WO2015098907A1 - Lipid membrane structure having intranuclear localization property - Google Patents

Lipid membrane structure having intranuclear localization property Download PDF

Info

Publication number
WO2015098907A1
WO2015098907A1 PCT/JP2014/084034 JP2014084034W WO2015098907A1 WO 2015098907 A1 WO2015098907 A1 WO 2015098907A1 JP 2014084034 W JP2014084034 W JP 2014084034W WO 2015098907 A1 WO2015098907 A1 WO 2015098907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid membrane
membrane structure
ara
polypeptide
lipid
Prior art date
Application number
PCT/JP2014/084034
Other languages
French (fr)
Japanese (ja)
Inventor
原島 秀吉
英万 秋田
尚也 三浦
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2015098907A1 publication Critical patent/WO2015098907A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/40Vectors comprising a peptide as targeting moiety, e.g. a synthetic peptide, from undefined source

Definitions

  • the present invention relates to a lipid membrane structure having nuclear translocation properties. More specifically, the present invention relates to a lipid membrane structure such as a liposome that can be easily transferred into the nucleus of immune cells, particularly the nucleus of dendritic cells.
  • a method of encapsulating a drug in a liposome that is a lipid membrane structure has been proposed as a means of specifically transporting the drug to the affected area.
  • the effectiveness of liposomes encapsulating an antitumor agent has been reported in the field of malignant tumor treatment.
  • a lipid membrane structure that can be used for gene expression a multifunctional envelope-type nanostructure (MEND: Multifunctionallopeenvelope-type nano ⁇ device; hereinafter, it may be abbreviated as “MEND”.
  • MEND Multifunctionallopeenvelope-type nano ⁇ device
  • Drug Delivery System 22-2, 115pp.115-122, 2007, etc.
  • This structure can be used as a drug delivery system for selectively delivering a gene or the like into a specific cell, and is known to be useful for, for example, tumor gene therapy.
  • lipid membrane structures As a means to deliver target substances such as drugs, nucleic acids, peptides, polypeptides, and sugars to specific sites such as target organs and tumor tissues using lipid membrane structures, the surface of lipid membrane structures is a functional molecule.
  • a number of methods of modifying with have been proposed.
  • Lipid membrane structures encapsulating drugs such as antitumor agents reach the target cells and are taken into cells by endocytosis and become encapsulated in endosomes. The received drug is released into the cytoplasm.
  • liposomes modified with peptides (GALA: Biochemistry, 26, pp.2964-2972, 1987) (Biochemistry, 43, pp.5618- 5623, 2004) and MEND (Japanese Patent Laid-Open No. 2006-28030) have been proposed.
  • a liposome whose outer surface is modified with octaarginine International Publication WO2005 / 32593; WO Journal of Controlled Release, 98, pp.317-323, 2004
  • bilamellar liposomes with lipid membranes modified with nuclear translocation peptides International Publication WO2006 / 101201
  • surface modification with monosaccharides such as galactose and mannose Liposomes
  • Multi-lipid membrane structures (T-MEND) modified with monosaccharides showed fusion properties with lipid membranes and nuclear membranes, and it was reported that gene expression efficiency could be improved in the in-vitro test results.
  • a nucleic acid encoding an antigenic protein can be introduced into the nucleus of an immune cell, particularly a dendritic cell having an antigen-presenting effect, the protein transcribed and translated from the nucleic acid in the dendritic cell can The living body can acquire immunity to the protein. From such a viewpoint, there is a need for a technique for efficiently delivering a nucleic acid into the nucleus of immune cells such as dendritic cells.
  • the efficiency of nucleic acid introduction when introducing a nucleic acid into the nucleus of a dendritic cell using a lipid membrane structure such as MEND described above is sufficiently higher than that of other cells such as tumor cells and liver parenchymal cells. is not.
  • the introduced nucleic acid Before the introduced nucleic acid is finally expressed in the nucleus, it must undergo various intracellular kinetic processes such as intracellular uptake, endosomal escape, nuclear translocation, and nuclear transcription.
  • a nuclear membrane consisting of two membranes always exists intact, and this nuclear membrane is presumed to impede the ability of lipid membrane structures to translocate into the nucleus. Therefore, in order to deliver nucleic acids to the nuclei of dendritic cells using lipid membrane structures, how to break through the above-mentioned processes, particularly the barrier by the nuclear membrane composed of two membranes, is a very important issue. It becomes.
  • KALA peptide A 27 amino acid residue polypeptide called KALA peptide is known, and it has been reported that it can form a complex with plasmid DNA using its own cationic charge (Biochemistry, 36, pp.3008). -3017, 1997). It has been reported that this KALA peptide can promote the translocation of lipid membrane structures into the nucleus by modifying the surface of lipid membrane structures such as liposomes (International Publication WO 2011/132713).
  • An object of the present invention is to provide a means for efficiently delivering a nucleic acid into the nucleus of an immune cell, particularly a dendritic cell having antigen-presenting ability. More specifically, it is an object of the present invention to provide a lipid membrane structure capable of efficiently delivering a nucleic acid into the nucleus of immune cells such as dendritic cells.
  • MEND international publication WO2005 / 32593
  • octaarginine polypeptide which is a functional polypeptide capable of enhancing nuclear translocation ability, and endosome escape ability.
  • GALA peptide which is a functional polypeptide to be imparted
  • polypeptide expression from the nucleic acid was almost I was not able to admit.
  • T-MEND multi-lipid membrane structure
  • the present inventors have found that when the lipid membrane of a lipid membrane structure such as MEND encapsulating nucleic acid is modified with KALA peptide, the efficiency of nucleic acid introduction into the nucleus of immune cells such as dendritic cells is remarkable. (International publication WO 2011/132713).
  • the lipid membrane structure modified with the KALA peptide has found a new problem that gene expression and interleukin 6 (IL-6) production decrease in the presence of serum. Therefore, intensive research was conducted to improve the above lipid membrane structure in order to efficiently enhance the ability to translocate into the nucleus in vivo.
  • IL-6 interleukin 6
  • the efficiency of nucleic acid introduction into the nucleus of immune cells such as dendritic cells is significantly increased in vivo. I found it.
  • a specific lipid having a tertiary amine and a disulfide bond is used as the lipid component of the lipid structure, a remarkably high nucleic acid introduction efficiency can be achieved.
  • the present invention has been completed based on the above findings.
  • a lipid membrane structure for delivering a substance into the nucleus of a cell, wherein the lipid membrane is the following polypeptide (I): A polypeptide having 8 to 26 amino acid residues and comprising 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain in succession (however, the repeating unit Lys may be Arg in any one or more of them, and / or Ara sandwiched between Lys and Leu in any one of the repeating units may be His. ) A lipid membrane structure modified with is provided.
  • polypeptide (I) A polypeptide having 8 to 26 amino acid residues and comprising 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain in succession (however, the repeating unit Lys may be Arg in any one or more of them, and / or Ara sandwiched between Lys and Leu in any one of the repeating units may be
  • the polypeptide (I) comprises two consecutive repeating units of Lys-Ara-Leu-Ara, or 2 consecutive repeating units of Arg-Ara-Leu-Ara.
  • the above-mentioned lipid membrane structure which is a polypeptide comprising Trp-Glu-Ara-Lys-Leu-Ara or Trp-Glu-Ara-Arg-Leu at the N-terminus of the two consecutive repeating units
  • the above lipid membrane structure which is -Glu-Ara-Arg-Leu-Ara-Arg-Ara-Leu-Ara-Arg-A
  • the above lipid membrane structure comprising a tertiary amine and a lipid having a disulfide bond as a lipid component of the lipid membrane structure; the above lipid wherein the lipid membrane structure is a liposome
  • the above lipid membrane structure wherein the cell is an immune cell, preferably a dendritic cell; and the above polypeptide (I) is modified with a hydrophobic group, preferably a stearyl group or a cholesteryl group,
  • the above lipid membrane structure in which a hydrophobic group is inserted into a lipid membrane; a polypeptide containing a plurality of consecutive arginine residues, preferably a polypeptide containing 4 to 20 consecutive arginine residues, more preferably A polypeptide comprising only 4 to 20 consecutive arginine residues, particularly preferably the above lipid membrane structure having octaarginine on its surface; polyalkylene
  • the above lipid membrane structure having a hydrophobic group preferably
  • the substance to be delivered is a nucleic acid, for example, any of the above lipid membrane structures, which is a functional nucleic acid such as a nucleic acid containing a gene or siRNA; Lipid membrane structure; the lipid membrane structure described above, wherein the DNA is DNA bound to a vector DNA not containing CpG; the DNA is bound to a vector DNA not containing CpG, and the DNA is free of CpG A lipid membrane structure as described above; the lipid membrane structure as described above, wherein the substance to be delivered is a nucleic acid encoding an antigen polypeptide to be presented on the surface of immune cells, preferably on the surface of dendritic cells; Any of the lipid membrane structures described above, which is a sex envelope nanostructure (MEND); any of the lipid membrane structures described above, in which a nucleic acid and a
  • MEND sex envelope nanostructure
  • the lipid membrane structure described above used for introducing a nucleic acid encoding an antigen polypeptide to be presented on the surface of an immune cell, preferably a dendritic cell, into the nucleus of the cell; for immunotherapy against the antigen polypeptide
  • the above lipid membrane structure for use is the above lipid membrane structure wherein the antigen polypeptide is a surface polypeptide specific for cancer cells.
  • a pharmaceutical composition comprising this lipid membrane structure as an active ingredient, preferably a pharmaceutical composition comprising a nucleic acid as a substance to be delivered is also provided by the present invention.
  • the present invention provides a method for delivering a nucleic acid in the nucleus of a cell, preferably in the nucleus of an immune cell, more preferably in the nucleus of a dendritic cell in the body of a mammal, including a human,
  • a method comprising the step of administering to the animal the above lipid membrane structure encapsulated therein; a method of presenting an antigenic polypeptide on the surface of immune cells, preferably dendritic cells, in the body of mammals including humans.
  • a method comprising the step of administering to the animal the above lipid membrane structure encapsulating a nucleic acid encoding the antigen polypeptide.
  • a method for obtaining immunity to an antigen polypeptide by presenting the antigen polypeptide on the surface of an immune cell, preferably a dendritic cell, in a living body of a mammal including humans, which encodes the antigen polypeptide A method comprising the step of administering to the animal the above lipid membrane structure having nucleic acid encapsulated therein; and a cancer cell-specific surface on the surface of an immune cell, preferably a dendritic cell, in a mammal including human.
  • An immunotherapy of a malignant tumor in which a surface polypeptide is presented to acquire immunity to the polypeptide comprising the step of administering to the animal the above lipid membrane structure in which a nucleic acid encoding the polypeptide is encapsulated
  • a method of including is provided.
  • the polypeptide (I) used for promoting the migration of a lipid membrane structure into the nucleus of a cell preferably into the nucleus of an immune cell, more preferably into the nucleus of a dendritic cell, Provided.
  • the lipid membrane structure provided by the present invention can efficiently migrate into the nucleus of any cell such as immune cells including dendritic cells, and efficiently transfer substances such as nucleic acids encapsulated in the nucleus.
  • the polypeptide encoded by the nucleic acid can be expressed upon release.
  • a nucleic acid encoding a polypeptide is introduced into the nucleus of a dendritic cell using the lipid membrane structure of the present invention, the polypeptide transcribed and translated from the nucleic acid is presented on the surface of the dendritic cell, Can acquire immunity to the polypeptide, so that effective immunotherapy can be performed against the desired polypeptide.
  • the lipid membrane structure provided by the present invention can be efficiently transferred into the nucleus of a cell even in the presence of serum and release a substance such as a nucleic acid encapsulated in the nucleus. Can be preferably used.
  • the lipid membrane structure provided by the present invention itself can exert an adjuvant action on dendritic cells and can promote the production of various cytokines.
  • tumor exacerbation and proliferation can be remarkably suppressed regardless of the presence or absence of an adjuvant.
  • gene expression efficiency is remarkably improved by removing the CpG sequence from the vector part in the DNA to be encapsulated and, if necessary, removing the CpG sequence from the DNA encoding the protein to be expressed. .
  • FIG. 3 is a graph showing the In-vivo CTL activity of the short-KALA3-modified MEND prepared in Example 2.
  • Examples of the lipid constituting the lipid membrane structure of the present invention include phospholipids, glycolipids, sterols, and saturated or unsaturated fatty acids.
  • Examples of phospholipids and phospholipid derivatives include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, ceramide phosphorylglycerol phosphate, 1 , 2-dimyristoyl-1,2-deoxyphosphatidylcholine, plasmalogen, phosphatidic acid and the like, and these can be used alone or in combination of two or more.
  • Fatty acid residues in these phospholipids are not particularly limited, and examples thereof include saturated or unsaturated fatty acid residues having 12 to 20 carbon atoms. Specific examples include lauric acid, myristic acid, palmitic acid, stearin Mention may be made of acyl groups derived from fatty acids such as acids, oleic acid and linoleic acid. Moreover, phospholipids derived from natural products such as egg yolk lecithin and soybean lecithin can also be used.
  • glycolipids examples include glyceroglycolipids (for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride), glycosphingolipids (for example, galactosyl cerebroside, lactosyl cerebroside, ganglioside) and the like. Can be mentioned.
  • glyceroglycolipids for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride
  • glycosphingolipids for example, galactosyl cerebroside, lactosyl cerebroside, ganglioside
  • sterols examples include animal-derived sterols (e.g., cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol), plant-derived sterols (phytosterols) (e.g., stigmasterol, sitosterol, campesterol, Brush casterol), microorganism-derived sterols (for example, timosterol, ergosterol) and the like.
  • the saturated or unsaturated fatty acid include saturated or unsaturated fatty acids having 12 to 20 carbon atoms such as palmitic acid, oleic acid, stearic acid, arachidonic acid, and myristic acid.
  • a lipid having a tertiary amine and a disulfide bond is preferably used as the lipid component.
  • Such lipids are disclosed in, for example, International Publication 2013/73480, and have a tertiary amine and disulfide bond in the molecule, and thus have a pH responsiveness and a membrane destabilizing action in a reducing environment.
  • International Publication 2013/73480 discloses a tertiary amine and disulfide bond in the molecule, and thus have a pH responsiveness and a membrane destabilizing action in a reducing environment.
  • the compound represented by the formula (1) disclosed in the above international publication is preferable as a constituent lipid of the lipid structure of the present invention.
  • lipids (PalmM) bound with myristic acid for example, lipids (PamlA) bound with retinoic acid, and lipids (PalmE) bound with tocopherol (PalmE)
  • PalmE is a neutral lipid and can be preferably used in the present invention because it can achieve gene expression even in the presence of serum. PalmE is compound B-2-5 in Table 1 of paragraph [0056] of International Publication 2013/73480. All of the above internationally disclosed disclosures are incorporated herein by reference.
  • the amount of the lipid used is not particularly limited, but can be generally about 5 to 50% by weight based on the total lipid constituting the lipid structure.
  • Palms are known (Immunity, 21 (4), pp.527-538, 2004; Int. Immunol., 21 (4), pp.361-377, 2009; Blood, 115 (10), pp.1958-1968, 2010) and appropriate publications can be selected according to the purpose with reference to these publications.
  • the form of the lipid membrane structure is not particularly limited.
  • a form dispersed in an aqueous solvent a single membrane liposome, a multilamellar liposome, an O / W emulsion, a W / O / W emulsion, a spherical micelle, a string micelle Or an irregular layered structure.
  • a preferred form of the lipid membrane structure of the present invention is a liposome.
  • a liposome may be described as a preferred embodiment of the lipid membrane structure of the present invention, the lipid membrane structure of the present invention is not limited to liposomes.
  • the lipid membrane structure of the present invention is a lipid membrane structure for delivering a substance into the nucleus of a cell, wherein the lipid membrane has an activity of promoting the transfer of the lipid membrane structure into the nucleus of the cell. It is modified with peptide (I).
  • Polypeptide (I) is a polypeptide having 8 to 26 amino acid residues, and includes 2 to 4 consecutive repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain
  • Lys may be Arg in any one or more of the repeating units, and / or Ara sandwiched between Lys and Leu in any one of the repeating units May be His.
  • polypeptide (I) used in the present invention is a polypeptide created by focusing on the repeating unit of Lys-Ara-Leu-Ara contained in the KALA peptide and clarifying the function of the repeating unit. It is.
  • the activity of promoting the transfer of the polypeptide (I) into the nucleus of the lipid membrane structure can be confirmed, for example, by evaluating the activity of promoting the ability of dendritic cells to move into the nucleus.
  • a dendritic cell is used as a target cell, and a nucleic acid that can be expressed in its nucleus, for example, a nucleic acid that encodes a polypeptide linked downstream of a promoter operable in the nucleus of the dendritic cell is contained therein.
  • a lipid membrane structure in which the lipid membrane is modified with polypeptide (I) (hereinafter referred to as ⁇ modified lipid membrane structure '') and an unmodified lipid membrane structure (hereinafter referred to as ⁇ non- Is the expression level of the marker polypeptide in the cells introduced with the modified lipid membrane structure increased in the cells introduced with the unmodified lipid membrane structure? What is necessary is just to evaluate.
  • the polypeptide can be used as the polypeptide (I).
  • One or a combination of two or more of the above polypeptides (I) can be used.
  • the polypeptide (I) can be biologically prepared using host cells by various gene recombination techniques available to those skilled in the art.
  • the polypeptide (I) may be produced by an organic chemical method using a peptide synthesis reaction such as a solid phase synthesis method available to those skilled in the art. Alternatively, automatic synthesis may be performed using a peptide synthesizer.
  • the polypeptide (I) contains 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the polypeptide chain in succession.
  • Lys may be Arg in any one or more of the above repeating units, and Lys may be Arg in all the repeating units in the polypeptide chain.
  • Ara sandwiched between Lys and Leu may be His in any one of the repeating units.
  • polypeptide (I) for example, a polypeptide containing two consecutive repeating units of Lys-Ara-Leu-Ara or a polypeptide containing two consecutive repeating units of Arg-Ara-Leu-Ara is preferable. More preferred is a polypeptide in which the sequence of Trp-Glu-Ara-Lys-Leu-Ara or Trp-Glu-Ara-Arg-Leu-Ara is bound to the N-terminus of the two consecutive repeating units.
  • short-KALA1 WEAKLAKALAKALAKHLAKALA (SEQ ID NO: 2 in the sequence listing)
  • short-KALA2 WEAKLAKALAKALAKHLA (SEQ ID NO: 3 in the sequence listing)
  • short-KALA3 WEAKLAKALAKALA (SEQ ID NO: 4 in the sequence listing)
  • short-KALA-4U KALAKALAKALAKALA (SEQ ID NO: 6 in the sequence listing) short-KALA-3U: KALAKALAKALA (SEQ ID NO: 7 in the sequence listing) short-KALA-2U: KALAKALA (SEQ ID NO: 8 in the sequence listing) short-RALA3: WEARLARALARALA (SEQ ID NO: 9 in the sequence listing)
  • the means for immobilizing the polypeptide (I) to the lipid membrane of the lipid membrane structure is not particularly limited.
  • the polypeptide (I) is modified with a hydrophobic group such as a stearyl group or a cholesteryl group, and the hydrophobicity
  • a hydrophobic group such as a stearyl group or a cholesteryl group
  • the hydrophobicity By preparing the lipid membrane structure so that the group is buried in the lipid membrane of the lipid membrane structure, the lipid membrane modification can be easily performed. Any hydrophobic compound residue can be used as the hydrophobic group.
  • the lipid membrane modification with the polypeptide (I) may be performed on the inner lipid membrane in addition to the outer lipid membrane.
  • the lipid membrane structure of the present invention can be used to deliver a substance into the nucleus of a cell, but the type of cell is not particularly limited, and the type of substance to be delivered and the purpose of substance delivery into the nucleus Depending on the situation, appropriate cells can be targeted.
  • Preferred examples of the cell to be targeted include immune cells, and among the immune cells, antigen-presenting cells can be preferably used.
  • antigen-presenting cells such as macrophages, dendritic cells, and B cells are preferred, and dendritic cells are particularly preferred.
  • the lipid membrane structure can be surface-modified with an oligosaccharide compound having 3 or more sugars.
  • the type of oligosaccharide compound having 3 or more sugars is not particularly limited.
  • an oligosaccharide compound having about 3 to about 10 sugar units bound thereto can be used, and preferably about 3 to about 6 sugar units. Bound oligosaccharide compounds can be used.
  • examples of the oligosaccharide compound include cellotriose (Cellotriose: ⁇ -D-glucopyranosyl- (1 ⁇ 4) - ⁇ -D-glucopyranosyl- (1 ⁇ 4) -D-glucose), chacotriose: ⁇ -L-rhamnopyranosyl- (1 ⁇ 2)-[ ⁇ -L-rhamnopyranosyl- (1 ⁇ 4)]-D-glucose), gentianose (Gentianose: ⁇ -D-fructofuranosyl ⁇ -D-glucopyranosyl- (1 6) - ⁇ -D-glucopyranoside), isomaltotriose (Isomaltotriose: ⁇ -D-glucopyranosyl- (1 6) - ⁇ -D-glucopyranosyl- (1 ⁇ 6) -D-glucose), isopanose : ⁇ -
  • an oligosaccharide compound that is a trimer or hexamer of glucose can be used, and more preferably, an oligosaccharide compound that is a trimer or tetramer of glucose can be used.
  • isomaltotriose, isopanose, maltotriose, maltotetraose, maltopentaose, maltohexaose, etc. can be suitably used, and among these, malto in which glucose is ⁇ 1-4 bonded. More preferred is triose, maltotetraose, maltopentaose, or maltohexaose.
  • the amount of surface modification of the lipid membrane structure by the oligosaccharide compound is not particularly limited. For example, it is about 1 to 30 mol%, preferably about 2 to 20 mol%, more preferably 5 to 10 mol% with respect to the total amount of lipid. Degree.
  • the method of modifying the surface of the lipid membrane structure with an oligosaccharide compound is not particularly limited.
  • liposomes whose surfaces are modified with monosaccharides such as galactose and mannose are known. Therefore, the surface modification method described in this publication can be adopted.
  • This method is a method in which a monosaccharide compound is bonded to a polyalkylene glycolated lipid to modify the surface of the lipid membrane structure. By this means, the surface of the lipid membrane structure can be simultaneously modified with polyalkylene glycol. preferable.
  • the blood retention of liposomes can be enhanced.
  • a hydrophilic polymer such as polyalkylene glycol
  • polyalkylene glycol is preferable.
  • polyalkylene glycol for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol and the like can be used.
  • the molecular weight of the polyalkylene glycol is, for example, about 300 to 10,000, preferably about 500 to 10,000, and more preferably about 1,000 to 5,000.
  • the surface modification of the lipid membrane structure with polyalkylene glycol can be easily performed by constructing a lipid membrane structure using, for example, a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid.
  • a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid.
  • stearyl polyethylene glycol for example, PEG45 stearate (STR-PEG45) or the like
  • the surface modification of the lipid membrane structure can be performed using the polypeptide (I) modified with polyalkylene glycol.
  • the above-mentioned polypeptide (I) modified with a polyalkylene glycol condensed with an appropriate phospholipid, such as stearyl polyethylene glycol can be used.
  • the lipid membrane modification with the polyalkylene glycol and the polypeptide (I) can be simultaneously achieved.
  • surface modification with the polyalkylene glycol and the oligosaccharide compound can be simultaneously achieved by bonding the oligosaccharide compound to the polyalkylene glycol.
  • the method of surface-modifying the lipid membrane structure with a polyalkylene glycol or oligosaccharide compound is not limited to the above-mentioned method.
  • a lipidated compound such as stearyl polyalkylene glycol or oligosaccharide compound is used.
  • surface modification can be performed by using as a constituent lipid of the lipid membrane structure.
  • examples of lipid derivatives for enhancing retention in blood include glycophorin, ganglioside GM1, phosphatidylinositol, ganglioside GM3, glucuronic acid derivatives, glutamic acid derivatives, polyglycerin phospholipid derivatives, etc. Can also be used.
  • examples of lipid derivatives for enhancing retention in blood include glycophorin, ganglioside GM1, phosphatidylinositol, ganglioside GM3, glucuronic acid derivatives, glutamic acid derivatives, polyglycerin phospholipid derivatives, etc.
  • polyalkylene glycol dextran, pullulan, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer as well as polyalkylene glycol are used as hydrophilic polymers to enhance blood retention.
  • the lipid membrane of the lipid membrane structure of the present invention may be modified with GALA.
  • GALA GALA cholesterol derivative
  • a lipid membrane structure surface-modified with GALA can be easily produced according to the method described in the above-mentioned publication. Can do.
  • a lipid membrane structure surface-modified with GALA can be produced.
  • the surface modification amount by GALA is not particularly limited, but is, for example, about 0.01 to 10 mol%, preferably about 0.1 to 4 mol%, more preferably about 1 to 3 mol%, based on the total lipid amount.
  • GALA includes deletion and substitution of one or several amino acids in the amino acid sequence of the peptide in addition to the peptide specified by SEQ ID NO: 1 in the sequence listing of JP-A-2006-28030. And / or a modified peptide consisting of an added amino acid sequence and having substantially the same properties as GALA (for example, properties capable of fusing lipid membranes under acidic conditions).
  • GALA herein should not be construed as limiting in any way.
  • the entire disclosure of JP-A-2006-28030 is included as a disclosure of the present specification by reference.
  • the surface of the lipid membrane structure of the present invention can be modified with an MPC polymer.
  • the MPC polymer is an MPC polymer obtained by polymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC). Since this polymer has a molecular structure similar to that of a biological membrane, interaction with biological components such as polypeptides and blood cells is extremely small, and it has been shown to have excellent biocompatibility.
  • MPC polymer includes both a homopolymer of MPC and a copolymer of MPC and other polymerization components.
  • MPC polymers can be easily obtained from commercially available polymers.
  • MPC homopolymer (CAS: 67881-99-6); MPC and butyl methacrylate copolymer (CAS: 125275-25-4); MPC, methacrylic as a registered trademark “LIPIDURE” from NOF Corporation Ternary copolymer of sodium acid and butyl methacrylate; binary copolymer of MPC and 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride; phospholipid polymer (LIPIDURE-S), etc. Can also be used in the present invention.
  • the type of MPC polymer used in the present invention is not particularly limited, but for example, a copolymer of MPC and a methacrylic acid ester such as butyl methacrylate, particularly a block copolymer can be preferably used.
  • the production method of this copolymer is described in detail in Japanese Patent No. 2890316, and those skilled in the art can easily produce a desired copolymer by referring to this patent publication. The entire disclosure of this patent publication is incorporated herein by reference.
  • MPC copolymers can be preferably used.
  • a copolymer of MPC and butyl methacrylate (BMA) for example, a copolymer with a molar ratio of MPC and BMA of 5: 5 (PMB50) and a copolymer with a molar ratio of MPC and BMA of 3: 7 (PMB30) are known.
  • PMB50 a copolymer with a molar ratio of MPC and BMA of 5: 5
  • PMB30 copolymer with a molar ratio of MPC and BMA of 3: 7
  • PMB50 can be particularly preferably used.
  • the degree of polymerization and molecular weight of the MPC polymer are not particularly limited.
  • a polymer having an average molecular weight (weight average molecular weight) of about 5,000 to 300,000, preferably about 10,000 to 100,000 can be used from the viewpoint of maintaining water solubility.
  • the method of modifying the lipid membrane structure with the MPC polymer is not particularly limited.
  • the MPC polymer may be added to an aqueous dispersion of a lipid membrane structure such as a liposome and allowed to stand at room temperature for several minutes to several hours.
  • the amount of the MPC polymer added to the aqueous dispersion is not particularly limited, but depending on the amount of the MPC polymer to be modified, for example, in the range of 0.01 to 1% by mass with respect to the total lipid amount of the lipid membrane structure, preferably May be added in an amount of about 0.1 to 10% by mass, more preferably about 0.1 to 3% by mass.
  • the MPC polymer is rapidly incorporated into the lipid component of the lipid membrane structure, and a lipid membrane structure whose surface is modified with the MPC polymer can be prepared.
  • the amount of surface modification by the MPC polymer is not particularly limited, but is, for example, in the range of about 0.1 to 5% by mass with respect to the total lipid amount of the lipid membrane structure.
  • the lipid membrane structure of the present invention comprises a sterol or a membrane stabilizer such as glycerin or a fatty acid ester thereof, an antioxidant such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene, a charged substance, and a membrane.
  • an antioxidant such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene
  • a charged substance and a membrane.
  • One or two or more substances selected from the group consisting of polypeptides and the like may be included.
  • the charged substance imparting positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine; saturated or unsaturated cationic synthetic lipids such as dioleoyltrimethylammoniumpropane; or cationic polymers.
  • Examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine, phosphatidylinositol, and phosphatidic acid.
  • Examples of the membrane polypeptide include a membrane superficial polypeptide or an integral membrane polypeptide. The compounding amount of these substances is not particularly limited, and can be appropriately selected according to the purpose.
  • the lipid membrane structure of the present invention can be provided with any one function or two or more functions such as a temperature change sensitivity function, a membrane permeation function, a gene expression function, and a pH sensitivity function.
  • Examples of the temperature change sensitive lipid derivative capable of imparting a temperature change sensitive function include dipalmitoyl phosphatidylcholine and the like.
  • Examples of the pH-sensitive lipid derivative that can impart a pH-sensitive function include dioleoylphosphatidylethanolamine.
  • the lipid membrane structure of the present invention can be modified with a substance such as an antibody capable of specifically binding to a cell surface receptor or antigen, thereby improving the substance delivery efficiency into the cell nucleus. can do.
  • a substance such as an antibody capable of specifically binding to a cell surface receptor or antigen
  • a lipid derivative capable of reacting with a mercapto group in a monoclonal antibody or a fragment thereof for example, Fab fragment, F (ab ′) 2 fragment, Fab ′ fragment, etc.
  • a monoclonal antibody or a fragment thereof for example, Fab fragment, F (ab ′) 2 fragment, Fab ′ fragment, etc.
  • a lipid derivative having a maleimide structure such as 2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl
  • ethanecarboxamido propyl ⁇ -poly (oxy-1,2-ethanedyl)
  • the surface of the lipid membrane structure of the present invention may be modified with a polypeptide containing a plurality of continuous arginine residues (hereinafter referred to as “polyarginine”).
  • the polyarginine is preferably a polypeptide containing 4 to 20 consecutive arginine residues, more preferably a polypeptide consisting of only 4 to 20 consecutive arginine residues, particularly preferably octaarginine. Can do.
  • Modification of the lipid membrane structure surface with polyarginine can be easily performed by using, for example, a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done.
  • a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done.
  • the surface of the lipid membrane structure of the present invention may be modified with INF7.
  • INF7 is a glutamic acid-rich peptide obtained by modifying a peptide (1-23) derived from influenza HA polypeptide (HA2) .When mixed with liposomes, the lipid structure collapses and the encapsulated substance is easily released. (Biochemistry, 46, pp.13490-13504, 2007) and a delivery system in which INF7 is conjugated to polyethylene glycol tetraacrylate (PEG-TA) has also been proposed (The Journal Gene Medicine, 10, pp .1134-1149, 2008). Those skilled in the art can easily use INF7 in the present invention by referring to these publications.
  • the term “INF7” includes one or several amino acids in the amino acid sequence of the above peptide in addition to the peptides specified by the sequences described in Table 1 of Biochemistry, 46, pp.13490-13504, 2007.
  • a modified peptide consisting of an amino acid sequence in which is deleted, substituted and / or added and having substantially the same properties as INF7 is also included.
  • the term “INF7” herein should not be construed as limiting in any way. The disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
  • the method of modifying the lipid membrane structure with INF7 is not particularly limited, but in general, by constructing a lipid membrane structure using lipid-modified INF7 in which a lipid compound and INF7 are covalently bound as a lipid membrane-constituting lipid, A lipid membrane structure surface-modified with INF7 can be easily produced.
  • lipid-modified INF for example, stearylated INF7 can be used, and this compound is described in Futaki, S. et al., Biocongug. Chem., 12 (6), pp.1005-1011, 2001. It can be easily manufactured according to the method.
  • the amount of surface modification by INF7 is not particularly limited, but is generally in the range of 1 to 5 mol% with respect to the total lipid content of the lipid membrane structure, preferably about 3 to 5 mol% with respect to the total lipid content. It is.
  • MEND Envelope-type nanostructures with multi-functionality
  • MEND has a structure in which a core is a complex of a nucleic acid such as plasmid DNA and a cationic polymer such as protamine, and the core is enclosed in a lipid envelope membrane in the form of a liposome.
  • MEND lipid envelope membranes can be equipped with peptides to adjust pH responsiveness and membrane permeability as needed, and the outer surface of lipid envelope membranes can be modified with alkylene glycols such as polyethylene glycol. it can.
  • MEND Inside the lipid envelope of MEND, condensed DNA and cationic polymer are encapsulated, and designed to achieve efficient gene expression.
  • MEND that can be suitably used in the present invention, a MEND in which a complex of plasmid DNA incorporating a desired gene and protamine is encapsulated inside and the outer surface of the lipid envelope is modified with oligosaccharide-conjugated PEG is preferable.
  • the modification with oligosaccharide-linked PEG preferably uses stearyl polyethylene glycol to which the above-described polypeptide (I) is bound as a constituent lipid component.
  • reviews such as DrugDDelivery System, 22-2, pp.115-122, 2007 can be referred to.
  • the disclosures of the above publications and the disclosures of all documents cited in this review are hereby incorporated by reference.
  • the form of the lipid membrane structure is not particularly limited, and examples thereof include a form dispersed in an aqueous solvent (for example, water, physiological saline, phosphate buffered physiological saline, etc.) and a form obtained by lyophilizing this aqueous dispersion. It is done.
  • an aqueous solvent for example, water, physiological saline, phosphate buffered physiological saline, etc.
  • the method for producing the lipid membrane structure is not particularly limited, and any method available to those skilled in the art can be employed.
  • all the lipid components are dissolved in an organic solvent such as chloroform, and after forming a lipid film by drying under reduced pressure with an evaporator or spray drying with a spray dryer, the above mixture is dried with an aqueous solvent.
  • an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier.
  • it can manufacture also by the method well-known as a method of manufacturing a liposome, for example, a reverse phase evaporation method.
  • extrusion may be performed under high pressure using a membrane filter having a uniform pore size.
  • the size of the lipid membrane structure in the dispersed state is not particularly limited.
  • the particle diameter is about 50 to 5 ⁇ m, preferably about 50 to 400 nm, and about 50 to 300 nm. Is preferable, and about 150 to 250 nm is more preferable.
  • the particle diameter can be measured, for example, by the DLS (dynamic light scattering) method.
  • the composition of the aqueous solvent is not particularly limited, and examples thereof include a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like. Can do.
  • a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like.
  • aqueous solvents can stably disperse lipid membrane structures, but also glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharides, lactose, sucrose, cellobiose, trehalose.
  • Disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, maltitol (aqueous solutions), glycerin, diglycerin, poly Glycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoa Polyhydric alcohols (aqueous solutions) such as alkyl ether and 1,3-butylene glycol may be added.
  • aqueous solutions such as alkyl ether and 1,3-butylene glycol may be added.
  • the lipid membrane structure dispersed in the aqueous solvent In order to stably store the lipid membrane structure dispersed in the aqueous solvent for a long period of time, it is desirable to eliminate the electrolyte in the aqueous solvent as much as possible from the viewpoint of physical stability such as aggregation suppression. In addition, from the viewpoint of chemical stability of the lipid, it is desirable to set the pH of the aqueous solvent from weakly acidic to near neutral (about pH 3.0 to 8.0) and / or to remove dissolved oxygen by nitrogen bubbling or the like. .
  • aqueous dispersion of the obtained lipid membrane structure is freeze-dried or spray-dried, for example, glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharide, lactose, sucrose, cellobiose, trehalose Stability can be improved by using disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, and maltitol (aqueous solutions).
  • disaccharides such as maltose, trisaccharides such as raffinose and merezinose
  • polysaccharides such as cyclodextrin
  • sugars such as erythritol, xylitol, sorbitol,
  • a polyhydric alcohol aqueous solution
  • aqueous solution such as diethylene glycol monoalkyl ether or 1,3-butylene glycol
  • a substance to be delivered into the nucleus of a cell of a target tissue or organ can be encapsulated.
  • the type of substance to be encapsulated is not particularly limited, but in addition to any active pharmaceutical ingredients such as antitumor agents, anti-inflammatory agents, antibacterial agents, antiviral agents, sugars, peptides, nucleic acids, low molecular weight compounds, metals Any substance such as a compound can be encapsulated.
  • the nucleic acid include a nucleic acid containing a gene, and more specifically, for example, a gene incorporated in a plasmid, but are not limited to this specific embodiment. Needless to say, any gene can be used as the gene.
  • the case where a nucleic acid is encapsulated will be specifically described below, but the scope of the present invention is not limited to this specific embodiment.
  • a nucleic acid can be preferably encapsulated.
  • the nucleic acid includes DNA or RNA, and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.).
  • the nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular.
  • the nucleic acid may contain a gene.
  • the gene may be any of oligonucleotide, DNA, or RNA.
  • a gene for introduction in vitro such as transformation
  • nucleic acids examples include genes encoding physiologically active substances such as antisense oligonucleotides, antisense DNAs, antisense RNAs, enzymes and cytokines, as well as nucleic acids having a function of regulating gene expression, such as siRNAs. Functional nucleic acids including RNA and the like can also be used, and these are also included in the term nucleic acid in the present specification.
  • nucleic acid should be interpreted in the broadest sense, and should not be interpreted in a limited way in any sense.
  • the gene DNA to be expressed can be bound to the vector DNA and encapsulated in the lipid membrane structure, but in order to achieve higher gene expression efficiency, the vector It is preferred that the DNA does not contain a CpG sequence, and in addition it may be more preferred that the gene DNA to be expressed does not contain a CpG sequence. It is preferable that an enhancer and / or a promoter is bound to the vector.
  • a compound having a nucleic acid introduction function can also be added.
  • examples of such compounds include O, O′-N-didodecanoyl-N- ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-ditetradecanoyl-N- ( ⁇ -trimethyl).
  • Ammonioacetyl) -diethanolamine chloride O, O'-N-dihexadecanoyl-N- ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O'-N-dioctadecenoyl-N- ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O ', O' '-tridecanoyl-N- ( ⁇ -trimethylammoniodecanoyl) aminomethane bromide and N- [ ⁇ -trimethylammonioacetyl] -didodecyl- D-glutamate, dimethyldioctadecylammonium bromide, 2,3-dioleyloxy-N- [2- (sperminecarboxamido) ethyl) -N, N-dimethyl-1-propaneammonium trifluoroacetate, 1,2 -Dimy
  • a lipid membrane structure encapsulating a nucleic acid can be used as a carrier for delivering the nucleic acid into the nucleus of a cell of a target tissue or organ.
  • a nucleic acid containing a desired gene as the nucleic acid and use the above MEND.
  • MEND a nucleic acid containing a desired gene
  • by administering a lipid membrane structure encapsulating a nucleic acid containing a gene, preferably MEND, to mammals including humans the desired gene is delivered into the nucleus of the cells of the target tissue or organ and efficiently expressed.
  • the administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable.
  • a medicine in the form of a pharmaceutical composition can be prepared and administered together with an appropriate formulation additive.
  • nucleic acid When a nucleic acid is transferred into the nucleus of an immune cell, preferably a dendritic cell, using the lipid membrane structure of the present invention, a substance such as a nucleic acid encapsulated in the nucleus is efficiently released and encoded by the nucleic acid. Polypeptides can be expressed.
  • a nucleic acid encoding a polypeptide is introduced into the nucleus of a dendritic cell using the lipid membrane structure of the present invention, the polypeptide transcribed and translated from the nucleic acid is presented on the surface of the dendritic cell, Can acquire immunity to the polypeptide, so that effective immunotherapy can be performed against the desired polypeptide.
  • This aspect is a particularly preferable aspect in the present invention.
  • the lipid membrane structure provided by the present invention itself can exert an adjuvant action on dendritic cells and can promote the production of various cytokines. Therefore, immunotherapy can be performed very efficiently by using the lipid membrane structure of the present invention.
  • immunotherapy can be performed very efficiently by using the lipid membrane structure of the present invention.
  • Example 1 Preparation of short-KALA peptide-modified MEND Various plasmid DNAs were dissolved in 10 mM HEPES aqueous solution (pH 5.3) so as to be 0.15 mg / mL.
  • a compact body of protamine and pDNA was prepared by adding dropwise 100 ⁇ L of Protamine solution of 0.106 mg / mL (10 mM HEPES aqueous solution (pH 5.3)) to 100 ⁇ L of pDNA solution while stirring little by little (N / P ratio). 1.1).
  • STR-KALA Stearylated KALA (1 mg / mL aqueous solution) synthesized by the method described in JP-A-2003-343857, and various stearylated short-KALA (STR-short-KALA) (1 mg / mL)
  • the solution was added to 3 mol% of the total lipid and allowed to stand at room temperature for 10 minutes.
  • the sequence of each peptide subjected to the test is shown. In either case, the N-terminus is stearylated.
  • BMDC mouse bone marrow-derived dendritic cells
  • the supernatant is removed and the cells are dispersed by tapping. Then, 1 mL of ACK Lysing Buffer (Lonza, Walkersville, MD) is added, mixed, and mixed at room temperature for 3-5 Let stand for a minute. After adding 10 mL of the medium, the supernatant was removed by centrifugation, and further washed twice with 10 mL of the medium. Next, the cells were suspended in 10 mL of medium, added to a 10 cm cell culture dish (FALCON), and cultured at 37 ° C. under 5% CO 2 for 4 hours or more.
  • FALCON 10 cm cell culture dish
  • the floating cell group was recovered together with the medium, centrifuged (4 ° C., 500 g, 5 min), and recovered by removing the supernatant.
  • Reporter Lysis Buffer (1x) was added to the cells remaining in each well and the previously collected floating cells to make a total of 75 ⁇ L, then pipetted back to each well and frozen at ⁇ 80 ° C. . After thawing the sample frozen at ⁇ 80 ° C., the cells were removed using a cell scraper and collected in an Eppendorf tube. The collected cell lysate was centrifuged at 15,000 rpm, 4 ° C. for 2 min, and 50 ⁇ L of the supernatant was recovered.
  • Luciferase activity measurement (RLU / mL) was measured using the obtained supernatant. Furthermore, protein quantification (mg / mL) by BCA method was performed, and luciferase activity (RLU / mg protein) per unit protein amount was calculated.
  • the supernatant of each well was collected, centrifuged (4 ° C., 500 g, 5 min), and the supernatant was frozen at ⁇ 80 ° C.
  • the IL-6 concentration in the supernatant was quantified using Quantikine IL-6 ELISA kit (R & D systems).
  • FIG. 1 shows gene expression activity when a gene encoding luciferase is introduced. Although the expression is maintained even if the sequence is deleted sequentially from the C-terminus of the original KALA peptide (leftmost: 27 residues, SEQ ID NO: 1 in the sequence listing), the highest gene expression is obtained in short-KALA3 It was. On the other hand, it was clarified that the gene expression decreased dramatically when further cut and shortened to Short-KALA4 (SEQ ID NO: 5 in the sequence listing). Moreover, even when this lysine (K) of Short-KALA3 was substituted with arginine (R) (Short-RALA3), the same level of activity was maintained.
  • K lysine
  • R arginine
  • KALA Lys-Ara-Arg-Ara
  • KALA is an important sequence as a repeated sequence. Therefore, peptides with repeated KALA sequences were designed (Short-KALA-2U to Short-KALA-4U). As a result, high gene expression was maintained in any peptide sequence, but among them, the highest gene expression activity was maintained in Short-KALA3.
  • Example 2 (1) Preparation of short-KALA3 peptide-modified MEND
  • Short-KALA3 peptide-modified MEND was prepared in the same manner as in Example 1.
  • Various plasmid DNAs were dissolved in 10 mM HEPES aqueous solution (pH 5.3) so as to be 0.15 mg / mL.
  • a compact body of protamine and pDNA was prepared by adding dropwise 100 ⁇ L of Protamine solution of 0.106 mg / mL (10 mM HEPES aqueous solution (pH 5.3)) to 100 ⁇ L of pDNA solution while stirring little by little (N / P ratio). 1.1).
  • short-KALA3-modified MEND When preparing short-KALA3-modified MEND, add stearyl-ized short-KALA3 (STR-short-KALA3) (1 mg / mL) to 0.25 mol% of the total lipid, and leave it at room temperature for 10 minutes. did.
  • STR-short-KALA3 stearyl-ized short-KALA3
  • the spleen was removed from naive mice dislocated from the cervical spine, loosened in a petri dish containing 5 to 7.5 mL of RPMI1640 medium, collected using a 5 mL syringe, and then transferred to a 50 mL conical tube through a cell strainer. .
  • the supernatant was removed, suspended in 1 mL (/ spleen) of ACK Lysing buffer, and hemolyzed by incubation at room temperature for 5 minutes. After 5-fold dilution with medium, the supernatant was removed, and after washing with 10 mL of medium, the suspension was suspended in 30 mL, counted, and transferred to two 50 mL conical tubes through a cell strainer. Each was centrifuged and the supernatant removed, and then resuspended in the medium (10 7 cells / mL).
  • OVA 257-264 peptide (1 mM, final concentration 5 ⁇ M) was added as a model antigen to one of the two, and the cell suspension was incubated at 37 ° C. under 5% CO 2 for 60 minutes.
  • Cell groups pulsed with OVA 257-264 peptide after washing with 10 mL of medium and 10 mL of PBS are treated with 50 ⁇ M CFSE (Molecular probe) (CFSE High ), and cells not pulsed are 0.5 ⁇ M CFSE (CFES Low ) was suspended in PBS containing 3 ⁇ 10 7 cells / mL and incubated at 37 ° C. for 10 minutes.
  • CFSE Molecular probe
  • the spleen was removed and the aggregate was loosened, and a uniform cell suspension was made through a nylon mesh. This cell suspension was centrifuged at 1600 rpm, 4 ° C., 3 min. After removing the supernatant, 1 mL of ACK Lysing buffer (/ spleen) was added, and the mixture was allowed to stand at room temperature for 5 minutes. 9 mL of FACS buffer was added and centrifuged at 1600 rpm, 4 ° C., 3 min. After removing the supernatant, 5 mL of FACS buffer was added and centrifuged again. After removing the supernatant, it was suspended in 5 mL of FACS buffer.
  • the prepared cell suspension was transferred to a FACS tube through a nylon mesh, and the number of CFSE positive cells was measured with a flow cytometer. For cells stained at a low concentration (CFSE Low ), 7,500 cells were analyzed. CTL activity was calculated by comparing the number of cells in CFSE High and CFSE Low . The error between experiments was corrected by the CFSE High / CFSE Low ratio in naive mice.
  • the CTL activity (% Lysis) in the intraperitoneal administration group of short-KALA3 modified PalmEENDMEND was short-KALA3 unmodified PalmE MEND at both 2.4 ⁇ g and 1.2 ⁇ g of PalmE MEND dose in terms of plasmid DNA.
  • a value higher than the CTL activity of the administration group was obtained (FIG. 3). This revealed that CTL activity was improved by modifying short-KALA3 to PalmE MEND.
  • the lipid membrane structure provided by the present invention can efficiently migrate into the nucleus of any cell such as immune cells including dendritic cells, and efficiently transfer substances such as nucleic acids encapsulated in the nucleus. Since it can be released to express the polypeptide encoded by the nucleic acid, and it can also exert an efficient adjuvant effect, effective immunotherapy can be performed on the desired polypeptide. There is a feature.
  • the lipid membrane structure of the present invention can be efficiently transferred into the nucleus of a cell in vivo, and a substance such as a nucleic acid encapsulated in the nucleus can be efficiently released. Can be suitably used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

A lipid membrane structure for delivering a substance into the nucleus of a cell. The lipid membrane structure can deliver a nucleic acid into the nucleus of an immunocyte such as a dendritic cell with high efficiency. In the lipid membrane structure, a lipid membrane is modified with (a) a polypeptide which comprises the amino acid sequence represented by SEQ ID NO: 1 and/or (b) a polypeptide which comprises an amino acid sequence produced by the deletion and/or substitution and/or insertion of one or several amino acid residues in the amino acid sequence represented by SEQ ID NO: 1 and which has an activity of promoting the migration of the lipid membrane structure into the nucleus of a cell.

Description

核内移行性を有する脂質膜構造体Lipid membrane structure with nuclear translocation
 本発明は核内移行性を有する脂質膜構造体に関する。より具体的には、本発明は、免疫細胞の核内、特に樹状細胞の核内に容易に移行することができるリポソームなどの脂質膜構造体に関するものである。 The present invention relates to a lipid membrane structure having nuclear translocation properties. More specifically, the present invention relates to a lipid membrane structure such as a liposome that can be easily transferred into the nucleus of immune cells, particularly the nucleus of dendritic cells.
 薬剤を患部に特異的に輸送する手段として脂質膜構造体であるリポソームに薬剤を封入する方法が提案されている。特に、悪性腫瘍の治療分野において抗腫瘍剤を封入したリポソームの有効性が数多く報告されている。また、遺伝子発現に利用可能な脂質膜構造体として多機能性エンベロープ型ナノ構造体(MEND: Multifunctional envelope-type nano device;以下、本明細書において「MEND」と略す場合がある。例えばDrug Delivery System, 22-2, pp.115-122, 2007などを参照のこと)が提案されている。この構造体は、遺伝子などを特定の細胞内に選択的に送達するためのドラッグデリバリーシステムとして用いることができ、例えば、腫瘍の遺伝子治療などに有用であることが知られている。 A method of encapsulating a drug in a liposome that is a lipid membrane structure has been proposed as a means of specifically transporting the drug to the affected area. In particular, the effectiveness of liposomes encapsulating an antitumor agent has been reported in the field of malignant tumor treatment. In addition, as a lipid membrane structure that can be used for gene expression, a multifunctional envelope-type nanostructure (MEND: Multifunctionallopeenvelope-type nano 以下 device; hereinafter, it may be abbreviated as “MEND”. For example, Drug Delivery System , 22-2, 115pp.115-122, 2007, etc.) have been proposed. This structure can be used as a drug delivery system for selectively delivering a gene or the like into a specific cell, and is known to be useful for, for example, tumor gene therapy.
 脂質膜構造体を用いて薬物、核酸、ペプチド、ポリペプチド、糖などの目的物質を標的臓器や腫瘍組織など特異的な部位に送達するための手段として、脂質膜構造体の表面を機能性分子で修飾する方法が多数提案されている。抗腫瘍剤などの薬剤を内包した脂質膜構造体は標的細胞に到達するとエンドサイトーシスにより細胞内に取り込まれエンドソーム内に包含された状態となるが、その後、リソソームの酵素による加水分解作用などを受けて内包されていた薬剤を細胞質内に放出する。エンドソーム内に取り込まれたリポソームからの薬剤放出性を高めるために、リポソームの表面をペプチド(GALA: Biochemistry, 26, pp.2964-2972, 1987)で修飾したリポソーム(Biochemistry, 43, pp.5618-5623, 2004)やMEND(特開2006-28030号公報)が提案されている。 As a means to deliver target substances such as drugs, nucleic acids, peptides, polypeptides, and sugars to specific sites such as target organs and tumor tissues using lipid membrane structures, the surface of lipid membrane structures is a functional molecule. A number of methods of modifying with have been proposed. Lipid membrane structures encapsulating drugs such as antitumor agents reach the target cells and are taken into cells by endocytosis and become encapsulated in endosomes. The received drug is released into the cytoplasm. In order to enhance drug release from liposomes incorporated into endosomes, liposomes modified with peptides (GALA: Biochemistry, 26, pp.2964-2972, 1987) (Biochemistry, 43, pp.5618- 5623, 2004) and MEND (Japanese Patent Laid-Open No. 2006-28030) have been proposed.
 また、核酸などの目的物質を内包した脂質膜構造体を標的細胞の核内に移行させるための手段としては、例えば、リポソームの外側表面をオクタアルギニンで修飾したリポソーム(国際公開WO2005/32593; Journal of Controlled Release, 98, pp.317-323, 2004)、核移行性ペプチドで修飾された脂質膜を有する2枚膜リポソーム(国際公開WO2006/101201)、ガラクトースやマンノースなどの単糖で表面を修飾したリポソーム(国際公開WO2007/102481)が提案されている。単糖で修飾された多重脂質膜構造体(T-MEND)は脂質膜及び核膜と融合性を示し、in vitroでの試験結果において遺伝子発現効率を改善できたとされている。 As a means for transferring a lipid membrane structure encapsulating a target substance such as a nucleic acid into the nucleus of a target cell, for example, a liposome whose outer surface is modified with octaarginine (International Publication WO2005 / 32593; WO Journal of Controlled Release, 98, pp.317-323, 2004), bilamellar liposomes with lipid membranes modified with nuclear translocation peptides (International Publication WO2006 / 101201), surface modification with monosaccharides such as galactose and mannose Liposomes (International Publication WO2007 / 102481) have been proposed. Multi-lipid membrane structures (T-MEND) modified with monosaccharides showed fusion properties with lipid membranes and nuclear membranes, and it was reported that gene expression efficiency could be improved in the in-vitro test results.
 一方、免疫細胞、特に抗原提示作用を有する樹状細胞の核内に抗原性タンパク質をコードする核酸を導入することできれば、樹状細胞内で核酸から転写翻訳されたタンパク質を樹状細胞表面に抗原提示させることができ、生体は当該タンパク質に対する免疫を獲得することができる。このような観点から、樹状細胞などの免疫細胞の核内に核酸を効率的に送達する技術が求められている。 On the other hand, if a nucleic acid encoding an antigenic protein can be introduced into the nucleus of an immune cell, particularly a dendritic cell having an antigen-presenting effect, the protein transcribed and translated from the nucleic acid in the dendritic cell can The living body can acquire immunity to the protein. From such a viewpoint, there is a need for a technique for efficiently delivering a nucleic acid into the nucleus of immune cells such as dendritic cells.
 しかしながら、上記のMENDなどの脂質膜構造体を用いて樹状細胞の核内に核酸を導入する場合の核酸導入効率は、その他の細胞、例えば腫瘍細胞や肝実質細胞の場合と比較して十分ではない。導入された核酸が最終的に核内で発現するまでには、細胞内への取り込み、エンドソーム脱出、核内移行、及び核内転写などのさまざまな細胞内動態プロセスを経る必要があるが、樹状細胞などの非分裂細胞においては2枚膜からなる核膜が常にインタクトに存在しており、この核膜が脂質膜構造体の核内移行能を妨げているものと推察される。従って、脂質膜構造体を用いて樹状細胞の核に核酸を送達するためには、上記の各プロセス、特に2枚膜からなる核膜によるバリヤーを如何に突破するかが、きわめて重要な課題となる。 However, the efficiency of nucleic acid introduction when introducing a nucleic acid into the nucleus of a dendritic cell using a lipid membrane structure such as MEND described above is sufficiently higher than that of other cells such as tumor cells and liver parenchymal cells. is not. Before the introduced nucleic acid is finally expressed in the nucleus, it must undergo various intracellular kinetic processes such as intracellular uptake, endosomal escape, nuclear translocation, and nuclear transcription. In non-dividing cells such as dendritic cells, a nuclear membrane consisting of two membranes always exists intact, and this nuclear membrane is presumed to impede the ability of lipid membrane structures to translocate into the nucleus. Therefore, in order to deliver nucleic acids to the nuclei of dendritic cells using lipid membrane structures, how to break through the above-mentioned processes, particularly the barrier by the nuclear membrane composed of two membranes, is a very important issue. It becomes.
 KALAペプチドと称される27アミノ酸残基のポリペプチドが知られており、自身のカチオン電荷を利用してプラスミドDNAとコンプレックスを形成することができることが報告されている(Biochemistry, 36, pp.3008-3017, 1997)。このKALAペプチドでリポソームなどの脂質膜構造体の表面を修飾することにより脂質膜構造体の核内移行を促進できることが報告されている(国際公開WO 2011/132713)。 A 27 amino acid residue polypeptide called KALA peptide is known, and it has been reported that it can form a complex with plasmid DNA using its own cationic charge (Biochemistry, 36, pp.3008). -3017, 1997). It has been reported that this KALA peptide can promote the translocation of lipid membrane structures into the nucleus by modifying the surface of lipid membrane structures such as liposomes (International Publication WO 2011/132713).
国際公開WO2005/32593International Publication WO2005 / 32593 国際公開WO2006/101201International Publication WO2006 / 101201 国際公開WO2007/102481International Publication WO2007 / 102481 特開2006-28030号公報JP 2006-28030 A 国際公開WO 2011/132713International publication WO 2011/132713
 本発明の課題は、免疫細胞、特に抗原提示能を有する樹状細胞の核内に核酸を効率的に送達するための手段を提供することにある。より具体的には、樹状細胞などの免疫細胞の核内に核酸を効率的に送達することができる脂質膜構造体を提供することが本発明の課題である。 An object of the present invention is to provide a means for efficiently delivering a nucleic acid into the nucleus of an immune cell, particularly a dendritic cell having antigen-presenting ability. More specifically, it is an object of the present invention to provide a lipid membrane structure capable of efficiently delivering a nucleic acid into the nucleus of immune cells such as dendritic cells.
 本発明者らは上記の課題を解決すべく、核内移行能を高めることのできる機能性ポリペプチドであるオクタアルギニンポリペプチドで修飾されたMEND(国際公開WO2005/32593)や、エンドソーム脱出能を付与する機能性ポリペプチドであるGALAペプチドで修飾されたMEND(特開2006-28030号公報)に核酸を封入して樹状細胞への導入を試みたが、その核酸からのポリペプチド発現はほとんど認められなかった。また、エンドソームと融合性を示す脂質膜及び核膜と融合性を示す脂質膜を有する多重脂質膜構造体(T-MEND)に核酸を封入して樹状細胞への核酸導入を試みたが、核内において導入核酸からのポリペプチド発現促進がわずかに認められるものの、樹状細胞表面への該ポリペプチドの提示は観察されなかった。 In order to solve the above problems, the present inventors have improved MEND (international publication WO2005 / 32593) modified with octaarginine polypeptide, which is a functional polypeptide capable of enhancing nuclear translocation ability, and endosome escape ability. Although the nucleic acid was encapsulated in MEND modified with GALA peptide, which is a functional polypeptide to be imparted (Japanese Patent Laid-Open No. 2006-28030), and introduced into dendritic cells, polypeptide expression from the nucleic acid was almost I was not able to admit. In addition, we tried to introduce nucleic acid into dendritic cells by encapsulating nucleic acid in a multi-lipid membrane structure (T-MEND) having a lipid membrane that is fusogenic with endosomes and a nuclear membrane that is fusogenic with nuclear membranes. Although the expression of the polypeptide from the introduced nucleic acid was slightly promoted in the nucleus, no presentation of the polypeptide on the surface of the dendritic cell was observed.
 本発明者らはさらに研究を重ねた結果、核酸を封入したMENDなどの脂質膜構造体の脂質膜をKALAペプチドで修飾すると、樹状細胞などの免疫細胞の核内への核酸導入効率が顕著に高まることを見出した(国際公開WO 2011/132713)。しかしながら、KALAペプチドで修飾した上記の脂質膜構造体は血清の存在下では遺伝子発現及びインターロイキン6(IL-6)産生が減少してしまうという新たな問題を見出した。そこで、イン・ビボにおいて効率的に核内移行能を高めるために上記の脂質膜構造体を改良すべく鋭意研究を行った。その結果、KALAペプチドの部分ペプチド配列を含む下記(I)のペプチドにより脂質膜構造体を修飾すると樹状細胞などの免疫細胞の核内への核酸導入効率がイン・ビボにおいて顕著に高まることを見出した。また、脂質構造体の脂質成分として第3級アミン及びジスルフィド結合を有する特定の脂質を用いる場合に特に顕著に高い核酸導入効率を達成できることを見出した。本発明は上記の知見を基にして完成されたものである。 As a result of further studies, the present inventors have found that when the lipid membrane of a lipid membrane structure such as MEND encapsulating nucleic acid is modified with KALA peptide, the efficiency of nucleic acid introduction into the nucleus of immune cells such as dendritic cells is remarkable. (International publication WO 2011/132713). However, the lipid membrane structure modified with the KALA peptide has found a new problem that gene expression and interleukin 6 (IL-6) production decrease in the presence of serum. Therefore, intensive research was conducted to improve the above lipid membrane structure in order to efficiently enhance the ability to translocate into the nucleus in vivo. As a result, when the lipid membrane structure is modified with the following peptide (I) containing a partial peptide sequence of the KALA peptide, the efficiency of nucleic acid introduction into the nucleus of immune cells such as dendritic cells is significantly increased in vivo. I found it. In addition, it has been found that when a specific lipid having a tertiary amine and a disulfide bond is used as the lipid component of the lipid structure, a remarkably high nucleic acid introduction efficiency can be achieved. The present invention has been completed based on the above findings.
 すなわち、本発明により、細胞の核内に物質を送達するための脂質膜構造体であって、脂質膜が下記のポリペプチド(I):
アミノ酸残基数が8~26個のポリペプチドであって、ペプチド鎖中にテトラペプチド:Lys-Ara-Leu-Araの繰り返し単位を連続して2~4個含むポリペプチド(ただし該繰り返し単位のうちのいずれか1個又は2個以上においてLysがArgとなっていてもよく、及び/又は該繰り返し単位のうちのいずれか1個においてLysとLeuに挟まれるAraがHisとなっていてもよい)
で修飾された脂質膜構造体が提供される。
That is, according to the present invention, a lipid membrane structure for delivering a substance into the nucleus of a cell, wherein the lipid membrane is the following polypeptide (I):
A polypeptide having 8 to 26 amino acid residues and comprising 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain in succession (however, the repeating unit Lys may be Arg in any one or more of them, and / or Ara sandwiched between Lys and Leu in any one of the repeating units may be His. )
A lipid membrane structure modified with is provided.
 本発明の好ましい態様によれば、ポリペプチド(I)がLys-Ara-Leu-Araの繰り返し単位を連続して2個含むか、又はArg-Ara-Leu-Araの繰り返し単位を連続して2個含むポリペプチドである上記の脂質膜構造体;ポリペプチドが上記の連続した2個の繰り返し単位のN末端にTrp-Glu-Ara-Lys-Leu-Ara又はTrp-Glu-Ara-Arg-Leu-Araの配列が結合したポリペプチドである上記の脂質膜構造体;ポリペプチドがTrp-Glu-Ara-Lys-Leu-Ara-Lys-Ara-Leu-Ara-Lys-Ara-Leu-Ara又はTrp-Glu-Ara-Arg-Leu-Ara-Arg-Ara-Leu-Ara-Arg-Ara-Leu-Araである上記の脂質膜構造体が提供される。 According to a preferred embodiment of the present invention, the polypeptide (I) comprises two consecutive repeating units of Lys-Ara-Leu-Ara, or 2 consecutive repeating units of Arg-Ara-Leu-Ara. The above-mentioned lipid membrane structure, which is a polypeptide comprising Trp-Glu-Ara-Lys-Leu-Ara or Trp-Glu-Ara-Arg-Leu at the N-terminus of the two consecutive repeating units The above lipid membrane structure, which is a polypeptide to which the sequence of -Ara is bound; the polypeptide is Trp-Glu-Ara-Lys-Leu-Ara-Lys-Ara-Leu-Ara-Lys-Ara-Leu-Ara or Trp Provided is the above lipid membrane structure which is -Glu-Ara-Arg-Leu-Ara-Arg-Ara-Leu-Ara-Arg-Ara-Leu-Ara.
 上記脂質膜構造体の好ましい態様によれば、脂質膜構造体の脂質成分として第3級アミン及びジスルフィド結合を有する脂質を含む上記の脂質膜構造体;脂質膜構造体がリポソームである上記の脂質膜構造体;細胞が免疫細胞、好ましくは樹状細胞である上記の脂質膜構造体;上記のポリペプチド(I)が疎水性基、好ましくはステアリル基若しくはコレステリル基などで修飾されており、前記疎水性基が脂質膜に挿入された上記の脂質膜構造体;連続した複数個のアルギニン残基を含むポリペプチド、好ましくは4ないし20個の連続したアルギニン残基を含むポリペプチド、さらに好ましくは4ないし20個の連続したアルギニン残基のみからなるポリペプチド、特に好ましくはオクタアルギニンを表面に有する上記の脂質膜構造体;ポリアルキレングリコール又はリン脂質が縮合したポリアルキレングリコール、好ましくはポリエチレングリコール(PEG)を表面に有する上記の脂質膜構造体;脂質二重層を構成する総脂質に対するカチオン性脂質の割合が0~40%(モル比)である上記の脂質膜構造体が提供される。 According to a preferred embodiment of the above lipid membrane structure, the above lipid membrane structure comprising a tertiary amine and a lipid having a disulfide bond as a lipid component of the lipid membrane structure; the above lipid wherein the lipid membrane structure is a liposome The above lipid membrane structure wherein the cell is an immune cell, preferably a dendritic cell; and the above polypeptide (I) is modified with a hydrophobic group, preferably a stearyl group or a cholesteryl group, The above lipid membrane structure in which a hydrophobic group is inserted into a lipid membrane; a polypeptide containing a plurality of consecutive arginine residues, preferably a polypeptide containing 4 to 20 consecutive arginine residues, more preferably A polypeptide comprising only 4 to 20 consecutive arginine residues, particularly preferably the above lipid membrane structure having octaarginine on its surface; polyalkylene The above lipid membrane structure having a polyalkylene glycol condensed with glycol or phospholipid, preferably polyethylene glycol (PEG) on its surface; the ratio of the cationic lipid to the total lipid constituting the lipid bilayer is 0 to 40% (mole) The above lipid membrane structure is provided.
 また、別の観点からは、送達すべき物質が内部に封入された上記のいずれかの脂質膜構造体が提供される。この発明の好ましい態様によれば、送達すべき物質が核酸、例えば遺伝子を含む核酸やsiRNAなどの機能性核酸である上記のいずれかの脂質膜構造体;送達すべき物質がDNAである上記の脂質膜構造体;該DNAがCpGを含まないベクターDNAと結合したDNAである上記の脂質膜構造体;該DNAがCpGを含まず、かつ該DNAがCpGを含まないベクターDNAと結合したDNAである上記の脂質膜構造体;送達すべき物質が免疫細胞表面、好ましくは樹状細胞表面に提示すべき抗原ポリペプチドをコードする核酸である上記の脂質膜構造体;脂質膜構造体が多機能性エンベロープ型ナノ構造体(MEND)である上記のいずれかの脂質膜構造体;内部に核酸及びカチオン性ポリマー、好ましくはプロタミンが封入された上記のいずれかの脂質膜構造体が提供される。 Also, from another viewpoint, any of the above lipid membrane structures in which a substance to be delivered is enclosed is provided. According to a preferred embodiment of the present invention, the substance to be delivered is a nucleic acid, for example, any of the above lipid membrane structures, which is a functional nucleic acid such as a nucleic acid containing a gene or siRNA; Lipid membrane structure; the lipid membrane structure described above, wherein the DNA is DNA bound to a vector DNA not containing CpG; the DNA is bound to a vector DNA not containing CpG, and the DNA is free of CpG A lipid membrane structure as described above; the lipid membrane structure as described above, wherein the substance to be delivered is a nucleic acid encoding an antigen polypeptide to be presented on the surface of immune cells, preferably on the surface of dendritic cells; Any of the lipid membrane structures described above, which is a sex envelope nanostructure (MEND); any of the lipid membrane structures described above, in which a nucleic acid and a cationic polymer, preferably protamine are encapsulated.
 また、免疫細胞表面、好ましくは樹状細胞表面に提示すべき抗原ポリペプチドをコードする核酸を該細胞の核内に導入するために用いる上記の脂質膜構造体;上記抗原ポリペプチドに対する免疫療法に用いるための上記の脂質膜構造体;上記抗原ポリペプチドががん細胞に特異的は表面ポリペプチドである上記の脂質膜構造体が提供される。この脂質膜構造体を有効成分として含む医薬組成物、好ましくは送達すべき物質として核酸を含む医薬組成物も本発明により提供される。 Also, the lipid membrane structure described above used for introducing a nucleic acid encoding an antigen polypeptide to be presented on the surface of an immune cell, preferably a dendritic cell, into the nucleus of the cell; for immunotherapy against the antigen polypeptide The above lipid membrane structure for use; provided is the above lipid membrane structure wherein the antigen polypeptide is a surface polypeptide specific for cancer cells. A pharmaceutical composition comprising this lipid membrane structure as an active ingredient, preferably a pharmaceutical composition comprising a nucleic acid as a substance to be delivered is also provided by the present invention.
 さらに別の観点からは、ヒトを含む哺乳類動物の生体内において細胞の核内、好ましくは免疫細胞の核内、さらに好ましくは樹状細胞の核内に核酸を送達する方法であって、核酸を内部に封入した上記の脂質膜構造体を該動物に投与する工程を含む方法;ヒトを含む哺乳類動物の生体内において免疫細胞、好ましくは樹状細胞の表面に抗原ポリペプチドを提示させる方法であって、該抗原ポリペプチドをコードする核酸を内部に封入した上記の脂質膜構造体を該動物に投与する工程を含む方法が提供される。 From still another aspect, the present invention provides a method for delivering a nucleic acid in the nucleus of a cell, preferably in the nucleus of an immune cell, more preferably in the nucleus of a dendritic cell in the body of a mammal, including a human, A method comprising the step of administering to the animal the above lipid membrane structure encapsulated therein; a method of presenting an antigenic polypeptide on the surface of immune cells, preferably dendritic cells, in the body of mammals including humans. A method comprising the step of administering to the animal the above lipid membrane structure encapsulating a nucleic acid encoding the antigen polypeptide.
 また、ヒトを含む哺乳類動物の生体内において免疫細胞、好ましくは樹状細胞の表面に抗原ポリペプチドを提示させて該抗原ポリペプチドに対する免疫を獲得させる方法であって、該抗原ポリペプチドをコードする核酸を内部に封入した上記の脂質膜構造体を該動物に投与する工程を含む方法;及びヒトを含む哺乳類動物の生体内において免疫細胞、好ましくは樹状細胞の表面にがん細胞特異的な表面ポリペプチドを提示させて該ポリペプチドに対する免疫を獲得させる悪性腫瘍の免疫療法であって、該ポリペプチドをコードする核酸を内部に封入した上記の脂質膜構造体を該動物に投与する工程を含む方法が提供される。 Also, a method for obtaining immunity to an antigen polypeptide by presenting the antigen polypeptide on the surface of an immune cell, preferably a dendritic cell, in a living body of a mammal including humans, which encodes the antigen polypeptide A method comprising the step of administering to the animal the above lipid membrane structure having nucleic acid encapsulated therein; and a cancer cell-specific surface on the surface of an immune cell, preferably a dendritic cell, in a mammal including human. An immunotherapy of a malignant tumor in which a surface polypeptide is presented to acquire immunity to the polypeptide, the method comprising the step of administering to the animal the above lipid membrane structure in which a nucleic acid encoding the polypeptide is encapsulated A method of including is provided.
 さらに、本発明により、細胞の核内、好ましくは免疫細胞の核内、さらに好ましくは樹状細胞の核内への脂質膜構造体の移行を促進するために用いる上記のポリペプチド(I)が提供される。 Furthermore, according to the present invention, the polypeptide (I) used for promoting the migration of a lipid membrane structure into the nucleus of a cell, preferably into the nucleus of an immune cell, more preferably into the nucleus of a dendritic cell, Provided.
 本発明により提供される脂質膜構造体は樹状細胞を含む免疫細胞などの任意の細胞の核内に効率的に移行することができ、核内において封入された核酸などの物質を効率的に放出して該核酸によりコードされるポリペプチドを発現させることができる。本発明の脂質膜構造体を用いて樹状細胞の核内にポリペプチドをコードする核酸を導入する場合には、該核酸から転写翻訳されたポリペプチドが樹状細胞の表面に提示され、生体は当該ポリペプチドに対する免疫を獲得することができるので、所望のポリペプチドに対して有効な免疫療法を行うことができるようになる。本発明により提供される脂質膜構造体は、血清の存在下においても効率的に細胞の核内に移行し核内において封入された核酸などの物質を放出することができるので、特にイン・ビボにおいて好適に使用できる。 The lipid membrane structure provided by the present invention can efficiently migrate into the nucleus of any cell such as immune cells including dendritic cells, and efficiently transfer substances such as nucleic acids encapsulated in the nucleus. The polypeptide encoded by the nucleic acid can be expressed upon release. When a nucleic acid encoding a polypeptide is introduced into the nucleus of a dendritic cell using the lipid membrane structure of the present invention, the polypeptide transcribed and translated from the nucleic acid is presented on the surface of the dendritic cell, Can acquire immunity to the polypeptide, so that effective immunotherapy can be performed against the desired polypeptide. The lipid membrane structure provided by the present invention can be efficiently transferred into the nucleus of a cell even in the presence of serum and release a substance such as a nucleic acid encapsulated in the nucleus. Can be preferably used.
 また、本発明により提供される脂質膜構造体はそれ自体が樹状細胞に対してアジュバント作用を発揮することができ、種々のサイトカイン産生を促進することができるという特徴もあり、本発明により提供される脂質膜構造体で形質転換した樹状細胞を投与することにより、アジュバントの有無にかかわらず腫瘍の増悪や増殖を顕著に抑制することができ、抗原タンパク質を封入して投与することによりイン・ビボで細胞障害活性を増強することができる。さらに、封入するDNAにおいてベクター部分からCpG配列を除去し、さらに必要に応じて、発現させるべきタンパク質をコードするDNAからもCpG配列を除去することにより遺伝子発現効率が顕著に向上するという特徴もある。 In addition, the lipid membrane structure provided by the present invention itself can exert an adjuvant action on dendritic cells and can promote the production of various cytokines. By administering dendritic cells transformed with a lipid membrane structure to be treated, tumor exacerbation and proliferation can be remarkably suppressed regardless of the presence or absence of an adjuvant. Can enhance cytotoxic activity in vivo. Furthermore, there is a feature that gene expression efficiency is remarkably improved by removing the CpG sequence from the vector part in the DNA to be encapsulated and, if necessary, removing the CpG sequence from the DNA encoding the protein to be expressed. .
各種ポリペプチド(I)により修飾したMENDを用いてマウス骨髄由来樹状細胞における遺伝子発現活性を評価した結果を示した図である。It is the figure which showed the result of having evaluated the gene expression activity in a mouse | mouth bone marrow derived dendritic cell using MEND modified with various polypeptide (I). 各種ポリペプチド(I)により修飾したMENDを用いてマウス骨髄由来樹状細胞におけるサイトカイン産生能を評価した結果を示した図である。It is the figure which showed the result of having evaluated the cytokine production ability in a mouse | mouth bone marrow derived dendritic cell using MEND modified with various polypeptide (I). 例2で調製したshort-KALA3修飾MENDのIn vivo CTL活性を示した図である。FIG. 3 is a graph showing the In-vivo CTL activity of the short-KALA3-modified MEND prepared in Example 2.
 本発明の脂質膜構造体を構成する脂質としては、例えば、リン脂質、糖脂質、ステロール、又は飽和若しくは不飽和の脂肪酸などが挙げられる。
 リン脂質及びリン脂質誘導体としては、例えば、ホスファチジルエタノールアミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、カルジオリピン、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスファート、1,2-ジミリストイル-1,2-デオキシホスファチジルコリン、プラスマロゲン、ホスファチジン酸などを挙げることができ、これらは1種又は2種以上を組み合わせて用いることができる。これらリン脂質における脂肪酸残基は特に限定されないが、例えば、炭素数12~20の飽和又は不飽和の脂肪酸残基を挙げることができ、具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸などの脂肪酸由来のアシル基を挙げることができる。また、卵黄レシチン、大豆レシチンなどの天然物由来のリン脂質を用いることもできる。
Examples of the lipid constituting the lipid membrane structure of the present invention include phospholipids, glycolipids, sterols, and saturated or unsaturated fatty acids.
Examples of phospholipids and phospholipid derivatives include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, ceramide phosphorylglycerol phosphate, 1 , 2-dimyristoyl-1,2-deoxyphosphatidylcholine, plasmalogen, phosphatidic acid and the like, and these can be used alone or in combination of two or more. Fatty acid residues in these phospholipids are not particularly limited, and examples thereof include saturated or unsaturated fatty acid residues having 12 to 20 carbon atoms. Specific examples include lauric acid, myristic acid, palmitic acid, stearin Mention may be made of acyl groups derived from fatty acids such as acids, oleic acid and linoleic acid. Moreover, phospholipids derived from natural products such as egg yolk lecithin and soybean lecithin can also be used.
 糖脂質としては、例えば、グリセロ糖脂質(例えば、スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド)、スフィンゴ糖脂質(例えば、ガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシド)などが挙げられる。 Examples of glycolipids include glyceroglycolipids (for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride), glycosphingolipids (for example, galactosyl cerebroside, lactosyl cerebroside, ganglioside) and the like. Can be mentioned.
 ステロールとしては、例えば、動物由来のステロール(例えば、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール)、植物由来のステロール(フィトステロール)(例えば、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール)、微生物由来のステロール(例えば、チモステロール、エルゴステロール)などが挙げられる。
 飽和又は不飽和の脂肪酸としては、例えば、パルミチン酸、オレイン酸、ステアリン酸、アラキドン酸、ミリスチン酸などの炭素数12~20の飽和又は不飽和の脂肪酸が挙げられる。
Examples of sterols include animal-derived sterols (e.g., cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol), plant-derived sterols (phytosterols) (e.g., stigmasterol, sitosterol, campesterol, Brush casterol), microorganism-derived sterols (for example, timosterol, ergosterol) and the like.
Examples of the saturated or unsaturated fatty acid include saturated or unsaturated fatty acids having 12 to 20 carbon atoms such as palmitic acid, oleic acid, stearic acid, arachidonic acid, and myristic acid.
 本発明の脂質構造体では、脂質成分として第3級アミン及びジスルフィド結合を有する脂質を用いることが好ましい。このような脂質は、例えば国際公開2013/73480に開示されており、分子内に第3級アミン及びジスルフィド結合を有することによりpH応答性及び還元的環境下における膜不安定化作用を有することが知られている。上記国際公開に開示された式(1)で表される化合物は本発明の脂質構造体の構成脂質として好ましい。この式(1)で表される化合物において、側鎖として、例えばミリスチン酸を結合した脂質(PalmM)、レチノイン酸を結合した脂質(PamlA)、及びトコフェロールを結合した脂質(PalmE)などのPalm類脂質が知られているが、これらのうち、PalmEは中性脂質であり血清存在下においても遺伝子発現を達成できることから本発明において好ましく用いることができる。PalmEは国際公開2013/73480の段落[0056]の表1中の化合物B-2-5である。上記国際公開の開示の全てを参照により本明細書の開示として含める。上記の脂質の使用量は特に限定されないが、一般的には脂質構造体を構成する全脂質に対して5~50重量%程度の量とすることができる。また、これらのPalm類については応用例が知られているので(Immunity, 21(4), pp.527-538, 2004; Int. Immunol., 21(4), pp.361-377, 2009; Blood, 115(10), pp.1958-1968, 2010)、これらの刊行物を参照しつつ適宜のPalm類を目的に応じて選択することができる。 In the lipid structure of the present invention, a lipid having a tertiary amine and a disulfide bond is preferably used as the lipid component. Such lipids are disclosed in, for example, International Publication 2013/73480, and have a tertiary amine and disulfide bond in the molecule, and thus have a pH responsiveness and a membrane destabilizing action in a reducing environment. Are known. The compound represented by the formula (1) disclosed in the above international publication is preferable as a constituent lipid of the lipid structure of the present invention. In the compound represented by the formula (1), as a side chain, for example, lipids (PalmM) bound with myristic acid, lipids (PamlA) bound with retinoic acid, and lipids (PalmE) bound with tocopherol (PalmE) Among these lipids, PalmE is a neutral lipid and can be preferably used in the present invention because it can achieve gene expression even in the presence of serum. PalmE is compound B-2-5 in Table 1 of paragraph [0056] of International Publication 2013/73480. All of the above internationally disclosed disclosures are incorporated herein by reference. The amount of the lipid used is not particularly limited, but can be generally about 5 to 50% by weight based on the total lipid constituting the lipid structure. In addition, application examples of these Palms are known (Immunity, 21 (4), pp.527-538, 2004; Int. Immunol., 21 (4), pp.361-377, 2009; Blood, 115 (10), pp.1958-1968, 2010) and appropriate publications can be selected according to the purpose with reference to these publications.
 脂質膜構造体の形態は特に限定されないが、例えば、水系溶媒に分散した形態として一枚膜リポソーム、多重層リポソーム、O/W型エマルション、W/O/W型エマルション、球状ミセル、ひも状ミセル、又は不定型の層状構造物などを挙げることができる。本発明の脂質膜構造体の好ましい形態としてリポソームを挙げることができる。以下、本発明の脂質膜構造体の好ましい態様としてリポソームについて説明する場合があるが、本発明の脂質膜構造体はリポソームに限定されることはない。 The form of the lipid membrane structure is not particularly limited. For example, as a form dispersed in an aqueous solvent, a single membrane liposome, a multilamellar liposome, an O / W emulsion, a W / O / W emulsion, a spherical micelle, a string micelle Or an irregular layered structure. A preferred form of the lipid membrane structure of the present invention is a liposome. Hereinafter, although a liposome may be described as a preferred embodiment of the lipid membrane structure of the present invention, the lipid membrane structure of the present invention is not limited to liposomes.
 本発明の脂質膜構造体は、細胞の核内に物質を送達するための脂質膜構造体であって、脂質膜が細胞の核内への脂質膜構造体の移行を促進する活性を有するポリペプチド(I)で修飾されていることを特徴としている。 The lipid membrane structure of the present invention is a lipid membrane structure for delivering a substance into the nucleus of a cell, wherein the lipid membrane has an activity of promoting the transfer of the lipid membrane structure into the nucleus of the cell. It is modified with peptide (I).
 ポリペプチド(I)はアミノ酸残基数が8~26個のポリペプチドであって、ペプチド鎖中にテトラペプチド:Lys-Ara-Leu-Araの繰り返し単位を連続して2~4個含むポリペプチドであり、ただし該繰り返し単位のうちのいずれか1個又は2個以上においてLysがArgとなっていてもよく、及び/又は該繰り返し単位のうちのいずれか1個においてLysとLeuに挟まれるAraがHisとなっていてもよい。 Polypeptide (I) is a polypeptide having 8 to 26 amino acid residues, and includes 2 to 4 consecutive repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain However, Lys may be Arg in any one or more of the repeating units, and / or Ara sandwiched between Lys and Leu in any one of the repeating units May be His.
 従来、30個のアミノ酸残基からなる公知のポリペプチドのC末端より3アミノ酸分を除去した27個のアミノ酸残基からなるポリペプチドである(以下、本明細書においてこのポリペプチドを「KALAペプチド」と呼ぶ場合がある: Biochemistry, 36, pp.3008-3017, 1997)を用いて脂質膜構造体の表面を修飾することにより、細胞の核内への脂質膜構造体の移行を促進できることが知られている(国際公開WO 2011/132713)。上記国際公開の開示の全てを参照により本明細書の開示に含める。本発明において用いられるポリペプチド(I)は、上記のKALAペプチドに含まれるLys-Ara-Leu-Araの繰り返し単位に着目して、その繰り返し単位の機能を明らかにすることにより創製されたポリペプチドである。 Conventionally, it is a polypeptide consisting of 27 amino acid residues obtained by removing 3 amino acids from the C-terminus of a known polypeptide consisting of 30 amino acid residues (hereinafter referred to as `` KALA peptide '' in this specification). `` Biochemistry, 36, pp.3008-3017, 1997) can be used to modify the surface of the lipid membrane structure to promote the transfer of the lipid membrane structure into the cell nucleus. It is known (International Publication WO / 2011/132713). All of the above international disclosures are incorporated herein by reference. The polypeptide (I) used in the present invention is a polypeptide created by focusing on the repeating unit of Lys-Ara-Leu-Ara contained in the KALA peptide and clarifying the function of the repeating unit. It is.
 ポリペプチド(I)の脂質膜構造体の核内への移行を促進する活性は、例えば、樹状細胞における核内移行能を促進する活性を評価することにより確認することができる。例えば、標的細胞として樹状細胞を用い、その核内において発現可能な状態にある核酸、例えば樹状細胞の核内で作動可能なプロモーターの下流に連結されたポリペプチドをコードする核酸を内部に保持した脂質膜構造体において、その脂質膜をポリペプチド(I)で修飾した脂質膜構造体(以下、「修飾脂質膜構造体」と呼ぶ)及び非修飾の脂質膜構造体(以下、「非修飾脂質膜構造体」と呼ぶ)を調製し、修飾脂質膜構造体を導入した細胞におけるマーカーポリペプチドの発現量が非修飾脂質膜構造体を導入した細胞におけるポリペプチドの発現量を増加するか否かを評価すればよい。発現量の増加が認められる場合には、そのポリペプチドを上記ポリペプチド(I)として使用することができる。上記ポリペプチド(I)の1種又は2種以上を組み合わせて使用することも可能である。 The activity of promoting the transfer of the polypeptide (I) into the nucleus of the lipid membrane structure can be confirmed, for example, by evaluating the activity of promoting the ability of dendritic cells to move into the nucleus. For example, a dendritic cell is used as a target cell, and a nucleic acid that can be expressed in its nucleus, for example, a nucleic acid that encodes a polypeptide linked downstream of a promoter operable in the nucleus of the dendritic cell is contained therein. In the retained lipid membrane structure, a lipid membrane structure in which the lipid membrane is modified with polypeptide (I) (hereinafter referred to as `` modified lipid membrane structure '') and an unmodified lipid membrane structure (hereinafter referred to as `` non- Is the expression level of the marker polypeptide in the cells introduced with the modified lipid membrane structure increased in the cells introduced with the unmodified lipid membrane structure? What is necessary is just to evaluate. When an increase in expression level is observed, the polypeptide can be used as the polypeptide (I). One or a combination of two or more of the above polypeptides (I) can be used.
 上記ポリペプチド(I)は当業者に利用可能な各種の遺伝子組み換え技術によって宿主細胞を用いて生物学的に調製することができる。また、上記ポリペプチド(I)を当業者に利用可能な固相合成法などのペプチド合成反応を利用した有機化学的方法で製造してもよい。あるいはペプチドシンセサイザーを用いて自動合成してもよい。 The polypeptide (I) can be biologically prepared using host cells by various gene recombination techniques available to those skilled in the art. The polypeptide (I) may be produced by an organic chemical method using a peptide synthesis reaction such as a solid phase synthesis method available to those skilled in the art. Alternatively, automatic synthesis may be performed using a peptide synthesizer.
 上記ポリペプチド(I)はポリペプチド鎖中にテトラペプチド:Lys-Ara-Leu-Araの繰り返し単位を連続して2~4個含む。例えば、上記繰り返し単位を2個連続して含むポリペプチドが好ましい。上記繰り返し単位のうちのいずれか1個又は2個以上においてLysがArgとなっていてもよく、ポリペプチド鎖中の全ての繰り返し単位においてLysがArgとなっていてもよい。また、該繰り返し単位のうちのいずれか1個においてLysとLeuに挟まれるAraがHisとなっていてもよい。 The polypeptide (I) contains 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the polypeptide chain in succession. For example, a polypeptide comprising two consecutive repeating units is preferred. Lys may be Arg in any one or more of the above repeating units, and Lys may be Arg in all the repeating units in the polypeptide chain. Further, Ara sandwiched between Lys and Leu may be His in any one of the repeating units.
 ポリペプチド(I)としては、例えばLys-Ara-Leu-Araの繰り返し単位を連続して2個含むか、又はArg-Ara-Leu-Araの繰り返し単位を連続して2個含むポリペプチドが好ましく、上記の連続した2個の繰り返し単位のN末端にTrp-Glu-Ara-Lys-Leu-Ara又はTrp-Glu-Ara-Arg-Leu-Araの配列が結合したポリペプチドがさらに好ましい。 As the polypeptide (I), for example, a polypeptide containing two consecutive repeating units of Lys-Ara-Leu-Ara or a polypeptide containing two consecutive repeating units of Arg-Ara-Leu-Ara is preferable. More preferred is a polypeptide in which the sequence of Trp-Glu-Ara-Lys-Leu-Ara or Trp-Glu-Ara-Arg-Leu-Ara is bound to the N-terminus of the two consecutive repeating units.
 本発明において好ましく用いられるポリペプチド(I)の具体例を以下に示すが、本発明に使用可能なポリペプチド(I)は下記の例に限定されることはない(下記の例においてアミノ酸は一文字表記で示している)。
short-KALA1:WEAKLAKALAKALAKHLAKALA(配列表の配列番号2)
short-KALA2:WEAKLAKALAKALAKHLA(配列表の配列番号3)
short-KALA3:WEAKLAKALAKALA(配列表の配列番号4)
short-KALA-4U:KALAKALAKALAKALA(配列表の配列番号6)
short-KALA-3U:KALAKALAKALA(配列表の配列番号7)
short-KALA-2U:KALAKALA(配列表の配列番号8)
short-RALA3:WEARLARALARALA(配列表の配列番号9)
Specific examples of the polypeptide (I) preferably used in the present invention are shown below, but the polypeptide (I) usable in the present invention is not limited to the following examples (in the following examples, an amino acid is a single letter). Notation).
short-KALA1: WEAKLAKALAKALAKHLAKALA (SEQ ID NO: 2 in the sequence listing)
short-KALA2: WEAKLAKALAKALAKHLA (SEQ ID NO: 3 in the sequence listing)
short-KALA3: WEAKLAKALAKALA (SEQ ID NO: 4 in the sequence listing)
short-KALA-4U: KALAKALAKALAKALA (SEQ ID NO: 6 in the sequence listing)
short-KALA-3U: KALAKALAKALA (SEQ ID NO: 7 in the sequence listing)
short-KALA-2U: KALAKALA (SEQ ID NO: 8 in the sequence listing)
short-RALA3: WEARLARALARALA (SEQ ID NO: 9 in the sequence listing)
 上記ポリペプチド(I)を脂質膜構造体の脂質膜に固定する手段は特に限定されないが、例えば、ステアリル基又はコレステリル基などの疎水性基で上記ポリペプチド(I)を修飾し、該疎水性基が脂質膜構造体の脂質膜に埋没するように脂質膜構造体を調製することにより、容易に脂質膜修飾を行うことができる。疎水性基としては任意の疎水性化合物の残基を用いることができる。脂質膜構造体として脂質多重膜を有するリポソームなどを用いる場合には、上記ポリペプチド(I)による脂質膜修飾を外側の脂質膜のほか、内側の脂質膜に対して行ってもよい。 The means for immobilizing the polypeptide (I) to the lipid membrane of the lipid membrane structure is not particularly limited.For example, the polypeptide (I) is modified with a hydrophobic group such as a stearyl group or a cholesteryl group, and the hydrophobicity By preparing the lipid membrane structure so that the group is buried in the lipid membrane of the lipid membrane structure, the lipid membrane modification can be easily performed. Any hydrophobic compound residue can be used as the hydrophobic group. When a liposome having a lipid multilayer is used as the lipid membrane structure, the lipid membrane modification with the polypeptide (I) may be performed on the inner lipid membrane in addition to the outer lipid membrane.
 本発明の脂質膜構造体は細胞の核内に物質を送達するために使用することができるが、細胞の種類は特に限定されず、送達すべき物質の種類や核内への物質送達の目的などに応じて、適宜の細胞を標的とすることができる。標的とすべき細胞として、好ましくは免疫細胞を挙げることができ、免疫細胞のなかでも抗原提示細胞を好ましく用いることができる。例えばマクロファージ、樹状細胞、B細胞などの抗原提示細胞が好ましく、特に好ましいのは樹状細胞である。 The lipid membrane structure of the present invention can be used to deliver a substance into the nucleus of a cell, but the type of cell is not particularly limited, and the type of substance to be delivered and the purpose of substance delivery into the nucleus Depending on the situation, appropriate cells can be targeted. Preferred examples of the cell to be targeted include immune cells, and among the immune cells, antigen-presenting cells can be preferably used. For example, antigen-presenting cells such as macrophages, dendritic cells, and B cells are preferred, and dendritic cells are particularly preferred.
 本発明の脂質膜構造体の核内移行を促進するために、例えば、脂質膜構造体を3糖以上のオリゴ糖化合物で表面修飾することもできる。3糖以上のオリゴ糖化合物の種類は特に限定されないが、例えば、3個ないし10個程度の糖ユニットが結合したオリゴ糖化合物を用いることができ、好ましくは3個ないし6個程度の糖ユニットが結合したオリゴ糖化合物を用いることができる。 In order to promote the translocation of the lipid membrane structure of the present invention into the nucleus, for example, the lipid membrane structure can be surface-modified with an oligosaccharide compound having 3 or more sugars. The type of oligosaccharide compound having 3 or more sugars is not particularly limited. For example, an oligosaccharide compound having about 3 to about 10 sugar units bound thereto can be used, and preferably about 3 to about 6 sugar units. Bound oligosaccharide compounds can be used.
 オリゴ糖化合物としてより具体的には、例えば、セロトリオース(Cellotriose: β-D-グルコピラノシル-(1→4)-β-D-グルコピラノシル-(1→4)-D-グルコース)、カコトリオース(Chacotriose: α-L-ラムノピラノシル-(1→2)-[α-L-ラムノピラノシル-(1→4)]-D-グルコース)、ゲンチアノース(Gentianose: β-D-フルクトフラノシル β-D-グルコピラノシル-(1→6)-α-D-グルコピラノシド)、イソマルトトリオース(Isomaltotriose: α-D-グルコピラノシル-(1→6)-α-D-グルコピラノシル-(1→6)-D-グルコース)、イソパノース(Isopanose: α-D-グルコピラノシル-(1→4)-[α-D-グルコピラノシル-(1→6)]-D-グルコース)、マルトトリオース(Maltotriose: α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-D-グルコース)、マンニノトリオース(Manninotriose: α-D-ガラクトピラノシル-(1→6)-α-D-ガラクトピラノシル-(1→6)-D-グルコース)、メレジトース(Melezitose: α-D-グルコピラノシル-(1→3)-β-D-フルクトフラノシル=α-D-グルコピラノシド)、パノース (Panose: α-D-グルコピラノシル-(1→6)-α-D-グルコピラノシル-(1→4)-D-グルコース)、プランテオース(Planteose: α-D-ガラクトピラノシル-(1→6)-β-D-フルクトフラノシル=α-D-グルコピラノシド)、ラフィノース(Raffinose: β-D-フルクトフラノシル=α-D-ガラクトピラノシル-(1→6)-α-D-グルコピラノシド)、ソラトリオース(Solatriose: α-L-ラムノピラノシル-(1→2)-[β-D-グルコピラノシル-(1→3)]-D-ガラクトース)、ウンベリフェロース(Umbelliferose: β-D-フルクトフラノシル=α-D-ガラクトピラノシル-(1→2)-α-D-ガラクトピラノシド)などの3糖化合物; リコテトラオース(Lycotetraose: β-D-グルコピラノシル-(1→2)-[β-D-キシロピラノシル-(1→3)]-β-D-グルコピラノシル-(1→4)-β-D-ガラクトース)、マルトテトラオース(Maltotetraose: α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-D-グルコース)、スタキオース(Stachyose: β-D-フルクトフラノシル=α-D-ガラクトピラノシル-(1→6)-α-D-ガラクトピラノシル-(1→6)-α-D-グルコピラノシド)などの4糖化合物;マルトペンタオース(Maltopentaose: α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-D-グルコース)、ベルバスコース(Verbascose: β-D-フルクトフラノシル=α-D-ガラクトピラノシル-(1→6)-α-D-ガラクトピラノシル-(1→6)-α-D-ガラクトピラノシル-(1→6)-α-D-グルコピラノシド)などの5糖化合物;マルトヘキサオース(Maltohexaose: α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-α-D-グルコピラノシル-(1→4)-D-グルコース)などの6糖化合物を挙げることができるが、これらに限定されることはない。 More specifically, examples of the oligosaccharide compound include cellotriose (Cellotriose: β-D-glucopyranosyl- (1 → 4) -β-D-glucopyranosyl- (1 → 4) -D-glucose), chacotriose: α -L-rhamnopyranosyl- (1 → 2)-[α-L-rhamnopyranosyl- (1 → 4)]-D-glucose), gentianose (Gentianose: β-D-fructofuranosyl β-D-glucopyranosyl- (1 → 6) -α-D-glucopyranoside), isomaltotriose (Isomaltotriose: α-D-glucopyranosyl- (1 → 6) -α-D-glucopyranosyl- (1 → 6) -D-glucose), isopanose : Α-D-glucopyranosyl- (1 → 4)-[α-D-glucopyranosyl- (1 → 6)]-D-glucose), maltotriose (Maltotriose: α-D-glucopyranosyl- (1 → 4)- α-D-Glucopyranosyl- (1 → 4) -D-glucose), Manninotriose: α-D-galactopyranosyl- (1 → 6) -α-D-galactopyrano -(1 → 6) -D-glucose), melezitose: α-D-glucopyranosyl- (1 → 3) -β-D-fructofuranosyl = α-D-glucopyranoside), panose (Panose: α -D-glucopyranosyl- (1 → 6) -α-D-glucopyranosyl- (1 → 4) -D-glucose), planteose (Planteose: α-D-galactopyranosyl- (1 → 6) -β- D-fructofuranosyl = α-D-glucopyranoside), raffinose (β-D-fructofuranosyl = α-D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside), soratriose (Solatriose: α-L-rhamnopyranosyl- (1 → 2)-[β-D-glucopyranosyl- (1 → 3)]-D-galactose), Umbelliferose: β-D-fructofuranosyl = α Trisaccharide compounds such as -D-galactopyranosyl- (1 → 2) -α-D-galactopyranoside); Lycotetraose: β-D-glucopyranosyl- (1 → 2)-[β- D-Xylopyranosyl- (1 → 3)]-β-D-glucopyranosyl- (1 → 4) -β-D-galactose), maltotetraose: α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-Glucopyranosyl- (1 → 4) -D-glucose), Stachyose (β-D-fructofuranosyl = α-D-galactopyranosyl- (1 → 6) -α- Tetrasaccharide compounds such as D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside); maltopentaose: altα-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- ( 1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -D-glucose), Verbascose: β-D-fructofuranosyl = α -D-galactopyranosyl- (1 → 6) -α-D-galactopyranosyl- (1 → 6) -α-D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside) 5 sugar compounds such as maltohexaose: α-D-glucopyranosyl- (1 → 4) -α-D- (Lucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -D-glucose) A hexasaccharide compound may be mentioned, but is not limited thereto.
 好ましくはグルコースの3量体ないし6量体であるオリゴ糖化合物を用いることができ、さらに好ましくはグルコースの3量体又は4量体であるオリゴ糖化合物を用いることができる。より具体的には、イソマルトトリオース、イソパノース、マルトトリオース、マルトテトラオース、マルトペンタオース、又はマルトヘキサオースなどを好適に用いることができ、これらのうち、グルコースがα1-4結合したマルトトリオース、マルトテトラオース、マルトペンタオース、又はマルトヘキサオースがさらに好ましい。特に好ましいのはマルトトリオース又はマルトテトラオースであり、最も好ましいのはマルトトリオースである。オリゴ糖化合物による脂質膜構造体の表面修飾量は特に限定されないが、例えば、総脂質量に対して1~30モル%程度、好ましくは2~20モル%程度、より好ましくは5~10モル%程度である。 Preferably, an oligosaccharide compound that is a trimer or hexamer of glucose can be used, and more preferably, an oligosaccharide compound that is a trimer or tetramer of glucose can be used. More specifically, isomaltotriose, isopanose, maltotriose, maltotetraose, maltopentaose, maltohexaose, etc. can be suitably used, and among these, malto in which glucose is α1-4 bonded. More preferred is triose, maltotetraose, maltopentaose, or maltohexaose. Particularly preferred is maltotriose or maltotetraose, and most preferred is maltotriose. The amount of surface modification of the lipid membrane structure by the oligosaccharide compound is not particularly limited. For example, it is about 1 to 30 mol%, preferably about 2 to 20 mol%, more preferably 5 to 10 mol% with respect to the total amount of lipid. Degree.
 オリゴ糖化合物で脂質膜構造体を表面修飾する方法は特に限定されないが、例えば、脂質膜構造体をガラクトースやマンノースなどの単糖で表面を修飾したリポソーム(国際公開WO2007/102481)が知られているので、この刊行物に記載された表面修飾方法を採用することができる。上記刊行物の開示の全てを参照により本明細書の開示として含める。この手段はポリアルキレングリコール化脂質に単糖化合物を結合して脂質膜構造体の表面修飾を行なう方法であり、この手段により脂質膜構造体の表面をポリアルキレングリコールにより同時に修飾することができるので好ましい。 The method of modifying the surface of the lipid membrane structure with an oligosaccharide compound is not particularly limited. For example, liposomes whose surfaces are modified with monosaccharides such as galactose and mannose (International Publication WO2007 / 102481) are known. Therefore, the surface modification method described in this publication can be adopted. The entire disclosures of the above publications are incorporated herein by reference. This method is a method in which a monosaccharide compound is bonded to a polyalkylene glycolated lipid to modify the surface of the lipid membrane structure. By this means, the surface of the lipid membrane structure can be simultaneously modified with polyalkylene glycol. preferable.
 脂質膜構造体の表面をポリアルキレングリコールなどの親水性ポリマーで修飾することによりリポソームの血中滞留性を高めることができる。この手段については、例えば、特開平1-249717号公報、特開平2-149512号公報、特開平4-346918号公報、特開2004-10481号公報などに記載されている。親水性ポリマーとしてはポリアルキレングリコールが好ましい。ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコールなどを用いることができる。ポリアルキレングリコールの分子量は、例えば300~10,000程度、好ましくは500~10,000、さらに好ましくは1,000~5,000程度である。 By modifying the surface of the lipid membrane structure with a hydrophilic polymer such as polyalkylene glycol, the blood retention of liposomes can be enhanced. This means is described in, for example, Japanese Patent Application Laid-Open No. 1-249717, Japanese Patent Application Laid-Open No. 2-149512, Japanese Patent Application Laid-Open No. 4-346918, Japanese Patent Application Laid-Open No. 2004-10481, and the like. As the hydrophilic polymer, polyalkylene glycol is preferable. As polyalkylene glycol, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol and the like can be used. The molecular weight of the polyalkylene glycol is, for example, about 300 to 10,000, preferably about 500 to 10,000, and more preferably about 1,000 to 5,000.
 ポリアルキレングリコールによる脂質膜構造体の表面修飾は、例えばポリアルキレングリコール修飾脂質を脂質膜構成脂質として用いて脂質膜構造体を構築することにより容易に行なうことができる。例えば、ポリエチレングリコールによる修飾を行う場合にはステアリル化ポリエチレングリコール(例えばステアリン酸PEG45(STR-PEG45)など)を用いることができる。その他、N-{カルボニル-メトキシポリエチレングリコール-2000}-1,2-ジパルミトイル-sn-グリセロ-3-ホスフォエタノールアミン、n-{カルボニル-メトキシポリエチレングリコール-5000}-1,2-ジパルミトイル-sn-グリセロ-3-ホスフォエタノールアミン、N-{カルボニル-メトキシポリエチレングリコール-750}-1,2-ジステアロイル-sn-グリセロ-3-ホスフォエタノールアミン、N-{カルボニル-メトキシポリエチレングリコール-2000}-1,2-ジステアロイル-sn-グリセロ-3-ホスフォエタノールアミン、N-{カルボニル-メトキシポリエチレングリコール-5000}-1,2-ジステアロイル-sn-グリセロ-3-ホスフォエタノールアミンなどのポリエチレングリコール誘導体などを用いることもできるが、ポリアルキレングリコール化脂質はこれらに限定されることはない。 The surface modification of the lipid membrane structure with polyalkylene glycol can be easily performed by constructing a lipid membrane structure using, for example, a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid. For example, in the case of modification with polyethylene glycol, stearyl polyethylene glycol (for example, PEG45 stearate (STR-PEG45) or the like) can be used. Others, N- {carbonyl-methoxypolyethyleneglycol-2000} -1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, n- {carbonyl-methoxypolyethyleneglycol-5000} -1,2-dipalmitoyl -sn-glycero-3-phosphoethanolamine, N- {carbonyl-methoxypolyethylene glycol-750} -1,2-distearoyl-sn-glycero-3-phosphoethanolamine, N- {carbonyl-methoxypolyethylene glycol -2000} -1,2-distearoyl-sn-glycero-3-phosphoethanolamine, N- {carbonyl-methoxypolyethylene glycol-5000} -1,2-distearoyl-sn-glycero-3-phosphoethanol Polyethylene glycol derivatives such as amines can also be used, but polyalkylene glycolated lipids are not limited to these.
 例えば、ポリアルキレングリコールで修飾された上記ポリペプチド(I)を用いて脂質膜構造体の表面修飾を行うこともできる。例えば、適当なリン脂質が縮合したポリアルキレングリコール、例えばステアリル化ポリエチレングリコールで修飾された上記ポリペプチド(I)を使用することができる。例えば、ポリアルキレングリコールをN末端又はC末端のシステイン(Cys)残基に縮合させたポリペプチドを利用することが好ましい。この態様により、ポリアルキレングリコールと上記ポリペプチド(I)とによる脂質膜修飾を同時に達成することができる。 For example, the surface modification of the lipid membrane structure can be performed using the polypeptide (I) modified with polyalkylene glycol. For example, the above-mentioned polypeptide (I) modified with a polyalkylene glycol condensed with an appropriate phospholipid, such as stearyl polyethylene glycol, can be used. For example, it is preferable to use a polypeptide obtained by condensing polyalkylene glycol with an N-terminal or C-terminal cysteine (Cys) residue. According to this embodiment, the lipid membrane modification with the polyalkylene glycol and the polypeptide (I) can be simultaneously achieved.
 また、ポリアルキレングリコールにオリゴ糖化合物を結合させることにより、ポリアルキレングリコール及びオリゴ糖化合物による表面修飾を同時に達成することができる。もっとも、脂質膜構造体をポリアルキレングリコールやオリゴ糖化合物で表面修飾する方法は上記の方法に限定されることはなく、例えば、ステアリル化されたポリアルキレングリコールやオリゴ糖化合物など脂質化された化合物を脂質膜構造体の構成脂質として使用することにより、表面修飾を行なうことができる場合もある。 In addition, surface modification with the polyalkylene glycol and the oligosaccharide compound can be simultaneously achieved by bonding the oligosaccharide compound to the polyalkylene glycol. However, the method of surface-modifying the lipid membrane structure with a polyalkylene glycol or oligosaccharide compound is not limited to the above-mentioned method. For example, a lipidated compound such as stearyl polyalkylene glycol or oligosaccharide compound is used. In some cases, surface modification can be performed by using as a constituent lipid of the lipid membrane structure.
 本発明の脂質膜構造体の製造にあたり、血中滞留性を高めるための脂質誘導体として、例えば、グリコフォリン、ガングリオシドGM1、ホスファチジルイノシトール、ガングリオシドGM3、グルクロン酸誘導体、グルタミン酸誘導体、ポリグリセリンリン脂質誘導体などを利用することもできる。また、血中滞留性を高めるための親水性ポリマーとして、ポリアルキレングリコールのほかにデキストラン、プルラン、フィコール、ポリビニルアルコール、スチレン-無水マレイン酸交互共重合体、ジビニルエーテル-無水マレイン酸交互共重合体、アミロース、アミロペクチン、キトサン、マンナン、シクロデキストリン、ペクチン、カラギーナンなどを表面修飾に用いることもできる。 In the production of the lipid membrane structure of the present invention, examples of lipid derivatives for enhancing retention in blood include glycophorin, ganglioside GM1, phosphatidylinositol, ganglioside GM3, glucuronic acid derivatives, glutamic acid derivatives, polyglycerin phospholipid derivatives, etc. Can also be used. In addition to polyalkylene glycol, dextran, pullulan, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer as well as polyalkylene glycol are used as hydrophilic polymers to enhance blood retention. Amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, carrageenan and the like can also be used for surface modification.
 エンドソーム内から脂質膜構造体を細胞質中に効率的に脱出させるために本発明の脂質膜構造体の脂質膜をGALAで修飾してもよい。例えば、特開2006-28030号公報にはGALAで表面修飾を施したリポソームが開示されているので、上記公報に記載された方法に従って、GALAで表面修飾した脂質膜構造体を容易に製造することができる。一般的にはGALAのコレステロール誘導体(Chol-GALA)を脂質成分として用いて脂質膜構造体を調製することにより、GALAで表面修飾した脂質膜構造体を製造することができる。GALAによる表面修飾量は特に限定されないが、例えば、総脂質量に対して0.01~10モル%程度、好ましくは0.1~4モル%程度、より好ましくは1~3モル%程度である。 In order to efficiently escape the lipid membrane structure from the endosome into the cytoplasm, the lipid membrane of the lipid membrane structure of the present invention may be modified with GALA. For example, since JP-A-2006-28030 discloses a liposome surface-modified with GALA, a lipid membrane structure surface-modified with GALA can be easily produced according to the method described in the above-mentioned publication. Can do. In general, by preparing a lipid membrane structure using a GALA cholesterol derivative (Chol-GALA) as a lipid component, a lipid membrane structure surface-modified with GALA can be produced. The surface modification amount by GALA is not particularly limited, but is, for example, about 0.01 to 10 mol%, preferably about 0.1 to 4 mol%, more preferably about 1 to 3 mol%, based on the total lipid amount.
 本明細書において「GALA」の用語には特開2006-28030号公報の配列表の配列番号1により特定されるペプチドのほか、上記ペプチドのアミノ酸配列において1又は数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列からなり、実質的にGALAと同様の性質(例えば酸性条件下において脂質膜同士を融合できる性質)を有する修飾ペプチドも包含される。本明細書における「GALA」の用語をいかなる意味においても限定して解釈してはならない。GALA及びGALAによる脂質膜構造体の表面修飾方法に関して、特開2006-28030号公報の開示の全てを参照により本明細書の開示として含める。 In the present specification, the term “GALA” includes deletion and substitution of one or several amino acids in the amino acid sequence of the peptide in addition to the peptide specified by SEQ ID NO: 1 in the sequence listing of JP-A-2006-28030. And / or a modified peptide consisting of an added amino acid sequence and having substantially the same properties as GALA (for example, properties capable of fusing lipid membranes under acidic conditions). The term “GALA” herein should not be construed as limiting in any way. Regarding the surface modification method of the lipid membrane structure by GALA and GALA, the entire disclosure of JP-A-2006-28030 is included as a disclosure of the present specification by reference.
 本発明の脂質膜構造体の表面をMPCポリマーで修飾することもできる。MPCポリマーは2-メタクリロイルオキシエチルホスホリルコリン(MPC)を重合して得られるMPCポリマーである。このポリマーは生体膜と類似の分子構造を有していることからポリペプチドや血球などの生体成分との相互作用が極めて小さく、優れた生体適合性を有することが示されている。本明細書において、「MPCポリマー」の用語にはMPCのホモポリマー、及びMPCと他の重合成分とのコポリマーのいずれも包含される。 The surface of the lipid membrane structure of the present invention can be modified with an MPC polymer. The MPC polymer is an MPC polymer obtained by polymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC). Since this polymer has a molecular structure similar to that of a biological membrane, interaction with biological components such as polypeptides and blood cells is extremely small, and it has been shown to have excellent biocompatibility. In the present specification, the term “MPC polymer” includes both a homopolymer of MPC and a copolymer of MPC and other polymerization components.
 MPCポリマーは市販のポリマーを容易に入手することができる。例えば、日油株式会社から登録商標「リピジュア(LIPIDURE)」としてMPCのホモポリマー(CAS: 67881-99-6);MPCとブチルメタクリレートとのコポリマー(CAS: 125275-25-4);MPC、メタクリル酸ナトリウム、メタクリル酸ブチルの3元コポリマー;MPCと2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルトリメチルアンモニウムクロリドとの2元コポリマー;リン脂質ポリマー(LIPIDURE-S)などが提供されており、いずれも本発明に用いることができる。 ∙ MPC polymers can be easily obtained from commercially available polymers. For example, MPC homopolymer (CAS: 67881-99-6); MPC and butyl methacrylate copolymer (CAS: 125275-25-4); MPC, methacrylic as a registered trademark “LIPIDURE” from NOF Corporation Ternary copolymer of sodium acid and butyl methacrylate; binary copolymer of MPC and 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride; phospholipid polymer (LIPIDURE-S), etc. Can also be used in the present invention.
 本発明において用いられるMPCポリマーの種類は特に限定されないが、例えば、MPCとブチルメタクリレートなどのメタクリル酸エステルとのコポリマー、特にブロックコポリマーなどを好ましく用いることができる。このコポリマーについては特許第2890316号公報に製造方法が詳細に記載されており、当業者はこの特許公報を参照することにより所望のコポリマーを容易に製造することができる。この特許公報の開示の全てを参照により本明細書の開示として含める。本発明においては、水溶性を有し、かつ疎水性基を有するMPCポリマーを用いることが好ましいが、このような観点から炭素数4ないし18程度のアクリル酸エステル又はメタクリル酸エステルを用いて製造されたMPCコポリマーを好適に使用することができる。MPCとブチルメタクリレート(BMA)とのコポリマーとしては、例えば、MPCとBMAのモル比が5:5のコポリマー(PMB50)やMPCとBMAのモル比が3:7のコポリマー(PMB30)などが知られており、例えば、Polymer Journal, 22, pp.355-360, 1990などに記載の方法に従って容易に調製することが可能である(例えば特開2007-314526号公報に具体的な製造方法の説明がある)。本発明にはPMB50を特に好ましく用いることができる。MPCポリマーの重合度や分子量は特に限定されないが、例えば、水溶性を維持する観点から平均分子量(重量平均分子量)が5,000~300,000程度、好ましくは10,000~100,000程度のポリマーを用いることができる。 The type of MPC polymer used in the present invention is not particularly limited, but for example, a copolymer of MPC and a methacrylic acid ester such as butyl methacrylate, particularly a block copolymer can be preferably used. The production method of this copolymer is described in detail in Japanese Patent No. 2890316, and those skilled in the art can easily produce a desired copolymer by referring to this patent publication. The entire disclosure of this patent publication is incorporated herein by reference. In the present invention, it is preferable to use an MPC polymer having water solubility and a hydrophobic group. From such a viewpoint, it is produced using an acrylic acid ester or methacrylic acid ester having about 4 to 18 carbon atoms. MPC copolymers can be preferably used. As a copolymer of MPC and butyl methacrylate (BMA), for example, a copolymer with a molar ratio of MPC and BMA of 5: 5 (PMB50) and a copolymer with a molar ratio of MPC and BMA of 3: 7 (PMB30) are known. For example, it can be easily prepared according to the method described in Polymer Journal, 22, pp.355-360, な ど 1990, etc. (for example, a specific description of the production method is described in JP-A-2007-314526). is there). In the present invention, PMB50 can be particularly preferably used. The degree of polymerization and molecular weight of the MPC polymer are not particularly limited. For example, a polymer having an average molecular weight (weight average molecular weight) of about 5,000 to 300,000, preferably about 10,000 to 100,000 can be used from the viewpoint of maintaining water solubility.
 MPCポリマーで脂質膜構造体を修飾する方法は特に限定されないが、例えば、リポソームなどの脂質膜構造体の水性分散物にMPCポリマーを添加し、室温で数分から数時間程度放置すればよい。上記水性分散物へのMPCポリマーの添加量は特に限定されないが、修飾すべきMPCポリマーの量に応じて、例えば、脂質膜構造体の総脂質量に対して0.01~1質量%の範囲、好ましくは0.1~10質量%、さらに好ましくは0.1~3質量%程度のMPCポリマーを添加すればよい。この操作によりMPCポリマーは速やかに脂質膜構造体の脂質成分に取り込まれ、表面がMPCポリマーで修飾された脂質膜構造体を調製することができる。MPCポリマーによる表面修飾量は特に限定されないが、例えば脂質膜構造体の総脂質量に対して0.1~5質量%程度の範囲である。 The method of modifying the lipid membrane structure with the MPC polymer is not particularly limited. For example, the MPC polymer may be added to an aqueous dispersion of a lipid membrane structure such as a liposome and allowed to stand at room temperature for several minutes to several hours. The amount of the MPC polymer added to the aqueous dispersion is not particularly limited, but depending on the amount of the MPC polymer to be modified, for example, in the range of 0.01 to 1% by mass with respect to the total lipid amount of the lipid membrane structure, preferably May be added in an amount of about 0.1 to 10% by mass, more preferably about 0.1 to 3% by mass. By this operation, the MPC polymer is rapidly incorporated into the lipid component of the lipid membrane structure, and a lipid membrane structure whose surface is modified with the MPC polymer can be prepared. The amount of surface modification by the MPC polymer is not particularly limited, but is, for example, in the range of about 0.1 to 5% by mass with respect to the total lipid amount of the lipid membrane structure.
 本発明の脂質膜構造体は、ステロール、又はグリセリン若しくはその脂肪酸エステルなどの膜安定化剤、トコフェロール、没食子酸プロピル、パルミチン酸アスコルビル、又はブチル化ヒドロキシトルエンなどの抗酸化剤、荷電物質、及び膜ポリペプチドなどからなる群から選ばれる1種又は2種以上の物質を含んでいてもよい。正荷電を付与する荷電物質としては、例えば、ステアリルアミン、オレイルアミンなどの飽和又は不飽和脂肪族アミン;ジオレオイルトリメチルアンモニウムプロパンなどの飽和又は不飽和カチオン性合成脂質;あるいはカチオン性ポリマーなどを挙げることができ、負電荷を付与する荷電物質としては、例えば、ジセチルホスフェート、コレステリルヘミスクシネート、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸などを挙げることができる。膜ポリペプチドとしては、例えば、膜表在性ポリペプチド、又は膜内在性ポリペプチドなどが挙げられる。これらの物質の配合量は特に限定されず、目的に応じて適宜選択することができる。 The lipid membrane structure of the present invention comprises a sterol or a membrane stabilizer such as glycerin or a fatty acid ester thereof, an antioxidant such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene, a charged substance, and a membrane. One or two or more substances selected from the group consisting of polypeptides and the like may be included. Examples of the charged substance imparting positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine; saturated or unsaturated cationic synthetic lipids such as dioleoyltrimethylammoniumpropane; or cationic polymers. Examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Examples of the membrane polypeptide include a membrane superficial polypeptide or an integral membrane polypeptide. The compounding amount of these substances is not particularly limited, and can be appropriately selected according to the purpose.
 また、本発明の脂質膜構造体には、例えば、温度変化感受性機能、膜透過機能、遺伝子発現機能、及びpH感受性機能などのいずれか1つ又は2つ以上の機能を付与することができる。これらの機能を適宜付加することにより、例えば遺伝子を含む核酸などを内包する脂質膜構造体の血液中での滞留性を向上させ、肝臓や脾臓などの細網内皮系組織による捕捉率を低下させるとともに、標的細胞におけるエンドサイトーシスの後にエンドソームから効率的に脂質膜構造体を脱出させて核内に移行させることができ、核内において高い遺伝子発現活性を達成することが可能になる。 In addition, the lipid membrane structure of the present invention can be provided with any one function or two or more functions such as a temperature change sensitivity function, a membrane permeation function, a gene expression function, and a pH sensitivity function. By appropriately adding these functions, for example, the retention of a lipid membrane structure containing a nucleic acid containing a gene in blood is improved, and the capture rate by reticuloendothelial tissues such as the liver and spleen is reduced. At the same time, after endocytosis in the target cell, the lipid membrane structure can be efficiently escaped from the endosome and transferred into the nucleus, and high gene expression activity can be achieved in the nucleus.
 温度変化感受性機能を付与することができる温度変化感受性脂質誘導体としては、例えば、ジパルミトイルホスファチジルコリンなどを挙げることができる。また、pH感受性機能を付与することができるpH感受性脂質誘導体としては、例えば、ジオレオイルホスファチジルエタノールアミンなどを挙げることができる。 Examples of the temperature change sensitive lipid derivative capable of imparting a temperature change sensitive function include dipalmitoyl phosphatidylcholine and the like. Examples of the pH-sensitive lipid derivative that can impart a pH-sensitive function include dioleoylphosphatidylethanolamine.
 また、本発明の脂質膜構造体は、細胞表面の受容体や抗原に対して特異的に結合可能な抗体などの物質で修飾を施すこともでき、細胞の核内への物質送達効率を改善することができる。例えば標的組織又は臓器に特異的に発現する生体成分に対するモノクローナル抗体を脂質膜構造体の表面に配置することが好ましい。この手法は、例えば、STEALTH LIPOSOME(第233-244頁、CRC Press, Inc.発行, Danilo Lasic及びFrank Martin編)などに記載されている。脂質膜構造体の構成成分として、モノクローナル抗体やそのフラグメント(例えば、Fabフラグメント、F(ab')2フラグメント、又はFab’フラグメントなど)中のメルカプト基と反応し得る脂質誘導体、例えばポリ(エチレングリコール)-α-ジステアロイルホスファチジルエタノールアミン-ω-マレインイミド、α-[N-(1,2-ジステアロイル-sn-グリセロ-3-ホスフォリル-エチル)カルバミル)-ω-{3-[2-(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル)エタンカルボキサミド]プロピル}-ポリ(オキシ-1,2-エタンジル)などのマレインイミド構造を有する脂質誘導体を含有させることにより、モノクローナル抗体を脂質膜構造体の膜の表面に結合させることができる。 In addition, the lipid membrane structure of the present invention can be modified with a substance such as an antibody capable of specifically binding to a cell surface receptor or antigen, thereby improving the substance delivery efficiency into the cell nucleus. can do. For example, it is preferable to arrange a monoclonal antibody against a biological component specifically expressed in the target tissue or organ on the surface of the lipid membrane structure. This technique is described in, for example, STEALTH LIPOSOME (pages 233-244, issued by CRC Press, Inc., edited by Danilo Lasic and Frank Martin). As a component of the lipid membrane structure, a lipid derivative capable of reacting with a mercapto group in a monoclonal antibody or a fragment thereof (for example, Fab fragment, F (ab ′) 2 fragment, Fab ′ fragment, etc.), such as poly (ethylene glycol) ) -α-distearoylphosphatidylethanolamine-ω-maleimide, α- [N- (1,2-distearoyl-sn-glycero-3-phosphoryl-ethyl) carbamyl) -ω- {3- [2- ( By incorporating a lipid derivative having a maleimide structure such as 2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl) ethanecarboxamido] propyl} -poly (oxy-1,2-ethanedyl) The monoclonal antibody can be bound to the membrane surface of the lipid membrane structure.
 本発明の脂質膜構造体の表面は連続した複数個のアルギニン残基を含むポリペプチド(以下、「ポリアルギニン」と呼ぶ。)で修飾されていてもよい。ポリアルギニンとしては、好ましくは4ないし20個の連続したアルギニン残基を含むポリペプチド、さらに好ましくは4ないし20個の連続したアルギニン残基のみからなるポリペプチド、特に好ましくはオクタアルギニンなどを用いることができる。リポソームなどの脂質膜構造体の表面をオクタアルギニンなどのポリアルギニンで修飾することにより、リポソームに封入された目的物質の細胞内送達効率を向上させることができる(Journal of Controlled Release, 98, pp.317-323, 2004; 国際公開WO2005/32593)。ポリアルギニンによる脂質膜構造体表面の修飾は、上記の刊行物に記載された方法に従って、例えば脂質修飾ポリアルギニン、例えばステアリル化オクタアルギニンなどを脂質膜構造体の構成脂質として使用することにより容易に行なうことができる。上記刊行物の開示及びこの刊行物において引用された全ての文献の開示を参照により本明細書の開示として含める。 The surface of the lipid membrane structure of the present invention may be modified with a polypeptide containing a plurality of continuous arginine residues (hereinafter referred to as “polyarginine”). The polyarginine is preferably a polypeptide containing 4 to 20 consecutive arginine residues, more preferably a polypeptide consisting of only 4 to 20 consecutive arginine residues, particularly preferably octaarginine. Can do. By modifying the surface of a lipid membrane structure such as a liposome with polyarginine such as octaarginine, the intracellular delivery efficiency of the target substance encapsulated in the liposome can be improved (Journal of Controlled Release, ase98, pp. 317-323, 2004; International Publication WO2005 / 32593). Modification of the lipid membrane structure surface with polyarginine can be easily performed by using, for example, a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done. The disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
 さらに、本発明の脂質膜構造体の表面はINF7で修飾されていてもよい。INF7はインフルエンザHAポリペプチド(HA2)由来のペプチド(1-23)を改変したグルタミン酸リッチペプチドであり、リポソームと混在させることにより脂質構造が崩壊して内包された物質が容易に放出されることが報告されており(Biochemistry, 46, pp.13490-13504, 2007)、ポリエチレングリコールテトラアクリレート(PEG-TA)にINF7を結合させた送達システムも提案されている(The Journal of Gene Medicine, 10, pp.1134-1149, 2008)。当業者はこれらの刊行物を参照することにより本発明においてINF7を容易に使用することが可能である。本明細書において「INF7」の用語にはBiochemistry, 46, pp.13490-13504, 2007のTable 1に記載された配列により特定されるペプチドのほか、上記ペプチドのアミノ酸配列において1又は数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列からなり、実質的にINF7と同様の性質を有する修飾ペプチドも包含される。本明細書における「INF7」の用語をいかなる意味においても限定して解釈してはならない。上記刊行物の開示及びこの刊行物において引用された全ての文献の開示を参照により本明細書の開示として含める。 Furthermore, the surface of the lipid membrane structure of the present invention may be modified with INF7. INF7 is a glutamic acid-rich peptide obtained by modifying a peptide (1-23) derived from influenza HA polypeptide (HA2) .When mixed with liposomes, the lipid structure collapses and the encapsulated substance is easily released. (Biochemistry, 46, pp.13490-13504, 2007) and a delivery system in which INF7 is conjugated to polyethylene glycol tetraacrylate (PEG-TA) has also been proposed (The Journal Gene Medicine, 10, pp .1134-1149, 2008). Those skilled in the art can easily use INF7 in the present invention by referring to these publications. In this specification, the term “INF7” includes one or several amino acids in the amino acid sequence of the above peptide in addition to the peptides specified by the sequences described in Table 1 of Biochemistry, 46, pp.13490-13504, 2007. A modified peptide consisting of an amino acid sequence in which is deleted, substituted and / or added and having substantially the same properties as INF7 is also included. The term “INF7” herein should not be construed as limiting in any way. The disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
 INF7による脂質膜構造体の修飾方法は特に限定されないが、一般的には、脂質化合物とINF7とが共有結合した脂質修飾INF7を脂質膜構成脂質として用いて脂質膜構造体を構築することにより、INF7により表面修飾された脂質膜構造体を容易に製造することができる。脂質修飾INFとしては、例えばステアリル化INF7などを利用することができ、この化合物はFutaki, S. et al., Biocongug. Chem., 12(6), pp.1005-1011, 2001に記載された方法に従って容易に製造することができる。INF7による表面修飾量は特に限定されないが、一般的には脂質膜構造体の総脂質量に対して1~5 モル%の範囲であり、好ましくは総脂質量に対して3 ~5 モル%程度である。 The method of modifying the lipid membrane structure with INF7 is not particularly limited, but in general, by constructing a lipid membrane structure using lipid-modified INF7 in which a lipid compound and INF7 are covalently bound as a lipid membrane-constituting lipid, A lipid membrane structure surface-modified with INF7 can be easily produced. As the lipid-modified INF, for example, stearylated INF7 can be used, and this compound is described in Futaki, S. et al., Biocongug. Chem., 12 (6), pp.1005-1011, 2001. It can be easily manufactured according to the method. The amount of surface modification by INF7 is not particularly limited, but is generally in the range of 1 to 5 mol% with respect to the total lipid content of the lipid membrane structure, preferably about 3 to 5 mol% with respect to the total lipid content. It is.
 多機能性を付加したエンベロープ型ナノ構造体(MEND)が知られており、本発明の脂質膜構造体として好適に使用することができる。MENDは、例えば、プラスミドDNAなどの核酸とプロタミンなどのカチオン性ポリマーとの複合体をコアとし、このコアがリポソーム形態の脂質エンベロープ膜の内部に封入された構造を有している。MENDの脂質エンベロープ膜には、必要に応じてpH応答性や膜透過性を調節するためのペプチドを配置することができ、脂質エンベロープ膜の外側表面はポリエチレングリコールなどのアルキレングリコールで修飾することができる。MENDの脂質エンベロープの内部には、凝縮化されたDNA及びカチオン性ポリマーが封入されており、効率的に遺伝子発現を達成できるように設計されている。本発明に好適に使用可能なMENDとしては、所望の遺伝子を組み込んだプラスミドDNAとプロタミンとの複合体が内部に封入され、脂質エンベロープの外側表面がオリゴ糖結合PEGで修飾されたMENDが好ましい。オリゴ糖結合PEGによる修飾は構成脂質成分として上記のポリペプチド(I)が結合したステアリル化ポリエチレングリコールを用いることが好ましい。MENDについては、例えばDrug Delivery System, 22-2, pp.115-122, 2007などの総説を参照することができる。上記刊行物の開示及びこの総説において引用された全ての文献の開示を参照により本明細書の開示として含める。 Envelope-type nanostructures (MEND) with multi-functionality are known and can be suitably used as the lipid membrane structure of the present invention. MEND, for example, has a structure in which a core is a complex of a nucleic acid such as plasmid DNA and a cationic polymer such as protamine, and the core is enclosed in a lipid envelope membrane in the form of a liposome. MEND lipid envelope membranes can be equipped with peptides to adjust pH responsiveness and membrane permeability as needed, and the outer surface of lipid envelope membranes can be modified with alkylene glycols such as polyethylene glycol. it can. Inside the lipid envelope of MEND, condensed DNA and cationic polymer are encapsulated, and designed to achieve efficient gene expression. As the MEND that can be suitably used in the present invention, a MEND in which a complex of plasmid DNA incorporating a desired gene and protamine is encapsulated inside and the outer surface of the lipid envelope is modified with oligosaccharide-conjugated PEG is preferable. The modification with oligosaccharide-linked PEG preferably uses stearyl polyethylene glycol to which the above-described polypeptide (I) is bound as a constituent lipid component. For MEND, for example, reviews such as DrugDDelivery System, 22-2, pp.115-122, 2007 can be referred to. The disclosures of the above publications and the disclosures of all documents cited in this review are hereby incorporated by reference.
 脂質膜構造体の形態は特に限定されないが、例えば、水系溶媒(例えば水、生理食塩水、リン酸緩衝生理食塩水など)に分散された形態やこの水性分散物を凍結乾燥した形態などが挙げられる。 The form of the lipid membrane structure is not particularly limited, and examples thereof include a form dispersed in an aqueous solvent (for example, water, physiological saline, phosphate buffered physiological saline, etc.) and a form obtained by lyophilizing this aqueous dispersion. It is done.
 脂質膜構造体の製造方法も特に限定されず、当業者に利用可能な任意の方法を採用することができる。一例を挙げれば、全ての脂質成分をクロロホルムなどの有機溶媒に溶解し、エバポレータによる減圧乾固や噴霧乾燥機による噴霧乾燥を行うことによって脂質膜を形成した後、水系溶媒を乾燥した上記の混合物に添加し、さらにホモジナイザーなどの乳化機、超音波乳化機、又は高圧噴射乳化機などにより乳化することで製造することができる。また、リポソームを製造する方法としてよく知られている方法、例えば逆相蒸発法などによっても製造することができる。脂質膜構造体の大きさを制御したい場合には、孔径のそろったメンブランフィルターなどを用いて、高圧下でイクストルージョン(押し出し濾過)を行えばよい。分散した状態の脂質膜構造体の大きさは特に限定されないが、例えば、リポソームの場合には粒子径が50 nmから5μm程度であり、50 nmから400 nm程度が好ましく、50 nmから300 nm程度が好ましく、150 nmから250 nm程度がより好ましい。粒子径は、例えばDLS(dynamic light scattering)法により測定することができる。 The method for producing the lipid membrane structure is not particularly limited, and any method available to those skilled in the art can be employed. For example, all the lipid components are dissolved in an organic solvent such as chloroform, and after forming a lipid film by drying under reduced pressure with an evaporator or spray drying with a spray dryer, the above mixture is dried with an aqueous solvent. And further emulsifying with an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier. Moreover, it can manufacture also by the method well-known as a method of manufacturing a liposome, for example, a reverse phase evaporation method. When it is desired to control the size of the lipid membrane structure, extrusion (extrusion filtration) may be performed under high pressure using a membrane filter having a uniform pore size. The size of the lipid membrane structure in the dispersed state is not particularly limited. For example, in the case of liposomes, the particle diameter is about 50 to 5 μm, preferably about 50 to 400 nm, and about 50 to 300 nm. Is preferable, and about 150 to 250 nm is more preferable. The particle diameter can be measured, for example, by the DLS (dynamic light scattering) method.
 水系溶媒(分散媒)の組成は特に限定されないが、例えば、リン酸緩衝液、クエン酸緩衝液、リン酸緩衝生理食塩液などの緩衝液、生理食塩水、細胞培養用の培地などを挙げることができる。これら水系溶媒(分散媒)は脂質膜構造体を安定に分散させることができるが、さらに、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)や、グリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3-ブチレングリコールなどの多価アルコール(水溶液)などを加えてもよい。この水系溶媒に分散した脂質膜構造体を安定に長期間保存するには、凝集抑制などの物理的安定性の面から水系溶媒中の電解質を極力排除することが望ましい。また、脂質の化学的安定性の面からは水系溶媒のpHを弱酸性から中性付近(pH3.0から8.0程度)に設定し、及び/又は窒素バブリングなどにより溶存酸素を除去することが望ましい。 The composition of the aqueous solvent (dispersion medium) is not particularly limited, and examples thereof include a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like. Can do. These aqueous solvents (dispersion media) can stably disperse lipid membrane structures, but also glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharides, lactose, sucrose, cellobiose, trehalose. , Disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, maltitol (aqueous solutions), glycerin, diglycerin, poly Glycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoa Polyhydric alcohols (aqueous solutions) such as alkyl ether and 1,3-butylene glycol may be added. In order to stably store the lipid membrane structure dispersed in the aqueous solvent for a long period of time, it is desirable to eliminate the electrolyte in the aqueous solvent as much as possible from the viewpoint of physical stability such as aggregation suppression. In addition, from the viewpoint of chemical stability of the lipid, it is desirable to set the pH of the aqueous solvent from weakly acidic to near neutral (about pH 3.0 to 8.0) and / or to remove dissolved oxygen by nitrogen bubbling or the like. .
 得られた脂質膜構造体の水性分散物を凍結乾燥又は噴霧乾燥する場合には、例えば、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)を用いると安定性を改善できる場合がある。また、上記水性分散物を凍結する場合には、例えば、前記の糖類やグリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3-ブチレングリコールなどの多価アルコール(水溶液)を用いると安定性を改善できる場合がある。 When the aqueous dispersion of the obtained lipid membrane structure is freeze-dried or spray-dried, for example, glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharide, lactose, sucrose, cellobiose, trehalose Stability can be improved by using disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, and maltitol (aqueous solutions). There is a case. When the aqueous dispersion is frozen, for example, the saccharides, glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether If a polyhydric alcohol (aqueous solution) such as diethylene glycol monoalkyl ether or 1,3-butylene glycol is used, stability may be improved.
 本発明の脂質膜構造体、例えばリポソームの内部には、標的組織又は臓器の細胞の核内に送達すべき物質を封入することができる。封入すべき物質の種類は特に限定されないが、抗腫瘍剤、抗炎症剤、抗菌剤、抗ウイルス剤などの任意の医薬の有効成分のほか、糖類、ペプチド類、核酸類、低分子化合物、金属化合物など任意の物質を封入することができる。核酸としては、例えば遺伝子を含む核酸を挙げることができ、より具体的には、例えば、プラスミドに組み込まれた遺伝子などを挙げることができるが、この特定の態様に限定されることはない。また、遺伝子としては任意の遺伝子を用いることができることは言うまでもない。本発明の一例として、以下、核酸を封入する場合について具体的に説明するが、本発明の範囲はこの特定の態様に限定されることはない。 In the lipid membrane structure of the present invention, for example, a liposome, a substance to be delivered into the nucleus of a cell of a target tissue or organ can be encapsulated. The type of substance to be encapsulated is not particularly limited, but in addition to any active pharmaceutical ingredients such as antitumor agents, anti-inflammatory agents, antibacterial agents, antiviral agents, sugars, peptides, nucleic acids, low molecular weight compounds, metals Any substance such as a compound can be encapsulated. Examples of the nucleic acid include a nucleic acid containing a gene, and more specifically, for example, a gene incorporated in a plasmid, but are not limited to this specific embodiment. Needless to say, any gene can be used as the gene. As an example of the present invention, the case where a nucleic acid is encapsulated will be specifically described below, but the scope of the present invention is not limited to this specific embodiment.
 本発明の脂質膜構造体には、好ましくは核酸を封入することができる。核酸にはDNA又はRNAのほか、これらの類似体又は誘導体(例えば、ペプチド核酸(PNA)やホスホロチオエートDNAなど)が包含される。核酸は一本鎖又は二本鎖のいずれであってもよく、線状又は環状のいずれであってもよい。核酸には遺伝子が含まれていてもよい。遺伝子としては、オリゴヌクレオチド、DNA、又はRNAのいずれでもよく、特に形質転換などのイン・ビトロにおける導入用遺伝子や、イン・ビボで発現することにより作用する遺伝子、例えば、相同組換え用の正常遺伝子などの遺伝子治療用遺伝子などを挙げることができる。治療用の核酸としては、アンチセンスオリゴヌクレオチド、アンチセンスDNA、アンチセンスRNA、酵素、サイトカインなどの生理活性物質をコードする遺伝子のほか、遺伝子の発現を調節する機能を有する核酸、例えばsiRNAなどのRNAなどを含む機能性核酸を用いることもでき、これらも本明細書における核酸の用語に含める。本明細書において「核酸」の用語は最も広義に解釈する必要があり、いかなる意味においても限定的に解釈してはならない。例えば核酸としてDNAを用いる場合には、例えば、発現させるべき遺伝子DNAをベクターDNAに結合させて脂質膜構造体に封入することができるが、より高い遺伝子発現効率を達成するためには、該ベクターDNAがCpG配列を含まないことが好ましく、それに加えて、発現させるべき遺伝子DNAがCpG配列を含まないことがさらに好ましい場合もある。該ベクターにはエンハンサー及び/又はプロモーターが結合されていることが好ましい。 In the lipid membrane structure of the present invention, a nucleic acid can be preferably encapsulated. The nucleic acid includes DNA or RNA, and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.). The nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular. The nucleic acid may contain a gene. The gene may be any of oligonucleotide, DNA, or RNA. In particular, a gene for introduction in vitro such as transformation, a gene that acts by expression in vivo, for example, normal for homologous recombination Examples include genes for gene therapy such as genes. Examples of therapeutic nucleic acids include genes encoding physiologically active substances such as antisense oligonucleotides, antisense DNAs, antisense RNAs, enzymes and cytokines, as well as nucleic acids having a function of regulating gene expression, such as siRNAs. Functional nucleic acids including RNA and the like can also be used, and these are also included in the term nucleic acid in the present specification. In this specification, the term “nucleic acid” should be interpreted in the broadest sense, and should not be interpreted in a limited way in any sense. For example, when DNA is used as the nucleic acid, for example, the gene DNA to be expressed can be bound to the vector DNA and encapsulated in the lipid membrane structure, but in order to achieve higher gene expression efficiency, the vector It is preferred that the DNA does not contain a CpG sequence, and in addition it may be more preferred that the gene DNA to be expressed does not contain a CpG sequence. It is preferable that an enhancer and / or a promoter is bound to the vector.
 また、本発明の脂質膜構造体に核酸を封入する場合には、核酸導入機能を有する化合物を加えることもできる。このような化合物としては、例えば、O,O'-N-ジドデカノイル-N-(α-トリメチルアンモニオアセチル)-ジエタノールアミンクロリド、O,O'-N-ジテトラデカノイル-N-(α-トリメチルアンモニオアセチル)-ジエタノールアミンクロリド、O,O'-N-ジヘキサデカノイル-N-(α-トリメチルアンモニオアセチル)-ジエタノールアミンクロリド、O,O'-N-ジオクタデセノイル-N-(α-トリメチルアンモニオアセチル)-ジエタノールアミンクロリド、O,O',O''-トリデカノイル-N-(ω-トリメチルアンモニオデカノイル)アミノメタンブロミド及びN-[α-トリメチルアンモニオアセチル]-ジドデシル-D-グルタメート、ジメチルジオクタデシルアンモニウムブロミド、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキサミド)エチル)-N,N-ジメチル-1-プロパンアンモニウムトリフルオロアセテート、1,2-ジミリスチルオキシプロピル-3-ジメチル-ヒドロキシエチルアンモニウムブロミド、3-β-[N-(N',N'-ジメチルアミノエタン)カルバモイル]コレステロールなどを挙げることができる。これらの核酸導入機能を有する化合物は、脂質膜構造体の膜の任意の位置に配置されていてもよく、及び/又は脂質膜構造体の内部に充填されていてもよい。 Further, when the nucleic acid is encapsulated in the lipid membrane structure of the present invention, a compound having a nucleic acid introduction function can also be added. Examples of such compounds include O, O′-N-didodecanoyl-N- (α-trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-ditetradecanoyl-N- (α-trimethyl). Ammonioacetyl) -diethanolamine chloride, O, O'-N-dihexadecanoyl-N- (α-trimethylammonioacetyl) -diethanolamine chloride, O, O'-N-dioctadecenoyl-N- ( α-trimethylammonioacetyl) -diethanolamine chloride, O, O ', O' '-tridecanoyl-N- (ω-trimethylammoniodecanoyl) aminomethane bromide and N- [α-trimethylammonioacetyl] -didodecyl- D-glutamate, dimethyldioctadecylammonium bromide, 2,3-dioleyloxy-N- [2- (sperminecarboxamido) ethyl) -N, N-dimethyl-1-propaneammonium trifluoroacetate, 1,2 -Dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium bromide, 3-β- [N- (N ′, N′-dimethylaminoethane) carbamoyl] cholesterol and the like. These compounds having a nucleic acid introduction function may be arranged at any position of the membrane of the lipid membrane structure and / or filled in the lipid membrane structure.
 例えば、核酸を封入した脂質膜構造体は、標的組織又は臓器の細胞の核内に該核酸を送達するためのキャリアーとして用いることができる。遺伝子発現を目的とする場合には、核酸として所望の遺伝子を含む核酸を用い、上記のMENDを用いることが特に好ましい。例えば、遺伝子を含む核酸を封入した脂質膜構造体、好ましくはMENDをヒトを含む哺乳類動物に投与することにより、標的組織又は臓器の細胞の核内に所望の遺伝子を送達して効率よく発現させることができる。投与方法は特に限定されないが、非経口投与が好ましく、静脈内投与がさらに好ましい。本発明の脂質膜構造体を医薬として使用する場合には、例えば、適宜の製剤用添加物とともに医薬組成物の形態の医薬を調製して投与することができる。 For example, a lipid membrane structure encapsulating a nucleic acid can be used as a carrier for delivering the nucleic acid into the nucleus of a cell of a target tissue or organ. For the purpose of gene expression, it is particularly preferable to use a nucleic acid containing a desired gene as the nucleic acid and use the above MEND. For example, by administering a lipid membrane structure encapsulating a nucleic acid containing a gene, preferably MEND, to mammals including humans, the desired gene is delivered into the nucleus of the cells of the target tissue or organ and efficiently expressed. be able to. The administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable. When the lipid membrane structure of the present invention is used as a medicine, for example, a medicine in the form of a pharmaceutical composition can be prepared and administered together with an appropriate formulation additive.
 本発明の脂質膜構造体を用いて免疫細胞、好ましくは樹状細胞の核内に核酸を移行させると、核内において封入された核酸などの物質を効率的に放出して該核酸によりコードされるポリペプチドを発現させることができる。本発明の脂質膜構造体を用いて樹状細胞の核内にポリペプチドをコードする核酸を導入する場合には、該核酸から転写翻訳されたポリペプチドが樹状細胞の表面に提示され、生体は当該ポリペプチドに対する免疫を獲得することができるので、所望のポリペプチドに対して有効な免疫療法を行うことができるようになる。この態様は本発明において特に好ましい態様である。 When a nucleic acid is transferred into the nucleus of an immune cell, preferably a dendritic cell, using the lipid membrane structure of the present invention, a substance such as a nucleic acid encapsulated in the nucleus is efficiently released and encoded by the nucleic acid. Polypeptides can be expressed. When a nucleic acid encoding a polypeptide is introduced into the nucleus of a dendritic cell using the lipid membrane structure of the present invention, the polypeptide transcribed and translated from the nucleic acid is presented on the surface of the dendritic cell, Can acquire immunity to the polypeptide, so that effective immunotherapy can be performed against the desired polypeptide. This aspect is a particularly preferable aspect in the present invention.
 本発明により提供される脂質膜構造体はそれ自体が樹状細胞に対してアジュバント作用を発揮することができ、種々のサイトカイン産生を促進することができる。従って、本発明の脂質膜構造体を用いることにより、極めて効率的に免疫療法を行うことができる。また、本発明により提供される脂質膜構造体で形質転換した樹状細胞をヒトを含む哺乳類動物に投与することにより、アジュバントの有無にかかわらず悪性腫瘍の増悪や増殖を顕著に抑制することができ、抗原タンパク質を封入して投与することによりイン・ビボで細胞障害活性を増強することができることから、高い有効性を有する悪性腫瘍の予防ワクチン又は悪性腫瘍の治療のための医薬の有効成分として利用することができる。 The lipid membrane structure provided by the present invention itself can exert an adjuvant action on dendritic cells and can promote the production of various cytokines. Therefore, immunotherapy can be performed very efficiently by using the lipid membrane structure of the present invention. In addition, by administering dendritic cells transformed with the lipid membrane structure provided by the present invention to mammals including humans, it is possible to remarkably suppress malignant tumor exacerbation and proliferation regardless of the presence or absence of adjuvants. It is possible to enhance the cytotoxic activity in vivo by encapsulating and administering the antigen protein, so that it is a highly effective preventive vaccine for malignant tumors or as an active ingredient of a medicament for the treatment of malignant tumors. Can be used.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。MENDの製造や遺伝子発現活性評価などについては国際公開WO 2011/132713に記載された方法を参照することができる。
例1 
(1)short-KALAペプチド修飾MENDの調製
 各種プラスミドDNAを10 mM HEPES水溶液(pH 5.3)に0.15 mg/mLとなるように溶解した。0.106 mg/mL(10 mM HEPES水溶液(pH 5.3))の プロタミン(Protamine)溶液100 μLをpDNA溶液100μLへ少量ずつ攪拌しながら滴下して、プロタミンとpDNAのコンパクション体を調製した(N/P比は1.1)。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example. For the production of MEND and the evaluation of gene expression activity, the methods described in International Publication WO 2011/132713 can be referred to.
Example 1
(1) Preparation of short-KALA peptide-modified MEND Various plasmid DNAs were dissolved in 10 mM HEPES aqueous solution (pH 5.3) so as to be 0.15 mg / mL. A compact body of protamine and pDNA was prepared by adding dropwise 100 μL of Protamine solution of 0.106 mg / mL (10 mM HEPES aqueous solution (pH 5.3)) to 100 μL of pDNA solution while stirring little by little (N / P ratio). 1.1).
 5 mM PalmE 19.8μL、5 mM DOPE 26.4 μL、5 mM Cholesterol 19.8 μL及び1 mM DMG-PEG2000 9.9μLをチューブ中で混合し、PalmE:DOPE:Cholesterol:DMG-PEG2000=30:40:30:3とした。全量が200μL となるようにエタノールを加えた。この脂質溶液を撹拌しながら、200μLのコンパクション体を素早く加え、この混合溶液を10 mM HEPES溶液(pH 5.3) 1600μLへ素早く加えた。 さらに10mM HEPES 水溶液(pH 5.3)によって2倍希釈し、MWCO 100,000の遠心式限外ろ過装置を用いて濃縮を行い、100 mM HEPES緩衝液4mL で希釈を行ったのち、MWCO 100,000の遠心式限外ろ過装置により濃縮を行った。10 mM HEPES緩衝液により脂質濃度0.66 mMとなるように希釈した。特開2003-343857号公報に記載の方法で合成したステアリル化KALA(STR-KALA)(1 mg/mL水溶液)、及び各種ステアリル化short-KALA(STR-short-KALA)(1mg/mL)を総脂質の3 mol%となるように添加し、室温で10 分間静置した。試験に供した各ペプチドの配列を示す。いずれもN末端がステアリル化されている。 5 mM PalmE 19.8μL, 5 mM DOPE 26.4 μL, 5 mM Cholesterol 19.8 μL and 1 mM DMG-PEG2000 9.9μL were mixed in a tube, and PalmE: DOPE: Cholesterol: DMG-PEG2000 = 30: 30: 30: 30 did. Ethanol was added so that the total amount was 200 μL. While stirring the lipid solution, 200 μL of compaction body was quickly added, and this mixed solution was quickly added to 1600 μL of 10 mM HEPES solution (pH 5.3). Furthermore, after diluting twice with 10 mM HEPES aqueous solution (pH 5.3), concentrating using a centrifugal ultrafiltration device with MWCO 100,000, diluting with 4 mL of 100 mM HEPES buffer, and then centrifugal ultrafiltration with MWCO 100,000. Concentration was performed with a filtration device. The solution was diluted with 10 μmM HEPES buffer to a lipid concentration of 0.66 μm. Stearylated KALA (STR-KALA) (1 mg / mL aqueous solution) synthesized by the method described in JP-A-2003-343857, and various stearylated short-KALA (STR-short-KALA) (1 mg / mL) The solution was added to 3 mol% of the total lipid and allowed to stand at room temperature for 10 minutes. The sequence of each peptide subjected to the test is shown. In either case, the N-terminus is stearylated.
original KALA:WEAKLAKALAKALAKHLAKALAKALKA(配列番号1)
short-KALA1:WEAKLAKALAKALAKHLAKALA(配列番号2)
short-KALA2:WEAKLAKALAKALAKHLA(配列番号3)
short-KALA3:WEAKLAKALAKALA(配列番号4)
short-KALA4:WEAKLAKALA(配列番号5)
short-KALA-4U:KALAKALAKALAKALA(配列番号6)
short-KALA-3U:KALAKALAKALA(配列番号7)
short-KALA-2U:KALAKALA(配列番号8)
short-RALA3:WEARLARALARALA(配列番号9)
original KALA: WEAKLAKALAKALAKHLAKALAKALKA (SEQ ID NO: 1)
short-KALA1: WEAKLAKALAKALAKHLAKALA (SEQ ID NO: 2)
short-KALA2: WEAKLAKALAKALAKHLA (SEQ ID NO: 3)
short-KALA3: WEAKLAKALAKALA (SEQ ID NO: 4)
short-KALA4: WEAKLAKALA (SEQ ID NO: 5)
short-KALA-4U: KALAKALAKALAKALA (SEQ ID NO: 6)
short-KALA-3U: KALAKALAKALA (SEQ ID NO: 7)
short-KALA-2U: KALAKALA (SEQ ID NO: 8)
short-RALA3: WEARLARALARALA (SEQ ID NO: 9)
(2)マウス骨髄由来樹状細胞(BMDC)の単離・誘導
 滅菌シャーレにRPMI1640培地及びPBSをそれぞれ20 mL添加し、頚椎脱臼したC57BL/6マウス(6~8週齢)より大腿骨および頸骨を摘出し、70%エタノールで軽く消毒した後、PBSに浸した。骨の両端を切断し、培地入りの1 mLシリンジ(26G針)で骨髄細胞を培地中に押しだした。細胞懸濁液を40 μmのセルストレイナー(FALCON)を通して50 mLコニカルチューブに移した。遠心(450 g, 4℃, 5 min)後上清を除去し、タッピングして細胞を分散させた後、ACK Lysing Buffer(Lonza, Walkersville, MD)1mLを添加、混合し、室温で3~5分間静置した。培地10 mLを添加後、遠心して上清を除去し、さらに培地10 mLで2回洗浄した。次に、細胞を培地10 mLに懸濁し、10 cm細胞培養ディッシュ(FALCON)に添加し、37℃, 5% CO2条件下で4時間以上培養した。軽くピペッティングして浮遊細胞のみを50 mLコニカルチューブに回収し、遠心、上清除去後、培地10 mLに懸濁して計数した。1×106 cells/mLとなるよう培地に懸濁し、GM-CSF(終濃度10 ng/mL)を添加後、24 well plate(Corning, NY)に1 mLずつ播種し、37℃, 5% CO2条件下で2日間培養した。2日後および4日後に細胞の凝集塊を残し浮遊細胞を除去した後、新しいGM-CSF含有RPMI1640培地1 mLを添加した。GM-CSF存在下で培養開始後6~8日目の浮遊及び弱付着細胞を未成熟樹状細胞として実験に用いた。CD11c抗体(PE anti-mouse CD11c, Clone: N418, BioLegend)を用いた評価では純度は85~90%であった。
(2) Isolation and induction of mouse bone marrow-derived dendritic cells (BMDC) Femur and tibia from C57BL / 6 mice (6-8 weeks old) with RPMI1640 medium and PBS 20 mL each added to a sterile petri dish and cervical dislocation Was removed, lightly disinfected with 70% ethanol, and then immersed in PBS. Both ends of the bone were cut, and bone marrow cells were pushed into the medium with a 1 mL syringe (26G needle) containing the medium. The cell suspension was transferred to a 50 mL conical tube through a 40 μm cell strainer (FALCON). After centrifugation (450 g, 4 ° C, 5 min), the supernatant is removed and the cells are dispersed by tapping. Then, 1 mL of ACK Lysing Buffer (Lonza, Walkersville, MD) is added, mixed, and mixed at room temperature for 3-5 Let stand for a minute. After adding 10 mL of the medium, the supernatant was removed by centrifugation, and further washed twice with 10 mL of the medium. Next, the cells were suspended in 10 mL of medium, added to a 10 cm cell culture dish (FALCON), and cultured at 37 ° C. under 5% CO 2 for 4 hours or more. Lightly pipetted to collect only floating cells in a 50 mL conical tube, centrifuged, removed the supernatant, suspended in 10 mL of medium and counted. Suspend in medium to 1 × 10 6 cells / mL, add GM-CSF (final concentration 10 ng / mL), seed 1 mL each on a 24 well plate (Corning, NY), 37 ° C, 5% Cultivation was performed for 2 days under CO 2 conditions. After 2 days and 4 days, cell clumps were left and floating cells were removed, and then 1 mL of fresh GM-CSF-containing RPMI1640 medium was added. Suspended and weakly adherent cells 6-8 days after the start of culture in the presence of GM-CSF were used as immature dendritic cells in the experiment. The purity was 85 to 90% in the evaluation using the CD11c antibody (PE anti-mouse CD11c, Clone: N418, BioLegend).
(3)BMDCにおける遺伝子発現活性評価
 上記(2)に示す方法により誘導したBMDCを24wellプレートに4×105 cells/wellとなるように播種した。調製したMENDをpDNA量が0.4 μg/well含むようにRPMI 1640(血清なし)で希釈し、500 μLとなるように調製した。各wellにMEND溶液をアプライし、37℃ 5% CO2環境下でインキュベーションした。3 hr後にRPMI 1640(血清有り) 500μLを各wellに添加し、さらに21 hr後にルシフェラーゼ活性を測定した。ルシフェラーゼ活性の測定に関して、浮遊している細胞群はメディウムごと回収し、遠心(4℃、500 g、5 min)し、上清を除去することで回収した。各wellに残っている細胞、及び先に回収した浮遊細胞群にReporter Lysis Buffer(1×)を添加し、合計75 μLにした後、ピペッティングして各wellに戻し、-80℃で凍結した。-80℃で凍結させたサンプルを解凍させた後、セルスクレーパーを用いて細胞をはがし、エッペンドルフチューブに回収した。回収した細胞溶解液を15,000 rpm、4℃、2 min遠心分離し、その上清50 μLを回収した。得られた上清を用いてルシフェラーゼ活性測定(RLU/mL)を測定した。さらにBCA法によるタンパク定量(mg/mL)を行い、単位タンパク質量当たりのルシフェラーゼ活性(RLU/ mg protein)を算出した。
(3) Evaluation of gene expression activity in BMDC BMDC induced by the method shown in (2) above was seeded on a 24-well plate at 4 × 10 5 cells / well. The prepared MEND was diluted with RPMI 1640 (without serum) so that the amount of pDNA was 0.4 μg / well, and prepared to 500 μL. A MEND solution was applied to each well and incubated in a 37 ° C., 5% CO 2 environment. After 3 hr, RPMI 1640 (with serum) 500 μL was added to each well, and 21 hr later, luciferase activity was measured. Regarding the measurement of luciferase activity, the floating cell group was recovered together with the medium, centrifuged (4 ° C., 500 g, 5 min), and recovered by removing the supernatant. Reporter Lysis Buffer (1x) was added to the cells remaining in each well and the previously collected floating cells to make a total of 75 μL, then pipetted back to each well and frozen at −80 ° C. . After thawing the sample frozen at −80 ° C., the cells were removed using a cell scraper and collected in an Eppendorf tube. The collected cell lysate was centrifuged at 15,000 rpm, 4 ° C. for 2 min, and 50 μL of the supernatant was recovered. Luciferase activity measurement (RLU / mL) was measured using the obtained supernatant. Furthermore, protein quantification (mg / mL) by BCA method was performed, and luciferase activity (RLU / mg protein) per unit protein amount was calculated.
(4)BMDCにおけるサイトカイン産生能評価
 上記(2)に示す方法により誘導した24wellプレートに4×105 cells/wellとなるように播種した。調製したMENDをpDNA量が0.4 μg/well含むようにRPMI 1640(血清なし)で希釈し、500 μLとなるように調製した。各wellにMEND溶液をアプライし、37 ℃ 5% CO2環境下でインキュベーションした。3 hr後にRPMI 1640(血清有り) 500μLを各wellに添加した。さらに21 hr後に、各wellの上清を回収後、遠心(4℃、500 g、5 min)し、その上清を-80℃で凍結した。上清中のIL-6濃度をQuantikine IL-6 ELISA kit (R&D systems)を用いて定量を行った。
(4) Cytokine production ability evaluation in BMDC It seed | inoculated so that it might become 4 * 10 < 5 > cells / well to the 24 well plate induced | guided | derived by the method shown to said (2). The prepared MEND was diluted with RPMI 1640 (without serum) so that the amount of pDNA was 0.4 μg / well, and prepared to 500 μL. A MEND solution was applied to each well and incubated in a 37 ° C., 5% CO 2 environment. Three hours later, 500 μL of RPMI 1640 (with serum) was added to each well. After further 21 hr, the supernatant of each well was collected, centrifuged (4 ° C., 500 g, 5 min), and the supernatant was frozen at −80 ° C. The IL-6 concentration in the supernatant was quantified using Quantikine IL-6 ELISA kit (R & D systems).
(5)結果
 図1にルシフェラーゼをコードする遺伝子を導入した際の遺伝子発現活性を示す。オリジナルのKALAペプチド(最左:27残基、配列表の配列番号1)のC末端から順に配列を削っていった場合でも発現は維持されるが、short-KALA3において最も高い遺伝子発現が得られた。一方、さらに削ってShort-KALA4(配列表の配列番号5)まで短くすると、遺伝子発現は劇的に減少することが明らかとなった。また、このShort-KALA3のリジン(K)をアルギニン(R)に置換した場合(Short-RALA3)においても、同程度の活性を維持していた。また、short-KALA3のペプチド配列に着目すると、C末端はKALAが2回繰り返された配列を有していることから、繰り返し配列としてKALA(Lys-Ara-Arg-Ara)が重要な配列であることが示唆されたため、KALA配列を繰り返したペプチドを設計した(Short-KALA-2U~Short-KALA-4U)。その結果、どのペプチド配列においても、高い遺伝子発現を維持したが、その中でもShort-KALA3において最も高い遺伝子発現活性を維持した。
(5) Results FIG. 1 shows gene expression activity when a gene encoding luciferase is introduced. Although the expression is maintained even if the sequence is deleted sequentially from the C-terminus of the original KALA peptide (leftmost: 27 residues, SEQ ID NO: 1 in the sequence listing), the highest gene expression is obtained in short-KALA3 It was. On the other hand, it was clarified that the gene expression decreased dramatically when further cut and shortened to Short-KALA4 (SEQ ID NO: 5 in the sequence listing). Moreover, even when this lysine (K) of Short-KALA3 was substituted with arginine (R) (Short-RALA3), the same level of activity was maintained. In addition, focusing on the peptide sequence of short-KALA3, since the C-terminus has a sequence in which KALA is repeated twice, KALA (Lys-Ara-Arg-Ara) is an important sequence as a repeated sequence. Therefore, peptides with repeated KALA sequences were designed (Short-KALA-2U to Short-KALA-4U). As a result, high gene expression was maintained in any peptide sequence, but among them, the highest gene expression activity was maintained in Short-KALA3.
 サイトカインの産生レベルにおいても図1と同様の結果が得られた(図2)。オリジナルのKALA配列を削った場合、short-KALA3において最も高いサイトカイン産生が得られた。一方、遺伝子発現と同様、Short-KALA4においては発現が劇的に減少することが明らかとなった。Short-KALA3のリジン(K)をアルギニン(R)に変更したShort-RALA3でも、同程度のサイトカイン産生を維持した。また、KALA配列の繰り返しにおいても、Short-KALA-3Uにおいて最も高いサイトカイン酸性量を維持した。 The same results as in Fig. 1 were obtained at the cytokine production level (Fig. 2). When the original KALA sequence was trimmed, the highest cytokine production was obtained in short-KALA3. On the other hand, as with gene expression, it was revealed that expression was dramatically reduced in Short-KALA4. Short-KALA3 in which lysine (K) was changed to arginine (R) also maintained the same level of cytokine production. In addition, the highest cytokine acidity was maintained in Short-KALA-3U even when the KALA sequence was repeated.
例2
(1)short-KALA3ペプチド修飾MENDの調製
 例1と同様にしてshort-KALA3ペプチド修飾MENDを調製した。
 各種プラスミドDNAを10 mM HEPES水溶液(pH 5.3)に0.15 mg/mLとなるように溶解した。0.106 mg/mL(10 mM HEPES水溶液(pH 5.3))の プロタミン(Protamine)溶液100 μLをpDNA溶液100μLへ少量ずつ攪拌しながら滴下して、プロタミンとpDNAのコンパクション体を調製した(N/P比は1.1)。
Example 2
(1) Preparation of short-KALA3 peptide-modified MEND Short-KALA3 peptide-modified MEND was prepared in the same manner as in Example 1.
Various plasmid DNAs were dissolved in 10 mM HEPES aqueous solution (pH 5.3) so as to be 0.15 mg / mL. A compact body of protamine and pDNA was prepared by adding dropwise 100 μL of Protamine solution of 0.106 mg / mL (10 mM HEPES aqueous solution (pH 5.3)) to 100 μL of pDNA solution while stirring little by little (N / P ratio). 1.1).
 5 mM PalmE 19.8μL、5 mM DOPE 26.4 μL、5 mM Cholesterol 19.8 μL及び1 mM DMG-PEG2000 9.9μLをチューブ中で混合し、PalmE:DOPE:Cholesterol:DMG-PEG2000=30:40:30:3とした。全量が200μL となるようにエタノールを加えた。この脂質溶液を撹拌しながら、200μLのコンパクション体を素早く加え、この混合溶液を10 mM HEPES溶液(pH 5.3) 1600μLへ素早く加えた。 さらに10mM HEPES 水溶液(pH 5.3)によって2倍希釈し、MWCO 100,000の遠心式限外ろ過装置を用いて濃縮を行い、100 mM HEPES緩衝液4mL で希釈を行ったのち、MWCO 100,000の遠心式限外ろ過装置により濃縮を行った。さらに10 mM HEPES緩衝液4 mLで同様に希釈、濃縮を行った後、10 mM HEPES緩衝液により脂質濃度0.66 mMとなるようにPalmE MEND懸濁液を調製した。
 short-KALA3修飾型MENDを調製する際には、ステアリル化short-KALA3(STR-short-KALA3)(1mg/mL)を総脂質の0.25 mol%となるように添加し、室温で10 分間静置した。
5 mM PalmE 19.8 μL, 5 mM DOPE 26.4 μL, 5 mM Cholesterol 19.8 μL, and 1 mM DMG-PEG2000 9.9 μL were mixed in a tube, and PalmE: DOPE: Cholesterol: DMG-PEG2000 = 30: 40: 30: 30 did. Ethanol was added so that the total volume was 200 μL. While stirring this lipid solution, 200 μL of compaction body was quickly added, and this mixed solution was quickly added to 1600 μL of 10 mM HEPES solution (pH 5.3). Furthermore, after diluting twice with 10 mM HEPES aqueous solution (pH 5.3), concentrating using a centrifugal ultrafiltration device with MWCO 100,000, diluting with 4 mL of 100 mM HEPES buffer, and then centrifugal ultrafiltration with MWCO 100,000. Concentration was performed with a filtration device. Further, after dilution and concentration in the same manner with 4 mL of 10 mM HEPES buffer, a PalmE MEND suspension was prepared with 10 mM HEPES buffer so that the lipid concentration was 0.66 mM.
When preparing short-KALA3-modified MEND, add stearyl-ized short-KALA3 (STR-short-KALA3) (1 mg / mL) to 0.25 mol% of the total lipid, and leave it at room temperature for 10 minutes. did.
(2)short-KALA3修飾MENDのIn vivo CTL(cytotoxic T lymphocyte)活性
 C57BL/6マウス(雌、6週齢)に、(1)で調製したpCpGfree-OVAプラスミドDNAを内封したshort-KALA3修飾PalmE MENDを、プラスミドDNA換算量で2.4μg および1.2μgとなるように腹腔内投与した(26G針)。免疫から1週間後に、以下の方法で調製した標的細胞を投与した。まず頚椎脱臼したnaiveマウスより脾臓を摘出し、RPMI1640培地5~7.5 mLの入ったシャーレ中で細胞をほぐして5 mLシリンジを用いて細胞を回収した後、セルストレイナーを通して50 mLコニカルチューブに移した。
(2) In vivo CTL (cytotoxic T lymphocyte) activity of short-KALA3 modified MEND C57BL / 6 mice (female, 6 weeks old) with short-KALA3 modification encapsulated in pCpGfree-OVA plasmid DNA prepared in (1) PalmE MEND was intraperitoneally administered so that it would be 2.4 μg and 1.2 μg in terms of plasmid DNA (26G needle). One week after immunization, target cells prepared by the following method were administered. First, the spleen was removed from naive mice dislocated from the cervical spine, loosened in a petri dish containing 5 to 7.5 mL of RPMI1640 medium, collected using a 5 mL syringe, and then transferred to a 50 mL conical tube through a cell strainer. .
 遠心(1600~1700 rpm, 4℃, 5min)後、上清を除去しACK Lysing buffer 1 mL(/spleen)に懸濁し、室温で5 分間インキュベートして溶血した。培地で5倍希釈後に遠心・上清除去し、さらに培地 10 mLで洗浄後30 mLに懸濁して細胞数を計測した後、セルストレイナーを通して50 mLコニカルチューブ2本に移した。それぞれについて遠心・上清除去後、培地に再懸濁した(107cells/mL)。 After centrifugation (1600-1700 rpm, 4 ° C, 5 min), the supernatant was removed, suspended in 1 mL (/ spleen) of ACK Lysing buffer, and hemolyzed by incubation at room temperature for 5 minutes. After 5-fold dilution with medium, the supernatant was removed, and after washing with 10 mL of medium, the suspension was suspended in 30 mL, counted, and transferred to two 50 mL conical tubes through a cell strainer. Each was centrifuged and the supernatant removed, and then resuspended in the medium (10 7 cells / mL).
 2本のうちの1本にモデル抗原としてOVA257-264ペプチド(1 mM, 終濃度 5 μM)を添加し、この細胞懸濁液を37℃、5% CO2条件下で60分間インキュベートした。培地10 mL及びPBS 10 mLで洗浄後、OVA257-264ペプチドによってパルスした細胞群は50μM CFSE(Molecular probe)(CFSEHigh) により、また、パルスしていない細胞群は0.5 μM CFSE (CFESLow)を含むPBSに3×107 cells/mLとなるよう懸濁し、37℃で10分間インキュベーションした。RPMI1640培地10 mLで2回、PBS 10 mLで2回洗浄後、最終的にPBSに懸濁した(5×107cells/mL)。投与直前に異なる濃度で染色した2種の細胞を等量混合し、免疫したマウスに尾静脈より投与した(1×107 cells/200 μL/mouse、27G針)。 OVA 257-264 peptide (1 mM, final concentration 5 μM) was added as a model antigen to one of the two, and the cell suspension was incubated at 37 ° C. under 5% CO 2 for 60 minutes. Cell groups pulsed with OVA 257-264 peptide after washing with 10 mL of medium and 10 mL of PBS are treated with 50 μM CFSE (Molecular probe) (CFSE High ), and cells not pulsed are 0.5 μM CFSE (CFES Low ) Was suspended in PBS containing 3 × 10 7 cells / mL and incubated at 37 ° C. for 10 minutes. After washing twice with 10 mL of RPMI1640 medium and twice with 10 mL of PBS, it was finally suspended in PBS (5 × 10 7 cells / mL). Two types of cells stained at different concentrations just before administration were mixed together and administered to the immunized mouse via the tail vein (1 × 10 7 cells / 200 μL / mouse, 27G needle).
 標的細胞を投与してから20時間後に脾臓を摘出し凝集塊をほぐし、ナイロンメッシュを通して均一な細胞懸濁液とした。この細胞懸濁液を1600rpm, 4℃, 3minで遠心し、上清除去後、ACK Lysing buffer 1 mL (/spleen)を加えて室温で5分静置した。FACS buffer 9 mLを加え1600rpm, 4℃, 3minで遠心し、上清除去後FACS buffer 5 mLを加え再度遠心した。上清除去後FACS buffer 5 mLに懸濁した。調製した細胞懸濁液をナイロンメッシュを通してFACSチューブに移し、フローサイトメーターによってCFSE陽性細胞数を測定した。低濃度で染色した細胞(CFSELow)について、7,500個の細胞を解析した。CTL活性はCFSEHighとCFSELowの細胞数を比較して算出した。実験間の誤差は、naiveマウスにおけるCFSEHigh/CFSELow比により補正した。 Twenty hours after the administration of the target cells, the spleen was removed and the aggregate was loosened, and a uniform cell suspension was made through a nylon mesh. This cell suspension was centrifuged at 1600 rpm, 4 ° C., 3 min. After removing the supernatant, 1 mL of ACK Lysing buffer (/ spleen) was added, and the mixture was allowed to stand at room temperature for 5 minutes. 9 mL of FACS buffer was added and centrifuged at 1600 rpm, 4 ° C., 3 min. After removing the supernatant, 5 mL of FACS buffer was added and centrifuged again. After removing the supernatant, it was suspended in 5 mL of FACS buffer. The prepared cell suspension was transferred to a FACS tube through a nylon mesh, and the number of CFSE positive cells was measured with a flow cytometer. For cells stained at a low concentration (CFSE Low ), 7,500 cells were analyzed. CTL activity was calculated by comparing the number of cells in CFSE High and CFSE Low . The error between experiments was corrected by the CFSE High / CFSE Low ratio in naive mice.
 その結果、プラスミドDNA換算量で2.4μg および1.2μgのいずれのPalmE MEND投与量においても、short-KALA3修飾PalmE MENDの腹腔内投与群のCTL活性(%Lysis)は、short-KALA3未修飾PalmE MEND投与群のCTL活性よりも高い値が得られた(図3)。これによりPalmE MENDへshort-KALA3を修飾することによりCTL活性が向上することが明らかとなった。 As a result, the CTL activity (% Lysis) in the intraperitoneal administration group of short-KALA3 modified PalmEENDMEND was short-KALA3 unmodified PalmE MEND at both 2.4 μg and 1.2 μg of PalmE MEND dose in terms of plasmid DNA. A value higher than the CTL activity of the administration group was obtained (FIG. 3). This revealed that CTL activity was improved by modifying short-KALA3 to PalmE MEND.
 本発明により提供される脂質膜構造体は樹状細胞を含む免疫細胞などの任意の細胞の核内に効率的に移行することができ、核内において封入された核酸などの物質を効率的に放出して該核酸によりコードされるポリペプチドを発現させることができること、さらには、効率的なアジュバント効果も発揮することができることから、所望のポリペプチドに対して有効な免疫療法を行うことができるという特徴がある。特に、本発明の脂質膜構造体はイン・ビボにおいて効率的に細胞の核内に移行することができ、核内において封入された核酸などの物質を効率的に放出することができることから、医薬として好適に使用することができる。 The lipid membrane structure provided by the present invention can efficiently migrate into the nucleus of any cell such as immune cells including dendritic cells, and efficiently transfer substances such as nucleic acids encapsulated in the nucleus. Since it can be released to express the polypeptide encoded by the nucleic acid, and it can also exert an efficient adjuvant effect, effective immunotherapy can be performed on the desired polypeptide. There is a feature. In particular, the lipid membrane structure of the present invention can be efficiently transferred into the nucleus of a cell in vivo, and a substance such as a nucleic acid encapsulated in the nucleus can be efficiently released. Can be suitably used.

Claims (19)

  1. 細胞の核内に物質を送達するための脂質膜構造体であって、脂質膜が下記のポリペプチド(I):
    アミノ酸残基数が8~26個のポリペプチドであって、ペプチド鎖中にテトラペプチド:Lys-Ara-Leu-Araの繰り返し単位を連続して2~4個含むポリペプチド(ただし該繰り返し単位のうちのいずれか1個又は2個以上においてLysがArgとなっていてもよく、及び/又は該繰り返し単位のうちのいずれか1個においてLysとLeuに挟まれるAraがHisとなっていてもよい)
    で修飾された脂質膜構造体。
    A lipid membrane structure for delivering a substance into the nucleus of a cell, the lipid membrane comprising the following polypeptide (I):
    A polypeptide having 8 to 26 amino acid residues and comprising 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain in succession (however, the repeating unit Lys may be Arg in any one or more of them, and / or Ara sandwiched between Lys and Leu in any one of the repeating units may be His. )
    Lipid membrane structure modified with
  2. ポリペプチド(I)がLys-Ara-Leu-Araの繰り返し単位を連続して2個含むか、又はArg-Ara-Leu-Araの繰り返し単位を連続して2個含むポリペプチドである請求項1に記載の脂質膜構造体。 2. The polypeptide (I) is a polypeptide containing two consecutive repeating units of Lys-Ara-Leu-Ara or two consecutive repeating units of Arg-Ara-Leu-Ara. The lipid membrane structure described in 1.
  3. ポリペプチドが請求項2に記載された連続した2個の繰り返し単位のN末端にTrp-Glu-Ara-Lys-Leu-Ara又はTrp-Glu-Ara-Arg-Leu-Araの配列が結合したポリペプチドである請求項2に記載の脂質膜構造体。 A polypeptide in which the sequence of Trp-Glu-Ara-Lys-Leu-Ara or Trp-Glu-Ara-Arg-Leu-Ara is bound to the N-terminus of two consecutive repeating units according to claim 2 The lipid membrane structure according to claim 2, which is a peptide.
  4. ポリペプチドがTrp-Glu-Ara-Lys-Leu-Ara-Lys-Ara-Leu-Ara-Lys-Ara-Leu-Ara又はTrp-Glu-Ara-Arg-Leu-Ara-Arg-Ara-Leu-Ara-Arg-Ara-Leu-Araである請求項1に記載の脂質膜構造体。 The polypeptide is Trp-Glu-Ara-Lys-Leu-Ara-Lys-Ara-Leu-Ara-Lys-Ara-Leu-Ara or Trp-Glu-Ara-Arg-Leu-Ara-Arg-Ara-Leu-Ara The lipid membrane structure according to claim 1, which is -Arg-Ara-Leu-Ara.
  5. 脂質膜構造体の脂質成分として第3級アミン及びジスルフィド結合を有する脂質を含む請求項1ないし4のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 4, comprising a lipid having a tertiary amine and a disulfide bond as a lipid component of the lipid membrane structure.
  6. 脂質膜構造体がリポソームである請求項1ないし5のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 5, wherein the lipid membrane structure is a liposome.
  7. 細胞が免疫細胞である請求項1ないし6のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 6, wherein the cell is an immune cell.
  8. 上記ポリペプチド(I)が疎水性基で修飾されており、前記疎水性基が脂質膜に挿入された請求項1ないし7のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 7, wherein the polypeptide (I) is modified with a hydrophobic group, and the hydrophobic group is inserted into the lipid membrane.
  9. 連続した複数個のアルギニン残基を含むポリペプチドを表面に有する請求項1ないし8のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 8, which has a polypeptide containing a plurality of continuous arginine residues on its surface.
  10. ポリアルキレングリコールを表面に有する請求項1ないし9のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 9, having a polyalkylene glycol on the surface.
  11. 免疫細胞表面に提示すべき抗原ポリペプチドをコードする核酸を該細胞の核内に導入するために用いる請求項1ないし10のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 10, which is used for introducing a nucleic acid encoding an antigen polypeptide to be presented on the surface of an immune cell into the nucleus of the cell.
  12. 送達すべき物質が内部に封入された請求項1ないし10のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 10, wherein a substance to be delivered is encapsulated therein.
  13. 内部に核酸及びカチオン性ポリマーが封入された請求項12に記載の脂質膜構造体。 The lipid membrane structure according to claim 12, wherein a nucleic acid and a cationic polymer are encapsulated therein.
  14. 送達すべき物質が免疫細胞表面に提示すべき抗原ポリペプチドをコードする核酸である請求項12又は13に記載の脂質膜構造体。 The lipid membrane structure according to claim 12 or 13, wherein the substance to be delivered is a nucleic acid encoding an antigen polypeptide to be presented on the surface of immune cells.
  15. 上記抗原ポリペプチドに対する免疫療法に用いるための請求項14に記載の脂質膜構造体。 The lipid membrane structure according to claim 14 for use in immunotherapy against the antigen polypeptide.
  16. 該核酸がDNAであり、該DNAがCpGを含まないDNAである請求項13又は14に記載の脂質膜構造体。 The lipid membrane structure according to claim 13 or 14, wherein the nucleic acid is DNA, and the DNA does not contain CpG.
  17. 請求項12ないし16のいずれか1項に記載の脂質膜構造体を有効成分として含む医薬組成物。 A pharmaceutical composition comprising the lipid membrane structure according to any one of claims 12 to 16 as an active ingredient.
  18. 悪性腫瘍の予防及び/又は治療のために用いる請求項17に記載の医薬組成物。 The pharmaceutical composition according to claim 17, which is used for prevention and / or treatment of a malignant tumor.
  19. 細胞の核内への脂質膜構造体の移行を促進するために用いるポリペプチドであって、下記のポリペプチド(I):
    アミノ酸残基数が8~26個のポリペプチドであって、ペプチド鎖中にテトラペプチド:Lys-Ara-Leu-Araの繰り返し単位を連続して2~4個含むポリペプチド(ただし該繰り返し単位のうちのいずれか1個又は2個以上においてLysがArgとなっていてもよく、及び/又は該繰り返し単位のうちのいずれか1個においてLysとLeuに挟まれるAraがHisとなっていてもよい)
    A polypeptide used for promoting the transfer of a lipid membrane structure into the nucleus of a cell, comprising the following polypeptide (I):
    A polypeptide having 8 to 26 amino acid residues and comprising 2 to 4 repeating units of tetrapeptide: Lys-Ara-Leu-Ara in the peptide chain in succession (however, the repeating unit Lys may be Arg in any one or more of them, and / or Ara sandwiched between Lys and Leu in any one of the repeating units may be His. )
PCT/JP2014/084034 2013-12-24 2014-12-24 Lipid membrane structure having intranuclear localization property WO2015098907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-264927 2013-12-24
JP2013264927 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098907A1 true WO2015098907A1 (en) 2015-07-02

Family

ID=53478760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084034 WO2015098907A1 (en) 2013-12-24 2014-12-24 Lipid membrane structure having intranuclear localization property

Country Status (1)

Country Link
WO (1) WO2015098907A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103151A1 (en) * 2017-11-27 2019-05-31 国立大学法人千葉大学 Lipid membrane structure for delivering nucleic acid to within cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083441A2 (en) * 2002-03-29 2003-10-09 Buck Institute Identification of apoptotic peptides and methods of use thereof
WO2011132713A1 (en) * 2010-04-21 2011-10-27 国立大学法人北海道大学 Lipid membrane structure with nuclear transferability
WO2013073480A1 (en) * 2011-11-18 2013-05-23 日油株式会社 Cationic lipid having improved intracellular kinetics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083441A2 (en) * 2002-03-29 2003-10-09 Buck Institute Identification of apoptotic peptides and methods of use thereof
WO2011132713A1 (en) * 2010-04-21 2011-10-27 国立大学法人北海道大学 Lipid membrane structure with nuclear transferability
WO2013073480A1 (en) * 2011-11-18 2013-05-23 日油株式会社 Cationic lipid having improved intracellular kinetics

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO XD ET AL.: "Oligomerized alpha-helical KALA peptides with pendant arms bearing cell - adhesion, DNA-binding and endosome-buffering domains as efficient gene transfection vectors.", BIOMATERIALS, vol. 33, no. 26, 2012, pages 6284 - 6291 *
HONGMEI LI ET AL.: "Delivery of Intracellular- Acting Biologics in Pro-Apoptotic Therapies", CURRENT PHARMACEUTICAL DESIGN, vol. 17, 2011, pages 293 - 319 *
MARGANIT COHEN-AVRAHAMI ET AL.: "HII mesophase and peptide cell -penetrating enhancers for improved transdermal delivery of sodium diclofenac", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 77, 2010, pages 131 - 138 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103151A1 (en) * 2017-11-27 2019-05-31 国立大学法人千葉大学 Lipid membrane structure for delivering nucleic acid to within cell

Similar Documents

Publication Publication Date Title
JP5794541B2 (en) Lipid membrane structure with nuclear translocation
Yoshizaki et al. pH-sensitive polymer-modified liposome-based immunity-inducing system: effects of inclusion of cationic lipid and CpG-DNA
Lou et al. mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells
JP2022542389A (en) Nanomaterials containing bound lipids and uses thereof
JP6570188B2 (en) Lipid membrane structures for siRNA intracellular delivery
JPWO2007132790A1 (en) Liposomes with lipid membranes containing bacterial cell components
JP5787323B2 (en) Lipid membrane structure
WO2010110471A1 (en) Lipid membrane structure
Liu et al. A simple self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a strong cancer immunotherapeutic effect
Higuchi et al. Material design for next-generation mrna vaccines using lipid nanoparticles
WO2020262150A1 (en) Lipid nanoparticle
JP6238366B2 (en) Lipid membrane structure encapsulating bacterial cell component dispersible in nonpolar solvent and method for producing the same
WO2019103151A1 (en) Lipid membrane structure for delivering nucleic acid to within cell
WO2010067617A1 (en) Lipid membrane structure
WO2015098907A1 (en) Lipid membrane structure having intranuclear localization property
JP5914418B2 (en) Lipid particle, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, lipid particle production method and gene introduction method
JP7197106B2 (en) lipid nanoparticles
KR101916941B1 (en) Polymeric nanoparticle composition for delivering pDNA and preparation method thereof
Liu et al. Bifunctional lipids in tumor vaccines: an outstanding delivery carrier and promising immune stimulator
WO2022176953A1 (en) Lipid nanoparticle
EP4342496A1 (en) Lipid nanoparticles
Yu Immune Modulation by Amphiphilic Oligonucleotides
Su Degradable polymeric nano-films and particles as delivery platforms for vaccines and immunotherapeutics
WO2024039896A1 (en) Cationic peptide/protein-modified exosomes for applications in drug delivery
WO2023084217A1 (en) Payload delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873511

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP