detector 33 when an AC voltage is applied to the transformer circuit 331, the AC voltage is transformed by the transformer circuit 331. Then, the voltage across the secondary winding 331 b is input to the converter circuit 332.
  • the AC voltage after transformation input to the converter circuit 332 is converted into a DC voltage by the rectifying unit 332a and smoothed by the smoothing capacitor 332b.
  • This smoothed DC voltage is input to the control unit 40. That is, a DC voltage corresponding to the voltage applied to the primary winding 331a is input to the control unit 40.
  • the bypass circuit 35 is connected to the impedance circuit 20 in parallel and bypasses the impedance circuit 20.
  • the bypass circuit 35 has a switch 11.
  • the switch 11 opens and closes the bypass circuit 35.
  • opening and closing the bypass circuit 35 means making the bypass circuit 35 conductive or non-conductive to make it non-conductive.
  • the switch 11 normally closes the bypass circuit 35, that is, keeps it conductive. This is because if the bypass circuit 35 is left open (non-conducting state) during normal operation, the impedance circuit 20 is always connected and power is always consumed, and the voltage applied to the device 30 is applied to the impedance circuit 20. This is because the voltage drops by the voltage drop of the impedance Z.
  • a triac As the switch 11, a triac, a MOSFET connected so as to conduct in both directions, or the like is employed. In the present embodiment, a phototriac coupler is employed.
  • the switch 11 is provided with a light emitting diode 11a on the input side (between A1 and A2) and a phototriac 11b on the output side (between B1 and B2).
  • the equivalent circuit of the phototriac 11b has a configuration in which two photothyristors 111 and 112 are connected in parallel in opposite directions.
  • the anode A1 of the light emitting diode 11a is connected to the power source Vc via the resistor R1.
  • the cathode A2 of the light emitting diode 11a is connected to the control unit 40 through a signal line.
  • the first anode B1 of the phototriac 11b is connected between the impedance circuit 20 in the power supply line 902 and the device 30.
  • the second anode B2 of the phototriac 11b is connected to the power supply line 902 between the impedance circuit 20 and the commercial power supply 90.
  • the light emitting diode 11a emits light when a current flows.
  • the phototriac 11b receives light from the light emitting diode 11a in a state where the potential of the first anode B1 is higher than the potential of the second anode B2, the photothyristor 111 is turned on.
  • the photothyristor 112 is turned on.
  • the phototriac 11b is a bidirectional element that operates with respect to a bidirectional applied voltage, and also operates at a high speed, so that it is used as a bidirectional high-speed switch.
  • the bidirectional high-speed switch is not limited to the photo triac, but a normal triac or a MOSFET connected so as to conduct in both directions may be employed.
  • a drive circuit corresponding to the form of the switch is appropriately used.
  • control unit 40 performs operation control of the switch 11, that is, energization control to the light emitting diode 11a.
  • FIG. 3 is a graph showing changes in the voltage V when the impedance of the device 30 is only a resistance component and the impedance Z is only a resistance.
  • the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off. In order to protect the device 30, the switch 11 is required to operate at high speed.
  • FIG. 4 is a graph showing a change in the voltage V when the impedance Z includes an inductance component.
  • the increase in the voltage V after the switch 11 is turned off is Compared to the case where the impedance Z is only a resistance, it rises more slowly.
  • the impedance Z includes an inductance component in an area where the power supply voltage is likely to fluctuate and the overvoltage continues for a long time.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 11a of the switch 11, The photo triac 11b is turned on. As a result, the normal operation is restored.
  • FIG. 5 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the second embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an impedance circuit 20, a voltage detector 33, a bypass circuit 35, and the second switch 12.
  • Second switch 12 The second switch 12 opens and closes the power line 901.
  • opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
  • the second switch 12 normally closes the power supply line 901, that is, keeps it conductive. On the other hand, at the time of overvoltage, the switch 11 is turned off to form a closed circuit of the commercial power supply 90-the device 30-the impedance circuit 20-the commercial power supply 90, and after the protection operation of the device 30 is performed, the second switch 12 is turned off. Then, the power line 901 is shut off.
  • the purpose of cutting off the power supply line 901 is to stop the power consumption in the impedance circuit 20, the power rating of the impedance circuit 20 can be reduced, and the cost can be reduced.
  • the second switch 12 includes a relay contact 12a for opening and closing the power supply line 901, a relay coil 12b for operating the relay contact 12a, and a transistor 12c for energizing and de-energizing the relay coil 12b. Is included. One end of the relay coil 12b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 12c.
  • the control unit 40 switches the presence / absence of the base current of the transistor 12c, turns on / off the collector and the emitter, and energizes and de-energizes the relay coil 12b.
  • the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
  • the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases.
  • the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches the second threshold value. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
  • the impedance Z includes an inductance component
  • the increase in the voltage V after the switch 11 is turned off is that the impedance Z is only a resistance. Compared to the case, it rises more slowly.
  • the damage is small compared to the case where the impedance Z is only a resistance. That is, the device 30 can be protected from a short-time overvoltage even when the power rating of the impedance Z is small.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned on. Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
  • the second switch 12 cuts off the power supply line 901 to stop power consumption in the impedance circuit 20. As a result, overheating of the impedance circuit 20 can be suppressed and the power rating can be reduced.
  • FIG. 7 is a circuit diagram of a power converter 300 including an overvoltage protection circuit 100 according to the third embodiment of the present invention.
  • the power conversion device 300 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 100.
  • the inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • the overvoltage protection circuit 100 is connected between the DC power supply unit 80 and the inverter 95.
  • the DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
  • the rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
  • connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90.
  • a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90.
  • the rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
  • the smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81.
  • the smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
  • the DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
  • the inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes.
  • the inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 500.
  • the motor 500 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
  • inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
  • Gate drive circuit 96 The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
  • the overvoltage protection circuit 100 includes an impedance circuit 70, a voltage detector 83, a bypass circuit 85, and a second switch 62.
  • the third embodiment is different from the first and second embodiments already described in that the overvoltage protection circuit 100 is provided in the direct current section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
  • the impedance circuit 70 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z. In general, a resistance element is employed.
  • the impedance circuit 70 is connected between the DC power supply unit 80 and the inverter 95 on the power supply line 802.
  • the voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc.
  • the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
  • the bypass circuit 85 is a circuit that is connected in parallel to the impedance circuit 70 and bypasses the impedance circuit 70.
  • the bypass circuit 85 has a switch 61.
  • the switch 61 opens and closes the bypass circuit 85.
  • opening and closing the bypass circuit 85 means making the bypass circuit 85 conductive or blocked to make it non-conductive.
  • the switch 61 normally closes the bypass circuit 85, that is, keeps it conductive. This is because if the bypass circuit 85 is left open (non-conducting state) during normal operation, power is always consumed by the impedance circuit 70 and the voltage applied to the inverter 95 is lowered by the voltage drop of the impedance Z of the impedance circuit 70. Because it becomes.
  • the switch 61 is required to operate at high speed.
  • a transistor is employed, but the form of the switch 61 is not limited to this embodiment.
  • the switch 61 is composed of a photocoupler 61a, a drive circuit 61b, and a transistor 61c.
  • the photocoupler 61a includes a light emitting diode 611 and a phototransistor 612.
  • the light emitting diode 611 of the photocoupler 61a is connected to the input side (between C1 and C2) of the switch 61.
  • the anode C1 of the light emitting diode 611 is connected to the power source Vc via the resistor R1.
  • the cathode C2 of the light emitting diode 611 is connected to the control unit 40 via a signal line.
  • the phototransistor 612 is connected between the drive circuit 61b and GND.
  • a transistor 61c is provided on the output side (between D1 and D2) of the switch 61.
  • the collector D1 of the transistor 61c is connected between the impedance circuit 70 and the inverter 95.
  • the emitter D2 of the transistor 61c is connected between the impedance circuit 70 and the DC power supply unit 80.
  • the control signal of the control unit 40 is input to the drive circuit 61b via the photocoupler 61a.
  • a driving power supply (not shown) is connected to the driving circuit 61b.
  • the control unit 40 turns on the signal line of the light emitting diode 611, the light emitting diode 611 emits light and the phototransistor 612 becomes conductive. While the phototransistor 612 is conducting, a driving signal is output from the driving circuit 61b to the base of the transistor 61c, and the collector D1-emitter D2 of the transistor 61c is conducted.
  • control unit 40 turns off the signal line of the light emitting diode 611, the light emitting diode 611 does not emit light, and the phototransistor 612 does not conduct. While the phototransistor 612 is not conducting, the collector D1 and the emitter D2 of the transistor 61c are not conducted.
  • Second switch 62 The second switch 62 opens and closes the power line 801.
  • opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
  • the second switch 62 normally closes the power supply line 801, that is, keeps it conductive. On the other hand, when overvoltage occurs, the switch 61 is turned off to form a closed circuit of the DC power supply unit 80-inverter 95-impedance circuit 70-DC power supply unit 80. After the protective operation of the inverter 95 is performed, the second switch 62 Is turned off and the power line 801 is shut off.
  • the purpose of cutting off the power supply line 801 is to stop the power consumption in the impedance circuit 70, the power rating of the impedance circuit 70 can be reduced, and the cost can be reduced.
  • the second switch 62 includes a relay contact 62a for opening and closing the power supply line 801, a relay coil 62b for operating the relay contact 62a, and a transistor 62c for energizing and de-energizing the relay coil 62b. Is included. One end of the relay coil 62b is connected to the positive electrode of the power supply Vb, and the other end is connected to the collector side of the transistor 62c. The controller 40 switches between the presence and absence of the base current of the transistor 62c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 62b.
  • the control unit 40 determines that the voltage output from the voltage detector 83 exceeds the threshold value, the control unit 40 stops energizing the light emitting diode 611 of the switch 61. Then, the phototransistor 612 is turned off.
  • the second switch 62 cuts off the power supply line 801 and stops the power consumption in the impedance circuit 70.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 83 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 611 of the switch 61, The transistor 61c is turned on. Further, by turning on the second switch 62 and connecting the power supply line 801, the normal operation is restored.
  • the switch 61 is normally turned on and the bypass circuit 85 is closed, so that no power is consumed in the impedance circuit 70, and the voltage applied to the inverter 95 is the voltage at the impedance circuit 70. It is also possible to avoid lowering by the amount of descent.
  • the second switch 62 cuts off the power supply line 801 to stop the power consumption in the impedance circuit 70. As a result, the power rating of the impedance circuit 70 can be reduced.
  • the switch 61 arranged on the downstream side of the DC power supply unit 80 may be a one-way switch, the cost of the switch can be reduced.
  • FIG. 8 is a circuit diagram of a power conversion device 300 including the overvoltage protection circuit 100 according to the fourth embodiment of the present invention.
  • the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • a part of the overvoltage protection circuit 100 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
  • the overvoltage protection circuit 100 includes an impedance circuit 70, a voltage detector 33, a bypass circuit 85, and the second switch 12.
  • a voltage detector and a second switch which are components of the overvoltage protection circuit 100, are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the second switch is the same as the arrangement of the voltage detector 33 and the second switch 12 in the second embodiment. Therefore, in view of the fact that the voltage detector and the second switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the second switch 12 of the second embodiment are employed.
  • each component is the same as that of the voltage detector 33 and the second switch 12 of the second embodiment, the impedance circuit 70 of the third embodiment, and the bypass circuit 85. Only the operation is explained.
  • the control unit 40 determines that the voltage output from the voltage detector 33 exceeds the threshold, and the switch The current supply to the light emitting diode 611 of 61 is stopped, and the transistor 61c is turned off.
  • the second switch 12 cuts off the power supply line 901 and stops the power consumption in the impedance circuit 70.
  • the switch 61 is normally turned on and the bypass circuit 85 is closed, so that no power is consumed in the impedance circuit 70, and the voltage applied to the inverter 95 is the voltage at the impedance circuit 70. It is also possible to avoid lowering by the amount of descent.
  • the second switch 12 cuts off the power supply line 901 to stop the power consumption in the impedance circuit 70. As a result, overheating of the impedance circuit 70 can be suppressed and the power rating can be reduced.
  • the switch 61 arranged on the downstream side of the DC power supply unit 80 may be a one-way switch, the cost of the switch can be reduced.
  • the overvoltage protection circuit 50 according to the first embodiment shown in FIG. 1 is an overvoltage protection circuit for an AC voltage, but when the power supply is a DC power supply, or a DC power supply unit that rectifies the AC power supply in the device. In the case of having it, each component may be replaced from the AC specification to the DC specification and provided on the downstream side of the DC power supply unit.
  • the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold, but it may be cut off when the overvoltage state has passed a predetermined duration. Good.
  • the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
  • the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases, but the overvoltage state continues for a predetermined duration after the voltage Vac exceeds the threshold value.
  • the second switch 12 cuts off the power supply line 901. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
  • the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold.
  • a device voltage detector 37 for detecting the voltage V applied to the device is further provided. The voltage V may be cut off when it reaches a predetermined third threshold (a circuit diagram at this time is shown in FIG. 11).
  • the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
  • the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases, but when the voltage V reaches the third threshold value, the second switch 12 cuts off the power line 901. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
  • the fourth embodiment is different from the third embodiment in that the voltage detector and the second switch are provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is commercialized. You may make it provide between the power supply 90 and the DC power supply part 80.
  • FIG. 12 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the fifth embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 150 includes a variable impedance circuit 120 and a voltage detector 33.
  • variable impedance circuit 120 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z.
  • the impedance Z is variable.
  • variable impedance circuit 120 is connected between the commercial power supply 90 and the device 30 on the power supply line 902.
  • the voltage detector 33 is configured by an AC voltage detection circuit. There are various AC voltage detection circuits, and they are appropriately adopted depending on use conditions. Specifically, for example, the voltage detector (see FIG. 2) employed in the first embodiment and the second embodiment is the same as the voltage detector, and the description thereof is omitted here.
  • FIG. 13 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component, the impedance Z is only the variable resistance, and the impedance Z continuously increases. is there. 12 and 13, since the impedance Z is 0 or a value close to 0 at normal time, the voltage V ⁇ Vac is applied to the device 30.
  • the control unit 40 determines that the voltage output from the voltage detector 33 exceeds V 0.
  • the control unit 40 continuously increases the impedance Z in accordance with the increase in the detection value of the voltage detector 33.
  • the voltage V Vac ⁇ Vz obtained by subtracting the voltage drop Vz at both ends of the variable impedance circuit 120 is applied to the device 30, and the device 30 is protected from overvoltage.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance Z of the variable impedance circuit 120 to 0 or Return to a value close to zero. As a result, the normal operation is restored.
  • the change in the impedance Z is not necessarily a continuous increase as shown in FIG. 13, and may be an intermittent increase.
  • FIG. 14 is a graph showing a change in the voltage V when the impedance of the device 30 is only the resistance component, the impedance Z is only the variable resistance, and the impedance Z increases stepwise.
  • the impedance Z is set to a large value at the time of overvoltage, the voltage applied to the device 30 is reduced by the voltage drop Vz in the variable impedance circuit 120, and the device 30 can be protected from the overvoltage.
  • variable impedance circuit 120 can continuously change the impedance Z according to the change in the detection value by the voltage detector 33.
  • variable impedance circuit 120 can change the impedance Z in a stepwise manner in accordance with the change in the detection value by the voltage detector 33.
  • FIG. 15 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the sixth embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 150 includes a variable impedance circuit 120 and a voltage detector 33.
  • variable impedance circuit 120 is configured by a plurality of impedance elements, but other configurations are the fifth embodiment. Is the same. Therefore, only the variable impedance circuit 120 will be described here.
  • variable impedance circuit 120 includes a low impedance element 121, a high impedance element 122, and a changeover switch 123.
  • the variable impedance circuit 120 can selectively use the low impedance element 121 and the high impedance element 122 by the changeover switch 123.
  • the low impedance element 121 has an impedance Z 1 .
  • the high impedance element 122 has an impedance Z 2 that is greater than the impedance Z 1 .
  • the variable impedance circuit 120 can switch the impedance element to be used from the low impedance element 121 to the high impedance element 122 when the detection value of the voltage detector 33 exceeds a predetermined threshold when the low impedance element 121 is used.
  • FIG. 16 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component and the impedance Z is only the resistance. 15 and 16, the variable impedance circuit 120 is normally connected to the low impedance element 121 at the contact point of the changeover switch 123 in the variable impedance circuit 120. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V ⁇ Vac is applied to the device 30.
  • the controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
  • control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
  • the voltage V applied to the device 30 decreases from V 1 to V 0 , and the device 30 is protected from overvoltage.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . As a result, the normal operation is restored.
  • overvoltage protection circuit 150 In the overvoltage protection circuit 150, during overvoltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, and the device 30 can be protected from overvoltage.
  • FIG. 17 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the seventh embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 150 includes a variable impedance circuit 120, a voltage detector 33, and a second switch 12.
  • Second switch 12 The second switch 12 opens and closes the power line 901.
  • opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
  • the second switch 12 normally closes the power supply line 901, that is, keeps it conductive. On the other hand, at the time of overvoltage, the second switch 12 is turned off and the power supply line 901 is shut off after the protection operation of the device 30 is performed by changing the impedance Z of the variable impedance circuit 120.
  • variable impedance circuit 120 is used when the overvoltage of the power supply exceeds the assumed voltage when the variable impedance circuit is designed, or when the duration of the overvoltage state exceeds the assumed time. Therefore, the power rating of the variable impedance circuit 120 can be reduced, and the cost can be reduced.
  • the second switch 12 employs a relay circuit.
  • the second switch 12 includes a relay contact 12a for opening and closing the power supply line 901, a relay coil 12b for operating the relay contact 12a, and a transistor 12c for energizing and de-energizing the relay coil 12b. Is included. One end of the relay coil 12b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 12c.
  • the control unit 40 switches the presence / absence of the base current of the transistor 12c, turns on / off the collector and the emitter, and energizes and de-energizes the relay coil 12b.
  • FIG. 18 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component and the impedance Z is only the resistance.
  • the second switch 12 keeps the power supply line 901 conductive during normal times. Since the impedance Z of the variable impedance circuit 120 is 0 or a value close to 0, the voltage V ⁇ Vac is applied to the device 30.
  • the voltage Vac of the commercial power supply 90 increases and the control unit 40 determines that the voltage output from the voltage detector 33 exceeds V 0.
  • the control unit 40 continuously increases the impedance Z in accordance with the increase in the detection value of the voltage detector 33.
  • the voltage V Vac ⁇ Vz obtained by subtracting the voltage drop Vz at both ends of the variable impedance circuit 120 is applied to the device 30, and the device 30 is protected from overvoltage.
  • the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases.
  • the second switch 12 cuts off the power supply line 901 when the voltage Vac reaches the first threshold value V 1 .
  • the device 30 is protected and power consumption in the variable impedance circuit 120 is stopped.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance Z of the variable impedance circuit 120 to 0 or Return to a value close to zero. Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
  • overvoltage protection circuit 150 In the overvoltage protection circuit 150, during overvoltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, and the device 30 can be protected from overvoltage.
  • the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 120. As a result, overheating of the variable impedance circuit 120 can be suppressed and the power rating can be reduced.
  • FIG. 19 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the eighth embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 150 includes a variable impedance circuit 120, a voltage detector 33, and a second switch 12.
  • variable impedance circuit 120 is configured by a plurality of impedance elements, but the other configurations are the seventh embodiment. Is the same. Therefore, only the variable impedance circuit 120 will be described here.
  • variable impedance circuit 120 includes a low impedance element 121, a high impedance element 122, and a changeover switch 123.
  • the variable impedance circuit 120 can selectively use the low impedance element 121 and the high impedance element 122 by the changeover switch 123.
  • the low impedance element 121 has an impedance Z 1 .
  • the high impedance element 122 has an impedance Z 2 that is greater than the impedance Z 1 .
  • the variable impedance circuit 120 can switch the impedance element to be used from the low impedance element 121 to the high impedance element 122 when the detection value of the voltage detector 33 exceeds a predetermined threshold when the low impedance element 121 is used.
  • FIG. 20 is a graph showing a change in voltage V when the impedance of the device 30 is only a resistance component and the impedance Z is only a resistance.
  • the variable impedance circuit 120 normally has a contact point of the changeover switch 123 connected to the low impedance element 121. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V ⁇ Vac is applied to the device 30.
  • the voltage Vac of the commercial power supply 90 at normal time is V 0 or less.
  • the controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
  • control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
  • the voltage V applied to the device 30 decreases from V 1 to V 0 , and the device 30 is protected from overvoltage.
  • V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
  • the overvoltage protection circuit 150 switches the impedance element of the variable impedance circuit 120 from the low impedance element 121 to the high impedance element 122 at the time of overvoltage, so that the voltage applied to the device 30 is reduced by the voltage drop at the impedance Z 2 .
  • the device 30 can be protected from overvoltage.
  • the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 120. As a result, overheating of the variable impedance circuit 120 can be suppressed and the power rating can be reduced.
  • FIG. 21 is a circuit diagram of a power converter 300 including an overvoltage protection circuit 200 according to the ninth embodiment of the present invention.
  • the power conversion device 300 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 200.
  • the inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • the overvoltage protection circuit 200 is connected between the DC power supply unit 80 and the inverter 95.
  • the DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
  • the rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
  • connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90.
  • a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90.
  • the rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
  • the smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81.
  • the smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
  • an electrolytic capacitor is employ
  • FIG. 1 An electrolytic capacitor, a film capacitor, etc. are mentioned as a kind of capacitor
  • the DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
  • the inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes.
  • the inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 500.
  • the motor 500 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
  • inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
  • Gate drive circuit 96 The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
  • the overvoltage protection circuit 200 includes a variable impedance circuit 170, a voltage detector 83, and a second switch 62.
  • the ninth embodiment is different from the seventh embodiment and the eighth embodiment already described in that the overvoltage protection circuit 200 is provided in the direct current section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
  • variable impedance circuit 170 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z. In general, a resistance element is employed.
  • variable impedance circuit 170 is connected between the DC power supply unit 80 and the inverter 95 on the power supply line 802.
  • the variable impedance circuit 170 includes a low impedance element 171, a high impedance element 172, and a changeover switch 173.
  • the variable impedance circuit 170 can selectively use the low impedance element 171 and the high impedance element 172 by the changeover switch 173.
  • Low impedance element 171 has an impedance Z 1.
  • the high impedance element 172 has an impedance Z 2 that is greater than the impedance Z 1 .
  • the variable impedance circuit 170 can switch the impedance element to be used from the low impedance element 171 to the high impedance element 172 when the detection value of the voltage detector 83 exceeds a predetermined threshold when the low impedance element 171 is used.
  • the voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc.
  • the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
  • Second switch 62 opens and closes the power line 801.
  • opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
  • the second switch 62 normally closes the power supply line 801, that is, keeps it conductive. On the other hand, at the time of overvoltage, the second switch 62 is turned off and the power supply line 801 is shut off after the protection operation of the inverter 95 is performed by the impedance Z of the variable impedance circuit 170 changing.
  • the purpose of cutting off the power supply line 801 is to stop the power consumption in the variable impedance circuit 170, the power rating of the variable impedance circuit 170 can be reduced, and the cost can be reduced.
  • the second switch 62 employs a relay circuit.
  • the second switch 62 includes a relay contact 62a for opening and closing the power supply line 801, a relay coil 62b for operating the relay contact 62a, and a transistor 62c for energizing and de-energizing the relay coil 62b. Is included. One end of the relay coil 62b is connected to the positive electrode of the power supply Vb, and the other end is connected to the collector side of the transistor 62c. The controller 40 switches between the presence and absence of the base current of the transistor 62c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 62b.
  • the second switch 62 keeps the power supply line 801 conductive during normal operation.
  • the variable impedance circuit 170 has a contact point of the changeover switch 173 connected to the low impedance element 171. Since the impedance Z 1 of the low impedance element 171 is 0 or a value close to 0, the voltage V ⁇ Vdc is applied to the inverter 95.
  • the control unit 40 operates the changeover switch 173 to connect the contact point to the high impedance element 172.
  • the impedance Z 2 of the high impedance element 172 is larger than the impedance Z 1 of the low impedance element 171
  • the voltage V applied to the inverter 95 decreases, and the inverter 95 is protected from overvoltage.
  • the second switch 62 cuts off the power supply line 801 when the voltage Vdc of the DC power supply unit 80 reaches the second threshold (or may be the first threshold). As a result, the inverter 95 is protected from overvoltage and the power consumption in the variable impedance circuit 170 is stopped.
  • control unit 40 determines that the voltage Vdc of the DC power supply unit 80 has dropped and the voltage output from the voltage detector 83 has fallen below the threshold for recovery, the control unit 40 increases the impedance element of the variable impedance circuit 170 to a high level. Switching from the impedance element 172 to the low impedance element 171 returns the impedance Z 2 to the impedance Z 1 . Further, by turning on the second switch 62 and connecting the power supply line 801, the normal operation is restored.
  • the overvoltage protection circuit 200 during an overvoltage, by switching the impedance components of the variable impedance circuit 170 to a high impedance element 172, the voltage applied to the voltage drop by the inverter 95 in the impedance Z 2 is reduced, the overvoltage inverters 95 Can be protected from.
  • the second switch 62 cuts off the power supply line 801 to stop the power consumption in the variable impedance circuit 170. As a result, the power rating of the variable impedance circuit 170 can be reduced.
  • FIG. 22 is a circuit diagram of a power conversion device 300 including the overvoltage protection circuit 200 according to the tenth embodiment of the present invention.
  • the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • a part of the overvoltage protection circuit 200 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
  • the overvoltage protection circuit 200 includes a variable impedance circuit 170, a voltage detector 33, and a second switch 12.
  • a voltage detector which is a component of the overvoltage protection circuit 200
  • a second switch are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the second switch is the same as the arrangement of the voltage detector 33 and the second switch 12 in the eighth embodiment. Therefore, in view of the fact that the voltage detector and the second switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the second switch 12 of the eighth embodiment are employed.
  • each component is the same as that of the voltage detector 33 and the second switch 12 of the eighth embodiment and the variable impedance circuit 170 of the ninth embodiment. .
  • the second switch 12 keeps the power supply line 901 conductive during normal operation.
  • the variable impedance circuit 170 has a contact point of the changeover switch 173 connected to the low impedance element 171. Since the impedance Z 1 of the low impedance element 171 is 0 or a value close to 0, the voltage V ⁇ Vdc is applied to the inverter 95.
  • the control unit 40 When the voltage Vdc of the DC power supply unit 80 increases due to the fluctuation of the voltage Vac of the commercial power supply 90 and the detected value of the voltage detector 33 exceeds the first threshold value, the control unit 40 operates the changeover switch 173 to change the contact point. Connect to high impedance element 172.
  • the impedance Z 2 of the high impedance element 172 is larger than the impedance Z 1 of the low impedance element 171
  • the voltage V applied to the inverter 95 decreases, and the inverter 95 is protected from overvoltage.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 is stable, the voltage Vdc of the DC power supply unit 80 is decreased, and the voltage output from the voltage detector 33 is lower than the threshold for recovery, the control unit 40 Switches the impedance element of the variable impedance circuit 170 from the high impedance element 172 to the low impedance element 171 to return the impedance Z 2 to the impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
  • the overvoltage protection circuit 200 during an overvoltage, by switching the impedance components of the variable impedance circuit 170 to a high impedance element 172, the voltage applied to the voltage drop by the inverter 95 in the impedance Z 2 is reduced, the overvoltage inverters 95 Can be protected from.
  • the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 170. As a result, overheating of the variable impedance circuit 170 can be suppressed and the power rating can be reduced.
  • the overvoltage protection circuit 150 has an overvoltage protection circuit for an AC voltage as an embodiment.
  • the power supply is a DC power supply, or a DC power supply unit that rectifies the AC power supply in the device.
  • each component may be replaced from the AC specification to the DC specification and provided on the downstream side of the DC power supply unit.
  • the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold value, but it may be cut off when the overvoltage state has passed a predetermined duration. Good.
  • the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold, but a device voltage detector 37 for detecting the voltage V applied to the device is further provided.
  • the voltage V may be cut off when it reaches a predetermined third threshold value.
  • FIG. 23 is a circuit diagram of an apparatus including an overvoltage protection circuit 150 according to another modification.
  • FIG. 24 is a graph showing changes in voltage V when the impedance is only resistance. 23 and 24, the variable impedance circuit 120 is normally connected to the low impedance element 121 at the contact point of the changeover switch 123 in the variable impedance circuit 120. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V ⁇ Vac is applied to the device 30.
  • the controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
  • control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
  • control unit 40 maintains the state in which the contact of the changeover switch 123 is connected to the high impedance element 122. However, if the overvoltage state continues, the control unit 40 increases the voltage Vac of the commercial power supply 90 as shown in FIG. Along with this, the voltage V applied to the device 30 also increases.
  • the control unit 40 shuts off the power supply line 901 via the second switch 12. As a result, the device 30 can be protected, and power consumption and temperature rise in the variable impedance circuit 120 can be stopped.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
  • the voltage detector and the second switch of the ninth embodiment are changed to be provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is used as the commercial power supply. 90 and the DC power supply unit 80 may be provided.
  • the switch 11 in the first embodiment is connected in series to the low impedance element 121 and the high impedance element 122, respectively.
  • a switch to be turned on may be switched according to the detection voltage.
  • the switch 71 in the third embodiment is connected in series to the low impedance element 171 and the high impedance element 172, and the voltage detector 83 A switch to be turned on may be switched according to the detection voltage.
  • the present invention is useful for equipment used in an area where power supply voltage is likely to fluctuate, such as a refrigeration apparatus.

Abstract

This invention addresses the problem of providing a small-form-factor, low-cost overvoltage protection circuit that protects equipment from momentary excessive voltages and a power conversion device provided with said overvoltage protection circuit. In said overvoltage protection circuit (50), normally, a switch (11) is on, closing a bypass circuit (35), so no power is consumed in an impedance circuit (20), preventing a voltage being applied to equipment (30) from decreasing by an amount equal to the voltage drop across said impedance circuit (20). When an overvoltage occurs, the switch (11) turns off such that the voltage applied to the equipment (30) is reduced by an amount equal to the voltage drop corresponding to the impedance (Z) of the impedance circuit (20), making it possible to protect said equipment (30) from the overvoltage. Also, a second switch (12) opens a power-supply line (901), stopping the impedance circuit (20) from consuming power. This makes it possible to prevent overheating of the impedance circuit (20) and reduce the power rating.

Description

過電圧保護回路、及びそれを備えた電力変換装置Overvoltage protection circuit and power conversion device including the same
 本発明は、過電圧保護回路、及びそれを備えた電力変換装置に関する。 The present invention relates to an overvoltage protection circuit and a power conversion device including the same.
 電源電圧の変動が起こり易い地域で使用される機器は、電圧上昇時の対策如何によっては、機器の故障を招く虞がある。それゆえ、特許文献1(特開2009-207329号公報)に開示されているような過電圧保護回路が設けられる。この過電圧保護回路は、所定電圧以上のときにリレーで電源を遮断する構成である。 ∙ Equipment used in areas where power supply voltage is likely to fluctuate may cause equipment failure depending on the measures taken when the voltage rises. Therefore, an overvoltage protection circuit as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-207329) is provided. This overvoltage protection circuit is configured to shut off the power supply with a relay when the voltage is equal to or higher than a predetermined voltage.
 しかしながら、電源電圧が過大となるのに要する時間は極めて短く、上記リレーによる遮断では反応が遅く確実に保護することは困難である。特に半導体素子のような、過電圧に耐えうる時間が短いものについては、リレーによる遮断では保護ができない。また、瞬間的な過大電圧のためだけに半導体素子などの耐圧を高くすることは高コスト化、大型化を招来する。 However, the time required for the power supply voltage to become excessive is extremely short, and it is difficult to reliably protect with a slow response due to the interruption by the relay. In particular, a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay. Further, increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
 そこで、本発明の課題は、瞬間的な過大電圧から機器を保護する小型・低コストの過電圧保護回路、及びそれを備えた電力変換装置を提供することにある。 Therefore, an object of the present invention is to provide a small-sized and low-cost overvoltage protection circuit that protects a device from a momentary excessive voltage, and a power conversion device including the same.
 本発明の第1観点に係る過電圧保護回路は、電源とその電源から電力を供給される機器との間に接続される過電圧保護回路であって、インピーダンス回路と、電圧検出器と、バイパス回路とを備えている。インピーダンス回路は、電源と機器とを結ぶ電源ライン上に機器と直列に接続される。電圧検出器は、電源の電圧を検出する。バイパス回路は、インピーダンス回路を迂回する回路である。また、バイパス回路は、バイパス回路を開閉するスイッチを有している。スイッチは、通常時はバイパス回路を閉じ、電圧検出器による検出値が所定の閾値を超えたときにバイパス回路を遮断する。 An overvoltage protection circuit according to a first aspect of the present invention is an overvoltage protection circuit connected between a power source and a device supplied with power from the power source, and includes an impedance circuit, a voltage detector, a bypass circuit, It has. The impedance circuit is connected in series with the device on a power line connecting the power source and the device. The voltage detector detects the voltage of the power supply. The bypass circuit is a circuit that bypasses the impedance circuit. The bypass circuit has a switch for opening and closing the bypass circuit. The switch normally closes the bypass circuit, and shuts off the bypass circuit when the value detected by the voltage detector exceeds a predetermined threshold value.
 この過電圧保護回路では、通常時はバイパス回路を閉じているので、インピーダンス回路で電力が消費されることはなく、機器への印加電圧がインピーダンスでの電圧降下分だけ低くなることも回避することができる。他方、過電圧時には、インピーダンス回路のインピーダンスの電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In this overvoltage protection circuit, since the bypass circuit is normally closed, power is not consumed by the impedance circuit, and it is possible to avoid that the voltage applied to the device is lowered by the voltage drop due to the impedance. it can. On the other hand, at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop of the impedance of the impedance circuit, and the device can be protected from overvoltage.
 本発明の第2観点に係る過電圧保護回路は、第1観点に係る過電圧保護回路であって、電源ラインを開閉する第2スイッチをさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の閾値を超えたとき、スイッチの動作後に電源ラインを遮断する。 The overvoltage protection circuit according to the second aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a second switch for opening and closing the power supply line. The second switch normally turns on the power supply line, and shuts off the power supply line after operation of the switch when the value detected by the voltage detector exceeds a predetermined threshold.
 この過電圧保護回路では、通常時はバイパス回路を閉じているので、インピーダンス回路で電力が消費されることはなく、機器への印加電圧がインピーダンス回路での電圧降下分だけ低くなることも回避することができる。 In this overvoltage protection circuit, since the bypass circuit is normally closed, no power is consumed in the impedance circuit, and it is also possible to avoid that the voltage applied to the device is lowered by the voltage drop in the impedance circuit. Can do.
 そして、過電圧時にスイッチが動作することによって、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 And, by operating the switch at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
 さらに、スイッチの動作後、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 Furthermore, after the switch is operated, the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第3観点に係る過電圧保護回路は、第1観点に係る過電圧保護回路であって、電源ラインを開閉する第2スイッチをさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の閾値を超えている時間が、所定の継続時間判定値よりも長くなったとき、スイッチの動作後に電源ラインを遮断する。 The overvoltage protection circuit according to the third aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a second switch for opening and closing the power supply line. The second switch normally turns on the power supply line, and when the time when the value detected by the voltage detector exceeds a predetermined threshold becomes longer than the predetermined duration determination value, Shut off the line.
 この過電圧保護回路では、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In this overvoltage protection circuit, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
 さらに、スイッチの動作後、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 Furthermore, after the switch is operated, the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第4観点に係る過電圧保護回路は、第1観点に係る過電圧保護回路であって、電源ラインを開閉する第2スイッチと、機器に印加される電圧を検出する機器電圧検出器をさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、機器電圧検出器による検出値が所定の第3閾値を超えたとき、スイッチの動作後に電源ラインを遮断する。 An overvoltage protection circuit according to a fourth aspect of the present invention is the overvoltage protection circuit according to the first aspect, further comprising: a second switch that opens and closes a power supply line; and a device voltage detector that detects a voltage applied to the device. I have. The second switch normally turns on the power line, and shuts off the power line after the operation of the switch when the value detected by the device voltage detector exceeds a predetermined third threshold.
 この過電圧保護回路では、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In this overvoltage protection circuit, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
 さらに、スイッチの動作後、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 Furthermore, after the switch is operated, the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第5観点に係る過電圧保護回路は、電源とその電源から電力を供給される機器との間に接続される過電圧保護回路であって、可変インピーダンス回路と電圧検出器とを備えている。可変インピーダンス回路は、電源と機器とを結ぶ電源ライン上に機器と直列に接続されている。電圧検出器は、電源の電圧を検出する。また、可変インピーダンス回路は、電圧検出器による検出値が所定の閾値を超えたとき、インピーダンス値を通常時の値よりも大きくする。 An overvoltage protection circuit according to a fifth aspect of the present invention is an overvoltage protection circuit connected between a power supply and a device supplied with power from the power supply, and includes a variable impedance circuit and a voltage detector. . The variable impedance circuit is connected in series with the device on a power line connecting the power source and the device. The voltage detector detects the voltage of the power supply. Further, the variable impedance circuit makes the impedance value larger than the normal value when the value detected by the voltage detector exceeds a predetermined threshold value.
 この過電圧保護回路では、通常時はインピーダンス値が小さい値(0を含む)に設定されるので、可変インピーダンス回路での電力消費が抑制され、可変インピーダンス回路での電圧降下も小さく、機器への印加電圧が可変インピーダンス回路での電圧降下分だけ低くなることも抑制することができる。 In this overvoltage protection circuit, the impedance value is normally set to a small value (including 0), so the power consumption in the variable impedance circuit is suppressed, the voltage drop in the variable impedance circuit is small, and the application to the device It can also be suppressed that the voltage is lowered by the voltage drop in the variable impedance circuit.
 他方、過電圧時には、インピーダンス値が大きい値に設定されるので、可変インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 On the other hand, since the impedance value is set to a large value during overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from overvoltage.
 本発明の第6観点に係る過電圧保護回路は、第5観点に係る過電圧保護回路であって、可変インピーダンス回路が、インピーダンス値を電圧検出器による検出値の変化に応じて連続的に変化させる。 The overvoltage protection circuit according to the sixth aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit continuously changes the impedance value according to the change in the detection value by the voltage detector.
 この過電圧保護回路では、過電圧時には、インピーダンス値が大きい値に設定されるので、可変インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In this overvoltage protection circuit, since the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from the overvoltage.
 本発明の第7観点に係る過電圧保護回路は、第5観点に係る過電圧保護回路であって、可変インピーダンス回路が、インピーダンス値を電圧検出器による検出値の変化に応じて段階的に変化させる。 The overvoltage protection circuit according to the seventh aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit changes the impedance value stepwise in accordance with the change of the detection value by the voltage detector.
 この過電圧保護回路では、過電圧時には、インピーダンス値が大きい値に設定されるので、可変インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In this overvoltage protection circuit, since the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the variable impedance circuit, and the device can be protected from the overvoltage.
 本発明の第8観点に係る過電圧保護回路は、第5観点に係る過電圧保護回路であって、可変インピーダンス回路が、複数のインピーダンス要素を選択的に使用している。複数のインピーダンス要素は、第1インピーダンス要素と第2インピーダンス要素とを含んでいる。第1インピーダンス要素は、第1インピーダンス値を有している。第2インピーダンス要素は、第1インピーダンス値よりも大きい第2インピーダンス値を有している。可変インピーダンス回路は、第1インピーダンス要素の使用時に電圧検出器による検出値が所定の閾値を超えたとき、使用するインピーダンス要素を第1インピーダンス要素から第2インピーダンス要素へ切り換える。 The overvoltage protection circuit according to the eighth aspect of the present invention is the overvoltage protection circuit according to the fifth aspect, and the variable impedance circuit selectively uses a plurality of impedance elements. The plurality of impedance elements includes a first impedance element and a second impedance element. The first impedance element has a first impedance value. The second impedance element has a second impedance value that is greater than the first impedance value. The variable impedance circuit switches the impedance element to be used from the first impedance element to the second impedance element when the value detected by the voltage detector exceeds a predetermined threshold value when the first impedance element is used.
 この過電圧保護回路では、通常時はインピーダンス値が小さい方の第1インピーダンス要素に接続されるので、インピーダンス回路での電力消費が抑制され、インピーダンス回路での電圧降下も小さく、機器への印加電圧がインピーダンス回路での電圧降下分だけ低くなることも抑制することができる。 In this overvoltage protection circuit, since it is normally connected to the first impedance element having the smaller impedance value, the power consumption in the impedance circuit is suppressed, the voltage drop in the impedance circuit is small, and the voltage applied to the device is reduced. It can also be suppressed that the voltage drops by the impedance circuit.
 他方、過電圧時には、インピーダンス値が大きい方の第2インピーダンス要素に接続されるので、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 On the other hand, at the time of overvoltage, since it is connected to the second impedance element having the larger impedance value, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from the overvoltage.
 本発明の第9観点に係る過電圧保護回路は、第5観点から第8観点のいずれか1つに係る過電圧保護回路であって、電源ラインを開閉する第2スイッチをさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の第2閾値を超えたとき、電源ラインを遮断する。 The overvoltage protection circuit according to the ninth aspect of the present invention is the overvoltage protection circuit according to any one of the fifth to eighth aspects, and further includes a second switch that opens and closes the power supply line. The second switch normally turns on the power supply line, and shuts off the power supply line when the value detected by the voltage detector exceeds a predetermined second threshold.
 この過電圧保護回路では、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 ∙ In this overvoltage protection circuit, the power consumption in the impedance circuit is stopped by operating the second switch and shutting off the power line. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第10観点に係る過電圧保護回路は、第5観点から第8観点のいずれか1つに係る過電圧保護回路であって、電源ラインを開閉する第2スイッチをさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の閾値を超えている時間が、所定の継続時間判定値よりも長くなったとき、電源ラインを遮断する。 The overvoltage protection circuit according to the tenth aspect of the present invention is the overvoltage protection circuit according to any one of the fifth to eighth aspects, and further includes a second switch that opens and closes the power supply line. The second switch normally turns on the power line, and shuts off the power line when the time when the value detected by the voltage detector exceeds a predetermined threshold becomes longer than a predetermined duration determination value. .
 この過電圧保護回路では、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 ∙ In this overvoltage protection circuit, the power consumption in the impedance circuit is stopped by operating the second switch and shutting off the power line. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第11観点に係る過電圧保護回路は、第5観点から第8観点のいずれか1つに係る過電圧保護回路であって、電源ラインを開閉する第2スイッチと、機器に印加される電圧を検出する機器電圧検出器とをさらに備えている。第2スイッチは、通常時は電源ラインを導通状態にし、機器電圧検出器による検出値が所定の第3閾値を超えたとき、電源ラインを遮断する。 An overvoltage protection circuit according to an eleventh aspect of the present invention is the overvoltage protection circuit according to any one of the fifth to eighth aspects, the second switch for opening and closing the power supply line, and the voltage applied to the device And a device voltage detector. The second switch normally turns on the power line, and shuts off the power line when the value detected by the device voltage detector exceeds a predetermined third threshold.
 この過電圧保護回路では、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 ∙ In this overvoltage protection circuit, the power consumption in the impedance circuit is stopped by operating the second switch and shutting off the power line. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第12観点に係る過電圧保護回路は、第1観点から第11観点のいずれか1つに係る過電圧保護回路であって、電源がAC電源である。 The overvoltage protection circuit according to the twelfth aspect of the present invention is the overvoltage protection circuit according to any one of the first to eleventh aspects, and the power supply is an AC power supply.
 この過電圧保護回路では、AC電源からの供給電圧が過大電圧であっても、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減される。それゆえ、短時間の過大電圧からの保護だけのために機器の整流部の定格を高く設計する必要がなく、合理的である。 In this overvoltage protection circuit, even if the supply voltage from the AC power supply is an excessive voltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit. Therefore, it is not necessary to design the rating of the rectification unit of the device high only for protection from an excessive voltage for a short time, and it is reasonable.
 本発明の第13観点に係る過電圧保護回路は、第1観点から第11観点のいずれか1つに係る過電圧保護回路であって、電源がDC電源である。 The overvoltage protection circuit according to the thirteenth aspect of the present invention is the overvoltage protection circuit according to any one of the first to eleventh aspects, and the power source is a DC power source.
 この過電圧保護回路では、交流を入り切りするスイッチは双方向性を必要とするが、DC電源の下流側に配置されるスイッチは片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 In this overvoltage protection circuit, the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the cost of the switch can be reduced.
 本発明の第14観点に係る電力変換装置は、コンバータ回路と、インバータ回路と、第1観点から第10観点のいずれか一つの過電圧保護回路とを備えている。コンバータ回路は、交流電源に接続され、交流電圧を直流電圧に変換する。インバータ回路は、直流電圧を交流電圧に変換する。 The power conversion device according to the fourteenth aspect of the present invention includes a converter circuit, an inverter circuit, and any one of the overvoltage protection circuits according to the first to tenth aspects. The converter circuit is connected to an AC power source and converts an AC voltage into a DC voltage. The inverter circuit converts a DC voltage into an AC voltage.
 この電力変換装置では、過電圧保護回路が、コンバータ回路を過渡的に印加される過大交流電圧から保護し、又はインバータ回路を過渡的に印加される過大直流電圧から保護することができる。 In this power converter, the overvoltage protection circuit can protect the converter circuit from excessively applied alternating voltage or the inverter circuit from transiently applied excessive DC voltage.
 本発明の第1観点に係る過電圧保護回路では、通常時はバイパス回路を閉じているので、インピーダンス回路で電力が消費されることはなく、機器への印加電圧がインピーダンスでの電圧降下分だけ低くなることも回避することができる。他方、過電圧時には、インピーダンス回路のインピーダンスの電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In the overvoltage protection circuit according to the first aspect of the present invention, since the bypass circuit is normally closed, power is not consumed by the impedance circuit, and the voltage applied to the device is lowered by the voltage drop at the impedance. It can also be avoided. On the other hand, at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop of the impedance of the impedance circuit, and the device can be protected from overvoltage.
 本発明の第2観点に係る過電圧保護回路では、通常時はバイパス回路を閉じているので、インピーダンス回路で電力が消費されることはなく、機器への印加電圧がインピーダンス回路での電圧降下分だけ低くなることも回避することができる。 In the overvoltage protection circuit according to the second aspect of the present invention, since the bypass circuit is normally closed, power is not consumed in the impedance circuit, and the voltage applied to the device is only the voltage drop in the impedance circuit. Lowering can also be avoided.
 そして、過電圧時にスイッチが動作することによって、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 And, by operating the switch at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
 さらに、スイッチの動作後、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 Furthermore, after the switch is operated, the second switch is operated to cut off the power line, thereby stopping the power consumption in the impedance circuit. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第3観点、及び第4観点に係る過電圧保護回路では、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。さらに、スイッチの動作後、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの電力定格を小さくすることができる。 In the overvoltage protection circuit according to the third and fourth aspects of the present invention, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage. Further, after the switch is operated, the second switch is operated to cut off the power supply line, thereby stopping the power consumption in the impedance circuit. As a result, the power rating of the impedance can be reduced.
 本発明の第5観点に係る過電圧保護回路では、通常時はインピーダンス値が小さい値(0を含む)に設定されるので、インピーダンス回路での電力消費が抑制され、インピーダンス回路での電圧降下も小さく、機器への印加電圧がインピーダンス回路での電圧降下分だけ低くなることも抑制することができる。 In the overvoltage protection circuit according to the fifth aspect of the present invention, since the impedance value is normally set to a small value (including 0), the power consumption in the impedance circuit is suppressed, and the voltage drop in the impedance circuit is also small. It is also possible to suppress the voltage applied to the device from being lowered by the voltage drop in the impedance circuit.
 他方、過電圧時には、インピーダンス値が大きい値に設定されるので、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 On the other hand, since the impedance value is set to a large value during overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from overvoltage.
 本発明の第6観点、及び第7観点に係る過電圧保護回路では、過電圧時には、インピーダンス値が大きい値に設定されるので、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 In the overvoltage protection circuit according to the sixth aspect and the seventh aspect of the present invention, since the impedance value is set to a large value at the time of overvoltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, Equipment can be protected from overvoltage.
 本発明の第8観点に係る過電圧保護回路では、通常時はインピーダンス値が小さい方の第1インピーダンス要素に接続されるので、インピーダンス回路での電力消費が抑制され、インピーダンス回路での電圧降下も小さく、機器への印加電圧がインピーダンス回路での電圧降下分だけ低くなることも抑制することができる。 In the overvoltage protection circuit according to the eighth aspect of the present invention, since it is normally connected to the first impedance element having the smaller impedance value, the power consumption in the impedance circuit is suppressed, and the voltage drop in the impedance circuit is also small. It is also possible to suppress the voltage applied to the device from being lowered by the voltage drop in the impedance circuit.
 他方、過電圧時には、インピーダンス値が大きい方の第2インピーダンス要素に接続されるので、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減され、機器を過電圧から保護することができる。 On the other hand, at the time of overvoltage, since it is connected to the second impedance element having the larger impedance value, the voltage applied to the device is reduced by the voltage drop in the impedance circuit, and the device can be protected from the overvoltage.
 本発明の第9観点から第11観点のいずれか1つに係る過電圧保護回路では、第2スイッチが動作して電源ラインを遮断することによってインピーダンス回路での電力消費を止める。この結果、インピーダンスの過熱を抑制することができ、電力定格を小さくすることができる。 In the overvoltage protection circuit according to any one of the ninth to eleventh aspects of the present invention, the power consumption in the impedance circuit is stopped by operating the second switch to cut off the power line. As a result, impedance overheating can be suppressed and the power rating can be reduced.
 本発明の第12観点に係る過電圧保護回路では、AC電源からの供給電圧が過大電圧であっても、インピーダンス回路での電圧降下分だけ機器に印加される電圧が低減される。それゆえ、短時間の過大電圧からの保護だけのために機器の電圧定格を高く設計する必要がなく、合理的である。 In the overvoltage protection circuit according to the twelfth aspect of the present invention, even if the supply voltage from the AC power supply is an excessive voltage, the voltage applied to the device is reduced by the voltage drop in the impedance circuit. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 本発明の第13観点に係る過電圧保護回路では、交流を入り切りするスイッチは双方向性を必要とするが、DC電源の下流側に配置されるスイッチは片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 In the overvoltage protection circuit according to the thirteenth aspect of the present invention, the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the low cost of the switch Can be achieved.
 本発明の第14観点に係る電力変換装置では、過電圧保護回路が、コンバータ回路を過渡的に印加される過大交流電圧から保護し、又はインバータ回路を過渡的に印加される過大直流電圧から保護することができる。 In the power conversion device according to the fourteenth aspect of the present invention, the overvoltage protection circuit protects the converter circuit from excessively applied alternating voltage or protects the inverter circuit from transiently applied excessive DC voltage. be able to.
本発明の第1実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 1st Embodiment of this invention. 電圧検出器の回路図。The circuit diagram of a voltage detector. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. インピーダンスがインダクタンス成分を含む場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance contains an inductance component. 本発明の第2実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 2nd Embodiment of this invention. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. 本発明の第3実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 4th Embodiment of this invention. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. その他の変形例に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on another modification. 本発明の第5実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention. インピーダンスが可変抵抗のみで且つインピーダンスが連続的に増加する場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only a variable resistance and an impedance increases continuously. インピーダンスが可変抵抗のみで且つインピーダンスが段階的に増加する場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only a variable resistance and an impedance increases in steps. 本発明の第6実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 6th Embodiment of this invention. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. 本発明の第7実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 7th Embodiment of this invention. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. 本発明の第8実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 8th Embodiment of this invention. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance. 本発明の第9実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 10th Embodiment of this invention. 他の変形例に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on another modification. インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフ。The graph which shows the change of the voltage V when an impedance is only resistance.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
 <第1実施形態>
 (1)過電圧保護回路50の構成
 図1は、本発明の第1実施形態に係る過電圧保護回路50を備えた装置の回路図である。図1において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
<First Embodiment>
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 1 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the first embodiment of the present invention. In FIG. 1, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、インピーダンス回路20と、電圧検出器33と、バイパス回路35を含んでいる。 The overvoltage protection circuit 50 includes an impedance circuit 20, a voltage detector 33, and a bypass circuit 35.
 (2)過電圧保護回路50の詳細構成
 (2-1)インピーダンス回路20
 インピーダンス回路20は、当該回路における電圧と電流との比であるインピーダンスがZとなるように構成された回路である。
(2) Detailed configuration of overvoltage protection circuit 50 (2-1) Impedance circuit 20
The impedance circuit 20 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z.
 インピーダンス回路20は、電源ライン902上で、商用電源90と機器30との間に接続されている。 The impedance circuit 20 is connected between the commercial power supply 90 and the device 30 on the power supply line 902.
 (2-2)電圧検出器33
 電圧検出器33は、交流電圧検出回路によって構成されている。交流電圧検出回路は、多様であり、使用条件によって適宜採用される。例えば、図2は一般的な電圧検出器33の回路図である。図2において、電圧検出器33は、変圧回路331、コンバータ回路332とで構成されている。
(2-2) Voltage detector 33
The voltage detector 33 is configured by an AC voltage detection circuit. There are various AC voltage detection circuits, and they are appropriately adopted depending on use conditions. For example, FIG. 2 is a circuit diagram of a general voltage detector 33. In FIG. 2, the voltage detector 33 includes a transformer circuit 331 and a converter circuit 332.
 変圧回路331は、入力側に位置し、一次側巻線331aと二次側巻線331bとからなる。 The transformer circuit 331 is located on the input side and includes a primary winding 331a and a secondary winding 331b.
 コンバータ回路332は、整流ダイオードで構成される整流部332aと、平滑コンデンサ332bとが並列接続された回路である。 The converter circuit 332 is a circuit in which a rectifying unit 332a composed of a rectifying diode and a smoothing capacitor 332b are connected in parallel.
 電圧検出器33では、変圧回路331に交流電圧が印加されると、交流電圧は変圧回路331によって変圧される。そして、二次側巻線331bの両端電圧がコンバータ回路332に入力される。 In the voltage detector 33, when an AC voltage is applied to the transformer circuit 331, the AC voltage is transformed by the transformer circuit 331. Then, the voltage across the secondary winding 331 b is input to the converter circuit 332.
 コンバータ回路332に入力された変圧後の交流電圧は、整流部332aで直流電圧に変換され、平滑コンデンサ332bで平滑化される。この平滑化された直流電圧が制御部40に入力される。すなわち、一次側巻線331aに印加される電圧に応じた直流電圧が、制御部40に入力されることになる。 The AC voltage after transformation input to the converter circuit 332 is converted into a DC voltage by the rectifying unit 332a and smoothed by the smoothing capacitor 332b. This smoothed DC voltage is input to the control unit 40. That is, a DC voltage corresponding to the voltage applied to the primary winding 331a is input to the control unit 40.
 (2-3)バイパス回路35
 バイパス回路35は、インピーダンス回路20に並列接続されており、インピーダンス回路20を迂回する回路である。バイパス回路35は、スイッチ11を有している。スイッチ11は、バイパス回路35を開閉する。ここで、バイパス回路35を開閉するとは、バイパス回路35を導通又は遮断して非導通にすることである。
(2-3) Bypass circuit 35
The bypass circuit 35 is connected to the impedance circuit 20 in parallel and bypasses the impedance circuit 20. The bypass circuit 35 has a switch 11. The switch 11 opens and closes the bypass circuit 35. Here, opening and closing the bypass circuit 35 means making the bypass circuit 35 conductive or non-conductive to make it non-conductive.
 (2-4)スイッチ11
 スイッチ11は、通常時はバイパス回路35を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路35を開(非導通状態)にしておくと、インピーダンス回路20が常に接続された状態となって常に電力消費される上に、機器30への印加電圧がインピーダンス回路20のインピーダンスZの電圧降下分だけ低くなるからである。
(2-4) Switch 11
The switch 11 normally closes the bypass circuit 35, that is, keeps it conductive. This is because if the bypass circuit 35 is left open (non-conducting state) during normal operation, the impedance circuit 20 is always connected and power is always consumed, and the voltage applied to the device 30 is applied to the impedance circuit 20. This is because the voltage drops by the voltage drop of the impedance Z.
 他方、過電圧時は機器30を保護するためにバイパス回路35を素早く開にしてインピーダンス回路20を接続し、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路を構成する必要がある。そのため、スイッチ11には、高速動作が求められる。 On the other hand, in order to protect the device 30 at the time of overvoltage, it is necessary to quickly open the bypass circuit 35 and connect the impedance circuit 20 to form a closed circuit of commercial power supply 90-device 30-impedance circuit 20-commercial power supply 90. . Therefore, the switch 11 is required to operate at high speed.
 スイッチ11としては、トライアック、双方向に導通させるように接続したMOSFETなどが採用される。本実施形態では、フォトトライアックカプラが採用されている。 As the switch 11, a triac, a MOSFET connected so as to conduct in both directions, or the like is employed. In the present embodiment, a phototriac coupler is employed.
 図1に示すように、スイッチ11は、入力側(A1-A2間)に発光ダイオード11aが設けられ、出力側(B1-B2間)にフォトトライアック11bが設けられている。フォトトライアック11bの等価回路は、2つのフォトサイリスタ111,112を互いに逆方向に並列接続した構成である。 As shown in FIG. 1, the switch 11 is provided with a light emitting diode 11a on the input side (between A1 and A2) and a phototriac 11b on the output side (between B1 and B2). The equivalent circuit of the phototriac 11b has a configuration in which two photothyristors 111 and 112 are connected in parallel in opposite directions.
 発光ダイオード11aのアノードA1は抵抗R1を介して電源Vcに接続されている。また、発光ダイオード11aのカソードA2は信号線を介して制御部40に接続されている。 The anode A1 of the light emitting diode 11a is connected to the power source Vc via the resistor R1. The cathode A2 of the light emitting diode 11a is connected to the control unit 40 through a signal line.
 フォトトライアック11bの第1アノードB1は、電源ライン902のうちのインピーダンス回路20と機器30との間に接続されている。また、フォトトライアック11bの第2アノードB2は電源ライン902にうちのインピーダンス回路20と商用電源90との間に接続されている。 The first anode B1 of the phototriac 11b is connected between the impedance circuit 20 in the power supply line 902 and the device 30. The second anode B2 of the phototriac 11b is connected to the power supply line 902 between the impedance circuit 20 and the commercial power supply 90.
 発光ダイオード11aは電流が流れると発光する。フォトトライアック11bは、第1アノードB1の電位が第2アノードB2の電位より大きい状態で発光ダイオード11aからの光を受けるとフォトサイリスタ111がオン状態になる。他方、第1アノードB1の電位が第2アノードB2の電位より小さい状態で発光ダイオード11aからの光を受けるとフォトサイリスタ112がオン状態になる。 The light emitting diode 11a emits light when a current flows. When the phototriac 11b receives light from the light emitting diode 11a in a state where the potential of the first anode B1 is higher than the potential of the second anode B2, the photothyristor 111 is turned on. On the other hand, when light from the light emitting diode 11a is received in a state where the potential of the first anode B1 is smaller than the potential of the second anode B2, the photothyristor 112 is turned on.
 このように、フォトトライアック11bは双方向の印加電圧に対して動作する双方向素子であり、しかも高速で動作するので、双方向の高速スイッチとして利用される。 Thus, the phototriac 11b is a bidirectional element that operates with respect to a bidirectional applied voltage, and also operates at a high speed, so that it is used as a bidirectional high-speed switch.
 なお、双方向の高速スイッチとしては、フォトトライアックだけに限定されるものではなく、通常のトライアックや、双方向に導通させるように接続したMOSFETなどを採用してもよい。別の形態の高速スイッチを用いる場合には、そのスイッチの形態に応じた駆動回路が適宜使用される。 Note that the bidirectional high-speed switch is not limited to the photo triac, but a normal triac or a MOSFET connected so as to conduct in both directions may be employed. When another form of high-speed switch is used, a drive circuit corresponding to the form of the switch is appropriately used.
 また、スイッチ11の動作制御、つまり発光ダイオード11aへの通電制御は制御部40が行う。 Further, the control unit 40 performs operation control of the switch 11, that is, energization control to the light emitting diode 11a.
 (3)過電圧保護回路50の動作
 図3は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図1及び図3において、通常時、バイパス回路35はスイッチ11が閉じて導通状態であるので、機器30には電圧V=Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 50 FIG. 3 is a graph showing changes in the voltage V when the impedance of the device 30 is only a resistance component and the impedance Z is only a resistance. In FIG. 1 and FIG. 3, the voltage V = Vac is applied to the device 30 because the bypass circuit 35 is normally in a conductive state with the switch 11 closed.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aへの通電を停止し、フォトトライアック11bをオフさせる。なお、機器30を保護するため、スイッチ11には高速動作が求められる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off. In order to protect the device 30, the switch 11 is required to operate at high speed.
 その結果、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路が構成される。このとき、機器30には電圧V=Vac-Vzしか印加されない。その結果、機器30が過電圧から保護される。なお、スイッチ11のオフ後も電圧Vacが上昇している場合は、その上昇に伴って電圧Vも上昇する。 As a result, a closed circuit of the commercial power source 90 -the device 30 -the impedance circuit 20 -the commercial power source 90 is configured. At this time, only the voltage V = Vac−Vz is applied to the device 30. As a result, the device 30 is protected from overvoltage. If the voltage Vac is increased even after the switch 11 is turned off, the voltage V increases as the voltage Vac increases.
 図4は、インピーダンスZがインダクタンス成分を含む場合の電圧Vの変化を示すグラフである。図4において、通常時、機器30には電圧V=Vacが印加されている。商用電源90の電圧Vacが、例えば、図3の最大過電圧値と同じ値まで瞬間的に変動し、制御部40がスイッチ11をオフさせたとき、スイッチ11のオフ後の電圧Vの上昇は、インピーダンスZが抵抗だけの場合に比べて、緩やかに上昇する。 FIG. 4 is a graph showing a change in the voltage V when the impedance Z includes an inductance component. In FIG. 4, the voltage V = Vac is applied to the device 30 at the normal time. For example, when the voltage Vac of the commercial power supply 90 fluctuates instantaneously to the same value as the maximum overvoltage value in FIG. 3 and the control unit 40 turns off the switch 11, the increase in the voltage V after the switch 11 is turned off is Compared to the case where the impedance Z is only a resistance, it rises more slowly.
 したがって、電源電圧の変動が起こり易く、過電圧が長く続く地域には、インピーダンスZがインダクタンス成分を含むものを採用するのが好ましい。 Therefore, it is preferable to employ the one in which the impedance Z includes an inductance component in an area where the power supply voltage is likely to fluctuate and the overvoltage continues for a long time.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ11の発光ダイオード11aへ通電し、フォトトライアック11bをオンさせる。これにより、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 11a of the switch 11, The photo triac 11b is turned on. As a result, the normal operation is restored.
 (4)第1実施形態の特徴
 (4-1)
 過電圧保護回路50では、通常時はスイッチ11をオンにしてバイパス回路35を閉じているので、インピーダンス回路20で電力が消費されることはなく、機器30への印加電圧がインピーダンス回路20での電圧降下分だけ低くなることも回避することができる。
(4) Features of the first embodiment (4-1)
In the overvoltage protection circuit 50, since the switch 11 is normally turned on and the bypass circuit 35 is closed, no power is consumed in the impedance circuit 20, and the voltage applied to the device 30 is the voltage applied to the impedance circuit 20. It is also possible to avoid lowering by the amount of descent.
 (4-2)
 また、過電圧時には、スイッチ11がオフすることによって、インピーダンス回路20のインピーダンスZの電圧降下分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。
(4-2)
Further, when the voltage is overvoltage, the switch 11 is turned off, so that the voltage applied to the device 30 is reduced by the voltage drop of the impedance Z of the impedance circuit 20, and the device 30 can be protected from the overvoltage.
 (4-3)
 商用電源90からの供給電圧が過大電圧であっても、インピーダンス回路20での電圧降下分だけ機器30に印加される電圧が低減される。それゆえ、短時間の過大電圧からの保護だけのために機器の電圧定格を高く設計する必要がなく、合理的である。
(4-3)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, the voltage applied to the device 30 is reduced by the voltage drop in the impedance circuit 20. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第2実施形態>
 (1)過電圧保護回路50の構成
 図5は、本発明の第2実施形態に係る過電圧保護回路50を備えた装置の回路図である。図5において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
Second Embodiment
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 5 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the second embodiment of the present invention. In FIG. 5, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、インピーダンス回路20と、電圧検出器33と、バイパス回路35と、第2スイッチ12とを含んでいる。 The overvoltage protection circuit 50 includes an impedance circuit 20, a voltage detector 33, a bypass circuit 35, and the second switch 12.
 (2)過電圧保護回路50の詳細構成
 第2実施形態は、第1実施形態に第2スイッチ12が追加された形態であり、インピーダンス回路20、電圧検出器33、及びバイパス回路35については同様のものを採用している。したがって、ここでは第2スイッチ12についてのみを説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 50 In the second embodiment, the second switch 12 is added to the first embodiment, and the impedance circuit 20, the voltage detector 33, and the bypass circuit 35 are the same. The thing is adopted. Therefore, only the second switch 12 will be described here.
 (2-1)第2スイッチ12
 第2スイッチ12は、電源ライン901を開閉する。ここで、電源ライン901を開閉するとは、電源ライン901を導通又は遮断して非導通にすることである。
(2-1) Second switch 12
The second switch 12 opens and closes the power line 901. Here, opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
 第2スイッチ12は、通常時は電源ライン901を閉、つまり導通状態にしておく。他方、過電圧時には、スイッチ11がオフして、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路が構成され、機器30の保護動作が行われた後に、第2スイッチ12がオフして電源ライン901を遮断する。 The second switch 12 normally closes the power supply line 901, that is, keeps it conductive. On the other hand, at the time of overvoltage, the switch 11 is turned off to form a closed circuit of the commercial power supply 90-the device 30-the impedance circuit 20-the commercial power supply 90, and after the protection operation of the device 30 is performed, the second switch 12 is turned off. Then, the power line 901 is shut off.
 電源ライン901を遮断する目的は、インピーダンス回路20での電力消費を止めるためであり、インピーダンス回路20の電力定格を小さくすることができ、低コスト化を図ることができる。 The purpose of cutting off the power supply line 901 is to stop the power consumption in the impedance circuit 20, the power rating of the impedance circuit 20 can be reduced, and the cost can be reduced.
 第2スイッチ12は、スイッチ11のような高速性は求められないので、本実施形態ではリレー回路が採用されている。 Since the second switch 12 is not required to be as fast as the switch 11, a relay circuit is employed in this embodiment.
 図5に示すように、第2スイッチ12は、電源ライン901を開閉するリレー接点12aと、リレー接点12aを動作させるリレーコイル12bと、リレーコイル12bへの通電と非通電とを行うトランジスタ12cとを含んでいる。リレーコイル12bの一端は、電源Vbの正極に接続され、他端はトランジスタ12cのコレクタ側に接続されている。制御部40は、トランジスタ12cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル12bへの通電と非通電を行う。 As shown in FIG. 5, the second switch 12 includes a relay contact 12a for opening and closing the power supply line 901, a relay coil 12b for operating the relay contact 12a, and a transistor 12c for energizing and de-energizing the relay coil 12b. Is included. One end of the relay coil 12b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 12c. The control unit 40 switches the presence / absence of the base current of the transistor 12c, turns on / off the collector and the emitter, and energizes and de-energizes the relay coil 12b.
 (3)過電圧保護回路50の動作
 図6は、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図5及び図6において、通常時、バイパス回路35はスイッチ11が閉じて導通状態であり、且つ第2スイッチ12は電源ライン901を導通状態にしているので、機器30には電圧V=Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 50 FIG. 6 is a graph showing changes in the voltage V when the impedance Z is only a resistance. 5 and 6, normally, the bypass circuit 35 is in the conductive state with the switch 11 closed, and the second switch 12 has the power supply line 901 in the conductive state, so that the voltage V = Vac is applied to the device 30. Applied.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aへの通電を停止し、フォトトライアック11bをオフさせる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
 その結果、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路が構成される。このとき、機器30には電圧V=Vac-Vzしか印加されない。その結果、機器30が過電圧から保護される。 As a result, a closed circuit of the commercial power source 90 -the device 30 -the impedance circuit 20 -the commercial power source 90 is configured. At this time, only the voltage V = Vac−Vz is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇する。しかし、電圧Vacが第2閾値に到達したときに第2スイッチ12が電源ライン901を遮断する。この結果、機器30を保護し、且つインピーダンス回路20での電力消費を止める。 Thereafter, when the overvoltage state continues, the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases. However, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches the second threshold value. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
 インピーダンスZがインダクタンス成分を含む場合には、商用電源90の電圧Vacが増加して制御部40がスイッチ11をオフさせたとき、スイッチ11のオフ後の電圧Vの上昇は、インピーダンスZが抵抗だけの場合に比べて、緩やかに上昇する。 When the impedance Z includes an inductance component, when the voltage Vac of the commercial power supply 90 increases and the control unit 40 turns off the switch 11, the increase in the voltage V after the switch 11 is turned off is that the impedance Z is only a resistance. Compared to the case, it rises more slowly.
 したがって、第2スイッチ12で電源ライン901を遮断が遅くなっても、そのダメージはインピーダンスZが抵抗だけの場合に比べて小さい。つまり、インピーダンスZの電力定格が小さいままでも、機器30を短時間の過電圧から保護することができる。 Therefore, even when the power supply line 901 is delayed by the second switch 12, the damage is small compared to the case where the impedance Z is only a resistance. That is, the device 30 can be protected from a short-time overvoltage even when the power rating of the impedance Z is small.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は、スイッチ11の発光ダイオード11aへ通電し、フォトトライアック11bをオンさせる。さらに、第2スイッチ12をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned on. Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
 (4)第2実施形態の特徴
 (4-1)
 過電圧保護回路50では、通常時はスイッチ11をオンにしてバイパス回路35を閉じているので、インピーダンス回路20で電力が消費されることはなく、機器30への印加電圧がインピーダンス回路20での電圧降下分だけ低くなることも回避することができる。
(4) Features of the second embodiment (4-1)
In the overvoltage protection circuit 50, since the switch 11 is normally turned on and the bypass circuit 35 is closed, no power is consumed in the impedance circuit 20, and the voltage applied to the device 30 is the voltage applied to the impedance circuit 20. It is also possible to avoid lowering by the amount of descent.
 (4-2)
 また、過電圧時には、スイッチ11がオフすることによって、インピーダンス回路20のインピーダンスZの電圧降下分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。
(4-2)
Further, when the voltage is overvoltage, the switch 11 is turned off, so that the voltage applied to the device 30 is reduced by the voltage drop of the impedance Z of the impedance circuit 20, and the device 30 can be protected from the overvoltage.
 (4-3)
 また、第2スイッチ12が電源ライン901を遮断することによってインピーダンス回路20での電力消費を止める。この結果、インピーダンス回路20の過熱を抑制し、電力定格を小さくすることができる。
(4-3)
Further, the second switch 12 cuts off the power supply line 901 to stop power consumption in the impedance circuit 20. As a result, overheating of the impedance circuit 20 can be suppressed and the power rating can be reduced.
 (4-4)
 商用電源90からの供給電圧が過大電圧であっても、インピーダンス回路20での電圧降下分だけ機器30に印加される電圧が低減される。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-4)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, the voltage applied to the device 30 is reduced by the voltage drop in the impedance circuit 20. Therefore, it is not necessary to design the device 30 with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第3実施形態>
 (1)電力変換装置300の構成
 図7は、本発明の第3実施形態に係る過電圧保護回路100を備えた電力変換装置300の回路図である。図7において、電力変換装置300は、直流電源部80、インバータ95、過電圧保護回路100で構成されている。
<Third Embodiment>
(1) Configuration of Power Converter 300 FIG. 7 is a circuit diagram of a power converter 300 including an overvoltage protection circuit 100 according to the third embodiment of the present invention. In FIG. 7, the power conversion device 300 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 100.
 インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路100は、直流電源部80とインバータ95との間に接続されている。 The inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802. The overvoltage protection circuit 100 is connected between the DC power supply unit 80 and the inverter 95.
 (1-1)直流電源部80
 直流電源部80は、整流部81と、整流部81と並列接続される平滑コンデンサ82とで構成されている。
(1-1) DC power supply unit 80
The DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
 整流部81は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共に平滑コンデンサ82のプラス側端子に接続されており、整流部81の正側出力端子として機能する。ダイオードD1b,D2bの各ダイオードの各アノード端子は、共に平滑コンデンサ82のマイナス側端子に接続されており、整流部81の負側出力端子として機能する。 The rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
 ダイオードD1a及びダイオードD1bの接続点は、商用電源90の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、商用電源90の他方の極に接続されている。整流部81は、商用電源90から出力される交流電圧を整流して直流電圧を生成し、これを平滑コンデンサ82へ供給する。 The connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90. A connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90. The rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
 平滑コンデンサ82は、整流部81によって整流された電圧を平滑する。平滑後の電圧Vdcは、平滑コンデンサ82の出力側に接続されるインバータ95へ印加される。 The smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81. The smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
 なお、コンデンサの種類としては、電解コンデンサやフィルムコンデンサ、タンタルコンデンサ等が挙げられるが、本実施形態においては、平滑コンデンサ82として電解コンデンサが採用される。 In addition, as a kind of capacitor | condenser, although an electrolytic capacitor, a film capacitor, a tantalum capacitor etc. are mentioned, an electrolytic capacitor is employ | adopted as the smoothing capacitor 82 in this embodiment.
 この直流電源部80は、交流電圧を直流電圧に変換するコンバータ回路と言い換えることもできる。 The DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
 (1-2)インバータ95
 インバータ95は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)及び複数の還流用ダイオードを含んでいる。インバータ95は、平滑コンデンサ82からの電圧Vdcが印加され、かつゲート駆動回路96により指示されたタイミングで各トランジスタがオン及びオフを行うことによって、モータ500を駆動する駆動電圧を生成する。モータ500は、例えばヒートポンプ式空気調和機の圧縮機モータ、ファンモータである。
(1-2) Inverter 95
The inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes. The inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 500. The motor 500 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
 なお、本実施形態のインバータ95は、電圧形インバータであるが、それに限定されるものではなく、電流形インバータでもよい。 In addition, although the inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
 (1-3)ゲート駆動回路96
 ゲート駆動回路96は、制御部40からの指令に基づき、インバータ95の各トランジスタのオン及びオフの状態を変化させる。
(1-3) Gate drive circuit 96
The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
 (1-4)過電圧保護回路100
 過電圧保護回路100は、インピーダンス回路70と、電圧検出器83、バイパス回路85と、第2スイッチ62とを含んでいる。
(1-4) Overvoltage protection circuit 100
The overvoltage protection circuit 100 includes an impedance circuit 70, a voltage detector 83, a bypass circuit 85, and a second switch 62.
 (2)過電圧保護回路100の詳細構成
 第3実施形態と、既に説明した第1実施形態及び第2実施形態と大きく異なる点は、過電圧保護回路100が直流部に設けられていることである。したがって、各構成要素も交流仕様から直流仕様に置き換えられることに鑑みて、同一名称であっても符号を換えて、再度説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 100 The third embodiment is different from the first and second embodiments already described in that the overvoltage protection circuit 100 is provided in the direct current section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
 (2-1)インピーダンス回路70
 インピーダンス回路70は、当該回路における電圧と電流との比であるインピーダンスがZとなるように構成された回路である。一般に抵抗素子が採用される。
(2-1) Impedance circuit 70
The impedance circuit 70 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z. In general, a resistance element is employed.
 インピーダンス回路70は、電源ライン802上で、直流電源部80とインバータ95との間に接続されている。 The impedance circuit 70 is connected between the DC power supply unit 80 and the inverter 95 on the power supply line 802.
 (2-2)電圧検出器83
 電圧検出器83は、平滑コンデンサ82の出力側に接続されており、平滑コンデンサ82の両端電圧、即ち平滑後の電圧Vdcの値を検出する。電圧検出器83は、例えば、互いに直列に接続された2つの抵抗が平滑コンデンサ82に並列接続され、電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、制御部40に入力される。
(2-2) Voltage detector 83
The voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc. For example, the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
 (2-3)バイパス回路85
 バイパス回路85は、インピーダンス回路70に並列接続されており、インピーダンス回路70を迂回する回路である。バイパス回路85は、スイッチ61を有している。スイッチ61は、バイパス回路85を開閉する。ここで、バイパス回路85を開閉するとは、バイパス回路85を導通又は遮断して非導通にすることである。
(2-3) Bypass circuit 85
The bypass circuit 85 is a circuit that is connected in parallel to the impedance circuit 70 and bypasses the impedance circuit 70. The bypass circuit 85 has a switch 61. The switch 61 opens and closes the bypass circuit 85. Here, opening and closing the bypass circuit 85 means making the bypass circuit 85 conductive or blocked to make it non-conductive.
 (2-4)スイッチ61
 スイッチ61は、通常時はバイパス回路85を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路85を開(非導通状態)にしておくと、インピーダンス回路70で常に電力消費される上に、インバータ95への印加電圧がインピーダンス回路70のインピーダンスZの電圧降下分だけ低くなるからである。
(2-4) Switch 61
The switch 61 normally closes the bypass circuit 85, that is, keeps it conductive. This is because if the bypass circuit 85 is left open (non-conducting state) during normal operation, power is always consumed by the impedance circuit 70 and the voltage applied to the inverter 95 is lowered by the voltage drop of the impedance Z of the impedance circuit 70. Because it becomes.
 他方、過電圧時はインバータ95を保護するためにバイパス回路85を素早く開にして、直流電源部80―インバータ95―インピーダンス回路70―直流電源部80という閉回路が構成する必要がある。そのため、スイッチ61には、高速動作が求められる。本実施形態では、トランジスタが採用されているが、スイッチ61の形態は本実施形態に限定されるものではない。 On the other hand, in order to protect the inverter 95 at the time of overvoltage, it is necessary to quickly open the bypass circuit 85 to form a closed circuit of the DC power supply unit 80-inverter 95-impedance circuit 70-DC power supply unit 80. For this reason, the switch 61 is required to operate at high speed. In this embodiment, a transistor is employed, but the form of the switch 61 is not limited to this embodiment.
 図7に示すように、スイッチ61は、フォトカプラ61aと、駆動回路61bと、トランジスタ61cとで構成されている。フォトカプラ61aは、発光ダイオード611とフォトトランジスタ612を内蔵している。 As shown in FIG. 7, the switch 61 is composed of a photocoupler 61a, a drive circuit 61b, and a transistor 61c. The photocoupler 61a includes a light emitting diode 611 and a phototransistor 612.
 スイッチ61の入力側(C1-C2間)にはフォトカプラ61aの発光ダイオード611が接続されている。発光ダイオード611のアノードC1は抵抗R1を介して電源Vcに接続されている。発光ダイオード611のカソードC2は信号線を介して制御部40に接続されている。また、フォトトランジスタ612は駆動回路61bとGNDとの間に接続されている。 The light emitting diode 611 of the photocoupler 61a is connected to the input side (between C1 and C2) of the switch 61. The anode C1 of the light emitting diode 611 is connected to the power source Vc via the resistor R1. The cathode C2 of the light emitting diode 611 is connected to the control unit 40 via a signal line. The phototransistor 612 is connected between the drive circuit 61b and GND.
 スイッチ61の出力側(D1-D2間)にトランジスタ61cが設けられている。トランジスタ61cのコレクタD1はインピーダンス回路70とインバータ95との間に接続されている。また、トランジスタ61cのエミッタD2はインピーダンス回路70と直流電源部80との間に接続されている。 A transistor 61c is provided on the output side (between D1 and D2) of the switch 61. The collector D1 of the transistor 61c is connected between the impedance circuit 70 and the inverter 95. The emitter D2 of the transistor 61c is connected between the impedance circuit 70 and the DC power supply unit 80.
 制御部40の制御信号は、フォトカプラ61aを介して駆動回路61bに入力される。駆動回路61bには、駆動用電源(図示せず)が接続されており、制御部40が発光ダイオード611の信号ラインをオンさせると、発光ダイオード611が発光しフォトトランジスタ612が導通する。このフォトトランジスタ612が導通している間、駆動回路61bからトランジスタ61cのベースに駆動信号が出力され、トランジスタ61cのコレクタD1-エミッタD2間が導通する。 The control signal of the control unit 40 is input to the drive circuit 61b via the photocoupler 61a. A driving power supply (not shown) is connected to the driving circuit 61b. When the control unit 40 turns on the signal line of the light emitting diode 611, the light emitting diode 611 emits light and the phototransistor 612 becomes conductive. While the phototransistor 612 is conducting, a driving signal is output from the driving circuit 61b to the base of the transistor 61c, and the collector D1-emitter D2 of the transistor 61c is conducted.
 逆に、制御部40が発光ダイオード611の信号ラインをオフさせると、発光ダイオード611が発光しないので、フォトトランジスタ612は導通しない。このフォトトランジスタ612が導通していない間、トランジスタ61cのコレクタD1-エミッタD2間も導通しない。 Conversely, when the control unit 40 turns off the signal line of the light emitting diode 611, the light emitting diode 611 does not emit light, and the phototransistor 612 does not conduct. While the phototransistor 612 is not conducting, the collector D1 and the emitter D2 of the transistor 61c are not conducted.
 (2-5)第2スイッチ62
 第2スイッチ62は、電源ライン801を開閉する。ここで、電源ライン801を開閉するとは、電源ライン801を導通又は遮断して非導通にすることである。
(2-5) Second switch 62
The second switch 62 opens and closes the power line 801. Here, opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
 第2スイッチ62は、通常時は電源ライン801を閉、つまり導通状態にしておく。他方、過電圧時には、スイッチ61がオフして、直流電源部80―インバータ95―インピーダンス回路70―直流電源部80という閉回路が構成され、インバータ95の保護動作が行われた後に、第2スイッチ62がオフして電源ライン801を遮断する。 The second switch 62 normally closes the power supply line 801, that is, keeps it conductive. On the other hand, when overvoltage occurs, the switch 61 is turned off to form a closed circuit of the DC power supply unit 80-inverter 95-impedance circuit 70-DC power supply unit 80. After the protective operation of the inverter 95 is performed, the second switch 62 Is turned off and the power line 801 is shut off.
 電源ライン801を遮断する目的は、インピーダンス回路70での電力消費を止めるためであり、インピーダンス回路70の電力定格を小さくすることができ、低コスト化を図ることができる。 The purpose of cutting off the power supply line 801 is to stop the power consumption in the impedance circuit 70, the power rating of the impedance circuit 70 can be reduced, and the cost can be reduced.
 第2スイッチ62は、スイッチ61のような高速性は求められないので、本実施形態ではリレー回路が採用されている。 Since the second switch 62 is not required to be as fast as the switch 61, a relay circuit is employed in this embodiment.
 図7に示すように、第2スイッチ62は、電源ライン801を開閉するリレー接点62aと、リレー接点62aを動作させるリレーコイル62bと、リレーコイル62bへの通電と非通電とを行うトランジスタ62cとを含んでいる。リレーコイル62bの一端は、電源Vbの正極に接続され、他端はトランジスタ62cのコレクタ側に接続されている。制御部40は、トランジスタ62cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル62bへの通電と非通電を行う。 As shown in FIG. 7, the second switch 62 includes a relay contact 62a for opening and closing the power supply line 801, a relay coil 62b for operating the relay contact 62a, and a transistor 62c for energizing and de-energizing the relay coil 62b. Is included. One end of the relay coil 62b is connected to the positive electrode of the power supply Vb, and the other end is connected to the collector side of the transistor 62c. The controller 40 switches between the presence and absence of the base current of the transistor 62c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 62b.
 (3)過電圧保護回路100の動作
 図7において、通常時、バイパス回路85はスイッチ61が閉じて導通状態であり、且つ第2スイッチ62は電源ライン801を導通状態にしているので、インバータ95には電圧V=Vdcが印加されている。
(3) Operation of Overvoltage Protection Circuit 100 In FIG. 7, normally, the bypass circuit 85 is in the conductive state with the switch 61 closed, and the second switch 62 has the power supply line 801 in the conductive state. The voltage V = Vdc is applied.
 直流電源部80の電圧Vdcが急激に増加し、制御部40が電圧検出器83から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ61の発光ダイオード611への通電を停止し、フォトトランジスタ612をオフさせる。 When the voltage Vdc of the DC power supply unit 80 increases rapidly and the control unit 40 determines that the voltage output from the voltage detector 83 exceeds the threshold value, the control unit 40 stops energizing the light emitting diode 611 of the switch 61. Then, the phototransistor 612 is turned off.
 その結果、直流電源部80―インバータ95―インピーダンス回路70―直流電源部80という閉回路が構成される。このとき、インバータ95には電圧V=Vdc-Vzしか印加されない。その結果、インバータ95が過電圧から保護される。 As a result, a closed circuit including the DC power supply unit 80, the inverter 95, the impedance circuit 70, and the DC power supply unit 80 is formed. At this time, only the voltage V = Vdc−Vz is applied to the inverter 95. As a result, the inverter 95 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、第2スイッチ62が電源ライン801を遮断して、インピーダンス回路70での電力消費を止める。 Thereafter, when the overvoltage state continues, the second switch 62 cuts off the power supply line 801 and stops the power consumption in the impedance circuit 70.
 商用電源90の電圧Vacが下がり、電圧検出器83から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ61の発光ダイオード611へ通電し、トランジスタ61cをオンさせる。さらに、第2スイッチ62をオンさせて電源ライン801を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 83 has fallen below the threshold for recovery, the control unit 40 energizes the light emitting diode 611 of the switch 61, The transistor 61c is turned on. Further, by turning on the second switch 62 and connecting the power supply line 801, the normal operation is restored.
 (4)第3実施形態の特徴
 (4-1)
 過電圧保護回路100では、通常時はスイッチ61をオンにしてバイパス回路85を閉じているので、インピーダンス回路70で電力が消費されることはなく、インバータ95への印加電圧がインピーダンス回路70での電圧降下分だけ低くなることも回避することができる。
(4) Features of the third embodiment (4-1)
In the overvoltage protection circuit 100, the switch 61 is normally turned on and the bypass circuit 85 is closed, so that no power is consumed in the impedance circuit 70, and the voltage applied to the inverter 95 is the voltage at the impedance circuit 70. It is also possible to avoid lowering by the amount of descent.
 (4-2)
 また、過電圧時には、スイッチ61がオフすることによって、インピーダンス回路70のインピーダンスZの電圧降下分だけインバータ95に印加される電圧が低減され、インバータ95を過電圧から保護することができる。
(4-2)
Further, when the overvoltage is applied, the switch 61 is turned off, whereby the voltage applied to the inverter 95 is reduced by the voltage drop of the impedance Z of the impedance circuit 70, and the inverter 95 can be protected from the overvoltage.
 (4-3)
 また、第2スイッチ62が電源ライン801を遮断することによってインピーダンス回路70での電力消費を止める。この結果、インピーダンス回路70の電力定格を小さくすることができる。
(4-3)
Further, the second switch 62 cuts off the power supply line 801 to stop the power consumption in the impedance circuit 70. As a result, the power rating of the impedance circuit 70 can be reduced.
 (4-4)
 さらに、直流電源部80の下流側に配置されるスイッチ61は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。
(4-4)
Furthermore, since the switch 61 arranged on the downstream side of the DC power supply unit 80 may be a one-way switch, the cost of the switch can be reduced.
 <第4実施形態>
 (1)過電圧保護回路100の構成
 図8は、本発明の第4実施形態に係る過電圧保護回路100を備えた電力変換装置300の回路図である。図8において、インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路100の一部は商用電源90と直流電源部80との間に接続され、他の部分は直流電源部80とインバータ95との間に接続されている。
<Fourth embodiment>
(1) Configuration of Overvoltage Protection Circuit 100 FIG. 8 is a circuit diagram of a power conversion device 300 including the overvoltage protection circuit 100 according to the fourth embodiment of the present invention. In FIG. 8, the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802. A part of the overvoltage protection circuit 100 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
 過電圧保護回路100は、インピーダンス回路70と、電圧検出器33、バイパス回路85と、第2スイッチ12とを含んでいる。 The overvoltage protection circuit 100 includes an impedance circuit 70, a voltage detector 33, a bypass circuit 85, and the second switch 12.
 第4実施形態と、既に説明した第3実施形態と異なる点は、過電圧保護回路100の構成要素である電圧検出器と第2スイッチとが商用電源90と直流電源部80との間に設けられていることである。つまり、電圧検出器及び第2スイッチの配置が、第2実施形態における電圧検出器33及び第2スイッチ12の配置と同じである。したがって、電圧検出器及び第2スイッチが直流仕様から交流仕様に置き換えられることに鑑みて、第2実施形態の電圧検出器33及び第2スイッチ12が採用されている。 The difference between the fourth embodiment and the already described third embodiment is that a voltage detector and a second switch, which are components of the overvoltage protection circuit 100, are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the second switch is the same as the arrangement of the voltage detector 33 and the second switch 12 in the second embodiment. Therefore, in view of the fact that the voltage detector and the second switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the second switch 12 of the second embodiment are employed.
 したがって、各構成要素の内容は、第2実施形態の電圧検出器33及び第2スイッチ12、第3実施形態のインピーダンス回路70、及びバイパス回路85と同様であるので、ここでは説明を省略し、動作説明のみ行う。 Therefore, the content of each component is the same as that of the voltage detector 33 and the second switch 12 of the second embodiment, the impedance circuit 70 of the third embodiment, and the bypass circuit 85. Only the operation is explained.
 (2)過電圧保護回路100の動作
 図8において、通常時、バイパス回路85はスイッチ61が閉じて導通状態であり、且つ第2スイッチ12は電源ライン901を導通状態にしているので、インバータ95には電圧V=Vdcが印加されている。
(2) Operation of Overvoltage Protection Circuit 100 In FIG. 8, normally, the bypass circuit 85 is in the conductive state with the switch 61 closed, and the second switch 12 has the power supply line 901 in the conductive state. The voltage V = Vdc is applied.
 商用電源90の電圧Vacの変動により、直流電源部80の電圧Vdcが急激に変動し過電圧となったとき、制御部40は電圧検出器33から出力される電圧が閾値を超えたと判定し、スイッチ61の発光ダイオード611への通電を停止し、トランジスタ61cをオフさせる。 When the voltage Vdc of the DC power supply unit 80 suddenly fluctuates and becomes an overvoltage due to the fluctuation of the voltage Vac of the commercial power supply 90, the control unit 40 determines that the voltage output from the voltage detector 33 exceeds the threshold, and the switch The current supply to the light emitting diode 611 of 61 is stopped, and the transistor 61c is turned off.
 その結果、直流電源部80―インバータ95―インピーダンス回路70―直流電源部80という閉回路が構成される。このとき、インバータ95には電圧V=Vdc-Vzしか印加されない。その結果、インバータ95が過電圧から保護される。 As a result, a closed circuit including the DC power supply unit 80, the inverter 95, the impedance circuit 70, and the DC power supply unit 80 is formed. At this time, only the voltage V = Vdc−Vz is applied to the inverter 95. As a result, the inverter 95 is protected from overvoltage.
 その後、第2スイッチ12が電源ライン901を遮断して、インピーダンス回路70での電力消費を止める。 Thereafter, the second switch 12 cuts off the power supply line 901 and stops the power consumption in the impedance circuit 70.
 (3)第4実施形態の特徴
 (3-1)
 過電圧保護回路100では、通常時はスイッチ61をオンにしてバイパス回路85を閉じているので、インピーダンス回路70で電力が消費されることはなく、インバータ95への印加電圧がインピーダンス回路70での電圧降下分だけ低くなることも回避することができる。
(3) Features of the fourth embodiment (3-1)
In the overvoltage protection circuit 100, the switch 61 is normally turned on and the bypass circuit 85 is closed, so that no power is consumed in the impedance circuit 70, and the voltage applied to the inverter 95 is the voltage at the impedance circuit 70. It is also possible to avoid lowering by the amount of descent.
 (3-2)
 また、過電圧時には、スイッチ61がオフすることによって、インピーダンス回路70のインピーダンスZの電圧降下分だけインバータ95に印加される電圧が低減され、インバータ95を過電圧から保護することができる。
(3-2)
Further, when the overvoltage is applied, the switch 61 is turned off, whereby the voltage applied to the inverter 95 is reduced by the voltage drop of the impedance Z of the impedance circuit 70, and the inverter 95 can be protected from the overvoltage.
 (3-3)
 また、第2スイッチ12が電源ライン901を遮断することによってインピーダンス回路70での電力消費を止める。この結果、インピーダンス回路70の過熱を抑制し、電力定格を小さくすることができる。
(3-3)
Further, the second switch 12 cuts off the power supply line 901 to stop the power consumption in the impedance circuit 70. As a result, overheating of the impedance circuit 70 can be suppressed and the power rating can be reduced.
 (3-4)
 さらに、直流電源部80の下流側に配置されるスイッチ61は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。
(3-4)
Furthermore, since the switch 61 arranged on the downstream side of the DC power supply unit 80 may be a one-way switch, the cost of the switch can be reduced.
 <変形例>
 (A)
 図1に示す第1実施形態に係る過電圧保護回路50は、交流電圧に対する過電圧保護回路を実施形態としているが、電源が直流電源である場合、あるいは機器内に交流電源を整流する直流電源部を持つ場合には、各構成要素を交流仕様から直流仕様へ置き換えて直流電源部の下流側に設けてもよい。
<Modification>
(A)
The overvoltage protection circuit 50 according to the first embodiment shown in FIG. 1 is an overvoltage protection circuit for an AC voltage, but when the power supply is a DC power supply, or a DC power supply unit that rectifies the AC power supply in the device. In the case of having it, each component may be replaced from the AC specification to the DC specification and provided on the downstream side of the DC power supply unit.
 (B)
 第2実施形態では、電圧Vacが所定の第2閾値に達したときに第2スイッチ12が電源ライン901を遮断したが、過電圧状態が所定の継続時間を経過したときに遮断するようにしてもよい。
(B)
In the second embodiment, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold, but it may be cut off when the overvoltage state has passed a predetermined duration. Good.
 図9は、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図5及び図9において、通常時、バイパス回路35はスイッチ11が閉じて導通状態であり、且つ第2スイッチ12は電源ライン901を導通状態にしているので、機器30には電圧V=Vacが印加されている。 FIG. 9 is a graph showing a change in the voltage V when the impedance Z is only a resistance. 5 and 9, normally, the bypass circuit 35 is in the conductive state with the switch 11 closed, and the second switch 12 has the power supply line 901 in the conductive state, so that the voltage V = Vac is applied to the device 30. Applied.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aへの通電を停止し、フォトトライアック11bをオフさせる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
 その結果、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路が構成される。このとき、機器30には電圧V=Vac-Vzしか印加されない。その結果、機器30が過電圧から保護される。 As a result, a closed circuit of the commercial power source 90 -the device 30 -the impedance circuit 20 -the commercial power source 90 is configured. At this time, only the voltage V = Vac−Vz is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇するが、電圧Vacが閾値を越えてから過電圧状態が所定の継続時間判定値に到達したときに第2スイッチ12が電源ライン901を遮断する。この結果、機器30を保護し、且つインピーダンス回路20での電力消費を止める。 Thereafter, when the overvoltage state continues, the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases, but the overvoltage state continues for a predetermined duration after the voltage Vac exceeds the threshold value. When the time determination value is reached, the second switch 12 cuts off the power supply line 901. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
 (C)
 第2実施形態では、電圧Vacが所定の第2閾値に達したときに第2スイッチ12が電源ライン901を遮断したが、機器に印加される電圧Vを検出する機器電圧検出器37を更に設け、電圧Vが所定の第3閾値に達したときに遮断するようにしてもよい(このときの回路図を図11に示す)。
(C)
In the second embodiment, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold. However, a device voltage detector 37 for detecting the voltage V applied to the device is further provided. The voltage V may be cut off when it reaches a predetermined third threshold (a circuit diagram at this time is shown in FIG. 11).
 図10は、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図5及び図10において、通常時、バイパス回路35はスイッチ11が閉じて導通状態であり、且つ第2スイッチ12は電源ライン901を導通状態にしているので、機器30には電圧V=Vacが印加されている。 FIG. 10 is a graph showing changes in voltage V when impedance Z is only resistance. 5 and 10, normally, the bypass circuit 35 is in a conductive state with the switch 11 closed, and the second switch 12 has a power supply line 901 in a conductive state, so that the voltage V = Vac is applied to the device 30. Applied.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aへの通電を停止し、フォトトライアック11bをオフさせる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 stops energizing the light emitting diode 11a of the switch 11. Then, the photo triac 11b is turned off.
 その結果、商用電源90―機器30―インピーダンス回路20―商用電源90という閉回路が構成される。このとき、機器30には電圧V=Vac-Vzしか印加されない。その結果、機器30が過電圧から保護される。 As a result, a closed circuit of the commercial power source 90 -the device 30 -the impedance circuit 20 -the commercial power source 90 is configured. At this time, only the voltage V = Vac−Vz is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇するが、電圧Vが第3閾値に到達したときに第2スイッチ12が電源ライン901を遮断する。この結果、機器30を保護し、且つインピーダンス回路20での電力消費を止める。 Thereafter, when the overvoltage state continues, the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases, but when the voltage V reaches the third threshold value, the second switch 12 cuts off the power line 901. As a result, the device 30 is protected and power consumption in the impedance circuit 20 is stopped.
 (D)
 第4実施形態は、第3実施形態から、電圧検出器と第2スイッチとを、商用電源90と直流電源部80との間に設けるように変更したものであるが、電圧検出器のみを商用電源90と直流電源部80との間に設けるようにしてもよい。
(D)
The fourth embodiment is different from the third embodiment in that the voltage detector and the second switch are provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is commercialized. You may make it provide between the power supply 90 and the DC power supply part 80. FIG.
 (E)
 第3実施形態、第4実施形態では、機器の内部に過電圧保護回路を持つ例を示したが、機器はコンバータ回路とインバータ回路を持つものに限定されない。
(E)
In 3rd Embodiment and 4th Embodiment, although the example which has an overvoltage protection circuit inside an apparatus was shown, an apparatus is not limited to what has a converter circuit and an inverter circuit.
 <第5実施形態>
 (1)過電圧保護回路150の構成
 図12は、本発明の第5実施形態に係る過電圧保護回路150を備えた装置の回路図である。図12において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路150は、商用電源90と機器30との間に接続されている。
<Fifth Embodiment>
(1) Configuration of Overvoltage Protection Circuit 150 FIG. 12 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the fifth embodiment of the present invention. In FIG. 12, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路150は、可変インピーダンス回路120と、電圧検出器33とを含んでいる。 The overvoltage protection circuit 150 includes a variable impedance circuit 120 and a voltage detector 33.
 (2)過電圧保護回路150の詳細構成
 (2-1)可変インピーダンス回路120
 可変インピーダンス回路120は、当該回路における電圧と電流との比であるインピーダンスがZとなるように構成された回路である。また、インピーダンスZは可変である。
(2) Detailed configuration of overvoltage protection circuit 150 (2-1) Variable impedance circuit 120
The variable impedance circuit 120 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z. The impedance Z is variable.
 可変インピーダンス回路120は、電源ライン902上で、商用電源90と機器30との間に接続されている。 The variable impedance circuit 120 is connected between the commercial power supply 90 and the device 30 on the power supply line 902.
 (2-2)電圧検出器33
 電圧検出器33は、交流電圧検出回路によって構成されている。交流電圧検出回路は、多様であり、使用条件によって適宜採用される。具体的には、例えば第1実施形態及び第2実施形態で採用されている電圧検出器(図2参照)と同じであるので、ここでは説明を省略する。
(2-2) Voltage detector 33
The voltage detector 33 is configured by an AC voltage detection circuit. There are various AC voltage detection circuits, and they are appropriately adopted depending on use conditions. Specifically, for example, the voltage detector (see FIG. 2) employed in the first embodiment and the second embodiment is the same as the voltage detector, and the description thereof is omitted here.
 (3)過電圧保護回路150の動作
 図13は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが可変抵抗のみで且つインピーダンスZが連続的に増加する場合の電圧Vの変化を示すグラフである。図12及び図13において、通常時、インピーダンスZは0若しくは0に近い値であるので、機器30には電圧V≒Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 150 FIG. 13 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component, the impedance Z is only the variable resistance, and the impedance Z continuously increases. is there. 12 and 13, since the impedance Z is 0 or a value close to 0 at normal time, the voltage V≈Vac is applied to the device 30.
 通常時の商用電源90の電圧Vac=V0以下であるとすると、商用電源90の電圧Vacが増加し、制御部40が電圧検出器33から出力される電圧がV0を超えたと判定したとき、制御部40はインピーダンスZを電圧検出器33の検出値の増加に応じて連続的に増加させる。 When the voltage Vac of the commercial power supply 90 at normal time is equal to or lower than V 0 , the voltage Vac of the commercial power supply 90 increases and the control unit 40 determines that the voltage output from the voltage detector 33 exceeds V 0. The control unit 40 continuously increases the impedance Z in accordance with the increase in the detection value of the voltage detector 33.
 その結果、可変インピーダンス回路120の両端における電圧降下分Vzを減じた電圧V=Vac-Vzが機器30に印加されることになり、機器30は過電圧から保護される。 As a result, the voltage V = Vac−Vz obtained by subtracting the voltage drop Vz at both ends of the variable impedance circuit 120 is applied to the device 30, and the device 30 is protected from overvoltage.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路120のインピーダンスZを0若しくは0に近い値に戻す。これにより、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance Z of the variable impedance circuit 120 to 0 or Return to a value close to zero. As a result, the normal operation is restored.
 (4)変形例
 なお、インピーダンスZの変化は、必ずしも図13に示すように連続的な増加である必要はなく、断続的な増加であってもよい。
(4) Modification Note that the change in the impedance Z is not necessarily a continuous increase as shown in FIG. 13, and may be an intermittent increase.
 例えば、図14は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが可変抵抗のみで且つインピーダンスZが段階的に増加する場合の電圧Vの変化を示すグラフである。 For example, FIG. 14 is a graph showing a change in the voltage V when the impedance of the device 30 is only the resistance component, the impedance Z is only the variable resistance, and the impedance Z increases stepwise.
 図12及び図14において、制御部40は、商用電源90の電圧Vacが通常時の値V0を超えてもインピーダンスZは0若しくは0に近い値に維持する。その後、電圧Vacがさらに上昇し、電圧検出器33の検出値がV1を超えたとき、制御部40はインピーダンスZをZaへ増大させる。その結果、可変インピーダンス回路120の両端における電圧降下分Vzが増加し、電圧V=Vac-Vzが機器30に印加されることになり、機器30に印加される電圧VがV1からV0へ減少し、機器30は過電圧から保護される。 12 and 14, the control unit 40 maintains the impedance Z at 0 or a value close to 0 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 . Thereafter, further increases the voltage Vac, when the detection value of the voltage detector 33 exceeds V 1, the control unit 40 increases the impedance Z to Z a. As a result, an increase in the voltage drop Vz at both ends of the variable impedance circuit 120, will be a voltage V = Vac-Vz is applied to the device 30, the voltage V applied to the device 30 from V 1 to V 0 The device 30 is protected from overvoltage.
 その後も時間の経過に伴って電圧Vacが上昇するが、制御部40はインピーダンスZをZaに維持する。その後、電圧Vacがさらに上昇し、電圧検出器33の検出値がV2を超えたとき、制御部40はインピーダンスZをZbへ増大させる。その結果、可変インピーダンス回路120の両端における電圧降下分Vzがさらに増加し、電圧V=Vac-Vzが機器30に印加されることになり、機器30に印加される電圧VがV1からV0へ減少し、機器30は過電圧から保護される。 Thereafter the voltage Vac increases with the passage of time, the control unit 40 maintains the impedance Z to Z a. Thereafter, further increases the voltage Vac, when the detection value of the voltage detector 33 exceeds V 2, the control unit 40 increases the impedance Z to Z b. As a result, the voltage drop Vz at both ends of the variable impedance circuit 120 further increases, and the voltage V = Vac−Vz is applied to the device 30. The voltage V applied to the device 30 is changed from V 1 to V 0. The device 30 is protected from overvoltage.
 (5)第5実施形態の特徴
 (5-1)
 過電圧保護回路150では、通常時はインピーダンスZが小さい値(0を含む)に設定されるので、可変インピーダンス回路120での電力消費が抑制され、可変インピーダンス回路120での電圧降下も小さく、機器30への印加電圧が可変インピーダンス回路120での電圧降下分だけ低くなることも抑制することができる。
(5) Features of the fifth embodiment (5-1)
In the overvoltage protection circuit 150, since the impedance Z is normally set to a small value (including 0), the power consumption in the variable impedance circuit 120 is suppressed, the voltage drop in the variable impedance circuit 120 is small, and the device 30 It can also be suppressed that the voltage applied to the voltage decreases by the voltage drop in the variable impedance circuit 120.
 他方、過電圧時には、インピーダンスZが大きい値に設定されるので、可変インピーダンス回路120での電圧降下Vz分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。 On the other hand, since the impedance Z is set to a large value at the time of overvoltage, the voltage applied to the device 30 is reduced by the voltage drop Vz in the variable impedance circuit 120, and the device 30 can be protected from the overvoltage.
 (5-2)
 また、可変インピーダンス回路120は、インピーダンスZを電圧検出器33による検出値の変化に応じて連続的に変化させることができる。
(5-2)
Further, the variable impedance circuit 120 can continuously change the impedance Z according to the change in the detection value by the voltage detector 33.
 (5-3)
 さらに、可変インピーダンス回路120は、インピーダンスZを電圧検出器33による検出値の変化に応じて段階的に変化させることもできる。
(5-3)
Furthermore, the variable impedance circuit 120 can change the impedance Z in a stepwise manner in accordance with the change in the detection value by the voltage detector 33.
 <第6実施形態>
 (1)過電圧保護回路150の構成
 図15は、本発明の第6実施形態に係る過電圧保護回路150を備えた装置の回路図である。図15において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路150は、商用電源90と機器30との間に接続されている。
<Sixth Embodiment>
(1) Configuration of Overvoltage Protection Circuit 150 FIG. 15 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the sixth embodiment of the present invention. In FIG. 15, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路150は、可変インピーダンス回路120と、電圧検出器33とを含んでいる。 The overvoltage protection circuit 150 includes a variable impedance circuit 120 and a voltage detector 33.
 (2)過電圧保護回路150の詳細構成
 第6実施形態は、可変インピーダンス回路120が複数のインピーダンス要素によって構成されている点で上記第5実施形態と相違するが、その他の構成は第5実施形態と同じである。したがって、ここでは可変インピーダンス回路120についてのみ説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 150 The sixth embodiment is different from the fifth embodiment in that the variable impedance circuit 120 is configured by a plurality of impedance elements, but other configurations are the fifth embodiment. Is the same. Therefore, only the variable impedance circuit 120 will be described here.
 (2-1)可変インピーダンス回路120
 可変インピーダンス回路120は、低インピーダンス要素121、高インピーダンス要素122及び切換スイッチ123を含んでいる。
(2-1) Variable impedance circuit 120
The variable impedance circuit 120 includes a low impedance element 121, a high impedance element 122, and a changeover switch 123.
 可変インピーダンス回路120は、切換スイッチ123によって低インピーダンス要素121と高インピーダンス要素122とを選択的に使用することができる。低インピーダンス要素121はインピーダンスZ1を有している。また、高インピーダンス要素122はインピーダンスZ1よりも大きいインピーダンスZ2を有している。 The variable impedance circuit 120 can selectively use the low impedance element 121 and the high impedance element 122 by the changeover switch 123. The low impedance element 121 has an impedance Z 1 . The high impedance element 122 has an impedance Z 2 that is greater than the impedance Z 1 .
 可変インピーダンス回路120は、低インピーダンス要素121の使用時に電圧検出器33の検出値が所定の閾値を超えたとき、使用するインピーダンス要素を低インピーダンス要素121から高インピーダンス要素122へ切り換えることができる。 The variable impedance circuit 120 can switch the impedance element to be used from the low impedance element 121 to the high impedance element 122 when the detection value of the voltage detector 33 exceeds a predetermined threshold when the low impedance element 121 is used.
 (3)過電圧保護回路150の動作
 図16は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図15及び図16において、通常時、可変インピーダンス回路120は、切換スイッチ123の接点が低インピーダンス要素121に接続されている。低インピーダンス要素121のインピーダンスZ1は0若しくは0に近い値であるので、機器30には電圧V≒Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 150 FIG. 16 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component and the impedance Z is only the resistance. 15 and 16, the variable impedance circuit 120 is normally connected to the low impedance element 121 at the contact point of the changeover switch 123 in the variable impedance circuit 120. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V≈Vac is applied to the device 30.
 通常時の商用電源90の電圧Vac=V0とする。制御部40は、商用電源90の電圧Vacが通常時の値V0を超えても可変インピーダンス回路120の低インピーダンス要素121の使用し、インピーダンスZ1を維持する。 It is assumed that the voltage Vac = V 0 of the commercial power supply 90 at normal time. The controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
 その後、電圧Vacがさらに上昇し、電圧検出器33の検出値が第1閾値V1を超えたとき、制御部40は切換スイッチ123を動作させ、接点を高インピーダンス要素122に接続する。 Thereafter, when the voltage Vac further rises and the detection value of the voltage detector 33 exceeds the first threshold value V 1 , the control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
 高インピーダンス要素122のインピーダンスZ2は低インピーダンス要素121のインピーダンスZ1より大きいので、可変インピーダンス回路120の両端における電圧降下分Vzが増加し、電圧V=Vac-Vzが機器30に印加されることになる。 The impedance Z 2 of the high impedance element 122 is greater than the impedance Z 1 of the low impedance element 121, a voltage drop Vz at both ends of the variable impedance circuit 120 is increased, the voltage V = Vac-Vz is applied to the device 30 become.
 その結果、機器30に印加される電圧VがV1からV0へ減少し、機器30は過電圧から保護される。 As a result, the voltage V applied to the device 30 decreases from V 1 to V 0 , and the device 30 is protected from overvoltage.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路120のインピーダンス要素を高インピーダンス要素122から低インピーダンス要素121へ切り換えて、インピーダンスZ2をインピーダンスZ1に戻す。これにより、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . As a result, the normal operation is restored.
 (4)第6実施形態の特徴
 (4-1)
 過電圧保護回路150では、過電圧時には、可変インピーダンス回路120での電圧降下分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。
(4) Features of the sixth embodiment (4-1)
In the overvoltage protection circuit 150, during overvoltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, and the device 30 can be protected from overvoltage.
 (4-2)
 商用電源90からの供給電圧が過大電圧であっても、可変インピーダンス回路120での電圧降下分だけ機器30に印加される電圧が低減されるので、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-2)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, so only for protection from the excessive voltage for a short time. There is no need to design the device 30 with a high voltage rating, which is reasonable.
 <第7実施形態>
 (1)過電圧保護回路150の構成
 図17は、本発明の第7実施形態に係る過電圧保護回路150を備えた装置の回路図である。図17において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路150は、商用電源90と機器30との間に接続されている。
<Seventh embodiment>
(1) Configuration of Overvoltage Protection Circuit 150 FIG. 17 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the seventh embodiment of the present invention. In FIG. 17, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路150は、可変インピーダンス回路120と、電圧検出器33と、第2スイッチ12とを含んでいる。 The overvoltage protection circuit 150 includes a variable impedance circuit 120, a voltage detector 33, and a second switch 12.
 (2)過電圧保護回路150の詳細構成
 第7実施形態は、第5実施形態に第2スイッチ12が追加された形態であり、可変インピーダンス回路120、及び電圧検出器33については同様のものを採用している。したがって、ここでは第2スイッチ12についてのみを説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 150 In the seventh embodiment, the second switch 12 is added to the fifth embodiment, and the variable impedance circuit 120 and the voltage detector 33 are the same. is doing. Therefore, only the second switch 12 will be described here.
 (2-1)第2スイッチ12
 第2スイッチ12は、電源ライン901を開閉する。ここで、電源ライン901を開閉するとは、電源ライン901を導通又は遮断して非導通にすることである。
(2-1) Second switch 12
The second switch 12 opens and closes the power line 901. Here, opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
 第2スイッチ12は、通常時は電源ライン901を閉、つまり導通状態にしておく。他方、過電圧時には、可変インピーダンス回路120のインピーダンスZが変化することによって機器30の保護動作が行われた後に、第2スイッチ12がオフして電源ライン901を遮断する。 The second switch 12 normally closes the power supply line 901, that is, keeps it conductive. On the other hand, at the time of overvoltage, the second switch 12 is turned off and the power supply line 901 is shut off after the protection operation of the device 30 is performed by changing the impedance Z of the variable impedance circuit 120.
 電源ライン901を遮断する目的は、電源の過電圧が、可変インピーダンス回路を設計した際の想定電圧以上となった場合や、過電圧状態の継続時間が想定時間以上となった場合に、可変インピーダンス回路120での電力消費及び温度上昇を止めるためであり、可変インピーダンス回路120の電力定格を小さくすることができ、低コスト化を図ることができる。第2スイッチ12は、リレー回路が採用されている。 The purpose of cutting off the power supply line 901 is that the variable impedance circuit 120 is used when the overvoltage of the power supply exceeds the assumed voltage when the variable impedance circuit is designed, or when the duration of the overvoltage state exceeds the assumed time. Therefore, the power rating of the variable impedance circuit 120 can be reduced, and the cost can be reduced. The second switch 12 employs a relay circuit.
 図17に示すように、第2スイッチ12は、電源ライン901を開閉するリレー接点12aと、リレー接点12aを動作させるリレーコイル12bと、リレーコイル12bへの通電と非通電とを行うトランジスタ12cとを含んでいる。リレーコイル12bの一端は、電源Vbの正極に接続され、他端はトランジスタ12cのコレクタ側に接続されている。制御部40は、トランジスタ12cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル12bへの通電と非通電を行う。 As shown in FIG. 17, the second switch 12 includes a relay contact 12a for opening and closing the power supply line 901, a relay coil 12b for operating the relay contact 12a, and a transistor 12c for energizing and de-energizing the relay coil 12b. Is included. One end of the relay coil 12b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 12c. The control unit 40 switches the presence / absence of the base current of the transistor 12c, turns on / off the collector and the emitter, and energizes and de-energizes the relay coil 12b.
 (3)過電圧保護回路150の動作
 図18は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図17及び図18において、通常時、第2スイッチ12は電源ライン901を導通状態にしている。また、可変インピーダンス回路120のインピーダンスZは0若しくは0に近い値であるので、機器30には電圧V≒Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 150 FIG. 18 is a graph showing changes in the voltage V when the impedance of the device 30 is only the resistance component and the impedance Z is only the resistance. In FIG. 17 and FIG. 18, the second switch 12 keeps the power supply line 901 conductive during normal times. Since the impedance Z of the variable impedance circuit 120 is 0 or a value close to 0, the voltage V≈Vac is applied to the device 30.
 通常時の商用電源90の電圧VacがV0以下であるとすると、商用電源90の電圧Vacが増加し、制御部40が電圧検出器33から出力される電圧がV0を超えたと判定したとき、制御部40はインピーダンスZを電圧検出器33の検出値の増加に応じて連続的に増加させる。 Assuming that the voltage Vac of the commercial power supply 90 at normal time is equal to or lower than V 0 , the voltage Vac of the commercial power supply 90 increases and the control unit 40 determines that the voltage output from the voltage detector 33 exceeds V 0. The control unit 40 continuously increases the impedance Z in accordance with the increase in the detection value of the voltage detector 33.
 その結果、可変インピーダンス回路120の両端における電圧降下分Vzを減じた電圧V=Vac-Vzが機器30に印加されることになり、機器30は過電圧から保護される。 As a result, the voltage V = Vac−Vz obtained by subtracting the voltage drop Vz at both ends of the variable impedance circuit 120 is applied to the device 30, and the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇する。しかし、電圧Vacが第1閾値V1に到達したときに第2スイッチ12が電源ライン901を遮断する。この結果、機器30を保護し、且つ可変インピーダンス回路120での電力消費を止める。 Thereafter, when the overvoltage state continues, the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases. However, the second switch 12 cuts off the power supply line 901 when the voltage Vac reaches the first threshold value V 1 . As a result, the device 30 is protected and power consumption in the variable impedance circuit 120 is stopped.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路120のインピーダンスZを0若しくは0に近い値に戻す。さらに、第2スイッチ12をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance Z of the variable impedance circuit 120 to 0 or Return to a value close to zero. Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
 (4)第7実施形態の特徴
 (4-1)
 過電圧保護回路150では、過電圧時には、可変インピーダンス回路120での電圧降下分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。
(4) Features of the seventh embodiment (4-1)
In the overvoltage protection circuit 150, during overvoltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, and the device 30 can be protected from overvoltage.
 (4-2)
 また、第2スイッチ12が電源ライン901を遮断することによって可変インピーダンス回路120での電力消費を止める。この結果、可変インピーダンス回路120の過熱を抑制し、電力定格を小さくすることができる。
(4-2)
Further, the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 120. As a result, overheating of the variable impedance circuit 120 can be suppressed and the power rating can be reduced.
 (4-3)
 商用電源90からの供給電圧が過大電圧であっても、可変インピーダンス回路120での電圧降下分だけ機器30に印加される電圧が低減されるので、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-3)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, so only for protection from the excessive voltage for a short time. There is no need to design the device 30 with a high voltage rating, which is reasonable.
 <第8実施形態>
 (1)過電圧保護回路150の構成
 図19は、本発明の第8実施形態に係る過電圧保護回路150を備えた装置の回路図である。図19において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路150は、商用電源90と機器30との間に接続されている。
<Eighth Embodiment>
(1) Configuration of Overvoltage Protection Circuit 150 FIG. 19 is a circuit diagram of a device including an overvoltage protection circuit 150 according to the eighth embodiment of the present invention. In FIG. 19, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 150 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路150は、可変インピーダンス回路120と、電圧検出器33と、第2スイッチ12とを含んでいる。 The overvoltage protection circuit 150 includes a variable impedance circuit 120, a voltage detector 33, and a second switch 12.
 (2)過電圧保護回路150の詳細構成
 第8実施形態は、可変インピーダンス回路120が複数のインピーダンス要素によって構成されている点で上記第7実施形態と相違するが、その他の構成は第7実施形態と同じである。したがって、ここでは可変インピーダンス回路120についてのみ説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 150 The eighth embodiment differs from the seventh embodiment in that the variable impedance circuit 120 is configured by a plurality of impedance elements, but the other configurations are the seventh embodiment. Is the same. Therefore, only the variable impedance circuit 120 will be described here.
 (2-1)可変インピーダンス回路120
 可変インピーダンス回路120は、低インピーダンス要素121、高インピーダンス要素122及び切換スイッチ123を含んでいる。
(2-1) Variable impedance circuit 120
The variable impedance circuit 120 includes a low impedance element 121, a high impedance element 122, and a changeover switch 123.
 可変インピーダンス回路120は、切換スイッチ123によって低インピーダンス要素121と高インピーダンス要素122とを選択的に使用することができる。低インピーダンス要素121はインピーダンスZ1を有している。また、高インピーダンス要素122はインピーダンスZ1よりも大きいインピーダンスZ2を有している。 The variable impedance circuit 120 can selectively use the low impedance element 121 and the high impedance element 122 by the changeover switch 123. The low impedance element 121 has an impedance Z 1 . The high impedance element 122 has an impedance Z 2 that is greater than the impedance Z 1 .
 可変インピーダンス回路120は、低インピーダンス要素121の使用時に電圧検出器33の検出値が所定の閾値を超えたとき、使用するインピーダンス要素を低インピーダンス要素121から高インピーダンス要素122へ切り換えることができる。 The variable impedance circuit 120 can switch the impedance element to be used from the low impedance element 121 to the high impedance element 122 when the detection value of the voltage detector 33 exceeds a predetermined threshold when the low impedance element 121 is used.
 (3)過電圧保護回路150の動作
 図20は、機器30のインピーダンスが抵抗成分のみであり、インピーダンスZが抵抗のみの場合の電圧Vの変化を示すグラフである。図19及び図20において、通常時、可変インピーダンス回路120は、切換スイッチ123の接点が低インピーダンス要素121に接続されている。低インピーダンス要素121のインピーダンスZ1は0若しくは0に近い値であるので、機器30には電圧V≒Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 150 FIG. 20 is a graph showing a change in voltage V when the impedance of the device 30 is only a resistance component and the impedance Z is only a resistance. In FIG. 19 and FIG. 20, the variable impedance circuit 120 normally has a contact point of the changeover switch 123 connected to the low impedance element 121. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V≈Vac is applied to the device 30.
 通常時の商用電源90の電圧Vacは、V0以下である。制御部40は、商用電源90の電圧Vacが通常時の値V0を超えても可変インピーダンス回路120の低インピーダンス要素121を使用し、インピーダンスZ1を維持する。 The voltage Vac of the commercial power supply 90 at normal time is V 0 or less. The controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
 その後、電圧Vacがさらに上昇し、電圧検出器33の検出値が第1閾値V1を超えたとき、制御部40は切換スイッチ123を動作させ、接点を高インピーダンス要素122に接続する。 Thereafter, when the voltage Vac further rises and the detection value of the voltage detector 33 exceeds the first threshold value V 1 , the control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
 高インピーダンス要素122のインピーダンスZ2は低インピーダンス要素121のインピーダンスZ1より大きいので、可変インピーダンス回路120の両端における電圧降下分Vzが増加し、電圧V=Vac-Vzが機器30に印加されることになる。 Since the impedance Z 2 of the high impedance element 122 is larger than the impedance Z 1 of the low impedance element 121, the voltage drop Vz at both ends of the variable impedance circuit 120 increases, and the voltage V = Vac−Vz is applied to the device 30. become.
 その結果、機器30に印加される電圧VがV1からV0へ減少し、機器30は過電圧から保護される。 As a result, the voltage V applied to the device 30 decreases from V 1 to V 0 , and the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇する。しかし、電圧Vacが第2閾値V2(V2=V1でもよい)に到達したときに第2スイッチ12が電源ライン901を遮断する。この結果、機器30を保護し、且つ可変インピーダンス回路120での電力消費を止める。 Thereafter, when the overvoltage state continues, the voltage V applied to the device 30 increases as the voltage Vac of the commercial power supply 90 increases. However, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches the second threshold value V 2 (V 2 = V 1 may be used). As a result, the device 30 is protected and power consumption in the variable impedance circuit 120 is stopped.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路120のインピーダンス要素を高インピーダンス要素122から低インピーダンス要素121へ切り換えて、インピーダンスZ2をインピーダンスZ1に戻す。さらに、第2スイッチ12をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
 (4)第8実施形態の特徴
 (4-1)
 過電圧保護回路150では、過電圧時に、可変インピーダンス回路120のインピーダンス要素を低インピーダンス要素121から高インピーダンス要素122へ切り換えるので、インピーダンスZ2での電圧降下分だけ機器30に印加される電圧が低減され、機器30を過電圧から保護することができる。
(4) Features of the eighth embodiment (4-1)
The overvoltage protection circuit 150 switches the impedance element of the variable impedance circuit 120 from the low impedance element 121 to the high impedance element 122 at the time of overvoltage, so that the voltage applied to the device 30 is reduced by the voltage drop at the impedance Z 2 . The device 30 can be protected from overvoltage.
 (4-2)
 また、第2スイッチ12が電源ライン901を遮断することによって可変インピーダンス回路120での電力消費を止める。この結果、可変インピーダンス回路120の過熱を抑制し、電力定格を小さくすることができる。
(4-2)
Further, the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 120. As a result, overheating of the variable impedance circuit 120 can be suppressed and the power rating can be reduced.
 (4-3)
 商用電源90からの供給電圧が過大電圧であっても、可変インピーダンス回路120での電圧降下分だけ機器30に印加される電圧が低減されるので、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-3)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, the voltage applied to the device 30 is reduced by the voltage drop in the variable impedance circuit 120, so only for protection from the excessive voltage for a short time. There is no need to design the device 30 with a high voltage rating, which is reasonable.
 <第9実施形態>
 (1)電力変換装置300の構成
 図21は、本発明の第9実施形態に係る過電圧保護回路200を備えた電力変換装置300の回路図である。図21において、電力変換装置300は、直流電源部80、インバータ95、過電圧保護回路200で構成されている。
<Ninth Embodiment>
(1) Configuration of Power Converter 300 FIG. 21 is a circuit diagram of a power converter 300 including an overvoltage protection circuit 200 according to the ninth embodiment of the present invention. In FIG. 21, the power conversion device 300 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 200.
 インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路200は、直流電源部80とインバータ95との間に接続されている。 The inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802. The overvoltage protection circuit 200 is connected between the DC power supply unit 80 and the inverter 95.
 (1-1)直流電源部80
 直流電源部80は、整流部81と、整流部81と並列接続される平滑コンデンサ82とで構成されている。
(1-1) DC power supply unit 80
The DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
 整流部81は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共に平滑コンデンサ82のプラス側端子に接続されており、整流部81の正側出力端子として機能する。ダイオードD1b,D2bの各ダイオードの各アノード端子は、共に平滑コンデンサ82のマイナス側端子に接続されており、整流部81の負側出力端子として機能する。 The rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
 ダイオードD1a及びダイオードD1bの接続点は、商用電源90の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、商用電源90の他方の極に接続されている。整流部81は、商用電源90から出力される交流電圧を整流して直流電圧を生成し、これを平滑コンデンサ82へ供給する。 The connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90. A connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90. The rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
 平滑コンデンサ82は、整流部81によって整流された電圧を平滑する。平滑後の電圧Vdcは、平滑コンデンサ82の出力側に接続されるインバータ95へ印加される。 The smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81. The smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
 なお、コンデンサの種類としては、電解コンデンサやフィルムコンデンサ等が挙げられるが、本実施形態においては、平滑コンデンサ82として電解コンデンサが採用される。 In addition, although an electrolytic capacitor, a film capacitor, etc. are mentioned as a kind of capacitor | condenser, in this embodiment, an electrolytic capacitor is employ | adopted as the smoothing capacitor 82. FIG.
 この直流電源部80は、交流電圧を直流電圧に変換するコンバータ回路と言い換えることもできる。 The DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
 (1-2)インバータ95
 インバータ95は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)及び複数の還流用ダイオードを含んでいる。インバータ95は、平滑コンデンサ82からの電圧Vdcが印加され、かつゲート駆動回路96により指示されたタイミングで各トランジスタがオン及びオフを行うことによって、モータ500を駆動する駆動電圧を生成する。モータ500は、例えばヒートポンプ式空気調和機の圧縮機モータ、ファンモータである。
(1-2) Inverter 95
The inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes. The inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 500. The motor 500 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
 なお、本実施形態のインバータ95は、電圧形インバータであるが、それに限定されるものではなく、電流形インバータでもよい。 In addition, although the inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
 (1-3)ゲート駆動回路96
 ゲート駆動回路96は、制御部40からの指令に基づき、インバータ95の各トランジスタのオン及びオフの状態を変化させる。
(1-3) Gate drive circuit 96
The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
 (1-4)過電圧保護回路200
 過電圧保護回路200は、可変インピーダンス回路170と、電圧検出器83と、第2スイッチ62とを含んでいる。
(1-4) Overvoltage protection circuit 200
The overvoltage protection circuit 200 includes a variable impedance circuit 170, a voltage detector 83, and a second switch 62.
 (2)過電圧保護回路200の詳細構成
 第9実施形態と、既に説明した第7実施形態及び第8実施形態と大きく異なる点は、過電圧保護回路200が直流部に設けられていることである。したがって、各構成要素も交流仕様から直流仕様に置き換えられることに鑑みて、同一名称であっても符号を換えて、再度説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 200 The ninth embodiment is different from the seventh embodiment and the eighth embodiment already described in that the overvoltage protection circuit 200 is provided in the direct current section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
 (2-1)可変インピーダンス回路170
 可変インピーダンス回路170は、当該回路における電圧と電流との比であるインピーダンスがZとなるように構成された回路である。一般に抵抗素子が採用される。
(2-1) Variable impedance circuit 170
The variable impedance circuit 170 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Z. In general, a resistance element is employed.
 可変インピーダンス回路170は、電源ライン802上で、直流電源部80とインバータ95との間に接続されている。 The variable impedance circuit 170 is connected between the DC power supply unit 80 and the inverter 95 on the power supply line 802.
 可変インピーダンス回路170は、低インピーダンス要素171、高インピーダンス要素172及び切換スイッチ173を含んでいる。 The variable impedance circuit 170 includes a low impedance element 171, a high impedance element 172, and a changeover switch 173.
 可変インピーダンス回路170は、切換スイッチ173によって低インピーダンス要素171と高インピーダンス要素172とを選択的に使用することができる。低インピーダンス要素171はインピーダンスZ1を有している。また、高インピーダンス要素172はインピーダンスZ1よりも大きいインピーダンスZ2を有している。 The variable impedance circuit 170 can selectively use the low impedance element 171 and the high impedance element 172 by the changeover switch 173. Low impedance element 171 has an impedance Z 1. The high impedance element 172 has an impedance Z 2 that is greater than the impedance Z 1 .
 可変インピーダンス回路170は、低インピーダンス要素171の使用時に電圧検出器83の検出値が所定の閾値を超えたとき、使用するインピーダンス要素を低インピーダンス要素171から高インピーダンス要素172へ切り換えることができる。 The variable impedance circuit 170 can switch the impedance element to be used from the low impedance element 171 to the high impedance element 172 when the detection value of the voltage detector 83 exceeds a predetermined threshold when the low impedance element 171 is used.
 (2-2)電圧検出器83
 電圧検出器83は、平滑コンデンサ82の出力側に接続されており、平滑コンデンサ82の両端電圧、即ち平滑後の電圧Vdcの値を検出する。電圧検出器83は、例えば、互いに直列に接続された2つの抵抗が平滑コンデンサ82に並列接続され、電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、制御部40に入力される。
(2-2) Voltage detector 83
The voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc. For example, the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
 (2-3)第2スイッチ62
 第2スイッチ62は、電源ライン801を開閉する。ここで、電源ライン801を開閉するとは、電源ライン801を導通又は遮断して非導通にすることである。
(2-3) Second switch 62
The second switch 62 opens and closes the power line 801. Here, opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
 第2スイッチ62は、通常時は電源ライン801を閉、つまり導通状態にしておく。他方、過電圧時には、可変インピーダンス回路170のインピーダンスZが変化することによってインバータ95の保護動作が行われた後に、第2スイッチ62がオフして電源ライン801を遮断する。 The second switch 62 normally closes the power supply line 801, that is, keeps it conductive. On the other hand, at the time of overvoltage, the second switch 62 is turned off and the power supply line 801 is shut off after the protection operation of the inverter 95 is performed by the impedance Z of the variable impedance circuit 170 changing.
 電源ライン801を遮断する目的は、可変インピーダンス回路170での電力消費を止めるためであり、可変インピーダンス回路170の電力定格を小さくすることができ、低コスト化を図ることができる。第2スイッチ62は、リレー回路が採用されている。 The purpose of cutting off the power supply line 801 is to stop the power consumption in the variable impedance circuit 170, the power rating of the variable impedance circuit 170 can be reduced, and the cost can be reduced. The second switch 62 employs a relay circuit.
 図21に示すように、第2スイッチ62は、電源ライン801を開閉するリレー接点62aと、リレー接点62aを動作させるリレーコイル62bと、リレーコイル62bへの通電と非通電とを行うトランジスタ62cとを含んでいる。リレーコイル62bの一端は、電源Vbの正極に接続され、他端はトランジスタ62cのコレクタ側に接続されている。制御部40は、トランジスタ62cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル62bへの通電と非通電を行う。 As shown in FIG. 21, the second switch 62 includes a relay contact 62a for opening and closing the power supply line 801, a relay coil 62b for operating the relay contact 62a, and a transistor 62c for energizing and de-energizing the relay coil 62b. Is included. One end of the relay coil 62b is connected to the positive electrode of the power supply Vb, and the other end is connected to the collector side of the transistor 62c. The controller 40 switches between the presence and absence of the base current of the transistor 62c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 62b.
 (3)過電圧保護回路200の動作
 図21において、通常時、第2スイッチ62は電源ライン801を導通状態にしている。また、通常時、可変インピーダンス回路170は、切換スイッチ173の接点が低インピーダンス要素171に接続されている。低インピーダンス要素171のインピーダンスZ1は0若しくは0に近い値であるので、インバータ95には電圧V≒Vdcが印加されている。
(3) Operation of Overvoltage Protection Circuit 200 In FIG. 21, the second switch 62 keeps the power supply line 801 conductive during normal operation. In the normal state, the variable impedance circuit 170 has a contact point of the changeover switch 173 connected to the low impedance element 171. Since the impedance Z 1 of the low impedance element 171 is 0 or a value close to 0, the voltage V≈Vdc is applied to the inverter 95.
 直流電源部80の電圧Vdcが増加し、電圧検出器83の検出値が第1閾値を超えたとき、制御部40は切換スイッチ173を動作させ、接点を高インピーダンス要素172に接続する。 When the voltage Vdc of the DC power supply unit 80 increases and the detection value of the voltage detector 83 exceeds the first threshold value, the control unit 40 operates the changeover switch 173 to connect the contact point to the high impedance element 172.
 高インピーダンス要素172のインピーダンスZ2は低インピーダンス要素171のインピーダンスZ1より大きいので、可変インピーダンス回路170の両端における電圧降下分Vzが増加し、電圧V=Vdc-Vzがインバータ95に印加されることになる。その結果、インバータ95に印加される電圧Vが減少し、インバータ95が過電圧から保護される。 Since the impedance Z 2 of the high impedance element 172 is larger than the impedance Z 1 of the low impedance element 171, the voltage drop Vz at both ends of the variable impedance circuit 170 increases and the voltage V = Vdc−Vz is applied to the inverter 95. become. As a result, the voltage V applied to the inverter 95 decreases, and the inverter 95 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、インバータ95に印加される電圧Vも上昇する。しかし、直流電源部80の電圧Vdcが第2閾値(=第1閾値でもよい)に到達したときに第2スイッチ62が電源ライン801を遮断する。その結果、インバータ95が過電圧から保護され、且つ可変インピーダンス回路170での電力消費が止まる。 Thereafter, when the overvoltage state continues, the voltage V applied to the inverter 95 also increases. However, the second switch 62 cuts off the power supply line 801 when the voltage Vdc of the DC power supply unit 80 reaches the second threshold (or may be the first threshold). As a result, the inverter 95 is protected from overvoltage and the power consumption in the variable impedance circuit 170 is stopped.
 直流電源部80の電圧Vdcが下がり、電圧検出器83から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路170のインピーダンス要素を高インピーダンス要素172から低インピーダンス要素171へ切り換えて、インピーダンスZ2をインピーダンスZ1に戻す。さらに、第2スイッチ62をオンさせて電源ライン801を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vdc of the DC power supply unit 80 has dropped and the voltage output from the voltage detector 83 has fallen below the threshold for recovery, the control unit 40 increases the impedance element of the variable impedance circuit 170 to a high level. Switching from the impedance element 172 to the low impedance element 171 returns the impedance Z 2 to the impedance Z 1 . Further, by turning on the second switch 62 and connecting the power supply line 801, the normal operation is restored.
 (4)第9実施形態の特徴
 (4-1)
 過電圧保護回路200では、過電圧時に、可変インピーダンス回路170のインピーダンス要素を高インピーダンス要素172へ切り換えることによって、インピーダンスZ2での電圧降下分だけインバータ95に印加される電圧が低減され、インバータ95を過電圧から保護することができる。
(4) Features of the ninth embodiment (4-1)
The overvoltage protection circuit 200, during an overvoltage, by switching the impedance components of the variable impedance circuit 170 to a high impedance element 172, the voltage applied to the voltage drop by the inverter 95 in the impedance Z 2 is reduced, the overvoltage inverters 95 Can be protected from.
 (4-2)
 また、第2スイッチ62が電源ライン801を遮断することによって可変インピーダンス回路170での電力消費を止める。この結果、可変インピーダンス回路170の電力定格を小さくすることができる。
(4-2)
Further, the second switch 62 cuts off the power supply line 801 to stop the power consumption in the variable impedance circuit 170. As a result, the power rating of the variable impedance circuit 170 can be reduced.
 <第10実施形態>
 (1)過電圧保護回路200の構成
 図22は、本発明の第10実施形態に係る過電圧保護回路200を備えた電力変換装置300の回路図である。図22において、インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路200の一部は商用電源90と直流電源部80との間に接続され、他の部分は直流電源部80とインバータ95との間に接続されている。
<Tenth Embodiment>
(1) Configuration of Overvoltage Protection Circuit 200 FIG. 22 is a circuit diagram of a power conversion device 300 including the overvoltage protection circuit 200 according to the tenth embodiment of the present invention. In FIG. 22, the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802. A part of the overvoltage protection circuit 200 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
 過電圧保護回路200は、可変インピーダンス回路170と、電圧検出器33、第2スイッチ12とを含んでいる。 The overvoltage protection circuit 200 includes a variable impedance circuit 170, a voltage detector 33, and a second switch 12.
 第10実施形態と、既に説明した第9実施形態と異なる点は、過電圧保護回路200の構成要素である電圧検出器と第2スイッチとが商用電源90と直流電源部80との間に設けられていることである。つまり、電圧検出器及び第2スイッチの配置が、第8実施形態における電圧検出器33及び第2スイッチ12の配置と同じである。したがって、電圧検出器及び第2スイッチが直流仕様から交流仕様に置き換えられることに鑑みて、第8実施形態の電圧検出器33及び第2スイッチ12が採用されている。 The difference between the tenth embodiment and the already described ninth embodiment is that a voltage detector, which is a component of the overvoltage protection circuit 200, and a second switch are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the second switch is the same as the arrangement of the voltage detector 33 and the second switch 12 in the eighth embodiment. Therefore, in view of the fact that the voltage detector and the second switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the second switch 12 of the eighth embodiment are employed.
 したがって、各構成要素の内容は、第8実施形態の電圧検出器33及び第2スイッチ12、第9実施形態の可変インピーダンス回路170と同様であるので、ここでは説明を省略し、動作説明のみ行う。 Therefore, the content of each component is the same as that of the voltage detector 33 and the second switch 12 of the eighth embodiment and the variable impedance circuit 170 of the ninth embodiment. .
 (2)過電圧保護回路200の動作
 図22において、通常時、第2スイッチ12は電源ライン901を導通状態にしている。また、通常時、可変インピーダンス回路170は、切換スイッチ173の接点が低インピーダンス要素171に接続されている。低インピーダンス要素171のインピーダンスZ1は0若しくは0に近い値であるので、インバータ95には電圧V≒Vdcが印加されている。
(2) Operation of Overvoltage Protection Circuit 200 In FIG. 22, the second switch 12 keeps the power supply line 901 conductive during normal operation. In the normal state, the variable impedance circuit 170 has a contact point of the changeover switch 173 connected to the low impedance element 171. Since the impedance Z 1 of the low impedance element 171 is 0 or a value close to 0, the voltage V≈Vdc is applied to the inverter 95.
 商用電源90の電圧Vacの変動により、直流電源部80の電圧Vdcが増加し、電圧検出器33の検出値が第1閾値を超えたとき、制御部40は切換スイッチ173を動作させ、接点を高インピーダンス要素172に接続する。 When the voltage Vdc of the DC power supply unit 80 increases due to the fluctuation of the voltage Vac of the commercial power supply 90 and the detected value of the voltage detector 33 exceeds the first threshold value, the control unit 40 operates the changeover switch 173 to change the contact point. Connect to high impedance element 172.
 高インピーダンス要素172のインピーダンスZ2は低インピーダンス要素171のインピーダンスZ1より大きいので、可変インピーダンス回路170の両端における電圧降下分Vzが増加し、電圧V=Vdc-Vzがインバータ95に印加されることになる。その結果、インバータ95に印加される電圧Vが減少し、インバータ95が過電圧から保護される。 Since the impedance Z 2 of the high impedance element 172 is larger than the impedance Z 1 of the low impedance element 171, the voltage drop Vz at both ends of the variable impedance circuit 170 increases and the voltage V = Vdc−Vz is applied to the inverter 95. become. As a result, the voltage V applied to the inverter 95 decreases, and the inverter 95 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、インバータ95に印加される電圧Vも上昇する。しかし、電圧検出器33の検出値が第2閾値(=第1閾値でもよい)に到達したときに第2スイッチ12が電源ライン901を遮断する。その結果、インバータ95が過電圧から保護され、且つ可変インピーダンス回路170での電力消費が止まる。 Thereafter, when the overvoltage state continues, the voltage V applied to the inverter 95 also increases. However, the second switch 12 shuts off the power supply line 901 when the detection value of the voltage detector 33 reaches the second threshold (= may be the first threshold). As a result, the inverter 95 is protected from overvoltage and the power consumption in the variable impedance circuit 170 is stopped.
 商用電源90の電圧Vacが安定し、直流電源部80の電圧Vdcが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路170のインピーダンス要素を高インピーダンス要素172から低インピーダンス要素171へ切り換えて、インピーダンスZ2をインピーダンスZ1に戻す。さらに、第2スイッチ12をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 is stable, the voltage Vdc of the DC power supply unit 80 is decreased, and the voltage output from the voltage detector 33 is lower than the threshold for recovery, the control unit 40 Switches the impedance element of the variable impedance circuit 170 from the high impedance element 172 to the low impedance element 171 to return the impedance Z 2 to the impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
 (3)第10実施形態の特徴
 (3-1)
 過電圧保護回路200では、過電圧時に、可変インピーダンス回路170のインピーダンス要素を高インピーダンス要素172へ切り換えることによって、インピーダンスZ2での電圧降下分だけインバータ95に印加される電圧が低減され、インバータ95を過電圧から保護することができる。
(3) Features of the tenth embodiment (3-1)
The overvoltage protection circuit 200, during an overvoltage, by switching the impedance components of the variable impedance circuit 170 to a high impedance element 172, the voltage applied to the voltage drop by the inverter 95 in the impedance Z 2 is reduced, the overvoltage inverters 95 Can be protected from.
 (3-2)
 また、第2スイッチ12が電源ライン901を遮断することによって可変インピーダンス回路170での電力消費を止める。この結果、可変インピーダンス回路170の過熱を抑制し、電力定格を小さくすることができる。
(3-2)
Further, the second switch 12 cuts off the power supply line 901 to stop power consumption in the variable impedance circuit 170. As a result, overheating of the variable impedance circuit 170 can be suppressed and the power rating can be reduced.
 <その他の変形例>
 (A)
 図1に示す第5実施形態に係る過電圧保護回路150は、交流電圧に対する過電圧保護回路を実施形態としているが、電源が直流電源である場合、あるいは機器内に交流電源を整流する直流電源部を持つ場合には、各構成要素を交流仕様から直流仕様へ置き換えて直流電源部の下流側に設けてもよい。
<Other variations>
(A)
The overvoltage protection circuit 150 according to the fifth embodiment shown in FIG. 1 has an overvoltage protection circuit for an AC voltage as an embodiment. However, when the power supply is a DC power supply, or a DC power supply unit that rectifies the AC power supply in the device. In the case of having it, each component may be replaced from the AC specification to the DC specification and provided on the downstream side of the DC power supply unit.
 (B)
 第8実施形態では、電圧Vacが所定の第2閾値に達したときに第2スイッチ12が電源ライン901を遮断したが、過電圧状態が所定の継続時間を経過したときに遮断するようにしてもよい。
(B)
In the eighth embodiment, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold value, but it may be cut off when the overvoltage state has passed a predetermined duration. Good.
 (C)
 第8実施形態では、電圧Vacが所定の第2閾値に達したときに第2スイッチ12が電源ライン901を遮断したが、機器に印加される電圧Vを検出する機器電圧検出器37を更に設け、電圧Vが所定の第3閾値に達したときに遮断するようにしてもよい。
(C)
In the eighth embodiment, the second switch 12 shuts off the power supply line 901 when the voltage Vac reaches a predetermined second threshold, but a device voltage detector 37 for detecting the voltage V applied to the device is further provided. The voltage V may be cut off when it reaches a predetermined third threshold value.
 図23は、他の変形例に係る過電圧保護回路150を備えた装置の回路図である。また、図24は、インピーダンスが抵抗のみの場合の電圧Vの変化を示すグラフである。図23及び図24において、通常時、可変インピーダンス回路120は、切換スイッチ123の接点が低インピーダンス要素121に接続されている。低インピーダンス要素121のインピーダンスZ1は0若しくは0に近い値であるので、機器30には電圧V≒Vacが印加されている。 FIG. 23 is a circuit diagram of an apparatus including an overvoltage protection circuit 150 according to another modification. FIG. 24 is a graph showing changes in voltage V when the impedance is only resistance. 23 and 24, the variable impedance circuit 120 is normally connected to the low impedance element 121 at the contact point of the changeover switch 123 in the variable impedance circuit 120. Since the impedance Z 1 of the low impedance element 121 is 0 or a value close to 0, the voltage V≈Vac is applied to the device 30.
 制御部40は、商用電源90の電圧Vacが通常時の値V0を超えても可変インピーダンス回路120の低インピーダンス要素121を使用し、インピーダンスZ1を維持する。 The controller 40 uses the low impedance element 121 of the variable impedance circuit 120 to maintain the impedance Z 1 even when the voltage Vac of the commercial power supply 90 exceeds the normal value V 0 .
 その後、電圧Vacがさらに上昇し、電圧検出器33の検出値が第1閾値V1を超えたとき、制御部40は切換スイッチ123を動作させ、接点を高インピーダンス要素122に接続する。 Thereafter, when the voltage Vac further rises and the detection value of the voltage detector 33 exceeds the first threshold value V 1 , the control unit 40 operates the changeover switch 123 to connect the contact point to the high impedance element 122.
 高インピーダンス要素122のインピーダンスZ2は低インピーダンス要素121のインピーダンスZ1より大きいので、可変インピーダンス回路120の両端における電圧降下分Vzが増加し、電圧V=Vac-Vzが機器30に印加されることになる。その結果、機器30に印加される電圧Vが減少し、機器30は過電圧から保護される。 Since the impedance Z 2 of the high impedance element 122 is larger than the impedance Z 1 of the low impedance element 121, the voltage drop Vz at both ends of the variable impedance circuit 120 increases, and the voltage V = Vac−Vz is applied to the device 30. become. As a result, the voltage V applied to the device 30 decreases, and the device 30 is protected from overvoltage.
 その後、制御部40は切換スイッチ123の接点を高インピーダンス要素122に接続した状態を維持するが、過電圧状態が続いている場合には、図24に示すように商用電源90の電圧Vacの上昇に伴って機器30に印加される電圧Vも上昇する。 Thereafter, the control unit 40 maintains the state in which the contact of the changeover switch 123 is connected to the high impedance element 122. However, if the overvoltage state continues, the control unit 40 increases the voltage Vac of the commercial power supply 90 as shown in FIG. Along with this, the voltage V applied to the device 30 also increases.
 そして、機器電圧検出器37の検出値が閾値Vmに到達したとき、制御部40は第2スイッチ12を介して電源ライン901を遮断する。この結果、機器30を保護し、且つ可変インピーダンス回路120での電力消費及び温度上昇を止めることができる。 When the detection value of the device voltage detector 37 reaches the threshold value V m , the control unit 40 shuts off the power supply line 901 via the second switch 12. As a result, the device 30 can be protected, and power consumption and temperature rise in the variable impedance circuit 120 can be stopped.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40は可変インピーダンス回路120のインピーダンス要素を高インピーダンス要素122から低インピーダンス要素121へ切り換えて、インピーダンスZ2をインピーダンスZ1に戻す。さらに、第2スイッチ12をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 sets the impedance element of the variable impedance circuit 120 to a high impedance Switching from element 122 to low impedance element 121 returns impedance Z 2 to impedance Z 1 . Further, the second switch 12 is turned on and the power supply line 901 is connected to return to the normal operation.
 (D)
 第10実施形態は、第9実施形態の電圧検出器と第2スイッチとを、商用電源90と直流電源部80との間に設けるように変更したものであるが、電圧検出器のみを商用電源90と直流電源部80との間に設けるようにしてもよい。
(D)
In the tenth embodiment, the voltage detector and the second switch of the ninth embodiment are changed to be provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is used as the commercial power supply. 90 and the DC power supply unit 80 may be provided.
 (E)
 第9実施形態、第10実施形態では、機器の内部に過電圧保護回路を持つ例を示したが、機器はコンバータ回路とインバータ回路を持つものに限定されない。
(E)
In the ninth embodiment and the tenth embodiment, the example in which the overvoltage protection circuit is provided inside the device has been described, but the device is not limited to the one having the converter circuit and the inverter circuit.
 (F)
 第6実施形態及び第8実施形態において、切換スイッチ123を用いる構成に替えて、第1実施形態におけるスイッチ11を低インピーダンス要素121及び高インピーダンス要素122それぞれに直列接続して、電圧検出器33の検出電圧に応じてオンさせるスイッチを切り換えてもよい。
(F)
In the sixth embodiment and the eighth embodiment, instead of the configuration using the changeover switch 123, the switch 11 in the first embodiment is connected in series to the low impedance element 121 and the high impedance element 122, respectively. A switch to be turned on may be switched according to the detection voltage.
 (G)
 第9実施形態及び第10実施形態において、切換スイッチ173を用いる構成に替えて、第3実施形態におけるスイッチ71を低インピーダンス要素171及び高インピーダンス要素172それぞれに直列接続して、電圧検出器83の検出電圧に応じてオンさせるスイッチを切り換えてもよい。
(G)
In the ninth and tenth embodiments, instead of the configuration using the changeover switch 173, the switch 71 in the third embodiment is connected in series to the low impedance element 171 and the high impedance element 172, and the voltage detector 83 A switch to be turned on may be switched according to the detection voltage.
 本発明は、電源電圧の変動が起こり易い地域で使用される機器、例えば、冷凍装置に有用である。 The present invention is useful for equipment used in an area where power supply voltage is likely to fluctuate, such as a refrigeration apparatus.
11,61   スイッチ
12,62   第2スイッチ
20,70   インピーダンス回路
33,83   電圧検出器
35,85   バイパス回路
37      機器電圧検出器
50,100  過電圧保護回路
80      直流電源部(DC電源、コンバータ回路)
90      商用電源(AC電源)
95      インバータ(インバータ回路)
120,170 可変インピーダンス回路
121,171 低インピーダンス要素
122,172 高インピーダンス要素
150,200 過電圧保護回路
300     電力変換装置
11, 61 Switch 12, 62 Second switch 20, 70 Impedance circuit 33, 83 Voltage detector 35, 85 Bypass circuit 37 Device voltage detector 50, 100 Overvoltage protection circuit 80 DC power supply (DC power supply, converter circuit)
90 Commercial power (AC power)
95 Inverter (Inverter circuit)
120, 170 Variable impedance circuit 121, 171 Low impedance element 122, 172 High impedance element 150, 200 Overvoltage protection circuit 300 Power converter
特開2009-207329号公報JP 2009-207329 A

Claims (14)

  1.  電源と前記電源から電力を供給される機器との間に接続される過電圧保護回路であって、
     前記電源と前記機器とを結ぶ電源ライン上に前記機器と直列に接続されるインピーダンス回路(20,70)と、
     前記電源の電圧を検出する電圧検出器(33,83)と、
     前記インピーダンス回路(20,70)を迂回するバイパス回路(35,85)と、
    を備え、
     前記バイパス回路(35,85)は、前記バイパス回路(35,85)を開閉するスイッチ(11,61)を有し、
     前記スイッチ(11,61)は、通常時は前記バイパス回路(35,85)を閉じ、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときに前記バイパス回路(35,85)を遮断する、
    過電圧保護回路(50,100)。
    An overvoltage protection circuit connected between a power source and a device supplied with power from the power source,
    An impedance circuit (20, 70) connected in series with the device on a power line connecting the power source and the device;
    A voltage detector (33, 83) for detecting the voltage of the power source;
    A bypass circuit (35, 85) bypassing the impedance circuit (20, 70);
    With
    The bypass circuit (35, 85) has a switch (11, 61) for opening and closing the bypass circuit (35, 85),
    The switch (11, 61) normally closes the bypass circuit (35, 85), and when the detection value by the voltage detector (33, 83) exceeds a predetermined threshold, the bypass circuit (35, 85). 85),
    Overvoltage protection circuit (50, 100).
  2.  前記電源ラインを開閉する第2スイッチ(12,62)をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の第2閾値を超えたとき、前記スイッチ(11,61)の動作後に前記電源ラインを遮断する、
    請求項1に記載の過電圧保護回路(50,100)。
    A second switch (12, 62) for opening and closing the power line;
    The second switch (12, 62) normally turns on the power line, and when the detection value by the voltage detector (33, 83) exceeds a predetermined second threshold, the switch (11, 62) 61) shut off the power line after the operation of
    The overvoltage protection circuit (50, 100) according to claim 1.
  3.  前記電源ラインを開閉する第2スイッチ(12,62)をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えている時間が、所定の継続時間判定値よりも長くなったとき、前記スイッチ(11,61)の動作後に前記電源ラインを遮断する、
    請求項1に記載の過電圧保護回路(50,100)。
    A second switch (12, 62) for opening and closing the power line;
    The second switch (12, 62) normally makes the power line conductive, and the time during which the detected value by the voltage detector (33, 83) exceeds a predetermined threshold is determined as a predetermined duration. When the value becomes longer than the value, the power line is shut off after the operation of the switch (11, 61).
    The overvoltage protection circuit (50, 100) according to claim 1.
  4.  前記電源ラインを開閉する第2スイッチ(12,62)と、前記機器に印加される電圧を検出する機器電圧検出器(37)をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記機器電圧検出器(37)による検出値が所定の第3閾値を超えたとき、前記スイッチ(11,61)の動作後に前記電源ラインを遮断する、
    請求項1に記載の過電圧保護回路(50,100)。
    A second switch (12, 62) for opening and closing the power line, and a device voltage detector (37) for detecting a voltage applied to the device,
    The second switch (12, 62) normally turns on the power line, and when the value detected by the device voltage detector (37) exceeds a predetermined third threshold, the switch (11, 61). ) Cut off the power line after operation
    The overvoltage protection circuit (50, 100) according to claim 1.
  5.  電源と前記電源から電力を供給される機器との間に接続される過電圧保護回路であって、
     前記電源と前記機器とを結ぶ電源ライン上に前記機器と直列に接続される可変インピーダンス回路(120,170)と、
     前記電源の電圧を検出する電圧検出器(33,83)と、
    を備え、
     前記可変インピーダンス回路(120,170)は、前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、インピーダンス値を通常時の値よりも大きくする、
    過電圧保護回路(150,200)。
    An overvoltage protection circuit connected between a power source and a device supplied with power from the power source,
    A variable impedance circuit (120, 170) connected in series with the device on a power line connecting the power source and the device;
    A voltage detector (33, 83) for detecting the voltage of the power source;
    With
    The variable impedance circuit (120, 170) makes the impedance value larger than a normal value when a detection value by the voltage detector (33, 83) exceeds a predetermined threshold.
    Overvoltage protection circuit (150, 200).
  6.  前記可変インピーダンス回路(120,170)は、前記インピーダンス値を前記電圧検出器(33,83)による検出値の変化に応じて連続的に変化させる、
    請求項5に記載の過電圧保護回路(150,200)。
    The variable impedance circuit (120, 170) continuously changes the impedance value according to a change in the detection value by the voltage detector (33, 83).
    The overvoltage protection circuit (150, 200) according to claim 5.
  7.  前記可変インピーダンス回路(120,170)は、前記インピーダンス値を前記電圧検出器(33,83)による検出値の変化に応じて段階的に変化させる、
    請求項5に記載の過電圧保護回路(150,200)。
    The variable impedance circuit (120, 170) changes the impedance value stepwise in accordance with a change in the detection value by the voltage detector (33, 83).
    The overvoltage protection circuit (150, 200) according to claim 5.
  8.  前記可変インピーダンス回路(120,170)は、複数のインピーダンス要素を選択的に使用し、
     複数の前記インピーダンス要素は、
     第1インピーダンス値を有する第1インピーダンス要素(121,171)と、
     前記第1インピーダンス値よりも大きい第2インピーダンス値を有する第2インピーダンス要素(122,172)と、
    を含み、
     前記可変インピーダンス回路(120,170)は、前記第1インピーダンス要素(121,171)の使用時に前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、使用する前記インピーダンス要素を前記第1インピーダンス要素(121,171)から前記第2インピーダンス要素(122,172)へ切り換える、
    請求項5に記載の過電圧保護回路(150,200)。
    The variable impedance circuit (120, 170) selectively uses a plurality of impedance elements,
    The plurality of impedance elements are:
    A first impedance element (121, 171) having a first impedance value;
    A second impedance element (122, 172) having a second impedance value greater than the first impedance value;
    Including
    The variable impedance circuit (120, 170) is used when the detected value by the voltage detector (33, 83) exceeds a predetermined threshold value when the first impedance element (121, 171) is used. From the first impedance element (121, 171) to the second impedance element (122, 172),
    The overvoltage protection circuit (150, 200) according to claim 5.
  9.  前記電源ラインを開閉する第2スイッチ(12,62)をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の第2閾値を超えたとき、前記電源ラインを遮断する、
    請求項5から請求項8のいずれか1項に記載の過電圧保護回路(150,200)。
    A second switch (12, 62) for opening and closing the power line;
    The second switch (12, 62) normally turns on the power line, and shuts off the power line when a value detected by the voltage detector (33, 83) exceeds a predetermined second threshold. To
    The overvoltage protection circuit (150, 200) according to any one of claims 5 to 8.
  10.  前記電源ラインを開閉する第2スイッチ(12,62)をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えている時間が、所定の継続時間判定値よりも長くなったとき、前記電源ラインを遮断する、
    請求項5から請求項8のいずれか1項に記載の過電圧保護回路(150,200)。
    A second switch (12, 62) for opening and closing the power line;
    The second switch (12, 62) normally makes the power line conductive, and the time during which the detected value by the voltage detector (33, 83) exceeds a predetermined threshold is determined as a predetermined duration. Shut off the power line when longer than the value,
    The overvoltage protection circuit (150, 200) according to any one of claims 5 to 8.
  11.  前記電源ラインを開閉する第2スイッチ(12,62)と、
     前記機器に印加される電圧を検出する機器電圧検出器(37)と、
    をさらに備え、
     前記第2スイッチ(12,62)は、通常時は前記電源ラインを導通状態にし、前記機器電圧検出器(37)による検出値が所定の第3閾値を超えたとき、前記電源ラインを遮断する、
    請求項5から請求項8のいずれか1項に記載の過電圧保護回路(150,200)。
    A second switch (12, 62) for opening and closing the power line;
    A device voltage detector (37) for detecting a voltage applied to the device;
    Further comprising
    The second switch (12, 62) normally turns on the power line, and shuts off the power line when a value detected by the device voltage detector (37) exceeds a predetermined third threshold. ,
    The overvoltage protection circuit (150, 200) according to any one of claims 5 to 8.
  12.  前記電源は、AC電源である、
    請求項1から請求項11のいずれか1項に記載の過電圧保護回路(50,150)。
    The power source is an AC power source;
    The overvoltage protection circuit (50, 150) according to any one of claims 1 to 11.
  13.  前記電源は、DC電源である、
    請求項1から請求項11のいずれか1項に記載の過電圧保護回路(100,200)。
    The power source is a DC power source;
    The overvoltage protection circuit (100, 200) according to any one of claims 1 to 11.
  14.  交流電源に接続され、交流電圧を直流電圧に変換するコンバータ回路(80)と、
     前記直流電圧を交流電圧に変換するインバータ回路(95)と、
     請求項1から請求項13のいずれか1項に記載の過電圧保護回路と、
    を備える、
    電力変換装置。
    A converter circuit (80) connected to an AC power source and converting AC voltage to DC voltage;
    An inverter circuit (95) for converting the DC voltage into an AC voltage;
    The overvoltage protection circuit according to any one of claims 1 to 13,
    Comprising
    Power conversion device.
PCT/JP2014/084101 2013-12-27 2014-12-24 Overvoltage protection circuit and power conversion device provided therewith WO2015098937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480070190.2A CN105874673B (en) 2013-12-27 2014-12-24 Excess voltage protection and power-converting device with the excess voltage protection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013273503 2013-12-27
JP2013-273503 2013-12-27
JP2014097817A JP5761425B2 (en) 2013-12-27 2014-05-09 Overvoltage protection circuit and power conversion device including the same
JP2014-097817 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015098937A1 true WO2015098937A1 (en) 2015-07-02

Family

ID=53478788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084101 WO2015098937A1 (en) 2013-12-27 2014-12-24 Overvoltage protection circuit and power conversion device provided therewith

Country Status (3)

Country Link
JP (1) JP5761425B2 (en)
CN (2) CN105874673B (en)
WO (1) WO2015098937A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271529B2 (en) * 2016-01-22 2019-04-30 Shimano Inc. Fishing reel
FR3139914A1 (en) * 2022-09-19 2024-03-22 Psa Automobiles Sa MONITORING OVERVOLTAGES AT THE TERMINALS OF AN AIR CONDITIONING COMPRESSOR OF A HEATING/AIR CONDITIONING INSTALLATION OF A SYSTEM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849017A (en) * 2017-03-03 2017-06-13 广东欧珀移动通信有限公司 Power circuit, power amplification system and over-voltage protection method
CN110581541A (en) * 2018-06-11 2019-12-17 中国电子科技集团公司第五十二研究所 surge current suppression circuit with isolation control
CN109327182A (en) * 2018-11-06 2019-02-12 许昌许继风电科技有限公司 A kind of DC bus over-pressure safety device, control method and a kind of servo-driver
JP7152967B2 (en) * 2019-02-28 2022-10-13 株式会社デンソーテン surge protection circuit
CN110932241A (en) * 2019-11-21 2020-03-27 珠海格力电器股份有限公司 Overload protection method, device and circuit for chip with multiple output channels

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445443U (en) * 1987-04-30 1989-03-20
JPH0686459A (en) * 1992-09-01 1994-03-25 Fujitsu Ltd Supply-voltage limiting circuit
JP2008017626A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Motor control device
JP2008141894A (en) * 2006-12-04 2008-06-19 Mitsubishi Electric Corp Rush current preventing circuit
JP2009106128A (en) * 2007-10-25 2009-05-14 Panasonic Corp Overvoltage protection circuit
US20090152950A1 (en) * 2005-01-08 2009-06-18 Emerson Network Power Energy Systems Ab Switching Power Supply With Overvoltage Protection And Overvoltage Protection Method Thereof
JP2010524422A (en) * 2007-04-05 2010-07-15 ジョージア テック リサーチ コーポレーション Voltage surge and overvoltage protection
JP2010172150A (en) * 2009-01-26 2010-08-05 Panasonic Corp Overvoltage protection circuit
US20110317321A1 (en) * 2009-02-06 2011-12-29 Siemens Aktiengesellschaft Short circuit protection device and switchgear assembly having such protection devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672552B2 (en) * 2002-12-26 2005-07-20 株式会社エヌ・ティ・ティ・データ・イー・エックス・テクノ Overvoltage overcurrent protection circuit
JP2004350493A (en) * 2003-04-28 2004-12-09 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner using the same
US8248259B2 (en) * 2009-01-16 2012-08-21 O2Micro, Inc Protection circuit with timer
CN202121302U (en) * 2010-09-08 2012-01-18 易丰兴业有限公司 DC supply equipment voltage abnormity protective circuit
CN202616764U (en) * 2012-05-15 2012-12-19 无锡艾柯威科技有限公司 A protective circuit integrating over-voltage, under-voltage, and over-current protection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445443U (en) * 1987-04-30 1989-03-20
JPH0686459A (en) * 1992-09-01 1994-03-25 Fujitsu Ltd Supply-voltage limiting circuit
US20090152950A1 (en) * 2005-01-08 2009-06-18 Emerson Network Power Energy Systems Ab Switching Power Supply With Overvoltage Protection And Overvoltage Protection Method Thereof
JP2008017626A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Motor control device
JP2008141894A (en) * 2006-12-04 2008-06-19 Mitsubishi Electric Corp Rush current preventing circuit
JP2010524422A (en) * 2007-04-05 2010-07-15 ジョージア テック リサーチ コーポレーション Voltage surge and overvoltage protection
JP2009106128A (en) * 2007-10-25 2009-05-14 Panasonic Corp Overvoltage protection circuit
JP2010172150A (en) * 2009-01-26 2010-08-05 Panasonic Corp Overvoltage protection circuit
US20110317321A1 (en) * 2009-02-06 2011-12-29 Siemens Aktiengesellschaft Short circuit protection device and switchgear assembly having such protection devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271529B2 (en) * 2016-01-22 2019-04-30 Shimano Inc. Fishing reel
FR3139914A1 (en) * 2022-09-19 2024-03-22 Psa Automobiles Sa MONITORING OVERVOLTAGES AT THE TERMINALS OF AN AIR CONDITIONING COMPRESSOR OF A HEATING/AIR CONDITIONING INSTALLATION OF A SYSTEM

Also Published As

Publication number Publication date
CN105874673A (en) 2016-08-17
JP5761425B2 (en) 2015-08-12
JP2015144542A (en) 2015-08-06
CN105874673B (en) 2019-06-14
CN108418178A (en) 2018-08-17

Similar Documents

Publication Publication Date Title
JP5761425B2 (en) Overvoltage protection circuit and power conversion device including the same
JP6111520B2 (en) Power converter
JP4642101B2 (en) AC / DC converter, compressor drive, air conditioner
JP5276750B2 (en) Switching power supply circuit with protection function and electronic device using the same
JP5210424B2 (en) Switching power supply circuit with protection function and electronic device using the same
JP5230182B2 (en) Switching power supply
JP2008228538A (en) Switching power supply unit
JP5137121B2 (en) Switching power supply
JP5126967B2 (en) Switching power supply
JP6110294B2 (en) Overvoltage protection circuit and power conversion device including the same
JP6239024B2 (en) Power converter
WO2015098625A1 (en) Overvoltage protection circuit and power conversion device equipped with same
JP6337270B2 (en) DC power supply device, inverter drive device, and air conditioner using the same
KR102060068B1 (en) Power transforming apparatus and air conditioner including the same
JP6070782B2 (en) Overvoltage protection circuit and power conversion device including the same
KR102266356B1 (en) Power converting device with function for protection circuit and totem-pole pfc
KR20180013150A (en) Apparatus for controlling inverter
KR102043217B1 (en) Power transforming apparatus, air conditioner including the same and method for controlling the same
JP2010110085A (en) Inverter apparatus and air-conditioning machine using the same
JP6371226B2 (en) Switching power supply with reverse current protection
KR102060069B1 (en) Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus
JP2015216744A (en) Overvoltage protection circuit and power conversion apparatus including the same
JP2017034869A (en) Ac-dc conversion circuit
JP6454184B2 (en) Electrical equipment
JP2023183999A (en) Power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016/08734

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604926

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14875233

Country of ref document: EP

Kind code of ref document: A1