WO2015098893A1 - Capacitance trimming circuit - Google Patents

Capacitance trimming circuit Download PDF

Info

Publication number
WO2015098893A1
WO2015098893A1 PCT/JP2014/084002 JP2014084002W WO2015098893A1 WO 2015098893 A1 WO2015098893 A1 WO 2015098893A1 JP 2014084002 W JP2014084002 W JP 2014084002W WO 2015098893 A1 WO2015098893 A1 WO 2015098893A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
capacitor
input terminal
inverting input
voltage
Prior art date
Application number
PCT/JP2014/084002
Other languages
French (fr)
Japanese (ja)
Inventor
信昭 ▲辻▼
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015098893A1 publication Critical patent/WO2015098893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45514Indexing scheme relating to differential amplifiers the FBC comprising one or more switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45551Indexing scheme relating to differential amplifiers the IC comprising one or more switched capacitors

Definitions

  • the present invention relates to a capacitance trimming circuit in a CV conversion circuit for detecting a signal output from a capacitance type sensor or the like.
  • this type of capacitance type sensor includes a CV conversion circuit for detecting a change in capacitance caused by displacement of the movable electrode in accordance with acceleration acting on the sensor (for example, Patent Documents). 1). Since the CV conversion circuit detects a change in capacitance based on the amount of charge transferred from the movable electrode or the fixed electrode as a minute voltage change of, for example, about 0.1 to 1.0 ⁇ V, charge transfer is caused by disturbance noise. When this occurs, it becomes impossible to accurately detect the amount of change in capacitance.
  • the parasitic capacitance parasitic to the capacitive sensor does not necessarily match the parasitic capacitance parasitic to the dummy capacitor. If the capacitance connected to each of the two input terminals of the fully-differential amplifier is not substantially the same, if disturbance noise acts, charge transfer of different amounts of charge occurs in each of the two signal lines. Will not be able to cancel well.
  • a CV conversion circuit is configured using a fully differential amplifier
  • a large number of trimming capacitors are arranged, and a capacitor selected from the large number of trimming capacitors is connected to two input terminals of the fully differential amplifier.
  • the unbalance of the capacitance connected to the two input terminals of the fully differential amplifier is eliminated in advance.
  • the two output signals of the fully differential amplifier are amplified by a post-stage circuit, and the trimming capacitors are connected and disconnected individually while determining the actual noise amount increase / decrease based on the AD conversion of the amplified signals.
  • the capacitances connected to the two input terminals of the fully differential amplifier are adjusted to substantially the same state.
  • the present invention has been made for the purpose of solving the above-described problems.
  • a capacitance can be easily and accurately detected without detecting an actual amount of noise. Therefore, a capacitor trimming circuit capable of performing the above trimming is provided.
  • the first feedback capacitor is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier, and the non-inverting input terminal is provided.
  • the first feedback capacitor includes at least one first capacitor connected to the inverting input terminal.
  • a capacitance trimming circuit for trimming a capacitance difference between a capacitance and a second capacitance caused by at least one second capacitor connected to the non-inverting input terminal is connected to the inverting input terminal or the non-inverting input terminal.
  • a capacitance trimming unit that adjusts the first capacitance and the second capacitance to substantially the same state by being connected to or disconnected from the child, and when capacitance adjustment is performed by the capacitance trimming unit.
  • a capacity partial pressure generation unit for outputting the result.
  • FIG. 1 is a diagram illustrating a configuration example of a sensor device including a capacitor trimming circuit.
  • FIG. 2 is a diagram illustrating an equivalent circuit of the sensor unit.
  • FIG. 3 is a diagram illustrating a first operation state in the adjustment mode.
  • FIG. 4 is a diagram illustrating a second operation state in the adjustment mode.
  • FIG. 1 is a diagram showing a configuration example of a sensor device including a capacitor trimming circuit 7 according to the present invention.
  • This sensor device includes a sensor unit 1 having a capacitance type sensor 3 constituted by MEMS, a CV conversion circuit 2 connected to the sensor unit 1 and detecting the capacitance of the capacitance type sensor 3,
  • the capacitor trimming circuit 7 incorporated in the CV conversion circuit 2 is provided, and is configured as a sensor for detecting acceleration acting on the sensor unit 1.
  • the capacitance type sensor 3 provided in the sensor unit 1 includes a weight 13 that is supported by a spring structure and can be displaced in a predetermined direction, and the two capacitors 11 having variable capacitance with the weight 13 interposed therebetween. , 12 are connected in series. These capacitors 11 and 12 are configured by a movable electrode that is displaced in conjunction with the weight 13 and a fixed electrode that faces the movable electrode. When the weight 13 is in the intermediate position, the capacitors 11 and 12 have the same capacitance C1. When acceleration acts on the sensor unit 1 and the weight 13 is displaced from the intermediate position in a predetermined direction, the capacitances of the capacitors 11 and 12 change according to the amount of displacement.
  • the capacitance of one capacitor 11 increases to (C1 + ⁇ C)
  • the capacitance of the other capacitor 12 decreases to (C1 ⁇ C).
  • the capacitance of the other capacitor 12 increases to (C1 + ⁇ C).
  • the movable electrodes of the capacitors 11 and 12 have the same potential as the weight 13 and are connected to the output terminal mb to the CV conversion circuit 2 via the weight 13.
  • the fixed electrode of the capacitor 11 is connected to the input terminal X1, and the fixed electrode of the capacitor 12 is connected to the input terminal X2.
  • These input terminals X1 and X2 receive high-frequency signals of about several hundred kHz, for example, and rectangular wave signals ⁇ 1 and ⁇ 2 whose polarities are inverted from each other, and are applied to the fixed electrodes of the capacitors 11 and 12, respectively. Therefore, the electrostatic capacity type sensor 3 outputs a charge signal corresponding to the electrostatic capacity of each of the capacitors 11 and 12 and modulated by the rectangular wave signals ⁇ 1 and ⁇ 2 to the CV conversion circuit 2.
  • the sensor unit 1 has a dummy capacitor 4 having a capacitance C2 that is substantially the same as the capacitance of the capacitance type sensor 3 (the combined capacitance of the capacitors 11 and 12) viewed from the CV conversion circuit 2.
  • the dummy capacitor 4 is composed of a pair of fixed electrodes facing each other, and the capacitance C2 is fixed.
  • the dummy capacitor 4 has one end connected to the output terminal mbv to the CV conversion circuit 2 and the other end grounded.
  • the CV conversion circuit 2 mainly includes a fully differential amplifier 21, a first feedback capacitor Cf1, a second feedback capacitor Cf2, and switches 22 and 23 for resetting accumulated charges of the first and second feedback capacitors Cf1 and Cf2. It is configured with.
  • the first feedback capacitor Cf1 is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier 21, and the second feedback capacitor Cf2 is connected to the non-inverting input terminal and the inverting output terminal of the fully differential amplifier 21.
  • the switch 22 is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier 21 in parallel with the first feedback capacitor Cf1.
  • the switch 23 is connected between the non-inverting input terminal and the inverting output terminal of the fully differential amplifier 21 in parallel with the second feedback capacitor Cf2.
  • the inverting input terminal of the fully differential amplifier 21 is connected to the weight 13 of the capacitive sensor 3 via the signal line L1 connected to the terminal mb of the sensor unit 1, and the non-inverting input terminal is a terminal of the sensor unit 1. It is connected to one end of the dummy capacitor 4 via a signal line L2 connected to mbv. With this configuration, the fully differential amplifier 21 operates as an integrating amplifier.
  • the CV conversion circuit 2 temporarily turns on the switches 22 and 23 at a predetermined timing to reset the accumulated charges of the first and second feedback capacitors Cf1 and Cf2, and then the capacitance type sensor 3 and the dummy capacitor 4
  • the charge signal output from each of the first and second feedback capacitors Cf1 and Cf2 is accumulated in each of them to perform CV conversion.
  • the CV conversion circuit 2 stores the charge signal output from the capacitive sensor 3 in the first feedback capacitor Cf1 by applying the rectangular wave signals ⁇ 1 and ⁇ 2 to both ends of the capacitors 11 and 12, and An output signal Vop corresponding to the capacitance of each of the capacitors 11 and 12 and having a predetermined reference voltage Vref as a center voltage is output from the non-inverting output terminal of the differential amplifier 21.
  • the voltage applied to the dummy capacitor 4 is constant, charge transfer does not occur between the dummy capacitor 4 and the second feedback capacitor Cf2, so that the fully differential amplifier 21 has a predetermined reference voltage from the inverting output terminal.
  • An output signal Von corresponding to Vref is output.
  • the parasitic capacitance Cp ⁇ b> 1 parasitic on the capacitive sensor 3 provided in the sensor unit 1 and the parasitic capacitance Cp ⁇ b> 2 parasitic on the dummy capacitor 4 do not match. Therefore, even if the capacitance C2 of the dummy capacitor 4 is substantially the same as the capacitance of the capacitance type sensor 3 (the combined capacitance of the capacitors 11 and 12), the non-inversion and the inverting input terminal of the fully differential amplifier 21 The capacitances of the sensor units 1 connected to the input terminals are not substantially the same.
  • FIG. 2 is a diagram showing an equivalent circuit of the sensor unit 1 when the sensor unit 1 is viewed from the CV conversion circuit 2.
  • the sensor unit 1 when viewed from the CV conversion circuit 2, the sensor unit 1 includes a first capacitor Cs connected to a terminal mb and a first capacitor Cs, and a second capacitor connected to the terminal mbv.
  • the first capacitance Cs is a capacitance obtained by combining the capacitors 11 and 12 and the parasitic capacitance Cp1.
  • the second capacitance Cv is a capacitance obtained by combining the dummy capacitor 4 and the parasitic capacitance Cp2.
  • the parasitic capacitances Cp1 and Cp2 are different from each other, the first electrostatic capacitance Cs and the second electrostatic capacitance Cv are not substantially in the same state.
  • the amount of charge absorbed from the signal lines L1 and L2 to the sensor unit 1 side is not equal, and the disturbance noise causes the first feedback capacitor Cf1.
  • the amount of stored charge does not match the amount of stored charge in the second feedback capacitor Cf2. Therefore, disturbance noise cannot be canceled satisfactorily even if the difference between the two output signals Vop and Von output from the fully differential amplifier 21 is calculated. That is, the unbalance between the first electrostatic capacitance Cs and the second electrostatic capacitance Cv becomes a factor that the disturbance noise cannot be canceled satisfactorily.
  • the CV conversion circuit 2 includes the capacitor trimming circuit 7, and the first electrostatic capacitance of the sensor unit 1 connected to each of the inverting input terminal and the non-inverting input terminal of the fully differential amplifier 21.
  • the imbalance between the capacitance Cs and the second electrostatic capacitance Cv can be eliminated in advance.
  • the capacitor trimming circuit 7 includes a capacitor trimming unit 5 provided in the signal line L2, the first feedback capacitor Cf1 in the CV conversion circuit 2 and the non-inverting output terminal of the fully differential amplifier 21, and the second feedback capacitor.
  • the capacitor voltage generating unit 6 is provided between the Cf2 and the inverting output terminal of the fully differential amplifier 21.
  • the capacitor trimming unit 5 includes a plurality of trimming capacitors 51, and the plurality of trimming capacitors 51 are individually connected to or disconnected from the signal line L2 connected to the non-inverting input terminal of the fully differential amplifier 21. Can do. That is, the capacitor trimming unit 5 includes a plurality of trimming elements 53 having a configuration in which a trimming capacitor 51 and a switch 52 are connected in series between the signal line L2 and the ground point. By turning on the switch 52 of the selected element, an arbitrary capacitance is applied to the signal line L2 connected to the non-inverting input terminal of the fully differential amplifier 21.
  • the electrostatic capacity connected to each of the inverting input terminal and the non-inverting input terminal of the fully differential amplifier 21 is set in advance to be approximately the same state.
  • the plurality of trimming capacitors 51 may have the same capacitance, or may have different capacitances.
  • each switch 52 provided in the capacity trimming unit 5 is turned on / off based on information written in a memory (not shown) from the outside. Therefore, after the sensor device is manufactured, the capacitance is adjusted before shipment, and the capacitance of each switch 52 in which the capacitance connected to each of the inverting input terminal and the non-inverting input terminal of the fully-differential amplifier 21 is substantially the same. If the on / off state is written in the memory in advance, it is not necessary to adjust the capacitance after shipment of the sensor device.
  • the capacitance partial pressure generating unit 6 includes a plurality of switches 61 to 66 that operate when the capacitance is adjusted by the capacitance trimming unit 5.
  • the switches 61 to 63 are provided between the non-inverting output terminal of the fully differential amplifier 21 and the first feedback capacitor Cf1.
  • the switch 61 is a switch that connects one end of the first feedback capacitor Cf1 to the non-inverting output terminal of the fully-differential amplifier 21 or opens it from the non-inverting output terminal.
  • the switch 62 is a switch that connects one end of the first feedback capacitor Cf1 to the ground point or opens from the ground point.
  • the switch 63 is a switch for connecting one end of the first feedback capacitor Cf1 to the reference voltage Vc or releasing from the reference voltage Vc.
  • the switches 64 to 66 are provided between the inverting output terminal of the fully differential amplifier 21 and the second feedback capacitor Cf2.
  • the switch 64 is a switch for connecting one end of the second feedback capacitor Cf2 to the inverting output terminal of the fully-differential amplifier 21 or opening it from the inverting output terminal.
  • the switch 65 is a switch that connects one end of the second feedback capacitor Cf2 to the ground point or opens it from the ground point.
  • the switch 66 is a switch for connecting one end of the second feedback capacitor Cf2 to the reference voltage Vc or releasing from the reference voltage Vc.
  • the switches 61 and 64 are normally in an on state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are connected to the non-inverting output terminal and the inverting output terminal of the fully differential amplifier 21, and are input from the outside. By the control signal, one end of the first and second feedback capacitors Cf1 and Cf2 is turned off from the non-inverting output terminal and the inverting output terminal of the fully differential amplifier 21.
  • the switches 62 and 65 are normally in an off state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are opened from the ground point, and the first and second feedback capacitors Cf1 and Cf1 are controlled by a control signal input from the outside. One end of Cf2 is turned on to connect to the ground point.
  • the switches 63 and 66 are normally in an off state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are released from the reference voltage Vc, and the first and second feedback capacitors Cf1 are controlled by a control signal input from the outside. , Cf2 is connected to one end of the reference voltage Vc.
  • the capacitance partial pressure generating unit 6 first switches 61 and 63 as shown in FIG. 3 based on a control signal input from the outside. 64, 66 are turned off, and switches 62, 65 are turned on. At this time, the switches 22 and 23 provided in the CV conversion circuit 2 are turned on. In this adjustment mode, acceleration does not act on the sensor unit 1, and the state where the weight 13 is in the intermediate position is maintained. In the adjustment mode, the input terminals X1 and X2 of the sensor unit 1 are grounded.
  • the fully differential amplifier 21 operates as a buffer amplifier.
  • the voltage (Vref + Voff) is applied to the first feedback capacitor Cf1 and the first capacitor 8, and the voltage Vref is applied to the second feedback capacitor Cf2 and the second capacitor 9. That is, in the state shown in FIG. 3, initial charges are accumulated in the capacitors 8, 9, Cf 1, and Cf 2 including the offset voltage Voff of the fully differential amplifier 21.
  • the capacitive voltage dividing unit 6 When the initial charge is accumulated as described above, the capacitive voltage dividing unit 6 next turns off the switches 61, 62, 64, 65 as shown in FIG. 63 and 66 are turned on. At this time, the switches 22 and 23 provided in the CV conversion circuit 2 are turned off. That is, the capacitive voltage dividing unit 6 disconnects one end of the first feedback capacitor Cf1 from the non-inverting output terminal of the fully-differential amplifier 21, and applies the reference voltage Vc to the one end, thereby the first feedback capacitor Cf1 and the first feedback capacitor Cf1. A voltage V 1 corresponding to the capacity division with one capacitor 8 is generated at the inverting input terminal of the fully differential amplifier 21.
  • the capacitive voltage dividing unit 6 disconnects one end of the second feedback capacitor Cf2 from the inverting output terminal of the fully-differential amplifier 21, and applies the reference voltage Vc to one end of the second feedback capacitor Cf2.
  • a voltage V ⁇ b> 2 corresponding to the capacity division with the second capacitor 9 is generated at the non-inverting input terminal of the fully differential amplifier 21.
  • the fully differential amplifier 21 since the feedback path of the fully differential amplifier 21 is opened, the fully differential amplifier 21 operates as a comparator. Therefore, the fully differential amplifier 21 outputs the result of comparing the voltage V1 input to the inverting input terminal and the voltage V2 input to the non-inverting input terminal as output signals Vop and Von.
  • the reference voltage Vc is 1.3 V
  • the capacitance Cf1 of the first feedback capacitor Cf1 is 200 fF
  • the capacitance Cs of the first capacitor 8 is 2000 fF
  • the capacitance Cf2 of the second feedback capacitor Cf2 is 200 fF
  • the capacitance Cv of the second capacitor 9 is 1998 fF
  • the capacitive voltage divider 6 applies the reference voltage Vc to one end of the first feedback capacitor Cf1 to generate the voltage V1 corresponding to the capacitive voltage division between the first feedback capacitor Cf1 and the first capacitor 8.
  • a reference voltage Vc is applied to one end of the second feedback capacitor Cf2 to generate a voltage V2 corresponding to the capacitance division between the second feedback capacitor Cf2 and the second capacitor 9, and the fully differential amplifier 21 is used as a comparator. The operation is performed and the comparison result of the voltages V1 and V2 is output.
  • the capacitance trimming unit 5 when the capacitance trimming is performed by the capacitance trimming unit 5, one of the output signals Vop and Von, which are comparator outputs of the fully differential amplifier 21, changes from “High” to “Low” or “Low”. By performing fine trimming at the point where the switching from “High” to “High” is performed, the difference between the capacitance Cs of the first capacitor 8 and the capacitance Cv of the second capacitor 9 can be suppressed to a range of about 2 fF or less. It is possible to perform highly accurate trimming.
  • the capacitive voltage divider 6 generates a voltage V1, V2 obtained by capacitively dividing the reference voltage Vc before the offset voltage Voff of the fully differential amplifier 21 is applied to each of the capacitors 8, 9, Cf1, Cf2. Is stored, and thereafter, voltages V1 and V2 obtained by capacitively dividing the reference voltage Vc are generated. Therefore, when the difference between the capacitance Cs of the first capacitor 8 and the capacitance Cv of the second capacitor 9 is detected, a charge corresponding to the offset voltage Voff of the fully differential amplifier 21 is accumulated. Can be detected.
  • the capacitance trimming unit 5 adjusts the capacitance based on the comparator output (High or Low) of the fully-differential amplifier 21, and then the capacitance connected to the inverting input terminal and the non-inverting input terminal.
  • the capacitive partial pressure generating unit 6 turns on the switches 61 and 64 and switches the switches 62, 63, 65, and 66 as shown in FIG. Turn off. Further, the capacitance trimming unit 5 always fixes the capacitance adjusted in the adjustment mode to a state where the capacitance is applied to the signal line L2. Therefore, when detecting the displacement of the weight 13 according to the acceleration in the normal operation mode, the capacitances connected to the inverting input terminal and the non-inverting input terminal of the fully-differential amplifier 21 are substantially the same. is there.
  • a phase compensation capacitor (not shown) connected to the fully differential amplifier 21 is provided. Is preferably operated as a comparator in a state of being separated from the fully differential amplifier 21. In this case, when the adjustment mode ends and the operation mode is switched to the normal operation mode, the phase compensation capacitor is connected to the fully differential amplifier 21 again to prevent oscillation.
  • the capacitor trimming circuit 7 of the present embodiment has the first capacitance Cs connected to the inverting input terminal of the fully differential amplifier 21 and the first capacitor Cs connected to the non-inverting input terminal of the fully differential amplifier 21.
  • Capacitance trimming unit 5 that adjusts so that the capacitance Cv of 2 is substantially the same, and when capacitance adjustment is performed by the capacitance trimming unit 5, the first and second feedback capacitors Cf1, By applying the reference voltage Vc to each of Cf2, voltages V1 and V2 corresponding to the capacitance division are generated at the inverting input terminal and the non-inverting input terminal, respectively, and the comparison result of the voltages V1 and V2 is output.
  • a pressure generator 6 is a pressure generator 6.
  • the capacitive voltage dividing unit 6 disconnects one end of the first feedback capacitor Cf1 from the non-inverting output terminal of the fully-differential amplifier 21 and connects it to the reference voltage Vc at one end thereof.
  • the fully differential amplifier 21 operates as a comparator, and the voltage V1 generated at the inverting input terminal and the non-inverting input
  • the comparison result with the voltage V2 generated at the terminal is output from each of the inverting output terminal and the non-inverting output terminal. Therefore, it is not necessary to provide another comparator different from the fully differential amplifier 21 in order to compare the voltages V1 and V2, and there is an advantage that the circuit scale of the sensor device can be reduced.
  • the capacitance voltage dividing unit 6 applies the reference voltage Vc to one end of each of the first and second feedback capacitors Cf1 and Cf2.
  • an initial charge corresponding to the offset voltage Voff of the fully-differential amplifier 21 is accumulated in each of the first and second feedback capacitors Cf1 and Cf2.
  • the capacitance can be adjusted in a state in which the offset voltage Voff of the fully differential amplifier 21 is reflected, so that the capacitance is adjusted to be substantially the same in the normal operation mode after the adjustment mode is finished.
  • the disturbance state can be maintained and disturbance noise can be canceled satisfactorily.
  • the capacitor trimming unit 5 is provided on the signal line L2 connected to the non-inverting input terminal of the fully-differential amplifier 21 .
  • the present invention is not limited to this, and the capacitor trimming unit 5 may be provided on the signal line L1 connected to the inverting input terminal of the fully differential amplifier 21.
  • the capacitor trimming unit 5 may be provided in each of the signal lines L1 and L2 connected to the non-inverting input terminal and the inverting input terminal of the fully differential amplifier 21, respectively. If the capacitance trimming unit 5 is provided for each of the signal lines L1 and L2, the capacitance can be finely adjusted, so that more accurate adjustment is possible.
  • the present invention is not limited to this, and for example, the sensor unit 1 may be provided with three capacitive sensors 3 for detecting accelerations in three axial directions orthogonal to each other.
  • the capacitance C2 of the dummy capacitor 4 is equal to the capacitance obtained by synthesizing the three capacitance sensors 3. They are formed to be substantially the same.
  • the fully differential amplifier 21 is operated as a comparator in the adjustment mode is illustrated, but the present invention is not limited to this, and a comparator used in the adjustment mode is provided separately from the fully differential amplifier 21. It doesn't matter. However, in this case, the circuit scale of the sensor device increases. Therefore, when it is desired to reduce the size of the sensor device, as described above, the fully differential amplifier 21 may be used as a comparator rather than providing the comparator separately from the fully differential amplifier 21.
  • the output terminal of the capacitive sensor 3 is connected to the inverting input terminal of the fully differential amplifier 21, and the dummy capacitor substantially the same as the capacitance of the capacitive sensor 3 is connected to the non-inverting input terminal.
  • the state where 4 was connected was illustrated.
  • the present invention is not limited to this, and the capacitance type sensor 3 may be connected to the non-inverting input terminal of the fully-differential amplifier 21 and the dummy capacitor 4 may be connected to the inverting input terminal.
  • the fixed electrode of the capacitor 11 of the capacitive sensor 3 may be connected to the terminal mb, and the fixed electrode of the capacitor 12 may be connected to the terminal mbv.
  • a high-frequency rectangular wave signal is applied to the weight 13, and charge signals corresponding to the capacitances of the capacitors 11 and 12 are output from the two fixed electrodes of the capacitance type sensor 3 to the CV conversion circuit 2. Is done.
  • the capacitance trimming circuit 7 can adjust the variations of the parasitic capacitances Cp1 and Cp2 with high accuracy.
  • the capacitive sensor 3 is a sensor that detects acceleration
  • the present invention is not limited to this, and the sensor is configured as a sensor that detects a physical quantity (for example, angular velocity) other than acceleration. It does not matter if it is
  • the first feedback capacitor is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier, and the non-inverting input terminal is provided.
  • the first feedback capacitor includes at least one first capacitor connected to the inverting input terminal.
  • a capacitance trimming circuit for trimming a capacitance difference between a capacitance and a second capacitance caused by at least one second capacitor connected to the non-inverting input terminal is connected to the inverting input terminal or the non-inverting input terminal.
  • a capacitance trimming unit that adjusts the first capacitance and the second capacitance to substantially the same state by being connected to or disconnected from the child, and when capacitance adjustment is performed by the capacitance trimming unit.
  • a capacity partial pressure generation unit for outputting the result.
  • the capacitive voltage dividing unit disconnects one end of the first feedback capacitor from the inverting output terminal and connects it to the reference voltage, and disconnects one end of the second Fordback capacitor from the non-inverting output terminal and connects to the reference voltage.
  • the fully differential amplifier may be operated as a comparator, and the comparison result between the voltage generated at the inverting input terminal and the voltage generated at the non-inverting input terminal may be output from each of the inverting output terminal and the non-inverting output terminal.
  • the capacitive voltage dividing unit responds to the offset voltage of the fully differential amplifier to each of the first and second feedback capacitors before applying the reference voltage to one end of each of the first and second feedback capacitors.
  • the initial charge may be accumulated.
  • either one of the inverting input terminal and the non-inverting input terminal is connected to the output terminal of the capacitance type sensor, and the other is a dummy capacitor substantially the same as the capacitance of the capacitance type sensor. May be connected.
  • the present invention it is possible to generate a capacitance division when capacitance adjustment is performed by the capacitance trimming unit, and to compare the capacitance based on the voltage generated by the capacitance division. Therefore, it is possible to perform capacitance trimming easily and with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Amplifiers (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 A capacitance trimming circuit (7) is provided with: a capacitance trimming unit (5); and a capacitance voltage division generating unit (6) which, when the electrostatic capacitance is to be adjusted by the capacitance trimming unit (5), applies a reference voltage (Vc) to one end of a first feedback capacitor (Cf1) to produce a voltage (V1) voltage-divided by a first capacitor (8), and applies a reference voltage (Vc) to one end of a second feedback capacitor (Cf2) to produce a voltage (V2) voltage-divided by a second capacitor (9).

Description

容量トリミング回路Capacitor trimming circuit
 本発明は、静電容量型センサなどから出力される信号を検出するためのCV変換回路における容量トリミング回路に関する。 The present invention relates to a capacitance trimming circuit in a CV conversion circuit for detecting a signal output from a capacitance type sensor or the like.
 従来、自動車や携帯端末装置などに搭載される加速度センサなどの各種センサとして、MEMS(Micro Electro Mechanical Systems)構造によって2つの固定電極の間に可動電極を配置した静電容量型センサが知られている。この種の静電容量型センサは、一般に、センサに作用する加速度などに応じて可動電極が変位することによって生じる静電容量の変化を検知するためのCV変換回路を備えている(例えば特許文献1)。CV変換回路は、可動電極又は固定電極から転送される電荷量に基づいて静電容量の変化を例えば0.1~1.0μV程度の微小な電圧変化として検知するため、外乱ノイズによって電荷移動が生じると、静電容量の変化量を正確に検知することができなくなる。 Conventionally, as various sensors such as an acceleration sensor mounted on an automobile or a portable terminal device, a capacitive sensor in which a movable electrode is arranged between two fixed electrodes by a MEMS (Micro Electro Mechanical Systems) structure is known. Yes. In general, this type of capacitance type sensor includes a CV conversion circuit for detecting a change in capacitance caused by displacement of the movable electrode in accordance with acceleration acting on the sensor (for example, Patent Documents). 1). Since the CV conversion circuit detects a change in capacitance based on the amount of charge transferred from the movable electrode or the fixed electrode as a minute voltage change of, for example, about 0.1 to 1.0 μV, charge transfer is caused by disturbance noise. When this occurs, it becomes impossible to accurately detect the amount of change in capacitance.
 そのため、近年では、CV変換回路に全差動アンプを用いて信号検出を行うことにより、外乱ノイズをキャンセルして微小な静電容量変化を検知できるようにした回路構成が採用されつつある。例えば、全差動アンプの2つの入力端子のいずれか一方に静電容量型センサを接続し、他方に静電容量型センサと略同一の静電容量を有するダミーコンデンサを接続する場合、静電容量型センサに接続された信号線と、ダミーコンデンサが接続された信号線の双方に外乱ノイズが作用しても全差動アンプの2つの出力信号の差分によって外乱ノイズをキャンセルすることができるため、ノイズの影響を低減することができる。 For this reason, in recent years, a circuit configuration has been adopted in which signal detection is performed using a fully differential amplifier in a CV conversion circuit to cancel disturbance noise and detect a minute change in capacitance. For example, when a capacitive sensor is connected to one of the two input terminals of the fully differential amplifier and a dummy capacitor having substantially the same capacitance as that of the capacitive sensor is connected to the other, Even if disturbance noise acts on both the signal line connected to the capacitive sensor and the signal line connected to the dummy capacitor, the disturbance noise can be canceled by the difference between the two output signals of the fully differential amplifier. The influence of noise can be reduced.
日本国特開平5-340958号公報Japanese Laid-Open Patent Publication No. 5-340958
 しかしながら、上述のように全差動アンプの2つの入力端子に互いに異なる構造の素子が接続されている場合、それらの静電容量を予め略同一の状態に形成することは難しい。また静電容量型センサに寄生する寄生容量とダミーコンデンサに寄生する寄生容量とは必ずしも一致しない。全差動アンプの2つの入力端子のそれぞれに接続される静電容量が互いに略同一ではない場合、外乱ノイズが作用すると2つの信号線のそれぞれに異なる電荷量の電荷移動が生じるため、外乱ノイズを良好にキャンセルすることができなくなる。 However, when elements having different structures are connected to the two input terminals of the fully-differential amplifier as described above, it is difficult to form their capacitances in substantially the same state in advance. In addition, the parasitic capacitance parasitic to the capacitive sensor does not necessarily match the parasitic capacitance parasitic to the dummy capacitor. If the capacitance connected to each of the two input terminals of the fully-differential amplifier is not substantially the same, if disturbance noise acts, charge transfer of different amounts of charge occurs in each of the two signal lines. Will not be able to cancel well.
 そのため、全差動アンプを用いてCV変換回路を構成する場合には、多数のトリミングコンデンサを配置しておき、それら多数のトリミングコンデンサのうちから選択したコンデンサを全差動アンプの2つの入力端子の少なくとも一方に接続したり、或いは切り離したりすることにより、全差動アンプの2つの入力端子に接続される静電容量のアンバランスを予め解消するようにしている。すなわち、全差動アンプの2つの出力信号を後段回路によって増幅し、その増幅信号をAD変換した値で実際のノイズ量の増減具合を判別しながらトリミングコンデンサの接続や切り離しを個別に行っていくことにより、全差動アンプの2つの入力端子に接続される静電容量が略同一の状態に調整される。 Therefore, when a CV conversion circuit is configured using a fully differential amplifier, a large number of trimming capacitors are arranged, and a capacitor selected from the large number of trimming capacitors is connected to two input terminals of the fully differential amplifier. By connecting to or disconnecting from at least one of these, the unbalance of the capacitance connected to the two input terminals of the fully differential amplifier is eliminated in advance. In other words, the two output signals of the fully differential amplifier are amplified by a post-stage circuit, and the trimming capacitors are connected and disconnected individually while determining the actual noise amount increase / decrease based on the AD conversion of the amplified signals. As a result, the capacitances connected to the two input terminals of the fully differential amplifier are adjusted to substantially the same state.
 ところが、静電容量を調整する際に、全差動アンプの出力信号を増幅した増幅信号をAD変換した値で実際のノイズ量の増減を判別する手法を採用すると、静電容量の差が小さい場合にはノイズ量の増減具合を正確に判別することが難しくなる。そのため、静電容量のトリミングに時間がかかると共に、数fF(フェムトファラッド)程度の高精度なトリミング設定を行うことが困難であるという問題がある。 However, when adjusting the capacitance, adopting a method of determining the actual noise amount increase / decrease with the value obtained by AD conversion of the amplified signal obtained by amplifying the output signal of the fully differential amplifier, the difference in capacitance is small. In some cases, it is difficult to accurately determine the amount of increase or decrease in noise. Therefore, there is a problem that it takes time to trim the capacitance, and it is difficult to perform trimming setting with high accuracy of about several fF (femtofarad).
 本発明は、上記問題点を解決することを目的としてなされたものであり、全差動アンプを使用したCV変換回路において、実際のノイズ量を検出することなく、簡単且つ高精度に静電容量のトリミングを行うことができるようにした容量トリミング回路を提供するものである。 The present invention has been made for the purpose of solving the above-described problems. In a CV conversion circuit using a fully differential amplifier, a capacitance can be easily and accurately detected without detecting an actual amount of noise. Therefore, a capacitor trimming circuit capable of performing the above trimming is provided.
 本発明の一実施形態によれば、全差動アンプを有し、全差動アンプの反転入力端子と非反転出力端子との間に第1フィードバックコンデンサが接続されると共に、非反転入力端子と反転出力端子との間に第1フィードバックコンデンサと静電容量が略同一の第2フィードバックコンデンサが接続されたCV変換回路において、反転入力端子に接続される少なくとも1つの第1のコンデンサによる第1の静電容量と、非反転入力端子に接続される少なくとも1つの第2のコンデンサによる第2の静電容量との静電容量差をトリミングする容量トリミング回路は、反転入力端子又は非反転入力端子に対して個別に接続又は切り離しが可能な複数のトリミングコンデンサを有し、複数のトリミングコンデンサを個別に反転入力端子又は非反転入力端子に対して接続又は切り離すことにより、第1の静電容量と第2の静電容量とを略同一の状態に調整する容量トリミング部と、容量トリミング部によって静電容量の調整が行われるとき、第1フィードバックコンデンサの一端に基準電圧を印加することにより第1フィードバックコンデンサと第1のコンデンサとの容量分圧に応じた電圧を反転入力端子に生じさせると共に、第2フィードバックコンデンサの一端に基準電圧を印加することにより第2フィードバックコンデンサと第2のコンデンサとの容量分圧に応じた電圧を非反転入力端子に生じさせ、反転入力端子に生じる電圧と非反転入力端子に生じる電圧との比較結果を出力する容量分圧発生部と、を備える。 According to one embodiment of the present invention, the first feedback capacitor is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier, and the non-inverting input terminal is provided. In the CV conversion circuit in which the first feedback capacitor and the second feedback capacitor having substantially the same capacitance are connected between the inverting output terminal and the first feedback capacitor, the first feedback capacitor includes at least one first capacitor connected to the inverting input terminal. A capacitance trimming circuit for trimming a capacitance difference between a capacitance and a second capacitance caused by at least one second capacitor connected to the non-inverting input terminal is connected to the inverting input terminal or the non-inverting input terminal. Multiple trimming capacitors that can be individually connected to or disconnected from each other, and multiple trimming capacitors are individually inverting input terminals or non-inverting inputs A capacitance trimming unit that adjusts the first capacitance and the second capacitance to substantially the same state by being connected to or disconnected from the child, and when capacitance adjustment is performed by the capacitance trimming unit. By applying a reference voltage to one end of the first feedback capacitor, a voltage corresponding to the capacitance division between the first feedback capacitor and the first capacitor is generated at the inverting input terminal, and a reference is applied to one end of the second feedback capacitor. By applying a voltage, a voltage corresponding to the capacitance division between the second feedback capacitor and the second capacitor is generated at the non-inverting input terminal, and the voltage generated at the inverting input terminal is compared with the voltage generated at the non-inverting input terminal. A capacity partial pressure generation unit for outputting the result.
図1は、容量トリミング回路を備えたセンサデバイスの一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a sensor device including a capacitor trimming circuit. 図2は、センサ部の等価回路を示す図である。FIG. 2 is a diagram illustrating an equivalent circuit of the sensor unit. 図3は、調整モードにおける第1の動作状態を示す図である。FIG. 3 is a diagram illustrating a first operation state in the adjustment mode. 図4は、調整モードにおける第2の動作状態を示す図である。FIG. 4 is a diagram illustrating a second operation state in the adjustment mode.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。尚、以下に説明する各実施形態において互いに共通する部材には同一符号を付しており、それらについての重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each embodiment demonstrated below, the same code | symbol is attached | subjected to the member which is mutually common, and the overlapping description about them is abbreviate | omitted.
 図1は、本発明に係る容量トリミング回路7を備えたセンサデバイスの一構成例を示す図である。このセンサデバイスは、MEMSによって構成された静電容量型センサ3を有するセンサ部1と、そのセンサ部1に接続され、静電容量型センサ3の静電容量を検知するCV変換回路2と、そのCV変換回路2に組み込まれる容量トリミング回路7とを備え、センサ部1に作用する加速度を検出するセンサとして構成される。 FIG. 1 is a diagram showing a configuration example of a sensor device including a capacitor trimming circuit 7 according to the present invention. This sensor device includes a sensor unit 1 having a capacitance type sensor 3 constituted by MEMS, a CV conversion circuit 2 connected to the sensor unit 1 and detecting the capacitance of the capacitance type sensor 3, The capacitor trimming circuit 7 incorporated in the CV conversion circuit 2 is provided, and is configured as a sensor for detecting acceleration acting on the sensor unit 1.
 センサ部1に設けられる静電容量型センサ3は、バネ構造などによって支持された所定方向に変位可能な錘13を有しており、この錘13を挟んで静電容量可変の2つのコンデンサ11,12が直列に接続された構成である。これらコンデンサ11,12は、錘13と連動して変位する可動電極とその可動電極に対向する固定電極とによって構成される。錘13が中間位置にあるときには、各コンデンサ11,12は互いに等しい静電容量C1である。センサ部1に加速度が作用して錘13が中間位置から所定方向に変位すると、その変位量に応じて各コンデンサ11,12の静電容量が変化する。例えば、一方のコンデンサ11の静電容量が(C1+ΔC)に増加すると、他方のコンデンサ12の静電容量が(C1-ΔC)に減少する。また一方のコンデンサ11の静電容量が(C1-ΔC)に減少すると、他方のコンデンサ12の静電容量が(C1+ΔC)に増加する。各コンデンサ11,12の可動電極は錘13と同電位であり、錘13を介してCV変換回路2への出力端子mbに接続される。またコンデンサ11の固定電極は入力端子X1に接続され、コンデンサ12の固定電極は入力端子X2に接続される。これら入力端子X1,X2には、例えば数百kHz程度の高周波信号であって、互いに極性が反転する矩形波信号φ1,φ2が入力し、各コンデンサ11,12の固定電極に印加される。したがって、静電容量型センサ3は、各コンデンサ11,12の静電容量に応じた電荷信号であって、矩形波信号φ1,φ2によって変調された信号をCV変換回路2へ出力する。 The capacitance type sensor 3 provided in the sensor unit 1 includes a weight 13 that is supported by a spring structure and can be displaced in a predetermined direction, and the two capacitors 11 having variable capacitance with the weight 13 interposed therebetween. , 12 are connected in series. These capacitors 11 and 12 are configured by a movable electrode that is displaced in conjunction with the weight 13 and a fixed electrode that faces the movable electrode. When the weight 13 is in the intermediate position, the capacitors 11 and 12 have the same capacitance C1. When acceleration acts on the sensor unit 1 and the weight 13 is displaced from the intermediate position in a predetermined direction, the capacitances of the capacitors 11 and 12 change according to the amount of displacement. For example, when the capacitance of one capacitor 11 increases to (C1 + ΔC), the capacitance of the other capacitor 12 decreases to (C1−ΔC). When the capacitance of one capacitor 11 decreases to (C1−ΔC), the capacitance of the other capacitor 12 increases to (C1 + ΔC). The movable electrodes of the capacitors 11 and 12 have the same potential as the weight 13 and are connected to the output terminal mb to the CV conversion circuit 2 via the weight 13. The fixed electrode of the capacitor 11 is connected to the input terminal X1, and the fixed electrode of the capacitor 12 is connected to the input terminal X2. These input terminals X1 and X2 receive high-frequency signals of about several hundred kHz, for example, and rectangular wave signals φ1 and φ2 whose polarities are inverted from each other, and are applied to the fixed electrodes of the capacitors 11 and 12, respectively. Therefore, the electrostatic capacity type sensor 3 outputs a charge signal corresponding to the electrostatic capacity of each of the capacitors 11 and 12 and modulated by the rectangular wave signals φ 1 and φ 2 to the CV conversion circuit 2.
 またセンサ部1には、CV変換回路2からみた静電容量型センサ3の静電容量(コンデンサ11,12の合成容量)と略同一の静電容量C2のダミーコンデンサ4を有している。ダミーコンデンサ4は、互いに対向する一対の固定電極で構成され、静電容量C2が固定である。このダミーコンデンサ4は、一端がCV変換回路2への出力端子mbvに接続され、他端が接地される。 In addition, the sensor unit 1 has a dummy capacitor 4 having a capacitance C2 that is substantially the same as the capacitance of the capacitance type sensor 3 (the combined capacitance of the capacitors 11 and 12) viewed from the CV conversion circuit 2. The dummy capacitor 4 is composed of a pair of fixed electrodes facing each other, and the capacitance C2 is fixed. The dummy capacitor 4 has one end connected to the output terminal mbv to the CV conversion circuit 2 and the other end grounded.
 CV変換回路2は、主として、全差動アンプ21と、第1フィードバックコンデンサCf1と、第2フィードバックコンデンサCf2と、第1及び第2フィードバックコンデンサCf1,Cf2の蓄積電荷をリセットするスイッチ22,23とを備えて構成される。第1フィードバックコンデンサCf1は、全差動アンプ21の反転入力端子と非反転出力端子との間に接続され、第2フィードバックコンデンサCf2は、全差動アンプ21の非反転入力端子と反転出力端子との間に接続される。スイッチ22は、第1フィードバックコンデンサCf1と並列に全差動アンプ21の反転入力端子と非反転出力端子との間に接続される。またスイッチ23は、第2フィードバックコンデンサCf2と並列に全差動アンプ21の非反転入力端子と反転出力端子との間に接続される。そして全差動アンプ21の反転入力端子は、センサ部1の端子mbに繋がる信号線L1を介して静電容量型センサ3の錘13に接続され、非反転入力端子は、センサ部1の端子mbvに繋がる信号線L2を介してダミーコンデンサ4の一端に接続される。このような構成により、全差動アンプ21は積分アンプとして動作する。 The CV conversion circuit 2 mainly includes a fully differential amplifier 21, a first feedback capacitor Cf1, a second feedback capacitor Cf2, and switches 22 and 23 for resetting accumulated charges of the first and second feedback capacitors Cf1 and Cf2. It is configured with. The first feedback capacitor Cf1 is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier 21, and the second feedback capacitor Cf2 is connected to the non-inverting input terminal and the inverting output terminal of the fully differential amplifier 21. Connected between. The switch 22 is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier 21 in parallel with the first feedback capacitor Cf1. The switch 23 is connected between the non-inverting input terminal and the inverting output terminal of the fully differential amplifier 21 in parallel with the second feedback capacitor Cf2. The inverting input terminal of the fully differential amplifier 21 is connected to the weight 13 of the capacitive sensor 3 via the signal line L1 connected to the terminal mb of the sensor unit 1, and the non-inverting input terminal is a terminal of the sensor unit 1. It is connected to one end of the dummy capacitor 4 via a signal line L2 connected to mbv. With this configuration, the fully differential amplifier 21 operates as an integrating amplifier.
 そしてCV変換回路2は、所定のタイミングでスイッチ22,23を一時的にオンさせて第1及び第2フィードバックコンデンサCf1,Cf2の蓄積電荷をリセットした後、静電容量型センサ3及びダミーコンデンサ4のそれぞれから出力される電荷信号を第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに蓄積してCV変換を行う。すなわち、CV変換回路2は、コンデンサ11,12の両端に矩形波信号φ1,φ2が印加されることによって静電容量型センサ3から出力される電荷信号を第1フィードバックコンデンサCf1に蓄積し、全差動アンプ21の非反転出力端子から各コンデンサ11,12の静電容量に応じた信号であって、所定の基準電圧Vrefを中心電圧とする出力信号Vopを出力する。一方、ダミーコンデンサ4に印加される電圧が一定であれば、ダミーコンデンサ4と第2フィードバックコンデンサCf2との間に電荷転送が生じないため、全差動アンプ21は反転出力端子から所定の基準電圧Vrefに相当する出力信号Vonを出力する。 Then, the CV conversion circuit 2 temporarily turns on the switches 22 and 23 at a predetermined timing to reset the accumulated charges of the first and second feedback capacitors Cf1 and Cf2, and then the capacitance type sensor 3 and the dummy capacitor 4 The charge signal output from each of the first and second feedback capacitors Cf1 and Cf2 is accumulated in each of them to perform CV conversion. That is, the CV conversion circuit 2 stores the charge signal output from the capacitive sensor 3 in the first feedback capacitor Cf1 by applying the rectangular wave signals φ1 and φ2 to both ends of the capacitors 11 and 12, and An output signal Vop corresponding to the capacitance of each of the capacitors 11 and 12 and having a predetermined reference voltage Vref as a center voltage is output from the non-inverting output terminal of the differential amplifier 21. On the other hand, if the voltage applied to the dummy capacitor 4 is constant, charge transfer does not occur between the dummy capacitor 4 and the second feedback capacitor Cf2, so that the fully differential amplifier 21 has a predetermined reference voltage from the inverting output terminal. An output signal Von corresponding to Vref is output.
 上記構成において例えば信号線L1,L2に外乱ノイズが作用すると、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれの電圧Vin,Vipがその外乱ノイズの影響によって変動する。このとき、外乱ノイズの影響によって信号線L1から第1フィードバックコンデンサCf1に転送される電荷量と、信号線L2から第2フィードバックコンデンサCf2に転送される電荷量とが互いに等しい状態であれば、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分信号Vout(=Vop-Von)により、外乱ノイズをキャンセルすることができる。しかし、実際には、図1に示すようにセンサ部1に設けられた静電容量型センサ3に寄生する寄生容量Cp1とダミーコンデンサ4に寄生する寄生容量Cp2とが一致しない。そのため、ダミーコンデンサ4の静電容量C2が静電容量型センサ3の静電容量(コンデンサ11,12の合成容量)と略同一であっても、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続されているセンサ部1の静電容量は略同一にはならない。 In the above configuration, for example, when disturbance noise acts on the signal lines L1 and L2, the voltages Vin and Vip of the inverting input terminal and the non-inverting input terminal of the fully-differential amplifier 21 vary due to the influence of the disturbance noise. At this time, if the amount of charge transferred from the signal line L1 to the first feedback capacitor Cf1 due to the influence of disturbance noise and the amount of charge transferred from the signal line L2 to the second feedback capacitor Cf2 are equal to each other, Disturbance noise can be canceled by the difference signal Vout (= Vop−Von) between the two output signals Vop and Von output from the differential amplifier 21. However, in practice, as shown in FIG. 1, the parasitic capacitance Cp <b> 1 parasitic on the capacitive sensor 3 provided in the sensor unit 1 and the parasitic capacitance Cp <b> 2 parasitic on the dummy capacitor 4 do not match. Therefore, even if the capacitance C2 of the dummy capacitor 4 is substantially the same as the capacitance of the capacitance type sensor 3 (the combined capacitance of the capacitors 11 and 12), the non-inversion and the inverting input terminal of the fully differential amplifier 21 The capacitances of the sensor units 1 connected to the input terminals are not substantially the same.
 図2は、CV変換回路2からセンサ部1をみた場合のセンサ部1の等価回路を示す図である。図2に示すように、CV変換回路2からみた場合、センサ部1は、端子mbに第1のコンデンサ8による第1の静電容量Csが接続されており、また端子mbvに第2のコンデンサ9による第2の静電容量Cvが接続されているのと等価である。ここで、第1の静電容量Csはコンデンサ11,12と寄生容量Cp1とを合成した静電容量である。また第2の静電容量Cvはダミーコンデンサ4と寄生容量Cp2とを合成した静電容量である。そして寄生容量Cp1,Cp2が互いに異なるため、第1の静電容量Csと第2の静電容量Cvとは互いに略同一の状態にはならない。そのような状況で、信号線L1,L2に外乱ノイズが作用すると、信号線L1,L2のそれぞれからセンサ部1側に吸収される電荷量が等しくならず、外乱ノイズによって第1フィードバックコンデンサCf1に蓄積される電荷量と、第2フィードバックコンデンサCf2に蓄積される電荷量とが一致しなくなる。それ故、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分を算出しても外乱ノイズを良好にキャンセルすることができない。すなわち、第1の静電容量Csと第2の静電容量Cvとのアンバランスが外乱ノイズを良好にキャンセルすることができない要因となる。 FIG. 2 is a diagram showing an equivalent circuit of the sensor unit 1 when the sensor unit 1 is viewed from the CV conversion circuit 2. As shown in FIG. 2, when viewed from the CV conversion circuit 2, the sensor unit 1 includes a first capacitor Cs connected to a terminal mb and a first capacitor Cs, and a second capacitor connected to the terminal mbv. This is equivalent to the connection of the second electrostatic capacitance Cv of 9. Here, the first capacitance Cs is a capacitance obtained by combining the capacitors 11 and 12 and the parasitic capacitance Cp1. The second capacitance Cv is a capacitance obtained by combining the dummy capacitor 4 and the parasitic capacitance Cp2. Since the parasitic capacitances Cp1 and Cp2 are different from each other, the first electrostatic capacitance Cs and the second electrostatic capacitance Cv are not substantially in the same state. In such a situation, when disturbance noise acts on the signal lines L1 and L2, the amount of charge absorbed from the signal lines L1 and L2 to the sensor unit 1 side is not equal, and the disturbance noise causes the first feedback capacitor Cf1. The amount of stored charge does not match the amount of stored charge in the second feedback capacitor Cf2. Therefore, disturbance noise cannot be canceled satisfactorily even if the difference between the two output signals Vop and Von output from the fully differential amplifier 21 is calculated. That is, the unbalance between the first electrostatic capacitance Cs and the second electrostatic capacitance Cv becomes a factor that the disturbance noise cannot be canceled satisfactorily.
 そこで本実施形態のCV変換回路2は、容量トリミング回路7を備えており、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続されているセンサ部1の第1の静電容量Csと第2の静電容量Cvとのアンバランスを予め解消できるようにしている。この容量トリミング回路7は、信号線L2に設けられる容量トリミング部5と、CV変換回路2における第1フィードバックコンデンサCf1と全差動アンプ21の非反転出力端子との間、及び、第2フィードバックコンデンサCf2と全差動アンプ21の反転出力端子との間のそれぞれに設けられる容量分圧発生部6とを備えて構成される。 Therefore, the CV conversion circuit 2 according to the present embodiment includes the capacitor trimming circuit 7, and the first electrostatic capacitance of the sensor unit 1 connected to each of the inverting input terminal and the non-inverting input terminal of the fully differential amplifier 21. The imbalance between the capacitance Cs and the second electrostatic capacitance Cv can be eliminated in advance. The capacitor trimming circuit 7 includes a capacitor trimming unit 5 provided in the signal line L2, the first feedback capacitor Cf1 in the CV conversion circuit 2 and the non-inverting output terminal of the fully differential amplifier 21, and the second feedback capacitor. The capacitor voltage generating unit 6 is provided between the Cf2 and the inverting output terminal of the fully differential amplifier 21.
 容量トリミング部5は、複数のトリミングコンデンサ51を有し、全差動アンプ21の非反転入力端子に接続される信号線L2に対してそれら複数のトリミングコンデンサ51を個別に接続したり、切り離すことができる。すなわち、容量トリミング部5は、信号線L2と接地点との間に、トリミングコンデンサ51とスイッチ52とが直列に接続された構成のトリミング素子53を複数備えており、それら複数のトリミング素子53から選択した素子のスイッチ52をオンすることにより、全差動アンプ21の非反転入力端子に接続された信号線L2に任意の静電容量を付与する。そして信号線L2に付与する静電容量をトリミングすることにより、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量を予め略同一の状態に設定する。尚、複数のトリミングコンデンサ51は、それぞれ同一の静電容量であっても良いし、それぞれ異なる静電容量であっても良い。 The capacitor trimming unit 5 includes a plurality of trimming capacitors 51, and the plurality of trimming capacitors 51 are individually connected to or disconnected from the signal line L2 connected to the non-inverting input terminal of the fully differential amplifier 21. Can do. That is, the capacitor trimming unit 5 includes a plurality of trimming elements 53 having a configuration in which a trimming capacitor 51 and a switch 52 are connected in series between the signal line L2 and the ground point. By turning on the switch 52 of the selected element, an arbitrary capacitance is applied to the signal line L2 connected to the non-inverting input terminal of the fully differential amplifier 21. Then, by trimming the electrostatic capacity applied to the signal line L2, the electrostatic capacity connected to each of the inverting input terminal and the non-inverting input terminal of the fully differential amplifier 21 is set in advance to be approximately the same state. The plurality of trimming capacitors 51 may have the same capacitance, or may have different capacitances.
 例えば、容量トリミング部5に設けられる各スイッチ52は、図示を省略するメモリに外部から書き込まれた情報に基づきオンオフする。そのため、センサデバイスの製造後、出荷前に静電容量を調整し、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量が略同一となる各スイッチ52のオンオフ状態を予めメモリに書き込んでおけば、センサデバイスの出荷後に静電容量を調整する必要はない。 For example, each switch 52 provided in the capacity trimming unit 5 is turned on / off based on information written in a memory (not shown) from the outside. Therefore, after the sensor device is manufactured, the capacitance is adjusted before shipment, and the capacitance of each switch 52 in which the capacitance connected to each of the inverting input terminal and the non-inverting input terminal of the fully-differential amplifier 21 is substantially the same. If the on / off state is written in the memory in advance, it is not necessary to adjust the capacitance after shipment of the sensor device.
 容量分圧発生部6は、容量トリミング部5による静電容量の調整が行われるとき、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量が略同一であるか否かを高精度に判別できるようにする回路である。この容量分圧発生部6は、容量トリミング部5による静電容量の調整が行われるときに動作する複数のスイッチ61~66を備えている。スイッチ61~63は、全差動アンプ21の非反転出力端子と第1フィードバックコンデンサCf1との間に設けられる。スイッチ61は、第1フィードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子に接続したり、非反転出力端子から開放したりするスイッチである。スイッチ62は、第1フィードバックコンデンサCf1の一端を接地点に接続したり、接地点から開放するスイッチである。スイッチ63は、第1フィードバックコンデンサCf1の一端を基準電圧Vcに接続したり、基準電圧Vcから開放するスイッチである。またスイッチ64~66は、全差動アンプ21の反転出力端子と第2フィードバックコンデンサCf2との間に設けられる。スイッチ64は、第2フィードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子に接続したり、反転出力端子から開放したりするスイッチである。スイッチ65は、第2フィードバックコンデンサCf2の一端を接地点に接続したり、接地点から開放するスイッチである。スイッチ66は、第2フィードバックコンデンサCf2の一端を基準電圧Vcに接続したり、基準電圧Vcから開放するスイッチである。 When the capacitance trimming unit 5 performs capacitance adjustment by the capacitance trimming unit 5, the capacitances connected to the inverting input terminal and the non-inverting input terminal of the fully differential amplifier 21 are substantially the same. This is a circuit that makes it possible to determine whether or not there is high accuracy. The capacitance partial pressure generating unit 6 includes a plurality of switches 61 to 66 that operate when the capacitance is adjusted by the capacitance trimming unit 5. The switches 61 to 63 are provided between the non-inverting output terminal of the fully differential amplifier 21 and the first feedback capacitor Cf1. The switch 61 is a switch that connects one end of the first feedback capacitor Cf1 to the non-inverting output terminal of the fully-differential amplifier 21 or opens it from the non-inverting output terminal. The switch 62 is a switch that connects one end of the first feedback capacitor Cf1 to the ground point or opens from the ground point. The switch 63 is a switch for connecting one end of the first feedback capacitor Cf1 to the reference voltage Vc or releasing from the reference voltage Vc. The switches 64 to 66 are provided between the inverting output terminal of the fully differential amplifier 21 and the second feedback capacitor Cf2. The switch 64 is a switch for connecting one end of the second feedback capacitor Cf2 to the inverting output terminal of the fully-differential amplifier 21 or opening it from the inverting output terminal. The switch 65 is a switch that connects one end of the second feedback capacitor Cf2 to the ground point or opens it from the ground point. The switch 66 is a switch for connecting one end of the second feedback capacitor Cf2 to the reference voltage Vc or releasing from the reference voltage Vc.
 そしてスイッチ61,64は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を全差動アンプ21の非反転出力端子及び反転出力端子に接続したオン状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を全差動アンプ21の非反転出力端子及び反転出力端子から開放するオフ状態となる。またスイッチ62,65は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を接地点から開放したオフ状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を接地点に接続するオン状態となる。さらにスイッチ63,66は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を基準電圧Vcから開放したオフ状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を基準電圧Vcに接続するオン状態となる。以下、容量分圧発生部6の動作について詳しく説明する。 The switches 61 and 64 are normally in an on state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are connected to the non-inverting output terminal and the inverting output terminal of the fully differential amplifier 21, and are input from the outside. By the control signal, one end of the first and second feedback capacitors Cf1 and Cf2 is turned off from the non-inverting output terminal and the inverting output terminal of the fully differential amplifier 21. The switches 62 and 65 are normally in an off state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are opened from the ground point, and the first and second feedback capacitors Cf1 and Cf1 are controlled by a control signal input from the outside. One end of Cf2 is turned on to connect to the ground point. Further, the switches 63 and 66 are normally in an off state in which one ends of the first and second feedback capacitors Cf1 and Cf2 are released from the reference voltage Vc, and the first and second feedback capacitors Cf1 are controlled by a control signal input from the outside. , Cf2 is connected to one end of the reference voltage Vc. Hereinafter, the operation of the capacitive partial pressure generator 6 will be described in detail.
 容量トリミング部5による静電容量の調整が行われる調整モードが指定されると、容量分圧発生部6は、はじめに外部から入力する制御信号に基づいて、図3に示すようにスイッチ61,63,64,66をオフにし、スイッチ62,65をオンにする。このときCV変換回路2に設けられたスイッチ22,23はオン状態となる。この調整モードでは、センサ部1に加速度は作用せず、錘13が中間位置にある状態を保持する。また調整モードでは、センサ部1の入力端子X1,X2が接地された状態となる。 When an adjustment mode in which capacitance adjustment by the capacitance trimming unit 5 is performed is designated, the capacitance partial pressure generating unit 6 first switches 61 and 63 as shown in FIG. 3 based on a control signal input from the outside. 64, 66 are turned off, and switches 62, 65 are turned on. At this time, the switches 22 and 23 provided in the CV conversion circuit 2 are turned on. In this adjustment mode, acceleration does not act on the sensor unit 1, and the state where the weight 13 is in the intermediate position is maintained. In the adjustment mode, the input terminals X1 and X2 of the sensor unit 1 are grounded.
 図3に示す状態では、全差動アンプ21がバッファアンプとして動作する。ここで全差動アンプ21のオフセット電圧をVoffとし、そのオフセット電圧Voffが出力信号Vopのみに含まれていると仮定した場合、全差動アンプ21の出力信号VopはVop=Vref+Voffとなり、出力信号VonはVon=Vrefとなる。このとき、第1フィードバックコンデンサCf1及び第1のコンデンサ8には電圧(Vref+Voff)が印加され、第2フィードバックコンデンサCf2及び第2のコンデンサ9には電圧Vrefが印加される。つまり、図3に示す状態では、全差動アンプ21のオフセット電圧Voffを含んで各コンデンサ8,9,Cf1,Cf2に初期電荷が蓄積される。 In the state shown in FIG. 3, the fully differential amplifier 21 operates as a buffer amplifier. Here, assuming that the offset voltage of the fully differential amplifier 21 is Voff and that the offset voltage Voff is included only in the output signal Vop, the output signal Vop of the fully differential amplifier 21 is Vop = Vref + Voff, and the output signal Von becomes Von = Vref. At this time, the voltage (Vref + Voff) is applied to the first feedback capacitor Cf1 and the first capacitor 8, and the voltage Vref is applied to the second feedback capacitor Cf2 and the second capacitor 9. That is, in the state shown in FIG. 3, initial charges are accumulated in the capacitors 8, 9, Cf 1, and Cf 2 including the offset voltage Voff of the fully differential amplifier 21.
 上記のようにして初期電荷を蓄積すると、次に容量分圧発生部6は、外部から入力する制御信号に基づいて、図4に示すようにスイッチ61,62,64,65をオフにし、スイッチ63,66をオンにする。このときCV変換回路2に設けられたスイッチ22,23はオフ状態となる。すなわち、容量分圧発生部6は、第1フィードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子から切り離し、その一端に基準電圧Vcを印加することにより、第1フィードバックコンデンサCf1と第1のコンデンサ8との容量分圧に応じた電圧V1を全差動アンプ21の反転入力端子に生じさせる。これにより、全差動アンプ21の反転入力端子に生じる容量分圧に基づく電圧V1は、V1=Cf1/(Cf1+Cs)*Vcとなる。また容量分圧発生部6は、同様に、第2フィードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子から切り離し、その一端に基準電圧Vcを印加することにより、第2フィードバックコンデンサCf2と第2のコンデンサ9との容量分圧に応じた電圧V2を全差動アンプ21の非反転入力端子に生じさせる。これにより、全差動アンプ21の非反転入力端子に生じる容量分圧に基づく電圧V2は、V2=Cf2/(Cf2+Cv)*Vcとなる。 When the initial charge is accumulated as described above, the capacitive voltage dividing unit 6 next turns off the switches 61, 62, 64, 65 as shown in FIG. 63 and 66 are turned on. At this time, the switches 22 and 23 provided in the CV conversion circuit 2 are turned off. That is, the capacitive voltage dividing unit 6 disconnects one end of the first feedback capacitor Cf1 from the non-inverting output terminal of the fully-differential amplifier 21, and applies the reference voltage Vc to the one end, thereby the first feedback capacitor Cf1 and the first feedback capacitor Cf1. A voltage V 1 corresponding to the capacity division with one capacitor 8 is generated at the inverting input terminal of the fully differential amplifier 21. As a result, the voltage V1 based on the capacitive voltage division generated at the inverting input terminal of the fully differential amplifier 21 is V1 = Cf1 / (Cf1 + Cs) * Vc. Similarly, the capacitive voltage dividing unit 6 disconnects one end of the second feedback capacitor Cf2 from the inverting output terminal of the fully-differential amplifier 21, and applies the reference voltage Vc to one end of the second feedback capacitor Cf2. A voltage V <b> 2 corresponding to the capacity division with the second capacitor 9 is generated at the non-inverting input terminal of the fully differential amplifier 21. As a result, the voltage V2 based on the capacitance division generated at the non-inverting input terminal of the fully differential amplifier 21 is V2 = Cf2 / (Cf2 + Cv) * Vc.
 また図4に示す状態では、全差動アンプ21の帰還パスが開放されるため、全差動アンプ21はコンパレータとして動作する。そのため、全差動アンプ21は、反転入力端子に入力する電圧V1と、非反転入力端子に入力する電圧V2とを比較した結果を出力信号Vop,Vonとして出力する。 Further, in the state shown in FIG. 4, since the feedback path of the fully differential amplifier 21 is opened, the fully differential amplifier 21 operates as a comparator. Therefore, the fully differential amplifier 21 outputs the result of comparing the voltage V1 input to the inverting input terminal and the voltage V2 input to the non-inverting input terminal as output signals Vop and Von.
 例えば、基準電圧Vcを1.3V、第1フィードバックコンデンサCf1の静電容量Cf1を200fF、第1のコンデンサ8の静電容量Csを2000fFとした場合、全差動アンプ21の反転入力端子に入力する電圧V1は、V1=200/(200+2000)*1.3=0.118182Vとなる。また同様に、基準電圧を1.3V、第2フィードバックコンデンサCf2の静電容量Cf2を200fF、第2のコンデンサ9の静電容量Cvを1998fFとした場合、全差動アンプ21の非反転入力端子に入力する電圧V2は、V2=200/(200+1998)*1.3=0.118289Vとなる。このとき、コンパレータとして動作する全差動アンプ21に入力する電圧V1,V2の差分(V2-V1)は、(V2-V1)=0.107mVとなるため、全差動アンプ21のDCゲインが100dBであると仮定すれば、全差動アンプ21の出力信号Vop,Vonは、Vop-Von=10.7Vとなる。したがって、全差動アンプ21はコンパレータとして十分機能し、コンパレータ出力である出力信号Vopは「High」となり、出力信号Vonは「Low」となる。 For example, when the reference voltage Vc is 1.3 V, the capacitance Cf1 of the first feedback capacitor Cf1 is 200 fF, and the capacitance Cs of the first capacitor 8 is 2000 fF, the input to the inverting input terminal of the fully differential amplifier 21 The voltage V1 to be used is V1 = 200 / (200 + 2000) * 1.3 = 0.118182V. Similarly, when the reference voltage is 1.3 V, the capacitance Cf2 of the second feedback capacitor Cf2 is 200 fF, and the capacitance Cv of the second capacitor 9 is 1998 fF, the non-inverting input terminal of the fully differential amplifier 21 The voltage V2 input to the voltage V2 = 200 / (200 + 1998) * 1.3 = 0.118289V. At this time, the difference (V2−V1) between the voltages V1 and V2 input to the fully differential amplifier 21 operating as a comparator is (V2−V1) = 0.107 mV, so that the DC gain of the fully differential amplifier 21 is Assuming 100 dB, the output signals Vop and Von of the fully differential amplifier 21 are Vop−Von = 10.7V. Therefore, the fully-differential amplifier 21 functions sufficiently as a comparator, the output signal Vop that is a comparator output is “High”, and the output signal Von is “Low”.
 また上記と同様の条件下で、例えば第2のコンデンサ9の静電容量Cvを2002fFとした場合、全差動アンプ21の非反転入力端子に入力する電圧V2は、V2=200/(200+2002)*1.3=0.118074Vとなる。このとき、コンパレータとして動作する全差動アンプ21に入力する電圧V1,V2の差分(V2-V1)は、(V2-V1)=-0.108mVとなるため、全差動アンプ21のDCゲインが100dBであると仮定すれば、全差動アンプ21の出力信号Vop,Vonは、Vop-Von=-10.8Vとなる。したがって、全差動アンプ21は上記と同様にコンパレータとして十分機能し、コンパレータ出力である出力信号Vopは「Low」となり、出力信号Vonは「High」となる。 Further, under the same conditions as described above, for example, when the capacitance Cv of the second capacitor 9 is set to 2002 fF, the voltage V2 input to the non-inverting input terminal of the fully differential amplifier 21 is V2 = 200 / (200 + 2002). * 1.3 = 0.118074V. At this time, the difference (V2−V1) between the voltages V1 and V2 input to the fully differential amplifier 21 operating as a comparator is (V2−V1) = − 0.108 mV. Is 100 dB, the output signals Vop and Von of the fully-differential amplifier 21 are Vop−Von = −10.8V. Therefore, the fully differential amplifier 21 functions sufficiently as a comparator in the same manner as described above, the output signal Vop as the comparator output becomes “Low”, and the output signal Von becomes “High”.
 このように容量分圧発生部6は、第1フィードバックコンデンサCf1の一端に基準電圧Vcを印加して第1フィードバックコンデンサCf1と第1のコンデンサ8との容量分圧に応じた電圧V1を生じさせると共に、第2フィードバックコンデンサCf2の一端に基準電圧Vcを印加して第2フィードバックコンデンサCf2と第2のコンデンサ9との容量分圧に応じた電圧V2を生じさせ、全差動アンプ21をコンパレータとして動作させてそれら電圧V1,V2の比較結果を出力する。これにより、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差が、上記の通り、2fF程度の僅かな差であっても良好に検知することができる。したがって、容量トリミング部5による静電容量のトリミングを行うときには、全差動アンプ21のコンパレータ出力である出力信号Vop,Vonのいずれか一方が「High」から「Low」へ、又は、「Low」から「High」へ切り替わるところで細かなトリミングを行うことにより、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差を2fF程度以下の範囲に抑えることができ、高精度なトリミングを行うことが可能である。 In this way, the capacitive voltage divider 6 applies the reference voltage Vc to one end of the first feedback capacitor Cf1 to generate the voltage V1 corresponding to the capacitive voltage division between the first feedback capacitor Cf1 and the first capacitor 8. At the same time, a reference voltage Vc is applied to one end of the second feedback capacitor Cf2 to generate a voltage V2 corresponding to the capacitance division between the second feedback capacitor Cf2 and the second capacitor 9, and the fully differential amplifier 21 is used as a comparator. The operation is performed and the comparison result of the voltages V1 and V2 is output. Thereby, even if the difference between the capacitance Cs of the first capacitor 8 and the capacitance Cv of the second capacitor 9 is a slight difference of about 2 fF as described above, it can be detected well. . Therefore, when the capacitance trimming is performed by the capacitance trimming unit 5, one of the output signals Vop and Von, which are comparator outputs of the fully differential amplifier 21, changes from “High” to “Low” or “Low”. By performing fine trimming at the point where the switching from “High” to “High” is performed, the difference between the capacitance Cs of the first capacitor 8 and the capacitance Cv of the second capacitor 9 can be suppressed to a range of about 2 fF or less. It is possible to perform highly accurate trimming.
 特に、容量分圧発生部6は、基準電圧Vcを容量分圧した電圧V1,V2を生じさせるのに先立ち、各コンデンサ8,9,Cf1,Cf2のそれぞれに全差動アンプ21のオフセット電圧Voffを加味した初期電荷を蓄積し、その後、基準電圧Vcを容量分圧した電圧V1,V2を生じさせるようにしている。そのため、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差を検出するときには、全差動アンプ21のオフセット電圧Voffに相当する電荷が蓄積された状態で検出することができる。これにより、全差動アンプ21を積分アンプとして動作させる状態と同じ状態で静電容量の差を検出することができるため、トリミングが完了した後に調整モードから通常の動作モードに切り替わったときでも、全差動アンプ21の反転入力端子に接続された静電容量と、非反転入力端子に接続された静電容量とが略同一に調整されたバランス状態が保持される。尚、全差動アンプ21のコンパレータ出力(High又はLow)に基づいて容量トリミング部5による静電容量の調整を行った後、反転入力端子に接続された静電容量と、非反転入力端子に接続された静電容量とのバランス状態を再度確認するときには、その都度、全差動アンプ21のオフセット電圧Voffを加味した初期電荷を蓄積してから基準電圧Vcを容量分圧した電圧V1,V2を生じさせるようにすることが好ましい。 In particular, the capacitive voltage divider 6 generates a voltage V1, V2 obtained by capacitively dividing the reference voltage Vc before the offset voltage Voff of the fully differential amplifier 21 is applied to each of the capacitors 8, 9, Cf1, Cf2. Is stored, and thereafter, voltages V1 and V2 obtained by capacitively dividing the reference voltage Vc are generated. Therefore, when the difference between the capacitance Cs of the first capacitor 8 and the capacitance Cv of the second capacitor 9 is detected, a charge corresponding to the offset voltage Voff of the fully differential amplifier 21 is accumulated. Can be detected. Thereby, since the difference in capacitance can be detected in the same state as the state in which the fully differential amplifier 21 is operated as an integrating amplifier, even when the adjustment mode is switched to the normal operation mode after the trimming is completed, A balanced state in which the capacitance connected to the inverting input terminal of the fully-differential amplifier 21 and the capacitance connected to the non-inverting input terminal are adjusted to be substantially the same is maintained. The capacitance trimming unit 5 adjusts the capacitance based on the comparator output (High or Low) of the fully-differential amplifier 21, and then the capacitance connected to the inverting input terminal and the non-inverting input terminal. When reconfirming the balance state with the connected capacitance, each time the initial charge taking into account the offset voltage Voff of the fully-differential amplifier 21 is accumulated, the voltages V1, V2 obtained by dividing the reference voltage Vc by capacitance are stored. Is preferably generated.
 トリミングが完了して調整モードを終了し、通常の動作モードへ切り替えると、容量分圧発生部6は、図1に示すようにスイッチ61,64をオンにし、スイッチ62,63,65,66をオフにする。また容量トリミング部5は、調整モードにおいて調整された静電容量を常に信号線L2に付与する状態に固定する。そのため、通常の動作モードにおいて加速度に応じた錘13の変位を検出するときには、全差動アンプ21の反転入力端子及び非反転入力端子のそれぞれに接続される静電容量が互いに略同一の状態である。したがって、信号線L1,L2に外乱ノイズが作用した場合に、その外乱ノイズの影響によって信号線L1から第1フィードバックコンデンサCf1に転送される電荷量と、信号線L2から第2フィードバックコンデンサCf2に転送される電荷量とが略同一になるため、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分信号Vout(=Vop-Von)により、そのような外乱ノイズを良好にキャンセルすることができるようになる。 When the trimming is completed and the adjustment mode is terminated and the operation mode is switched to the normal operation mode, the capacitive partial pressure generating unit 6 turns on the switches 61 and 64 and switches the switches 62, 63, 65, and 66 as shown in FIG. Turn off. Further, the capacitance trimming unit 5 always fixes the capacitance adjusted in the adjustment mode to a state where the capacitance is applied to the signal line L2. Therefore, when detecting the displacement of the weight 13 according to the acceleration in the normal operation mode, the capacitances connected to the inverting input terminal and the non-inverting input terminal of the fully-differential amplifier 21 are substantially the same. is there. Therefore, when disturbance noise acts on the signal lines L1 and L2, the amount of charge transferred from the signal line L1 to the first feedback capacitor Cf1 due to the influence of the disturbance noise, and transfer from the signal line L2 to the second feedback capacitor Cf2 Therefore, the disturbance noise can be satisfactorily canceled by the difference signal Vout (= Vop−Von) between the two output signals Vop and Von output from the fully differential amplifier 21. Will be able to.
 また上述した調整モードにおいてコンパレータとして動作する全差動アンプ21から電圧V1,V2の比較結果を高速で出力できるようにするためには、全差動アンプ21に接続される図示省略の位相補償容量を全差動アンプ21から切り離した状態でコンパレータとして動作させることが好ましい。この場合、調整モードが終了して通常の動作モードへ切り替えるときには、再び位相補償容量を全差動アンプ21に接続することにより発振を防止する。 Further, in order to be able to output the comparison results of the voltages V1 and V2 at high speed from the fully differential amplifier 21 operating as a comparator in the adjustment mode described above, a phase compensation capacitor (not shown) connected to the fully differential amplifier 21 is provided. Is preferably operated as a comparator in a state of being separated from the fully differential amplifier 21. In this case, when the adjustment mode ends and the operation mode is switched to the normal operation mode, the phase compensation capacitor is connected to the fully differential amplifier 21 again to prevent oscillation.
 以上のように本実施形態の容量トリミング回路7は、全差動アンプ21の反転入力端子に接続される第1の静電容量Csと全差動アンプ21の非反転入力端子に接続される第2の静電容量Cvとが略同一の状態となるように調整する容量トリミング部5と、その容量トリミング部5によって静電容量の調整が行われるときに、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに基準電圧Vcを印加することによって容量分圧に応じた電圧V1,V2を反転入力端子及び非反転入力端子のそれぞれに生じさせ、それら電圧V1,V2の比較結果を出力する容量分圧発生部6とを備えている。このような構成によれば、容量トリミング部5による静電容量の調整が行われるときに、実際のノイズ量を検出する必要がないため、静電容量の調整に時間はかからない。また容量分圧によって生成される電圧V1,V2の大小比較によって静電容量のアンバランスを判別することが可能であるため、簡単に且つ高精度に静電容量を調整することが可能である。 As described above, the capacitor trimming circuit 7 of the present embodiment has the first capacitance Cs connected to the inverting input terminal of the fully differential amplifier 21 and the first capacitor Cs connected to the non-inverting input terminal of the fully differential amplifier 21. Capacitance trimming unit 5 that adjusts so that the capacitance Cv of 2 is substantially the same, and when capacitance adjustment is performed by the capacitance trimming unit 5, the first and second feedback capacitors Cf1, By applying the reference voltage Vc to each of Cf2, voltages V1 and V2 corresponding to the capacitance division are generated at the inverting input terminal and the non-inverting input terminal, respectively, and the comparison result of the voltages V1 and V2 is output. And a pressure generator 6. According to such a configuration, it is not necessary to detect the actual amount of noise when the capacitance is adjusted by the capacitance trimming unit 5, so that it does not take time to adjust the capacitance. Further, since it is possible to determine the unbalance of the capacitance by comparing the magnitudes of the voltages V1 and V2 generated by the capacitance division, it is possible to easily adjust the capacitance with high accuracy.
 また容量分圧発生部6は、上述のように、第1フィードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子から切り離してその一端に基準電圧Vcに接続すると共に、第2フィードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子から切り離してその一端に基準電圧Vcに接続することにより、全差動アンプ21をコンパレータとして動作させ、反転入力端子に生じる電圧V1と非反転入力端子に生じる電圧V2との比較結果を反転出力端子及び非反転出力端子のそれぞれから出力させる構成である。そのため、電圧V1,V2を比較するために全差動アンプ21とは異なる別のコンパレータを設ける必要はなく、センサデバイスの回路規模を縮小できるという利点がある。 In addition, as described above, the capacitive voltage dividing unit 6 disconnects one end of the first feedback capacitor Cf1 from the non-inverting output terminal of the fully-differential amplifier 21 and connects it to the reference voltage Vc at one end thereof. By disconnecting one end of Cf2 from the inverting output terminal of the fully differential amplifier 21 and connecting it to the reference voltage Vc at one end thereof, the fully differential amplifier 21 operates as a comparator, and the voltage V1 generated at the inverting input terminal and the non-inverting input The comparison result with the voltage V2 generated at the terminal is output from each of the inverting output terminal and the non-inverting output terminal. Therefore, it is not necessary to provide another comparator different from the fully differential amplifier 21 in order to compare the voltages V1 and V2, and there is an advantage that the circuit scale of the sensor device can be reduced.
 また容量分圧発生部6は、上述のように、容量トリミング部5による静電容量の調整が行われるときには、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれの一端に基準電圧Vcを印加する前に、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに全差動アンプ21のオフセット電圧Voffに応じた初期電荷を蓄積するようにしている。これにより、全差動アンプ21のオフセット電圧Voffを反映させた状態で静電容量の調整を行うことができるため、調整モード終了後の通常の動作モードにおいても静電容量が略同一に調整された状態を保持することができ、外乱ノイズを良好にキャンセルすることができるようになる。 Further, as described above, when the capacitance trimming unit 5 adjusts the capacitance, the capacitance voltage dividing unit 6 applies the reference voltage Vc to one end of each of the first and second feedback capacitors Cf1 and Cf2. Prior to this, an initial charge corresponding to the offset voltage Voff of the fully-differential amplifier 21 is accumulated in each of the first and second feedback capacitors Cf1 and Cf2. As a result, the capacitance can be adjusted in a state in which the offset voltage Voff of the fully differential amplifier 21 is reflected, so that the capacitance is adjusted to be substantially the same in the normal operation mode after the adjustment mode is finished. The disturbance state can be maintained and disturbance noise can be canceled satisfactorily.
 以上、本発明に関する一実施形態について説明したが、本発明は上述した内容に限定されるものではなく、種々の変形例を適用することが可能である。 As mentioned above, although one Embodiment regarding this invention was described, this invention is not limited to the content mentioned above, It is possible to apply a various modification.
 例えば上記実施形態では、容量トリミング部5を、全差動アンプ21の非反転入力端子に繋がる信号線L2に設けた場合を例示した。しかし、これに限られるものではなく、容量トリミング部5を、全差動アンプ21の反転入力端子に繋がる信号線L1に設けても構わない。また容量トリミング部5を、全差動アンプ21の非反転入力端子及び反転入力端子のそれぞれに繋がる信号線L1,L2のそれぞれに設けても良い。信号線L1,L2のそれぞれに容量トリミング部5を設ければ静電容量の微妙な調整が可能になるため、より高精度な調整が可能になる。 For example, in the above embodiment, the case where the capacitor trimming unit 5 is provided on the signal line L2 connected to the non-inverting input terminal of the fully-differential amplifier 21 is exemplified. However, the present invention is not limited to this, and the capacitor trimming unit 5 may be provided on the signal line L1 connected to the inverting input terminal of the fully differential amplifier 21. The capacitor trimming unit 5 may be provided in each of the signal lines L1 and L2 connected to the non-inverting input terminal and the inverting input terminal of the fully differential amplifier 21, respectively. If the capacitance trimming unit 5 is provided for each of the signal lines L1 and L2, the capacitance can be finely adjusted, so that more accurate adjustment is possible.
 また上記実施形態では、センサ部1に1軸の静電容量型センサ3が設けられる場合を例示した。しかし、これに限られるものでもなく、例えばセンサ部1に、互いに直交する3軸方向の加速度を検知するための3つの静電容量型センサ3が設けられたものであっても構わない。この場合、それら3つの静電容量型センサ3の錘13が端子mbに接続されるため、ダミーコンデンサ4の静電容量C2は、それら3つの静電容量型センサ3を合成した静電容量と略同一となるように形成される。 In the above embodiment, the case where the sensor unit 1 is provided with the uniaxial capacitive sensor 3 has been exemplified. However, the present invention is not limited to this, and for example, the sensor unit 1 may be provided with three capacitive sensors 3 for detecting accelerations in three axial directions orthogonal to each other. In this case, since the weights 13 of the three capacitance sensors 3 are connected to the terminal mb, the capacitance C2 of the dummy capacitor 4 is equal to the capacitance obtained by synthesizing the three capacitance sensors 3. They are formed to be substantially the same.
 また上記実施形態では、調整モードにおいて全差動アンプ21をコンパレータとして動作させる場合を例示したが、これに限られるものではなく、調整モードにおいて使用するコンパレータを全差動アンプ21とは別に設けても構わない。ただし、この場合は、センサデバイスの回路規模が大型化する。そのため、センサデバイスの小型化が望まれる場合には、コンパレータを全差動アンプ21とは別に設けるよりも、上述したように全差動アンプ21をコンパレータとして利用してもよい。 In the above embodiment, the case where the fully differential amplifier 21 is operated as a comparator in the adjustment mode is illustrated, but the present invention is not limited to this, and a comparator used in the adjustment mode is provided separately from the fully differential amplifier 21. It doesn't matter. However, in this case, the circuit scale of the sensor device increases. Therefore, when it is desired to reduce the size of the sensor device, as described above, the fully differential amplifier 21 may be used as a comparator rather than providing the comparator separately from the fully differential amplifier 21.
 また上記実施形態では、全差動アンプ21の反転入力端子に静電容量型センサ3の出力端子が接続され、非反転入力端子に静電容量型センサ3の静電容量と略同一のダミーコンデンサ4が接続された状態を例示した。しかし、これに限られるものではなく、全差動アンプ21の非反転入力端子に静電容量型センサ3を接続し、反転入力端子にダミーコンデンサ4を接続したものであっても構わない。 In the above embodiment, the output terminal of the capacitive sensor 3 is connected to the inverting input terminal of the fully differential amplifier 21, and the dummy capacitor substantially the same as the capacitance of the capacitive sensor 3 is connected to the non-inverting input terminal. The state where 4 was connected was illustrated. However, the present invention is not limited to this, and the capacitance type sensor 3 may be connected to the non-inverting input terminal of the fully-differential amplifier 21 and the dummy capacitor 4 may be connected to the inverting input terminal.
 更には、ダミーコンデンサ4を設けることなく、静電容量型センサ3のコンデンサ11の固定電極を端子mbに接続し、コンデンサ12の固定電極を端子mbvに接続したものであっても良い。この場合、高周波の矩形波信号は錘13に印加され、静電容量型センサ3の2つの固定電極のそれぞれから各コンデンサ11,12の静電容量に応じた電荷信号がCV変換回路2に出力される。そのような構成であっても、寄生容量Cp1,Cp2にバラツキがあれば、上述した容量トリミング回路7によって寄生容量Cp1,Cp2のバラツキを高精度に調整することができる。 Furthermore, without providing the dummy capacitor 4, the fixed electrode of the capacitor 11 of the capacitive sensor 3 may be connected to the terminal mb, and the fixed electrode of the capacitor 12 may be connected to the terminal mbv. In this case, a high-frequency rectangular wave signal is applied to the weight 13, and charge signals corresponding to the capacitances of the capacitors 11 and 12 are output from the two fixed electrodes of the capacitance type sensor 3 to the CV conversion circuit 2. Is done. Even in such a configuration, if the parasitic capacitances Cp1 and Cp2 have variations, the capacitance trimming circuit 7 can adjust the variations of the parasitic capacitances Cp1 and Cp2 with high accuracy.
 また上記実施形態では、一例として静電容量型センサ3が加速度を検知するセンサである場合を例示したが、これに限られるものではなく、加速度以外の物理量(例えば角速度)を検知するセンサとして構成されるものであっても構わない。 In the above embodiment, the case where the capacitive sensor 3 is a sensor that detects acceleration is illustrated as an example. However, the present invention is not limited to this, and the sensor is configured as a sensor that detects a physical quantity (for example, angular velocity) other than acceleration. It does not matter if it is
 本発明の一実施形態によれば、全差動アンプを有し、全差動アンプの反転入力端子と非反転出力端子との間に第1フィードバックコンデンサが接続されると共に、非反転入力端子と反転出力端子との間に第1フィードバックコンデンサと静電容量が略同一の第2フィードバックコンデンサが接続されたCV変換回路において、反転入力端子に接続される少なくとも1つの第1のコンデンサによる第1の静電容量と、非反転入力端子に接続される少なくとも1つの第2のコンデンサによる第2の静電容量との静電容量差をトリミングする容量トリミング回路は、反転入力端子又は非反転入力端子に対して個別に接続又は切り離しが可能な複数のトリミングコンデンサを有し、複数のトリミングコンデンサを個別に反転入力端子又は非反転入力端子に対して接続又は切り離すことにより、第1の静電容量と第2の静電容量とを略同一の状態に調整する容量トリミング部と、容量トリミング部によって静電容量の調整が行われるとき、第1フィードバックコンデンサの一端に基準電圧を印加することにより第1フィードバックコンデンサと第1のコンデンサとの容量分圧に応じた電圧を反転入力端子に生じさせると共に、第2フィードバックコンデンサの一端に基準電圧を印加することにより第2フィードバックコンデンサと第2のコンデンサとの容量分圧に応じた電圧を非反転入力端子に生じさせ、反転入力端子に生じる電圧と非反転入力端子に生じる電圧との比較結果を出力する容量分圧発生部と、を備える。 According to one embodiment of the present invention, the first feedback capacitor is connected between the inverting input terminal and the non-inverting output terminal of the fully differential amplifier, and the non-inverting input terminal is provided. In the CV conversion circuit in which the first feedback capacitor and the second feedback capacitor having substantially the same capacitance are connected between the inverting output terminal and the first feedback capacitor, the first feedback capacitor includes at least one first capacitor connected to the inverting input terminal. A capacitance trimming circuit for trimming a capacitance difference between a capacitance and a second capacitance caused by at least one second capacitor connected to the non-inverting input terminal is connected to the inverting input terminal or the non-inverting input terminal. Multiple trimming capacitors that can be individually connected to or disconnected from each other, and multiple trimming capacitors are individually inverting input terminals or non-inverting inputs A capacitance trimming unit that adjusts the first capacitance and the second capacitance to substantially the same state by being connected to or disconnected from the child, and when capacitance adjustment is performed by the capacitance trimming unit. By applying a reference voltage to one end of the first feedback capacitor, a voltage corresponding to the capacitance division between the first feedback capacitor and the first capacitor is generated at the inverting input terminal, and a reference is applied to one end of the second feedback capacitor. By applying a voltage, a voltage corresponding to the capacitance division between the second feedback capacitor and the second capacitor is generated at the non-inverting input terminal, and the voltage generated at the inverting input terminal is compared with the voltage generated at the non-inverting input terminal. A capacity partial pressure generation unit for outputting the result.
 上記構成において、容量分圧発生部が、第1フィードバックコンデンサの一端を反転出力端子から切り離して基準電圧に接続すると共に、第2フォードバックコンデンサの一端を非反転出力端子から切り離して基準電圧に接続することにより、全差動アンプをコンパレータとして動作させ、反転入力端子に生じる電圧と非反転入力端子に生じる電圧との比較結果を反転出力端子及び非反転出力端子のそれぞれから出力させてもよい。 In the above configuration, the capacitive voltage dividing unit disconnects one end of the first feedback capacitor from the inverting output terminal and connects it to the reference voltage, and disconnects one end of the second Fordback capacitor from the non-inverting output terminal and connects to the reference voltage. Thus, the fully differential amplifier may be operated as a comparator, and the comparison result between the voltage generated at the inverting input terminal and the voltage generated at the non-inverting input terminal may be output from each of the inverting output terminal and the non-inverting output terminal.
 上記構成において、容量分圧発生部は、第1及び第2フィードバックコンデンサのそれぞれの一端に基準電圧を印加する前に、第1及び第2フィードバックコンデンサのそれぞれに全差動アンプのオフセット電圧に応じた初期電荷を蓄積してもよい。 In the above configuration, the capacitive voltage dividing unit responds to the offset voltage of the fully differential amplifier to each of the first and second feedback capacitors before applying the reference voltage to one end of each of the first and second feedback capacitors. The initial charge may be accumulated.
 上記構成において、反転入力端子及び非反転入力端子のいずれか一方には、静電容量型センサの出力端子が接続され、他方には、静電容量型センサの静電容量と略同一のダミーコンデンサが接続されてもよい。 In the above configuration, either one of the inverting input terminal and the non-inverting input terminal is connected to the output terminal of the capacitance type sensor, and the other is a dummy capacitor substantially the same as the capacitance of the capacitance type sensor. May be connected.
 本出願は、2013年12月27日出願の日本特許出願(特願2013-270851)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on December 27, 2013 (Japanese Patent Application No. 2013-270851), the contents of which are incorporated herein by reference.
 本発明によれば、容量トリミング部による静電容量の調整が行われるときに容量分圧を生じさせ、その容量分圧で生じる電圧によって静電容量を比較することができるため、実際のノイズ量を検出する必要がなくなり、しかも簡単且つ高精度に静電容量のトリミングを行うことができるようになる。 According to the present invention, it is possible to generate a capacitance division when capacitance adjustment is performed by the capacitance trimming unit, and to compare the capacitance based on the voltage generated by the capacitance division. Therefore, it is possible to perform capacitance trimming easily and with high accuracy.
 2 CV変換回路、3 静電容量型センサ、4 ダミーコンデンサ、5 容量トリミング部、6 容量分圧発生部、7 容量トリミング回路、8 第1のコンデンサ、9 第2のコンデンサ、21 全差動アンプ、Cf1 第1フィードバックコンデンサ、Cf2 第2フィードバックコンデンサ、51 トリミングコンデンサ。 2. CV conversion circuit, 3. Capacitance type sensor, 4. Dummy capacitor, 5. Capacitor trimming unit, 6. Capacitance voltage dividing generator, 7. Capacitance voltage dividing circuit, 8. First capacitor, 9. Second capacitor, 21. Fully differential amplifier. , Cf1 first feedback capacitor, Cf2 second feedback capacitor, 51 trimming capacitor.

Claims (4)

  1.  全差動アンプを有し、前記全差動アンプの反転入力端子と非反転出力端子との間に第1フィードバックコンデンサが接続されると共に、非反転入力端子と反転出力端子との間に前記第1フィードバックコンデンサと静電容量が略同一の第2フィードバックコンデンサが接続されたCV変換回路において、前記反転入力端子に接続される少なくとも1つの第1のコンデンサによる第1の静電容量と、前記非反転入力端子に接続される少なくとも1つの第2のコンデンサによる第2の静電容量との静電容量差をトリミングする容量トリミング回路であって、
     前記反転入力端子又は前記非反転入力端子に対して個別に接続又は切り離しが可能な複数のトリミングコンデンサを有し、前記複数のトリミングコンデンサを個別に前記反転入力端子又は前記非反転入力端子に対して接続又は切り離すことにより、前記第1の静電容量と前記第2の静電容量とを略同一の状態に調整する容量トリミング部と、
     前記容量トリミング部によって静電容量の調整が行われるとき、前記第1フィードバックコンデンサの一端に基準電圧を印加することにより前記第1フィードバックコンデンサと前記第1のコンデンサとの容量分圧に応じた電圧を前記反転入力端子に生じさせると共に、前記第2フィードバックコンデンサの一端に前記基準電圧を印加することにより前記第2フィードバックコンデンサと前記第2のコンデンサとの容量分圧に応じた電圧を前記非反転入力端子に生じさせ、前記反転入力端子に生じる電圧と前記非反転入力端子に生じる電圧との比較結果を出力する容量分圧発生部と、
     を備える容量トリミング回路。
    A first feedback capacitor connected between an inverting input terminal and a non-inverting output terminal of the fully differential amplifier, and a first feedback capacitor connected between the non-inverting input terminal and the inverting output terminal; In a CV conversion circuit to which a feedback capacitor and a second feedback capacitor having substantially the same capacitance are connected, a first capacitance by at least one first capacitor connected to the inverting input terminal; A capacitance trimming circuit for trimming a capacitance difference from a second capacitance due to at least one second capacitor connected to an inverting input terminal,
    A plurality of trimming capacitors that can be individually connected to or disconnected from the inverting input terminal or the non-inverting input terminal, and the plurality of trimming capacitors are individually connected to the inverting input terminal or the non-inverting input terminal. A capacitance trimming unit that adjusts the first capacitance and the second capacitance to substantially the same state by connecting or disconnecting; and
    When the capacitance is adjusted by the capacitance trimming unit, a voltage corresponding to the capacitance division between the first feedback capacitor and the first capacitor is applied by applying a reference voltage to one end of the first feedback capacitor. Is generated at the inverting input terminal, and the reference voltage is applied to one end of the second feedback capacitor, so that a voltage corresponding to the capacitance divided by the second feedback capacitor and the second capacitor is non-inverted. A capacitive voltage divider that generates a voltage at the input terminal and outputs a comparison result between the voltage generated at the inverting input terminal and the voltage generated at the non-inverting input terminal;
    A capacitor trimming circuit comprising:
  2.  前記容量分圧発生部は、前記第1フィードバックコンデンサの一端を前記非反転出力端子から切り離して前記基準電圧に接続すると共に、前記第2フィードバックコンデンサの一端を前記反転出力端子から切り離して前記基準電圧に接続することにより、前記全差動アンプをコンパレータとして動作させ、前記反転入力端子に生じる電圧と前記非反転入力端子に生じる電圧との比較結果を前記反転出力端子及び前記非反転出力端子のそれぞれから出力させる、請求項1に記載の容量トリミング回路。 The capacitive voltage dividing unit disconnects one end of the first feedback capacitor from the non-inverting output terminal and connects the reference voltage to the reference voltage, and disconnects one end of the second feedback capacitor from the inverting output terminal and connects the reference voltage. By connecting the full differential amplifier as a comparator, and comparing the voltage generated at the inverting input terminal with the voltage generated at the non-inverting input terminal for each of the inverting output terminal and the non-inverting output terminal. The capacitor trimming circuit according to claim 1, wherein the capacitor trimming circuit is output from the capacitor trimming circuit.
  3.  前記容量分圧発生部は、前記第1及び第2フィードバックコンデンサのそれぞれの一端に前記基準電圧を印加する前に、前記第1及び第2フィードバックコンデンサのそれぞれに前記全差動アンプのオフセット電圧に応じた初期電荷を蓄積する、請求項1又は2に記載の容量トリミング回路。 The capacitive voltage divider generates an offset voltage of the fully-differential amplifier before applying the reference voltage to one end of each of the first and second feedback capacitors. 3. The capacitor trimming circuit according to claim 1, wherein the initial charge corresponding thereto is accumulated.
  4.  前記反転入力端子及び前記非反転入力端子のいずれか一方には、静電容量型センサの出力端子が接続され、他方には、前記静電容量型センサの静電容量と略同一のダミーコンデンサが接続される、請求項1乃至3のいずれかに記載の容量トリミング回路。 One of the inverting input terminal and the non-inverting input terminal is connected to the output terminal of the capacitive sensor, and the other is a dummy capacitor that is substantially the same as the capacitance of the capacitive sensor. 4. The capacitor trimming circuit according to claim 1, which is connected.
PCT/JP2014/084002 2013-12-27 2014-12-22 Capacitance trimming circuit WO2015098893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013270851A JP2015125088A (en) 2013-12-27 2013-12-27 Capacity trimming circuit
JP2013-270851 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098893A1 true WO2015098893A1 (en) 2015-07-02

Family

ID=53478746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084002 WO2015098893A1 (en) 2013-12-27 2014-12-22 Capacitance trimming circuit

Country Status (2)

Country Link
JP (1) JP2015125088A (en)
WO (1) WO2015098893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025371A (en) * 2014-07-16 2016-02-08 株式会社デンソー Semiconductor device
CN108702137A (en) * 2016-03-30 2018-10-23 德克萨斯仪器股份有限公司 Common-mode gain for amplifier is finely tuned

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089425B1 (en) 2016-12-21 2023-07-12 Alps Alpine Co., Ltd. Capacitance detection device and input device
JP7161178B2 (en) * 2018-08-03 2022-10-26 国立大学法人東京工業大学 Capacitance detection circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218911A1 (en) * 2004-04-06 2005-10-06 Denison Timothy J Linearity enhancement for capacitive sensors
JP2008102091A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Capacitive detecting circuit
JP2011220764A (en) * 2010-04-07 2011-11-04 Denso Corp Capacitance type physical quantity sensor circuit
WO2013040508A1 (en) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
WO2013102499A1 (en) * 2012-01-05 2013-07-11 Epcos Ag Differential microphone and method for driving a differential microphone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218911A1 (en) * 2004-04-06 2005-10-06 Denison Timothy J Linearity enhancement for capacitive sensors
JP2008102091A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Capacitive detecting circuit
JP2011220764A (en) * 2010-04-07 2011-11-04 Denso Corp Capacitance type physical quantity sensor circuit
WO2013040508A1 (en) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
WO2013102499A1 (en) * 2012-01-05 2013-07-11 Epcos Ag Differential microphone and method for driving a differential microphone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025371A (en) * 2014-07-16 2016-02-08 株式会社デンソー Semiconductor device
CN108702137A (en) * 2016-03-30 2018-10-23 德克萨斯仪器股份有限公司 Common-mode gain for amplifier is finely tuned
CN108702137B (en) * 2016-03-30 2023-06-27 德克萨斯仪器股份有限公司 Common mode gain trimming for an amplifier

Also Published As

Publication number Publication date
JP2015125088A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5331304B2 (en) Detection circuit, interface circuit, electronic device, differential capacitive sensor reading method
EP2474811B1 (en) Capacitance type physical quantity sensor and angular velocity sensor
US8816703B2 (en) Linear capacitance-to-voltage converter using a single amplifier for accelerometer front ends with cancellation of spurious forces contributed by sensor circuitry
US9116166B2 (en) Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
JP5733276B2 (en) Capacitive sensor detection circuit
WO2015098893A1 (en) Capacitance trimming circuit
US20010032508A1 (en) Position sensing with improved linearity
US10274510B2 (en) Cancellation of noise due to capacitance mismatch in MEMS sensors
US9118338B2 (en) Offset compensation circuit and method thereof
WO2008008403A2 (en) Signal conditioning methods and circuits for a capacitive sensing integrated tire pressure sensor
JP2001510580A (en) Capacitance detection system and method
JP2009097932A (en) Capacitive detector
US20060175540A1 (en) Capacitance type physical quantity sensor
US20170003315A1 (en) Mems sensor devices having a self-test mode
US10768020B2 (en) Capacitive sensor
WO2010131640A1 (en) Electrostatic capacitance detection circuit
JP2014102172A (en) Sensor devices
JP4269388B2 (en) Capacitive physical quantity detector
Tirupathi et al. A differential output switched capacitor based capacitive sensor interfacing circuit
WO2017179618A1 (en) Capacitive sensor
JP6314813B2 (en) Acceleration sensor
JP2007248327A (en) Acceleration sensor
JP7243647B2 (en) Detection circuit for capacitive physical quantity sensor and capacitive physical quantity detector
JP2005246498A (en) Electronic component device
WO2020037067A1 (en) Applying a positive feedback voltage to an electromechanical sensor utilizing a voltage-to-voltage converter to facilitate a reduction of charge flow in such sensor representing spring softening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875672

Country of ref document: EP

Kind code of ref document: A1