WO2015098882A1 - Drive control device for opening/closing body of vehicle - Google Patents

Drive control device for opening/closing body of vehicle Download PDF

Info

Publication number
WO2015098882A1
WO2015098882A1 PCT/JP2014/083989 JP2014083989W WO2015098882A1 WO 2015098882 A1 WO2015098882 A1 WO 2015098882A1 JP 2014083989 W JP2014083989 W JP 2014083989W WO 2015098882 A1 WO2015098882 A1 WO 2015098882A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
temperature
rotational speed
state
closing body
Prior art date
Application number
PCT/JP2014/083989
Other languages
French (fr)
Japanese (ja)
Inventor
伸康 別所
廣田 功一
新一郎 野田
善基 石川
Original Assignee
アイシン精機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機 株式会社 filed Critical アイシン精機 株式会社
Publication of WO2015098882A1 publication Critical patent/WO2015098882A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/71Power-operated mechanisms for wings with automatic actuation responsive to temperature changes, rain, wind or noise
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/611Power-operated mechanisms for wings using electrical actuators using rotary electromotors for swinging wings

Definitions

  • the present invention relates to a vehicle opening / closing body drive control device capable of detecting the inclusion of a foreign object during driving of the opening / closing body.
  • Patent Documents 1 and 2 propose this type of vehicle opening / closing body drive control device.
  • the apparatus disclosed in Patent Document 1 performs a pinching avoidance process for stopping or reversing the driving of the motor when detecting the pinching of a foreign object during the raising / lowering of the door glass by the driving force of the DC motor.
  • This apparatus has a rotation speed detection means, a rotation torque difference calculation means, a determination means, and an instruction means.
  • the rotation speed detection means detects the rotation speed of the motor.
  • the rotational torque difference calculating means calculates the rotational torque difference of the DC motor from the rotational speed difference of the DC motor in the unloaded state and the loaded state detected by the rotational speed detecting means.
  • the discriminating unit discriminates whether or not a predetermined rotational torque difference has occurred based on the calculation result of the rotational torque difference calculating unit.
  • the instruction means instructs execution of the pinching avoidance process.
  • the rotational speed is not compared with an empirically or experimentally determined threshold value, but the foreign matter is actually The rotational torque difference of the DC motor when sandwiched is calculated. In this way, since the rotational torque difference of the DC motor is directly acquired, it is possible to determine whether a foreign object is caught regardless of the assembled state.
  • Patent Document 2 compares the difference in rotational speed of the motor with a threshold value to detect foreign object pinching.
  • the rotational speed difference is a deviation between the rotational speed in the idle running section of the motor when the back door is driven to be closed from the half door state to the fully closed state and the current rotational speed detected thereafter.
  • Patent Document 2 proposes that the detection sensitivity for pinching is changed by correcting the threshold value based on the motor temperature estimated from the rotational speed of the motor in the idle running section. Thereby, the influence of the temperature characteristic of the motor can be suppressed, and the foreign object can be detected.
  • the preset sliding resistance is corrected by the temperature estimated as the motor temperature.
  • the temperature characteristic of each member relating to sliding resistance is determined by the ambient temperature. Therefore, when the difference between the motor temperature and the ambient temperature becomes significant, the pinching detection accuracy decreases.
  • An object of the present invention is to provide a vehicle opening / closing body drive control device in which pinching detection accuracy is further improved.
  • the motor that drives the opening / closing body after the idle running period or the idle running section, and the moving speed of the opening / closing body in a predetermined zone or a preset value are set. Movement that is one of a movement speed difference that is a deviation between a reference movement speed determined by the movement speed and a current movement speed that is detected thereafter, an integrated value of the movement speed difference, and a movement speed change amount within a predetermined time.
  • a calculation unit that calculates a speed change, a pinch detection unit that detects a pinch of a foreign object by comparing the calculated movement speed change and a threshold value that correlates to a preset sliding resistance when driving the opening / closing body,
  • a motor temperature estimation unit that estimates the motor temperature based on the rotation speed of the motor detected during the running period or the idle running period, an energization time detection unit that detects the energization time of the motor within a certain time, and a motor temperature estimation Estimated by The ambient temperature estimation unit for estimating the ambient temperature based on the motor temperature and the energization time detected by the energization time detection unit, and the motor temperature estimated by the motor temperature estimation unit or the atmosphere estimated by the ambient temperature estimation unit
  • An opening / closing body drive control device for a vehicle includes a correction unit that corrects a threshold value so that the detection sensitivity of foreign object pinching becomes higher when the temperature of the door is lower than when the temperature is higher.
  • the motor temperature estimation unit estimates the motor temperature based on the rotational speed of the motor detected during the idling period or idling section. This is because in the idle running period or idle running section in which there is no load, there is a characteristic that the rotational speed of the motor becomes smaller when the motor temperature is lower than when the motor temperature is high. Further, the ambient temperature estimation unit estimates the ambient temperature based on the estimated motor temperature and the detected energization time. This is because the motor has a characteristic that the temperature of the motor becomes higher than the temperature of the atmosphere when the energization time of the motor within a certain time is longer than when the energization time is short. And, when the estimated temperature of the motor is lower than when the estimated temperature is high, or when the estimated temperature of the atmosphere is lower than when the estimated temperature is high, the detection sensitivity of foreign object pinching is higher. Thus, the threshold value is corrected.
  • the output torque change amount (increase amount) relative to the motor rotation speed change amount (decrease amount) becomes relatively small. If it is low, the change amount of the output torque with respect to the predetermined change amount of the rotation speed of the motor becomes relatively large.
  • the change in the moving speed correlated with the amount of change in the rotational speed of the motor is such that the higher the motor temperature, the higher the detection sensitivity of foreign objects, and the lower the motor temperature, the lower the detection sensitivity of foreign objects. Is calculated to be low.
  • the threshold value is corrected by the correction unit so that the detection sensitivity of foreign object pinching is higher when the estimated motor temperature is lower than when the estimated motor temperature is high. Thereby, the detection accuracy of foreign object pinching is further improved.
  • the preset sliding resistance is larger than the original sliding resistance if the ambient temperature is relatively high, and conversely if the ambient temperature is relatively low, it is greater than the original sliding resistance. Becomes smaller. That is, the threshold value correlating with the preset sliding resistance increases the detection sensitivity of the foreign object as the temperature of the atmosphere is higher, and conversely decreases the detection sensitivity of the foreign object as the temperature of the atmosphere is lower. On the other hand, the threshold value is corrected by the correction unit so that the detection sensitivity of foreign object pinching is higher when the estimated temperature of the atmosphere is lower than when the temperature of the estimated atmosphere is high. Thereby, the detection accuracy of foreign object pinching is further improved.
  • the estimated motor temperature and the estimated atmosphere temperature are used for correction of the threshold value related to the temperature characteristic of the motor and correction of the threshold value related to the temperature characteristic of the sliding resistance, respectively.
  • the energization time detection unit detects the number of operation times of the motor within a certain time as the energization time. According to this configuration, the energization time detection unit may detect the number of times the motor is operated within a certain time. For this reason, it is possible to reduce the calculation load as compared with the case where the energization time is detected and integrated.
  • the correction amount that the correction unit corrects the threshold value is preferably increased as the temperature of the atmosphere increases.
  • the correction amount that the correction unit corrects the threshold value preferably increases as the motor temperature increases.
  • a full latch state in which the vehicle door is held in a fully closed state a half latch state in which the vehicle door is held in a half door state, and an unlatching that does not hold the vehicle door.
  • a latch mechanism that can be switched to a state; a closed-side transmission member that is linked to the latch mechanism; and a latch mechanism that is in a half-latch state by transmitting driving force to the latch mechanism via the closed-side transmission member after passing through the idle running section.
  • the calculation unit that calculates the rotational speed difference, which is a deviation, and the calculated rotational speed difference are compared with a preset threshold value that correlates with the sliding resistance when the motor is switched, and foreign matter is caught.
  • Pinching detection unit for detecting motor, motor temperature estimation unit for estimating motor temperature based on motor rotation speed detected in idle running section, and energization time detection unit for detecting motor energization time within a certain time
  • An atmosphere temperature estimation unit that estimates the temperature of the atmosphere based on the motor temperature estimated by the motor temperature estimation unit and the energization time detected by the energization time detection unit, and the motor temperature estimated by the motor temperature estimation unit or
  • a vehicle door lock device including a correction unit that corrects a threshold value so that the detection sensitivity of foreign object pinching by the pinch detection unit is higher when the temperature of the atmosphere estimated by the atmosphere temperature estimation unit is lower than when the temperature of the atmosphere is high Is provided.
  • (A) is a side view of the device in an unlatched state
  • (b) is a front view of the device in an unlatched state.
  • (A) is a side view of the device in the fully latched state
  • (b) is a front view of the device in the fully latched state.
  • the graph which shows transition of various sliding resistance with respect to the stroke of DC motor The graph which shows transition of the reference
  • FIG. 1 shows an embodiment of a vehicle opening / closing body drive control device according to the present invention. Description will be made with reference to FIG.
  • an opening 2 a is formed in the rear part of the body 2 of the vehicle 1.
  • a weather strip 4 for sealing is mounted on the entire periphery of the opening 2a.
  • a back door 3 as an opening / closing body is attached to an upper portion of the opening 2a of the body 2 via a door hinge 2b. The back door 3 is pushed upward about the door hinge 2b, whereby the opening 2a of the body 2 is opened. The pushing up of the back door 3 is assisted by the gas reaction force of the gas damper 6.
  • a door drive unit 7 is installed at the rear of the body 2.
  • the door drive unit 7 includes a DC motor 71.
  • a long arm 8 is connected to the output shaft 7 a of the door drive unit 7.
  • the tip of the arm 8 is rotatably connected to the lower end of the rod-shaped rod 9.
  • the upper end of the rod 9 is rotatably connected to the back door 3. Therefore, when the DC motor 71 of the door drive unit 7 is driven, the arm 8 rotates together with the output shaft 7a, and the rod 9 is pushed or pulled. As a result, the back door 3 is opened and closed while being supported by the body 2.
  • a door lock device 10 is installed at the inner end of the back door 3.
  • the door lock device 10 includes a DC motor 11 as a motor.
  • the door lock device 10 includes a latch mechanism 12.
  • the latch mechanism 12 is supported by the back door 3 via a base plate (not shown).
  • the latch mechanism 12 includes a latch 13 and a pole 14.
  • the latch 13 is connected to the base plate so as to be rotatable around the rotation shaft 12a.
  • the pole 14 is connected to the base plate so as to be rotatable around the rotation shaft 12b.
  • a U-shaped striker 5 is fixed to the lower part of the opening 2 a of the body 2.
  • the latch 13 is disposed so as to face the striker 5 and be detachable from the striker 5.
  • the latch 13 is formed in a U shape and has an engagement recess 13a.
  • the latch 13 has a first claw portion 13b on one side of the engaging recess 13a and a second claw portion 13c on the other side.
  • a first engagement portion 13d is formed on the opposite side of the engagement recess 13a at the tip of the first claw portion 13b.
  • a second engagement portion 13e is formed in the vicinity of the engagement recess 13a at the tip of the second claw portion 13c.
  • the latch 13 has a driven convex portion 13f opposite to the engaging concave portion 13a.
  • One end of the latch biasing spring is held by the base plate, and the other end of the latch biasing spring is locked to the latch 13. As a result, the latch 13 is biased in the clockwise direction of FIG.
  • the pole 14 is connected to the lift lever 16 via the rotating shaft 12b.
  • the pole 14 rotates together with the lift lever 16 about the rotation shaft 12b.
  • the pole 14 has an engagement end portion 14a and an extension end portion 14b.
  • the engagement end portion 14a extends from the rotation shaft 12b to the right side in FIG. 3A, and the extension end portion 14b extends from the rotation shaft 12b to the left side in FIG. 3A.
  • One end of the pole biasing spring is held by the base plate, and the other end of the pole biasing spring is locked to the pole 14. Thereby, the pole 14 is urged in the counterclockwise direction of FIG. 3A, that is, the direction in which the engagement end portion 14a is raised.
  • FIG. 3A shows a state where the back door 3 is opened.
  • the latch 13 is held at a predetermined rotational position by the contact surface 13g of the first claw portion 13b coming into contact with the latch stopper.
  • the engaging recess 13a is arranged facing the approach path of the striker 5 when the back door 3 is closed.
  • the pole 14 is held at a predetermined rotation position.
  • the engagement end portion 14a is disposed below the second claw portion 13c. At this time, the latch mechanism 12 is in an unlatched state and in a released state.
  • the striker 5 enters the engagement recess 13a. Then, the inner wall surface of the engaging recess 13a is pressed by the striker 5. As a result, the latch 13 rotates counterclockwise against the latch biasing spring. Then, when the engagement end portion 14a is locked to the second engagement portion 13e, the rotation of the latch 13 is restricted. At this time, the striker 5 is engaged with the engagement recess 13a of the back door 3, and the striker 5 is held so as not to come off. This state is a half-door state, and the latch mechanism 12 is a half-latch state.
  • the striker 5 further enters the engagement recess 13a. Then, the inner wall surface of the engaging recess 13a is further pressed by the striker 5. As a result, as shown in FIG. 4A, the latch 13 further rotates counterclockwise against the latch biasing spring. Then, when the engagement end portion 14a is locked to the first engagement portion 13d, the rotation of the latch 13 is restricted. At this time, the engagement recess 13a of the back door 3 and the striker 5 are engaged with each other, and the striker 5 is held so as not to come off. This state is a fully closed state. At this time, the latch mechanism 12 is in a fully latched state and is in an engaged state.
  • the door lock device 10 includes a bracket 21 made of a metal plate that is fixed to the back door 3.
  • a pinion 22 that is rotatably connected to the output shaft of the DC motor 11 is disposed on the bracket 21.
  • a fan-shaped active lever 24 made of a metal plate is connected to the bracket 21.
  • the active lever 24 is rotatable around the rotation shaft 23.
  • the rotating shaft 23 has an axis extending in a direction different from the axes of the rotating shafts 12 a and 12 b of the latch 13 and the pole 14 and extending along the rotating shaft of the pinion 22.
  • the active lever 24 has an arcuate gear portion 24 a that meshes with the pinion 22.
  • the rotation position of the active lever 24 is held by meshing with the pinion 22.
  • the active lever 24 is held at a predetermined rotational position (hereinafter referred to as “initial position”) that meshes with the pinion 22 at an intermediate portion in the circumferential direction of the gear portion 24a.
  • the DC motor 11 is disposed at a predetermined initial rotation position corresponding to the initial position of the active lever 24.
  • the active lever 24 is provided with an active lever pin 25.
  • the active lever pin 25 is disposed in the vicinity of the rotation shaft 23 and protrudes in the thickness direction of the active lever 24 along the rotation shaft 23.
  • the passive lever 26 which consists of a metal plate as a closing side transmission member is connected to the bracket 21.
  • the passive lever 26 is rotatable around the rotation shaft 23.
  • the passive lever 26 has a lever portion 26a extending in the radial direction from the rotating shaft 23, and a pressing piece 26b formed by bending the tip of the lever portion 26a.
  • the pressing piece 26b rotates about the rotation shaft 23 in the counterclockwise rotation direction of FIG.
  • a driven convex portion 13f of the latch 13 is disposed on the rotation locus of the pressing piece 26b. Therefore, when the passive lever 26 is rotated in the counterclockwise direction of FIG. 3B, the driven convex portion 13f is pressed by the pressing piece 26b, so that the latch 13 is counterclockwise in FIG. 3A. To turn. Then, the rotation of the latch 13 is regulated by the pole 14 in the manner described above. In this way, the latch mechanism 12 in the half latch state is switched to the full latch state shown in FIGS.
  • An engagement piece 26 c is formed at the base end of the passive lever 26.
  • the engagement piece 26c is disposed on the rotation locus of the active lever pin 25 that rotates in the counterclockwise rotation direction of FIG.
  • One end of a return spring (not shown) is held by the bracket 21, and the other end of the return spring is locked to the passive lever 26.
  • the passive lever 26 is biased in the clockwise direction of FIG.
  • the opposing surface of the pressing piece 26b comes into contact with the passive lever stopper 21a formed on the bracket 21, the rotation of the passive lever 26 in the clockwise direction is restricted. That is, the passive lever 26 is held at a predetermined rotation position (hereinafter referred to as “closed operation initial position”) in FIG.
  • the active lever pin 25 of the active lever 24 and the engagement piece 26c of the passive lever 26 held at the initial position are at a predetermined angle around the rotation shaft 23. They are separated by ⁇ 1. Therefore, when the active lever 24 is rotated counterclockwise from the initial position, the active lever 24 is idled by a predetermined angle ⁇ 1 until the active lever pin 25 comes into contact with the engagement piece 26c as shown in FIG. To do. Further, when the active lever 24 further rotates after the active lever pin 25 comes into contact with the engagement piece 26 c, the engagement piece 26 c is pressed by the active lever pin 25. As a result, the passive lever 26 rotates counterclockwise and switches the latch mechanism 12 to the fully latched state.
  • the bracket 21 is connected to a bell crank 32 made of a metal plate as an open-side transmission member.
  • the bell crank 32 is rotatable around a rotation shaft 31 parallel to the rotation shaft 23.
  • the bell crank 32 has a first lever portion 32a and a second lever portion 32b.
  • the first lever portion 32a extends from the rotation shaft 31 to the upper left side in FIG. 3B along the radial direction
  • the second lever portion 32b extends from the rotation shaft 31 to the lower left side in FIG. 3B along the radial direction. Extends to the side.
  • the rotation of the bell crank 32 in the clockwise direction is restricted to a predetermined rotation position where the second lever portion 32b contacts the lever stopper 21d of the bracket 21 (hereinafter referred to as “release operation initial position”).
  • release operation initial position a predetermined rotation position where the second lever portion 32b contacts the lever stopper 21d of the bracket 21.
  • the first lever portion 32 a is disposed on the rotation locus of the active lever pin 25.
  • the bell crank 32 has a pressing piece 32d formed by bending the tip of the second lever portion 32b.
  • the bracket 21 is connected to an open lever 34 made of a metal plate.
  • the open lever 34 is rotatable around a rotation axis 33 parallel to the rotation axes 23 and 31.
  • the open lever 34 has a pair of lever portions 34a and 34b.
  • the lever portion 34a extends from the rotary shaft 33 in the radial direction to the upper side in FIG. 3B, and the lever portion 34b extends from the rotary shaft 33 in the radial direction to the lower left side in FIG. 3B.
  • the lever portion 34a is disposed on the rotation locus of the pressing piece 32d that rotates in the counterclockwise rotation direction of FIG. When the bell crank 32 rotates in the counterclockwise direction of FIG. 3B, the lever portion 34a is pressed by the pressing piece 32d, so that the open lever 34 rotates in the clockwise direction.
  • the open lever 34 has a pressing piece 34c formed by bending the tip of the lever portion 34b. Further, the lift lever 16 is disposed on the rotation locus of the pressing piece 34c that rotates in the clockwise direction in FIG. Therefore, when the latch mechanism 12 is in the fully latched state, when the open lever 34 rotates in the clockwise direction of FIG. 4B, the lift lever 16 is pressed by the pressing piece 34c. As a result, the lift lever 16 rotates together with the pole 14 in the clockwise direction of FIG. 4A, and the detent of the latch 13 by the pole 14 is released in the manner described above. Then, the latch mechanism 12 switches to the unlatched state.
  • the bell crank 32 is held at the release operation initial position by being urged by the return spring 35 via the open lever 34.
  • the active lever pin 25 of the active lever 24 held in the initial position and the first lever portion 32a of the bell crank 32 are separated from each other by a predetermined angle ⁇ 2 around the rotation shaft 23. is doing. Accordingly, when the active lever 24 rotates from the initial position in the clockwise direction of FIG. 4B, the active lever 24 brings the active lever pin 25 into contact with the first lever portion 32a as shown in FIG. It runs idly by a predetermined angle ⁇ 2.
  • a state where the active lever 24 is not engaged with both the passive lever 26 and the bell crank 32 is referred to as a no-load state of the DC motor 11.
  • a door ECU (Electronic Control Unit) 40 installed in the vehicle 1 includes a micro controller (MCU).
  • the door ECU 40 is electrically connected to the door drive unit 7.
  • the door drive unit 7 includes a DC motor 71, an electromagnetic clutch 72, and a pair of pulse sensors 73.
  • the door ECU 40 drives the DC motor 71 to perform opening / closing control of the back door 3.
  • the door ECU 40 drives the electromagnetic clutch 72 to execute switching control for connecting or disconnecting power transmission between the DC motor 71 and the arm 8 (back door 3). Only when the back door 3 is electrically opened and closed, the power transmission between the DC motor 71 and the arm 8 is connected.
  • the door ECU 40 based on a pair of pulse signals with different phases output from both pulse sensors 73, the rotation direction, rotation amount and rotation speed of the DC motor 71, that is, the opening / closing position and opening / closing speed of the back door 3. Is detected. Based on the pulse signal from each pulse sensor 73, the door ECU 40 drives the DC motor 71 so that the opening / closing speed of the back door 3 matches the target opening / closing speed.
  • the door ECU 40 is also connected to a door lock drive unit 50 that electrically drives the door lock device 10.
  • the door lock drive unit 50 includes a DC motor 11, a pair of pulse sensors 51, a position switch 52, a half latch switch 53, and a full latch switch 54.
  • the door ECU 40 drives the DC motor 11 to rotate the pinion 22 and rotate the active lever 24.
  • the door ECU 40 performs the switching control of the latch mechanism 12 in the above-described manner.
  • the door ECU 40 determines the rotation direction, rotation amount (stroke) and rotation speed N of the DC motor 11, that is, rotation of the active lever 24, based on a pair of pulse signals with different phases output from both pulse sensors 51. Detect position and rotation speed.
  • the door ECU 40 detects that the active lever 24 is disposed at the initial position (neutral position) based on the detection signal output from the position switch 52. Based on the detection signal output from the half latch switch 53, the door ECU 40 detects that the latch mechanism 12 is in the half latch state, that is, that the latch 13 is disposed at the rotation position corresponding to the half latch state. To do. Based on the detection signal output from the full latch switch 54, the door ECU 40 detects that the latch mechanism 12 is in the fully latched state, that is, that the latch 13 is disposed at the rotation position corresponding to the fully latched state. . The door ECU 40 performs drive control of the DC motor 11 based on the pulse signals from the pulse sensors 51 and the detection signals from the switches 52 to 54.
  • the door ECU 40 is electrically connected to a close switch 41 and an open switch 42 installed on the back door 3.
  • the door ECU 40 is electrically connected to a receiver ECU 43 mounted on the vehicle 1.
  • an operation signal for closing the back door 3 is output from the close switch 41.
  • the door ECU 40 drives the DC motor 71 and the electromagnetic clutch 72 of the door drive unit 7 based on the operation signal from the close switch 41. Thereby, the back door 3 is closed from the open state. Further, based on the transition of the latch mechanism 12 to the half latch state, the DC motor 11 of the door lock drive unit 50 is driven, and the latch mechanism 12 is switched to the full latch state. When the full latch state of the latch mechanism 12 is detected by the full latch switch 54, the door ECU 40 stops driving the DC motor 11 of the door lock drive unit 50.
  • an operation signal for opening the back door 3 is output from the open switch 42.
  • the door ECU 40 drives the DC motor 11 of the door lock drive unit 50 based on the operation signal from the open switch 42 to switch the latch mechanism 12 in the full latch state or the half latch state to the unlatched state, and The DC motor 71 and the electromagnetic clutch 72 are driven to open the back door 3 in the openable state.
  • the receiver ECU 43 constitutes a wireless communication system together with a wireless remote controller 44 carried by the user.
  • the receiver ECU 43 receives a transmission signal for closing or opening the back door 3 from the wireless remote controller 44.
  • the receiver ECU 43 processes the transmission signal from the wireless remote controller 44 and then outputs the signal to the door ECU 40.
  • the door ECU 40 drives the DC motor 71 and the electromagnetic clutch 72 of the door drive unit 7 or the DC motor of the door lock drive unit 50 in order to close or open the back door 3 based on the processed transmission signal. 11 is driven.
  • FIG. 8 shows the relationship between the output torque T and the rotational speed N of a general DC motor (and AC motor). Specifically, the relationship between the output torque T and the rotational speed N at three motor temperatures when the terminal voltage of the motor is constant is shown.
  • the average rotational speed N in the state where the output torque T of the DC motor becomes zero, that is, in the no-load state is defined as NR.
  • the average rotation speed N in a state where the output torque T of the DC motor is zero is NH.
  • the rotational speed NH in the no-load state is larger than the rotational speed NR.
  • the absolute value of the change amount (increase amount) ⁇ T of the output torque T with respect to the change amount (decrease amount) ⁇ N starting from the rotational speed NH is smaller than the ratio SR and is a substantially constant ratio SH.
  • the average rotational speed N in a state where the output torque T of the DC motor is zero is defined as NL.
  • the rotational speed NL in the no-load state is smaller than the rotational speed NR.
  • the change amount (increase amount) ⁇ T absolute value of the output torque T with respect to the change amount (decrease amount) ⁇ N starting from the rotational speed NL is larger than the ratio SR and is a substantially constant ratio SL.
  • the motor temperature can be estimated based on the rotational speed N of the DC motor in a no-load state or a low-load state approximate to the no-load state. For example, if the rotational speed N of the DC motor in an unloaded state is larger than the rotational speed NR, it is estimated that the motor temperature is higher than the normal temperature. If the rotational speed N of the DC motor in the no-load state is smaller than the rotational speed NR, it is estimated that the motor temperature is lower than normal temperature.
  • the idle running section (corresponding to the predetermined angle ⁇ 1) is set in the stroke (rotation amount) St of the DC motor 11 correlated with the rotation position of the active lever 24.
  • This idle running section is detected based on the detection signal from the position switch 52 and the pulse signals from both pulse sensors 51.
  • the rotational speed No when the DC motor 11 is in an unloaded state is detected as the reference movement speed based on the pulse signals of both pulse sensors 51, and the motor temperature Tm is estimated based on the rotational speed No. (Motor temperature estimation unit).
  • the motor temperature Tm may be a temperature that changes continuously according to the rotational speed No, or may be a temperature that changes stepwise.
  • the absolute value of the change amount ⁇ T of the output torque T with respect to the predetermined change amount ⁇ N becomes small, and if the motor temperature is lower than the normal temperature, the output torque T with respect to the predetermined change amount ⁇ N.
  • the absolute value of the change amount ⁇ T increases. Therefore, the absolute value of the change amount of the rotational speed with reference to the rotational speed N in the no-load state, that is, the absolute value of the rotational speed difference that is a deviation between the rotational speed N in the no-load state and the current rotational speed N.
  • the absolute value of the change amount of the output torque based on the output torque T in the no-load state is larger and the load is larger when the motor temperature is lower than when the motor temperature is high.
  • the absolute value DN (
  • ) Is calculated as a change in moving speed (calculation means).
  • the absolute value DN of the rotational speed difference immediately after passing through the idling section is zero.
  • the absolute value DN of the rotational speed difference is the same, the output torque T in the no-load state and the current output torque T are lower when the motor temperature Tm is lower than when the motor temperature Tm is high. And the rotational torque difference (corresponding to the load) is estimated to be large.
  • the detection threshold Ta that is compared with the absolute value DN of the rotational speed difference in the detection of foreign object pinching is corrected so as to be smaller when the motor temperature Tm is higher than when the motor temperature Tm is high.
  • the absolute value DN of the same rotational speed difference is detected, correction is made so that the detection sensitivity of foreign object pinching becomes higher when the motor temperature is lower than when the motor temperature is high.
  • FIG. 9 shows the relationship between the ambient temperature (environment temperature) and the motor temperature corresponding to the energization time of the DC motor within the latest fixed time.
  • the ambient temperature matches the motor temperature.
  • the motor temperature becomes higher than the ambient temperature. This is because the DC motor is heated by energization. That is, the ambient temperature can be estimated by referring to the motor temperature and the energization time of the DC motor within the latest fixed time.
  • the energization time of the DC motor 11 within the latest fixed time is always detected. Then, the ambient temperature is estimated based on the motor temperature Tm estimated based on the rotational speed No in the no-load state of the DC motor 11 and the energization time of the DC motor 11 within the latest fixed time. For example, if the energization time of the DC motor 11 within the latest fixed time is shorter, the ambient temperature on the low temperature side closer to the estimated motor temperature Tm is estimated, and conversely, if the energization time is longer, it is estimated. The ambient temperature on the low temperature side farther from the motor temperature Tm is estimated.
  • the operation frequency CN of the DC motor 11 within the latest fixed time is always detected (energization time detection unit). Then, the ambient temperature Ts is estimated based on the estimated motor temperature Tm and the DC motor operation count CN within the latest fixed time (atmosphere temperature estimation unit). This is because the energization time when the DC motor 11 is operated once is substantially constant, and a substantially proportional relationship is established between the operation count CN of the DC motor 11 and the energization time.
  • the ambient temperature Ts on the low temperature side closer to the estimated motor temperature Tm is estimated, and conversely, if the number of operations CN is greater, An ambient temperature Ts on the low temperature side farther from the estimated motor temperature Tm is estimated.
  • the ambient temperature Ts may be a temperature that changes continuously according to the motor temperature Tm and the number of operations CN, or may be a temperature that changes stepwise. Alternatively, the ambient temperature Ts may be continuously estimated according to any one of the motor temperature Tm and the number of operations CN and stepwise according to the other. Based on the estimated ambient temperature Ts, the sliding resistance R when the back door 3 is closed is corrected.
  • FIG. 10 shows the stroke St of the DC motor 11 when the driving of the DC motor 11 is started with the transition of the latch mechanism 12 to the half latch state as a starting point and the latch mechanism 12 is switched to the full latch state, and the sliding resistance R at room temperature. Shows the relationship.
  • FIG. 10 shows the sliding resistance R (positive number) on the lower side of the vertical axis.
  • an idle running section is set in which the active lever pin 25 runs idle by a predetermined angle ⁇ 1 until the active lever pin 25 contacts the engaging piece 26c.
  • the stroke St of the DC motor 11 at which the idle running section ends is Sto. In the no-load state, the active lever 24 is not engaged with both the passive lever 26 and the bell crank 32.
  • the sliding resistance R is the weather strip sliding resistance Rw caused by the interference with the weather strip 4, the ASSY sliding resistance Ra caused by the operation of the door lock device 10, the operation of the gas damper 6, etc. It consists of a damper sliding resistance Rd caused by Each sliding resistance Rw, Ra, Rd is experimentally acquired for the stroke St of the DC motor 11. Each sliding resistance Rw, Ra, Rd occurs after the end of the idle running section.
  • the sliding resistance Rw, Ra, Rd by each member is corrected based on the ambient temperature Ts, and all the corrected sliding resistances are added to calculate the sliding resistance R that takes into account the temperature characteristics of each member.
  • Gw represents a temperature correction gain representing the temperature characteristic of the weather strip sliding resistance Rw
  • Ga represents a temperature correction gain representing the temperature characteristic of the ASSY sliding resistance Ra
  • Gd represents a temperature correction gain representing the temperature characteristic of the damper sliding resistance Rd.
  • the sliding resistance R is calculated according to the following formula (1).
  • Each temperature correction gain Gw, Ga, Gd is calculated from a map set and stored in advance based on the ambient temperature Ts estimated as described above.
  • the temperature correction gains Gw, Ga, Gd are basically calculated so as to increase as the estimated ambient temperature Ts increases, and to decrease as the ambient temperature Ts decreases. This is because the friction coefficient of each member increases and the sliding resistance increases as the ambient temperature increases.
  • the map relating to the calculation of each temperature correction gain Gw, Ga, Gd is a map that changes stepwise even if each temperature correction gain changes continuously according to the estimated ambient temperature Ts. May be.
  • the reference rotational speed difference V is calculated according to the following equation (2) using a coefficient K representing the motor rotational speed per load (sliding resistance). Thereby, the reference rotational speed difference V is calculated following the sliding resistance R in consideration of the temperature characteristics of each member.
  • Reference rotational speed difference V K ⁇ R (2)
  • the reference rotational speed difference V represents the amount of variation from the rotational speed No that is expected to correspond to the sliding resistance R (load) taking into account the temperature characteristics of each member, that is, the absolute value DN of the rotational speed difference.
  • FIG. 11 shows the relationship between the stroke St of the DC motor 11 and the reference rotational speed difference V calculated in the above-described manner.
  • FIG. 11 shows a reference rotational speed difference V in a normal temperature state, a low temperature state that is lower than the normal temperature state, and a high temperature state that is higher than the normal temperature state.
  • FIG. 11 also shows the reference rotational speed difference V (positive number) on the lower side of the vertical axis.
  • the reference rotational speed difference V that follows the sliding resistance R is calculated so as to be smaller in the low temperature state than in the normal temperature state, and to be large in the high temperature state.
  • the reference rotational speed difference Vm that takes into account the temperature characteristics of the DC motor 11 is calculated by correcting the reference rotational speed difference V based on the motor temperature Tm. That is, when the temperature correction gain representing the temperature characteristic of the DC motor 11 is represented by Gm, the reference rotational speed difference Vm is calculated according to the following equation (3).
  • the temperature correction gain Gm is calculated from a preset map based on the estimated motor temperature Tm.
  • the temperature correction gain Gm is basically calculated so as to increase as the estimated motor temperature Tm increases, and to decrease as the motor temperature Tm decreases. This is to absorb fluctuations in the rotational torque difference (corresponding to the load) according to the motor temperature Tm.
  • the map relating to the calculation of the temperature correction gain Gm may be a map in which the temperature correction gain Gm changes continuously or in a stepwise change depending on the estimated motor temperature Tm.
  • FIG. 12 shows the relationship between the stroke St of the DC motor 11 and the reference rotational speed difference Vm calculated in the above-described manner.
  • FIG. 12 shows the reference rotational speed difference Vm in a normal temperature state, a low temperature state that is lower than the normal temperature state, and a high temperature state that is higher than the normal temperature state.
  • FIG. 12 also shows the reference rotational speed difference Vm (positive number) on the lower side of the vertical axis.
  • the reference rotational speed difference Vm is calculated so as to be smaller in the low temperature state than in the normal temperature state, and to be large in the high temperature state.
  • the temperature correction gain Gm related to the correction of the reference rotational speed difference V is calculated based on the motor temperature Tm.
  • the reference rotational speed difference V calculated according to the equation (2) is a low temperature state
  • the reference rotational speed difference Vm may be calculated as a normal temperature state or a high temperature state. This is because the ambient temperature Ts is obtained by correcting the motor temperature Tm in accordance with the number of operations CN, and the motor temperature Tm can take any high temperature side higher than the ambient temperature Ts.
  • the detection threshold value Ta related to the pinching determination is calculated according to the following expression (4) based on the corrected reference rotational speed difference Vm and the pinching determination load FL.
  • Detection threshold Ta Vm + (K ⁇ FL) ⁇ Gm (4)
  • the pinching determination load FL correlates with the pinching determination torque, and is set to a predetermined value based on the load at the time of pinching occurrence. That is, when calculating the detection threshold Ta, the temperature characteristic of the DC motor 11 is also reflected in the load (FL) at the time of occurrence of pinching.
  • FIG. 13 shows the relationship between the stroke St of the DC motor 11 and the detection threshold value Ta calculated in the above-described manner.
  • FIG. 13 shows the detection threshold value Ta in the low temperature state and the high temperature state as a whole. As apparent from FIG. 13, the detection threshold Ta in the low temperature state is calculated to be smaller than the detection threshold Ta in the high temperature state.
  • the thick solid line in FIG. 13 shows the transition of the absolute value DN of the rotational speed difference when the pinching occurs.
  • the detection threshold value Ta in the low temperature state pinching is detected at a stroke StL where the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta.
  • the detection threshold value Ta in the high temperature state pinching is detected at a stroke StH (> StL) where the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta.
  • the detection threshold Ta in the low temperature state is calculated to be smaller than the detection threshold Ta in the high temperature state, so that even if the absolute value DN of the rotational speed difference is the same, the low temperature state is more likely to trap foreign objects.
  • the detection sensitivity of is high.
  • FIGS. 14 and 15 indicate that the latch mechanism 12 is in a half latch state based on a detection signal output from the half latch switch 53 when the back door 3 is closed manually or electrically. It is activated by detecting it.
  • the door ECU 40 starts the operation of the DC motor 11 in order to place the latch mechanism 12 in a fully latched state (step S1).
  • the door ECU 40 detects the rotational speed No of the DC motor 11 during the idle running period until the stroke St of the DC motor 11 reaches the stroke Sto (step S2).
  • the door ECU 40 estimates the motor temperature Tm based on the rotational speed No when the DC motor 11 is in an unloaded state (step S3).
  • the door ECU 40 estimates the ambient temperature Ts based on the motor temperature Tm and the number of operations CN of the DC motor 11 within the latest fixed time (step S4).
  • the door ECU 40 calculates a temperature correction gain Gm based on the estimated motor temperature Tm (step S5).
  • the door ECU 40 calculates temperature correction gains Gw, Ga, Gd based on the estimated ambient temperature Ts (step S6).
  • the door ECU 40 calculates the detection threshold Ta according to the equations (1) to (4) (step S7).
  • the detection threshold Ta when all of the temperature correction gains Gw, Ga, Gd, and Gm are set to “1” is a sliding resistance that is set in advance when the back door 3 is closed (sliding resistance in a normal temperature state).
  • the door ECU 40 determines whether or not the idling period has ended (step S8).
  • the door ECU 40 waits for the end of the idling period and calculates the absolute value DN of the rotational speed difference (step S9: calculation unit).
  • the door ECU 40 determines whether or not the absolute value DN of the rotational speed difference exceeds the detection threshold Ta (step S10: pinching detection unit). If the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta, the door ECU 40 determines that a load at the time of occurrence of pinching has been detected, and executes a well-known pinching countermeasure process, that is, stopping and reversing the DC motor 11. (Step S11). Then, the door ECU 40 ends the series of processes.
  • step S12 determines whether or not the transition to the full latch state has been completed. If the transition to the full latch state has not been completed (NO in step S12), the door ECU 40 returns to step S9 and repeats the series of processes described above. That is, the above-described process for detecting pinching is repeated until the transition to the full latch state is completed after the idle running period ends.
  • step S12 the door ECU 40 stops the operation of the DC motor 11 (step S13). Then, the door ECU 40 reverses the DC motor 11 so as to return the active lever 24 to the initial position, and stops the DC motor 11 based on the return of the active lever 24 to the initial position (step S14). Then, the door ECU 40 ends the series of processes.
  • the detection threshold value Ta is corrected by the door ECU 40 so that the detection sensitivity of foreign object pinching is higher when the motor temperature Tm is lower than when the motor temperature Tm is high. Thereby, the detection accuracy of foreign object pinching is further improved. Further, the detection threshold Ta is corrected by the door ECU 40 so that the detection sensitivity of foreign object pinching is higher when the ambient temperature Ts is lower than when the ambient temperature Ts is high. Thereby, the detection accuracy of foreign object pinching is further improved.
  • the motor temperature Tm and the ambient temperature Ts are respectively used for correcting the detection threshold Ta related to the temperature characteristics of the DC motor 11 and correcting the detection threshold Ta related to the temperature characteristics of the sliding resistance R.
  • the door ECU 40 may detect the operation frequency CN of the DC motor 11 within a predetermined time in the estimation of the ambient temperature Ts. For this reason, compared with the case where the energization time of the DC motor 11 is detected and integrated, the calculation load can be reduced.
  • the above embodiment may be modified as follows.
  • the energization time of the DC motor 11 within the latest fixed time may be used for the estimation of the ambient temperature Ts.
  • the dead zone where the temperature correction gain Gm is constant may be set to a predetermined range of the motor temperature Tm that is intermediate.
  • the dead zone where the temperature correction gains Gw, Ga, and Gd are constant is set to the ambient temperature Ts within a predetermined range that is intermediate. May be.
  • the detection time of the rotational speed No when the DC motor 11 is in a no-load state is arbitrary. For example, when the rotation speed N is expected to be stabilized at the end of the idle section or when the rotation speed N is sequentially detected and the deviation between the previous rotation speed and the current rotation speed falls within a certain range, The speed may be detected.
  • the position switch 52 for detecting the initial position (neutral position) of the active lever 24 may be substituted with the both pulse sensors 51. Specifically, based on the rotation position of the active lever 24 immediately after the transition to the unlatched state, the pulse signals output from both pulse sensors 51 are set to the number of pulses set in advance corresponding to the initial position of the active lever 24. The initial position may be detected by counting.
  • the idle running section set in the active lever 24 or the DC motor 11 may be until the passive lever 26 contacts the driven convex portion 13f of the latch 13. That is, the idle running section of the DC motor 11 may be set to an arbitrary rotation position (stroke) where the latch 13 does not operate. In this case, since the rotational speed N of the DC motor 11 changes in two stages, it is more preferable to detect the rotational speed No using a longer idle section.
  • the rotational speed difference (negative number) may be used for estimating the load when the back door 3 is closed. In this case, it is only necessary that the polarity of the detection threshold value related to the detection of foreign object pinching, the rotational speed difference at the time of pinching detection, and the magnitude relationship between the detection threshold values are matched.
  • the moving speed of the back door 3 is detected as the rotational speed of the DC motor 11, the moving speed of the back door 3 may be directly detected.
  • the door lock drive unit 50 is driven in order to detect the trapping of foreign matter based on the rotational speed difference (DN) of the DC motor 71.
  • the detection temperature threshold used for detection of a foreign object may be changed by sharing the ambient temperature information estimated by the control.
  • the idle running period in which the electromagnetic clutch 72 is in the disconnected state May be used to detect the rotational speed (No) in the no-load state and estimate the motor temperature and the ambient temperature according to the present embodiment.
  • the door lock drive unit 50 may be omitted as long as the DC motor 71 can generate a sufficient driving force to switch the door lock device 10 to the fully latched state.
  • the door release function for switching the door lock device 10 from the fully latched state to the unlatched state may be omitted.
  • the opening / closing body may be a swing door, a sliding door, a trunk lid, a sunroof, a window glass, or the like.
  • a drive mechanism that mechanically links the opening / closing body and the motor is arbitrary. For this reason, a link mechanism, a cam mechanism, a gear mechanism, a cable (rope, belt) transmission mechanism, a screw mechanism, a combination thereof, or the like may be used as long as the idle period or idle period of the motor is set. .
  • the movement speed change used to determine whether the foreign object is caught is a movement speed that is a deviation between the movement speed of the opening / closing body in a predetermined section or a reference movement speed determined by a preset movement speed and the current movement speed detected thereafter. Any one of the difference, the integrated value of the movement speed difference, and the movement speed change amount per unit time or unit movement amount may be used.
  • the vehicle opening / closing body drive control device may be a device that detects the trapping of a foreign object when the opening / closing body is driven to open.

Abstract

 A DC motor drives the backdoor so as to close after an idle running period has elapsed. A door ECU calculates an absolute value (DN) of the difference in rotational speed, which is a deviation between the rotational speed of the DC motor detected during the idle running period, and the current rotational speed of the DC motor detected thereafter. The door ECU compares the absolute value (DN) of the rotational speed difference to a detection threshold (Ta) and detects whether or not a foreign object is stuck in between. The door ECU estimates the temperature of the DC motor on the basis of the rotational speed of the DC motor detected during the idle running period. Also, the door ECU estimates the environmental temperature on the basis of the temperature of the DC motor and the number of times the DC motor has been run during a given period. The door ECU corrects the detection threshold (Ta) such that the detection sensitivity to stuck foreign objects is greater when the estimated temperature of the DC motor or environmental temperature is lower, than when the estimated temperature or the environmental temperature is higher.

Description

車両用開閉体駆動制御装置Opening / closing member drive control device for vehicle
 本発明は、開閉体の駆動時における異物の挟み込みを検出可能な車両用開閉体駆動制御装置に関する。 The present invention relates to a vehicle opening / closing body drive control device capable of detecting the inclusion of a foreign object during driving of the opening / closing body.
 この種の車両用開閉体駆動制御装置が、特許文献1,2により提案されている。特許文献1に開示の装置は、DCモータの駆動力によるドアガラスの昇降中、異物の挟み込みを検出した場合に、モータの駆動を停止又は反転させる挟み込み回避処理を行う。この装置は、回転数検出手段、回転トルク差演算手段、判別手段及び指示手段を有している。回転数検出手段は、モータの回転数を検出する。回転トルク差演算手段は、回転数検出手段が検出した無負荷状態及び負荷状態のDCモータの回転数差から、DCモータの回転トルク差を演算する。判別手段は、回転トルク差演算手段の演算結果に基づき、所定の回転トルク差が生じたか否かを判別する。判別手段により所定の回転トルク差が生じたと判別された場合、指示手段は、挟み込み回避処理の実行を指示する。この場合、異物の挟み込みの有無を判断すべくDCモータの回転数の低下度合いを判別するため、回転数と、経験的又は実験的に求めた閾値とを比較するのではなく、実際に異物が挟み込まれたときのDCモータの回転トルク差が演算される。このように、DCモータの回転トルク差が直接取得されるため、組付状態等に拘らず、異物の挟み込みが判断可能である。 Patent Documents 1 and 2 propose this type of vehicle opening / closing body drive control device. The apparatus disclosed in Patent Document 1 performs a pinching avoidance process for stopping or reversing the driving of the motor when detecting the pinching of a foreign object during the raising / lowering of the door glass by the driving force of the DC motor. This apparatus has a rotation speed detection means, a rotation torque difference calculation means, a determination means, and an instruction means. The rotation speed detection means detects the rotation speed of the motor. The rotational torque difference calculating means calculates the rotational torque difference of the DC motor from the rotational speed difference of the DC motor in the unloaded state and the loaded state detected by the rotational speed detecting means. The discriminating unit discriminates whether or not a predetermined rotational torque difference has occurred based on the calculation result of the rotational torque difference calculating unit. When it is determined by the determination means that a predetermined rotational torque difference has occurred, the instruction means instructs execution of the pinching avoidance process. In this case, in order to determine the degree of decrease in the rotational speed of the DC motor in order to determine whether or not foreign matter is caught, the rotational speed is not compared with an empirically or experimentally determined threshold value, but the foreign matter is actually The rotational torque difference of the DC motor when sandwiched is calculated. In this way, since the rotational torque difference of the DC motor is directly acquired, it is possible to determine whether a foreign object is caught regardless of the assembled state.
 特許文献2に開示の装置は、モータの回転速度差と閾値とを比較して、異物の挟み込みを検出する。回転速度差は、半ドア状態から全閉状態までのバックドアの閉駆動時におけるモータの空走区間での回転速度及びその後に検出された現在の回転速度の偏差である。特に、特許文献2では、空走区間でのモータの回転速度から推定したモータ温度により閾値を補正して、挟み込みの検出感度を変更することが提案されている。これにより、モータの温度特性の影響を抑制して、異物の挟み込みを検出できる。また、推定した温度によりバックドアの閉駆動時の予め設定された摺動抵抗(負荷)を補正すると共に、摺動抵抗に相関する閾値を補正することも提案されている。これにより、摺動抵抗に係る各部材の温度特性の影響を抑制して、異物の挟み込みを検出できる。 The apparatus disclosed in Patent Document 2 compares the difference in rotational speed of the motor with a threshold value to detect foreign object pinching. The rotational speed difference is a deviation between the rotational speed in the idle running section of the motor when the back door is driven to be closed from the half door state to the fully closed state and the current rotational speed detected thereafter. In particular, Patent Document 2 proposes that the detection sensitivity for pinching is changed by correcting the threshold value based on the motor temperature estimated from the rotational speed of the motor in the idle running section. Thereby, the influence of the temperature characteristic of the motor can be suppressed, and the foreign object can be detected. It has also been proposed to correct a preset sliding resistance (load) when the back door is closed and to correct a threshold value correlated with the sliding resistance based on the estimated temperature. Thereby, the influence of the temperature characteristic of each member relating to the sliding resistance can be suppressed, and foreign object pinching can be detected.
 前述のように、特許文献2では、モータ温度として推定された温度によって、予め設定された摺動抵抗が補正される。一方、摺動抵抗に係る各部材の温度特性は、雰囲気温度によって決定される。従って、モータ温度と雰囲気温度との差が顕著になると、挟み込みの検出精度が低下する。 As described above, in Patent Document 2, the preset sliding resistance is corrected by the temperature estimated as the motor temperature. On the other hand, the temperature characteristic of each member relating to sliding resistance is determined by the ambient temperature. Therefore, when the difference between the motor temperature and the ambient temperature becomes significant, the pinching detection accuracy decreases.
特許第3411383号公報Japanese Patent No. 3411383 特開2010-248884号公報JP 2010-24884 A
 本発明の目的は、挟み込みの検出精度がより一層向上する車両用開閉体駆動制御装置を提供することにある。 An object of the present invention is to provide a vehicle opening / closing body drive control device in which pinching detection accuracy is further improved.
 上記課題を解決するため、本発明の第一の態様によれば、空走期間又は空走区間を経てから開閉体を駆動するモータと、所定区間での開閉体の移動速度又は予め設定された移動速度により定める基準移動速度とその後に検出された現在の移動速度との偏差である移動速度差、移動速度差の積算値、及び所定時間内の移動速度変化量のいずれか一つである移動速度変化を演算する演算部と、演算された移動速度変化と開閉体の駆動時の予め設定された摺動抵抗に相関する閾値とを比較して異物の挟み込みを検出する挟み込み検出部と、空走期間又は空走区間にて検出されたモータの回転速度に基づきモータの温度を推定するモータ温度推定部と、一定時間内でのモータの通電時間を検出する通電時間検出部と、モータ温度推定部により推定されたモータの温度及び通電時間検出部により検出された通電時間に基づき雰囲気の温度を推定する雰囲気温度推定部と、モータ温度推定部により推定されたモータの温度又は雰囲気温度推定部により推定された雰囲気の温度が高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように、閾値を補正する補正部とを備える車両用開閉体駆動制御装置が提供される。 In order to solve the above-mentioned problem, according to the first aspect of the present invention, the motor that drives the opening / closing body after the idle running period or the idle running section, and the moving speed of the opening / closing body in a predetermined zone or a preset value are set. Movement that is one of a movement speed difference that is a deviation between a reference movement speed determined by the movement speed and a current movement speed that is detected thereafter, an integrated value of the movement speed difference, and a movement speed change amount within a predetermined time. A calculation unit that calculates a speed change, a pinch detection unit that detects a pinch of a foreign object by comparing the calculated movement speed change and a threshold value that correlates to a preset sliding resistance when driving the opening / closing body, A motor temperature estimation unit that estimates the motor temperature based on the rotation speed of the motor detected during the running period or the idle running period, an energization time detection unit that detects the energization time of the motor within a certain time, and a motor temperature estimation Estimated by The ambient temperature estimation unit for estimating the ambient temperature based on the motor temperature and the energization time detected by the energization time detection unit, and the motor temperature estimated by the motor temperature estimation unit or the atmosphere estimated by the ambient temperature estimation unit An opening / closing body drive control device for a vehicle is provided that includes a correction unit that corrects a threshold value so that the detection sensitivity of foreign object pinching becomes higher when the temperature of the door is lower than when the temperature is higher.
 この構成によれば、モータ温度推定部により、空走期間又は空走区間にて検出されたモータの回転速度に基づいて、モータの温度が推定される。これは、無負荷状態である空走期間又は空走区間では、モータの温度が高いときよりも低いときの方が、モータの回転速度が小さくなる特性を有するためである。また、雰囲気温度推定部により、推定されたモータの温度及び検出された通電時間に基づいて、雰囲気の温度が推定される。これは、一定時間内でのモータの通電時間が短いときよりも長いときの方が、モータの温度が雰囲気の温度に対して高くなる特性を有するためである。そして、補正部により、推定されたモータの温度が高いときよりも低いときの方が、あるいは、推定された雰囲気の温度が高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように、閾値が補正される。 According to this configuration, the motor temperature estimation unit estimates the motor temperature based on the rotational speed of the motor detected during the idling period or idling section. This is because in the idle running period or idle running section in which there is no load, there is a characteristic that the rotational speed of the motor becomes smaller when the motor temperature is lower than when the motor temperature is high. Further, the ambient temperature estimation unit estimates the ambient temperature based on the estimated motor temperature and the detected energization time. This is because the motor has a characteristic that the temperature of the motor becomes higher than the temperature of the atmosphere when the energization time of the motor within a certain time is longer than when the energization time is short. And, when the estimated temperature of the motor is lower than when the estimated temperature is high, or when the estimated temperature of the atmosphere is lower than when the estimated temperature is high, the detection sensitivity of foreign object pinching is higher. Thus, the threshold value is corrected.
 一般に、モータの温度が相対的に高ければ、モータの回転速度の変化量(減少量)に対する出力トルクの変化量(増加量)は相対的に小さくなり、反対に、モータの温度が相対的に低ければ、モータの回転速度の所定の変化量に対する出力トルクの変化量は相対的に大きくなる。つまり、モータの回転速度の変化量に相関する移動速度変化は、モータの温度が高いほど異物の挟み込みの検出感度が高くなるように、反対に、モータの温度が低いほど異物の挟み込みの検出感度が低くなるように演算される。これに対し、補正部により、推定されたモータの温度が高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように、閾値が補正される。これにより、異物の挟み込みの検出精度が、より一層向上する。 In general, when the motor temperature is relatively high, the output torque change amount (increase amount) relative to the motor rotation speed change amount (decrease amount) becomes relatively small. If it is low, the change amount of the output torque with respect to the predetermined change amount of the rotation speed of the motor becomes relatively large. In other words, the change in the moving speed correlated with the amount of change in the rotational speed of the motor is such that the higher the motor temperature, the higher the detection sensitivity of foreign objects, and the lower the motor temperature, the lower the detection sensitivity of foreign objects. Is calculated to be low. On the other hand, the threshold value is corrected by the correction unit so that the detection sensitivity of foreign object pinching is higher when the estimated motor temperature is lower than when the estimated motor temperature is high. Thereby, the detection accuracy of foreign object pinching is further improved.
 また、予め設定された摺動抵抗は、雰囲気の温度が相対的に高ければ、本来の摺動抵抗よりも大きくなり、反対に、雰囲気の温度が相対的に低ければ、本来の摺動抵抗よりも小さくなる。つまり、予め設定された摺動抵抗に相関する閾値は、雰囲気の温度が高いほど異物の挟み込みの検出感度を高くし、反対に、雰囲気の温度が低いほど異物の挟み込みの検出感度を低くする。これに対し、補正部により、推定された雰囲気の温度が高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように、閾値が補正される。これにより、異物の挟み込みの検出精度が、より一層向上する。 Also, the preset sliding resistance is larger than the original sliding resistance if the ambient temperature is relatively high, and conversely if the ambient temperature is relatively low, it is greater than the original sliding resistance. Becomes smaller. That is, the threshold value correlating with the preset sliding resistance increases the detection sensitivity of the foreign object as the temperature of the atmosphere is higher, and conversely decreases the detection sensitivity of the foreign object as the temperature of the atmosphere is lower. On the other hand, the threshold value is corrected by the correction unit so that the detection sensitivity of foreign object pinching is higher when the estimated temperature of the atmosphere is lower than when the temperature of the estimated atmosphere is high. Thereby, the detection accuracy of foreign object pinching is further improved.
 特に、モータの温度特性に係る閾値の補正及び摺動抵抗の温度特性に係る閾値の補正に、推定されたモータの温度及び推定された雰囲気の温度がそれぞれ利用される。これにより、モータの温度と雰囲気の温度との差が顕著であっても、異物の挟み込みの検出精度の低下を抑えることができる。 Especially, the estimated motor temperature and the estimated atmosphere temperature are used for correction of the threshold value related to the temperature characteristic of the motor and correction of the threshold value related to the temperature characteristic of the sliding resistance, respectively. Thereby, even if the difference between the temperature of the motor and the temperature of the atmosphere is significant, it is possible to suppress a decrease in detection accuracy of foreign object pinching.
 上記の車両用開閉体駆動制御装置について、通電時間検出部は、通電時間として、一定時間内でのモータの作動回数を検出することが好ましい。
 この構成によれば、通電時間検出部は、一定時間内でのモータの作動回数を検出すればよい。このため、通電時間を検出し積算する場合に比べて、演算負荷を軽減することができる。
In the above vehicle opening / closing body drive control device, it is preferable that the energization time detection unit detects the number of operation times of the motor within a certain time as the energization time.
According to this configuration, the energization time detection unit may detect the number of times the motor is operated within a certain time. For this reason, it is possible to reduce the calculation load as compared with the case where the energization time is detected and integrated.
 上記の車両用開閉体駆動制御装置について、補正部が閾値を補正する補正量は、雰囲気の温度が高くなるに従い大きくなることが好ましい。
 上記の車両用開閉体駆動制御装置について、補正部が閾値を補正する補正量は、モータの温度が高くなるに従い大きくなることが好ましい。
In the vehicle opening / closing body drive control device described above, the correction amount that the correction unit corrects the threshold value is preferably increased as the temperature of the atmosphere increases.
In the vehicle opening / closing body drive control device described above, the correction amount that the correction unit corrects the threshold value preferably increases as the motor temperature increases.
 上記課題を解決するため、本発明の第二の態様によれば、車両ドアを全閉状態で保持するフルラッチ状態、車両ドアを半ドア状態で保持するハーフラッチ状態、及び車両ドアを保持しないアンラッチ状態に切り替え自在なラッチ機構と、ラッチ機構に連係される閉側伝達部材と、空走区間を経てから閉側伝達部材を介してラッチ機構に駆動力を伝達しハーフラッチ状態にあるラッチ機構をフルラッチ状態に切替えるように切替駆動されるモータと、モータの回転速度を検出する回転速度検出部と、空走区間にて検出されたモータの回転速度とその後に検出された現在の回転速度との偏差である回転速度差を演算する演算部と、演算された回転速度差とモータの切替駆動時の摺動抵抗に相関する予め設定された閾値とを比較して異物の挟み込みを検出する挟み込み検出部と、空走区間にて検出されたモータの回転速度に基づきモータの温度を推定するモータ温度推定部と、一定時間内でのモータの通電時間を検出する通電時間検出部と、モータ温度推定部により推定されたモータの温度及び通電時間検出部により検出された通電時間に基づき雰囲気の温度を推定する雰囲気温度推定部と、モータ温度推定部により推定されたモータの温度又は雰囲気温度推定部により推定された雰囲気の温度が高いときよりも低いときの方が挟み込み検出部による異物の挟み込みの検出感度が高くなるように閾値を補正する補正部とを備える車両用ドアロック装置が提供される。 In order to solve the above problems, according to the second aspect of the present invention, a full latch state in which the vehicle door is held in a fully closed state, a half latch state in which the vehicle door is held in a half door state, and an unlatching that does not hold the vehicle door. A latch mechanism that can be switched to a state; a closed-side transmission member that is linked to the latch mechanism; and a latch mechanism that is in a half-latch state by transmitting driving force to the latch mechanism via the closed-side transmission member after passing through the idle running section. A motor that is switched to be switched to the full latch state, a rotational speed detection unit that detects the rotational speed of the motor, the rotational speed of the motor detected in the idle running section, and the current rotational speed detected thereafter The calculation unit that calculates the rotational speed difference, which is a deviation, and the calculated rotational speed difference are compared with a preset threshold value that correlates with the sliding resistance when the motor is switched, and foreign matter is caught. Pinching detection unit for detecting motor, motor temperature estimation unit for estimating motor temperature based on motor rotation speed detected in idle running section, and energization time detection unit for detecting motor energization time within a certain time An atmosphere temperature estimation unit that estimates the temperature of the atmosphere based on the motor temperature estimated by the motor temperature estimation unit and the energization time detected by the energization time detection unit, and the motor temperature estimated by the motor temperature estimation unit or A vehicle door lock device including a correction unit that corrects a threshold value so that the detection sensitivity of foreign object pinching by the pinch detection unit is higher when the temperature of the atmosphere estimated by the atmosphere temperature estimation unit is lower than when the temperature of the atmosphere is high Is provided.
本発明の車両用開閉体駆動制御装置が適用される車両の後部を示す斜視図。The perspective view which shows the rear part of the vehicle to which the opening / closing body drive control device for vehicles of this invention is applied. 車両の後部を示す側面図。The side view which shows the rear part of a vehicle. (a)はアンラッチ状態の装置の側面図、(b)はアンラッチ状態の装置の正面図。(A) is a side view of the device in an unlatched state, and (b) is a front view of the device in an unlatched state. (a)はフルラッチ状態の装置の側面図、(b)はフルラッチ状態の装置の正面図。(A) is a side view of the device in the fully latched state, and (b) is a front view of the device in the fully latched state. 装置の動作を示す正面図。The front view which shows operation | movement of an apparatus. 装置の動作を示す正面図。The front view which shows operation | movement of an apparatus. 装置の電気的構成を示すブロック図。The block diagram which shows the electric constitution of an apparatus. 出力トルクと回転速度との関係を示すグラフ。The graph which shows the relationship between output torque and rotational speed. モータ温度と雰囲気温度との関係を示すグラフ。The graph which shows the relationship between motor temperature and atmospheric temperature. DCモータのストロークに対する各種摺動抵抗の推移を示すグラフ。The graph which shows transition of various sliding resistance with respect to the stroke of DC motor. 雰囲気温度の各種温度でのDCモータのストロークに対する基準回転速度差の推移を示すグラフ。The graph which shows transition of the reference | standard rotation speed difference with respect to the stroke of a DC motor in various temperature of atmospheric temperature. モータ温度の各種温度でのDCモータのストロークに対する基準回転速度差の推移を示すグラフ。The graph which shows transition of the reference | standard rotation speed difference with respect to the stroke of a DC motor in various temperatures of motor temperature. 各種温度でのDCモータのストロークに対する検知閾値の推移を示すグラフ。The graph which shows transition of the detection threshold with respect to the stroke of DC motor in various temperatures. ドアロック駆動ユニットの制御態様を示すフローチャート。The flowchart which shows the control aspect of a door lock drive unit. ドアロック駆動ユニットの制御態様を示すフローチャート。The flowchart which shows the control aspect of a door lock drive unit.
 以下、本発明の車両用開閉体駆動制御装置を具体化した一実施形態について図1
~図15を参照して説明する。
 図1及び図2に示すように、車両1のボデー2の後部には、開口2aが形成されている。開口2aの全周には、シール用のウェザストリップ4が装着されている。ボデー2の開口2aの上部には、ドアヒンジ2bを介して、開閉体としてのバックドア3が取着されている。バックドア3がドアヒンジ2bを中心に上方に押し上げられることで、ボデー2の開口2aが開放される。バックドア3の押し上げは、ガスダンパ6のガス反力によってアシストされる。
FIG. 1 shows an embodiment of a vehicle opening / closing body drive control device according to the present invention.
Description will be made with reference to FIG.
As shown in FIGS. 1 and 2, an opening 2 a is formed in the rear part of the body 2 of the vehicle 1. A weather strip 4 for sealing is mounted on the entire periphery of the opening 2a. A back door 3 as an opening / closing body is attached to an upper portion of the opening 2a of the body 2 via a door hinge 2b. The back door 3 is pushed upward about the door hinge 2b, whereby the opening 2a of the body 2 is opened. The pushing up of the back door 3 is assisted by the gas reaction force of the gas damper 6.
 ボデー2の後部には、ドア駆動ユニット7が設置されている。ドア駆動ユニット7は、DCモータ71を備えている。ドア駆動ユニット7の出力軸7aには、長尺状のアーム8が連結されている。アーム8の先端は、棒状のロッド9の下端に対して回転自在に連結されている。ロッド9の上端は、バックドア3に対して回転自在に連結されている。従って、ドア駆動ユニット7のDCモータ71が駆動すると、出力軸7aと共にアーム8が回動し、ロッド9が押されたり、引っ張られたりする。これにより、バックドア3が、ボデー2に支持された状態で開閉される。バックドア3の内側の先端には、ドアロック装置10が設置されている。ドアロック装置10は、モータとしてのDCモータ11を備えている。 A door drive unit 7 is installed at the rear of the body 2. The door drive unit 7 includes a DC motor 71. A long arm 8 is connected to the output shaft 7 a of the door drive unit 7. The tip of the arm 8 is rotatably connected to the lower end of the rod-shaped rod 9. The upper end of the rod 9 is rotatably connected to the back door 3. Therefore, when the DC motor 71 of the door drive unit 7 is driven, the arm 8 rotates together with the output shaft 7a, and the rod 9 is pushed or pulled. As a result, the back door 3 is opened and closed while being supported by the body 2. A door lock device 10 is installed at the inner end of the back door 3. The door lock device 10 includes a DC motor 11 as a motor.
 図3(a)(b)に示すように、ドアロック装置10は、ラッチ機構12を備えている。ラッチ機構12は、図示しないベースプレートを介してバックドア3に支持されている。ラッチ機構12は、ラッチ13及びポール14を備えている。ラッチ13は、ベースプレートに対して、回転軸12a周りに回動自在に連結されている。ポール14は、ベースプレートに対して、回転軸12b周りに回動自在に連結されている。ボデー2の開口2aの下部には、U字状のストライカ5が固定されている。ラッチ13は、ストライカ5を向いてかつストライカ5に対して係脱可能に配置されている。 3 (a) and 3 (b), the door lock device 10 includes a latch mechanism 12. The latch mechanism 12 is supported by the back door 3 via a base plate (not shown). The latch mechanism 12 includes a latch 13 and a pole 14. The latch 13 is connected to the base plate so as to be rotatable around the rotation shaft 12a. The pole 14 is connected to the base plate so as to be rotatable around the rotation shaft 12b. A U-shaped striker 5 is fixed to the lower part of the opening 2 a of the body 2. The latch 13 is disposed so as to face the striker 5 and be detachable from the striker 5.
 ラッチ13は、U字状に形成され、係合凹部13aを有している。ラッチ13は、係合凹部13aの両側の一方に第1爪部13bを有し、他方に第2爪部13cを有している。第1爪部13bの先端において係合凹部13aの反対側には、第1係合部13dが形成されている。第2爪部13cの先端において係合凹部13a近傍には、第2係合部13eが形成されている。ラッチ13は、係合凹部13aと反対側に従動凸部13fを有している。ラッチ付勢ばねの一端はベースプレートに保持され、ラッチ付勢ばねの他端はラッチ13に係止されている。これにより、ラッチ13は、図3(a)の時計回転方向に付勢されている。また、ベースプレートに設置された図示しないラッチストッパに第1爪部13bの対向面13gが当接することで、ラッチ13の時計回転方向への回動が規制されると共に、ラッチ13が図3(a)に示す所定の回動位置に保持される。 The latch 13 is formed in a U shape and has an engagement recess 13a. The latch 13 has a first claw portion 13b on one side of the engaging recess 13a and a second claw portion 13c on the other side. A first engagement portion 13d is formed on the opposite side of the engagement recess 13a at the tip of the first claw portion 13b. A second engagement portion 13e is formed in the vicinity of the engagement recess 13a at the tip of the second claw portion 13c. The latch 13 has a driven convex portion 13f opposite to the engaging concave portion 13a. One end of the latch biasing spring is held by the base plate, and the other end of the latch biasing spring is locked to the latch 13. As a result, the latch 13 is biased in the clockwise direction of FIG. Further, when the opposed surface 13g of the first claw portion 13b comes into contact with a latch stopper (not shown) installed on the base plate, the clockwise rotation of the latch 13 is restricted, and the latch 13 is shown in FIG. ) Is held at a predetermined rotation position.
 ポール14は、回転軸12bを介してリフトレバー16と連結されている。ポール14は、回転軸12bを中心に、リフトレバー16と共に回動する。ポール14は、係合端部14a及び延出端部14bを有している。係合端部14aは、回転軸12bから図3(a)の右側に延び、延出端部14bは、回転軸12bから図3(a)の左側に伸びている。ポール付勢ばねの一端はベースプレートに保持され、ポール付勢ばねの他端はポール14に係止されている。これにより、ポール14は、図3(a)の反時計回転方向に、即ち、係合端部14aを上昇させる方向に付勢されている。また、リフトレバー16のストッパ当接部16aがベースプレートに設置されたストッパ39に当接することで、ポール14の反時計回転方向への回動が規制されると共に、ポール14が図3(a)に示す所定の回動位置に保持される。 The pole 14 is connected to the lift lever 16 via the rotating shaft 12b. The pole 14 rotates together with the lift lever 16 about the rotation shaft 12b. The pole 14 has an engagement end portion 14a and an extension end portion 14b. The engagement end portion 14a extends from the rotation shaft 12b to the right side in FIG. 3A, and the extension end portion 14b extends from the rotation shaft 12b to the left side in FIG. 3A. One end of the pole biasing spring is held by the base plate, and the other end of the pole biasing spring is locked to the pole 14. Thereby, the pole 14 is urged in the counterclockwise direction of FIG. 3A, that is, the direction in which the engagement end portion 14a is raised. Further, when the stopper abutting portion 16a of the lift lever 16 abuts against the stopper 39 provided on the base plate, the rotation of the pole 14 in the counterclockwise rotation direction is restricted, and the pole 14 is shown in FIG. Is held at a predetermined rotational position.
 次に、ラッチ機構12の動作について図3(a)~図5を参照して説明する。
 図3(a)は、バックドア3が開放されている状態を示す。図3(a)に示すように、ラッチストッパに第1爪部13bの対向面13gが当接することで、ラッチ13は、所定の回動位置に保持されている。係合凹部13aは、バックドア3の閉作動時のストライカ5の進入経路を向いて配置されている。また、リフトレバー16がストッパ39に当接することで、ポール14は、所定の回動位置に保持されている。係合端部14aは、第2爪部13cの下側に配置されている。このとき、ラッチ機構12は、アンラッチ状態であり、解除状態である。
Next, the operation of the latch mechanism 12 will be described with reference to FIGS.
FIG. 3A shows a state where the back door 3 is opened. As shown in FIG. 3A, the latch 13 is held at a predetermined rotational position by the contact surface 13g of the first claw portion 13b coming into contact with the latch stopper. The engaging recess 13a is arranged facing the approach path of the striker 5 when the back door 3 is closed. Further, when the lift lever 16 abuts against the stopper 39, the pole 14 is held at a predetermined rotation position. The engagement end portion 14a is disposed below the second claw portion 13c. At this time, the latch mechanism 12 is in an unlatched state and in a released state.
 バックドア3の閉作動に伴い、係合凹部13a内にストライカ5が進入する。すると、ストライカ5により、係合凹部13aの内壁面が押圧される。これにより、ラッチ13は、ラッチ付勢ばねに抗して、反時計回転方向に回動する。そして、第2係合部13eに係合端部14aが係止されることで、ラッチ13の回動が規制される。このとき、バックドア3の係合凹部13aにストライカ5が係合し、ストライカ5が抜けないように保持される。この状態が、半ドア状態であり、ラッチ機構12は、ハーフラッチ状態である。 In accordance with the closing operation of the back door 3, the striker 5 enters the engagement recess 13a. Then, the inner wall surface of the engaging recess 13a is pressed by the striker 5. As a result, the latch 13 rotates counterclockwise against the latch biasing spring. Then, when the engagement end portion 14a is locked to the second engagement portion 13e, the rotation of the latch 13 is restricted. At this time, the striker 5 is engaged with the engagement recess 13a of the back door 3, and the striker 5 is held so as not to come off. This state is a half-door state, and the latch mechanism 12 is a half-latch state.
 バックドア3の更なる閉作動に伴い、係合凹部13a内にストライカ5が更に進入する。すると、ストライカ5により、係合凹部13aの内壁面が更に押圧される。これにより、図4(a)に示すように、ラッチ13は、ラッチ付勢ばねに抗して、反時計回転方向に更に回動する。そして、第1係合部13dに係合端部14aが係止されることで、ラッチ13の回動が規制される。このとき、バックドア3の係合凹部13aとストライカ5とが係合し、ストライカ5が抜けないように保持される。この状態が全閉状態である。このとき、ラッチ機構12は、フルラッチ状態であり、係合状態である。 As the back door 3 is further closed, the striker 5 further enters the engagement recess 13a. Then, the inner wall surface of the engaging recess 13a is further pressed by the striker 5. As a result, as shown in FIG. 4A, the latch 13 further rotates counterclockwise against the latch biasing spring. Then, when the engagement end portion 14a is locked to the first engagement portion 13d, the rotation of the latch 13 is restricted. At this time, the engagement recess 13a of the back door 3 and the striker 5 are engaged with each other, and the striker 5 is held so as not to come off. This state is a fully closed state. At this time, the latch mechanism 12 is in a fully latched state and is in an engaged state.
 ハーフラッチ状態又はフルラッチ状態で、ポール14がポール付勢ばねに抗して時計回転方向に回動すると、係合端部14aによる第1係合部13d又は第2係合部13eの係止が解除される。このとき、ウェザストリップ4の反発力によりバックドア3が開き始めると共に、ラッチ13の係合凹部13aからストライカ5が退出する。これにより、ストライカ5により係合凹部13aの内壁面が押圧されて、ラッチ13が時計回転方向に回動する。そして、バックドア3の係合凹部13aとストライカ5との係合が解除されて、バックドア3が開放可能となる。 When the pole 14 rotates in the clockwise direction against the pole biasing spring in the half latched state or the full latched state, the first engaging portion 13d or the second engaging portion 13e is locked by the engaging end portion 14a. Canceled. At this time, the back door 3 starts to open due to the repulsive force of the weather strip 4, and the striker 5 is retracted from the engagement recess 13 a of the latch 13. Thereby, the inner wall surface of the engagement recessed part 13a is pressed by the striker 5, and the latch 13 rotates in the clockwise direction. Then, the engagement between the engagement recess 13a of the back door 3 and the striker 5 is released, and the back door 3 can be opened.
 図3(b)に示すように、ドアロック装置10は、バックドア3に固定される金属板からなるブラケット21を備えている。ブラケット21には、DCモータ11の出力軸と共に回転可能に連結されたピニオン22が配置されている。ブラケット21には、金属板からなる扇状のアクティブレバー24が連結されている。アクティブレバー24は、回転軸23周りに回転自在である。回転軸23は、ラッチ13及びポール14の回転軸12a,12bの軸線とは異なる方向でかつピニオン22の回転軸に沿って延びる軸線を有している。アクティブレバー24は、ピニオン22と噛合する円弧状のギヤ部24aを有している。従って、アクティブレバー24の回動位置は、ピニオン22との噛合によって保持されている。通常、図3(b)に示すように、アクティブレバー24は、ギヤ部24aの周方向の中間部でピニオン22と噛合する所定の回動位置(以下、「初期位置」という)に保持されている。DCモータ11は、アクティブレバー24の初期位置に対応する所定の初期回動位置に配置されている。アクティブレバー24には、アクティブレバーピン25が設けられている。アクティブレバーピン25は、回転軸23近傍に配置され、回転軸23に沿って、アクティブレバー24の厚さ方向に突出している。 As shown in FIG. 3 (b), the door lock device 10 includes a bracket 21 made of a metal plate that is fixed to the back door 3. A pinion 22 that is rotatably connected to the output shaft of the DC motor 11 is disposed on the bracket 21. A fan-shaped active lever 24 made of a metal plate is connected to the bracket 21. The active lever 24 is rotatable around the rotation shaft 23. The rotating shaft 23 has an axis extending in a direction different from the axes of the rotating shafts 12 a and 12 b of the latch 13 and the pole 14 and extending along the rotating shaft of the pinion 22. The active lever 24 has an arcuate gear portion 24 a that meshes with the pinion 22. Therefore, the rotation position of the active lever 24 is held by meshing with the pinion 22. Normally, as shown in FIG. 3B, the active lever 24 is held at a predetermined rotational position (hereinafter referred to as “initial position”) that meshes with the pinion 22 at an intermediate portion in the circumferential direction of the gear portion 24a. Yes. The DC motor 11 is disposed at a predetermined initial rotation position corresponding to the initial position of the active lever 24. The active lever 24 is provided with an active lever pin 25. The active lever pin 25 is disposed in the vicinity of the rotation shaft 23 and protrudes in the thickness direction of the active lever 24 along the rotation shaft 23.
 ブラケット21には、閉側伝達部材としての金属板からなるパッシブレバー26が連結されている。パッシブレバー26は、回転軸23周りに回転自在である。パッシブレバー26は、回転軸23から径方向に延びるレバー部26aと、レバー部26aの先端を屈曲してなる押圧片26bとを有している。押圧片26bは、回転軸23を中心として図3(b)の反時計回転方向に回動する。押圧片26bの回動軌跡上には、ラッチ13の従動凸部13fが配置されている。従って、パッシブレバー26が図3(b)の反時計回転方向に回動すると、従動凸部13fが押圧片26bにより押圧されることで、ラッチ13は、図3(a)の反時計回転方向に回動する。そして、ラッチ13の回動は、前述の態様でポール14によって規制される。こうして、ハーフラッチ状態のラッチ機構12は、図4(a)(b)に示すフルラッチ状態に切り替わる。 The passive lever 26 which consists of a metal plate as a closing side transmission member is connected to the bracket 21. The passive lever 26 is rotatable around the rotation shaft 23. The passive lever 26 has a lever portion 26a extending in the radial direction from the rotating shaft 23, and a pressing piece 26b formed by bending the tip of the lever portion 26a. The pressing piece 26b rotates about the rotation shaft 23 in the counterclockwise rotation direction of FIG. A driven convex portion 13f of the latch 13 is disposed on the rotation locus of the pressing piece 26b. Therefore, when the passive lever 26 is rotated in the counterclockwise direction of FIG. 3B, the driven convex portion 13f is pressed by the pressing piece 26b, so that the latch 13 is counterclockwise in FIG. 3A. To turn. Then, the rotation of the latch 13 is regulated by the pole 14 in the manner described above. In this way, the latch mechanism 12 in the half latch state is switched to the full latch state shown in FIGS.
 パッシブレバー26の基端には、係合片26cが形成されている。係合片26cは、回転軸23を中心として図3(b)の反時計回転方向に回動するアクティブレバーピン25の回動軌跡上に配置されている。図示しない復帰スプリングの一端はブラケット21に保持され、復帰スプリングの他端はパッシブレバー26に係止されている。これにより、パッシブレバー26は、図3(b)の時計回転方向に付勢されている。ブラケット21に形成されたパッシブレバーストッパ21aに押圧片26bの対向面が当接することで、パッシブレバー26の時計回転方向への回動が規制されている。即ち、パッシブレバー26は、図3(b)の所定の回動位置(以下、「クローズ作動初期位置」という)に保持されている。パッシブレバー26がクローズ作動初期位置に配置されているとき、初期位置に保持されるアクティブレバー24のアクティブレバーピン25と、パッシブレバー26の係合片26cとは、回転軸23を中心に所定角度θ1だけ離間している。従って、アクティブレバー24が初期位置から反時計回転方向に回動すると、図5に示すように、アクティブレバーピン25が係合片26cに当接するまでの所定角度θ1だけ、アクティブレバー24は空走する。また、アクティブレバーピン25が係合片26cに当接してから更にアクティブレバー24が回動することで、アクティブレバーピン25により係合片26cが押圧される。これにより、パッシブレバー26は、反時計回転方向に回動し、ラッチ機構12をフルラッチ状態に切り替える。 An engagement piece 26 c is formed at the base end of the passive lever 26. The engagement piece 26c is disposed on the rotation locus of the active lever pin 25 that rotates in the counterclockwise rotation direction of FIG. One end of a return spring (not shown) is held by the bracket 21, and the other end of the return spring is locked to the passive lever 26. As a result, the passive lever 26 is biased in the clockwise direction of FIG. When the opposing surface of the pressing piece 26b comes into contact with the passive lever stopper 21a formed on the bracket 21, the rotation of the passive lever 26 in the clockwise direction is restricted. That is, the passive lever 26 is held at a predetermined rotation position (hereinafter referred to as “closed operation initial position”) in FIG. When the passive lever 26 is disposed at the initial position of the closing operation, the active lever pin 25 of the active lever 24 and the engagement piece 26c of the passive lever 26 held at the initial position are at a predetermined angle around the rotation shaft 23. They are separated by θ1. Therefore, when the active lever 24 is rotated counterclockwise from the initial position, the active lever 24 is idled by a predetermined angle θ1 until the active lever pin 25 comes into contact with the engagement piece 26c as shown in FIG. To do. Further, when the active lever 24 further rotates after the active lever pin 25 comes into contact with the engagement piece 26 c, the engagement piece 26 c is pressed by the active lever pin 25. As a result, the passive lever 26 rotates counterclockwise and switches the latch mechanism 12 to the fully latched state.
 その後、アクティブレバー24が時計回転方向に回動して初期位置に復帰すると、パッシブレバー26は、アクティブレバーピン25による押圧から解放される。
そして、パッシブレバー26は、復帰スプリングに付勢されてクローズ作動初期位置に復帰する。そして、図4(a)(b)に示すように、ラッチ13は、パッシブレバー26による押圧から解放される。
Thereafter, when the active lever 24 rotates clockwise and returns to the initial position, the passive lever 26 is released from being pressed by the active lever pin 25.
And the passive lever 26 is urged | biased by the return spring, and returns to the close operation | movement initial position. Then, as shown in FIGS. 4A and 4B, the latch 13 is released from being pressed by the passive lever 26.
 図3(b)に示すように、ブラケット21には、開側伝達部材としての金属板からなるベルクランク32が連結されている。ベルクランク32は、回転軸23と平行な回転軸31周りに回転自在である。ベルクランク32は、第1レバー部32a及び第2レバー部32bを有している。第1レバー部32aは、回転軸31から径方向に沿って図3(b)の左上側に延び、第2レバー部32bは、回転軸31から径方向に沿って図3(b)の左下側に延びている。ベルクランク32の時計回転方向への回動は、ブラケット21のレバーストッパ21dに第2レバー部32bが当接する所定の回動位置(以下、「リリース作動初期位置」という)までに規制されている。そして、ベルクランク32がリリース作動初期位置にあるとき、第1レバー部32aは、アクティブレバーピン25の回動軌跡上に配置されている。ベルクランク32は、第2レバー部32bの先端を屈曲してなる押圧片32dを有している。 As shown in FIG. 3B, the bracket 21 is connected to a bell crank 32 made of a metal plate as an open-side transmission member. The bell crank 32 is rotatable around a rotation shaft 31 parallel to the rotation shaft 23. The bell crank 32 has a first lever portion 32a and a second lever portion 32b. The first lever portion 32a extends from the rotation shaft 31 to the upper left side in FIG. 3B along the radial direction, and the second lever portion 32b extends from the rotation shaft 31 to the lower left side in FIG. 3B along the radial direction. Extends to the side. The rotation of the bell crank 32 in the clockwise direction is restricted to a predetermined rotation position where the second lever portion 32b contacts the lever stopper 21d of the bracket 21 (hereinafter referred to as “release operation initial position”). . When the bell crank 32 is in the release operation initial position, the first lever portion 32 a is disposed on the rotation locus of the active lever pin 25. The bell crank 32 has a pressing piece 32d formed by bending the tip of the second lever portion 32b.
 ブラケット21には、金属板からなるオープンレバー34が連結されている。オープンレバー34は、回転軸23,31と平行な回転軸33周りに回転自在である。オープンレバー34は、一対のレバー部34a,34bを有している。レバー部34aは、回転軸33から径方向に沿って図3(b)の上側に延び、レバー部34bは、回転軸33から径方向に沿って図3(b)の左下側に延びている。レバー部34aは、回転軸31を中心として図3(b)の反時計回転方向に回動する押圧片32dの回動軌跡上に配置されている。ベルクランク32が図3(b)の反時計回転方向に回動すると、レバー部34aが押圧片32dにより押圧されるため、オープンレバー34は、時計回転方向に回動する。 The bracket 21 is connected to an open lever 34 made of a metal plate. The open lever 34 is rotatable around a rotation axis 33 parallel to the rotation axes 23 and 31. The open lever 34 has a pair of lever portions 34a and 34b. The lever portion 34a extends from the rotary shaft 33 in the radial direction to the upper side in FIG. 3B, and the lever portion 34b extends from the rotary shaft 33 in the radial direction to the lower left side in FIG. 3B. . The lever portion 34a is disposed on the rotation locus of the pressing piece 32d that rotates in the counterclockwise rotation direction of FIG. When the bell crank 32 rotates in the counterclockwise direction of FIG. 3B, the lever portion 34a is pressed by the pressing piece 32d, so that the open lever 34 rotates in the clockwise direction.
 オープンレバー34は、レバー部34bの先端を屈曲してなる押圧片34cを有している。また、リフトレバー16は、回転軸33を中心として図3(b)の時計回転方向に回動する押圧片34cの回動軌跡上に配置されている。従って、ラッチ機構12がフルラッチ状態であるとき、オープンレバー34が図4(b)の時計回転方向に回動すると、リフトレバー16は押圧片34cにより押圧される。これにより、リフトレバー16がポール14と共に図4(a)の時計回転方向に回動し、前述の態様でポール14によるラッチ13の回り止めが解除される。そして、ラッチ機構12は、アンラッチ状態に切り替わる。 The open lever 34 has a pressing piece 34c formed by bending the tip of the lever portion 34b. Further, the lift lever 16 is disposed on the rotation locus of the pressing piece 34c that rotates in the clockwise direction in FIG. Therefore, when the latch mechanism 12 is in the fully latched state, when the open lever 34 rotates in the clockwise direction of FIG. 4B, the lift lever 16 is pressed by the pressing piece 34c. As a result, the lift lever 16 rotates together with the pole 14 in the clockwise direction of FIG. 4A, and the detent of the latch 13 by the pole 14 is released in the manner described above. Then, the latch mechanism 12 switches to the unlatched state.
 復帰スプリング35の一端はブラケット21の係止片21cに保持され、復帰スプリング35の他端はオープンレバー34のレバー部34aに係止されている。これにより、オープンレバー34は、図4(b)の反時計回転方向に付勢されている。リリース作動初期位置で回動規制されたベルクランク32の押圧片32dにレバー部34aが当接することで、オープンレバー34の反時計回転方向への回動が規制されると共に、オープンレバー34が図4(b)の所定の回動位置に保持される。 One end of the return spring 35 is held by the locking piece 21 c of the bracket 21, and the other end of the return spring 35 is locked by the lever portion 34 a of the open lever 34. Thereby, the open lever 34 is urged | biased by the counterclockwise rotation direction of FIG.4 (b). The lever portion 34a abuts against the pressing piece 32d of the bell crank 32 whose rotation is restricted at the initial position of the release operation, whereby the rotation of the open lever 34 in the counterclockwise direction is restricted and the open lever 34 is shown in FIG. 4 (b) is held at a predetermined rotation position.
 つまり、ベルクランク32は、オープンレバー34を介して復帰スプリング35により付勢されることで、リリース作動初期位置に保持されている。ベルクランク32がリリース作動初期位置にあるとき、初期位置に保持されるアクティブレバー24のアクティブレバーピン25とベルクランク32の第1レバー部32aとは、回転軸23を中心に所定角度θ2だけ離間している。従って、アクティブレバー24が初期位置から図4(b)の時計回転方向に回動した場合、図6に示すように、アクティブレバー24は、アクティブレバーピン25を第1レバー部32aに当接させるまで所定角度θ2だけ空走する。アクティブレバーピン25が第1レバー部32aに当接してから更にアクティブレバー24が回動することで、アクティブレバーピン25により第1レバー部32aが押圧される。これにより、ベルクランク32が反時計回転方向に回動し、押圧片32dによりオープンレバー34のレバー部34aが押圧される。これにより、オープンレバー34は、時計回転方向に回動し、前述の態様でラッチ機構12をアンラッチ状態に切り替える。 That is, the bell crank 32 is held at the release operation initial position by being urged by the return spring 35 via the open lever 34. When the bell crank 32 is in the initial release operation position, the active lever pin 25 of the active lever 24 held in the initial position and the first lever portion 32a of the bell crank 32 are separated from each other by a predetermined angle θ2 around the rotation shaft 23. is doing. Accordingly, when the active lever 24 rotates from the initial position in the clockwise direction of FIG. 4B, the active lever 24 brings the active lever pin 25 into contact with the first lever portion 32a as shown in FIG. It runs idly by a predetermined angle θ2. When the active lever 24 is further rotated after the active lever pin 25 comes into contact with the first lever portion 32 a, the first lever portion 32 a is pressed by the active lever pin 25. As a result, the bell crank 32 rotates counterclockwise, and the lever portion 34a of the open lever 34 is pressed by the pressing piece 32d. As a result, the open lever 34 rotates clockwise and switches the latch mechanism 12 to the unlatched state in the manner described above.
 その後、アクティブレバー24が反時計回転方向に回動して初期位置に復帰すると、ベルクランク32及びオープンレバー34は、アクティブレバーピン25による押圧から解放される。そして、ベルクランク32及びオープンレバー34は、復帰スプリング35に付勢されて初期位置へとそれぞれ復帰する。こうして、リフトレバー16及びポール14は、オープンレバー34による押圧から解放される。アクティブレバー24がパッシブレバー26及びベルクランク32の両方に係合していない状態を、DCモータ11の無負荷状態と称す。 Thereafter, when the active lever 24 rotates counterclockwise and returns to the initial position, the bell crank 32 and the open lever 34 are released from being pressed by the active lever pin 25. The bell crank 32 and the open lever 34 are urged by the return spring 35 to return to their initial positions. Thus, the lift lever 16 and the pole 14 are released from being pressed by the open lever 34. A state where the active lever 24 is not engaged with both the passive lever 26 and the bell crank 32 is referred to as a no-load state of the DC motor 11.
 次に、車両用開閉体駆動制御装置の電気的構成について図7を参照して説明する。
 図7に示すように、車両1に設置されるドアECU(Electronic Control Unit)40は、マイクロ・コントローラ(MCU)を備えている。ドアECU40は、ドア駆動ユニット7と電気的に接続されている。ドア駆動ユニット7は、DCモータ71、電磁クラッチ72、及び一対のパルスセンサ73を備えている。ドアECU40は、DCモータ71を駆動して、バックドア3の開閉制御を実行する。ドアECU40は、電磁クラッチ72を駆動して、DCモータ71及びアーム8(バックドア3)間の動力伝達の接続又は非接続を行う切替制御を実行する。バックドア3を電動で開閉するときにのみ、DCモータ71及びアーム8間の動力伝達が接続状態となる。バックドア3を手動で開閉するときは、DCモータ71及びアーム8間の動力伝達が非接続状態となる。更に、ドアECU40は、両パルスセンサ73から出力される位相の異なる対のパルス信号に基づいて、DCモータ71の回転方向、回転量及び回転速度、即ち、バックドア3の開閉位置及び開閉速度等を検出する。ドアECU40は、各パルスセンサ73からのパルス信号に基づいて、バックドア3の開閉速度を目標の開閉速度に一致させるように、DCモータ71を駆動する。
Next, an electrical configuration of the vehicle opening / closing body drive control device will be described with reference to FIG.
As shown in FIG. 7, a door ECU (Electronic Control Unit) 40 installed in the vehicle 1 includes a micro controller (MCU). The door ECU 40 is electrically connected to the door drive unit 7. The door drive unit 7 includes a DC motor 71, an electromagnetic clutch 72, and a pair of pulse sensors 73. The door ECU 40 drives the DC motor 71 to perform opening / closing control of the back door 3. The door ECU 40 drives the electromagnetic clutch 72 to execute switching control for connecting or disconnecting power transmission between the DC motor 71 and the arm 8 (back door 3). Only when the back door 3 is electrically opened and closed, the power transmission between the DC motor 71 and the arm 8 is connected. When the back door 3 is manually opened and closed, the power transmission between the DC motor 71 and the arm 8 is disconnected. Further, the door ECU 40, based on a pair of pulse signals with different phases output from both pulse sensors 73, the rotation direction, rotation amount and rotation speed of the DC motor 71, that is, the opening / closing position and opening / closing speed of the back door 3. Is detected. Based on the pulse signal from each pulse sensor 73, the door ECU 40 drives the DC motor 71 so that the opening / closing speed of the back door 3 matches the target opening / closing speed.
 ドアECU40は、ドアロック装置10を電気的に駆動するドアロック駆動ユニット50にも接続されている。ドアロック駆動ユニット50は、DCモータ11、一対のパルスセンサ51、ポジションスイッチ52、ハーフラッチスイッチ53、及びフルラッチスイッチ54を備えている。ドアECU40は、DCモータ11を駆動してピニオン22を回動させ、アクティブレバー24を回動させる。こうして、ドアECU40は、前述の態様で、ラッチ機構12の切替制御を実行する。また、ドアECU40は、両パルスセンサ51から出力される位相の異なる対のパルス信号に基づいて、DCモータ11の回転方向、回転量(ストローク)及び回転速度N、即ち、アクティブレバー24の回動位置及び回転速度等を検出する。ドアECU40は、ポジションスイッチ52から出力される検出信号に基づいて、アクティブレバー24が初期位置(中立位置)に配置されていることを検出する。ドアECU40は、ハーフラッチスイッチ53の出力する検出信号に基づいて、ラッチ機構12がハーフラッチ状態であること、即ち、ラッチ13がハーフラッチ状態に相当する回動位置に配置されていることを検出する。ドアECU40は、フルラッチスイッチ54から出力される検出信号に基づいて、ラッチ機構12がフルラッチ状態であること、即ち、ラッチ13がフルラッチ状態に相当する回動位置に配置されていることを検出する。ドアECU40は、各パルスセンサ51からのパルス信号及びスイッチ52~54からの検出信号に基づいて、DCモータ11の駆動制御を実行する。 The door ECU 40 is also connected to a door lock drive unit 50 that electrically drives the door lock device 10. The door lock drive unit 50 includes a DC motor 11, a pair of pulse sensors 51, a position switch 52, a half latch switch 53, and a full latch switch 54. The door ECU 40 drives the DC motor 11 to rotate the pinion 22 and rotate the active lever 24. Thus, the door ECU 40 performs the switching control of the latch mechanism 12 in the above-described manner. Further, the door ECU 40 determines the rotation direction, rotation amount (stroke) and rotation speed N of the DC motor 11, that is, rotation of the active lever 24, based on a pair of pulse signals with different phases output from both pulse sensors 51. Detect position and rotation speed. The door ECU 40 detects that the active lever 24 is disposed at the initial position (neutral position) based on the detection signal output from the position switch 52. Based on the detection signal output from the half latch switch 53, the door ECU 40 detects that the latch mechanism 12 is in the half latch state, that is, that the latch 13 is disposed at the rotation position corresponding to the half latch state. To do. Based on the detection signal output from the full latch switch 54, the door ECU 40 detects that the latch mechanism 12 is in the fully latched state, that is, that the latch 13 is disposed at the rotation position corresponding to the fully latched state. . The door ECU 40 performs drive control of the DC motor 11 based on the pulse signals from the pulse sensors 51 and the detection signals from the switches 52 to 54.
 ドアECU40は、バックドア3に設置されたクローズスイッチ41及びオープンスイッチ42と電気的に接続されている。また、ドアECU40は、車両1に搭載されたレシーバECU43と電気的に接続されている。利用者がクローズスイッチ41を操作することにより、クローズスイッチ41からバックドア3を閉作動させる旨の操作信号が出力される。ドアECU40は、クローズスイッチ41からの操作信号に基づいて、ドア駆動ユニット7のDCモータ71及び電磁クラッチ72を駆動する。これにより、バックドア3が開状態から閉作動する。また、ラッチ機構12のハーフラッチ状態への移行に基づいて、ドアロック駆動ユニット50のDCモータ11が駆動し、ラッチ機構12がフルラッチ状態に切り替わる。フルラッチスイッチ54によりラッチ機構12のフルラッチ状態が検出されることで、ドアECU40は、ドアロック駆動ユニット50のDCモータ11の駆動を停止する。 The door ECU 40 is electrically connected to a close switch 41 and an open switch 42 installed on the back door 3. The door ECU 40 is electrically connected to a receiver ECU 43 mounted on the vehicle 1. When the user operates the close switch 41, an operation signal for closing the back door 3 is output from the close switch 41. The door ECU 40 drives the DC motor 71 and the electromagnetic clutch 72 of the door drive unit 7 based on the operation signal from the close switch 41. Thereby, the back door 3 is closed from the open state. Further, based on the transition of the latch mechanism 12 to the half latch state, the DC motor 11 of the door lock drive unit 50 is driven, and the latch mechanism 12 is switched to the full latch state. When the full latch state of the latch mechanism 12 is detected by the full latch switch 54, the door ECU 40 stops driving the DC motor 11 of the door lock drive unit 50.
 利用者がオープンスイッチ42を操作することにより、オープンスイッチ42からバックドア3を開作動させる旨の操作信号が出力される。ドアECU40は、オープンスイッチ42からの操作信号に基づき、ドアロック駆動ユニット50のDCモータ11を駆動して、フルラッチ状態又はハーフラッチ状態のラッチ機構12をアンラッチ状態に切り替えると共に、ドア駆動ユニット7のDCモータ71及び電磁クラッチ72を駆動して、開可能状態にあるバックドア3を開作動させる。 When the user operates the open switch 42, an operation signal for opening the back door 3 is output from the open switch 42. The door ECU 40 drives the DC motor 11 of the door lock drive unit 50 based on the operation signal from the open switch 42 to switch the latch mechanism 12 in the full latch state or the half latch state to the unlatched state, and The DC motor 71 and the electromagnetic clutch 72 are driven to open the back door 3 in the openable state.
 レシーバECU43は、利用者の携行するワイヤレスリモコン44と共に、無線通信システムを構成している。レシーバECU43は、バックドア3を閉作動又は開作動させる旨の送信信号を、ワイヤレスリモコン44から受信する。レシーバECU43は、ワイヤレスリモコン44からの送信信号を信号処理してから、ドアECU40に出力する。ドアECU40は、処理された送信信号に基づいて、バックドア3を閉作動又は開作動するため、ドア駆動ユニット7のDCモータ71及び電磁クラッチ72を駆動したり、ドアロック駆動ユニット50のDCモータ11を駆動したりする。 The receiver ECU 43 constitutes a wireless communication system together with a wireless remote controller 44 carried by the user. The receiver ECU 43 receives a transmission signal for closing or opening the back door 3 from the wireless remote controller 44. The receiver ECU 43 processes the transmission signal from the wireless remote controller 44 and then outputs the signal to the door ECU 40. The door ECU 40 drives the DC motor 71 and the electromagnetic clutch 72 of the door drive unit 7 or the DC motor of the door lock drive unit 50 in order to close or open the back door 3 based on the processed transmission signal. 11 is driven.
 次に、バックドア3の閉作動時におけるドアロック装置10のドアロック駆動ユニット50の制御態様について説明する。
 図8は、一般的なDCモータ(及びACモータ)の出力トルクTと回転速度Nとの関係を示す。詳しくは、モータの端子電圧が一定であるとしたときの3通りのモータ温度での出力トルクTと回転速度Nとの関係を示す。
Next, the control mode of the door lock drive unit 50 of the door lock device 10 when the back door 3 is closed will be described.
FIG. 8 shows the relationship between the output torque T and the rotational speed N of a general DC motor (and AC motor). Specifically, the relationship between the output torque T and the rotational speed N at three motor temperatures when the terminal voltage of the motor is constant is shown.
 図8に示すように、モータ温度が常温の所定温度RTにあるとき、DCモータの出力トルクTが零となる状態、即ち、無負荷状態での平均的な回転速度NをNRとする。この場合、無負荷状態での回転速度NRを起点とする回転速度Nの変化量(減少量)ΔNに対する出力トルクTの変化量(増加量)ΔTは、略一定の比率SR(=ΔT/ΔN)である。 As shown in FIG. 8, when the motor temperature is at a predetermined temperature RT of room temperature, the average rotational speed N in the state where the output torque T of the DC motor becomes zero, that is, in the no-load state is defined as NR. In this case, the change amount (increase amount) ΔT of the output torque T with respect to the change amount (decrease amount) ΔN of the rotation speed N starting from the rotation speed NR in the no-load state is a substantially constant ratio SR (= ΔT / ΔN ).
 モータ温度が常温よりも高い所定温度HTにあるとき、DCモータの出力トルクTが零となる状態での平均的な回転速度NをNHとする。この場合、無負荷状態での回転速度NHは、回転速度NRよりも大きい。また、回転速度NHを起点とする変化量(減少量)ΔNに対する出力トルクTの変化量(増加量)ΔTの絶対値は、比率SRよりも小さく、略一定の比率SHである。 When the motor temperature is at a predetermined temperature HT higher than room temperature, the average rotation speed N in a state where the output torque T of the DC motor is zero is NH. In this case, the rotational speed NH in the no-load state is larger than the rotational speed NR. Further, the absolute value of the change amount (increase amount) ΔT of the output torque T with respect to the change amount (decrease amount) ΔN starting from the rotational speed NH is smaller than the ratio SR and is a substantially constant ratio SH.
 モータ温度が常温よりも低い所定温度LTにあるとき、DCモータの出力トルクTが零となる状態での平均的な回転速度NをNLとする。この場合、無負荷状態での回転速度NLは、回転速度NRよりも小さい。また、回転速度NLを起点とする変化量(減少量)ΔNに対する出力トルクTの変化量(増加量)ΔT絶対値は、比率SRよりも大きく、略一定の比率SLである。 When the motor temperature is at a predetermined temperature LT lower than room temperature, the average rotational speed N in a state where the output torque T of the DC motor is zero is defined as NL. In this case, the rotational speed NL in the no-load state is smaller than the rotational speed NR. Further, the change amount (increase amount) ΔT absolute value of the output torque T with respect to the change amount (decrease amount) ΔN starting from the rotational speed NL is larger than the ratio SR and is a substantially constant ratio SL.
 つまり、DCモータの無負荷状態、又は、無負荷状態に近似の低負荷状態での回転速度Nに基づいて、モータ温度の推定が可能である。例えば、DCモータの無負荷状態での回転速度Nが回転速度NRよりも大きければ、モータ温度が常温よりも高いと推定される。DCモータの無負荷状態での回転速度Nが回転速度NRよりも小さければ、モータ温度が常温よりも低いと推定される。 That is, the motor temperature can be estimated based on the rotational speed N of the DC motor in a no-load state or a low-load state approximate to the no-load state. For example, if the rotational speed N of the DC motor in an unloaded state is larger than the rotational speed NR, it is estimated that the motor temperature is higher than the normal temperature. If the rotational speed N of the DC motor in the no-load state is smaller than the rotational speed NR, it is estimated that the motor temperature is lower than normal temperature.
 既述のように、アクティブレバー24の回動位置に相関するDCモータ11のストローク(回転量)Stには、空走区間(所定角度θ1相当)が設定されている。この空走区間は、ポジションスイッチ52の検出信号及び両パルスセンサ51のパルス信号に基づいて検出される。空走区間では、両パルスセンサ51のパルス信号に基づいて、DCモータ11の無負荷状態での回転速度Noが基準移動速度として検出されると共に、回転速度Noに基づいて、モータ温度Tmが推定される(モータ温度推定部)。モータ温度Tmは、回転速度Noに応じて連続的に変化する温度でもあってもよく、段階的に変化する温度であってもよい。 As described above, the idle running section (corresponding to the predetermined angle θ1) is set in the stroke (rotation amount) St of the DC motor 11 correlated with the rotation position of the active lever 24. This idle running section is detected based on the detection signal from the position switch 52 and the pulse signals from both pulse sensors 51. In the idling section, the rotational speed No when the DC motor 11 is in an unloaded state is detected as the reference movement speed based on the pulse signals of both pulse sensors 51, and the motor temperature Tm is estimated based on the rotational speed No. (Motor temperature estimation unit). The motor temperature Tm may be a temperature that changes continuously according to the rotational speed No, or may be a temperature that changes stepwise.
 また、モータ温度が常温よりも高ければ、所定の変化量ΔNに対する出力トルクTの変化量ΔTの絶対値は小さくなり、モータ温度が常温よりも低ければ、所定の変化量ΔNに対する出力トルクTの変化量ΔTの絶対値は大きくなる。従って、無負荷状態での回転速度Nを基準とする回転速度の変化量の絶対値、即ち、無負荷状態での回転速度Nと現在の回転速度Nとの偏差である回転速度差の絶対値が同一の場合、モータ温度が高いときよりも低いときの方が、無負荷状態での出力トルクTを基準とする出力トルクの変化量の絶対値は大きく、負荷が大きくなる。 Further, if the motor temperature is higher than the normal temperature, the absolute value of the change amount ΔT of the output torque T with respect to the predetermined change amount ΔN becomes small, and if the motor temperature is lower than the normal temperature, the output torque T with respect to the predetermined change amount ΔN. The absolute value of the change amount ΔT increases. Therefore, the absolute value of the change amount of the rotational speed with reference to the rotational speed N in the no-load state, that is, the absolute value of the rotational speed difference that is a deviation between the rotational speed N in the no-load state and the current rotational speed N. When the motor temperature is the same, the absolute value of the change amount of the output torque based on the output torque T in the no-load state is larger and the load is larger when the motor temperature is lower than when the motor temperature is high.
 ここでは、DCモータ11のストロークStが空走区間を経た後、DCモータ11の無負荷状態での回転速度Noと現在の回転速度Nとの回転速度差の絶対値DN(=|No-N|)が移動速度変化として算出される(演算手段)。空走区間を経た直後の回転速度差の絶対値DNは零である。また、モータ温度特性を考慮して、回転速度差の絶対値DNが同一の場合、モータ温度Tmが高いときよりも低いときの方が、無負荷状態での出力トルクTと現在の出力トルクTとの回転トルク差(負荷に相当)が大きくなると推定される。具体的には、異物の挟み込み検出において回転速度差の絶対値DNと比較される検知閾値Taは、モータ温度Tmが高いときよりも低いときの方が小さくなるように補正される。即ち、同一の回転速度差の絶対値DNを検出したときは、モータ温度が高いときよりも低いときの方が異物の挟み込みの検出感度が高くなるように補正される。 Here, after the stroke St of the DC motor 11 passes through the idle running section, the absolute value DN (= | No−N) of the rotational speed difference between the rotational speed No in the no-load state of the DC motor 11 and the current rotational speed N. |) Is calculated as a change in moving speed (calculation means). The absolute value DN of the rotational speed difference immediately after passing through the idling section is zero. Further, in consideration of the motor temperature characteristics, when the absolute value DN of the rotational speed difference is the same, the output torque T in the no-load state and the current output torque T are lower when the motor temperature Tm is lower than when the motor temperature Tm is high. And the rotational torque difference (corresponding to the load) is estimated to be large. Specifically, the detection threshold Ta that is compared with the absolute value DN of the rotational speed difference in the detection of foreign object pinching is corrected so as to be smaller when the motor temperature Tm is higher than when the motor temperature Tm is high. In other words, when the absolute value DN of the same rotational speed difference is detected, correction is made so that the detection sensitivity of foreign object pinching becomes higher when the motor temperature is lower than when the motor temperature is high.
 図9は、直近の一定時間内でのDCモータの通電時間に対応して、雰囲気温度(環境温度)とモータ温度との関係を示す。図9に示すように、直近の一定時間内でのDCモータの通電時間が僅少又は零であれば、雰囲気温度とモータ温度とは一致する。直近の一定時間内でのDCモータの通電時間の増加に伴って、雰囲気温度に対してモータ温度が高くなる。これは、DCモータが通電により加熱されるためである。つまり、モータ温度及び直近の一定時間内でのDCモータの通電時間を参照すれば、雰囲気温度の推定が可能である。 FIG. 9 shows the relationship between the ambient temperature (environment temperature) and the motor temperature corresponding to the energization time of the DC motor within the latest fixed time. As shown in FIG. 9, if the energization time of the DC motor within the most recent fixed time is little or zero, the ambient temperature matches the motor temperature. As the energization time of the DC motor increases within the latest fixed time, the motor temperature becomes higher than the ambient temperature. This is because the DC motor is heated by energization. That is, the ambient temperature can be estimated by referring to the motor temperature and the energization time of the DC motor within the latest fixed time.
 ここでは、直近の一定時間内でのDCモータ11の通電時間が常時検出される。そして、DCモータ11の無負荷状態での回転速度Noに基づき推定されたモータ温度Tmと直近の一定時間内でのDCモータ11の通電時間とに基づいて、雰囲気温度が推定される。例えば、直近の一定時間内でのDCモータ11の通電時間がより短ければ、推定されたモータ温度Tmにより近い低温側の雰囲気温度が推定され、反対に、通電時間がより長ければ、推定されたモータ温度Tmからより遠い低温側の雰囲気温度が推定される。 Here, the energization time of the DC motor 11 within the latest fixed time is always detected. Then, the ambient temperature is estimated based on the motor temperature Tm estimated based on the rotational speed No in the no-load state of the DC motor 11 and the energization time of the DC motor 11 within the latest fixed time. For example, if the energization time of the DC motor 11 within the latest fixed time is shorter, the ambient temperature on the low temperature side closer to the estimated motor temperature Tm is estimated, and conversely, if the energization time is longer, it is estimated. The ambient temperature on the low temperature side farther from the motor temperature Tm is estimated.
 より厳密には、直近の一定時間内でのDCモータ11の作動回数CNが常時検出される(通電時間検出部)。そして、推定されたモータ温度Tmと直近の一定時間内でのDCモータの作動回数CNとに基づいて、雰囲気温度Tsが推定される(雰囲気温度推定部)。これは、DCモータ11が1回作動する際の通電時間が略一定であり、DCモータ11の作動回数CNと通電時間との間に略比例の関係が成立することによる。例えば、直近の一定時間内でのDCモータ11の作動回数CNがより少なければ、推定されたモータ温度Tmにより近い低温側の雰囲気温度Tsが推定され、反対に、作動回数CNがより多ければ、推定されたモータ温度Tmからより遠い低温側の雰囲気温度Tsが推定される。 More strictly, the operation frequency CN of the DC motor 11 within the latest fixed time is always detected (energization time detection unit). Then, the ambient temperature Ts is estimated based on the estimated motor temperature Tm and the DC motor operation count CN within the latest fixed time (atmosphere temperature estimation unit). This is because the energization time when the DC motor 11 is operated once is substantially constant, and a substantially proportional relationship is established between the operation count CN of the DC motor 11 and the energization time. For example, if the number of operations CN of the DC motor 11 within the latest fixed time is less, the ambient temperature Ts on the low temperature side closer to the estimated motor temperature Tm is estimated, and conversely, if the number of operations CN is greater, An ambient temperature Ts on the low temperature side farther from the estimated motor temperature Tm is estimated.
 雰囲気温度Tsは、モータ温度Tm及び作動回数CNに応じて連続的に変化する温度であってもよく、段階的に変化する温度であってもよい。あるいは、雰囲気温度Tsを、モータ温度Tm及び作動回数CNのいずれか一方に応じて連続的に推定しかつ他方に応じて段階的に推定してもよい。そして、推定された雰囲気温度Tsに基づいて、バックドア3の閉駆動時の摺動抵抗Rが補正される。 The ambient temperature Ts may be a temperature that changes continuously according to the motor temperature Tm and the number of operations CN, or may be a temperature that changes stepwise. Alternatively, the ambient temperature Ts may be continuously estimated according to any one of the motor temperature Tm and the number of operations CN and stepwise according to the other. Based on the estimated ambient temperature Ts, the sliding resistance R when the back door 3 is closed is corrected.
 図10は、ラッチ機構12のハーフラッチ状態への移行を起点にDCモータ11の駆動を開始してラッチ機構12をフルラッチ状態に切り替える際のDCモータ11のストロークStと、常温における摺動抵抗Rとの関係を示す。図10は、摺動抵抗R(正数)を縦軸の下側に表している。アクティブレバー24には、アクティブレバーピン25が係合片26cに当接するまでの所定角度θ1だけ空走する空走区間が設定されている。空走区間が終了するDCモータ11のストロークStがStoである。無負荷状態では、アクティブレバー24がパッシブレバー26及びベルクランク32の両方と係合していない。 FIG. 10 shows the stroke St of the DC motor 11 when the driving of the DC motor 11 is started with the transition of the latch mechanism 12 to the half latch state as a starting point and the latch mechanism 12 is switched to the full latch state, and the sliding resistance R at room temperature. Shows the relationship. FIG. 10 shows the sliding resistance R (positive number) on the lower side of the vertical axis. In the active lever 24, an idle running section is set in which the active lever pin 25 runs idle by a predetermined angle θ1 until the active lever pin 25 contacts the engaging piece 26c. The stroke St of the DC motor 11 at which the idle running section ends is Sto. In the no-load state, the active lever 24 is not engaged with both the passive lever 26 and the bell crank 32.
 図10に示すように、摺動抵抗Rは、ウェザストリップ4との干渉に起因するウェザストリップ摺動抵抗Rw、ドアロック装置10の作動等に起因するASSY摺動抵抗Ra、ガスダンパ6の作動等に起因するダンパ摺動抵抗Rdからなる。各摺動抵抗Rw,Ra,Rdは、DCモータ11のストロークStに対して実験的に取得される。各摺動抵抗Rw,Ra,Rdは、空走区間の終了後に発生する。 As shown in FIG. 10, the sliding resistance R is the weather strip sliding resistance Rw caused by the interference with the weather strip 4, the ASSY sliding resistance Ra caused by the operation of the door lock device 10, the operation of the gas damper 6, etc. It consists of a damper sliding resistance Rd caused by Each sliding resistance Rw, Ra, Rd is experimentally acquired for the stroke St of the DC motor 11. Each sliding resistance Rw, Ra, Rd occurs after the end of the idle running section.
 各部材による摺動抵抗Rw,Ra,Rdを雰囲気温度Tsに基づいて温度補正し、補正後の摺動抵抗を全て加算することで、各部材の温度特性を加味した摺動抵抗Rが算出される。即ち、ウェザストリップ摺動抵抗Rwの温度特性を表す温度補正ゲインをGw、ASSY摺動抵抗Raの温度特性を表す温度補正ゲインをGa、ダンパ摺動抵抗Rdの温度特性を表す温度補正ゲインをGdで表すと、摺動抵抗Rは、下式(1)に従って算出される。 The sliding resistance Rw, Ra, Rd by each member is corrected based on the ambient temperature Ts, and all the corrected sliding resistances are added to calculate the sliding resistance R that takes into account the temperature characteristics of each member. The That is, Gw represents a temperature correction gain representing the temperature characteristic of the weather strip sliding resistance Rw, Ga represents a temperature correction gain representing the temperature characteristic of the ASSY sliding resistance Ra, and Gd represents a temperature correction gain representing the temperature characteristic of the damper sliding resistance Rd. , The sliding resistance R is calculated according to the following formula (1).
 摺動抵抗R=(Rw×Gw)+(Ra×Ga)+(Rd×Gd)…(1)
 各温度補正ゲインGw,Ga,Gdは、前述のように推定された雰囲気温度Tsに基づき、予め設定・記憶されているマップから算出される。各温度補正ゲインGw,Ga,Gdは、基本的に推定された雰囲気温度Tsが高いほど大きくなるように算出され、雰囲気温度Tsが低いほど小さくなるように算出される。これは、雰囲気温度が高いほど各部材の摩擦係数が増加して摺動抵抗が増加するためである。各温度補正ゲインGw,Ga,Gdの算出に係るマップは、推定された雰囲気温度Tsに応じて、各温度補正ゲインが連続的に変化するマップであっても、段階的に変化するマップであってもよい。
Sliding resistance R = (Rw × Gw) + (Ra × Ga) + (Rd × Gd) (1)
Each temperature correction gain Gw, Ga, Gd is calculated from a map set and stored in advance based on the ambient temperature Ts estimated as described above. The temperature correction gains Gw, Ga, Gd are basically calculated so as to increase as the estimated ambient temperature Ts increases, and to decrease as the ambient temperature Ts decreases. This is because the friction coefficient of each member increases and the sliding resistance increases as the ambient temperature increases. The map relating to the calculation of each temperature correction gain Gw, Ga, Gd is a map that changes stepwise even if each temperature correction gain changes continuously according to the estimated ambient temperature Ts. May be.
 基準回転速度差Vは、荷重(摺動抵抗)当たりのモータ回転速度を表す係数Kを用いて、下式(2)に従って算出される。これにより、各部材の温度特性を加味した摺動抵抗Rに追従して、基準回転速度差Vが算出される。 The reference rotational speed difference V is calculated according to the following equation (2) using a coefficient K representing the motor rotational speed per load (sliding resistance). Thereby, the reference rotational speed difference V is calculated following the sliding resistance R in consideration of the temperature characteristics of each member.
 基準回転速度差V=K×R…(2)
 基準回転速度差Vは、各部材の温度特性を加味した摺動抵抗R(負荷)に対応して見込まれる回転速度Noからの変動量、即ち、回転速度差の絶対値DNを表す。
Reference rotational speed difference V = K × R (2)
The reference rotational speed difference V represents the amount of variation from the rotational speed No that is expected to correspond to the sliding resistance R (load) taking into account the temperature characteristics of each member, that is, the absolute value DN of the rotational speed difference.
 図11は、DCモータ11のストロークStと、前述の態様で算出された基準回転速度差Vとの関係を示す。図11は、常温状態、常温状態よりも低温側である低温状態、及び常温状態よりも高温側である高温状態での基準回転速度差Vを示している。図11も、基準回転速度差V(正数)を縦軸の下側に表している。図11から明らかなように、摺動抵抗Rに追従する基準回転速度差Vは、常温状態に比べて低温状態では小さくなるように算出され、高温状態では大きくなるように算出される。 FIG. 11 shows the relationship between the stroke St of the DC motor 11 and the reference rotational speed difference V calculated in the above-described manner. FIG. 11 shows a reference rotational speed difference V in a normal temperature state, a low temperature state that is lower than the normal temperature state, and a high temperature state that is higher than the normal temperature state. FIG. 11 also shows the reference rotational speed difference V (positive number) on the lower side of the vertical axis. As is clear from FIG. 11, the reference rotational speed difference V that follows the sliding resistance R is calculated so as to be smaller in the low temperature state than in the normal temperature state, and to be large in the high temperature state.
 基準回転速度差Vがモータ温度Tmに基づいて温度補正されることで、DCモータ11の温度特性を加味した基準回転速度差Vmが算出される。即ち、DCモータ11の温度特性を表す温度補正ゲインをGmで表すと、基準回転速度差Vmは、下式(3)に従って算出される。 The reference rotational speed difference Vm that takes into account the temperature characteristics of the DC motor 11 is calculated by correcting the reference rotational speed difference V based on the motor temperature Tm. That is, when the temperature correction gain representing the temperature characteristic of the DC motor 11 is represented by Gm, the reference rotational speed difference Vm is calculated according to the following equation (3).
 基準回転速度差Vm=V×Gm…(3)
 温度補正ゲインGmは、推定されたモータ温度Tmに基づき、予め設定されているマップから算出される。温度補正ゲインGmは、基本的に推定されたモータ温度Tmが高いほど大きくなるように算出され、モータ温度Tmが低いほど小さくなるように算出される。これは、モータ温度Tmに応じた回転トルク差(負荷に相当)の変動を吸収するためである。温度補正ゲインGmの算出に係るマップは、推定されたモータ温度Tmに応じて、温度補正ゲインGmが連続的に変化するマップであっても、段階的に変化するマップであってもよい。
Reference rotational speed difference Vm = V × Gm (3)
The temperature correction gain Gm is calculated from a preset map based on the estimated motor temperature Tm. The temperature correction gain Gm is basically calculated so as to increase as the estimated motor temperature Tm increases, and to decrease as the motor temperature Tm decreases. This is to absorb fluctuations in the rotational torque difference (corresponding to the load) according to the motor temperature Tm. The map relating to the calculation of the temperature correction gain Gm may be a map in which the temperature correction gain Gm changes continuously or in a stepwise change depending on the estimated motor temperature Tm.
 図12は、DCモータ11のストロークStと、前述の態様で算出された基準回転速度差Vmとの関係を示す。図12は、常温状態、常温状態よりも低温側である低温状態、及び常温状態よりも高温側である高温状態での基準回転速度差Vmを示している。図12も、基準回転速度差Vm(正数)を縦軸の下側に表している。図12から明らかなように、基準回転速度差Vmは、常温状態に比べて低温状態では小さくなるように算出され、高温状態では大きくなるように算出される。基準回転速度差Vの補正に係る温度補正ゲインGmは、モータ温度Tmに基づき算出される。従って、式(2)に従って算出された基準回転速度差Vが低温状態のものであったとしても、基準回転速度差Vmが常温状態や高温状態のものとして算出されることはある。これは、作動回数CNに応じてモータ温度Tmを補正したものが雰囲気温度Tsであり、モータ温度Tmが雰囲気温度Ts以上の任意の高温側の温度を取り得るためである。 FIG. 12 shows the relationship between the stroke St of the DC motor 11 and the reference rotational speed difference Vm calculated in the above-described manner. FIG. 12 shows the reference rotational speed difference Vm in a normal temperature state, a low temperature state that is lower than the normal temperature state, and a high temperature state that is higher than the normal temperature state. FIG. 12 also shows the reference rotational speed difference Vm (positive number) on the lower side of the vertical axis. As is apparent from FIG. 12, the reference rotational speed difference Vm is calculated so as to be smaller in the low temperature state than in the normal temperature state, and to be large in the high temperature state. The temperature correction gain Gm related to the correction of the reference rotational speed difference V is calculated based on the motor temperature Tm. Therefore, even if the reference rotational speed difference V calculated according to the equation (2) is a low temperature state, the reference rotational speed difference Vm may be calculated as a normal temperature state or a high temperature state. This is because the ambient temperature Ts is obtained by correcting the motor temperature Tm in accordance with the number of operations CN, and the motor temperature Tm can take any high temperature side higher than the ambient temperature Ts.
 そして、挟み込み判定に係る検知閾値Taは、補正後の基準回転速度差Vm及び挟み込み判定荷重FLに基づいて、下式(4)に従って算出される。
 検知閾値Ta=Vm+(K×FL)×Gm…(4)
 挟み込み判定荷重FLは、挟み込み判定トルクに相関するもので、挟み込み発生時の負荷に基づく所定値に設定されている。つまり、検知閾値Taの算出に際し、挟み込み発生時の負荷(FL)にも、DCモータ11の温度特性が反映されている。
Then, the detection threshold value Ta related to the pinching determination is calculated according to the following expression (4) based on the corrected reference rotational speed difference Vm and the pinching determination load FL.
Detection threshold Ta = Vm + (K × FL) × Gm (4)
The pinching determination load FL correlates with the pinching determination torque, and is set to a predetermined value based on the load at the time of pinching occurrence. That is, when calculating the detection threshold Ta, the temperature characteristic of the DC motor 11 is also reflected in the load (FL) at the time of occurrence of pinching.
 図13は、DCモータ11のストロークStと、前述の態様で算出された検知閾値Taとの関係を示す。図13は、全体的に低温状態及び高温状態での検知閾値Taを示している。図13から明らかなように、低温状態の検知閾値Taの方が高温状態の検知閾値Taよりも小さく算出される。 FIG. 13 shows the relationship between the stroke St of the DC motor 11 and the detection threshold value Ta calculated in the above-described manner. FIG. 13 shows the detection threshold value Ta in the low temperature state and the high temperature state as a whole. As apparent from FIG. 13, the detection threshold Ta in the low temperature state is calculated to be smaller than the detection threshold Ta in the high temperature state.
 図13の太実線は、挟み込み発生時における回転速度差の絶対値DNの推移を示している。図13に示すように、低温状態の検知閾値Taが設定されている場合、回転速度差の絶対値DNが検知閾値Taを上回るストロークStLにおいて挟み込みが検出される。一方、高温状態の検知閾値Taが設定されている場合、回転速度差の絶対値DNが検知閾値Taを上回るストロークStH(>StL)において挟み込みが検出される。このように、低温状態の検知閾値Taの方が高温状態の検知閾値Taよりも小さく算出されることで、回転速度差の絶対値DNが同一であっても、低温状態の方が異物の挟み込みの検出感度が高くなっている。 The thick solid line in FIG. 13 shows the transition of the absolute value DN of the rotational speed difference when the pinching occurs. As shown in FIG. 13, when the detection threshold value Ta in the low temperature state is set, pinching is detected at a stroke StL where the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta. On the other hand, when the detection threshold value Ta in the high temperature state is set, pinching is detected at a stroke StH (> StL) where the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta. In this way, the detection threshold Ta in the low temperature state is calculated to be smaller than the detection threshold Ta in the high temperature state, so that even if the absolute value DN of the rotational speed difference is the same, the low temperature state is more likely to trap foreign objects. The detection sensitivity of is high.
 次に、バックドア3の閉作動時におけるドアロック装置10のドアロック駆動ユニット50の制御態様について図14及び図15を参照して説明する。図14及び図15に示す一連の処理は、例えば、手動又は電動によるバックドア3の閉作動に伴ってハーフラッチスイッチ53から出力される検出信号に基づきラッチ機構12がハーフラッチ状態であることを検出したことによって起動される。 Next, the control mode of the door lock drive unit 50 of the door lock device 10 when the back door 3 is closed will be described with reference to FIGS. The series of processes shown in FIGS. 14 and 15 indicate that the latch mechanism 12 is in a half latch state based on a detection signal output from the half latch switch 53 when the back door 3 is closed manually or electrically. It is activated by detecting it.
 図14に示すように、先ず、ドアECU40は、ラッチ機構12をフルラッチ状態にするため、DCモータ11の作動を開始する(ステップS1)。次に、ドアECU40は、DCモータ11のストロークStがストロークStoに到達するまでの空走期間において、DCモータ11の回転速度Noを検出する(ステップS2)。 As shown in FIG. 14, first, the door ECU 40 starts the operation of the DC motor 11 in order to place the latch mechanism 12 in a fully latched state (step S1). Next, the door ECU 40 detects the rotational speed No of the DC motor 11 during the idle running period until the stroke St of the DC motor 11 reaches the stroke Sto (step S2).
 続いて、ドアECU40は、DCモータ11の無負荷状態での回転速度Noに基づいて、モータ温度Tmを推定する(ステップS3)。次に、ドアECU40は、モータ温度Tm及び直近の一定時間内におけるDCモータ11の作動回数CNに基づいて、雰囲気温度Tsを推定する(ステップS4)。次に、ドアECU40は、推定されたモータ温度Tmに基づいて、温度補正ゲインGmを算出する(ステップS5)。次に、ドアECU40は、推定された雰囲気温度Tsに基づいて、温度補正ゲインGw,Ga,Gdをそれぞれ算出する(ステップS6)。そして、ドアECU40は、式(1)~(4)に従って、検知閾値Taを算出する(ステップS7)。 Subsequently, the door ECU 40 estimates the motor temperature Tm based on the rotational speed No when the DC motor 11 is in an unloaded state (step S3). Next, the door ECU 40 estimates the ambient temperature Ts based on the motor temperature Tm and the number of operations CN of the DC motor 11 within the latest fixed time (step S4). Next, the door ECU 40 calculates a temperature correction gain Gm based on the estimated motor temperature Tm (step S5). Next, the door ECU 40 calculates temperature correction gains Gw, Ga, Gd based on the estimated ambient temperature Ts (step S6). Then, the door ECU 40 calculates the detection threshold Ta according to the equations (1) to (4) (step S7).
 温度補正ゲインGw、Ga,Gd,Gmの全てが「1」に設定されているときの検知閾値Taは、バックドア3の閉駆動時の予め設定された摺動抵抗(常温状態の摺動抵抗)に相関する基準となる閾値である。従って、ステップS7では、モータ温度Tmが高いときよりも低いときの方が、あるいは、雰囲気温度Tsが高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように、基準となる閾値が補正されている(補正部)。 The detection threshold Ta when all of the temperature correction gains Gw, Ga, Gd, and Gm are set to “1” is a sliding resistance that is set in advance when the back door 3 is closed (sliding resistance in a normal temperature state). ) Is a reference threshold value that correlates to. Therefore, in step S7, the reference and the reference are set so that the detection sensitivity of foreign object pinching is higher when the motor temperature Tm is lower than when the motor temperature Tm is high or when the motor temperature Ts is lower than when the ambient temperature Ts is high. Is corrected (correction unit).
 次に、ドアECU40は、空走期間が終了したか否かを判断する(ステップS8)。次に、ドアECU40は、空走期間の終了を待って、回転速度差の絶対値DNを算出する(ステップS9:演算部)。次に、ドアECU40は、回転速度差の絶対値DNが検知閾値Taを上回るか否かを判断する(ステップS10:挟み込み検出部)。回転速度差の絶対値DNが検知閾値Taを上回る場合、ドアECU40は、挟み込み発生時の負荷が検出されたと判断して、周知の挟み込み対処処理、即ち、DCモータ11の停止及び反転等を実行する(ステップS11)。そして、ドアECU40は、上記一連の処理を終了する。 Next, the door ECU 40 determines whether or not the idling period has ended (step S8). Next, the door ECU 40 waits for the end of the idling period and calculates the absolute value DN of the rotational speed difference (step S9: calculation unit). Next, the door ECU 40 determines whether or not the absolute value DN of the rotational speed difference exceeds the detection threshold Ta (step S10: pinching detection unit). If the absolute value DN of the rotational speed difference exceeds the detection threshold value Ta, the door ECU 40 determines that a load at the time of occurrence of pinching has been detected, and executes a well-known pinching countermeasure process, that is, stopping and reversing the DC motor 11. (Step S11). Then, the door ECU 40 ends the series of processes.
 一方、回転速度差の絶対値DNが検知閾値Ta以下である場合、ドアECU40は、フルラッチ状態への移行が完了したか否かを判断する(ステップS12)。そして、フルラッチ状態への移行が未完了である場合(ステップS12のNO)、ドアECU40は、ステップS9に戻って上記一連の処理を繰り返す。つまり、上述した挟み込み検出のための処理が、空走期間が終了してからフルラッチ状態への移行か完了するまで繰り返される。 On the other hand, when the absolute value DN of the rotational speed difference is equal to or smaller than the detection threshold Ta, the door ECU 40 determines whether or not the transition to the full latch state has been completed (step S12). If the transition to the full latch state has not been completed (NO in step S12), the door ECU 40 returns to step S9 and repeats the series of processes described above. That is, the above-described process for detecting pinching is repeated until the transition to the full latch state is completed after the idle running period ends.
 フルラッチ状態への移行が完了した場合(ステップS12のYES)、ドアECU40は、DCモータ11の作動を停止する(ステップS13)。そして、ドアECU40は、アクティブレバー24を初期位置に戻すようにDCモータ11を反転させると共に、アクティブレバー24の初期位置への復帰に基づいてDCモータ11を停止する(ステップS14)。そして、ドアECU40は、上記一連の処理を終了する。 When the transition to the full latch state is completed (YES in step S12), the door ECU 40 stops the operation of the DC motor 11 (step S13). Then, the door ECU 40 reverses the DC motor 11 so as to return the active lever 24 to the initial position, and stops the DC motor 11 based on the return of the active lever 24 to the initial position (step S14). Then, the door ECU 40 ends the series of processes.
 以上、本実施形態によれば、以下の作用効果を奏することができる。
 (1)ドアECU40により、モータ温度Tmが高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように検知閾値Taが補正される。これにより、異物の挟み込みの検出精度が、より一層向上する。また、ドアECU40により、雰囲気温度Tsが高いときよりも低いときの方が、異物の挟み込みの検出感度が高くなるように検知閾値Taが補正される。これにより、異物の挟み込みの検出精度が、より一層向上する。
As described above, according to the present embodiment, the following operational effects can be achieved.
(1) The detection threshold value Ta is corrected by the door ECU 40 so that the detection sensitivity of foreign object pinching is higher when the motor temperature Tm is lower than when the motor temperature Tm is high. Thereby, the detection accuracy of foreign object pinching is further improved. Further, the detection threshold Ta is corrected by the door ECU 40 so that the detection sensitivity of foreign object pinching is higher when the ambient temperature Ts is lower than when the ambient temperature Ts is high. Thereby, the detection accuracy of foreign object pinching is further improved.
 特に、DCモータ11の温度特性に係る検知閾値Taの補正、及び摺動抵抗Rの温度特性に係る検知閾値Taの補正には、モータ温度Tm及び雰囲気温度Tsがそれぞれ利用される。これにより、DCモータ11の温度と雰囲気の温度との差が顕著であっても、挟み込みの検出精度の低下を抑えることができる。 In particular, the motor temperature Tm and the ambient temperature Ts are respectively used for correcting the detection threshold Ta related to the temperature characteristics of the DC motor 11 and correcting the detection threshold Ta related to the temperature characteristics of the sliding resistance R. Thereby, even if the difference of the temperature of the DC motor 11 and the temperature of atmosphere is remarkable, the fall of the detection accuracy of pinching can be suppressed.
 (2)ドアECU40は、雰囲気温度Tsの推定において、一定時間内でのDCモータ11の作動回数CNを検出すればよい。このため、DCモータ11の通電時間を検出し積算する場合に比べて、演算負荷を軽減することができる。 (2) The door ECU 40 may detect the operation frequency CN of the DC motor 11 within a predetermined time in the estimation of the ambient temperature Ts. For this reason, compared with the case where the energization time of the DC motor 11 is detected and integrated, the calculation load can be reduced.
 (3)DCモータ11の温度特性に係る検知閾値Taの補正、及び摺動抵抗Rの温度特性に係る検知閾値Taの補正がそれぞれ行われる。これにより、一定時間内でのDCモータ11の作動回数CN、即ち、通電時間が著しく多い状態であっても、挟み込みの検出機能を無効化しなくてもよい。 (3) Correction of the detection threshold Ta related to the temperature characteristic of the DC motor 11 and correction of the detection threshold Ta related to the temperature characteristic of the sliding resistance R are performed. Thereby, even if the number of operations CN of the DC motor 11 within a certain time, that is, the energization time is remarkably long, it is not necessary to invalidate the pinching detection function.
 上記実施形態は、以下のように変更してもよい。
 ・直近の一定時間内でのDCモータ11の通電時間を、雰囲気温度Tsの推定に利用してもよい。
The above embodiment may be modified as follows.
The energization time of the DC motor 11 within the latest fixed time may be used for the estimation of the ambient temperature Ts.
 ・温度補正ゲインGmがモータ温度Tmに応じて連続的に変化する場合、温度補正ゲインGmが一定となる不感帯を、中間となる所定範囲のモータ温度Tmに設定してもよい。
 ・温度補正ゲインGw、Ga,Gdが雰囲気温度Tsに応じて連続的に変化する場合、温度補正ゲインGw、Ga,Gdが一定となる不感帯を、中間となる所定範囲の雰囲気温度Tsに設定してもよい。
When the temperature correction gain Gm continuously changes according to the motor temperature Tm, the dead zone where the temperature correction gain Gm is constant may be set to a predetermined range of the motor temperature Tm that is intermediate.
When the temperature correction gains Gw, Ga, and Gd change continuously according to the ambient temperature Ts, the dead zone where the temperature correction gains Gw, Ga, and Gd are constant is set to the ambient temperature Ts within a predetermined range that is intermediate. May be.
 ・DCモータ11の無負荷状態(空走区間)での回転速度Noの検出時期は、任意である。例えば、回転速度Nのより安定化が期待される空走区間の終盤や、回転速度Nを逐次検出して前回の回転速度と今回の回転速度との偏差が一定範囲に収まったときに、回転速度を検出してもよい。 · The detection time of the rotational speed No when the DC motor 11 is in a no-load state (idle running section) is arbitrary. For example, when the rotation speed N is expected to be stabilized at the end of the idle section or when the rotation speed N is sequentially detected and the deviation between the previous rotation speed and the current rotation speed falls within a certain range, The speed may be detected.
 ・アクティブレバー24の初期位置(中立位置)を検出するためのポジションスイッチ52を、両パルスセンサ51で代用してもよい。具体的には、アンラッチ状態に移行直後のアクティブレバー24の回動位置を基準に、両パルスセンサ51の出力するパルス信号を、アクティブレバー24の初期位置に対応して予め設定されたパルス数だけ計数して、初期位置を検出してもよい。 The position switch 52 for detecting the initial position (neutral position) of the active lever 24 may be substituted with the both pulse sensors 51. Specifically, based on the rotation position of the active lever 24 immediately after the transition to the unlatched state, the pulse signals output from both pulse sensors 51 are set to the number of pulses set in advance corresponding to the initial position of the active lever 24. The initial position may be detected by counting.
 ・アクティブレバー24やDCモータ11に設定される空走区間は、パッシブレバー26がラッチ13の従動凸部13fに当接するまでの間であってもよい。つまり、DCモータ11の空走区間を、ラッチ13が作動しない任意の回動位置(ストローク)に設定してもよい。この場合、DCモータ11の回転速度Nが2段階に変化するため、より長い空走区間を利用して回転速度Noを検出することがより好ましい。 The idle running section set in the active lever 24 or the DC motor 11 may be until the passive lever 26 contacts the driven convex portion 13f of the latch 13. That is, the idle running section of the DC motor 11 may be set to an arbitrary rotation position (stroke) where the latch 13 does not operate. In this case, since the rotational speed N of the DC motor 11 changes in two stages, it is more preferable to detect the rotational speed No using a longer idle section.
 ・回転速度差の絶対値DNに代えて、回転速度差(負数)を、バックドア3の閉作動時の負荷の推定に利用してもよい。この場合、異物の挟み込み検出に係る検知閾値の極性や、挟み込み検出時の回転速度差及び検知閾値の大小関係が整合されていればよい。 · Instead of the absolute value DN of the rotational speed difference, the rotational speed difference (negative number) may be used for estimating the load when the back door 3 is closed. In this case, it is only necessary that the polarity of the detection threshold value related to the detection of foreign object pinching, the rotational speed difference at the time of pinching detection, and the magnitude relationship between the detection threshold values are matched.
 ・バックドア3の移動速度をDCモータ11の回転速度として検出したが、バックドア3の移動速度を直接検出してもよい。
 ・ドアECU40によるドア駆動ユニット7の駆動制御によってバックドア3を閉作動させる際、DCモータ71の回転速度差(DN)に基づいて異物の挟み込みを検出するには、ドアロック駆動ユニット50の駆動制御にて推定される雰囲気温度情報を共有して、異物の検出に用いる検知閾値を変更してもよい。
Although the moving speed of the back door 3 is detected as the rotational speed of the DC motor 11, the moving speed of the back door 3 may be directly detected.
When the back door 3 is closed by the drive control of the door drive unit 7 by the door ECU 40, the door lock drive unit 50 is driven in order to detect the trapping of foreign matter based on the rotational speed difference (DN) of the DC motor 71. The detection temperature threshold used for detection of a foreign object may be changed by sharing the ambient temperature information estimated by the control.
 ・ドアECU40によるドア駆動ユニット7の駆動制御によってバックドア3を閉作動させる際、独立してDCモータ71の温度及び雰囲気温度を推定するには、電磁クラッチ72を非接続状態とした空走期間を利用して無負荷状態の回転速度(No)を検出し、本実施形態に準じてモータ温度及び雰囲気温度を推定すればよい。 In order to estimate the temperature of the DC motor 71 and the ambient temperature independently when the back door 3 is closed by the drive control of the door drive unit 7 by the door ECU 40, the idle running period in which the electromagnetic clutch 72 is in the disconnected state May be used to detect the rotational speed (No) in the no-load state and estimate the motor temperature and the ambient temperature according to the present embodiment.
 この場合、DCモータ71がドアロック装置10をフルラッチ状態に切り替える十分な駆動力を発生できるのであれば、ドアロック駆動ユニット50を省略してもよい。
 ・ドアロック装置10をフルラッチ状態からアンラッチ状態に切り替えるためのドアリリース機能を省略してもよい。
In this case, the door lock drive unit 50 may be omitted as long as the DC motor 71 can generate a sufficient driving force to switch the door lock device 10 to the fully latched state.
The door release function for switching the door lock device 10 from the fully latched state to the unlatched state may be omitted.
 ・DCモータ11に代えて、ACモータを用いてもよい。
 ・開閉体は、スウィングドアやスライドドア、トランクリッド、サンルーフ、窓ガラスなどであってもよい。また、これらの開閉体とモータとを機械的に連係する駆動機構は、任意である。このため、モータの空走期間又は空走区間が設定されるのであれば、リンク機構やカム機構、ギヤ機構、ケーブル(ロープ、ベルト)伝動機構、ねじ機構、これらの組合せ等を用いてもよい。
An AC motor may be used instead of the DC motor 11.
-The opening / closing body may be a swing door, a sliding door, a trunk lid, a sunroof, a window glass, or the like. Further, a drive mechanism that mechanically links the opening / closing body and the motor is arbitrary. For this reason, a link mechanism, a cam mechanism, a gear mechanism, a cable (rope, belt) transmission mechanism, a screw mechanism, a combination thereof, or the like may be used as long as the idle period or idle period of the motor is set. .
 ・異物の挟み込み判断に用いる移動速度変化は、所定区間での開閉体の移動速度又は予め設定された移動速度により定める基準移動速度とその後に検出された現在の移動速度との偏差である移動速度差、及び移動速度差の積算値、及び単位時間又は単位移動量当たりの移動速度変化量のいずれか一つであればよい。 The movement speed change used to determine whether the foreign object is caught is a movement speed that is a deviation between the movement speed of the opening / closing body in a predetermined section or a reference movement speed determined by a preset movement speed and the current movement speed detected thereafter. Any one of the difference, the integrated value of the movement speed difference, and the movement speed change amount per unit time or unit movement amount may be used.
 ・車両用開閉体駆動制御装置は、開閉体の開駆動時に異物の挟み込みを検出する装置であってもよい。 The vehicle opening / closing body drive control device may be a device that detects the trapping of a foreign object when the opening / closing body is driven to open.

Claims (5)

  1. 空走期間又は空走区間を経てから開閉体を駆動するモータと、
     所定区間での前記開閉体の移動速度又は予め設定された移動速度により定める基準移動速度とその後に検出された現在の移動速度との偏差である移動速度差、前記移動速度差の積算値、及び所定時間内の移動速度変化量のいずれか一つである移動速度変化を演算する演算部と、
     前記演算された移動速度変化と、前記開閉体の駆動時の予め設定された摺動抵抗に相関する閾値とを比較して、異物の挟み込みを検出する挟み込み検出部と、
     前記空走期間又は空走区間にて検出された前記モータの回転速度に基づき、前記モータの温度を推定するモータ温度推定部と、
     一定時間内での前記モータの通電時間を検出する通電時間検出部と、
     前記モータ温度推定部により推定された前記モータの温度及び前記通電時間検出部により検出された通電時間に基づき雰囲気の温度を推定する雰囲気温度推定部と、
     前記モータ温度推定部により推定された前記モータの温度又は前記雰囲気温度推定部により推定された雰囲気の温度が高いときよりも低いときの方が、前記挟み込み検出部による異物の挟み込みの検出感度が高くなるように、前記閾値を補正する補正部と
     を備える車両用開閉体駆動制御装置。
    A motor that drives the opening and closing body after an idle running period or an idle running section;
    A moving speed difference which is a deviation between a moving speed of the opening / closing body in a predetermined section or a reference moving speed determined by a preset moving speed and a current moving speed detected thereafter, an integrated value of the moving speed difference, and A calculation unit for calculating a movement speed change that is one of the movement speed changes within a predetermined time; and
    A pinching detector that detects the pinching of a foreign object by comparing the calculated movement speed change with a threshold value that correlates with a preset sliding resistance when the opening / closing body is driven,
    A motor temperature estimator for estimating the temperature of the motor based on the rotational speed of the motor detected in the idle running period or idle running section;
    An energization time detector for detecting the energization time of the motor within a certain time;
    An atmosphere temperature estimation unit that estimates the temperature of the atmosphere based on the temperature of the motor estimated by the motor temperature estimation unit and the energization time detected by the energization time detection unit;
    When the temperature of the motor estimated by the motor temperature estimation unit or the temperature of the atmosphere estimated by the atmosphere temperature estimation unit is lower than when the temperature of the atmosphere is high, the detection detection of foreign object pinching by the pinching detection unit is higher. A vehicle opening / closing body drive control device comprising: a correction unit that corrects the threshold value.
  2. 請求項1記載の車両用開閉体駆動制御装置において、
     前記通電時間検出部は、前記通電時間として、前記一定時間内での前記モータの作動回数を検出する車両用開閉体駆動制御装置。
    In the vehicle opening / closing body drive control device according to claim 1,
    The vehicular opening / closing body drive control device, wherein the energization time detection unit detects the number of operation times of the motor within the predetermined time as the energization time.
  3. 請求項1又は2記載の車両用開閉体駆動制御装置において、
     前記補正部が前記閾値を補正する補正量は、前記雰囲気の温度が高くなるに従い大きくなる車両用開閉体駆動制御装置。
    In the vehicle opening / closing body drive control device according to claim 1 or 2,
    The vehicle opening / closing body drive control device for a vehicle, wherein the correction amount by which the correction unit corrects the threshold value increases as the temperature of the atmosphere increases.
  4. 請求項1又は2記載の車両用開閉体駆動制御装置において、
     前記補正部が前記閾値を補正する補正量は、前記モータの温度が高くなるに従い大きくなる車両用開閉体駆動制御装置。
    In the vehicle opening / closing body drive control device according to claim 1 or 2,
    The vehicle opening / closing body drive control device for the vehicle, wherein the correction amount by which the correction unit corrects the threshold value increases as the temperature of the motor increases.
  5. 車両ドアを全閉状態で保持するフルラッチ状態、前記車両ドアを半ドア状態で保持するハーフラッチ状態、及び前記車両ドアを保持しないアンラッチ状態に切り替え自在なラッチ機構と、
     前記ラッチ機構に連係される閉側伝達部材と、
     空走区間を経てから前記閉側伝達部材を介して前記ラッチ機構に駆動力を伝達し、ハーフラッチ状態にある前記ラッチ機構をフルラッチ状態に切替えるように切替駆動されるモータと、
     前記モータの回転速度を検出する回転速度検出部と、
     前記空走区間にて検出された前記モータの回転速度と、その後に検出された現在の回転速度との偏差である回転速度差を演算する演算部と、
     前記演算された回転速度差と、前記モータの切替駆動時の摺動抵抗に相関する予め設定された閾値とを比較して、異物の挟み込みを検出する挟み込み検出部と、
     前記空走区間にて検出された前記モータの回転速度に基づき、前記モータの温度を推定するモータ温度推定部と、
     一定時間内での前記モータの通電時間を検出する通電時間検出部と、
     前記モータ温度推定部により推定された前記モータの温度及び前記通電時間検出部により検出された通電時間に基づき雰囲気の温度を推定する雰囲気温度推定部と、
     前記モータ温度推定部により推定された前記モータの温度又は前記雰囲気温度推定部により推定された雰囲気の温度が高いときよりも低いときの方が、前記挟み込み検出部による異物の挟み込みの検出感度が高くなるように、前記閾値を補正する補正部と
     を備える車両用ドアロック装置。
    A latch mechanism that can be switched to a full latch state that holds the vehicle door in a fully closed state, a half latch state that holds the vehicle door in a half door state, and an unlatched state that does not hold the vehicle door;
    A closed-side transmission member linked to the latch mechanism;
    A motor that is driven to switch to transmit the driving force to the latch mechanism via the closed-side transmission member after passing through an idle running section, and to switch the latch mechanism in a half latch state to a full latch state;
    A rotation speed detector for detecting the rotation speed of the motor;
    A calculation unit for calculating a rotation speed difference which is a deviation between the rotation speed of the motor detected in the idle running section and the current rotation speed detected thereafter;
    A pinching detector that detects the pinching of a foreign object by comparing the calculated rotational speed difference with a preset threshold value that correlates with a sliding resistance during the switching driving of the motor;
    A motor temperature estimating unit for estimating the temperature of the motor based on the rotational speed of the motor detected in the idle running section;
    An energization time detector for detecting the energization time of the motor within a certain time;
    An atmosphere temperature estimation unit that estimates the temperature of the atmosphere based on the temperature of the motor estimated by the motor temperature estimation unit and the energization time detected by the energization time detection unit;
    When the temperature of the motor estimated by the motor temperature estimation unit or the temperature of the atmosphere estimated by the atmosphere temperature estimation unit is lower than when the temperature of the atmosphere is high, the detection detection of foreign object pinching by the pinching detection unit is higher. A vehicle door lock device comprising: a correction unit that corrects the threshold value.
PCT/JP2014/083989 2013-12-25 2014-12-22 Drive control device for opening/closing body of vehicle WO2015098882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267863A JP6169965B2 (en) 2013-12-25 2013-12-25 Opening / closing member drive control device for vehicle
JP2013-267863 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098882A1 true WO2015098882A1 (en) 2015-07-02

Family

ID=53478735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083989 WO2015098882A1 (en) 2013-12-25 2014-12-22 Drive control device for opening/closing body of vehicle

Country Status (2)

Country Link
JP (1) JP6169965B2 (en)
WO (1) WO2015098882A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285281A (en) * 2016-10-28 2017-01-04 北京经纬恒润科技有限公司 The anti-clamping method of a kind of automobile door lock and device
CN107130875A (en) * 2016-02-29 2017-09-05 福特全球技术公司 Temperature control for electric vehicle car door
CN109888734A (en) * 2019-03-07 2019-06-14 湖南海博瑞德电智控制技术有限公司 A kind of automobile power back door Overtemperature protection device of motor
CN110303998A (en) * 2019-06-28 2019-10-08 大陆汽车电子(长春)有限公司 The anti-pinch temperature-compensation method and electronic control unit of equipment are closed on vehicle
CN111736500A (en) * 2020-05-21 2020-10-02 宁波吉利汽车研究开发有限公司 Method, device, system, equipment and medium for controlling opening of vehicle tail gate
CN114607226A (en) * 2022-03-22 2022-06-10 翊天汽车智能科技(浙江)有限公司 Electric door and window anti-pinch method capable of realizing self-adaption to temperature change

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788337B2 (en) 2019-01-25 2023-10-17 Denso Corporation Opening/closing member control device
JP7040472B2 (en) 2019-01-25 2022-03-23 株式会社デンソー Open / close body control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003740A (en) * 2001-06-21 2003-01-08 Asmo Co Ltd Open-close member controller and method for controlling open-close member
JP2010248884A (en) * 2009-03-24 2010-11-04 Aisin Seiki Co Ltd Opening/closing body drive controller for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592762B2 (en) * 2006-06-21 2009-09-22 Flextronics Automotive Inc. System and method for establishing a reference angle for controlling a vehicle rotational closure system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003740A (en) * 2001-06-21 2003-01-08 Asmo Co Ltd Open-close member controller and method for controlling open-close member
JP2010248884A (en) * 2009-03-24 2010-11-04 Aisin Seiki Co Ltd Opening/closing body drive controller for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130875A (en) * 2016-02-29 2017-09-05 福特全球技术公司 Temperature control for electric vehicle car door
CN107130875B (en) * 2016-02-29 2020-09-29 福特全球技术公司 Temperature control for electric vehicle doors
CN106285281A (en) * 2016-10-28 2017-01-04 北京经纬恒润科技有限公司 The anti-clamping method of a kind of automobile door lock and device
CN109888734A (en) * 2019-03-07 2019-06-14 湖南海博瑞德电智控制技术有限公司 A kind of automobile power back door Overtemperature protection device of motor
CN110303998A (en) * 2019-06-28 2019-10-08 大陆汽车电子(长春)有限公司 The anti-pinch temperature-compensation method and electronic control unit of equipment are closed on vehicle
CN110303998B (en) * 2019-06-28 2023-01-03 大陆汽车电子(长春)有限公司 Anti-pinch temperature compensation method for on-board closing equipment and electronic control unit
CN111736500A (en) * 2020-05-21 2020-10-02 宁波吉利汽车研究开发有限公司 Method, device, system, equipment and medium for controlling opening of vehicle tail gate
CN114607226A (en) * 2022-03-22 2022-06-10 翊天汽车智能科技(浙江)有限公司 Electric door and window anti-pinch method capable of realizing self-adaption to temperature change

Also Published As

Publication number Publication date
JP6169965B2 (en) 2017-07-26
JP2015124489A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
WO2015098882A1 (en) Drive control device for opening/closing body of vehicle
JP5421012B2 (en) Opening / closing member drive control device for vehicle
US8975850B2 (en) Driving control device of opening and closing body for vehicle
US8533998B2 (en) Apparatus for controlling opening-and-closing member for vehicle
US7808197B2 (en) Control apparatus for opening/closing member of vehicle and control method for opening/closing member of vehicle
US7866728B2 (en) Opening and closing member control apparatus for vehicle
JP6099129B2 (en) Opening and closing body control device
US6573677B2 (en) Method of compensating for abrupt load changes in an anti-pinch window control system
WO2015098881A1 (en) Vehicle opening/closing body drive control device
US10626660B2 (en) Opening-and-closing apparatus
US11391072B2 (en) Device for controlling opening/closing body for vehicle
US20170081899A1 (en) Opening and closing body control device for vehicle
JP5819740B2 (en) Opening / closing member drive control device for vehicle
US20170012566A1 (en) Drive apparatus
JP4981431B2 (en) Control device for vehicle opening / closing body
JP6733441B2 (en) Swing door control device
JP2013144908A (en) Closer control device
JP2008150830A (en) Control unit of opening and closing body for vehicle
JPH08240071A (en) Method for determining catch detection range
US11788337B2 (en) Opening/closing member control device
JP2018159219A (en) Electrically operated sliding door control device
JP6851855B2 (en) Electric sliding door control device
JP2009228254A (en) Drive control unit for opening/closing body
JP2004190416A (en) Vehicular automatic opening-closing device
JPH07143792A (en) Power window system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873976

Country of ref document: EP

Kind code of ref document: A1