WO2010110471A1 - Lipid membrane structure - Google Patents

Lipid membrane structure Download PDF

Info

Publication number
WO2010110471A1
WO2010110471A1 PCT/JP2010/055493 JP2010055493W WO2010110471A1 WO 2010110471 A1 WO2010110471 A1 WO 2010110471A1 JP 2010055493 W JP2010055493 W JP 2010055493W WO 2010110471 A1 WO2010110471 A1 WO 2010110471A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane structure
lipid membrane
lipid
modified
inf7
Prior art date
Application number
PCT/JP2010/055493
Other languages
French (fr)
Japanese (ja)
Inventor
秀吉 原島
英万 秋田
アイマン エルサイド
智也 増田
邦治 居城
謙一 新倉
崇 西尾
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2010110471A1 publication Critical patent/WO2010110471A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers

Definitions

  • the present invention relates to a lipid membrane structure capable of efficiently releasing substances such as nucleic acids into the cytoplasm of target cells such as tissues and organs.
  • the present invention also relates to a lipid membrane structure having excellent transport efficiency into the nucleus. More specifically, the present invention relates to a lipid membrane structure that is surface-modified with a sugar compound and has excellent nuclear transport properties.
  • a method of encapsulating a drug in a liposome that is a lipid membrane structure has been proposed as a means of specifically transporting the drug to the affected area.
  • the effectiveness of liposomes encapsulating an antitumor agent has been reported in the field of malignant tumor treatment.
  • a lipid membrane structure that can be used for gene expression a multifunctional envelope-type nano structure (MEND: Multifunctional envelope-type nano device; hereinafter, may be abbreviated as “MEND”.
  • MEND Multifunctional envelope-type nano device
  • This structure can be used as a drug delivery system for selectively delivering a gene or the like into a specific cell, and is known to be useful for, for example, tumor gene therapy.
  • lipid membrane structures are functional molecules.
  • Many methods of modifying have been proposed.
  • lipid membrane structures are subject to opsonization due to adsorption of serum proteins while circulating in the blood, and are trapped by macrophages present in the liver and spleen.
  • a method of modifying the surface of the liposome membrane with a hydrophilic polymer such as polyalkylene glycol such as polyethylene glycol (PEG) has been widely used.
  • a hydrophilic polymer such as polyalkylene glycol such as polyethylene glycol (PEG)
  • Tumor tissues generally have large gaps between tumor vascular endothelial cells, and therefore, it is possible to use a route that allows liposomes to leak through the gaps and selectively deliver liposomes to tumor tissues. Since the delivery rate of liposomes to tumor tissue can be increased, it is common to apply a polyalkylene glycol to a lipid membrane structure containing an antitumor agent.
  • Lipid membrane structures encapsulating drugs such as antitumor agents reach the target cells and are taken into cells by endocytosis and become encapsulated in endosomes. The received drug is released into the cytoplasm.
  • lipid membrane structures surface-modified with polyalkylene glycols such as PEG are difficult to release from endosomes, and there is a problem that drugs such as antitumor agents cannot be efficiently released from the endosome into the cytoplasm. .
  • liposomes whose surface is modified with a peptide GALA: Biochemistry, 26, pp. 2964-2972, 1987
  • lipid membrane structures such as liposomes surface-modified with polyalkylene glycols such as PEG cannot improve drug release even when surface modification of GALA is performed.
  • a glutamic acid-rich peptide (INF7) obtained by modifying a peptide (1-23) derived from influenza HA protein (HA2) is known, and by mixing it with liposomes, the lipid structure collapses and the encapsulated substance can be easily obtained. It has been reported to be released (Biochemistry, 46, pp. 13490-13504, 2007).
  • DBP DNA-binding peptide
  • PEG-TA polyethylene glycol tetraacrylate
  • a liposome whose outer surface is modified with octaarginine International Publication WO2005 / 32593; Journal) of Controlled Release, 98, pp. 317-323, 2004
  • bilamellar liposomes having lipid membranes modified with nuclear translocation peptides International Publication WO2006 / 101201
  • surface modification with monosaccharides such as galactose and mannose Liposomes
  • the gene expression efficiency was able to be improved in the test result in vitro.
  • the above publication does not show the effect of these liposomes in an in vivo experimental system.
  • the liposome is transferred into the nucleus of a cell of a specific organ or tissue to improve gene expression efficiency. Experimental results on whether it can be done are not shown.
  • JP-A-1-249717 JP-A-2-149512 JP-A-4-346918 JP 2004-10482 A International Publication WO2005 / 32593 International Publication WO2006 / 101201 International Publication WO2007 / 102481
  • one of the particularly preferable problems is to efficiently transfer a lipid membrane structure encapsulating a nucleic acid containing a gene into the nucleus of a target organ or tissue cell such as the liver to achieve high gene expression activity. It is in providing the means for.
  • a lipid membrane structure such as a liposome encapsulating a substance such as a drug or a gene
  • EEP endosome escape peptide
  • the present inventors have found that a lipid membrane structure whose surface is modified with an oligosaccharide compound of 3 or more sugars such as maltotriose is efficiently taken into the nucleus of a cell, and a nucleic acid containing a gene is used in the above method. It has been found that extremely high gene expression activity can be achieved by transferring to the nucleus.
  • the present invention has been completed based on the above findings.
  • a lipid membrane structure for delivering a substance into the cytoplasm of a target cell, which is surface-modified with INF7, is provided.
  • the above lipid membrane structure wherein the lipid membrane structure is a liposome; the above lipid membrane structure surface-modified with a polyalkylene glycol, preferably polyethylene glycol (PEG); and polyarginine
  • the above lipid membrane structure preferably surface-modified with octaarginine.
  • the amount of surface modification with INF7 is in the range of 1 to 5 mol% with respect to the total amount of lipid membrane structure; surface modification with polyalkylene glycol, preferably PEG
  • the above lipid membrane structure whose amount is in the range of 1 to 40 mol% with respect to the total lipid amount of the lipid membrane structure; the amount of surface modification with polyarginine, preferably octaarginine is the total lipid amount of the lipid membrane structure
  • the above lipid membrane structure in the range of 0.8 to 20 mol% is provided.
  • a lipid membrane structure for delivering a substance into the cytoplasm of a target cell, wherein the substance to be delivered is encapsulated, and the lipid membrane structure is surface-modified with INF7 Is provided.
  • the lipid membrane structure as described above, wherein the lipid membrane structure is a liposome; and the lipid membrane structure as described above, surface-modified with a polyalkylene glycol, preferably PEG, are provided by the present invention.
  • the substance to be delivered is a nucleic acid, for example, the above lipid membrane structure which is a functional nucleic acid such as a nucleic acid containing a gene or siRNA; and surface-modified with polyarginine, preferably octaarginine
  • a nucleic acid for example, the above lipid membrane structure which is a functional nucleic acid such as a nucleic acid containing a gene or siRNA; and surface-modified with polyarginine, preferably octaarginine The above lipid membrane structure is provided.
  • the lipid membrane structure is a multifunctional envelope nanostructure (MEND); the multifunctional envelope nanostructure is encapsulated with a nucleic acid and a cationic polymer;
  • the above lipid membrane structure which is a liposome whose surface is modified with polyarginine, preferably octaarginine and INF7; the above lipid membrane structure whose surface is a liposome further modified with polyalkylene glycol, preferably PEG; And the above lipid membrane structure wherein the cationic polymer is protamine.
  • a pharmaceutical composition comprising this lipid membrane structure as an active ingredient, preferably a pharmaceutical composition comprising a nucleic acid as a substance to be delivered is also provided by the present invention.
  • a method of releasing a substance into the cytoplasm of a target cell in the living body of a mammal including humans, the lipid membrane structure having a surface modified with INF7 and enclosing the substance to be delivered inside comprising the step of administering a body to the animal.
  • substances to be delivered include active pharmaceutical ingredients or nucleic acids.
  • the above method is provided wherein the lipid membrane structure is surface modified with a polyalkylene glycol, preferably PEG.
  • This lipid membrane structure is taken up into the target cell by endocytosis and transferred into the cytoplasm after being encapsulated in the endosome, and then escapes from the endosome by the action of INF7 and efficiently releases the substance into the cytoplasm. be able to.
  • a preferred embodiment of the present invention is a method for expressing a gene in cells of mammals including humans, which is surface-modified with INF7, further surface-modified with PEG and polyarginine, preferably octaarginine, and the gene A method comprising the step of administering to an animal a lipid membrane structure encapsulating a nucleic acid comprising Preferably, the above lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used. Further provided is the above method for use in gene therapy.
  • a method for preventing and / or treating diseases of mammals including humans which are surface-modified with INF7, preferably further polyalkylene glycol, more preferably with PEG, and pharmaceuticals.
  • a method comprising the step of administering to an animal a lipid membrane structure having an active ingredient encapsulated therein.
  • pharmaceutically active ingredients include antitumor agents and nucleic acids.
  • a method for preventing and / or treating diseases of mammals including humans which is surface-modified with INF7, preferably further surface-modified with polyalkylene glycol, more preferably with PEG, and active pharmaceutical ingredients such as
  • a method comprising the step of administering to an animal a lipid membrane structure encapsulating therein an antitumor agent or a nucleic acid containing a gene.
  • a lipid membrane structure for delivering a substance into the nucleus of a target cell, the substance to be delivered is encapsulated therein, and an oligosaccharide compound having 3 or more sugars.
  • a surface-modified lipid membrane structure is provided.
  • the above lipid membrane structure wherein the oligosaccharide compound is a trisaccharide compound; the above lipid membrane structure wherein the oligosaccharide compound is a glucose trimer; the oligosaccharide compound is maltotriose
  • the above lipid membrane structure and the above lipid membrane structure wherein the lipid membrane structure is a liposome.
  • Lipid membrane structure The above lipid membrane structure further modified with polyalkylene glycol, preferably polyethylene glycol (PEG); the amount of surface modification by PEG is 1 to 40 mol relative to the total lipid amount of the lipid membrane structure % Of the above lipid membrane structure; and the above lipid membrane structure wherein the target cell is a liver cell.
  • a lipid membrane structure for delivering a substance into the nucleus of a target cell, in which the substance to be delivered is encapsulated, and surface modification with an oligosaccharide compound of 3 or more sugars Provided lipid membrane structures.
  • the above lipid membrane structure wherein the oligosaccharide compound is a trisaccharide compound; the above lipid membrane structure wherein the oligosaccharide compound is a glucose trimer; the oligosaccharide compound is maltotriose There is provided the above lipid membrane structure; and the above lipid membrane structure, wherein the target cell is a liver cell.
  • the above lipid membrane structure wherein the substance is a nucleic acid, for example, a functional nucleic acid such as a nucleic acid containing a gene or siRNA, and the lipid membrane structure is a multifunctional envelope nanostructure.
  • the multifunctional envelope nanostructure is a liposome in which a nucleic acid and a cationic polymer are encapsulated and the surface is modified with an oligosaccharide compound having three or more sugars, GALA, and polyethylene glycol
  • the above lipid membrane structure wherein the cationic polymer is protamine is protamine.
  • the above lipid membrane structure used for gene expression in the liver; the above lipid membrane structure used in gene therapy; the above lipid membrane structure used in gene therapy of liver disease; and liver disease is diabetes, liver cancer or virus
  • the above lipid membrane structure which is hepatitis hepatitis is also provided by the present invention.
  • a method comprising administering to said animal a lipid membrane structure that is surface-modified with polyalkylene glycol and encapsulating a substance to be delivered.
  • substances to be delivered include active pharmaceutical ingredients or nucleic acids.
  • a preferred embodiment of the present invention is a method for expressing a gene in a cell nucleus of a target tissue or organ in a living body of a mammal, including a human, which is modified with an oligosaccharide compound having 3 or more sugars, preferably further GALA and poly
  • a method comprising the step of administering to an animal a lipid membrane structure that is surface-modified with an alkylene glycol and encapsulating a substance to be delivered.
  • the above lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used.
  • the above method for expressing a gene in liver cells the above method used for gene therapy; the above method used for gene therapy of liver disease; the above method wherein the liver disease is diabetes, liver cancer or viral hepatitis And the above method wherein the dosage form is intravenous administration.
  • a method for preventing and / or treating diseases of mammals including humans which are modified with an oligosaccharide compound having 3 or more sugars, preferably further surface-modified with GALA and polyalkylene glycol,
  • a method comprising the step of administering to the animal a lipid membrane structure encapsulating a pharmaceutically active ingredient therein is provided.
  • a method for preventing and / or treating diseases of mammals including humans which are modified with oligosaccharide compounds having 3 or more sugars, preferably further surface-modified with GALA and polyalkylene glycol.
  • a method comprising administering to the animal a lipid membrane structure having nucleic acid encapsulated therein.
  • the disease is liver disease; the above method wherein the liver disease is diabetes, liver cancer or viral hepatitis; and the above method wherein the dosage form is intravenous administration Is done.
  • lipid membrane structure of the present invention When the lipid membrane structure of the present invention is used, substances encapsulated from the lipid membrane structure can be efficiently released into the cytoplasm.
  • a lipid membrane structure modified with a polyalkylene glycol such as PEG can also increase the release efficiency of the substance into the cytoplasm. Therefore, for example, it contains an active pharmaceutical ingredient such as an antitumor agent or a nucleic acid containing a gene. It is possible to increase the retention of the lipid membrane structure in the blood and improve the release efficiency of the active pharmaceutical ingredient from the lipid membrane structure into the cytoplasm.
  • a desired substance preferably a nucleic acid can be efficiently delivered into the nucleus of a cell of a target tissue or organ.
  • a nucleic acid containing a gene is delivered It becomes possible to highly express the gene in a nucleus such as a liver cell.
  • a nucleic acid containing a gene is delivered into the nucleus of a liver cell to express the gene.
  • the gene expression efficiency can be increased by about 100 times compared to the case of no modification in the in vivo test system, and the gene expression is higher than that of currently available transfection reagents. Since efficiency can be achieved, the lipid membrane structure of the present invention enables extremely efficient gene therapy for diabetes, viral hepatitis, liver cancer, and the like.
  • (A) shows the result of non-membrane fusion R8-MEND
  • (b) shows the result of non-membrane fusion STR-INF7 / R8-MEND
  • blue shows the result of nuclear staining with Hoechst 33342
  • red shows the rhodamine-DOPE
  • Green indicates NBD-DOPE. It is the figure which showed the pH dependence in the membrane destruction activity of the INF7 modification liposome using a calcein release. It is the figure which showed the endosome escape promotion activity by INF7 in a PEG modification liposome.
  • Red indicates MEND; Rhod-pDNA, green indicates endosome; PKH67 modification, bars are 10 ⁇ m.
  • Examples of the lipid constituting the lipid membrane structure of the present invention for delivering a substance into the cytoplasm of a target cell include phospholipids, glycolipids, sterols, or saturated or unsaturated fatty acids.
  • Examples of the lipid constituting the lipid membrane structure of the present invention for delivering a substance into the nucleus of a target cell include phospholipids, sterols, saturated or unsaturated fatty acids, and the like.
  • Examples of phospholipids and phospholipid derivatives include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, ceramide phosphorylglycerol phosphate, 1 , 2-Dimyristoyl-1,2-deoxyphosphatidylcholine, plasmalogen, phosphatidic acid, and the like, which can be used alone or in combination of two or more.
  • Fatty acid residues in these phospholipids are not particularly limited, and examples thereof include saturated or unsaturated fatty acid residues having 12 to 20 carbon atoms. Specific examples include lauric acid, myristic acid, palmitic acid, stearin Mention may be made of acyl groups derived from fatty acids such as acids, oleic acid and linoleic acid. Moreover, phospholipids derived from natural products such as egg yolk lecithin and soybean lecithin can also be used.
  • glycolipid examples include glyceroglycolipid (eg, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride), sphingoglycolipid (eg, galactosyl cerebroside, lactosyl cerebroside, ganglioside) and the like. Can be mentioned.
  • glyceroglycolipid eg, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride
  • sphingoglycolipid eg, galactosyl cerebroside, lactosyl cerebroside, ganglioside
  • sterols examples include animal-derived sterols (for example, cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol), plant-derived sterols (phytosterol) (for example, stigmasterol, sitosterol, campesterol, Brush castrol), sterols derived from microorganisms (for example, timosterol, ergosterol) and the like.
  • the saturated or unsaturated fatty acid include saturated or unsaturated fatty acids having 12 to 20 carbon atoms such as palmitic acid, oleic acid, stearic acid, arachidonic acid, and myristic acid.
  • the form of the lipid membrane structure is not particularly limited.
  • a preferred form of the lipid membrane structure of the present invention is a liposome.
  • a liposome may be described as a preferred embodiment of the lipid membrane structure of the present invention, the lipid membrane structure of the present invention is not limited to liposomes.
  • the lipid membrane structure of the present invention for delivering a substance into the cytoplasm of a target cell is characterized in that its surface is modified with INF7.
  • INF7 is a glutamic acid-rich peptide obtained by modifying a peptide (1-23) derived from influenza HA protein (HA2), and it is reported that the inclusion of a substance with liposomes causes the lipid structure to collapse and the encapsulated substance is easily released.
  • HA2 influenza HA protein
  • INF7 is used in Biochemistry, 46, pp.
  • the term “INF7” in Biochemistry, 46, pp.
  • the term “INF7” in addition to the peptide specified by the sequence described in Table 1 of 13490-13504, 2007, it consists of an amino acid sequence in which one or several amino acids have been deleted, substituted, and / or added in the amino acid sequence of the peptide.
  • modified peptides having the same properties as INF7 are also included.
  • the term “INF7” herein should not be construed as limiting in any way.
  • the disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
  • the method of modifying the lipid membrane structure with INF7 is not particularly limited, but generally, by constructing a lipid membrane structure using lipid-modified INF7 in which a lipid compound and INF7 are covalently bonded as a lipid membrane-constituting lipid, A lipid membrane structure surface-modified with INF7 can be easily produced.
  • lipid-modified INF for example, stearyl INF7 can be used, and this compound is disclosed in Futaki S et al. Biocongug. Chem. , 12 (6), pp. 1005-1011, 2001, and can be easily manufactured.
  • the amount of surface modification by INF7 is not particularly limited, but is generally in the range of 1 to 5 mol% with respect to the total lipid amount of the lipid membrane structure, preferably about 3 to 5 mol% with respect to the total lipid amount. It is.
  • the type of oligosaccharide compound having 3 or more sugars used for surface modification of the lipid membrane structure of the present invention for delivering a substance into the nucleus of a target cell is not particularly limited.
  • An oligosaccharide compound having units bonded thereto can be used, and preferably an oligosaccharide compound having about 3 to 6 sugar units bonded can be used.
  • examples of the oligosaccharide compound include cellotriose (Cellotriose: ⁇ -D-glucopyranosyl- (1 ⁇ 4) - ⁇ -D-glucopyranosyl- (1 ⁇ 4) -D-glucose), chacotriose: ⁇ -L-rhamnopyranosyl- (1 ⁇ 2)-[ ⁇ -L-rhamnopyranosyl- (1 ⁇ 4)]-D-glucose), gentianose ( ⁇ -D-fructofuranosyl ⁇ -D-glucopyranosyl- (1 6) - ⁇ -D-glucopyranoside), isomaltotriose ( ⁇ -D-glucopyranosyl- (1 6) - ⁇ -D-glucopyranosyl- (1 6) -D-glucose), isopanose (Isopanose) : ⁇ -D-glucopyranosy
  • an oligosaccharide compound that is a trimer or hexamer of glucose can be used, and more preferably, an oligosaccharide compound that is a trimer or tetramer of glucose can be used.
  • isomaltotriose, isopanose, maltotriose, maltotetraose, maltopentaose, or maltohexaose can be preferably used, and among these, malto in which glucose is ⁇ 1-4 bonded. More preferred is triose, maltotetraose, maltopentaose, or maltohexaose. Particularly preferred is maltotriose or maltotetraose, and most preferred is maltotriose.
  • the method of modifying the surface of the lipid membrane structure with an oligosaccharide compound is not particularly limited.
  • liposomes International Publication WO2007 / 102481 in which the lipid membrane structure is modified with a monosaccharide such as galactose or mannose are known. Therefore, the surface modification method described in this publication can be adopted.
  • This method is a method in which a monosaccharide compound is bonded to a polyalkylene glycolated lipid to modify the surface of the lipid membrane structure. By this means, the surface of the lipid membrane structure can be simultaneously modified with polyalkylene glycol. preferable.
  • the blood retention of liposomes can be increased by modifying the surface of the lipid membrane structure of the present invention with a hydrophilic polymer such as polyalkylene glycol.
  • a hydrophilic polymer such as polyalkylene glycol.
  • polyalkylene glycol is preferable.
  • polyalkylene glycol for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol and the like can be used.
  • the molecular weight of the polyalkylene glycol is, for example, about 300 to 10,000, preferably about 500 to 10,000, and more preferably about 1,000 to 5,000.
  • the surface modification of the lipid membrane structure with polyalkylene glycol can be easily performed by constructing a lipid membrane structure using, for example, a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid.
  • a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid.
  • stearyl polyethylene glycol for example, PEG45 stearate (STR-PEG45) or the like
  • surface modification with a polyalkylene glycol and an oligosaccharide compound can be simultaneously achieved by bonding an oligosaccharide compound to stearyl-modified polyethylene glycol.
  • the method for modifying the surface of the lipid membrane structure is not limited to the above-mentioned method.
  • a lipidated oligosaccharide compound such as a stearyl oligosaccharide compound is used as a constituent lipid of the lipid membrane structure.
  • surface modification may be performed.
  • the amount of the surface modification of the lipid membrane structure by the oligosaccharide compound is not particularly limited. For example, it is about 1 to 30 mol%, preferably about 2 to 20 mol%, more preferably 5 to 10 mol%, based on the total lipid amount. Degree.
  • examples of lipid derivatives for enhancing retention in blood include glycophorin, ganglioside GM1, phosphatidylinositol, ganglioside GM3, glucuronic acid derivatives, glutamic acid derivatives, polyglycerin phospholipid derivatives, and the like. Can also be used.
  • polyalkylene glycols dextran, pullulan, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer as well as polyalkylene glycol
  • Amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, carrageenan and the like can also be used for surface modification.
  • the lipid membrane structure of the present invention can be provided with any one function or two or more functions such as a temperature change sensitivity function, a membrane permeation function, a gene expression function, and a pH sensitivity function.
  • adding these functions as appropriate improves the retention in the blood of lipid membrane structures that contain active pharmaceutical ingredients such as antitumor agents and nucleic acids containing genes.
  • active pharmaceutical ingredients such as antitumor agents and nucleic acids containing genes.
  • reticuloendothelial tissues such as the liver and spleen
  • the lipid membrane structure can be efficiently escaped from the endosome and transferred into the nucleus, and high gene expression activity can be achieved in the nucleus.
  • Examples of the temperature change sensitive lipid derivative capable of imparting a temperature change sensitive function include dipalmitoyl phosphatidylcholine and the like.
  • Examples of the pH-sensitive lipid derivative capable of imparting a pH-sensitive function include dioleoylphosphatidylethanolamine.
  • the lipid membrane structure of the present invention can be modified with a substance such as an antibody that can specifically bind to a cell surface receptor or antigen, thereby improving the endocytosis efficiency.
  • a substance such as an antibody that can specifically bind to a cell surface receptor or antigen
  • a lipid derivative capable of reacting with a mercapto group in a monoclonal antibody or a fragment thereof such as poly (ethylene glycol) ) - ⁇ -distearoylphosphatidylethanolamine- ⁇ -maleimide, ⁇ - [N- (1,2-distearoyl-sn-glycero-3-phosphoryl-ethyl) carbamyl) - ⁇ - [3- [2- ( By including a lipid derivative having a maleimide structure such as 2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl) ethanecarboxamide] propyl ⁇ -poly (oxy-1,2-ethanedyl).
  • Monoclonal antibodies can be bound to the membrane surface of lipid membrane structures
  • the surface of the lipid membrane structure of the present invention may be modified with polyarginine.
  • polyarginine octaarginine or the like can be used.
  • octaarginine By modifying the surface of a lipid membrane structure such as a liposome with a polyarginine such as octaarginine, the intracellular delivery efficiency of the target substance encapsulated in the liposome can be improved (Journal of Controlled Release, 98, pp. 199-111). 317-323, 2004; International Publication WO2005 / 32593).
  • Modification of the lipid membrane structure surface with polyarginine can be easily performed by using, for example, a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done.
  • a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done.
  • the lipid membrane structure of the present invention may be modified with MPC polymer and / or GALA.
  • the MPC polymer is an MPC polymer obtained by polymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC). Since this polymer has a molecular structure similar to that of a biological membrane, interaction with biological components such as proteins and blood cells is extremely small, and it has been shown to have excellent biocompatibility.
  • MPC polymer includes both MPC homopolymers and copolymers of MPC and other polymerization components.
  • MPC polymer can be easily obtained as a commercially available polymer.
  • MPC homopolymer (CAS: 67881-99-6); MPC and butyl methacrylate copolymer (CAS: 125275-25-4); MPC, methacrylic Ternary copolymer of sodium acid and butyl methacrylate; binary copolymer of MPC and 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride; phospholipid polymer (LIPIDURE-S), etc.
  • LIPIDURE phospholipid polymer
  • the type of MPC polymer used in the present invention is not particularly limited, but for example, a copolymer of MPC and a methacrylic acid ester such as butyl methacrylate, particularly a block copolymer can be preferably used.
  • the production method of this copolymer is described in detail in Japanese Patent No. 2890316, and those skilled in the art can easily produce a desired copolymer by referring to this patent publication. The entire disclosure of this patent publication is incorporated herein by reference.
  • MPC copolymers can be preferably used.
  • a copolymer of MPC and butyl methacrylate (BMA) for example, a copolymer having a molar ratio of MPC to BMA of 5: 5 (PMB50), a copolymer having a molar ratio of MPC to BMA of 3: 7 (PMB30), etc. are known.
  • PMB50 can be particularly preferably used.
  • the degree of polymerization and molecular weight of the MPC polymer are not particularly limited. For example, from the viewpoint of maintaining water solubility, the average molecular weight (weight average molecular weight) is about 5,000 to 300,000, preferably about 10,000 to 100,000. Polymers can be used.
  • the method of modifying the lipid membrane structure with the MPC polymer is not particularly limited.
  • the MPC polymer may be added to an aqueous dispersion of the lipid membrane structure such as a liposome and left at room temperature for several minutes to several hours.
  • the amount of the MPC polymer added to the aqueous dispersion is not particularly limited, but depending on the amount of the MPC polymer to be modified, for example, a range of 0.01 to 1% by mass with respect to the total lipid amount of the lipid membrane structure
  • the MPC polymer is preferably added in an amount of 0.1 to 10% by mass, more preferably about 0.1 to 3% by mass.
  • the MPC polymer is rapidly incorporated into the lipid component of the lipid membrane structure, and a lipid membrane structure whose surface is modified with the MPC polymer can be prepared.
  • the amount of surface modification by the MPC polymer is not particularly limited, but is, for example, in the range of about 0.1 to 5% by mass with respect to the total lipid amount of the lipid membrane structure.
  • the surface of the lipid membrane structure of the present invention may be modified with GALA.
  • GALA is Biochemistry, 26, pp. 2964-2972, 1987.
  • JP-A-2006-28030 discloses liposomes surface-modified with GALA. Therefore, according to the method described in the above publication, A surface-modified lipid membrane structure can be easily produced.
  • a lipid membrane structure surface-modified with GALA can be produced.
  • the amount of surface modification by GALA is not particularly limited, but is, for example, about 0.01 to 10 mol%, preferably about 0.1 to 4 mol%, more preferably about 1 to 3 mol% with respect to the total lipid amount. .
  • GALA includes deletion and substitution of one or several amino acids in the amino acid sequence of the peptide in addition to the peptide specified by SEQ ID NO: 1 in the sequence listing of JP-A-2006-28030. And / or a modified peptide consisting of an added amino acid sequence and having substantially the same properties as GALA (for example, properties capable of fusing lipid membranes under acidic conditions).
  • GALA herein should not be construed as limiting in any way.
  • the disclosures of JP-A-2006-28030 are included as disclosure of this specification by reference.
  • Lipid membrane structures of the present invention include sterols, membrane stabilizers such as glycerin or fatty acid esters thereof, antioxidants such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene, charged substances, and One or two or more substances selected from the group consisting of membrane proteins and the like may be included.
  • the charged substance imparting positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine; saturated or unsaturated cationic synthetic lipids such as dioleoyltrimethylammoniumpropane; or cationic polymers.
  • Examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine, phosphatidylinositol, and phosphatidic acid.
  • Examples of membrane proteins include membrane surface proteins and membrane integral proteins. The compounding amount of these substances is not particularly limited, and can be appropriately selected according to the purpose.
  • MEND Envelope-type nanostructures
  • MEND has a structure in which a complex of a nucleic acid such as plasmid DNA and a cationic polymer such as protamine is used as a core, and the core is enclosed in a lipid envelope membrane in the form of a liposome.
  • a peptide for adjusting pH responsiveness and membrane permeability can be arranged on the lipid envelope membrane of MEND as needed, and the outer surface of the lipid envelope membrane can be modified with alkylene glycol such as polyethylene glycol. it can.
  • MEND Inside the lipid envelope of MEND, condensed DNA and a cationic polymer are encapsulated, and designed so that gene expression can be achieved efficiently.
  • the MEND that can be suitably used in the present invention includes a MEND or oligosaccharide linkage in which a complex of a plasmid DNA incorporating a desired gene and protamine is encapsulated, and the outer surface of the lipid envelope is modified with PEG and INF7 MEND modified with PEG is preferred.
  • the modification with PEG preferably uses stearyl polyethylene glycol as a constituent lipid component.
  • MEND see, for example, Drug Delivery System, 22-2, pp. References such as 115-122, 2007 can be referred to. The disclosures of the above publications and the disclosures of all documents cited in this review are hereby incorporated by reference.
  • the form of the lipid membrane structure is not particularly limited, and examples thereof include a form dispersed in an aqueous solvent (for example, water, physiological saline, phosphate buffered physiological saline, etc.) and a form obtained by lyophilizing this aqueous dispersion. It is done.
  • an aqueous solvent for example, water, physiological saline, phosphate buffered physiological saline, etc.
  • the method for producing the lipid membrane structure is not particularly limited, and any method available to those skilled in the art can be employed.
  • all the lipid components are dissolved in an organic solvent such as chloroform, and after forming a lipid film by drying under reduced pressure with an evaporator or spray drying with a spray dryer, the above mixture is dried with an aqueous solvent.
  • an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier.
  • it can manufacture also by the method well-known as a method of manufacturing a liposome, for example, a reverse phase evaporation method etc.
  • extrusion may be performed under high pressure using a membrane filter having a uniform pore size.
  • the size of the lipid membrane structure in a dispersed state is not particularly limited.
  • the particle diameter is about 50 nm to 5 ⁇ m, preferably about 50 nm to 400 nm, preferably about 50 nm to 300 nm, About 250 nm is more preferable.
  • the particle diameter can be measured, for example, by a DLS (dynamic light scattering) method.
  • the composition of the aqueous solvent is not particularly limited, and examples thereof include a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like. Can do.
  • a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like.
  • aqueous solvents can stably disperse lipid membrane structures, but also glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharides, lactose, sucrose, cellobiose, trehalose.
  • Disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, maltitol (aqueous solutions), glycerin, diglycerin, poly Glycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol -Alkyl ether, 1,3-polyhydric alcohol (aqueous solution), such as butylene glycol and the like may be added.
  • aqueous solution such as butylene glycol and the like
  • the pH of the aqueous solvent should be set from weakly acidic to near neutral (about pH 3.0 to 8.0), and / or dissolved oxygen should be removed by nitrogen bubbling or the like. Is desirable.
  • aqueous dispersion of the obtained lipid membrane structure is freeze-dried or spray-dried, for example, glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharide, lactose, sucrose, cellobiose, trehalose Stability can be improved by using disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, and maltitol (aqueous solutions) There is a case.
  • disaccharides such as maltose, trisaccharides such as raffinose and merezinose
  • polysaccharides such as cyclodextrin
  • sugars such as erythritol, xylitol,
  • a substance to be delivered can be encapsulated in the target tissue or organ or the nucleus of the cell of the target tissue or organ.
  • the type of substance to be encapsulated is not particularly limited, but in addition to any active pharmaceutical ingredients such as antitumor agents, anti-inflammatory agents, antibacterial agents, antiviral agents, saccharides, peptides, nucleic acids, low molecular compounds, metal compounds Any substance can be encapsulated.
  • the nucleic acid include a nucleic acid containing a gene, and more specifically, for example, a gene incorporated in a plasmid, but are not limited to this specific embodiment. Needless to say, any gene can be used as the gene.
  • the substance can be released into the cytoplasm of the target cell in the living body of a mammal including humans.
  • the lipid membrane structure of the present invention is taken up into the target cell by endocytosis and transferred into the cytoplasm after being encapsulated in the endosome, and then escapes from the endosome by the action of INF7 to efficiently put the substance into the cytoplasm. Can be released.
  • it is possible to prevent and / or treat diseases in mammals including humans.
  • a lipid membrane structure that is surface-modified with INF7, preferably further surface-modified with polyalkylene glycol and encapsulating a pharmaceutically active ingredient can be administered to an animal, and the drug is contained in the cytoplasm of the target cell.
  • the active ingredient can be delivered efficiently.
  • pharmaceutically active ingredients include, but are not limited to, antitumor agents and nucleic acids.
  • a lipid that is surface-modified with INF7, more preferably surface-modified with PEG, octaarginine, etc., and encapsulating a nucleic acid containing the gene inside Membrane structures can be administered to animals.
  • the lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used.
  • gene therapy can be performed by this method.
  • a nucleic acid in the lipid membrane structure of the present invention for delivering a substance into the nucleus of the target cell, a nucleic acid can be preferably encapsulated.
  • the nucleic acid includes DNA or RNA, and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.).
  • the nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular.
  • the nucleic acid may contain a gene.
  • the gene may be any of oligonucleotide, DNA, or RNA.
  • a gene for introduction in vitro such as transformation
  • a gene that acts by expression in vivo for example, normal for homologous recombination
  • genes for gene therapy such as genes.
  • therapeutic nucleic acids include genes encoding physiologically active substances such as antisense oligonucleotides, antisense DNAs, antisense RNAs, enzymes and cytokines, as well as nucleic acids having a function of regulating gene expression, such as siRNA.
  • Functional nucleic acids including RNA and the like can also be used, and these are also included in the term nucleic acid herein.
  • the term “nucleic acid” should be interpreted in the broadest sense, and should not be interpreted in any way restrictive.
  • a compound having a nucleic acid introduction function can also be added.
  • examples of such compounds include O, O′-N-didodecanoyl-N- ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-ditetradecanoyl-N- ( ⁇ -trimethyl).
  • Ammonioacetyl) -diethanolamine chloride O, O′-N-dihexadecanoyl-N- ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-dioctadecenoyl-N— ( ⁇ -trimethylammonioacetyl) -diethanolamine chloride, O, O ′, O ′′ -tridecanoyl-N- ( ⁇ -trimethylammoniodecanoyl) aminomethane bromide and N- [ ⁇ -trimethylammonioacetyl] -didodecyl- D-glutamate, dimethyl dioctadecyl ammonium bromide, 2,3- Oleyloxy-N- [2- (sperminecarboxamido) ethyl) -N, N-dimethyl-1-propaneammonium trifluoroacetate, 1,2-dimyristyloxy
  • a lipid membrane structure for delivering a substance into the cytoplasm of a target cell encapsulating a nucleic acid can be used as a carrier for delivering the nucleic acid to a target tissue or organ.
  • a nucleic acid containing a desired gene it is particularly preferable to use a nucleic acid containing a desired gene as the nucleic acid and use the above MEND.
  • MEND a nucleic acid containing a desired gene
  • the lipid membrane structure of the present invention can be efficiently taken out from the endosome and released into the cytoplasm after being taken up into the cells of the target tissue or organ by endocytosis.
  • the administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable. When targeting the liver, intraportal administration can also be performed to increase delivery efficiency.
  • the lipid membrane structure for delivering a substance into the nucleus of the target cell encapsulating the nucleic acid can be used as a carrier for delivering the nucleic acid into the nucleus of the cell of the target tissue or organ.
  • a nucleic acid containing a desired gene as the nucleic acid and use the above MEND.
  • the lipid membrane structure of the present invention is incorporated into cells of a target tissue or organ by endocytosis, and then efficiently escapes from the endosome and moves into the nucleus, thereby efficiently expressing the gene in the nucleus.
  • the target tissue or organ is not particularly limited, and gene delivery to an appropriate tissue or organ can be achieved according to the type of substance to be surface-modified.
  • the liver is a preferred target organ.
  • the administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable. In some cases, intraportal administration can also be performed to increase the efficiency of delivery to the liver.
  • one or more active pharmaceutical ingredients can be encapsulated in the lipid membrane structure lipid.
  • an antiviral agent or an antitumor agent can be encapsulated.
  • an anti-hepatitis virus agent that is effective against viral hepatitis or an anti-tumor agent that is effective against liver cancer is encapsulated in the lipid membrane structure of the present invention, and viral hepatitis or liver cancer Can also be treated.
  • Example 1 A. Experimental Method 1) Preparation of Gene Encapsulated R8 / INF7 Modified Liposomes After making plasmid DNA and protamine a 10 mM HEPES (pH 7.4) solution, an equal amount of 0.1 mg / ml with respect to a 0.06 ⁇ g / ml protamine solution in vortex The ml plasmid DNA solution was gradually added dropwise to mix over time (+/ ⁇ ratio 1). Furthermore, the protamine / DNA complex was prepared by allowing to stand at room temperature for 10 minutes.
  • EPC Egg yolk-derived phosphatidylcholine
  • DOPC dioleoylphosphatidylcholine
  • STR-R8 stearyl octaarginine
  • EPC DOPE / Chol / stearyl INF7
  • a lipid film was prepared by dissolving 137.5 nmol of lipid having the following composition in chloroform and evaporating in a glass tube.
  • the plasmid and protamine solutions prepared above were sonicated in a bath-type sonicator to encapsulate the plasmid DNA in liposomes.
  • STR-INF7 When modifying INF7 later, the ethanol solution of STR-INF7 or INF7 (1 or 3 mol% lipid content) was added (Post-surface modification).
  • INF7 When INF7 is modified at the lipid film stage (Pre-inclusion to the lipid film), STR-INF7 is added by evaporation after adding 1 or 3 mol% of STR-INF7 to lipid chloroform solution. Incorporated into lipid film.
  • plasmid and protamine solutions prepared above were sonicated in a bath-type sonicator to encapsulate the plasmid DNA in liposomes.
  • STR-INF7 was incorporated into a lipid film by adding 1 or 3 mol% of STR-INF7 to the lipid chloroform solution and then evaporating.
  • the cells were washed once with medium, and further incubated for 2.5 hours in medium supplemented with 10% FBS.
  • the labeled liposome was brought into contact with HeLa cells cultured on a glass bottom dish to a concentration of 0.08 mM lipid, and incubated for 1 hour in the absence of serum. After washing the cells, the cells were replaced with fresh medium and incubated for an additional hour. Ten minutes before observation, Hoechst 33342 was incubated at a concentration of 5 ⁇ g / ml to stain the nuclei. The cells were observed with a confocal laser microscope, and images were acquired. In order to observe membrane fusion in the cell, NBD was excited with a laser beam of 488 nm, and the fluorescence transmitted through the dichroic mirror of HFT488 was dispersed to 510 to 630 nm by the META function. The data are shown as relative values when the fluorescence intensity at 586 nm is 1.
  • a lipid film composed of DOPC / dioleoylphosphatidylserine (DOPS) / Chol (4.75: 4.75: 0.5) was prepared and calcein solution (40 mM) Of calcein / 1 mM EDTA, pH 7.4). At this time, the lipid concentration was adjusted to 10 mM. After mixing with a vortex mixer, sonication was performed for 1 minute to encapsulate calcein in the liposome.
  • DOPS dioleoylphosphatidylserine
  • the liposomes were subjected to molecular sieve chromatography (Bio-Gel (registered trademark) A-15m gel, medium from Bio-Rad Laboratories, CA, USA) equilibrated with PBS (pH 7.4), and the calcein-encapsulated liposomes were combined with unencapsulated calcein. separated.
  • MEND encapsulating a plasmid DNA (7,037 bp) encoding a firefly luciferase gene was used to conduct an in vivo gene introduction experiment using ICR mice (5 weeks old, male). MEND is J. Control. Release, 98 (2), pp. 317-323, 2004; Biol. Chem. , 283, pp. Prepared according to the method described in 23450-23461, 2008. Under diethyl ether anesthesia, MEND (40 ⁇ g DNA / 350 ⁇ l, 10 mM HEPES (pH 7.4), 5% glucose) was administered from the mouse tail vein. Six hours after administration, the liver, lungs and spleen were removed and weighed.
  • INF7 the influence of INF7 on the transfection activity of the gene-encapsulated R8 / PEG-modified liposome was analyzed.
  • INF7 promoted gene expression.
  • this promotion effect was dependent on the modification density, and a stepwise gene promotion effect was observed by increasing the modification density from 1% to 3% (FIG. 8).
  • the INF7 modification density-dependent gene expression promoting effect in the absence of PEG was also observed in PEG-modified liposomes.
  • Example 3 A Method 1) Preparation of MEND Cationic lipid (N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) or N- [1- (2,3- Dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP)) and a lipid envelope containing two lipids, cholesterol, encapsulated core particles obtained by condensing the gene with protamine to prepare MEND. .
  • DOTMA N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride
  • DOTMA N- [1- (2,3- Dioleyloxy) propyl] -N, N, N-trimethylammonium chloride
  • DOTMA N- [1- (2,3- Dioleyloxy) propyl] -N, N, N-trimethylammonium chloride
  • a lipid solution (an ethanol solution of cationic lipid and cholesterol) was added to a glass test tube so that the total amount was 412.5 nmol / 250 ⁇ L, and then the solvent was distilled off by drying under reduced pressure with a desiccator. After 250 ⁇ L of chloroform was added to the test tube to dissolve the lipid again, it was dried under reduced pressure with a desiccator, and the solvent was removed again to prepare a lipid film.
  • Core particles were prepared by mixing plasmid DNA and protamine at a +/ ⁇ ratio of 1. After making plasmid DNA and protamine 10 mM HEPES (pH 7.4) solution, gradually add 125 ⁇ l of protamine solution (0.201 mg / ml) to 125 ⁇ l of plasmid DNA solution (0.3 mg / ml) in vortex. And mixed over time. Furthermore, the core particle was prepared by leaving still at room temperature for 10 minutes. After adding 250 ⁇ l of the gene core solution to the test tube in which the lipid film was prepared, it was hydrated by allowing it to stand at room temperature for 15 minutes, and sonication was performed for about 1 minute to obtain MEND. The particle size of MEND was measured by dynamic light scattering (DLS).
  • DLS dynamic light scattering
  • maltotriose -PEG6-C 11 -SH is cationic lipids a lipid composition constituting the lipid membrane, cholesterol, maltotriose -PEG6-C 11 -SH to 30: 65: 5 (molar ratio ).
  • MEND lipid membrane Preparation of MEND for examination of maltotriose modification rate and evaluation of usefulness MEND lipid membrane was prepared so that the composition ratio of DOTMA and cholesterol was 30:70 (molar ratio), and the total lipid amount (molar) The amount of Chol-GALA was 2% equivalent. It is used here maltotriose -PEG6-C 11 in addition to lactose -PEG4- cholesterol lactose lipid derivative as a comparative control of -SH, and PEG6-C 11 -SH having no saccharide in the structure. The modification rate of sugar to MEND was adjusted by adding these lipids in an amount corresponding to 2.5% to 15% of the total lipid amount (molar amount).
  • the total lipid content was unified by adjusting the cholesterol content.
  • the case of maltotriose -PEG6-C 11 -SH containing 10%, DOTMA was made to cholesterol, sugar compounds -PEG- lipid 30:60:10 (molar ratio).
  • Lipoplex was prepared by mixing a liposome solution composed of DOTAP and a plasmid DNA solution according to the method described in the literature (Hum. Gene Ther., 8, pp. 1584-1594, 1997). . Further, the molar ratio was set to 12 by adjusting the amount of liposome with respect to plasmid DNA.
  • lipid solution ethanol solution of DOTAP
  • lipid solution ethanol solution of DOTAP
  • the solvent was distilled off by drying under reduced pressure with a desiccator.
  • 250 ⁇ L of chloroform was added to the test tube to dissolve the lipid again, it was dried under reduced pressure with a desiccator, and the solvent was removed again to prepare a lipid film.
  • 250 ⁇ L of PBS ( ⁇ ) (pH 7.4) was added to the prepared lipid film, left to stand at room temperature for 15 minutes to hydrate, and then sonicated for about 1 minute to prepare liposomes.
  • Lipoplex was prepared by adding the prepared liposome solution to the PBS ( ⁇ ) solution of plasmid DNA in vortex by dropping, and then allowing to stand at room temperature for 15 minutes.
  • the particle size of Lipoplex was measured by dynamic light scattering (DLS).
  • NP ratio which is a mixing ratio of plasmid DNA, in vivo jetPEI, and galactose conjugate, was set to 10 as a recommended value.
  • a 5% glucose solution of prepared in vivo jetPEI and galactose conjugate was added to a 5% glucose solution of plasmid DNA, mixed by vortexing, and then allowed to stand at room temperature for 15 minutes to prepare Polyplex.
  • the particle size of Polyplex was measured by dynamic light scattering (DLS).
  • Lipoplex which is a complex of pDNA and cationic liposome, as a gene carrier widely used in in vivo gene delivery studies
  • Complex of pDNA and cationic polymer Comparative evaluation of gene transfer efficiency was performed using Polyplex, a body.
  • the lipid composition and the molar ratio of Lipoplex used were based on literature.
  • Polyplex was a commercially available in vivo gene transfer reagent, in vivo jetPEI, galactose conjugate (PolyPlus), and NP ratio was 10.
  • MEND GALA / maltotriose-MEND having the highest gene expression activity in 1) was used. The results are shown in FIG.
  • the gene expression activity in the liver after intravenous administration of MEND was about 25 times higher than that of Lipoplex and Polyplex.
  • Lipoplex had a gene expression activity of about 10 4 RLU / mg protein even though the dose of pDNA was 60 ⁇ g and 1.5 times that of MEND. From the above results, it was shown that the lipid membrane structure of the present invention is a gene carrier capable of efficiently delivering a gene to the liver.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

Provided are a lipid membrane structure that is for delivering substances into the cytoplasm of a target cell and has INF7 surface modifications; and a lipid membrane structure that is for delivering substances into the nucleus of a target cell, encapsulates the substance to be delivered on the interior thereof, and has a surface modified with three or more oligosaccharide compounds.

Description

脂質膜構造体Lipid membrane structure
 本発明は組織や臓器などの標的細胞の細胞質内に核酸などの物質を効率的に放出することができる脂質膜構造体に関する。
 また、本発明は核内への輸送効率に優れた脂質膜構造体に関する。より具体的には、糖化合物で表面修飾された核輸送性に優れる脂質膜構造体に関するものである。
The present invention relates to a lipid membrane structure capable of efficiently releasing substances such as nucleic acids into the cytoplasm of target cells such as tissues and organs.
The present invention also relates to a lipid membrane structure having excellent transport efficiency into the nucleus. More specifically, the present invention relates to a lipid membrane structure that is surface-modified with a sugar compound and has excellent nuclear transport properties.
 薬剤を患部に特異的に輸送する手段として脂質膜構造体であるリポソームに薬剤を封入する方法が提案されている。特に、悪性腫瘍の治療分野において抗腫瘍剤を封入したリポソームの有効性が数多く報告されている。また、遺伝子発現に利用可能な脂質膜構造体として多機能性エンベロープ型ナノ構造体(MEND:Multifunctional envelope−type nano device;以下、本明細書において「MEND」と略す場合がある。例えばDrug Delivery System,22−2,pp.115−122,2007などを参照のこと)が提案されている。この構造体は、遺伝子などを特定の細胞内に選択的に送達するためのドラッグデリバリーシステムとして用いることができ、例えば、腫瘍の遺伝子治療などに有用であることが知られている。 A method of encapsulating a drug in a liposome that is a lipid membrane structure has been proposed as a means of specifically transporting the drug to the affected area. In particular, the effectiveness of liposomes encapsulating an antitumor agent has been reported in the field of malignant tumor treatment. In addition, as a lipid membrane structure that can be used for gene expression, a multifunctional envelope-type nano structure (MEND: Multifunctional envelope-type nano device; hereinafter, may be abbreviated as “MEND”. For example, Drug Delivery System. 22-2, pp. 115-122, 2007, etc.). This structure can be used as a drug delivery system for selectively delivering a gene or the like into a specific cell, and is known to be useful for, for example, tumor gene therapy.
 脂質膜構造体を用いて薬物、核酸、ペプチド、タンパク質、糖などの目的物質を標的臓器や腫瘍組織など特異的な部位に送達するための手段として、脂質膜構造体の表面を機能性分子で修飾する方法が多数提案されている。一般に脂質膜構造体は血中を循環する間に血清蛋白質の吸着によるオプソニン化などを受け、肝臓や脾臓などに存在するマクロファージなどに捕捉されてしまうという問題がある。この問題を回避するために、例えば、リポソーム膜の表面をポリエチレングリコール(PEG)などのポリアルキレングリコールなどの親水性ポリマーで修飾する方法が汎用されており、血中滞留性を向上させたリポソームが多数提案されている(特開平1−249717号公報、特開平2−149512号公報、特開平4−346918号公報、特開2004−10481号公報など)。腫瘍組織では一般に腫瘍血管内皮細胞の間隙が大きいことから、その間隙からリポソームを漏出させて腫瘍組織に選択的にリポソームを送達させる経路を利用することができるが、血中滞留性を高めることによりリポソームの腫瘍組織への送達率を高めることができるので、抗腫瘍剤を含む脂質膜構造体にはポリアルキレングリコールによる修飾を施すことが一般的である。 As a means to deliver target substances such as drugs, nucleic acids, peptides, proteins, and sugars to specific sites such as target organs and tumor tissues using lipid membrane structures, the surface of lipid membrane structures is functional molecules. Many methods of modifying have been proposed. In general, lipid membrane structures are subject to opsonization due to adsorption of serum proteins while circulating in the blood, and are trapped by macrophages present in the liver and spleen. In order to avoid this problem, for example, a method of modifying the surface of the liposome membrane with a hydrophilic polymer such as polyalkylene glycol such as polyethylene glycol (PEG) has been widely used. Many proposals have been made (Japanese Patent Laid-Open Nos. 1-249717, 2-149512, 4-346918, 2004-10481, etc.). Tumor tissues generally have large gaps between tumor vascular endothelial cells, and therefore, it is possible to use a route that allows liposomes to leak through the gaps and selectively deliver liposomes to tumor tissues. Since the delivery rate of liposomes to tumor tissue can be increased, it is common to apply a polyalkylene glycol to a lipid membrane structure containing an antitumor agent.
 抗腫瘍剤などの薬剤を内包した脂質膜構造体は標的細胞に到達するとエンドサイトーシスにより細胞内に取り込まれエンドソーム内に包含された状態となるが、その後、リソソームの酵素による加水分解作用などを受けて内包されていた薬剤を細胞質内に放出する。しかしながら、PEGなどのポリアルキレングリコールで表面修飾された脂質膜構造体はエンドソームから放出されにくく、抗腫瘍剤などの薬剤をエンドソーム内から効率的に細胞質中へと放出させることができないという問題がある。例えば、エンドソーム内に取り込まれたリポソームからの薬剤放出性を高めるために、リポソームの表面をペプチド(GALA:Biochemistry,26,pp.2964−2972,1987)で修飾したリポソームが提案されているが(Biochemistry,43,pp.5618−5623,2004)、PEGなどのポリアルキレングリコールで表面修飾されたリポソームなどの脂質膜構造体ではGALAの表面修飾を施しても薬剤放出性を高めることができない。 Lipid membrane structures encapsulating drugs such as antitumor agents reach the target cells and are taken into cells by endocytosis and become encapsulated in endosomes. The received drug is released into the cytoplasm. However, lipid membrane structures surface-modified with polyalkylene glycols such as PEG are difficult to release from endosomes, and there is a problem that drugs such as antitumor agents cannot be efficiently released from the endosome into the cytoplasm. . For example, in order to enhance drug release from liposomes incorporated into endosomes, liposomes whose surface is modified with a peptide (GALA: Biochemistry, 26, pp. 2964-2972, 1987) have been proposed ( Biochemistry, 43, pp. 5618-5623, 2004), and lipid membrane structures such as liposomes surface-modified with polyalkylene glycols such as PEG cannot improve drug release even when surface modification of GALA is performed.
 一方、インフルエンザHAタンパク質(HA2)由来のペプチド(1−23)を改変したグルタミン酸リッチペプチド(INF7)が知られており、リポソームと混在させることにより脂質構造が崩壊して内包された物質が容易に放出されることが報告されている(Biochemistry,46,pp.13490−13504,2007)。また、ポリエチレングリコールテトラアクリレート(PEG−TA)にDNA−結合ペプチド(DBP)を結合させ、さらにINF7を結合させた送達システムが提案されており、遺伝子送達効率を高めることができるとの報告がある(The Journal of Gene Medicine,10,pp.1134−1149,2008)。 On the other hand, a glutamic acid-rich peptide (INF7) obtained by modifying a peptide (1-23) derived from influenza HA protein (HA2) is known, and by mixing it with liposomes, the lipid structure collapses and the encapsulated substance can be easily obtained. It has been reported to be released (Biochemistry, 46, pp. 13490-13504, 2007). In addition, a delivery system in which DNA-binding peptide (DBP) is bound to polyethylene glycol tetraacrylate (PEG-TA) and INF7 is further bound has been proposed, and it has been reported that gene delivery efficiency can be improved. (The Journal of Gene Medicine, 10, pp. 1131-1149, 2008).
 また、核酸などの目的物質を内包した脂質膜構造体を標的細胞の核内に移行させるための手段としては、例えば、リポソームの外側表面をオクタアルギニンで修飾したリポソーム(国際公開WO2005/32593;Journal of Controlled Release,98,pp.317−323,2004)、核移行性ペプチドで修飾された脂質膜を有する2枚膜リポソーム(国際公開WO2006/101201)、ガラクトースやマンノースなどの単糖で表面を修飾したリポソーム(国際公開WO2007/102481)が提案されている。単糖で修飾された上記リポソームについては、in vitroでの試験結果において遺伝子発現効率を改善できたとされている。しかしながら、上記刊行物には、これらのリポソームについてin vivoの実験系においての効果は示されておらず、例えば静脈内投与により特定臓器や組織の細胞の核内に移行して遺伝子発現効率を改善できるか否かについての実験結果は示されていない。 As a means for transferring a lipid membrane structure encapsulating a target substance such as a nucleic acid into the nucleus of a target cell, for example, a liposome whose outer surface is modified with octaarginine (International Publication WO2005 / 32593; Journal) of Controlled Release, 98, pp. 317-323, 2004), bilamellar liposomes having lipid membranes modified with nuclear translocation peptides (International Publication WO2006 / 101201), and surface modification with monosaccharides such as galactose and mannose Liposomes (International Publication WO2007 / 102481) have been proposed. About the said liposome modified with monosaccharide, it is said that the gene expression efficiency was able to be improved in the test result in vitro. However, the above publication does not show the effect of these liposomes in an in vivo experimental system. For example, by intravenous administration, the liposome is transferred into the nucleus of a cell of a specific organ or tissue to improve gene expression efficiency. Experimental results on whether it can be done are not shown.
特開平1−249717号公報JP-A-1-249717 特開平2−149512号公報JP-A-2-149512 特開平4−346918号公報JP-A-4-346918 特開2004−10481号公報JP 2004-10482 A 国際公開WO2005/32593International Publication WO2005 / 32593 国際公開WO2006/101201International Publication WO2006 / 101201 国際公開WO2007/102481International Publication WO2007 / 102481
 本発明の課題は、標的細胞の細胞質内に効率的に薬剤や遺伝子などの物質を放出させるための脂質膜構造体を提供することにある。より具体的には、脂質膜構造体を取り込んだエンドソームから脂質膜構造体に内包された物質を効率的に細胞質内に放出させることができる脂質膜構造体を提供することが本発明の課題である。
 また、本発明の別の課題は、核酸などの目的物質を内包した脂質膜構造体を標的細胞の核内に効率的に移行させるための手段を提供することにある。
 上記課題のうち特に好ましい課題の一つは、肝臓などの標的臓器や組織の細胞の核内に遺伝子を含む核酸を内包した脂質膜構造体を効率的に移行させ、高い遺伝子発現活性を達成するための手段を提供することにある。
An object of the present invention is to provide a lipid membrane structure for efficiently releasing substances such as drugs and genes into the cytoplasm of target cells. More specifically, an object of the present invention is to provide a lipid membrane structure capable of efficiently releasing a substance encapsulated in the lipid membrane structure from the endosome incorporating the lipid membrane structure into the cytoplasm. is there.
Another object of the present invention is to provide means for efficiently transferring a lipid membrane structure containing a target substance such as a nucleic acid into the nucleus of a target cell.
Among the above problems, one of the particularly preferable problems is to efficiently transfer a lipid membrane structure encapsulating a nucleic acid containing a gene into the nucleus of a target organ or tissue cell such as the liver to achieve high gene expression activity. It is in providing the means for.
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、薬剤や遺伝子などの物質を内包するリポソームなどの脂質膜構造体の表面をエンドソーム脱出ペプチド(endosomal escape peptide:EEP)であるINF7で修飾することにより、極めて効率的に薬剤や遺伝子などの物質を細胞質内に放出させることができることを見出した。また、上記の脂質膜構造体の表面をPEGなどのポリアルキレングリコールで修飾した場合にも、内包された薬剤や遺伝子などの物質を効率的に細胞質内に放出させることができることを見出した。本発明は上記の知見を基にして完成されたものである。 As a result of intensive studies to solve the above problems, the present inventors have found that the surface of a lipid membrane structure such as a liposome encapsulating a substance such as a drug or a gene is an endosome escape peptide (EEP). It has been found that substances such as drugs and genes can be released into the cytoplasm very efficiently by modification with INF7. It was also found that even when the surface of the lipid membrane structure is modified with a polyalkylene glycol such as PEG, the encapsulated drug or gene can be efficiently released into the cytoplasm. The present invention has been completed based on the above findings.
 また、本発明者らは、マルトトリオースなどの3糖以上のオリゴ糖化合物で表面を修飾した脂質膜構造体が細胞の核内に効率的に取り込まれること、及び遺伝子を含む核酸を上記手法により核内に移行させることにより、極めて高い遺伝発現活性を達成できることを見出した。本発明は上記の知見を基にして完成されたものである。 In addition, the present inventors have found that a lipid membrane structure whose surface is modified with an oligosaccharide compound of 3 or more sugars such as maltotriose is efficiently taken into the nucleus of a cell, and a nucleic acid containing a gene is used in the above method. It has been found that extremely high gene expression activity can be achieved by transferring to the nucleus. The present invention has been completed based on the above findings.
 すなわち、本発明により、標的細胞の細胞質内に物質を送達するための脂質膜構造体であって、INF7で表面修飾された脂質膜構造体が提供される。
 この発明の好ましい態様によれば、脂質膜構造体がリポソームである上記の脂質膜構造体;ポリアルキレングリコール、好ましくはポリエチレングリコール(PEG)で表面修飾された上記の脂質膜構造体;及びポリアルギニン、好ましくはオクタアルギニンで表面修飾された上記の脂質膜構造体が提供される。
That is, according to the present invention, a lipid membrane structure for delivering a substance into the cytoplasm of a target cell, which is surface-modified with INF7, is provided.
According to a preferred embodiment of the present invention, the above lipid membrane structure wherein the lipid membrane structure is a liposome; the above lipid membrane structure surface-modified with a polyalkylene glycol, preferably polyethylene glycol (PEG); and polyarginine Provided is the above lipid membrane structure, preferably surface-modified with octaarginine.
 さらに好ましい態様によれば、INF7による表面修飾量が脂質膜構造体の総脂質量に対して1~5モル%の範囲である上記の脂質膜構造体;ポリアルキレングリコール、好ましくはPEGによる表面修飾量が脂質膜構造体の総脂質量に対して1~40モル%の範囲である上記の脂質膜構造体;ポリアルギニン、好ましくはオクタアルギニンによる表面修飾量が脂質膜構造体の総脂質量に対して0.8~20モル%の範囲である上記の脂質膜構造体が提供される。脂質化合物とINF7とが共有結合した脂質修飾INF7、好ましくはステアリル化INF7により表面修飾された上記の脂質膜構造体も提供される。 According to a further preferred embodiment, the amount of surface modification with INF7 is in the range of 1 to 5 mol% with respect to the total amount of lipid membrane structure; surface modification with polyalkylene glycol, preferably PEG The above lipid membrane structure whose amount is in the range of 1 to 40 mol% with respect to the total lipid amount of the lipid membrane structure; the amount of surface modification with polyarginine, preferably octaarginine is the total lipid amount of the lipid membrane structure On the other hand, the above lipid membrane structure in the range of 0.8 to 20 mol% is provided. There is also provided the above lipid membrane structure surface-modified with a lipid-modified INF7, preferably a stearyl INF7, in which a lipid compound and INF7 are covalently bonded.
 また、別の観点からは、標的細胞の細胞質内に物質を送達するための脂質膜構造体であって、送達すべき物質が内部に封入されており、INF7で表面修飾された脂質膜構造体が提供される。好ましくは脂質膜構造体がリポソームである上記の脂質膜構造体;及びポリアルキレングリコール、好ましくはPEGで表面修飾された上記の脂質膜構造体が本発明により提供される。 From another viewpoint, a lipid membrane structure for delivering a substance into the cytoplasm of a target cell, wherein the substance to be delivered is encapsulated, and the lipid membrane structure is surface-modified with INF7 Is provided. Preferably, the lipid membrane structure as described above, wherein the lipid membrane structure is a liposome; and the lipid membrane structure as described above, surface-modified with a polyalkylene glycol, preferably PEG, are provided by the present invention.
 この発明の好ましい態様によれば、送達すべき物質が核酸、例えば遺伝子を含む核酸やsiRNAなどの機能性核酸である上記の脂質膜構造体;及びポリアルギニン、好ましくはオクタアルギニンにより表面修飾された上記の脂質膜構造体が提供される。さらに、上記の脂質膜構造体が多機能性エンベロープ型ナノ構造体(MEND)である上記の脂質膜構造体;多機能性エンベロープ型ナノ構造体が、内部に核酸及びカチオン性ポリマーが封入され、表面がポリアルギニン、好ましくはオクタアルギニンとINF7とにより修飾されたリポソームである上記の脂質膜構造体;表面がさらにポリアルキレングリコール、好ましくはPEGにより修飾されたリポソームである上記の脂質膜構造体;及びカチオン性ポリマーがプロタミンである上記の脂質膜構造体が提供される。また、遺伝子発現に用いる上記の脂質膜構造体;及び遺伝子治療に用いる上記の脂質膜構造体が提供される。
 この脂質膜構造体を有効成分として含む医薬組成物、好ましくは送達すべき物質として核酸を含む医薬組成物も本発明により提供される。
According to a preferred embodiment of the present invention, the substance to be delivered is a nucleic acid, for example, the above lipid membrane structure which is a functional nucleic acid such as a nucleic acid containing a gene or siRNA; and surface-modified with polyarginine, preferably octaarginine The above lipid membrane structure is provided. Further, the lipid membrane structure is a multifunctional envelope nanostructure (MEND); the multifunctional envelope nanostructure is encapsulated with a nucleic acid and a cationic polymer; The above lipid membrane structure which is a liposome whose surface is modified with polyarginine, preferably octaarginine and INF7; the above lipid membrane structure whose surface is a liposome further modified with polyalkylene glycol, preferably PEG; And the above lipid membrane structure wherein the cationic polymer is protamine. Also provided are the above lipid membrane structures used for gene expression; and the above lipid membrane structures used for gene therapy.
A pharmaceutical composition comprising this lipid membrane structure as an active ingredient, preferably a pharmaceutical composition comprising a nucleic acid as a substance to be delivered is also provided by the present invention.
 さらに別の観点からは、ヒトを含む哺乳類動物の生体内において標的細胞の細胞質内に物質を放出させる方法であって、INF7で表面修飾され、かつ送達すべき物質を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。送達すべき物質として、医薬有効成分又は核酸などが挙げられる。好ましくは、該脂質膜構造体がポリアルキレングリコール、好ましくはPEGにより表面修飾されている上記の方法が提供される。この脂質膜構造体は標的細胞にエンドサイトーシスにより取り込まれてエンドソームに封入された状態で細胞質内に移行した後、INF7の作用によりエンドソームから脱出して細胞質内に該物質を効率的に放出することができる。 From still another aspect, a method of releasing a substance into the cytoplasm of a target cell in the living body of a mammal including humans, the lipid membrane structure having a surface modified with INF7 and enclosing the substance to be delivered inside A method is provided comprising the step of administering a body to the animal. Examples of substances to be delivered include active pharmaceutical ingredients or nucleic acids. Preferably, the above method is provided wherein the lipid membrane structure is surface modified with a polyalkylene glycol, preferably PEG. This lipid membrane structure is taken up into the target cell by endocytosis and transferred into the cytoplasm after being encapsulated in the endosome, and then escapes from the endosome by the action of INF7 and efficiently releases the substance into the cytoplasm. be able to.
 この発明の好ましい態様として、ヒトを含む哺乳類動物の細胞内において遺伝子を発現させる方法であって、INF7で表面修飾され、さらにPEG及びポリアルギニン、好ましくはオクタアルギニンにより表面修飾されており、かつ遺伝子を含む核酸を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。好ましくは、核酸とともにカチオン性ポリマー、例えばプロタミンを内部に封入した上記脂質膜構造体を用いることができる。さらに、遺伝子治療のために用いる上記の方法が提供される。 A preferred embodiment of the present invention is a method for expressing a gene in cells of mammals including humans, which is surface-modified with INF7, further surface-modified with PEG and polyarginine, preferably octaarginine, and the gene A method comprising the step of administering to an animal a lipid membrane structure encapsulating a nucleic acid comprising Preferably, the above lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used. Further provided is the above method for use in gene therapy.
 また、本発明により、ヒトを含む哺乳類動物の疾患の予防及び/又は治療方法であって、INF7で表面修飾され、好ましくはさらにポリアルキレングリコール、より好ましくはPEGで表面修飾されており、かつ医薬有効成分を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。医薬有効成分として例えば抗腫瘍剤や核酸などを挙げることができる。 In addition, according to the present invention, there is provided a method for preventing and / or treating diseases of mammals including humans, which are surface-modified with INF7, preferably further polyalkylene glycol, more preferably with PEG, and pharmaceuticals. There is provided a method comprising the step of administering to an animal a lipid membrane structure having an active ingredient encapsulated therein. Examples of pharmaceutically active ingredients include antitumor agents and nucleic acids.
 さらに、ヒトを含む哺乳類動物の疾患の予防及び/又は治療方法であって、INF7で表面修飾され、好ましくはさらにポリアルキレングリコール、より好ましくはPEGで表面修飾されており、かつ医薬有効成分、例えば抗腫瘍剤又は遺伝子を含む核酸などを内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。 Furthermore, a method for preventing and / or treating diseases of mammals including humans, which is surface-modified with INF7, preferably further surface-modified with polyalkylene glycol, more preferably with PEG, and active pharmaceutical ingredients such as There is provided a method comprising the step of administering to an animal a lipid membrane structure encapsulating therein an antitumor agent or a nucleic acid containing a gene.
 別の観点からは、本発明により、標的細胞の核内に物質を送達するための脂質膜構造体であって、送達すべき物質が内部に封入されており、3糖以上のオリゴ糖化合物で表面修飾された脂質膜構造体が提供される。
 この発明の好ましい態様によれば、オリゴ糖化合物が3糖化合物である上記の脂質膜構造体;オリゴ糖化合物がグルコース3量体である上記の脂質膜構造体;オリゴ糖化合物がマルトトリオースである上記の脂質膜構造体;及び脂質膜構造体がリポソームである上記の脂質膜構造体が提供される。
From another point of view, according to the present invention, there is provided a lipid membrane structure for delivering a substance into the nucleus of a target cell, the substance to be delivered is encapsulated therein, and an oligosaccharide compound having 3 or more sugars. A surface-modified lipid membrane structure is provided.
According to a preferred embodiment of the present invention, the above lipid membrane structure wherein the oligosaccharide compound is a trisaccharide compound; the above lipid membrane structure wherein the oligosaccharide compound is a glucose trimer; the oligosaccharide compound is maltotriose There is provided the above lipid membrane structure; and the above lipid membrane structure wherein the lipid membrane structure is a liposome.
 さらに好ましい態様によれば、GALAにより表面修飾された上記の脂質膜構造体;GALAによる表面修飾量が脂質膜構造体の総脂質量に対して0.1~4モル%の範囲である上記の脂質膜構造体;さらにポリアルキレングリコール、好ましくはポリエチレングリコール(PEG)により表面修飾された上記の脂質膜構造体;PEGによる表面修飾量が脂質膜構造体の総脂質量に対して1~40モル%の範囲である上記の脂質膜構造体;及び標的細胞が肝臓細胞である上記の脂質膜構造体が提供される。 According to a further preferred embodiment, the above lipid membrane structure surface-modified with GALA; the amount of surface modification with GALA is in the range of 0.1 to 4 mol% with respect to the total lipid amount of the lipid membrane structure. Lipid membrane structure: The above lipid membrane structure further modified with polyalkylene glycol, preferably polyethylene glycol (PEG); the amount of surface modification by PEG is 1 to 40 mol relative to the total lipid amount of the lipid membrane structure % Of the above lipid membrane structure; and the above lipid membrane structure wherein the target cell is a liver cell.
 また、別の観点からは、標的細胞の核内に物質を送達するための脂質膜構造体であって、送達すべき物質が内部に封入されており、3糖以上のオリゴ糖化合物で表面修飾された脂質膜構造体が提供される。この発明の好ましい態様によれば、オリゴ糖化合物が3糖化合物である上記の脂質膜構造体;オリゴ糖化合物がグルコース3量体である上記の脂質膜構造体;オリゴ糖化合物がマルトトリオースである上記の脂質膜構造体;及び標的細胞が肝臓細胞である上記の脂質膜構造体が提供される。 From another viewpoint, a lipid membrane structure for delivering a substance into the nucleus of a target cell, in which the substance to be delivered is encapsulated, and surface modification with an oligosaccharide compound of 3 or more sugars Provided lipid membrane structures are provided. According to a preferred embodiment of the present invention, the above lipid membrane structure wherein the oligosaccharide compound is a trisaccharide compound; the above lipid membrane structure wherein the oligosaccharide compound is a glucose trimer; the oligosaccharide compound is maltotriose There is provided the above lipid membrane structure; and the above lipid membrane structure, wherein the target cell is a liver cell.
 さらに好ましい態様によれば、該物質が核酸、例えば遺伝子を含む核酸やsiRNAなどの機能性核酸である上記の脂質膜構造体が提供され、さらに脂質膜構造体が多機能性エンベロープ型ナノ構造体(MEND)である上記の脂質膜構造体;多機能性エンベロープ型ナノ構造体が、内部に核酸及びカチオン性ポリマーが封入され、表面が3糖以上のオリゴ糖化合物により修飾されたリポソームである上記の脂質膜構造体;多機能性エンベロープ型ナノ構造体が、内部に核酸及びカチオン性ポリマーが封入され、表面が3糖以上のオリゴ糖化合物、GALA、及びポリエチレングリコールにより修飾されたリポソームである上記の脂質膜構造体;及びカチオン性ポリマーがプロタミンである上記の脂質膜構造体が提供される。また、肝臓における遺伝子発現に用いる上記の脂質膜構造体;遺伝子治療に用いる上記の脂質膜構造体;肝臓疾患の遺伝子治療に用いる上記の脂質膜構造体;及び肝臓疾患が糖尿病、肝臓癌又はウイルス性肝炎である上記の脂質膜構造体が提供される。
 この脂質膜構造体を有効成分として含む医薬組成物、好ましくは該物質として核酸を含む医薬組成物も本発明により提供される。
According to a further preferred aspect, there is provided the above lipid membrane structure wherein the substance is a nucleic acid, for example, a functional nucleic acid such as a nucleic acid containing a gene or siRNA, and the lipid membrane structure is a multifunctional envelope nanostructure. The above-mentioned lipid membrane structure which is (MEND); the multifunctional envelope nanostructure is a liposome in which a nucleic acid and a cationic polymer are encapsulated and the surface is modified with an oligosaccharide compound having 3 or more sugars The above-mentioned lipid membrane structure; the multifunctional envelope nanostructure is a liposome in which a nucleic acid and a cationic polymer are encapsulated and the surface is modified with an oligosaccharide compound having three or more sugars, GALA, and polyethylene glycol And the above lipid membrane structure wherein the cationic polymer is protamine. In addition, the above lipid membrane structure used for gene expression in the liver; the above lipid membrane structure used in gene therapy; the above lipid membrane structure used in gene therapy of liver disease; and liver disease is diabetes, liver cancer or virus There is provided the above lipid membrane structure which is hepatitis hepatitis.
A pharmaceutical composition comprising the lipid membrane structure as an active ingredient, preferably a pharmaceutical composition comprising a nucleic acid as the substance is also provided by the present invention.
 さらに別の観点からは、ヒトを含む哺乳類動物の生体内の標的組織又は臓器の細胞の核内に物質を送達する方法であって、3糖以上のオリゴ糖化合物により修飾され、好ましくはさらにGALA及びポリアルキレングリコールで表面修飾されており、かつ送達すべき物質を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。送達すべき物質として、医薬有効成分又は核酸などが挙げられる。 From still another aspect, a method for delivering a substance into the nucleus of a target tissue or organ cell in vivo in mammals including humans, wherein the substance is modified with an oligosaccharide compound having 3 or more sugars, preferably further GALA And a method comprising administering to said animal a lipid membrane structure that is surface-modified with polyalkylene glycol and encapsulating a substance to be delivered. Examples of substances to be delivered include active pharmaceutical ingredients or nucleic acids.
 この発明の好ましい態様として、ヒトを含む哺乳類動物の生体内の標的組織又は臓器の細胞核内において遺伝子を発現させる方法であって、3糖以上のオリゴ糖化合物により修飾され、好ましくはさらにGALA及びポリアルキレングリコールで表面修飾されており、かつ送達すべき物質を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。好ましくは、核酸とともにカチオン性ポリマー、例えばプロタミンを内部に封入した上記脂質膜構造体を用いることができる。さらに、肝臓細胞において遺伝子を発現させる上記の方法;遺伝子治療のために用いる上記の方法;肝臓疾患の遺伝子治療に用いる上記の方法;肝臓疾患が糖尿病、肝臓癌又はウイルス性肝炎である上記の方法;及び投与形態が静脈内投与である上記の方法が提供される。 A preferred embodiment of the present invention is a method for expressing a gene in a cell nucleus of a target tissue or organ in a living body of a mammal, including a human, which is modified with an oligosaccharide compound having 3 or more sugars, preferably further GALA and poly There is provided a method comprising the step of administering to an animal a lipid membrane structure that is surface-modified with an alkylene glycol and encapsulating a substance to be delivered. Preferably, the above lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used. Further, the above method for expressing a gene in liver cells; the above method used for gene therapy; the above method used for gene therapy of liver disease; the above method wherein the liver disease is diabetes, liver cancer or viral hepatitis And the above method wherein the dosage form is intravenous administration.
 また、本発明により、ヒトを含む哺乳類動物の疾患の予防及び/又は治療方法であって、3糖以上のオリゴ糖化合物により修飾され、好ましくはさらにGALA及びポリアルキレングリコールで表面修飾されており、かつ医薬有効成分を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。 Further, according to the present invention, there is provided a method for preventing and / or treating diseases of mammals including humans, which are modified with an oligosaccharide compound having 3 or more sugars, preferably further surface-modified with GALA and polyalkylene glycol, A method comprising the step of administering to the animal a lipid membrane structure encapsulating a pharmaceutically active ingredient therein is provided.
 この発明の一態様として、ヒトを含む哺乳類動物の疾患の予防及び/又は治療方法であって、3糖以上のオリゴ糖化合物により修飾され、好ましくはさらにGALA及びポリアルキレングリコールで表面修飾されており、かつ核酸を内部に封入した脂質膜構造体を該動物に投与する工程を含む方法が提供される。この方法の好ましい態様によれば、疾患が肝臓疾患である上記の方法;肝臓疾患が糖尿病、肝臓癌又はウイルス性肝炎である上記の方法;及び投与形態が静脈内投与である上記の方法が提供される。 As one embodiment of the present invention, there is provided a method for preventing and / or treating diseases of mammals including humans, which are modified with oligosaccharide compounds having 3 or more sugars, preferably further surface-modified with GALA and polyalkylene glycol. And a method comprising administering to the animal a lipid membrane structure having nucleic acid encapsulated therein. According to a preferred embodiment of this method, there is provided the above method wherein the disease is liver disease; the above method wherein the liver disease is diabetes, liver cancer or viral hepatitis; and the above method wherein the dosage form is intravenous administration Is done.
 本発明の脂質膜構造体を用いると脂質膜構造体から内包された物質を効率的に細胞質内に放出させることができる。特に、PEGなどのポリアルキレングリコールで修飾された脂質膜構造体においても細胞質内への該物質の放出効率を高めることができることから、例えば抗腫瘍剤又は遺伝子を含む核酸などの医薬有効成分を内包する脂質膜構造体の血中滞留性を高め、かつ脂質膜構造体から細胞質内への医薬有効成分の放出効率を改善することが可能になる。 When the lipid membrane structure of the present invention is used, substances encapsulated from the lipid membrane structure can be efficiently released into the cytoplasm. In particular, a lipid membrane structure modified with a polyalkylene glycol such as PEG can also increase the release efficiency of the substance into the cytoplasm. Therefore, for example, it contains an active pharmaceutical ingredient such as an antitumor agent or a nucleic acid containing a gene. It is possible to increase the retention of the lipid membrane structure in the blood and improve the release efficiency of the active pharmaceutical ingredient from the lipid membrane structure into the cytoplasm.
 また、本発明の脂質膜構造体を用いると標的組織や臓器の細胞の核内に効率的に所望の物質、好ましくは核酸を送達することができ、例えば遺伝子を含む核酸を送達した場合には肝臓細胞などの核内で該遺伝子を高度に発現させることが可能になる。例えば、本発明の脂質膜構造体としてマルトトリオース及びGALAにより表面修飾された多機能性エンベロープ型ナノ構造体を用いて遺伝子を含む核酸を肝臓細胞の核内に送達して該遺伝子を発現させた場合には、in vivoの試験系において無修飾の場合に比べて約100倍程度の遺伝子発現効率上昇を達成することができ、現在市販されているトランスフェクション試薬と比べてもより高い遺伝子発現効率を達成できるので、本発明の脂質膜構造体を用いて、例えば糖尿病、ウイルス性肝炎や肝臓癌などに対して極めて効率的な遺伝子治療が可能になる。 In addition, when the lipid membrane structure of the present invention is used, a desired substance, preferably a nucleic acid can be efficiently delivered into the nucleus of a cell of a target tissue or organ. For example, when a nucleic acid containing a gene is delivered It becomes possible to highly express the gene in a nucleus such as a liver cell. For example, using a multifunctional envelope nanostructure surface-modified with maltotriose and GALA as the lipid membrane structure of the present invention, a nucleic acid containing a gene is delivered into the nucleus of a liver cell to express the gene. In the case of an in vivo test system, the gene expression efficiency can be increased by about 100 times compared to the case of no modification in the in vivo test system, and the gene expression is higher than that of currently available transfection reagents. Since efficiency can be achieved, the lipid membrane structure of the present invention enables extremely efficient gene therapy for diabetes, viral hepatitis, liver cancer, and the like.
遺伝子封入R8修飾リポソームのトランスフェクション活性に及ぼすINF7の効果を示した図である。HeLa細胞40,000cells/wellでのEPC/DOPC/Chol/R8(0.4μg pDNA/well)の結果を示す。It is the figure which showed the effect of INF7 on the transfection activity of a gene inclusion R8 modification liposome. The result of EPC / DOPC / Chol / R8 (0.4 μg pDNA / well) in HeLa cells 40,000 cells / well is shown. 遺伝子封入R8修飾リポソームのトランスフェクション活性に及ぼすINF7の効果を示した図である。HeLa細胞40,000cells/wellでのEPC/DOPE/Chol/R8(0.4μg pDNA/well)の結果を示す。It is the figure which showed the effect of INF7 on the transfection activity of a gene inclusion R8 modification liposome. The result of EPC / DOPE / Chol / R8 (0.4 μg pDNA / well) in HeLa cells 40,000 cells / well is shown. R8−MEND及び3%のSTR−INF7修飾R8−MENDの静脈内投与によるイン・ビボでの遺伝子発現結果を示した図である。It is the figure which showed the gene expression result in vivo by intravenous administration of R8-MEND and 3% of STR-INF7 modification R8-MEND. 細胞内にプラスミドDNAを含むSTR−INF7修飾R8−MENDを導入し、エンドソームからのDNA脱出を観察した結果を示した図である。(a)はR8−MEND、(b)はSTR−INF7/R8−MENDの結果を示し、赤はMEND;Rhod−pDNA、緑はエンドソーム;PKH67修飾、黄色は共局在(矢印)を示し、バーは10μmである。It is the figure which showed the result of having introduce | transduced STR-INF7 modification R8-MEND containing plasmid DNA in a cell, and observing DNA escape from an endosome. (A) shows R8-MEND, (b) shows the result of STR-INF7 / R8-MEND, red shows MEND; Rhod-pDNA, green shows endosome; PKH67 modification, yellow shows colocalization (arrow), The bar is 10 μm. STR−INF7修飾R8−MENDがエンドソームとの膜融合を介さずにエンドソームから脱出することを示した図である。(a)は非膜融合性R8−MEND、(b)は非膜融合性STR−INF7/R8−MENDの結果を示し、青はHoechst 33342による核染色の結果を示し、赤はローダミン−DOPE及び緑はNBD−DOPEを示す。It is the figure which showed that STR-INF7 modification R8-MEND escapes from an endosome without passing through membrane fusion with an endosome. (A) shows the result of non-membrane fusion R8-MEND, (b) shows the result of non-membrane fusion STR-INF7 / R8-MEND, blue shows the result of nuclear staining with Hoechst 33342, red shows the rhodamine-DOPE and Green indicates NBD-DOPE. カルセインリリースを用いたINF7修飾リポソームの膜破壊活性におけるpH依存性を示した図である。It is the figure which showed the pH dependence in the membrane destruction activity of the INF7 modification liposome using a calcein release. PEG修飾リポソームにおけるINF7によるエンドソーム脱出促進活性を示した図である。赤はMEND;Rhod−pDNA、緑はエンドソーム;PKH67修飾を示し、バーは10μmである。It is the figure which showed the endosome escape promotion activity by INF7 in a PEG modification liposome. Red indicates MEND; Rhod-pDNA, green indicates endosome; PKH67 modification, bars are 10 μm. 遺伝子封入R8/PEG修飾リポソームのトランスフェクション活性に及ぼすINF7の効果を示した図である。MENDとしてEPC/DOPC/Chol/R8−10%−MEND(+/−10%DSPE−PEG 2000)を用い、細胞としてはHeLa細胞(40,000 cells/well)を用いた。It is the figure which showed the effect of INF7 on the transfection activity of a gene inclusion R8 / PEG modification liposome. EPC / DOPC / Chol / R8-10% -MEND (+/− 10% DSPE-PEG 2000) was used as MEND, and HeLa cells (40,000 cells / well) were used as cells. GALA(2%)及びマルトトリオース(5%)を含有するMENDの粒子径・ζ電位及びマウス肝臓における遺伝子発現(ルシフェラーゼ活性)を評価した結果を示した図である。It is the figure which showed the result of having evaluated the particle diameter and zeta potential of MEND containing GALA (2%) and maltotriose (5%), and the gene expression (luciferase activity) in a mouse liver. マルトトリオース−PEG−脂質の含量を0~15%の範囲で変化させて遺伝子発現活性を評価した結果を示した図である。It is the figure which showed the result of having changed the content of maltotriose-PEG-lipid in the range of 0 to 15%, and having evaluated the gene expression activity. マルトトリオース以外の糖(セロトリオース、マンノース、ガラクトース、及びβマルトース)について遺伝子発現活性を評価した結果を示した図である。It is the figure which showed the result of having evaluated gene expression activity about sugars (cellotriose, mannose, galactose, and (beta) maltose) other than maltotriose. マルトトリオース以外の糖(αマルトース及びラクトース)について遺伝子発現活性を評価した結果を示した図である。It is the figure which showed the result of having evaluated gene expression activity about sugars (alpha maltose and lactose) other than maltotriose. MENDをマウスに静脈内投与した後の肝臓移行量を評価した結果を示した図である。It is the figure which showed the result of having evaluated the liver transfer amount after administering MEND intravenously to a mouse | mouth. GALA及びマルトトリオースで修飾されたMENDをマウスに静脈内投与した後の肝臓移行量を評価した結果を示した図である。It is the figure which showed the result of having evaluated the amount of liver transfer after intravenously administering MEND modified with GALA and maltotriose to a mouse | mouth. Lipoplex及びPolyplex投与時の肝臓における遺伝子発現をMENDと比較した結果を示した図である。It is the figure which showed the result of having compared the gene expression in the liver at the time of Lipoplex and Polyplex administration with MEND.
 標的細胞の細胞質内に物質を送達するための本発明の脂質膜構造体を構成する脂質としては、例えば、リン脂質、糖脂質、ステロール、又は飽和若しくは不飽和の脂肪酸などが挙げられる。
 標的細胞の核内に物質を送達するための本発明の脂質膜構造体を構成する脂質としては、例えば、リン脂質、ステロール、又は飽和若しくは不飽和の脂肪酸などが挙げられる。
Examples of the lipid constituting the lipid membrane structure of the present invention for delivering a substance into the cytoplasm of a target cell include phospholipids, glycolipids, sterols, or saturated or unsaturated fatty acids.
Examples of the lipid constituting the lipid membrane structure of the present invention for delivering a substance into the nucleus of a target cell include phospholipids, sterols, saturated or unsaturated fatty acids, and the like.
 リン脂質及びリン脂質誘導体としては、例えば、ホスファチジルエタノールアミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、カルジオリピン、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスファート、1,2−ジミリストイル−1,2−デオキシホスファチジルコリン、プラスマロゲン、ホスファチジン酸などを挙げることができ、これらは1種又は2種以上を組み合わせて用いることができる。これらリン脂質における脂肪酸残基は特に限定されないが、例えば、炭素数12~20の飽和又は不飽和の脂肪酸残基を挙げることができ、具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸などの脂肪酸由来のアシル基を挙げることができる。また、卵黄レシチン、大豆レシチンなどの天然物由来のリン脂質を用いることもできる。 Examples of phospholipids and phospholipid derivatives include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, ceramide phosphorylglycerol phosphate, 1 , 2-Dimyristoyl-1,2-deoxyphosphatidylcholine, plasmalogen, phosphatidic acid, and the like, which can be used alone or in combination of two or more. Fatty acid residues in these phospholipids are not particularly limited, and examples thereof include saturated or unsaturated fatty acid residues having 12 to 20 carbon atoms. Specific examples include lauric acid, myristic acid, palmitic acid, stearin Mention may be made of acyl groups derived from fatty acids such as acids, oleic acid and linoleic acid. Moreover, phospholipids derived from natural products such as egg yolk lecithin and soybean lecithin can also be used.
 糖脂質としては、例えば、グリセロ糖脂質(例えば、スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド)、スフィンゴ糖脂質(例えば、ガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシド)などが挙げられる。 Examples of the glycolipid include glyceroglycolipid (eg, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride), sphingoglycolipid (eg, galactosyl cerebroside, lactosyl cerebroside, ganglioside) and the like. Can be mentioned.
 ステロールとしては、例えば、動物由来のステロール(例えば、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール)、植物由来のステロール(フィトステロール)(例えば、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール)、微生物由来のステロール(例えば、チモステロール、エルゴステロール)などが挙げられる。
 飽和又は不飽和の脂肪酸としては、例えば、パルミチン酸、オレイン酸、ステアリン酸、アラキドン酸、ミリスチン酸などの炭素数12~20の飽和又は不飽和の脂肪酸が挙げられる。
Examples of sterols include animal-derived sterols (for example, cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol), plant-derived sterols (phytosterol) (for example, stigmasterol, sitosterol, campesterol, Brush castrol), sterols derived from microorganisms (for example, timosterol, ergosterol) and the like.
Examples of the saturated or unsaturated fatty acid include saturated or unsaturated fatty acids having 12 to 20 carbon atoms such as palmitic acid, oleic acid, stearic acid, arachidonic acid, and myristic acid.
 脂質膜構造体の形態は特に限定されないが、例えば、水系溶媒に分散した形態として一枚膜リポソーム、多重層リポソーム、O/W型エマルション、W/O/W型エマルション、球状ミセル、ひも状ミセル、又は不定型の層状構造物などを挙げることができる。本発明の脂質膜構造体の好ましい形態としてリポソームを挙げることができる。以下、本発明の脂質膜構造体の好ましい態様としてリポソームについて説明する場合があるが、本発明の脂質膜構造体はリポソームに限定されることはない。 The form of the lipid membrane structure is not particularly limited. For example, as a form dispersed in an aqueous solvent, single membrane liposome, multilamellar liposome, O / W emulsion, W / O / W emulsion, spherical micelle, string micelle Or an irregular layered structure. A preferred form of the lipid membrane structure of the present invention is a liposome. Hereinafter, although a liposome may be described as a preferred embodiment of the lipid membrane structure of the present invention, the lipid membrane structure of the present invention is not limited to liposomes.
 標的細胞の細胞質内に物質を送達するための本発明の脂質膜構造体は、その表面がINF7で修飾されていることを特徴としている。INF7はインフルエンザHAタンパク質(HA2)由来のペプチド(1−23)を改変したグルタミン酸リッチペプチドであり、リポソームと混在させることにより脂質構造が崩壊して内包された物質が容易に放出されることが報告されており(Biochemistry,46,pp.13490−13504,2007)、ポリエチレングリコールテトラアクリレート(PEG−TA)にINF7を結合させた送達システムも提案されている(The Journal of Gene Medicine,10,pp.1134−1149,2008)。当業者はこれらの刊行物を参照することにより本発明においてINF7を容易に使用することが可能である。本明細書において「INF7」の用語にはBiochemistry,46,pp.13490−13504,2007のTable1に記載された配列により特定されるペプチドのほか、上記ペプチドのアミノ酸配列において1又は数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列からなり、実質的にINF7と同様の性質を有する修飾ペプチドも包含される。本明細書における「INF7」の用語をいかなる意味においても限定して解釈してはならない。上記刊行物の開示及びこの刊行物において引用された全ての文献の開示を参照により本明細書の開示として含める。 The lipid membrane structure of the present invention for delivering a substance into the cytoplasm of a target cell is characterized in that its surface is modified with INF7. INF7 is a glutamic acid-rich peptide obtained by modifying a peptide (1-23) derived from influenza HA protein (HA2), and it is reported that the inclusion of a substance with liposomes causes the lipid structure to collapse and the encapsulated substance is easily released. (Biochemistry, 46, pp. 13490-13504, 2007), and a delivery system in which INF7 is bound to polyethylene glycol tetraacrylate (PEG-TA) has also been proposed (The Journal of Gene Medicine, 10, pp. 13-28). 1134-1149, 2008). A person skilled in the art can easily use INF7 in the present invention by referring to these publications. In this specification, the term “INF7” is used in Biochemistry, 46, pp. In addition to the peptide specified by the sequence described in Table 1 of 13490-13504, 2007, it consists of an amino acid sequence in which one or several amino acids have been deleted, substituted, and / or added in the amino acid sequence of the peptide. In particular, modified peptides having the same properties as INF7 are also included. The term “INF7” herein should not be construed as limiting in any way. The disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
 INF7による脂質膜構造体の修飾方法は特に限定されないが、一般的には、脂質化合物とINF7とが共有結合した脂質修飾INF7を脂質膜構成脂質として用いて脂質膜構造体を構築することにより、INF7により表面修飾された脂質膜構造体を容易に製造することができる。脂質修飾INFとしては、例えばステアリル化INF7などを利用することができ、この化合物はFutaki S et al.,Biocongug.Chem.,12(6),pp.1005−1011,2001に記載された方法に従って容易に製造することができる。INF7による表面修飾量は特に限定されないが、一般的には脂質膜構造体の総脂質量に対して1~5モル%の範囲であり、好ましくは総脂質量に対して3~5モル%程度である。 The method of modifying the lipid membrane structure with INF7 is not particularly limited, but generally, by constructing a lipid membrane structure using lipid-modified INF7 in which a lipid compound and INF7 are covalently bonded as a lipid membrane-constituting lipid, A lipid membrane structure surface-modified with INF7 can be easily produced. As the lipid-modified INF, for example, stearyl INF7 can be used, and this compound is disclosed in Futaki S et al. Biocongug. Chem. , 12 (6), pp. 1005-1011, 2001, and can be easily manufactured. The amount of surface modification by INF7 is not particularly limited, but is generally in the range of 1 to 5 mol% with respect to the total lipid amount of the lipid membrane structure, preferably about 3 to 5 mol% with respect to the total lipid amount. It is.
 標的細胞の核内に物質を送達するための本発明の脂質膜構造体の表面修飾に用いられる3糖以上のオリゴ糖化合物の種類は特に限定されないが、例えば、3個ないし10個程度の糖ユニットが結合したオリゴ糖化合物を用いることができ、好ましくは3個ないし6個程度の糖ユニットが結合したオリゴ糖化合物を用いることができる。 The type of oligosaccharide compound having 3 or more sugars used for surface modification of the lipid membrane structure of the present invention for delivering a substance into the nucleus of a target cell is not particularly limited. For example, about 3 to 10 sugars An oligosaccharide compound having units bonded thereto can be used, and preferably an oligosaccharide compound having about 3 to 6 sugar units bonded can be used.
 オリゴ糖化合物としてより具体的には、例えば、セロトリオース(Cellotriose:β−D−グルコピラノシル−(1→4)−β−D−グルコピラノシル−(1→4)−D−グルコース)、カコトリオース(Chacotriose:α−L−ラムノピラノシル−(1→2)−[α−L−ラムノピラノシル−(1→4)]−D−グルコース)、ゲンチアノース(Gentianose:β−D−フルクトフラノシル β−D−グルコピラノシル−(1→6)−α−D−グルコピラノシド)、イソマルトトリオース(Isomaltotriose:α−D−グルコピラノシル−(1→6)−α−D−グルコピラノシル−(1→6)−D−グルコース)、イソパノース(Isopanose:α−D−グルコピラノシル−(1→4)−[α−D−グルコピラノシル−(1→6)]−D−グルコース)、マルトトリオース(Maltotriose:α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−D−グルコース)、マンニノトリオース(Manninotriose:α−D−ガラクトピラノシル−(1→6)−α−D−ガラクトピラノシル−(1→6)−D−グルコース)、メレジトース(Melezitose:α−D−グルコピラノシル−(1→3)−β−D−フルクトフラノシル=α−D−グルコピラノシド)、パノース(Panose:α−D−グルコピラノシル−(1→6)−α−D−グルコピラノシル−(1→4)−D−グルコース)、プランテオース(Planteose:α−D−ガラクトピラノシル−(1→6)−β−D−フルクトフラノシル=α−D−グルコピラノシド)、ラフィノース(Raffinose:β−D−フルクトフラノシル=α−D−ガラクトピラノシル−(1→6)−α−D−グルコピラノシド)、ソラトリオース(Solatriose:α−L−ラムノピラノシル−(1→2)−[β−D−グルコピラノシル−(1→3)]−D−ガラクトース)、ウンベリフェロース(Umbelliferose:β−D−フルクトフラノシル=α−D−ガラクトピラノシル−(1→2)−α−D−ガラクトピラノシド)などの3糖化合物;リコテトラオース(Lycotetraose:β−D−グルコピラノシル−(1→2)−[β−D−キシロピラノシル−(1→3)]−β−D−グルコピラノシル−(1→4)−β−D−ガラクトース)、マルトテトラオース(Maltotetraose:α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−D−グルコース)、スタキオース(Stachyose:β−D−フルクトフラノシル=α−D−ガラクトピラノシル−(1→6)−α−D−ガラクトピラノシル−(1→6)−α−D−グルコピラノシド)などの4糖化合物;マルトペンタオース(Maltopentaose:α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−D−グルコース)、ベルバスコース(Verbascose:β−D−フルクトフラノシル=α−D−ガラクトピラノシル−(1→6)−α−D−ガラクトピラノシル−(1→6)−α−D−ガラクトピラノシル−(1→6)−α−D−グルコピラノシド)などの5糖化合物;マルトヘキサオース(Maltohexaose:α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−α−D−グルコピラノシル−(1→4)−D−グルコース)などの6糖化合物を挙げることができるが、これらに限定されることはない。 More specifically, examples of the oligosaccharide compound include cellotriose (Cellotriose: β-D-glucopyranosyl- (1 → 4) -β-D-glucopyranosyl- (1 → 4) -D-glucose), chacotriose: α -L-rhamnopyranosyl- (1 → 2)-[α-L-rhamnopyranosyl- (1 → 4)]-D-glucose), gentianose (β-D-fructofuranosyl β-D-glucopyranosyl- (1 → 6) -α-D-glucopyranoside), isomaltotriose (α-D-glucopyranosyl- (1 → 6) -α-D-glucopyranosyl- (1 → 6) -D-glucose), isopanose (Isopanose) : Α-D-glucopyranosyl- (1 → 4)-[α- D-glucopyranosyl- (1 → 6)]-D-glucose), maltotriose (α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -D-glucose) Manninotriose: α-D-galactopyranosyl- (1 → 6) -α-D-galactopyranosyl- (1 → 6) -D-glucose), melezitose: α-D -Glucopyranosyl- (1 → 3) -β-D-fructofuranosyl = α-D-glucopyranoside), Panose (Panose: α-D-glucopyranosyl- (1 → 6) -α-D-glucopyranosyl- (1 → 4) -D-glucose), Plantose: α-D-galactopyranosyl- (1 → 6) -β-D-fruc Tofuranosyl = α-D-glucopyranoside), raffinose (β-D-fructofuranosyl = α-D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside), soratriose: α- L-rhamnopyranosyl- (1 → 2)-[β-D-glucopyranosyl- (1 → 3)]-D-galactose), umbelliferose (β-D-fructofuranosyl = α-D-galactopyra Trisacyl compounds such as nosyl- (1 → 2) -α-D-galactopyranoside); Lycotetraose: β-D-glucopyranosyl- (1 → 2)-[β-D-xylopyranosyl- ( 1 → 3)]-β-D-glucopyranosyl- (1 → 4) -β-D-galactose), maltotetraau (Maltotetraose: α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -D-glucose), stachyose: β- A tetrasaccharide compound such as D-fructofuranosyl = α-D-galactopyranosyl- (1 → 6) -α-D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside); malto Pentaose (Maltopentaose: α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -D-glucose), Verbascosse (Verbascose: β-D-fructofuranosyl = α-D-galactopyranosyl- (1 → 6) -α Pentasaccharide compounds such as D-galactopyranosyl- (1 → 6) -α-D-galactopyranosyl- (1 → 6) -α-D-glucopyranoside); maltohexaose (α-D- Glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- (1 → 4) -α-D-glucopyranosyl- Hexasaccharide compounds such as (1 → 4) -D-glucose) can be mentioned, but are not limited thereto.
 好ましくはグルコースの3量体ないし6量体であるオリゴ糖化合物を用いることができ、さらに好ましくはグルコースの3量体又は4量体であるオリゴ糖化合物を用いることができる。より具体的には、イソマルトトリオース、イソパノース、マルトトリオース、マルトテトラオース、マルトペンタオース、又はマルトヘキサオースなどを好適に用いることができ、これらのうち、グルコースがα1−4結合したマルトトリオース、マルトテトラオース、マルトペンタオース、又はマルトヘキサオースがさらに好ましい。特に好ましいのはマルトトリオース又はマルトテトラオースであり、最も好ましいのはマルトトリオースである。 Preferably, an oligosaccharide compound that is a trimer or hexamer of glucose can be used, and more preferably, an oligosaccharide compound that is a trimer or tetramer of glucose can be used. More specifically, isomaltotriose, isopanose, maltotriose, maltotetraose, maltopentaose, or maltohexaose can be preferably used, and among these, malto in which glucose is α1-4 bonded. More preferred is triose, maltotetraose, maltopentaose, or maltohexaose. Particularly preferred is maltotriose or maltotetraose, and most preferred is maltotriose.
 オリゴ糖化合物で脂質膜構造体を表面修飾する方法は特に限定されないが、例えば、脂質膜構造体をガラクトースやマンノースなどの単糖で表面を修飾したリポソーム(国際公開WO2007/102481)が知られているので、この刊行物に記載された表面修飾方法を採用することができる。上記刊行物の開示の全てを参照により本明細書の開示として含める。この手段はポリアルキレングリコール化脂質に単糖化合物を結合して脂質膜構造体の表面修飾を行なう方法であり、この手段により脂質膜構造体の表面をポリアルキレングリコールにより同時に修飾することができるので好ましい。 The method of modifying the surface of the lipid membrane structure with an oligosaccharide compound is not particularly limited. For example, liposomes (International Publication WO2007 / 102481) in which the lipid membrane structure is modified with a monosaccharide such as galactose or mannose are known. Therefore, the surface modification method described in this publication can be adopted. The entire disclosures of the above publications are incorporated herein by reference. This method is a method in which a monosaccharide compound is bonded to a polyalkylene glycolated lipid to modify the surface of the lipid membrane structure. By this means, the surface of the lipid membrane structure can be simultaneously modified with polyalkylene glycol. preferable.
 本発明の脂質膜構造体の表面をポリアルキレングリコールなどの親水性ポリマーで修飾することによりリポソームの血中滞留性を高めることができる。この手段については、例えば、特開平1−249717号公報、特開平2−149512号公報、特開平4−346918号公報、特開2004−10481号公報などに記載されている。親水性ポリマーとしてはポリアルキレングリコールが好ましい。ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコールなどを用いることができる。ポリアルキレングリコールの分子量は、例えば300~10,000程度、好ましくは500~10,000、さらに好ましくは1,000~5,000程度である。 The blood retention of liposomes can be increased by modifying the surface of the lipid membrane structure of the present invention with a hydrophilic polymer such as polyalkylene glycol. This means is described, for example, in JP-A-1-249717, JP-A-2-149512, JP-A-4-346918, and JP-A-2004-10482. As the hydrophilic polymer, polyalkylene glycol is preferable. As polyalkylene glycol, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol and the like can be used. The molecular weight of the polyalkylene glycol is, for example, about 300 to 10,000, preferably about 500 to 10,000, and more preferably about 1,000 to 5,000.
 ポリアルキレングリコールによる脂質膜構造体の表面修飾は、例えばポリアルキレングリコール修飾脂質を脂質膜構成脂質として用いて脂質膜構造体を構築することにより容易に行なうことができる。例えば、ポリエチレングリコールによる修飾を行う場合にはステアリル化ポリエチレングリコール(例えばステアリン酸PEG45(STR−PEG45)など)を用いることができる。その他、N−[カルボニル−メトキシポリエチレングリコール−2000]−1,2−ジパルミトイル−sn−グリセロ−3−ホスフォエタノールアミン、n−[カルボニル−メトキシポリエチレングリコール−5000]−1,2−ジパルミトイル−sn−グリセロ−3−ホスフォエタノールアミン、N−[カルボニル−メトキシポリエチレングリコール−750]−1,2−ジステアロイル−sn−グリセロ−3−ホスフォエタノールアミン、N−[カルボニル−メトキシポリエチレングリコール−2000]−1,2−ジステアロイル−sn−グリセロ−3−ホスフォエタノールアミン、N−[カルボニル−メトキシポリエチレングリコール−5000]−1,2−ジステアロイル−sn−グリセロ−3−ホスフォエタノールアミンなどのポリエチレングリコール誘導体などを用いることもできるが、ポリアルキレングリコール化脂質はこれらに限定されることはない。 The surface modification of the lipid membrane structure with polyalkylene glycol can be easily performed by constructing a lipid membrane structure using, for example, a polyalkylene glycol-modified lipid as a lipid membrane constituent lipid. For example, when the modification with polyethylene glycol is performed, stearyl polyethylene glycol (for example, PEG45 stearate (STR-PEG45) or the like) can be used. In addition, N- [carbonyl-methoxypolyethyleneglycol-2000] -1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, n- [carbonyl-methoxypolyethyleneglycol-5000] -1,2-dipalmitoyl -Sn-glycero-3-phosphoethanolamine, N- [carbonyl-methoxypolyethylene glycol-750] -1,2-distearoyl-sn-glycero-3-phosphoethanolamine, N- [carbonyl-methoxypolyethylene glycol -2000] -1,2-distearoyl-sn-glycero-3-phosphoethanolamine, N- [carbonyl-methoxypolyethyleneglycol-5000] -1,2-distearoyl-sn-glycero-3-phosphoethanol Amine Can also be used such as polyethylene glycol derivatives of polyalkylene glycols of lipids is the it is not limited thereto.
 例えば、ステアリル化ポリエチレングリコールにオリゴ糖化合物を結合させることにより、ポリアルキレングリコール及びオリゴ糖化合物による表面修飾を同時に達成することができる。もっとも、脂質膜構造体を表面修飾する方法は上記の方法に限定されることはなく、例えば、ステアリル化されたオリゴ糖化合物など脂質化オリゴ糖化合物を脂質膜構造体の構成脂質として使用することにより、表面修飾を行なうことができる場合もある。オリゴ糖化合物による脂質膜構造体の表面修飾量は特に限定されないが、例えば、総脂質量に対して1~30モル%程度、好ましくは2~20モル%程度、より好ましくは5~10モル%程度である。 For example, surface modification with a polyalkylene glycol and an oligosaccharide compound can be simultaneously achieved by bonding an oligosaccharide compound to stearyl-modified polyethylene glycol. However, the method for modifying the surface of the lipid membrane structure is not limited to the above-mentioned method. For example, a lipidated oligosaccharide compound such as a stearyl oligosaccharide compound is used as a constituent lipid of the lipid membrane structure. In some cases, surface modification may be performed. The amount of the surface modification of the lipid membrane structure by the oligosaccharide compound is not particularly limited. For example, it is about 1 to 30 mol%, preferably about 2 to 20 mol%, more preferably 5 to 10 mol%, based on the total lipid amount. Degree.
 本発明の脂質膜構造体の製造にあたり、血中滞留性を高めるための脂質誘導体として、例えば、グリコフォリン、ガングリオシドGM1、ホスファチジルイノシトール、ガングリオシドGM3、グルクロン酸誘導体、グルタミン酸誘導体、ポリグリセリンリン脂質誘導体などを利用することもできる。また、血中滞留性を高めるための親水性ポリマーとして、ポリアルキレングリコールのほかにデキストラン、プルラン、フィコール、ポリビニルアルコール、スチレン−無水マレイン酸交互共重合体、ジビニルエーテル−無水マレイン酸交互共重合体、アミロース、アミロペクチン、キトサン、マンナン、シクロデキストリン、ペクチン、カラギーナンなどを表面修飾に用いることもできる。 In the production of the lipid membrane structure of the present invention, examples of lipid derivatives for enhancing retention in blood include glycophorin, ganglioside GM1, phosphatidylinositol, ganglioside GM3, glucuronic acid derivatives, glutamic acid derivatives, polyglycerin phospholipid derivatives, and the like. Can also be used. In addition to polyalkylene glycols, dextran, pullulan, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer as well as polyalkylene glycol Amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, carrageenan and the like can also be used for surface modification.
 また、本発明の脂質膜構造体には、例えば、温度変化感受性機能、膜透過機能、遺伝子発現機能、及びpH感受性機能などのいずれか1つ又は2つ以上の機能を付与することができる。血中滞留性を付加するとともに、これらの機能を適宜付加することにより、例えば抗腫瘍剤や遺伝子を含む核酸などの医薬有効成分を内包する脂質膜構造体の血液中での滞留性を向上させ、肝臓や脾臓などの細網内皮系組織による捕捉率を低下させるとともに、標的細胞におけるエンドサイトーシスの後にエンドソームからの医薬有効成分の放出効率を高めることができる。また、標的細胞におけるエンドサイトーシスの後にエンドソームから効率的に脂質膜構造体を脱出させて核内に移行させることができ、核内において高い遺伝子発現活性を達成することが可能になる。 In addition, the lipid membrane structure of the present invention can be provided with any one function or two or more functions such as a temperature change sensitivity function, a membrane permeation function, a gene expression function, and a pH sensitivity function. In addition to adding retention in the blood, adding these functions as appropriate improves the retention in the blood of lipid membrane structures that contain active pharmaceutical ingredients such as antitumor agents and nucleic acids containing genes. In addition to reducing the capture rate by reticuloendothelial tissues such as the liver and spleen, it is possible to increase the efficiency of releasing active pharmaceutical ingredients from endosomes after endocytosis in target cells. In addition, after endocytosis in the target cell, the lipid membrane structure can be efficiently escaped from the endosome and transferred into the nucleus, and high gene expression activity can be achieved in the nucleus.
 温度変化感受性機能を付与することができる温度変化感受性脂質誘導体としては、例えば、ジパルミトイルホスファチジルコリンなどを挙げることができる。また、pH感受性機能を付与することができるpH感受性脂質誘導体としては、例えば、ジオレオイルホスファチジルエタノールアミンなどを挙げることができる。 Examples of the temperature change sensitive lipid derivative capable of imparting a temperature change sensitive function include dipalmitoyl phosphatidylcholine and the like. Examples of the pH-sensitive lipid derivative capable of imparting a pH-sensitive function include dioleoylphosphatidylethanolamine.
 また、本発明の脂質膜構造体は、細胞表面の受容体や抗原に対して特異的に結合可能な抗体などの物質で修飾を施すこともでき、エンドサイトーシス効率を改善することができる。送達の効率性の観点から、例えば標的組織又は臓器に特異的に発現する生体成分に対するモノクローナル抗体を脂質膜構造体の表面に配置することが好ましい。この手法は、例えば、STEALTH LIPOSOME(第233−244頁、CRC Press,Inc.発行,Danilo Lasic及びFrank Martin編)などに記載されている。脂質膜構造体の構成成分として、モノクローナル抗体やそのフラグメント(例えば、Fabフラグメント、F(ab’)フラグメント、又はFab’フラグメントなど)中のメルカプト基と反応し得る脂質誘導体、例えばポリ(エチレングリコール)−α−ジステアロイルホスファチジルエタノールアミン−ω−マレインイミド、α−[N−(1,2−ジステアロイル−sn−グリセロ−3−ホスフォリル−エチル)カルバミル)−ω−[3−[2−(2,5−ジヒドロ−2,5−ジオキソ−1H−ピロール−1−イル)エタンカルボキサミド]プロピル}−ポリ(オキシ−1,2−エタンジル)などのマレインイミド構造を有する脂質誘導体を含有させることにより、モノクローナル抗体を脂質膜構造体の膜の表面に結合させることができる。 In addition, the lipid membrane structure of the present invention can be modified with a substance such as an antibody that can specifically bind to a cell surface receptor or antigen, thereby improving the endocytosis efficiency. From the viewpoint of delivery efficiency, for example, it is preferable to arrange a monoclonal antibody against a biological component specifically expressed in a target tissue or organ on the surface of the lipid membrane structure. This technique is described in, for example, STEALTH LIPOSOME (page 233-244, issued by CRC Press, Inc., edited by Danilo Basic and Frank Martin). As a component of the lipid membrane structure, a lipid derivative capable of reacting with a mercapto group in a monoclonal antibody or a fragment thereof (for example, Fab fragment, F (ab ′) 2 fragment, Fab ′ fragment, etc.) such as poly (ethylene glycol) ) -Α-distearoylphosphatidylethanolamine-ω-maleimide, α- [N- (1,2-distearoyl-sn-glycero-3-phosphoryl-ethyl) carbamyl) -ω- [3- [2- ( By including a lipid derivative having a maleimide structure such as 2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl) ethanecarboxamide] propyl} -poly (oxy-1,2-ethanedyl). Monoclonal antibodies can be bound to the membrane surface of lipid membrane structures
 本発明の脂質膜構造体の表面はポリアルギニンで修飾されていてもよい。ポリアルギニンとしてはオクタアルギニンなどを用いることができる。リポソームなどの脂質膜構造体の表面をオクタアルギニンなどのポリアルギニンで修飾することにより、リポソームに封入された目的物質の細胞内送達効率を向上させることができる(Journal of Controlled Release,98,pp.317−323,2004;国際公開WO2005/32593)。ポリアルギニンによる脂質膜構造体表面の修飾は、上記の刊行物に記載された方法に従って、例えば脂質修飾ポリアルギニン、例えばステアリル化オクタアルギニンなどを脂質膜構造体の構成脂質として使用することにより容易に行なうことができる。上記刊行物の開示及びこの刊行物において引用された全ての文献の開示を参照により本明細書の開示として含める。 The surface of the lipid membrane structure of the present invention may be modified with polyarginine. As the polyarginine, octaarginine or the like can be used. By modifying the surface of a lipid membrane structure such as a liposome with a polyarginine such as octaarginine, the intracellular delivery efficiency of the target substance encapsulated in the liposome can be improved (Journal of Controlled Release, 98, pp. 199-111). 317-323, 2004; International Publication WO2005 / 32593). Modification of the lipid membrane structure surface with polyarginine can be easily performed by using, for example, a lipid-modified polyarginine such as stearylated octaarginine as a constituent lipid of the lipid membrane structure according to the method described in the above publication. Can be done. The disclosures of the above publications and the disclosures of all documents cited in this publication are incorporated herein by reference.
 さらに、本発明の脂質膜構造体はMPCポリマー及び/又はGALAで修飾されていてもよい。 MPCポリマーは2−メタクリロイルオキシエチルホスホリルコリン(MPC)を重合して得られるMPCポリマーである。このポリマーは生体膜と類似の分子構造を有していることからタンパク質や血球などの生体成分との相互作用が極めて小さく、優れた生体適合性を有することが示されている。本明細書において、「MPCポリマー」の用語にはMPCのホモポリマー、及びMPCと他の重合成分とのコポリマーのいずれも包含される。 Furthermore, the lipid membrane structure of the present invention may be modified with MPC polymer and / or GALA. The MPC polymer is an MPC polymer obtained by polymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC). Since this polymer has a molecular structure similar to that of a biological membrane, interaction with biological components such as proteins and blood cells is extremely small, and it has been shown to have excellent biocompatibility. As used herein, the term “MPC polymer” includes both MPC homopolymers and copolymers of MPC and other polymerization components.
 MPCポリマーは市販のポリマーを容易に入手することができる。例えば、日油株式会社から登録商標「リピジュア(LIPIDURE)」としてMPCのホモポリマー(CAS:67881−99−6);MPCとブチルメタクリレートとのコポリマー(CAS:125275−25−4);MPC、メタクリル酸ナトリウム、メタクリル酸ブチルの3元コポリマー;MPCと2−ヒドロキシ−3−(メタ)アクリロイルオキシプロピルトリメチルアンモニウムクロリドとの2元コポリマー;リン脂質ポリマー(LIPIDURE−S)などが提供されており、いずれも本発明に用いることができる。 MPC polymer can be easily obtained as a commercially available polymer. For example, as a registered trademark “LIPIDURE” from NOF Corporation, MPC homopolymer (CAS: 67881-99-6); MPC and butyl methacrylate copolymer (CAS: 125275-25-4); MPC, methacrylic Ternary copolymer of sodium acid and butyl methacrylate; binary copolymer of MPC and 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride; phospholipid polymer (LIPIDURE-S), etc. Can also be used in the present invention.
 本発明において用いられるMPCポリマーの種類は特に限定されないが、例えば、MPCとブチルメタクリレートなどのメタクリル酸エステルとのコポリマー、特にブロックコポリマーなどを好ましく用いることができる。このコポリマーについては特許第2890316号公報に製造方法が詳細に記載されており、当業者はこの特許公報を参照することにより所望のコポリマーを容易に製造することができる。この特許公報の開示の全てを参照により本明細書の開示として含める。本発明においては、水溶性を有し、かつ疎水性基を有するMPCポリマーを用いることが好ましいが、このような観点から炭素数4ないし18程度のアクリル酸エステル又はメタクリル酸エステルを用いて製造されたMPCコポリマーを好適に使用することができる。MPCとブチルメタクリレート(BMA)とのコポリマーとしては、例えば、MPCとBMAのモル比が5:5のコポリマー(PMB50)やMPCとBMAのモル比が3:7のコポリマー(PMB30)などが知られており、例えば、Polymer Journal,22,pp.355−360,1990などに記載の方法に従って容易に調製することが可能である(例えば特開2007−314526号公報に具体的な製造方法の説明がある)。本発明にはPMB50を特に好ましく用いることができる。MPCポリマーの重合度や分子量は特に限定されないが、例えば、水溶性を維持する観点から平均分子量(重量平均分子量)が5,000~300,000程度、好ましくは10,000~100,000程度のポリマーを用いることができる。 The type of MPC polymer used in the present invention is not particularly limited, but for example, a copolymer of MPC and a methacrylic acid ester such as butyl methacrylate, particularly a block copolymer can be preferably used. The production method of this copolymer is described in detail in Japanese Patent No. 2890316, and those skilled in the art can easily produce a desired copolymer by referring to this patent publication. The entire disclosure of this patent publication is incorporated herein by reference. In the present invention, it is preferable to use an MPC polymer having water solubility and a hydrophobic group. From such a viewpoint, it is produced using an acrylic ester or methacrylic ester having about 4 to 18 carbon atoms. MPC copolymers can be preferably used. As a copolymer of MPC and butyl methacrylate (BMA), for example, a copolymer having a molar ratio of MPC to BMA of 5: 5 (PMB50), a copolymer having a molar ratio of MPC to BMA of 3: 7 (PMB30), etc. are known. For example, Polymer Journal, 22, pp. It can be easily prepared according to the method described in 355-360, 1990, etc. (for example, a specific production method is described in JP-A-2007-314526). In the present invention, PMB50 can be particularly preferably used. The degree of polymerization and molecular weight of the MPC polymer are not particularly limited. For example, from the viewpoint of maintaining water solubility, the average molecular weight (weight average molecular weight) is about 5,000 to 300,000, preferably about 10,000 to 100,000. Polymers can be used.
 MPCポリマーで脂質膜構造体を修飾する方法は特に限定されないが、例えば、リポソームなどの脂質膜構造体の水性分散物にMPCポリマーを添加し、室温で数分から数時間程度放置すればよい。上記水性分散物へのMPCポリマーの添加量は特に限定されないが、修飾すべきMPCポリマーの量に応じて、例えば、脂質膜構造体の総脂質量に対して0.01~1質量%の範囲、好ましくは0.1~10質量%、さらに好ましくは0.1~3質量%程度のMPCポリマーを添加すればよい。この操作によりMPCポリマーは速やかに脂質膜構造体の脂質成分に取り込まれ、表面がMPCポリマーで修飾された脂質膜構造体を調製することができる。MPCポリマーによる表面修飾量は特に限定されないが、例えば脂質膜構造体の総脂質量に対して0.1~5質量%程度の範囲である。 The method of modifying the lipid membrane structure with the MPC polymer is not particularly limited. For example, the MPC polymer may be added to an aqueous dispersion of the lipid membrane structure such as a liposome and left at room temperature for several minutes to several hours. The amount of the MPC polymer added to the aqueous dispersion is not particularly limited, but depending on the amount of the MPC polymer to be modified, for example, a range of 0.01 to 1% by mass with respect to the total lipid amount of the lipid membrane structure The MPC polymer is preferably added in an amount of 0.1 to 10% by mass, more preferably about 0.1 to 3% by mass. By this operation, the MPC polymer is rapidly incorporated into the lipid component of the lipid membrane structure, and a lipid membrane structure whose surface is modified with the MPC polymer can be prepared. The amount of surface modification by the MPC polymer is not particularly limited, but is, for example, in the range of about 0.1 to 5% by mass with respect to the total lipid amount of the lipid membrane structure.
 エンドソーム内から脂質膜構造体を細胞質中に効率的に脱出させるために本発明の脂質膜構造体の表面をGALAで修飾してもよい。 GALAはBiochemistry,26,pp.2964−2972,1987において報告されたペプチドであり、例えば、特開2006−28030号公報にはGALAで表面修飾を施したリポソームが開示されているので、上記公報に記載された方法に従って、GALAで表面修飾した脂質膜構造体を容易に製造することができる。一般的にはGALAのコレステロール誘導体(Chol−GALA)を脂質成分として用いて脂質膜構造体を調製することにより、GALAで表面修飾した脂質膜構造体を製造することができる。GALAによる表面修飾量は特に限定されないが、例えば、総脂質量に対して0.01~10モル%程度、好ましくは0.1~4モル%程度、より好ましくは1~3モル%程度である。 In order to efficiently escape the lipid membrane structure from the endosome into the cytoplasm, the surface of the lipid membrane structure of the present invention may be modified with GALA. GALA is Biochemistry, 26, pp. 2964-2972, 1987. For example, JP-A-2006-28030 discloses liposomes surface-modified with GALA. Therefore, according to the method described in the above publication, A surface-modified lipid membrane structure can be easily produced. In general, by preparing a lipid membrane structure using a GALA cholesterol derivative (Chol-GALA) as a lipid component, a lipid membrane structure surface-modified with GALA can be produced. The amount of surface modification by GALA is not particularly limited, but is, for example, about 0.01 to 10 mol%, preferably about 0.1 to 4 mol%, more preferably about 1 to 3 mol% with respect to the total lipid amount. .
 本明細書において「GALA」の用語には特開2006−28030号公報の配列表の配列番号1により特定されるペプチドのほか、上記ペプチドのアミノ酸配列において1又は数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列からなり、実質的にGALAと同様の性質(例えば酸性条件下において脂質膜同士を融合できる性質)を有する修飾ペプチドも包含される。本明細書における「GALA」の用語をいかなる意味においても限定して解釈してはならない。GALA及びGALAによる脂質膜構造体の表面修飾方法に関して、特開2006−28030号公報の開示の全てを参照により本明細書の開示として含める。 In this specification, the term “GALA” includes deletion and substitution of one or several amino acids in the amino acid sequence of the peptide in addition to the peptide specified by SEQ ID NO: 1 in the sequence listing of JP-A-2006-28030. And / or a modified peptide consisting of an added amino acid sequence and having substantially the same properties as GALA (for example, properties capable of fusing lipid membranes under acidic conditions). The term “GALA” herein should not be construed as limiting in any way. Regarding the surface modification method of the lipid membrane structure by GALA and GALA, all the disclosures of JP-A-2006-28030 are included as disclosure of this specification by reference.
 本発明の脂質膜構造体には、ステロール、又はグリセリン若しくはその脂肪酸エステルなどの膜安定化剤、トコフェロール、没食子酸プロピル、パルミチン酸アスコルビル、又はブチル化ヒドロキシトルエンなどの抗酸化剤、荷電物質、及び膜タンパク質などからなる群から選ばれる1種又は2種以上の物質を含んでいてもよい。正荷電を付与する荷電物質としては、例えば、ステアリルアミン、オレイルアミンなどの飽和又は不飽和脂肪族アミン;ジオレオイルトリメチルアンモニウムプロパンなどの飽和又は不飽和カチオン性合成脂質;あるいはカチオン性ポリマーなどを挙げることができ、負電荷を付与する荷電物質としては、例えば、ジセチルホスフェート、コレステリルヘミスクシネート、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸などを挙げることができる。膜タンパク質としては、例えば、膜表在性タンパク質、又は膜内在性タンパク質などが挙げられる。これらの物質の配合量は特に限定されず、目的に応じて適宜選択することができる。 Lipid membrane structures of the present invention include sterols, membrane stabilizers such as glycerin or fatty acid esters thereof, antioxidants such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene, charged substances, and One or two or more substances selected from the group consisting of membrane proteins and the like may be included. Examples of the charged substance imparting positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine; saturated or unsaturated cationic synthetic lipids such as dioleoyltrimethylammoniumpropane; or cationic polymers. Examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Examples of membrane proteins include membrane surface proteins and membrane integral proteins. The compounding amount of these substances is not particularly limited, and can be appropriately selected according to the purpose.
 多機能性を付加したエンベロープ型ナノ構造体(MEND)が知られており、本発明の脂質膜構造体として好適に使用することができる。MENDは、例えば、プラスミドDNAなどの核酸とプロタミンなどのカチオン性ポリマーとの複合体をコアとし、このコアがリポソーム形態の脂質エンベロープ膜の内部に封入された構造を有している。MENDの脂質エンベロープ膜には、必要に応じてpH応答性や膜透過性を調節するためのペプチドを配置することができ、脂質エンベロープ膜の外側表面はポリエチレングリコールなどのアルキレングリコールで修飾することができる。MENDの脂質エンベロープの内部には、凝縮化されたDNA及びカチオン性ポリマーが封入されており、効率的に遺伝子発現を達成できるように設計されている。本発明に好適に使用可能なMENDとしては、所望の遺伝子を組み込んだプラスミドDNAとプロタミンとの複合体が内部に封入され、脂質エンベロープの外側表面がPEG及びINF7で修飾されたMEND又はオリゴ糖結合PEGで修飾されたMENDが好ましい。PEGによる修飾は構成脂質成分としてステアリル化ポリエチレングリコールを用いることが好ましい。MENDについては、例えばDrug Delivery System,22−2,pp.115−122,2007などの総説を参照することができる。上記刊行物の開示及びこの総説において引用された全ての文献の開示を参照により本明細書の開示として含める。 Envelope-type nanostructures (MEND) with added functionality are known, and can be suitably used as the lipid membrane structure of the present invention. For example, MEND has a structure in which a complex of a nucleic acid such as plasmid DNA and a cationic polymer such as protamine is used as a core, and the core is enclosed in a lipid envelope membrane in the form of a liposome. A peptide for adjusting pH responsiveness and membrane permeability can be arranged on the lipid envelope membrane of MEND as needed, and the outer surface of the lipid envelope membrane can be modified with alkylene glycol such as polyethylene glycol. it can. Inside the lipid envelope of MEND, condensed DNA and a cationic polymer are encapsulated, and designed so that gene expression can be achieved efficiently. The MEND that can be suitably used in the present invention includes a MEND or oligosaccharide linkage in which a complex of a plasmid DNA incorporating a desired gene and protamine is encapsulated, and the outer surface of the lipid envelope is modified with PEG and INF7 MEND modified with PEG is preferred. The modification with PEG preferably uses stearyl polyethylene glycol as a constituent lipid component. For MEND, see, for example, Drug Delivery System, 22-2, pp. References such as 115-122, 2007 can be referred to. The disclosures of the above publications and the disclosures of all documents cited in this review are hereby incorporated by reference.
 脂質膜構造体の形態は特に限定されないが、例えば、水系溶媒(例えば水、生理食塩水、リン酸緩衝生理食塩水など)に分散された形態やこの水性分散物を凍結乾燥した形態などが挙げられる。 The form of the lipid membrane structure is not particularly limited, and examples thereof include a form dispersed in an aqueous solvent (for example, water, physiological saline, phosphate buffered physiological saline, etc.) and a form obtained by lyophilizing this aqueous dispersion. It is done.
 脂質膜構造体の製造方法も特に限定されず、当業者に利用可能な任意の方法を採用することができる。一例を挙げれば、全ての脂質成分をクロロホルムなどの有機溶媒に溶解し、エバポレータによる減圧乾固や噴霧乾燥機による噴霧乾燥を行うことによって脂質膜を形成した後、水系溶媒を乾燥した上記の混合物に添加し、さらにホモジナイザーなどの乳化機、超音波乳化機、又は高圧噴射乳化機などにより乳化することで製造することができる。また、リポソームを製造する方法としてよく知られている方法、例えば逆相蒸発法などによっても製造することができる。脂質膜構造体の大きさを制御したい場合には、孔径のそろったメンブランフィルターなどを用いて、高圧下でイクストルージョン(押し出し濾過)を行えばよい。分散した状態の脂質膜構造体の大きさは特に限定されないが、例えば、リポソームの場合には粒子径が50nmから5μm程度であり、50nmから400nm程度が好ましく、50nmから300nm程度が好ましく、150nmから250nm程度がより好ましい。粒子径は、例えばDLS(dynamic light scattering)法により測定することができる。 The method for producing the lipid membrane structure is not particularly limited, and any method available to those skilled in the art can be employed. For example, all the lipid components are dissolved in an organic solvent such as chloroform, and after forming a lipid film by drying under reduced pressure with an evaporator or spray drying with a spray dryer, the above mixture is dried with an aqueous solvent. And further emulsifying with an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier. Moreover, it can manufacture also by the method well-known as a method of manufacturing a liposome, for example, a reverse phase evaporation method etc. When it is desired to control the size of the lipid membrane structure, extrusion (extrusion filtration) may be performed under high pressure using a membrane filter having a uniform pore size. The size of the lipid membrane structure in a dispersed state is not particularly limited. For example, in the case of liposome, the particle diameter is about 50 nm to 5 μm, preferably about 50 nm to 400 nm, preferably about 50 nm to 300 nm, About 250 nm is more preferable. The particle diameter can be measured, for example, by a DLS (dynamic light scattering) method.
 水系溶媒(分散媒)の組成は特に限定されないが、例えば、リン酸緩衝液、クエン酸緩衝液、リン酸緩衝生理食塩液などの緩衝液、生理食塩水、細胞培養用の培地などを挙げることができる。これら水系溶媒(分散媒)は脂質膜構造体を安定に分散させることができるが、さらに、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)や、グリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3−ブチレングリコールなどの多価アルコール(水溶液)などを加えてもよい。この水系溶媒に分散した脂質膜構造体を安定に長期間保存するには、凝集抑制などの物理的安定性の面から水系溶媒中の電解質を極力排除することが望ましい。また、脂質の化学的安定性の面からは水系溶媒のpHを弱酸性から中性付近(pH3.0から8.0程度)に設定し、及び/又は窒素バブリングなどにより溶存酸素を除去することが望ましい。 The composition of the aqueous solvent (dispersion medium) is not particularly limited, and examples thereof include a buffer solution such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered saline solution, a physiological saline solution, a medium for cell culture, and the like. Can do. These aqueous solvents (dispersion media) can stably disperse lipid membrane structures, but also glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharides, lactose, sucrose, cellobiose, trehalose. , Disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, maltitol (aqueous solutions), glycerin, diglycerin, poly Glycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol -Alkyl ether, 1,3-polyhydric alcohol (aqueous solution), such as butylene glycol and the like may be added. In order to stably store the lipid membrane structure dispersed in the aqueous solvent for a long period of time, it is desirable to eliminate the electrolyte in the aqueous solvent as much as possible from the viewpoint of physical stability such as aggregation suppression. In terms of chemical stability of the lipid, the pH of the aqueous solvent should be set from weakly acidic to near neutral (about pH 3.0 to 8.0), and / or dissolved oxygen should be removed by nitrogen bubbling or the like. Is desirable.
 得られた脂質膜構造体の水性分散物を凍結乾燥又は噴霧乾燥する場合には、例えば、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)を用いると安定性を改善できる場合がある。また、上記水性分散物を凍結する場合には、例えば、前記の糖類やグリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3−ブチレングリコールなどの多価アルコール(水溶液)を用いると安定性を改善できる場合がある。 When the aqueous dispersion of the obtained lipid membrane structure is freeze-dried or spray-dried, for example, glucose, galactose, mannose, fructose, inositol, ribose, xylose sugar monosaccharide, lactose, sucrose, cellobiose, trehalose Stability can be improved by using disaccharides such as maltose, trisaccharides such as raffinose and merezinose, polysaccharides such as cyclodextrin, sugars such as erythritol, xylitol, sorbitol, mannitol, and maltitol (aqueous solutions) There is a case. When the aqueous dispersion is frozen, for example, the saccharides, glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether If a polyhydric alcohol (aqueous solution) such as diethylene glycol monoalkyl ether or 1,3-butylene glycol is used, the stability may be improved.
 本発明の脂質膜構造体、例えばリポソームの内部には、標的組織又は臓器、あるいは標的組織又は臓器の細胞の核内に送達すべき物質を封入することができる。封入すべき物質の種類は特に限定されないが、抗腫瘍剤、抗炎症剤、抗菌剤、抗ウイルス剤などの任意の医薬有効成分のほか、糖類、ペプチド類、核酸類、低分子化合物、金属化合物など任意の物質を封入することができる。核酸としては、例えば遺伝子を含む核酸を挙げることができ、より具体的には、例えば、プラスミドに組み込まれた遺伝子などを挙げることができるが、この特定の態様に限定されることはない。また、遺伝子としては任意の遺伝子を用いることができることは言うまでもない。 In the lipid membrane structure of the present invention, for example, a liposome, a substance to be delivered can be encapsulated in the target tissue or organ or the nucleus of the cell of the target tissue or organ. The type of substance to be encapsulated is not particularly limited, but in addition to any active pharmaceutical ingredients such as antitumor agents, anti-inflammatory agents, antibacterial agents, antiviral agents, saccharides, peptides, nucleic acids, low molecular compounds, metal compounds Any substance can be encapsulated. Examples of the nucleic acid include a nucleic acid containing a gene, and more specifically, for example, a gene incorporated in a plasmid, but are not limited to this specific embodiment. Needless to say, any gene can be used as the gene.
 例えば、標的細胞の細胞質内に物質を送達するための本発明の脂質膜構造体を用いて、ヒトを含む哺乳類動物の生体内において標的細胞の細胞質内に物質を放出させることができる。本発明の脂質膜構造体は標的細胞にエンドサイトーシスにより取り込まれてエンドソームに封入された状態で細胞質内に移行した後、INF7の作用によりエンドソームから脱出して細胞質内に該物質を効率的に放出することができる。例えば、この方法に従って、ヒトを含む哺乳類動物の疾患の予防及び/又は治療を行なうことができる。例えば、INF7で表面修飾され、好ましくはさらにポリアルキレングリコールで表面修飾されており、かつ医薬有効成分を内部に封入した脂質膜構造体を動物に投与することができ、標的細胞の細胞質内に医薬有効成分を効率的に送達することができる。医薬有効成分として例えば抗腫瘍剤や核酸などを挙げることができるが、これらに限定されることはない。また、ヒトを含む哺乳類動物の細胞内において遺伝子を発現させるには、INF7で表面修飾され、さらに好ましくはPEG及びオクタアルギニンなどにより表面修飾されており、かつ遺伝子を含む核酸を内部に封入した脂質膜構造体を動物に投与することができる。好ましくは、核酸とともにカチオン性ポリマー、例えばプロタミンを内部に封入した上記脂質膜構造体を用いることができ、この方法により例えば遺伝子治療を行なうことができる。 For example, using the lipid membrane structure of the present invention for delivering a substance into the cytoplasm of the target cell, the substance can be released into the cytoplasm of the target cell in the living body of a mammal including humans. The lipid membrane structure of the present invention is taken up into the target cell by endocytosis and transferred into the cytoplasm after being encapsulated in the endosome, and then escapes from the endosome by the action of INF7 to efficiently put the substance into the cytoplasm. Can be released. For example, according to this method, it is possible to prevent and / or treat diseases in mammals including humans. For example, a lipid membrane structure that is surface-modified with INF7, preferably further surface-modified with polyalkylene glycol and encapsulating a pharmaceutically active ingredient can be administered to an animal, and the drug is contained in the cytoplasm of the target cell. The active ingredient can be delivered efficiently. Examples of pharmaceutically active ingredients include, but are not limited to, antitumor agents and nucleic acids. In addition, in order to express a gene in cells of mammals including humans, a lipid that is surface-modified with INF7, more preferably surface-modified with PEG, octaarginine, etc., and encapsulating a nucleic acid containing the gene inside Membrane structures can be administered to animals. Preferably, the lipid membrane structure in which a cationic polymer such as protamine is encapsulated together with a nucleic acid can be used. For example, gene therapy can be performed by this method.
 標的細胞の核内に物質を送達するための本発明の脂質膜構造体には、好ましくは核酸を封入することができる。以下、本発明の一例として、以下、核酸を封入する場合について具体的に説明するが、本発明の範囲はこの特定の態様に限定されることはない。核酸にはDNA又はRNAのほか、これらの類似体又は誘導体(例えば、ペプチド核酸(PNA)やホスホロチオエートDNAなど)が包含される。核酸は一本鎖又は二本鎖のいずれであってもよく、線状又は環状のいずれであってもよい。核酸には遺伝子が含まれていてもよい。遺伝子としては、オリゴヌクレオチド、DNA、又はRNAのいずれでもよく、特に形質転換などのイン・ビトロにおける導入用遺伝子や、イン・ビボで発現することにより作用する遺伝子、例えば、相同組換え用の正常遺伝子などの遺伝子治療用遺伝子などを挙げることができる。治療用の核酸としては、アンチセンスオリゴヌクレオチド、アンチセンスDNA、アンチセンスRNA、酵素、サイトカインなどの生理活性物質をコードする遺伝子のほか、遺伝子の発現を調節する機能を有する核酸、例えばsiRNAなどのRNAなどを含む機能性核酸を用いることもでき、これらも本明細書における核酸の用語に含める。本明細書において「核酸」の用語は最も広義に解釈する必要があり、いかなる意味においても限定的に解釈してはならない。 In the lipid membrane structure of the present invention for delivering a substance into the nucleus of the target cell, a nucleic acid can be preferably encapsulated. Hereinafter, as an example of the present invention, a case where a nucleic acid is encapsulated will be specifically described below, but the scope of the present invention is not limited to this specific embodiment. The nucleic acid includes DNA or RNA, and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.). The nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular. The nucleic acid may contain a gene. The gene may be any of oligonucleotide, DNA, or RNA. In particular, a gene for introduction in vitro such as transformation, a gene that acts by expression in vivo, for example, normal for homologous recombination Examples include genes for gene therapy such as genes. Examples of therapeutic nucleic acids include genes encoding physiologically active substances such as antisense oligonucleotides, antisense DNAs, antisense RNAs, enzymes and cytokines, as well as nucleic acids having a function of regulating gene expression, such as siRNA. Functional nucleic acids including RNA and the like can also be used, and these are also included in the term nucleic acid herein. In this specification, the term “nucleic acid” should be interpreted in the broadest sense, and should not be interpreted in any way restrictive.
 また、本発明の脂質膜構造体に核酸を封入する場合には、核酸導入機能を有する化合物を加えることもできる。このような化合物としては、例えば、O,O’−N−ジドデカノイル−N−(α−トリメチルアンモニオアセチル)−ジエタノールアミンクロリド、O,O’−N−ジテトラデカノイル−N−(α−トリメチルアンモニオアセチル)−ジエタノールアミンクロリド、O,O’−N−ジヘキサデカノイル−N−(α−トリメチルアンモニオアセチル)−ジエタノールアミンクロリド、O,O’−N−ジオクタデセノイル−N−(α−トリメチルアンモニオアセチル)−ジエタノールアミンクロリド、O,O’,O’’−トリデカノイル−N−(ω−トリメチルアンモニオデカノイル)アミノメタンブロミド及びN−[α−トリメチルアンモニオアセチル]−ジドデシル−D−グルタメート、ジメチルジオクタデシルアンモニウムブロミド、2,3−ジオレイルオキシ−N−[2−(スペルミンカルボキサミド)エチル)−N,N−ジメチル−1−プロパンアンモニウムトリフルオロアセテート、1,2−ジミリスチルオキシプロピル−3−ジメチル−ヒドロキシエチルアンモニウムブロミド、3−β−[N−(N’,N’−ジメチルアミノエタン)カルバモイル]コレステロールなどを挙げることができる。これらの核酸導入機能を有する化合物は、脂質膜構造体の膜の任意の位置に配置されていてもよく、及び/又は脂質膜構造体の内部に充填されていてもよい。 Further, when the nucleic acid is encapsulated in the lipid membrane structure of the present invention, a compound having a nucleic acid introduction function can also be added. Examples of such compounds include O, O′-N-didodecanoyl-N- (α-trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-ditetradecanoyl-N- (α-trimethyl). Ammonioacetyl) -diethanolamine chloride, O, O′-N-dihexadecanoyl-N- (α-trimethylammonioacetyl) -diethanolamine chloride, O, O′-N-dioctadecenoyl-N— ( α-trimethylammonioacetyl) -diethanolamine chloride, O, O ′, O ″ -tridecanoyl-N- (ω-trimethylammoniodecanoyl) aminomethane bromide and N- [α-trimethylammonioacetyl] -didodecyl- D-glutamate, dimethyl dioctadecyl ammonium bromide, 2,3- Oleyloxy-N- [2- (sperminecarboxamido) ethyl) -N, N-dimethyl-1-propaneammonium trifluoroacetate, 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium bromide, 3-β -[N- (N ', N'-dimethylaminoethane) carbamoyl] cholesterol and the like can be mentioned. These compounds having a nucleic acid introduction function may be arranged at any position of the membrane of the lipid membrane structure and / or filled in the lipid membrane structure.
 核酸を封入した標的細胞の細胞質内に物質を送達するための脂質膜構造体は、標的組織又は臓器に該核酸を送達するためのキャリアーとして用いることができる。遺伝子発現を目的とする場合には、核酸として所望の遺伝子を含む核酸を用い、上記のMENDを用いることが特に好ましい。例えば、遺伝子を含む核酸を封入した脂質膜構造体、好ましくはMENDをヒトを含む哺乳類動物に投与することにより、標的組織又は臓器の細胞に対して所望の遺伝子を送達して効率よく発現させることができる。本発明の脂質膜構造体は、標的組織又は臓器の細胞にエンドサイトーシスにより取り込まれた後、エンドソームから効率的に脱出して該遺伝子を細胞質内に放出することができる。投与方法は特に限定されないが、非経口投与が好ましく、静脈内投与がさらに好ましい。肝臓を標的とする場合には、送達効率を高めるために門脈内投与を行うこともできる。 A lipid membrane structure for delivering a substance into the cytoplasm of a target cell encapsulating a nucleic acid can be used as a carrier for delivering the nucleic acid to a target tissue or organ. For the purpose of gene expression, it is particularly preferable to use a nucleic acid containing a desired gene as the nucleic acid and use the above MEND. For example, by administering a lipid membrane structure encapsulating a nucleic acid containing a gene, preferably MEND, to mammals including humans, the desired gene is delivered to the cells of the target tissue or organ and efficiently expressed. Can do. The lipid membrane structure of the present invention can be efficiently taken out from the endosome and released into the cytoplasm after being taken up into the cells of the target tissue or organ by endocytosis. The administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable. When targeting the liver, intraportal administration can also be performed to increase delivery efficiency.
 核酸を封入した標的細胞の核内に物質を送達するための脂質膜構造体は、標的組織又は臓器の細胞の核内に該核酸を送達するためのキャリアーとして用いることができる。遺伝子発現を目的とする場合には、核酸として所望の遺伝子を含む核酸を用い、上記のMENDを用いることが特に好ましい。例えば、遺伝子を含む核酸を封入した脂質膜構造体、好ましくはMENDをヒトを含む哺乳類動物に投与することにより、標的組織又は臓器の細胞の核内に所望の遺伝子を送達して効率よく発現させることができる。本発明の脂質膜構造体は、標的組織又は臓器の細胞にエンドサイトーシスにより取り込まれた後、エンドソームから効率的に脱出して核内に移行し、該遺伝子を核内で効率的に発現させることができる。標的組織や臓器は特に限定されず、表面修飾すべき物質の種類に応じて適宜の組織や臓器への遺伝子送達を達成できるが、特に肝臓が好ましい標的臓器である。投与方法は特に限定されないが、非経口投与が好ましく、静脈内投与がさらに好ましい。場合によっては肝臓への送達効率を高めるために門脈内投与を行うこともできる。 The lipid membrane structure for delivering a substance into the nucleus of the target cell encapsulating the nucleic acid can be used as a carrier for delivering the nucleic acid into the nucleus of the cell of the target tissue or organ. For the purpose of gene expression, it is particularly preferable to use a nucleic acid containing a desired gene as the nucleic acid and use the above MEND. For example, by administering a lipid membrane structure encapsulating a nucleic acid containing a gene, preferably MEND, to a mammal, including a human, the desired gene is delivered into the nucleus of a cell of a target tissue or organ and efficiently expressed. be able to. The lipid membrane structure of the present invention is incorporated into cells of a target tissue or organ by endocytosis, and then efficiently escapes from the endosome and moves into the nucleus, thereby efficiently expressing the gene in the nucleus. be able to. The target tissue or organ is not particularly limited, and gene delivery to an appropriate tissue or organ can be achieved according to the type of substance to be surface-modified. In particular, the liver is a preferred target organ. The administration method is not particularly limited, but parenteral administration is preferable, and intravenous administration is more preferable. In some cases, intraportal administration can also be performed to increase the efficiency of delivery to the liver.
 また、脂質膜構造体脂質には1種又は2種以上の医薬の有効成分を封入することもできる。例えば、抗ウイルス剤や抗腫瘍剤などを封入することができる。例えば、ウイルス性肝炎に対して有効性を示す抗肝炎ウイルス剤や肝臓癌に対して有効性を示す抗腫瘍剤を本発明の脂質膜構造体の内部に封入して、ウイルス性肝炎や肝臓癌の治療を行うこともできる。 Also, one or more active pharmaceutical ingredients can be encapsulated in the lipid membrane structure lipid. For example, an antiviral agent or an antitumor agent can be encapsulated. For example, an anti-hepatitis virus agent that is effective against viral hepatitis or an anti-tumor agent that is effective against liver cancer is encapsulated in the lipid membrane structure of the present invention, and viral hepatitis or liver cancer Can also be treated.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1
A.実験方法
1)遺伝子封入R8/INF7修飾リポソームの調製
 プラスミドDNAおよびプロタミンを10mM HEPES(pH7.4)溶液としたのち、ボルテックス中の0.06μg/mlプロタミン溶液に対して等量の0.1mg/mlプラスミドDNA溶液を徐々に滴下することで時間をかけて混合させた(+/−比1)。さらに、室温で10分間静置することで、プロタミン/DNA複合体を調製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
Example 1
A. Experimental Method 1) Preparation of Gene Encapsulated R8 / INF7 Modified Liposomes After making plasmid DNA and protamine a 10 mM HEPES (pH 7.4) solution, an equal amount of 0.1 mg / ml with respect to a 0.06 μg / ml protamine solution in vortex The ml plasmid DNA solution was gradually added dropwise to mix over time (+/− ratio 1). Furthermore, the protamine / DNA complex was prepared by allowing to stand at room temperature for 10 minutes.
 卵黄由来ホスファチジルコリン(EPC)/ジオレイルホスファチジルコリン(DOPC)/コレステロール(Chol)/ステアリルオクタアルギニン(STR−R8)あるいはEPC/DOPE/Chol/ステアリルINF7(STR−INF7)(3:4:2:1)の脂質組成を有する137.5nmolの脂質をクロロホルムに溶かし、ガラスチューブ内でエバポレーションさせることで脂質フィルムを作成した。上記で調製したプラスミド、プロタミン溶液をバスタイプソニケーター内でソニケーションを行うことでプラスミドDNAをリポソーム内に封入した。 Egg yolk-derived phosphatidylcholine (EPC) / dioleoylphosphatidylcholine (DOPC) / cholesterol (Chol) / stearyl octaarginine (STR-R8) or EPC / DOPE / Chol / stearyl INF7 (STR-INF7) (3: 4: 2: 1) A lipid film was prepared by dissolving 137.5 nmol of lipid having the following composition in chloroform and evaporating in a glass tube. The plasmid and protamine solutions prepared above were sonicated in a bath-type sonicator to encapsulate the plasmid DNA in liposomes.
 INF7を後から修飾する場合には、上記のSTR−INF7又はINF7のエタノール溶液(1又は3mol%脂質分)を加えた(Post−surface modification)。また、INF7を脂質フィルムの段階で修飾する場合(Pre−inclusion to the lipid film)、脂質クロロホルム溶液中に1又は3mol%分のSTR−INF7を加えてからエバポレーションすることで、STR−INF7を脂質フィルムに組み込んだ。 When modifying INF7 later, the ethanol solution of STR-INF7 or INF7 (1 or 3 mol% lipid content) was added (Post-surface modification). When INF7 is modified at the lipid film stage (Pre-inclusion to the lipid film), STR-INF7 is added by evaporation after adding 1 or 3 mol% of STR-INF7 to lipid chloroform solution. Incorporated into lipid film.
2)遺伝子封入PEG/R8/INF7修飾リポソームの調整
 上記と同じ要領で遺伝子とプロタミンからなる凝集化コアを調製した。EPC/DOPC/Chol/ホスファチジルエタノールアミン(DSPE)−PEG2000(DSPE−PEG2000)/STR−R8あるいはEPC/DOPE/Chol/DSPE−PEG2000/STR−INF7(2:4:2:1:1))の脂質組成を有する137.5nmolの脂質をクロロホルムに溶かし、ガラスチューブ内でエバポレーションさせることで脂質フィルムを作成した。上記で調製したプラスミド、プロタミン溶液をバスタイプソニケーター内でソニケーションを行うことでプラスミドDNAをリポソーム内に封入した。また、脂質クロロホルム溶液中に1又は3mol%分のSTR−INF7を加えてからエバポレーションすることで、STR−INF7を脂質フィルムに組み込んだ。
2) Preparation of gene-encapsulated PEG / R8 / INF7-modified liposome An aggregated core composed of a gene and protamine was prepared in the same manner as described above. EPC / DOPC / Chol / phosphatidylethanolamine (DSPE) -PEG2000 (DSPE-PEG2000) / STR-R8 or EPC / DOPE / Chol / DSPE-PEG2000 / STR-INF7 (2: 4: 2: 1: 1)) A lipid film was prepared by dissolving 137.5 nmol of lipid having a lipid composition in chloroform and evaporating in a glass tube. The plasmid and protamine solutions prepared above were sonicated in a bath-type sonicator to encapsulate the plasmid DNA in liposomes. Further, STR-INF7 was incorporated into a lipid film by adding 1 or 3 mol% of STR-INF7 to the lipid chloroform solution and then evaporating.
3)共焦点レーザー顕微鏡による細胞内動態解析(エンドソーム脱出評価)
 プラスミドDNAは、Mirus Label IT(登録商標)CX−ローダミン核酸ラベルキット(Mirus Corp.,Madison,WI,USA)を用いてローダミン修飾を行った。HeLa細胞をガラスボトムディッシュで24時間培養した。細胞膜をPKH67 green fluorescent cell linker(Sigma−Aldrich,St.Louis,MO)にて染色した。ローダミン修飾プラスミドDNA封入リポソームを0.02mMの脂質濃度で細胞培養物に添加して、37℃で30分間インキュベーションを行った。細胞をメディウムで一回洗浄後、10%FBS添加メディウム中でさらに2.5時間インキュベーションを行った。細胞を共焦点レーザー顕微鏡(LSM510,Carl Zeiss Co.Ltd,Jena,Germany)にて油浸対物レンズ(Plan−Apochromat 63x/NA=1.4)を用いて観察した。
3) Analysis of intracellular dynamics using confocal laser microscope (Estimation of endosome escape)
Plasmid DNA was rhodamine modified using the Miras Label IT® CX-Rhodamine Nucleic Acid Label Kit (Mirus Corp., Madison, Wis., USA). HeLa cells were cultured in a glass bottom dish for 24 hours. Cell membranes were stained with PKH67 green fluorescent cell linker (Sigma-Aldrich, St. Louis, MO). Rhodamine-modified plasmid DNA-encapsulated liposomes were added to the cell culture at a lipid concentration of 0.02 mM and incubated at 37 ° C. for 30 minutes. The cells were washed once with medium, and further incubated for 2.5 hours in medium supplemented with 10% FBS. The cells were observed with a confocal laser microscope (LSM510, Carl Zeiss Co. Ltd, Jena, Germany) using an oil immersion objective lens (Plan-Apochromat 63x / NA = 1.4).
4)共焦点レーザー顕微鏡による細胞内動態解析(膜融合性評価)
 STR−INF7修飾R8リポソームを1mol%NBD−DOPE(N−(7−ニトロベンゾ−2−オキサ1,3−ジアゾール−4−イル)−ジオレイルホスファチジルエタノールアミン,励起波長460nm;蛍光波長534nm)と0.5mol%ローダミン−DOPE(ローダミン−ジオレイルホスファチジルエタノールアミン,励起波長550nm;蛍光波長590nm)で2重染色をおこなった。ラベル化リポソームをガラスボトムディッシュ上に培養したHeLa細胞に対して0.08mM脂質濃度となるように接触させ、serum非存在下で1時間インキュベーションした。細胞を洗浄した後、新たなserum添加メディウムに交換してさらに1時間インキュベーションした。観察10分前に、Hoechst33342を5μg/mlの濃度でインキュベーションし、核を染色した。細胞を共焦点レーザー顕微鏡にて観察し、画像取得を行った。細胞内における膜融合を観察するために、NBDを488nmのレーザー光で励起し、HFT488のダイクロイックミラーを透過した蛍光をMETA機能により510~630nmまで分光した。データは、586nmの蛍光強度を1としたときの相対値で示した。
4) Analysis of intracellular dynamics by confocal laser microscope (evaluation of membrane fusion)
STR-INF7-modified R8 liposomes were treated with 1 mol% NBD-DOPE (N- (7-nitrobenzo-2-oxa1,3-diazol-4-yl) -dioleylphosphatidylethanolamine, excitation wavelength 460 nm; fluorescence wavelength 534 nm) and 0. Double staining was performed with .5 mol% rhodamine-DOPE (rhodamine-dioleoylphosphatidylethanolamine, excitation wavelength 550 nm; fluorescence wavelength 590 nm). The labeled liposome was brought into contact with HeLa cells cultured on a glass bottom dish to a concentration of 0.08 mM lipid, and incubated for 1 hour in the absence of serum. After washing the cells, the cells were replaced with fresh medium and incubated for an additional hour. Ten minutes before observation, Hoechst 33342 was incubated at a concentration of 5 μg / ml to stain the nuclei. The cells were observed with a confocal laser microscope, and images were acquired. In order to observe membrane fusion in the cell, NBD was excited with a laser beam of 488 nm, and the fluorescence transmitted through the dichroic mirror of HFT488 was dispersed to 510 to 630 nm by the META function. The data are shown as relative values when the fluorescence intensity at 586 nm is 1.
5)カルセインのリリースを指標とした膜破壊効果の測定
 DOPC/ジオレイルホスファチジルセリン(DOPS)/Chol(4.75:4.75:0.5)からなる脂質フィルムを作成し、カルセイン溶液(40mMのカルセイン/1mMのEDTA,pH7.4)を加えた。この際、脂質濃度は10mMになるように調製した。ボルテックスミキサーで混合した後、1分間ソニケーションしてリポソーム内にカルセインを封入した。リポソームをPBS(pH7.4)で平衡化した分子ふるいクロマトグラフィー(Bio−Gel(登録商標)A−15m gel,medium from Bio−Rad Laboratories,CA,USA)にかけ、カルセイン封入リポソームを非封入カルセインと分離した。
5) Measurement of membrane destruction effect using calcein release as an index A lipid film composed of DOPC / dioleoylphosphatidylserine (DOPS) / Chol (4.75: 4.75: 0.5) was prepared and calcein solution (40 mM) Of calcein / 1 mM EDTA, pH 7.4). At this time, the lipid concentration was adjusted to 10 mM. After mixing with a vortex mixer, sonication was performed for 1 minute to encapsulate calcein in the liposome. The liposomes were subjected to molecular sieve chromatography (Bio-Gel (registered trademark) A-15m gel, medium from Bio-Rad Laboratories, CA, USA) equilibrated with PBS (pH 7.4), and the calcein-encapsulated liposomes were combined with unencapsulated calcein. separated.
 R8及びR8/INF7ラベル化したリポソームを上記カルセイン封入リポソームとクエン酸/リン酸バッファー(pH5.5)又はPBS(pH7.4)中で37℃、30分インキュベーションした。カルセインリリースを測定するため、100μlのサンプルを回収し、490nmの励起光で520nmの蛍光を測定した。10μlの0.5%TritonX−100を加える前後の蛍光をそれぞれF及びFTritonとして漏出したカルセインの割合(%)を下記の式によって求めた。
%Release=[(F×100)/(FTriton×110)]×100
R8 and R8 / INF7 labeled liposomes were incubated with the calcein-encapsulated liposomes in citrate / phosphate buffer (pH 5.5) or PBS (pH 7.4) at 37 ° C. for 30 minutes. In order to measure calcein release, 100 μl of sample was collected and fluorescence at 520 nm was measured with excitation light at 490 nm. The ratio (%) of calcein leaked as F and F Triton before and after adding 10 μl of 0.5% Triton X-100 was determined by the following formula.
% Release = [(F × 100) / (F Triton × 110)] × 100
6)イン・ビボ遺伝子導入
 ホタルルシフェラーゼ遺伝子をコードしたプラスミドDNA(7,037bp)を封入したMENDを使用し、ICRマウス(5週齢、雄性)を用いてin vivo遺伝子導入実験を行った。MENDはJ.Control.Release,98(2),pp.317−323,2004;J.Biol.Chem.,283,pp.23450−23461,2008に記載された方法に従って調製した。ジエチルエーテル麻酔下でMEND(40μg DNA/350μl,10mM HEPES(pH7.4),5%グルコース)をマウス尾静脈より投与した。投与6時間後に肝臓、肺、脾臓を摘出し、重量を測定した。組織を細断・混合したのち、肝臓0.2g(肺及び脾臓は全量)を測りとり、Lysis buffer(0.1%Triton X−100,2mM EDTA,0.1M Tris−HCl,pH7.8)1mlを添加し、Lysis buffer中で組織をホモジナイズし、4℃、13,000rpmで10分間遠心した。上清20μlについてルシフェラーゼ活性(RLU)および蛋白質量を測定し、RLU/mg proteinとして算出した。
6) In vivo gene introduction MEND encapsulating a plasmid DNA (7,037 bp) encoding a firefly luciferase gene was used to conduct an in vivo gene introduction experiment using ICR mice (5 weeks old, male). MEND is J. Control. Release, 98 (2), pp. 317-323, 2004; Biol. Chem. , 283, pp. Prepared according to the method described in 23450-23461, 2008. Under diethyl ether anesthesia, MEND (40 μg DNA / 350 μl, 10 mM HEPES (pH 7.4), 5% glucose) was administered from the mouse tail vein. Six hours after administration, the liver, lungs and spleen were removed and weighed. After chopping and mixing the tissue, 0.2 g of the liver (lung and spleen in total) was measured, and Lysis buffer (0.1% Triton X-100, 2 mM EDTA, 0.1 M Tris-HCl, pH 7.8). 1 ml was added and the tissue was homogenized in a lysis buffer and centrifuged at 13,000 rpm for 10 minutes at 4 ° C. Luciferase activity (RLU) and protein mass were measured for 20 μl of supernatant and calculated as RLU / mg protein.
B.結果
1)INFの効果
 遺伝子封入R8修飾リポソームのトランスフェクション活性に及ぼすINF7の効果について解析した。本実験で使用した2種の脂質組成は膜融合能の低いものであったが、共にINF7修飾により劇的に遺伝子発現が上昇した。また、ステアリル基のないINF7(Free INH7、脂質膜に挿入されない)では4倍程度の上昇であったが、膜への挿入が可能なSTR−INF7を用いた場合にはより高い(10~50倍)遺伝子発現の促進が認められた。さらに、STR−INF7を脂質フィルム作成時から導入したもの(pre−inclusion)では遺伝子発現がさらに促進し、70~140倍もの促進が認められた(図1)。
B. Results 1) Effect of INF The effect of INF7 on the transfection activity of gene-encapsulated R8-modified liposomes was analyzed. The two lipid compositions used in this experiment had low membrane fusion ability, but both gene expression dramatically increased by INF7 modification. Further, INF7 having no stearyl group (Free INH7, not inserted into the lipid membrane) increased about 4 times, but higher when STR-INF7 capable of insertion into the membrane was used (10 to 50). X) Promotion of gene expression was observed. Furthermore, gene expression was further promoted with STR-INF7 introduced from the time of creation of the lipid film (pre-inclusion), and 70 to 140-fold enhancement was observed (FIG. 1).
2)イン・ビボにおける遺伝子発現
 R8−MEND及び3%のSTR−INF7修飾R8−MENDの静脈内投与後に肝臓及び脾臓においてINF7の修飾により100倍以上の高い遺伝子発現活性が認められた(図3)。
2) In vivo gene expression After intravenous administration of R8-MEND and 3% STR-INF7-modified R8-MEND, a high gene expression activity of 100 times or more was observed in the liver and spleen by modification of INF7 (FIG. 3). ).
3)細胞内動態の解析
 STR−INF7を修飾したR8−MENDのエンドソーム脱出能の評価を行った。R8修飾のみでは、プラスミドDNA(赤)のシグナルが細胞膜やエンドソーム(PKH67修飾:緑)に共局在して黄色として表示されるが(矢印)、STR−INF7の修飾により、細胞膜及びエンドソームに共局在するDNA(黄色)以外にも細胞質内で独立に存在するDNA(赤)が認められる割合が多くなった(図4)。このことから、INF7修飾によってエンドソーム脱出が促進していることが明らかとなった。
3) Analysis of intracellular kinetics The endosomal escape ability of R8-MEND modified with STR-INF7 was evaluated. With the R8 modification alone, the plasmid DNA (red) signal colocalizes with the cell membrane and endosome (PKH67 modification: green) and is displayed as yellow (arrow). However, the modification with STR-INF7 causes the signal to coexist with the cell membrane and endosome. In addition to the localized DNA (yellow), the proportion of DNA (red) that exists independently in the cytoplasm increased (FIG. 4). This revealed that endosome escape was promoted by INF7 modification.
 また、スペクトラルイメージングによって、細胞内でリポソームが膜融合をしているか否かについて解析を行った。本解析では脂質膜上でNBDとローダミンとの間で蛍光エネルギー移動が起きている。すなわち、NBDを励起した際に得られる蛍光(約530nm)はローダミンに吸収され590nmを極大値にもつ蛍光として観察される。細胞内でリポソーム膜が膜融合を起こした場合には脂質膜のミキシングが生じ、その結果として2つの蛍光間距離が離れるためにFRETが解消し、NBD由来の蛍光である530nmの光が観測される。図5には590nmの蛍光強度を1としたときの相対的な蛍光スペクトルを示す。FRETが解消されれば530nmの蛍光は0.2以上に回復するが、本実験ではINF7修飾の有無に関わらず530nmの蛍光は低い値に維持されていた。この結果から、本リポソームは膜融合を介さずにエンドソームから脱出していることが示唆された。 In addition, it was analyzed by spectral imaging whether or not liposomes were membrane-fused in the cells. In this analysis, fluorescence energy transfer occurs between NBD and rhodamine on the lipid membrane. That is, fluorescence (about 530 nm) obtained when NBD is excited is absorbed by rhodamine and observed as fluorescence having a maximum value of 590 nm. When the liposome membrane undergoes membrane fusion within the cell, mixing of the lipid membrane occurs. As a result, the distance between the two fluorescences is separated, so that FRET is eliminated, and light at 530 nm, which is fluorescence derived from NBD, is observed. The FIG. 5 shows a relative fluorescence spectrum when the fluorescence intensity at 590 nm is 1. When FRET is eliminated, the fluorescence at 530 nm recovers to 0.2 or more, but in this experiment, the fluorescence at 530 nm was maintained at a low value regardless of the presence or absence of INF7 modification. From this result, it was suggested that the present liposome escapes from the endosome without membrane fusion.
4)カルセインリリースを用いたINF7修飾リポソームの膜破壊活性におけるpH依存性の評価
 カルセイン封入リポソームとR8−リポソーム及びR8/INF7リポソームをインキュベーションした際の膜破壊活性を測定した。R8リポソームではpH7.4又はpH5.5においてカルセインの漏出は観察されなかった。一方、INF7修飾型では両pHともに強いカルセインリリースが観察され、pHによらずINF7は膜破壊活性を示すことが明らかとなった(図6)。
4) Evaluation of pH dependence of membrane breaking activity of INF7-modified liposome using calcein release The membrane breaking activity when calcein-encapsulated liposomes, R8-liposomes and R8 / INF7 liposomes were incubated was measured. For R8 liposomes, no leakage of calcein was observed at pH 7.4 or pH 5.5. On the other hand, in the INF7 modified type, strong calcein release was observed at both pHs, and it was revealed that INF7 shows membrane-disrupting activity regardless of pH (FIG. 6).
5)PEG修飾リポソームにおけるINF7によるエンドソーム脱出促進活性
 STR−INF7を修飾したR8/PEG−MENDのエンドソーム脱出能の評価を行った。R8/PEG修飾のみではプラスミドDNA(赤)のシグナルが細胞膜やエンドソーム(PKH67修飾:緑)に共局在して黄色(矢印)で観察されているのに対し、STR−INF7を修飾することにより、共局在するもの(黄色)以外に赤色単独で認められるプラスミドDNAの割合が多くなった(図7)。このことから、INF7修飾によって表面にPEGが修飾されている状態でもエンドソーム脱出が促進していることが明らかとなった。
5) Endosome escape promoting activity by INF7 in PEG-modified liposomes The endosome escape ability of R8 / PEG-MEND modified with STR-INF7 was evaluated. In the case of R8 / PEG modification alone, the signal of plasmid DNA (red) is colocalized with cell membrane and endosome (PKH67 modification: green) and observed in yellow (arrow), but by modifying STR-INF7, In addition to those co-localized (yellow), the proportion of plasmid DNA observed in red alone increased (FIG. 7). This revealed that endosome escape was promoted even when PEG was modified on the surface by INF7 modification.
 また、遺伝子封入R8/PEG修飾リポソームのトランスフェクション活性に及ぼすINF7の影響について解析した。PEG非存在下においてINF7は遺伝子発現を促進していた。また、この促進効果には修飾密度依存性が認められ、1%から3%に修飾密度を増やすことにより段階的な遺伝子促進効果が認められた(図8)。また、PEG非存在下におけるINF7修飾密度依存的な遺伝子発現促進効果は、PEG修飾リポソームにおいても同様に認められた。 Also, the influence of INF7 on the transfection activity of the gene-encapsulated R8 / PEG-modified liposome was analyzed. In the absence of PEG, INF7 promoted gene expression. In addition, this promotion effect was dependent on the modification density, and a stepwise gene promotion effect was observed by increasing the modification density from 1% to 3% (FIG. 8). In addition, the INF7 modification density-dependent gene expression promoting effect in the absence of PEG was also observed in PEG-modified liposomes.
例2:マルトトリオース−PEG6−C11−SHの合成
Figure JPOXMLDOC01-appb-C000001
Example 2: maltotriose -PEG6-C 11 Synthesis of -SH
Figure JPOXMLDOC01-appb-C000001
2−(2−(2−(2−(2−(2−(ウンデカ−10−エンイルオキシ)エトキシ)エトキシ)エトキシ)エトキシ)エトキシ)エタノール(1)
 ヘキサエチレングリコール(15.0g,53.1mmol)をテトラヒドロフラン(THF,55ml)に加えて、NaH(60%in oil,1.59g,39.7mmol)を加えた。水素の発生がおさまったところで、11−ブロモ−1−ウンデセン(6.7ml,d=1.063g/ml,30.5mmol)を入れ、窒素雰囲気下に室温で一晩反応させた。クロロホルム/水、クロロホルム/飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥して溶媒を留去した。シリカゲルクロマトグラフィー(酢酸エチル:クロロホルム=8:2→酢酸エチル:メタノール=97:3)で精製を行い化合物(1)を得た(6.57g、収率49.6%)。
2- (2- (2- (2- (2- (2- (Undec-10-enyloxy) ethoxy) ethoxy) ethoxy) ethoxy) ethoxy) ethanol (1)
Hexaethylene glycol (15.0 g, 53.1 mmol) was added to tetrahydrofuran (THF, 55 ml) and NaH (60% in oil, 1.59 g, 39.7 mmol) was added. When the generation of hydrogen was stopped, 11-bromo-1-undecene (6.7 ml, d = 1.063 g / ml, 30.5 mmol) was added and reacted overnight at room temperature under a nitrogen atmosphere. After washing with chloroform / water and chloroform / saturated saline, the solvent was distilled off by drying over anhydrous sodium sulfate. Purification by silica gel chromatography (ethyl acetate: chloroform = 8: 2 → ethyl acetate: methanol = 97: 3) gave compound (1) (6.57 g, yield 49.6%).
 化合物(1)(1.90g,4.38mmol)とパーアセチルマルトトリオース(2.90g,3.00mmol)を無水ジクロロメタン(20ml)に溶解し、20分間撹拌後、ボロントリフルオリド・エチルエーテルコンプレックス(500μl)を加え、室温下、18時間攪拌した。得られた反応液をジクロロメタン(10ml)で希釈し、氷冷した飽和炭酸水素ナトリウム水溶液(1×150ml)、蒸留水(1×150ml)を用いて洗浄した後、有機層を硫酸ナトリウムで乾燥した。溶液を濃縮して残渣をシリカゲルクロマトグラフィー(クロロホルム:酢酸エチル=3:7)にて精製しアモルファス状の化合物(2)を得た(2.16g,1.61mmol,53.7%)。 Compound (1) (1.90 g, 4.38 mmol) and peracetyl maltotriose (2.90 g, 3.00 mmol) were dissolved in anhydrous dichloromethane (20 ml), stirred for 20 minutes, and then boron trifluoride-ethyl ether complex. (500 μl) was added and stirred at room temperature for 18 hours. The obtained reaction solution was diluted with dichloromethane (10 ml), washed with ice-cooled saturated aqueous sodium hydrogen carbonate solution (1 × 150 ml) and distilled water (1 × 150 ml), and then the organic layer was dried over sodium sulfate. . The solution was concentrated and the residue was purified by silica gel chromatography (chloroform: ethyl acetate = 3: 7) to obtain amorphous compound (2) (2.16 g, 1.61 mmol, 53.7%).
 化合物(2)(1.24g,0.92mmol)をTHF(16ml)に溶解した後、チオ酢酸(0.4ml,d=1.07g/ml,5.62mmol)を加えて撹拌した。これに再結晶精製を施したアゾビスイソブチロニトリル(AIBN,76mg,0.46mmol)を加え、60℃、紫外線照射下で1時間、その後、60℃で一晩撹拌した。クロロホルム/水、クロロホルム/飽和食塩水で洗浄した後、エバポレーターで溶媒を留去して残渣をクロロホルムに再溶解した。精製はリカゲルクロマトグラフィー(n−ヘキサン→クロロホルム:酢酸エチル=3:7)にて行い、透明アモルファス状の化合物(3)を得た(0.94g,0.68mmol,72.5%)。 Compound (2) (1.24 g, 0.92 mmol) was dissolved in THF (16 ml), and thioacetic acid (0.4 ml, d = 1.07 g / ml, 5.62 mmol) was added and stirred. Azobisisobutyronitrile (AIBN, 76 mg, 0.46 mmol) subjected to recrystallization purification was added thereto, and the mixture was stirred at 60 ° C. for 1 hour under ultraviolet irradiation and then at 60 ° C. overnight. After washing with chloroform / water and chloroform / saturated saline, the solvent was distilled off with an evaporator and the residue was redissolved in chloroform. Purification was performed by Rica gel chromatography (n-hexane → chloroform: ethyl acetate = 3: 7) to obtain a transparent amorphous compound (3) (0.94 g, 0.68 mmol, 72.5%).
 化合物(3)(0.30g,0.22mmol)をメタノール(10ml)に溶解し、ナトリウムメトキシド(28%メタノール溶液,45μl)を加えた。3時間室温で撹拌した後、DOWEX(50WX8−200イオン交換樹脂)を加えて溶液を中和し、樹脂を濾去した後に溶媒を留去して白色固体の化合物(4)を得た(0.20g,0.21mmol,95.1%)。 Compound (3) (0.30 g, 0.22 mmol) was dissolved in methanol (10 ml), and sodium methoxide (28% methanol solution, 45 μl) was added. After stirring at room temperature for 3 hours, DOWEX (50WX8-200 ion exchange resin) was added to neutralize the solution, the resin was filtered off, and the solvent was evaporated to obtain a white solid compound (4) (0 .20 g, 0.21 mmol, 95.1%).
例3
A.方法
1)MENDの調製
 カチオン性脂質(N−[1−(2,3−ジオレイルオキシ)プロピル]−N,N,N−トリメチルアンモニウムクロライド(DOTMA)又はN−[1−(2,3−ジオレイルオキシ)プロピル]−N,N,N−トリメチルアンモニウムクロライド(DOTAP))及びコレステロールの2種の脂質を含有した脂質エンベロープに遺伝子をプロタミンで凝縮化したコア粒子を封入してMENDを調製した。ベースの脂質組成としてカチオン性脂質とコレステロールを30:70(モル比)となるようにした。ガラス試験管に脂質溶液(カチオン性脂質及びコレステロールのエタノール溶液)を総量412.5nmol/250μLとなるように添加したのち、デシケーターで減圧乾燥することで溶媒を留去した。試験管にクロロホルム250μLを添加して再び脂質を溶解させたのち、デシケーターで減圧乾燥して溶媒を再留去することで脂質フィルムを調製した。
Example 3
A. Method 1) Preparation of MEND Cationic lipid (N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) or N- [1- (2,3- Dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP)) and a lipid envelope containing two lipids, cholesterol, encapsulated core particles obtained by condensing the gene with protamine to prepare MEND. . As the lipid composition of the base, cationic lipid and cholesterol were adjusted to 30:70 (molar ratio). A lipid solution (an ethanol solution of cationic lipid and cholesterol) was added to a glass test tube so that the total amount was 412.5 nmol / 250 μL, and then the solvent was distilled off by drying under reduced pressure with a desiccator. After 250 μL of chloroform was added to the test tube to dissolve the lipid again, it was dried under reduced pressure with a desiccator, and the solvent was removed again to prepare a lipid film.
 コア粒子は、プラスミドDNAとプロタミンを+/−比1で混合することで作製した。プラスミドDNA及びプロタミンを10mM HEPES(pH7.4)溶液としたのち、ボルテックス中のプラスミドDNA溶液(0.3mg/ml)125μlに対してプロタミン溶液(0.201mg/ml)125μlを徐々に滴下することで時間をかけて混合させた。さらに、室温で10分間静置することで、コア粒子を調製した。脂質フィルムを調製した試験管に遺伝子コア溶液250μlを添加した後、室温で15分間静置することで水和させ、約1分間超音波処理を行うことでMENDを得た。MENDの粒子径はdynamic light scattering(DLS)によって測定した。 Core particles were prepared by mixing plasmid DNA and protamine at a +/− ratio of 1. After making plasmid DNA and protamine 10 mM HEPES (pH 7.4) solution, gradually add 125 μl of protamine solution (0.201 mg / ml) to 125 μl of plasmid DNA solution (0.3 mg / ml) in vortex. And mixed over time. Furthermore, the core particle was prepared by leaving still at room temperature for 10 minutes. After adding 250 μl of the gene core solution to the test tube in which the lipid film was prepared, it was hydrated by allowing it to stand at room temperature for 15 minutes, and sonication was performed for about 1 minute to obtain MEND. The particle size of MEND was measured by dynamic light scattering (DLS).
2)MEND脂質膜への機能性素子の修飾
 GALA又はマルトトリオースをMENDの脂質エンベロープ表面に提示する際は、GALAのコレステロール誘導体(Chol−GALA)又はマルトトリオースの脂質誘導体(マルトトリオース−PEG6−C11−SH)を用いた。Chol−GALAは総脂質量(モル量)の2%相当量を用い、マルトトリオース−PEG6−C11−SHは総脂質量(モル量)の5%相当量を用いて、いずれもエタノール溶液として脂質フィルム調製時に添加した。マルトトリオース−PEG6−C11−SHを用いた場合には、脂質膜を構成する脂質組成をカチオン性脂質、コレステロール、マルトトリオース−PEG6−C11−SHを30:65:5(モル比)となるようにした。
2) Modification of functional elements to MEND lipid membrane When GALA or maltotriose is presented on the lipid envelope surface of MEND, GALA cholesterol derivative (Chol-GALA) or maltotriose lipid derivative (maltotriose- PEG6-C 11 -SH) was used. Chol-GALA uses 2% significant amount of the total lipid amount (molar amount), maltotriose -PEG6-C 11 -SH is used equal to 5% of total lipids amount (molar amount), both ethanol solution As a lipid film. In the case of using maltotriose -PEG6-C 11 -SH is cationic lipids a lipid composition constituting the lipid membrane, cholesterol, maltotriose -PEG6-C 11 -SH to 30: 65: 5 (molar ratio ).
3)マルトトリオースの修飾率検討及び有用性評価のためのMEND調製
 MENDの脂質膜は、DOTMAとコレステロールを30:70(モル比)の組成比となるように調製し、総脂質量(モル量)の2%相当量のChol−GALAを含有させた。ここではマルトトリオース−PEG6−C11−SHの他に比較対照としてラクトースの脂質誘導体であるラクトース−PEG4−コレステロール、及び構造中に糖を有していないPEG6−C11−SHを用いた。これらの脂質を総脂質量(モル量)の2.5%~15%相当量含有させることでMENDへの糖の修飾率を調整した。この際、コレステロール含有量を調節することで総脂質量を統一した。(例えば、マルトトリオース−PEG6−C11−SHを10%含有させる場合は、DOTMA、コレステロール、糖化合物−PEG−脂質を30:60:10(モル比)となるようにした。
3) Preparation of MEND for examination of maltotriose modification rate and evaluation of usefulness MEND lipid membrane was prepared so that the composition ratio of DOTMA and cholesterol was 30:70 (molar ratio), and the total lipid amount (molar) The amount of Chol-GALA was 2% equivalent. It is used here maltotriose -PEG6-C 11 in addition to lactose -PEG4- cholesterol lactose lipid derivative as a comparative control of -SH, and PEG6-C 11 -SH having no saccharide in the structure. The modification rate of sugar to MEND was adjusted by adding these lipids in an amount corresponding to 2.5% to 15% of the total lipid amount (molar amount). At this time, the total lipid content was unified by adjusting the cholesterol content. (E.g., the case of maltotriose -PEG6-C 11 -SH containing 10%, DOTMA, was made to cholesterol, sugar compounds -PEG- lipid 30:60:10 (molar ratio).
4)Lipoplexの調製
 Lipoplexは文献記載の方法(Hum.Gene Ther.,8,pp.1584−1594,1997)の方法に従ってDOTAPから構成されるリポソーム溶液とプラスミドDNA溶液とを混合することで調製した。また、プラスミドDNAに対するリポソーム量を調整することでモル比を12とした。
4) Preparation of Lipoplex Lipoplex was prepared by mixing a liposome solution composed of DOTAP and a plasmid DNA solution according to the method described in the literature (Hum. Gene Ther., 8, pp. 1584-1594, 1997). . Further, the molar ratio was set to 12 by adjusting the amount of liposome with respect to plasmid DNA.
 ガラス試験管に脂質溶液(DOTAPのエタノール溶液)を総量750nmol/250μLとなるように添加したのち、デシケーターで減圧乾燥することで溶媒を留去した。試験管にクロロホルム250μLを添加して再び脂質を溶解させたのち、デシケーターで減圧乾燥し溶媒を再留去することで脂質フィルムを調製した。調製した脂質フィルムにPBS(−)(pH7.4)を250μL添加し、室温で15分放置して水和させたのち、約1分間超音波処理することでリポソームを調製した。ボルテックス中のプラスミドDNAのPBS(−)溶液に対して調製したリポソーム溶液を滴下することで混合した後、室温で15分間静置することでLipoplexを調製した。Lipoplexの粒子径はdynamic light scattering(DLS)によって測定した。 After adding a lipid solution (ethanol solution of DOTAP) to a glass test tube so that the total amount becomes 750 nmol / 250 μL, the solvent was distilled off by drying under reduced pressure with a desiccator. After 250 μL of chloroform was added to the test tube to dissolve the lipid again, it was dried under reduced pressure with a desiccator, and the solvent was removed again to prepare a lipid film. 250 μL of PBS (−) (pH 7.4) was added to the prepared lipid film, left to stand at room temperature for 15 minutes to hydrate, and then sonicated for about 1 minute to prepare liposomes. Lipoplex was prepared by adding the prepared liposome solution to the PBS (−) solution of plasmid DNA in vortex by dropping, and then allowing to stand at room temperature for 15 minutes. The particle size of Lipoplex was measured by dynamic light scattering (DLS).
5)Polyplexの調製
 市販のin vivo遺伝子導入試薬であるin vivo jetPEI,galactose conjugate(PolyPlus社)を用いて、添付の推奨プロトコルに従いPolyplexを調製した。プラスミドDNAとin vivo jetPEI,galactose conjugateの混合比であるNP ratioは、推奨値である10とした。
 プラスミドDNAの5%グルコース溶液に対して、調製したin vivo jetPEI,galactose conjugateの5%グルコース溶液を添加し、ボルテックスすることで混合した後、室温で15分間静置することでPolyplexを調製した。Polyplexの粒子径はdynamic light scattering(DLS)によって測定した。
5) Preparation of Polyplex Polyplex was prepared using in vivo jetPEI and galactose conjugate (PolyPlus), which are commercially available in vivo gene transfer reagents, according to the attached recommended protocol. NP ratio, which is a mixing ratio of plasmid DNA, in vivo jetPEI, and galactose conjugate, was set to 10 as a recommended value.
A 5% glucose solution of prepared in vivo jetPEI and galactose conjugate was added to a 5% glucose solution of plasmid DNA, mixed by vortexing, and then allowed to stand at room temperature for 15 minutes to prepare Polyplex. The particle size of Polyplex was measured by dynamic light scattering (DLS).
6)動物実験(遺伝子発現評価)
 ホタルルシフェラーゼ遺伝子をコードしたプラスミドDNA(7,037bp)を封入したMENDを使用し、ICRマウス(5週齢、雄性)を用いてin vivo遺伝子導入実験を行った。ジエチルエーテル麻酔下、MEND(40μg DNA/350μL 10mM HEPES(pH7.4)5%グルコース)をマウス尾静脈より投与した。投与6時間後に肝臓、肺、及び脾臓を摘出し、重量を測定した。組織を細断・混合したのち、肝臓は0.2g分(肺・脾臓は全量)を測りとり、Lysis buffer(0.1%Triton X−100,2mM EDTA,0.1M Tris−HCl,pH7.8)1mLを添加し、Lysis buffer中で組織をホモジナイズし、4℃、13000rpmで10分間遠心した。上清20μLについてルシフェラーゼ活性(RLU)及び蛋白質量を測定し、RLU/mg proteinとして算出した。
6) Animal experiment (Evaluation of gene expression)
Using an MEND encapsulating a plasmid DNA (7,037 bp) encoding a firefly luciferase gene, an in vivo gene introduction experiment was conducted using ICR mice (5 weeks old, male). Under diethyl ether anesthesia, MEND (40 μg DNA / 350 μL 10 mM HEPES (pH 7.4) 5% glucose) was administered from the mouse tail vein. Six hours after administration, the liver, lungs and spleen were removed and weighed. After chopping and mixing the tissue, 0.2 g of the liver (lungs and spleen in total) was measured, and Lysis buffer (0.1% Triton X-100, 2 mM EDTA, 0.1 M Tris-HCl, pH 7. 8) 1 mL was added, the tissue was homogenized in a lysis buffer, and centrifuged at 13,000 rpm at 4 ° C. for 10 minutes. Luciferase activity (RLU) and protein mass were measured for 20 μL of supernatant and calculated as RLU / mg protein.
7)動物実験(肝臓移行量評価)
 脂質膜を[H]で標識したMENDを5%(w/v)となるようにグルコースを添加することで投与サンプルとした。エーテル麻酔下、40μg pDNA/0.44μmol lipid/350μL/マウスの条件で、マウス尾静脈より投与した。投与6時間後にエーテル麻酔によりマウスを処置した後、開腹し、肝臓を摘出した。生理食塩水でよく洗浄し、重量を測定した後、細断してよく混合した。細断した肝臓0.2~0.3gをプラスチックバイアルに計り取り、2mLのSoluene−350を添加し、50℃で一晩インキュベーションすることで組織を溶解させた。この溶液に対して、Hionic fluor 10mLを添加しよく混合させた後、4℃で一晩静置し、液体シンチレーションカウンターにて[H]のカウントを測定した。また、[H]の投与量を評価するため、投与したMENDサンプル10μLに対してHionic fluor 10mLを添加し、よく混合させた後、4℃で一晩静置視、同様に[H]のカウントを測定した。
7) Animal experiments (evaluation of liver migration)
The administration sample was prepared by adding glucose such that MEND labeled with [ 3 H] on the lipid membrane was 5% (w / v). Under ether anesthesia, administration was performed from the mouse tail vein under the conditions of 40 μg pDNA / 0.44 μmol lipid / 350 μL / mouse. After 6 hours from the administration, the mice were treated with ether anesthesia, followed by laparotomy, and the liver was removed. After thoroughly washing with physiological saline and measuring the weight, it was chopped and mixed well. 0.2 to 0.3 g of the minced liver was weighed into a plastic vial, 2 mL of Solene-350 was added, and the tissue was lysed by incubation at 50 ° C. overnight. To this solution, 10 mL of Honic fluor was added and mixed well, and then allowed to stand at 4 ° C. overnight, and the count of [ 3 H] was measured with a liquid scintillation counter. In addition, in order to evaluate the dose of [ 3 H], 10 mL of Honic fluor was added to 10 μL of the administered MEND sample, mixed well, and then allowed to stand at 4 ° C. overnight. Similarly, [ 3 H] The count of was measured.
B.結果
1)MEND脂質膜へのGALA及びMaltotriose修飾による遺伝子発現の亢進
 GALA(2%)及びマルトトリオース(5%)を含有するMENDを作製し、MENDの粒子径・ζ電位及びマウス肝臓における遺伝子発現(ルシフェラーゼ活性)を評価した結果を図9に示す。GALA修飾により遺伝子発現が大きく上昇した(DOTAP−MEND:約28倍、DOTMA−MEND:約6倍)が、マルトトリオース修飾することで遺伝子発現がさらに上昇し、未修飾MENDに比べてDOTAP−MENDにおいては約88倍、DOTMA−MENDにおいては約64倍遺伝子発現活性が上昇した。
B. Results 1) Enhancement of gene expression by modification of GALA and maltotriose on MEND lipid membrane MEND containing GALA (2%) and maltotriose (5%) was prepared, and the particle size / ζ potential of MEND and genes in mouse liver The results of evaluating the expression (luciferase activity) are shown in FIG. Gene expression was significantly increased by GALA modification (DOTAP-MEND: about 28 times, DOTMA-MEND: about 6 times), but gene expression was further increased by modification with maltotriose, and DOTAP- compared to unmodified MEND. The gene expression activity increased about 88 times in MEND and about 64 times in DOTMA-MEND.
2)マルトトリオースの修飾率検討及び有用性評価
 マルトトリオース修飾率の遺伝子発現活性に及ぼす影響及びマルトトリオースの効果を評価するために、マルトトリオース−PEG−脂質の含量を0~15%の範囲で変化させてGALA(2%)含有MENDの遺伝子発現活性を評価した。比較のためラクトースの脂質誘導体であるラクトース−PEG−脂質及び構造中に糖を有していないPEG6−脂質を用いた。結果を図10に示す。マルトトリオース修飾MENDにおいては、マルトトリオースの修飾率に依存して遺伝子発現活性が変動し、5%修飾時に最も高い遺伝子発現活性を示した。ラクトース修飾MENDでは遺伝子発現活性の上昇は認められなかった。また、マルトトリオースを持たないPEG−脂質を用いた場合には遺伝子発現活性はほとんど変わらなかったことから、マルトトリオース−PEG−脂質を用いた際の遺伝子発現活性の上昇はマルトトリオースによる核移行過程の促進によることが示唆された。他の糖についても同様に検討したところ、セロトリオース、マンノース、ガラクトース、βマルトース、αマルトースのいずれについても遺伝子発現活性の上昇は認められなかった(図11及び12)。
2) Examination of maltotriose modification rate and evaluation of usefulness In order to evaluate the effect of maltotriose modification rate on gene expression activity and the effect of maltotriose, the content of maltotriose-PEG-lipid was 0-15. The gene expression activity of MEND containing GALA (2%) was evaluated in the range of%. For comparison, lactose-PEG-lipid, which is a lipid derivative of lactose, and PEG6-lipid having no sugar in the structure were used. The results are shown in FIG. In the maltotriose-modified MEND, the gene expression activity varied depending on the modification rate of maltotriose, and the highest gene expression activity was shown when 5% modification was performed. No increase in gene expression activity was observed with lactose-modified MEND. In addition, when PEG-lipid without maltotriose was used, the gene expression activity was hardly changed, and the increase in gene expression activity when maltotriose-PEG-lipid was used was due to maltotriose. It was suggested that this was due to the promotion of the nuclear transfer process. When other sugars were examined in the same manner, no increase in gene expression activity was observed for any of cellotriose, mannose, galactose, β-maltose, and α-maltose (FIGS. 11 and 12).
3)MENDの肝臓移行量評価
 MENDをマウスに静脈内投与した後の肝臓移行量を評価した。脂質膜を[H]で標識した未修飾MEND又はGALAとマルトトリオースで修飾したMENDをICRマウス(5週齢、雄性)の尾静脈より投与し、6時間後の肝臓における[H]カウントを液体シンチレーションカウンターにて測定して肝臓移行量を評価した((図13)。MENDの投与量に対する臓器当たりの移行量として肝臓移行量(%ID/Liver)を算出した。1)において高い遺伝子発現活性を示した脂質組成であるDOTMA/Cholesterol(3:7)をMENDの基本脂質組成とした。
3) Evaluation of liver migration amount of MEND Liver migration amount after intravenous administration of MEND to mice was evaluated. Unmodified MEND labeled with [ 3 H] or MEND modified with GALA and maltotriose was administered from the tail vein of ICR mice (5 weeks old, male), and [ 3 H] in the liver 6 hours later. The liver migration amount was evaluated by measuring the count with a liquid scintillation counter ((FIG. 13). The liver migration amount (% ID / Liver) was calculated as the migration amount per organ with respect to the MEND dose. DOTMA / Cholesterol (3: 7), which is a lipid composition showing gene expression activity, was used as the basic lipid composition of MEND.
 いずれのMENDにおいても投与量の60~70%が肝臓に集積する結果となり、MENDをGALAとマルトトリオースで修飾することにより肝臓移行量が減少する傾向が見られたが、有意な差は認められなかった。前項で評価した遺伝子発現活性をMENDの肝臓移行量で除することで移行量当たりの遺伝子発現活性を算出したところ、MENDへのGALA修飾により約7倍、GALA及びマルトトリオースの修飾によって約85倍(肝臓移行量当たり)の遺伝子発現活性上昇が認められた(図14)。したがって、GALA及びマルトトリオースがMENDの細胞内動態を改善することで、肝臓における高い遺伝子発現につながったことが示された。 In all MENDs, 60-70% of the dose was accumulated in the liver, and the amount of liver transfer decreased by modifying MEND with GALA and maltotriose, but there was a significant difference. I couldn't. When the gene expression activity per migration amount was calculated by dividing the gene expression activity evaluated in the previous section by the liver migration amount of MEND, it was about 7 times by GALA modification to MEND, and about 85 by modification of GALA and maltotriose. Doubled (per liver transfer amount) gene expression activity increased (FIG. 14). Therefore, it was shown that GALA and maltotriose led to high gene expression in the liver by improving the intracellular kinetics of MEND.
4)Lipoplex及びPolyplex投与時の肝臓における遺伝子発現
 in vivo遺伝子デリバリー研究において汎用されている遺伝子キャリアとして、1)pDNAとカチオン性リポソームの複合体であるLipoplex、及び2)pDNAとカチオン性ポリマーの複合体であるPolyplexを用いて遺伝子導入効率の比較評価を行った。使用したLipoplexの脂質組成及びMolar ratioは文献を参考にした。Polyplexは、市販のin vivo遺伝子導入試薬であるin vivo jetPEI,galactose conjugate(PolyPlus社)を用い、NP ratioは10とした。また、MENDとしては、1)において最も遺伝子発現活性の高かったGALA/マルトトリオース−MENDを用いた。結果を図15に示す。
4) Gene expression in the liver during administration of Lipoplex and Polyplex 1) Lipoplex, which is a complex of pDNA and cationic liposome, as a gene carrier widely used in in vivo gene delivery studies, and 2) Complex of pDNA and cationic polymer Comparative evaluation of gene transfer efficiency was performed using Polyplex, a body. The lipid composition and the molar ratio of Lipoplex used were based on literature. Polyplex was a commercially available in vivo gene transfer reagent, in vivo jetPEI, galactose conjugate (PolyPlus), and NP ratio was 10. As MEND, GALA / maltotriose-MEND having the highest gene expression activity in 1) was used. The results are shown in FIG.
 MENDを静脈内投与後の肝臓における遺伝子発現活性は、Lipoplex及びPolyplexと比較して約25倍高い結果となった。特に、Lipoplexにおいては、pDNAの投与量が60μgとMENDの1.5倍であったのにもかかわらず、10RLU/mg protein程度の遺伝子発現活性であった。以上の結果より、本発明の脂質膜構造体は肝臓に効率的に遺伝子を送達可能な遺伝子キャリアであることが示された。 The gene expression activity in the liver after intravenous administration of MEND was about 25 times higher than that of Lipoplex and Polyplex. In particular, Lipoplex had a gene expression activity of about 10 4 RLU / mg protein even though the dose of pDNA was 60 μg and 1.5 times that of MEND. From the above results, it was shown that the lipid membrane structure of the present invention is a gene carrier capable of efficiently delivering a gene to the liver.

Claims (14)

  1. 標的細胞の細胞質内に物質を送達するための脂質膜構造体であって、INF7で表面修飾された脂質膜構造体。 A lipid membrane structure for delivering a substance into the cytoplasm of a target cell, the surface of which is modified with INF7.
  2. 脂質膜構造体がリポソームである請求項1に記載の脂質膜構造体。 The lipid membrane structure according to claim 1, wherein the lipid membrane structure is a liposome.
  3. ポリアルキレングリコールで表面修飾された請求項1又は2に記載の脂質膜構造体。 The lipid membrane structure according to claim 1 or 2, which is surface-modified with polyalkylene glycol.
  4. ポリアルギニンで表面修飾された請求項1ないし3のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 3, which is surface-modified with polyarginine.
  5. 送達される物質が内部に封入されている請求項1ないし4のいずれか1項に記載の脂質膜構造体 The lipid membrane structure according to any one of claims 1 to 4, wherein a substance to be delivered is enclosed therein.
  6. 送達される物質が核酸である請求項5に記載の脂質膜構造体。 The lipid membrane structure according to claim 5, wherein the substance to be delivered is a nucleic acid.
  7. 標的細胞の核内に物質を送達するための脂質膜構造体であって、送達すべき物質が内部に封入されており、3糖以上のオリゴ糖化合物で表面修飾された脂質膜構造体。 A lipid membrane structure for delivering a substance into the nucleus of a target cell, wherein the substance to be delivered is encapsulated inside and is surface-modified with an oligosaccharide compound of three or more sugars.
  8. オリゴ糖化合物が3糖化合物である請求項7に記載の脂質膜構造体。 The lipid membrane structure according to claim 7, wherein the oligosaccharide compound is a trisaccharide compound.
  9. オリゴ糖化合物がグルコース3量体である請求項7に記載の脂質膜構造体。 The lipid membrane structure according to claim 7, wherein the oligosaccharide compound is a glucose trimer.
  10. オリゴ糖化合物がマルトトリオースである請求項7に記載の脂質膜構造体。 The lipid membrane structure according to claim 7, wherein the oligosaccharide compound is maltotriose.
  11. 脂質膜構造体がリポソームである請求項7ないし10のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 7 to 10, wherein the lipid membrane structure is a liposome.
  12. GALAにより表面修飾された請求項7ないし11のいずれか1項に記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 7 to 11, which is surface-modified with GALA.
  13. 送達される物質が内部に封入されている請求項7ないし12のいずれか1項に記載の脂質膜構造体 The lipid membrane structure according to any one of claims 7 to 12, wherein a substance to be delivered is enclosed inside.
  14. 送達される物質が核酸である請求項13に記載の脂質膜構造体。 The lipid membrane structure according to claim 13, wherein the substance to be delivered is a nucleic acid.
PCT/JP2010/055493 2009-03-23 2010-03-23 Lipid membrane structure WO2010110471A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-069438 2009-03-23
JP2009-069439 2009-03-23
JP2009069438 2009-03-23
JP2009069439 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010110471A1 true WO2010110471A1 (en) 2010-09-30

Family

ID=42781161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055493 WO2010110471A1 (en) 2009-03-23 2010-03-23 Lipid membrane structure

Country Status (1)

Country Link
WO (1) WO2010110471A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure
JP2015501328A (en) * 2011-11-03 2015-01-15 アイシス イノベーション リミテッド Multisome: Encapsulated microdroplet network
US9831010B2 (en) 2012-10-25 2017-11-28 Oxford University Innovation Limited Hydrogel network
US10950376B2 (en) 2012-10-25 2021-03-16 Oxford University Innovation Limited Droplet assembly method
US11213797B2 (en) 2012-12-07 2022-01-04 Oxford University Innovation Limited Droplet assembly by 3D printing
EP3823634A4 (en) * 2018-07-21 2022-08-03 University of Tennessee Research Foundation Neutral liposomes containing biologically active agents

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149512A (en) * 1988-08-11 1990-06-08 Terumo Corp Protein adsorption suppressant to ribosome surface
JP2004010481A (en) * 2002-06-03 2004-01-15 Mebiopharm Co Ltd Liposome preparation
WO2005032593A1 (en) * 2003-10-01 2005-04-14 Japan Science And Technology Agency Polyarginine-modified liposome capable of transferring into nucleus
WO2006101201A1 (en) * 2005-03-24 2006-09-28 National University Corporation Hokkaido University Liposome capable of effective delivery of given substance into nucleus
WO2007102481A1 (en) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University Vector for nuclear transport of substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149512A (en) * 1988-08-11 1990-06-08 Terumo Corp Protein adsorption suppressant to ribosome surface
JP2004010481A (en) * 2002-06-03 2004-01-15 Mebiopharm Co Ltd Liposome preparation
WO2005032593A1 (en) * 2003-10-01 2005-04-14 Japan Science And Technology Agency Polyarginine-modified liposome capable of transferring into nucleus
WO2006101201A1 (en) * 2005-03-24 2006-09-28 National University Corporation Hokkaido University Liposome capable of effective delivery of given substance into nucleus
WO2007102481A1 (en) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University Vector for nuclear transport of substance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EL-SAYED, A. ET AL.: "Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape", J. CONTROL. RELEASE, vol. 138, no. 2, 1 September 2009 (2009-09-01), pages 160 - 167, XP026394868 *
ESBJORNER, E. K. ET AL.: "Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model", BIOCHEMISTRY, vol. 46, no. 47, 2007, pages 13490 - 13504 *
KOGURE, K. ET AL.: "Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method", J. CONTROL. RELEASE, vol. 98, 2004, pages 317 - 323, XP004521720, DOI: doi:10.1016/j.jconrel.2004.04.024 *
VAN ROSSENBERG, S. M. ET AL.: "Targeted lysosome disruptive elements for improvement of parenchymal liver cell-specific gene delivery", J. BIOL. CHEM., vol. 277, no. 48, 29 November 2002 (2002-11-29), pages 45803 - 45810 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure
JP2015501328A (en) * 2011-11-03 2015-01-15 アイシス イノベーション リミテッド Multisome: Encapsulated microdroplet network
US10548852B2 (en) 2011-11-03 2020-02-04 Oxford University Innovation Limited Multisomes: encapsulated droplet networks
US11406603B2 (en) 2011-11-03 2022-08-09 Oxford University Innovation Limited Multisomes: encapsulated droplet networks
US11998642B2 (en) 2011-11-03 2024-06-04 Oxford University Innovation Limited Multisomes: encapsulated droplet networks
US9831010B2 (en) 2012-10-25 2017-11-28 Oxford University Innovation Limited Hydrogel network
US10950376B2 (en) 2012-10-25 2021-03-16 Oxford University Innovation Limited Droplet assembly method
US10978218B2 (en) 2012-10-25 2021-04-13 Oxford University Innovation Limited Hydrogel network
US11213797B2 (en) 2012-12-07 2022-01-04 Oxford University Innovation Limited Droplet assembly by 3D printing
EP3823634A4 (en) * 2018-07-21 2022-08-03 University of Tennessee Research Foundation Neutral liposomes containing biologically active agents

Similar Documents

Publication Publication Date Title
Paliwal et al. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery
US20230132645A1 (en) Lipid membrane structure for delivery into sirna cell
Simões et al. On the formulation of pH-sensitive liposomes with long circulation times
WO2023133946A1 (en) Cationic lipid compound, composition containing same and use thereof
US20110117026A1 (en) Methods and compositions for the delivery of bioactive compounds
JP5794541B2 (en) Lipid membrane structure with nuclear translocation
JP2003535832A (en) Encapsulation of polynucleotides and drugs into targeted liposomes
WO2010110471A1 (en) Lipid membrane structure
JP2001511440A (en) Stable granular composite with neutral or negative global charge in layered structure
US20220249695A1 (en) Polyoxazoline-lipid conjugates and lipid nanoparticles and pharmaceutical compositions including same
JP6570188B2 (en) Lipid membrane structures for siRNA intracellular delivery
JPWO2007102481A1 (en) Vector for delivery of target substance into nucleus
JP5787323B2 (en) Lipid membrane structure
AU2008295666B2 (en) Improved liposomes and uses thereof
JP2019151589A (en) Lipid nanoparticle
WO2010067617A1 (en) Lipid membrane structure
JPWO2014030601A1 (en) Method for producing novel nanobubble poly-lipoplex having anionic property
JP7197106B2 (en) lipid nanoparticles
ES2698565B2 (en) Procedure for the elaboration of lipid nanoparticles, and lipid nanoparticles with brain macrophages as target cells
KR101916941B1 (en) Polymeric nanoparticle composition for delivering pDNA and preparation method thereof
WO2015098907A1 (en) Lipid membrane structure having intranuclear localization property
JP4450656B2 (en) Carrier for gene transfer comprising liposome
WO2023246218A1 (en) Ionizable lipid for nucleic acid delivery and composition thereof
JP4904573B2 (en) Composition for enhancing uptake of target substance into brain capillary endothelial cells
CN117582452A (en) Use of metal ions for promoting lysosome escape of active ingredient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756266

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP