WO2015098709A1 - Centrifugal pump system - Google Patents

Centrifugal pump system Download PDF

Info

Publication number
WO2015098709A1
WO2015098709A1 PCT/JP2014/083612 JP2014083612W WO2015098709A1 WO 2015098709 A1 WO2015098709 A1 WO 2015098709A1 JP 2014083612 W JP2014083612 W JP 2014083612W WO 2015098709 A1 WO2015098709 A1 WO 2015098709A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
centrifugal pump
pump system
magnetic force
drive transmission
Prior art date
Application number
PCT/JP2014/083612
Other languages
French (fr)
Japanese (ja)
Inventor
板持洋介
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2015554807A priority Critical patent/JP6434423B2/en
Publication of WO2015098709A1 publication Critical patent/WO2015098709A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines

Definitions

  • the present invention relates to a centrifugal pump system for feeding a liquid such as blood.
  • the artificial heart-lung machine constitutes an extracorporeal circuit, and performs oxygenation of blood removed from a patient, removal of foreign substances, and the like.
  • cardiopulmonary apparatus There are various types of cardiopulmonary apparatus depending on the type of oxygenator, the type of pump, the position of the pump, etc., but usually a reservoir (blood reservoir), oxygenator, heat exchanger, pump and those (See Japanese Patent Application Laid-Open No. 2009-160265).
  • a centrifugal pump is an example of a pump used in an oxygenator.
  • a centrifugal pump generally includes a housing, an impeller rotatably disposed in the housing, a shaft provided in the center of the impeller, and a bearing that rotatably supports the shaft.
  • This centrifugal pump operates as a centrifugal pump system by being attached to a pump drive unit.
  • a centrifugal pump system rotates an impeller in a housing by a pump drive unit, draws the blood of the patient to the center of rotation, and pushes the blood to the outer peripheral side of the impeller by the centrifugal force at the time of rotation. Perform blood pumping.
  • the impeller of the centrifugal pump system is located closer to the lower side in the housing at the time of low speed rotation, and is displaced to the upper side in the housing by buoyancy at the time of high speed rotation. Show. For this reason, for example, when blood is sent by continuously performing low-speed rotation, a large load is continuously applied from the impeller to the lower bearing that pivotally supports the impeller. As a result, the blood property of the pivot support portion is remarkably changed, resulting in inconvenience of generating a thrombus. On the other hand, when performing high-speed rotation, the impeller is displaced upward in the housing, so that the torque transmission rate between the pump drive unit and the impeller is reduced, and it is difficult to smoothly rotate the impeller. There is.
  • the present invention has been made to solve the above-described problem, and is a centrifugal pump system capable of satisfactorily feeding body fluid by adopting a configuration capable of appropriately setting a load during rotation of an impeller.
  • the purpose is to provide.
  • a centrifugal pump system includes a centrifugal pump including a housing, an impeller rotatably disposed in the housing and responsive to magnetism, and an axial direction of the impeller
  • a drive transmission unit that transmits the rotational force of the drive source to the impeller while magnetically attracting or repelling, and the drive transmission unit is applied to the impeller based on the rotational speed of the impeller or the drive source
  • the magnetic force can be varied.
  • the load when the impeller rotates can be appropriately set by the drive transmission unit changing the magnetic force applied to the impeller in accordance with the rotation speed of the impeller or the drive source. That is, in the structure in which the impeller is rotated magnetically, the load in the axial direction of the impeller can be appropriately controlled by changing the magnetic force applied to the impeller when the impeller rotates. As a result, the centrifugal pump system can suppress the body fluid from changing under the influence of the load of the impeller (for example, the occurrence of a thrombus), and the body fluid can be sent well.
  • the drive transmission unit is arranged below the housing and has a magnetic force applied at a second rotational speed that is lower than the first rotational speed of the impeller than a magnetic force applied at the first rotational speed of the impeller. It is preferable to weaken.
  • the load applied to the impeller in the downward direction at the second rotational speed can be reduced by weakening the magnetic force applied at the second rotational speed rather than the magnetic force applied at the first rotational speed. Therefore, for example, even when the impeller is rotated at a low speed in order to suppress hemolysis of the blood, the blood can be fed satisfactorily.
  • centrifugal pump system displaces the drive transmission unit, and the separation at the second rotation speed of the impeller is greater than a separation distance between the impeller and the drive transmission unit at the first rotation speed of the impeller. It is good to further have a displacement mechanism part which lengthens distance.
  • the centrifugal pump system can easily change the magnetic force applied to the impeller by including the displacement mechanism unit that changes the separation distance between the impeller and the drive transmission unit. That is, by making the separation distance at the second rotational speed of the impeller longer than the separation distance at the first rotational speed, the magnetic force at the second rotational speed can be easily weakened, and the load on the impeller can be reliably reduced. it can.
  • the drive transmission unit includes an electromagnet capable of controlling the magnetic force applied to the impeller by supply power, and the electromagnet is more effective at the first rotational speed than the magnetic force at the second rotational speed. It is preferable to be controlled so as to increase the magnetic force.
  • the centrifugal pump system can satisfactorily transmit the rotational force from the drive transmission unit to the impeller even during high-speed rotation.
  • the displacement mechanism unit may be configured to displace the drive transmission unit and the drive source integrally.
  • the centrifugal pump system can easily control the fluctuation of the magnetic force while simplifying the structure of the rotation control of the impeller.
  • the centrifugal pump may include a shaft that is provided at the center of the impeller and has shaft ends at both ends in the axial direction, and a bearing that pivotally supports each of the shaft ends.
  • Such a pivot support structure with a shaft and a bearing concentrates stress from the shaft toward the bearing, but the drive transmission unit fluctuates the magnetic force applied to the impeller, thereby improving the load applied to the bearing. Can be controlled.
  • a detection unit that detects a pressure or load between at least one of the bearings and the housing, and a control unit that varies the magnetic force applied to the impeller based on the detected pressure or load. It may be.
  • the load of the impeller can be controlled with higher accuracy by changing the magnetic force applied to the impeller based on the pressure or load applied to the bearing by the control unit, and the change in body fluid can be further suppressed. .
  • the impeller has a plurality of guide passages for allowing fluid to flow from the center of rotation outward in the rotational radial direction, and the guide passage is surrounded by a wall portion constituting the impeller, and the outer periphery in the rotational radial direction. It is preferable that it extends linearly toward.
  • the guide path is linearly extended outward in the rotational radial direction while being surrounded by the wall portion constituting the impeller, so that the body fluid (fluid) is linearly centrifuged in the impeller. Can lead to.
  • the rotational speed of an impeller is low speed (2nd rotational speed)
  • the improvement of the amount of body fluids delivered is achieved.
  • the load in the axial direction of the impeller can be reduced as described above even during low-speed rotation.
  • the centrifugal pump system can supply body fluid satisfactorily by adopting a configuration in which the load during rotation of the impeller can be appropriately set.
  • FIG. 3A is a plan view showing the centrifugal pump of FIG. 1
  • FIG. 3B is a plan view showing the drive transmission unit of FIG. 4A is a cross-sectional view showing a state of the centrifugal pump of FIG. 1 during low-speed rotation
  • FIG. 4B is a cross-sectional view of a state of the centrifugal pump of FIG. 1 during high-speed rotation.
  • FIG. 7A is a plan view for explaining an outline of a centrifugal pump system according to a second modification
  • FIG. 7B is a cross-sectional view showing a state of the centrifugal pump system according to the second modification during low-speed rotation
  • FIG. 7C is a cross-sectional view showing a state of the centrifugal pump system according to the second modification during high-speed rotation.
  • FIG. 8A is a partial side view illustrating an outline of a centrifugal pump system according to a third modification
  • FIG. 8B is a plan view schematically illustrating a configuration of a drive transmission unit of the centrifugal pump system according to the fourth modification. It is.
  • a centrifugal pump system 10 is applied to a heart-lung machine 12 as shown in FIG.
  • the heart-lung machine 12 is used, for example, in cardiac surgery, etc., and performs oxygenation of blood removed from a patient, removal of foreign substances, and the like, and returns the blood to the patient.
  • the artificial heart-lung machine 12 includes, for example, a reservoir 14 and an artificial lung 18 in addition to the centrifugal pump system 10, and these components are connected via a tube to form a circulation circuit structure with a patient. More specifically, the reservoir 14, the centrifugal pump system 10, and the oxygenator 18 are connected in series with a tube in order from the upstream side (patient side) of the liquid feeding. For example, a tube having flexibility and transparency is applied, and a blood removal line 24, a first connection line 23, a second connection line 33, and a blood return line 44 are configured as a blood flow path.
  • the reservoir 14 of the heart-lung machine 12 temporarily stores blood (venous blood) removed from the patient.
  • the reservoir 14 includes a reservoir body 20, a blood inflow port 21 provided at the upper part of the reservoir body 20, and a blood outflow port 22 provided at the lower part of the reservoir body 20.
  • the blood inflow port 21 is connected to a blood removal line 24 for delivering blood from a blood removal cannula inserted into the patient.
  • the blood outflow port 22 is connected to the centrifugal pump system 10 via the first connection line 23.
  • a blood filter (not shown) for filtering blood that has flowed in through the blood inflow port 21 is disposed.
  • the reservoir body 20 is further provided with an inflow port (not shown) connected to a cardiotomy line for feeding blood from the patient's operative field.
  • the centrifugal pump system 10 is disposed on the downstream side of the reservoir 14 and has a function of drawing blood from the reservoir 14 and further sending the blood to the artificial lung 18 on the downstream side.
  • the centrifugal pump system 10 includes a centrifugal pump 11, a pump driving unit 16, and a control unit 45.
  • Centrifugal pump 11 is a mechanism part that is replaced for each procedure and is disposable or sterilized in order to cause the patient's blood to flow inside.
  • the centrifugal pump 11 includes at least a housing 26 and an impeller 28 that is rotatably disposed in the housing 26.
  • the housing 26 includes a blood inflow port 30 connected to the blood outflow port 22 of the reservoir 14 through the first connection line 23, and a blood outflow port 32 connected to the oxygenator 18 through the second connection line 33.
  • the housing 26 includes a base 48 that forms the lower part and a cover 50 that forms the upper part.
  • the base 48 and the cover 50 form a space 26a (hereinafter referred to as “accommodating space 26a”) in which the impeller 28 is accommodated.
  • the base 48 has a substantially disc shape as a whole, and has a circular bottom wall 51 and a peripheral wall 52 that protrudes upward from the outer peripheral portion of the bottom wall 51 and that is continuous in the circumferential direction.
  • a concave first arrangement portion 54 is provided at the center of the bottom wall 51.
  • a substantially cylindrical mounted portion 53 is formed on the bottom surface of the bottom wall 51 so as to protrude downward.
  • the cover 50 has a disk-shaped top wall 56 and a peripheral wall 57 that protrudes downward from the outer periphery of the top wall 56 and is continuous in the circumferential direction.
  • the lower end of the peripheral wall 57 of the cover 50 and the upper end of the peripheral wall 52 of the base 48 are fixed to each other by an appropriate joining means such as an adhesive while being fitted to each other.
  • the lower end of the peripheral wall 57 of the cover 50 is fitted inside the upper end of the peripheral wall 52 of the base 48, but the upper end of the peripheral wall 52 of the base 48 is inside the lower end of the peripheral wall 57 of the cover 50. May be fitted.
  • the cover 50 is provided with a protruding cylindrical portion 58 protruding upward from the center of the top wall 56.
  • the protruding cylinder 58 has a hollow structure with the upper end closed and opened downward.
  • a concave second arrangement portion 60 is provided inside the upper portion of the protruding cylinder portion 58.
  • the cover 50 is provided with the blood inflow port 30 described above.
  • the blood inflow port 30 extends in a direction intersecting with the protruding cylinder portion 58 (inclined direction in the illustrated example).
  • the lumen 30a of the blood inflow port 30 communicates with the accommodation space 26a via the lumen 58a of the protruding cylinder portion 58.
  • the cover 50 is further provided with the blood outflow port 32 described above.
  • the blood outflow port 32 extends tangentially from the outer surface of the peripheral wall 57 of the cover 50.
  • the lumen 32a of the blood outflow port 32 communicates with the accommodation space 26a.
  • Examples of the constituent material of the housing 26 include various types of glass, polyvinyl chloride, polyethylene, polypropylene, cyclic polyolefin, polystyrene, poly- (4-methylpentene-1), polycarbonate, acrylic resin, Various resins such as acrylonitrile-butadiene-styrene copolymers, polyesters such as polyethylene terephthalate, polyethylene naphthalate, butadiene-styrene copolymers, polyamides (eg nylon 6, nylon 6,6, nylon 6,10, nylon 12) Materials.
  • the housing 26 may be made of a transparent material so that blood flowing in the housing 26 can be visually recognized.
  • the impeller 28 accommodated in the housing 26 is rotated relative to the housing 26 when the rotational force is transmitted from the pump drive unit 16.
  • the impeller 28 includes a first rotor 87 that constitutes a bottom portion, a second rotor 88 that is concentrically stacked on the first rotor 87, and a rotor cover 89 that is concentrically stacked on the second rotor 88. .
  • a plurality of blood guide paths 84 extending radially and obliquely downward from the approximate center of the impeller 28 are provided in the impeller 28.
  • the plurality of blood guide paths 84 are formed between the second rotor 88 and the rotor cover 89.
  • the plurality of flow path forming walls 91 projecting downward from the lower surface of the rotor cover 89 constitute wall portions on both sides of the blood guide path 84.
  • the flow path forming wall 91 has a structure in which blood does not flow out in the rotation direction (no washout hole) by continuously extending outward in the radial direction.
  • the upper surface of the rotor cover 89 has a conical shape, and an opening 92 is formed at the center thereof.
  • the blood guiding path 84 is not limited to a straight line as shown in FIG. 3A, but may be a curved line.
  • a shaft 62 (rotary shaft) is provided at the center of the impeller 28 as shown in FIG.
  • the shaft 62 is a straight bar-like member and has spherical shaft ends 66 at both ends in the axial direction.
  • the shaft 62 is fixed to the impeller 28 in a state where the shaft 62 is inserted into an insertion hole 63 that passes through the central portion of the impeller 28 in the axial direction.
  • the shaft 62 and the impeller 28 are mutually fixed in a state in which relative rotation is impossible and relative displacement in the axial direction is impossible.
  • the protrusions 65 provided on the inner peripheral wall forming the insertion hole 63 of the impeller 28 are engaged with the grooves 64 provided in the shaft 62, whereby the shaft 62 and the impeller 28 are mutually fixed.
  • the shaft end 66 of the shaft 62 protrudes downward and upward from the impeller 28, respectively.
  • first shaft end 66A the lower shaft end 66
  • second shaft end 66B the upper shaft end 66
  • the constituent material of the shaft 62 can be selected from the materials exemplified above as the constituent material of the housing 26, for example.
  • the shaft 62 is preferably made of a ceramic material such as alumina ceramic having excellent wear resistance and slidability.
  • the centrifugal pump 11 (housing 26) includes a bearing 70 that pivotally supports each shaft end 66 of the shaft 62.
  • first bearing 70A the lower bearing that pivotally supports the first shaft end 66A
  • second bearing 70B the upper bearing that pivotally supports the second shaft end 66B
  • the shaft 62 is rotatably held between the first bearing 70A and the second bearing 70B in a state where a predetermined tightening load is applied in the axial direction in the housing 26.
  • the first bearing 70A has a spherically recessed bearing surface 73 that contacts the first shaft end 66A.
  • the radius of curvature of the bearing surface 73 is larger than the radius of curvature of the first shaft end 66A.
  • 70 A of 1st bearings are arrange
  • the second bearing 70B has a spherically recessed bearing surface 73 that contacts the second shaft end 66B.
  • the radius of curvature of the bearing surface 73 is larger than the radius of curvature of the second shaft end 66B.
  • the second bearing 70 ⁇ / b> B is arranged in the second arrangement part 60 provided in the protruding cylinder part 58 of the cover 50.
  • the constituent material of the bearing 70 can be selected from the materials exemplified above as the constituent material of the housing 26, for example.
  • the constituent material of the bearing 70 is preferably composed of ultrahigh molecular weight polyethylene having excellent wear resistance and self-lubricating properties.
  • a plurality (six in FIG. 3A) of driven side magnets 86 are provided in the impeller 28 at intervals in the circumferential direction.
  • the driven magnet 86 is a magnetic reactant that rotates the impeller 28 around the shaft 62 in response to the magnetism transmitted from the pump drive unit 16.
  • the plurality of driven magnets 86 are held by a plurality of magnet holding portions 90 provided on the upper surface of the first rotor 87.
  • the driven magnet 86 can be preferably a permanent magnet, but is not particularly limited.
  • a ferromagnetic metal may be used as a magnetic reactant in place of the driven magnet 86.
  • the pump drive unit 16 of the centrifugal pump system 10 is a mechanism unit that drives the impeller 28 of the centrifugal pump 11 described above.
  • the centrifugal pump system 10 can use the pump drive unit 16 by replacing only the centrifugal pump 11 for each patient or procedure.
  • the pump drive unit 16 includes a drive transmission unit 34 that magnetically attracts the driven magnet 86 (forms a magnetic coupling with the impeller 28), and transmits the rotational force of the drive transmission unit 34 by magnetism.
  • the impeller 28 is rotated.
  • the pump drive unit 16 includes a motor 37 (drive source) that rotates the drive transmission unit 34, and a displacement mechanism unit that integrally displaces the drive transmission unit 34 and the motor 37 up and down. 38 and a case 39 for housing them.
  • the drive transmission unit 34 includes a rotating member 35 and a driving magnet 36 (magnetic reactant) attached to the rotating member 35.
  • the rotating member 35 is formed in a disk shape, for example, and its central portion is fixedly supported on the rotating shaft 37 a of the motor 37.
  • a magnet holding portion 35a of the driving side magnet 36 is provided, and the driving side magnet 36 is disposed with respect to the magnet holding portion 35a.
  • the magnet holding part 35a preferably has a magnetic shield function capable of reducing the influence of the magnetism of the drive-side magnet 36 on the surroundings so that the magnetism has directivity.
  • a plurality of drive side magnets 36 may be arranged at intervals in the circumferential direction around the rotation shaft 37a of the motor 37.
  • the magnet holding portion 35a is also provided on the rotating member 35 corresponding to the number of drive side magnets 36 arranged.
  • the number of arrangement of the drive side magnet 36 and the driven side magnet 86 is not particularly limited, and the number of arrangement of the drive side magnet 36 and the driven side magnet 86 may be different.
  • the drive-side magnet 36 includes two types of magnetic reactants, a permanent magnet 36a and an electromagnet 36b.
  • the permanent magnets 36 a and the electromagnets 36 b may be arranged alternately along the circumferential direction of the rotating member 35.
  • the electromagnet 36b is configured such that a conducting wire 46a is wound around the core material 46b in a coil shape and has a polarity at the upper end of the core material 46b.
  • the electromagnet 36b can generate a stronger magnetic force than the permanent magnet 36a by the current supplied through the conducting wire 46a.
  • the plurality of conductive wires 46a are wired in a hollow rotating shaft 37a and externally connected by connecting means (for example, connection of a slip ring and a terminal) capable of supplying power while allowing rotation at an intermediate position of the rotating shaft 37a. It is connected to the power supply line 47a (see FIG. 1). The power supply line 47a is connected to an external power supply 47 (see FIG. 1) whose output is controlled by the control unit 45.
  • the plurality of drive-side magnets 36 and the plurality of driven-side magnets 86 are arranged with their opposite surfaces having opposite polarities in order to exert an attractive force between them. For example, when the upper surface of the drive-side magnet 36 is N-pole, the lower surface of the driven-side magnet 86 is S-pole, and when the upper surface of the drive-side magnet 36 is S-pole, the lower surface of the driven-side magnet 86 is N-pole.
  • the winding state of the conducting wire 46a and the current supply direction are set so that the electromagnet 36b also satisfies this polarity.
  • the driving side magnet 36 is formed in a fan shape larger than the planar shape of the driven side magnet 86 in a plan view, for example. Thereby, the drive side magnet 36 can form a magnetic coupling favorably with the driven side magnet 86.
  • the shapes of the drive side magnet 36 and the driven side magnet 86 are not particularly limited.
  • the drive transmission unit 34 may be arranged with the auxiliary magnet 40 facing the opposite polarity to the adjacent drive side magnet 36 at the position indicated by the two-dot chain line in FIG. 3B.
  • the auxiliary magnet 40 applies a repulsive force to the driven magnet 86, thereby reducing the shearing force applied in the rotation direction when the rotational driving force is transmitted between the impellers 28.
  • the auxiliary magnet 40 may be disposed on the driven magnet 86 side.
  • the motor 37 that rotates the drive transmission unit 34 has the hollow rotation shaft 37a as described above, and the rotation shaft 37a rotates based on the set speed of the control unit 45.
  • a rotating member 35 is attached to the tip (upper end) of the rotating shaft 37a.
  • the motor 37 may be either an AC motor or a DC motor, but a variable speed motor is preferable. For example, when a stepping motor is used as the motor 37, blood flow control in the centrifugal pump 11 is easy.
  • the drive transmission part 34 may be configured not only to be attached to the rotating shaft 37a but also to constitute a part of the rotor (not shown) of the motor 37 and directly receive the driving force from the stator (not shown). .
  • the displacement mechanism unit 38 of the pump drive unit 16 varies the separation distance of the drive transmission unit 34 (drive side magnet 36) with respect to the centrifugal pump 11 (the driven side magnet 86 of the impeller 28). That is, the displacement mechanism unit 38 has a function of adjusting the magnetic force acting between the driving side magnet 36 and the driven side magnet 86 by changing the separation distance.
  • the displacement mechanism unit 38 includes, for example, a pedestal 38a that fixes and supports the motor 37, hydraulic cylinders 38b provided at four corners of the pedestal 38a that supports and displaces the pedestal 38a, and a supply that supplies or discharges hydraulic pressure from the hydraulic cylinder 38b. Part 38c.
  • the supply unit 38c adjusts the height of the pedestal 38a by uniformly supplying a predetermined amount of oil to each hydraulic cylinder 38b under the control of the control unit 45. Accordingly, the displacement mechanism unit 38 can move the entire drive side magnet 36 up and down uniformly without inclining the drive side magnet 36 of the drive transmission unit 34 with respect to the driven side magnet 86.
  • the number and arrangement positions of the hydraulic cylinders 38b may be freely designed.
  • the central part of the base 38a may be supported by one hydraulic cylinder 38b.
  • the structure of the displacement mechanism part 38 is not limited to the said structure, A mechanical structure by a motor, a gear, etc., or an electric actuator, an air cylinder, etc. can be applied.
  • the case 39 of the pump drive unit 16 is configured as a housing that houses the drive transmission unit 34, the motor 37, and the displacement mechanism unit 38. At the upper part of the case 39, a mounting part 39a for mounting and fixing the centrifugal pump 11 and a detection sensor 39b for detecting the rotational speed of the impeller 28 are provided.
  • the mounting portion 39a is configured as an annular groove provided in the center of the upper surface of the case 39, and the mounted portion 53 provided on the lower surface of the base 48 of the centrifugal pump 11 is mounted on the mounting portion 39a.
  • the mounted portion 53 of the centrifugal pump 11 includes an annular fitting wall 53a whose inner cross section is formed in a tapered shape along the axial direction.
  • the centrifugal pump system 10 can firmly fix the centrifugal pump 11 to the pump drive unit 16 by taper fitting the fitting wall 53a to the mounting portion 39a (groove portion).
  • the mounting mechanism of the centrifugal pump 11 and the pump drive unit 16 is not particularly limited.
  • a spline fitting structure in which a concave portion extending in the vertical direction is cut out at a predetermined position of the mounting portion 39a (groove portion) and a convex portion that fits into the concave portion is formed on the fitting wall 53a.
  • various structures that can stably fix the centrifugal pump 11 such as a screw mechanism and a lock mechanism can be adopted as the mounting mechanism.
  • the detection sensor 39b is provided at a predetermined position on the upper surface of the case 39, and is connected to the control unit 45 so that a detection signal can be transmitted (see FIG. 1).
  • an encoder can be applied to the detection sensor 39 b, and the rotational speed (the number of rotations) of the impeller 28 is detected in a state where the centrifugal pump 11 is disposed in the pump drive unit 16, and is output to the control unit 45.
  • the detection signal transmission means may be either wired or wireless.
  • the control unit 45 includes a computer having an input unit, a display unit, a storage unit, and a calculation unit (not shown), and controls the driving of the motor 37, the driving of the displacement mechanism unit 38, and the magnetic force of the electromagnet 36b.
  • the input unit of the control unit 45 includes a switch capable of switching the rotation speed of the impeller 28 to a plurality of stages, for example, 3000 rpm (high speed rotation: first rotation speed) and 1500 rpm (low speed rotation: second rotation speed). Thereby, the user can set a rotation speed according to the procedure and the blood state of the patient.
  • the rotational speed of the impeller 28 is preferably set in the range of 0 to 3000 rpm, and the input unit is not only configured to switch the rotational speed in stages, but also numerically input the rotational speed and the rotational speed in an analog manner. It may be configured to switch.
  • the control unit 45 rotates the motor 37 based on the set rotation speed, and rotates the impeller 28 of the centrifugal pump 11 via the drive transmission unit 34.
  • the impeller 28 may be rotatable at 3000 rpm or higher.
  • feedback control may be performed based on the detection signal of the detection sensor 39b. Thereby, the rotational speed of the impeller 28 can be controlled with high accuracy.
  • control unit 45 controls the driving of the displacement mechanism unit 38 based on the detection signal of the detection sensor 39b. That is, the control unit 45 adjusts the hydraulic amount of the supply unit 38c according to the rotational speed of the impeller 28, and adjusts the displacement of the pedestal 38a via the hydraulic cylinder 38b. Thereby, based on the rotational speed of the impeller 28, the vertical position of the drive transmission part 34 and the motor 37 mounted on the base 38a fluctuate
  • control unit 45 operates the external power supply 47 according to the rotational speed of the impeller 28 and supplies a current to the electromagnet 36 b of the drive side magnet 36.
  • the electromagnet 36b can apply a strong magnetic force to the driven magnet 86 at a predetermined timing, and can strengthen the magnetic coupling with the impeller 28.
  • the control of the drive transmission unit 34 by the control unit 45 will be described in detail later.
  • the oxygenator 18 of the oxygenator 12 includes a main body 41, a blood inflow port 42 provided on the upstream side of the main body 41, and a blood outflow port 43 provided on the downstream side of the main body 41.
  • the blood inflow port 42 is connected to the centrifugal pump system 10 via the second connection line 33.
  • the blood outflow port 43 is connected to a return line 44 that returns blood to the patient.
  • the main body 41 of the artificial lung 18 performs gas exchange for adding oxygen to the blood flowing from the centrifugal pump system 10 via the blood inlet port 42 and removing carbon dioxide.
  • the artificial lung 18 also has a heat exchange function for changing the temperature of blood.
  • the control unit 45 described above may be configured to control the operation of the oxygenator 18 (that is, a configuration to control the entire operation of the heart-lung machine 12). Thereby, the blood flow of the patient can be accurately and easily controlled during the procedure.
  • the centrifugal pump system 10 is basically configured as described above, and the operation and effect will be described below.
  • the impeller of the centrifugal pump guides blood radially outward and obliquely downward when rotating, thereby causing a phenomenon that the impeller itself floats upward as the rotational speed increases. For this reason, when the impeller rotates at a low speed (for example, 1500 rpm), the load applied to the lower bearing from the impeller shaft is larger than the load applied when the impeller rotates at a high speed (for example, 3000 rpm). When blood is caught in the bearing while the impeller is rotating in a state where the load on the lower bearing is large, the friction energy also increases in the bearing that receives the load, so that there is a high possibility that thrombus will occur.
  • a low speed for example, 1500 rpm
  • the load applied to the lower bearing from the impeller shaft is larger than the load applied when the impeller rotates at a high speed (for example, 3000 rpm).
  • the centrifugal pump system 10 performs control to vary the magnetic force applied to the driven magnet 86 based on the rotational speed of the impeller 28 when the pump driving unit 16 rotationally drives the impeller 28.
  • the degree to which the impeller 28 is attracted downward during rotation is adjusted, and an appropriate load can be applied to the first bearing 70A.
  • the centrifugal pump system 10 displaces the driving magnet 36 downward during the low-speed rotation (second rotation speed) of the impeller 28 shown in FIG. 4A, and the high-speed rotation (first rotation speed) of the impeller 28 shown in FIG. 4B.
  • the drive side magnet 36 is displaced upward.
  • the centrifugal pump system 10 stops the driving of the electromagnet 36b of the driving side magnet 36 at the time of low speed rotation, and drives the electromagnet 36b at the time of high speed rotation.
  • the user can rotate the impeller 28 by mounting the mounted portion 53 of the centrifugal pump 11 on the mounting portion 39a of the pump driving portion 16 in the use of the heart-lung machine 12 constructed as shown in FIG. State.
  • the control unit 45 In the rotatable state, current supply from the external power supply 47 to the electromagnet 36b is stopped by the control unit 45, whereby the permanent magnet 36a and the driven magnet 86 facing the permanent magnet 36a are magnetically coupled (mutual attractive force between them).
  • the control is simplified by switching between driving or stopping of the electromagnet 36b.
  • the output of the external power supply 47 is output.
  • the electromagnet 36b may be appropriately driven by control. Thereafter, the user sets the rotational speed (low-speed rotation or high-speed rotation) of the centrifugal pump 11 by the input unit of the control unit 45 and drives the centrifugal pump system 10.
  • the control unit 45 drives the motor 37 to rotate according to the set rotation speed.
  • the pump drive unit 16 rotates the drive transmission unit 34 at the upper end of the rotation shaft 37 a
  • the drive side magnet 36 of the drive transmission unit 34 rotates the driven side magnet 86.
  • the centrifugal pump 11 rotates the impeller 28 around the shaft 62 in the housing 26. As a result, the centrifugal pump 11 sucks blood into the housing 26 from the blood inflow port 30 and draws blood from the housing 26 into the blood outflow port 32. Discharge.
  • control unit 45 adjusts the rotational speed of the motor 37 by detecting the actual rotational speed of the impeller 28 by the detection sensor 39b when the impeller 28 rotates. That is, the pump drive unit 16 can accurately adjust the rotation of the impeller 28 to the rotation speed set by the user. For example, the pump drive unit 16 can continue the rotation of the impeller 28 while maintaining the low speed rotation (1500 rpm) shown in FIG. 4A. it can.
  • the control unit 45 controls the driving of the displacement mechanism unit 38 (see FIG. 1), and sets the height position of the drive transmission unit 34 (drive side magnet 36). adjust. At this time, the drive transmission unit 34 outputs the constant magnetic flux of the permanent magnet 36a in the vertical direction by stopping the driving of the electromagnet 36b. In the adjustment of the height position, the control unit 45 performs a low-speed rotation separation distance D L between the drive-side magnet 36 and the driven-side magnet 86 based on the detection of the low-speed rotation (or setting of the input unit) by the detection sensor 39b. Set to. The control unit 45 may prepare a threshold value (for example, 2000 rpm) in advance for rotation detection and determine low-speed rotation or high-speed rotation.
  • a threshold value for example, 2000 rpm
  • the displacement mechanism unit 38 varies the hydraulic supply amount of the supply unit 38c to displace the base 38a supported by the hydraulic cylinder 38b to an appropriate height position. Attraction Thus, acting displacement driving side magnet 36 in a position matching the distance D L for low-speed rotation that is set (i.e., than during high-speed rotation spaced) is, between the permanent magnets 36a and the driven side magnet 86 Weaken.
  • the centrifugal pump system 10 can reduce the influence of the shaft 62 on the blood by reducing the load applied to the first bearing 70A from the shaft 62 when the impeller 28 rotates at a low speed.
  • the control unit 45 sets the separation distance D H for high-speed rotation between the drive-side magnet 36 and the driven-side magnet 86 in the high-speed rotation of the impeller 28.
  • the separation distance D H for high speed rotation is set shorter than the separation distance D L for low speed rotation.
  • the separation distances D L and D H may be obtained in advance so as to obtain an appropriate magnetic force through experiments or the like, and stored in the storage unit of the control unit 45.
  • the displacement mechanism unit 38 displaces the drive side magnet 36 to a position that coincides with the set separation distance DH (that is, closer to that at the time of low speed rotation), and reduces the attractive force applied to the driven side magnet 86 by the permanent magnet 36a. Strengthen than during rotation.
  • control unit 45 determines high-speed rotation
  • control unit 45 controls the external power supply 47 to drive the electromagnet 36b by supplying a predetermined amount of current to the electromagnet 36b.
  • the electromagnet 36b attracts the driven magnet 86 downward more strongly by applying a stronger magnetic force to the driven magnet 86 than the permanent magnet 36a.
  • the impeller 28 is attracted as described above, so that upward buoyancy in the housing 26 can be suppressed during high-speed rotation. That is, the centrifugal pump system 10 can make the load applied from the shaft 62 to the first bearing 70 ⁇ / b> A heavier than the conventional one when the impeller 28 rotates at high speed (similar to the load during low-speed rotation).
  • the centrifugal pump system 10 can sufficiently prevent the impeller 28 from floating by causing the electromagnet 36b to generate a stronger magnetic force.
  • the centrifugal pump system 10 controls so that the load applied from the shaft 62 to the first bearing 70A does not fluctuate greatly during the low-speed rotation and the high-speed rotation of the impeller 28. Suppresses blood and can send blood. Note that, when the impeller 28 rotates at high speed, the influence of the impeller 28 on blood is increased, so the load between the shaft 62 and the first bearing 70A may be slightly weaker than at low speed.
  • the measurement results of FIG. 5 are shown for the separation distances D L and D H between the drive side magnet 36 and the driven side magnet 86 and the fluctuations in the transmission torque and magnetic force (coupling force) to the impeller 28 by the drive transmission unit 34.
  • the transmission torque and the coupling force decrease as the separation distances D L and D H increase. Therefore, the longer the distance D L during low-speed rotation of the impeller 28, it can be seen that may reduce the force applied to the impeller 28. Incidentally, the distance D L becomes longer, but also decreases the transmission torque, can be rotated sufficiently impeller 28 even with a small transmission torque at low speed rotation.
  • the separation distance DH is shortened when the impeller 28 rotates at high speed, the magnetic force applied to the impeller 28 can be increased, and the impeller 28 can be rotated with a larger transmission torque.
  • the transmission torque and the coupling force decrease along a gentle curve (non-linearly) as the separation distance increases, so the control unit 45 is optimal for the rotational speed of the impeller 28. It is preferable to design the control so that the separation distance (transmission torque, coupling force) is obtained.
  • the drive transmission unit 34 varies the magnetic force applied to the impeller 28 in accordance with the rotation speed of the motor 37, so that the load during rotation of the impeller 28 is appropriately set.
  • the centrifugal pump system 10 that magnetically rotates the impeller 28 can appropriately adjust the load in the rotation axis direction of the impeller 28 by changing the magnetic force applied to the driven magnet 86 when the impeller 28 rotates.
  • the centrifugal pump system 10 can suppress the change of blood due to the influence of the load of the impeller 28 (for example, the generation of a thrombus), and the blood can be fed satisfactorily.
  • the drive transmission unit 34 can reduce the load applied to the first bearing 70A by the shaft 62 of the impeller 28 during low-speed rotation by weakening the magnetic force applied during low-speed rotation than the magnetic force applied during high-speed rotation. Therefore, even when the impeller 28 is rotated at a low speed in order to suppress hemolysis of the blood, the blood can be fed satisfactorily. Furthermore, the centrifugal pump system 10, the displacement mechanism 38, the distance D L of the low speed rotation of the impeller 28 by longer than the distance D H of the high-speed rotation, weakened easily force during low-speed rotation The load on the impeller 28 can be reliably reduced.
  • the drive transmission unit 34 includes the electromagnet 36b, when the impeller 28 is rotated at a high speed, a strong magnetic force can be applied to the impeller 28, and the impeller 28 can be sufficiently attracted and rotated. For this reason, even during high-speed rotation, the rotational force of the drive transmission unit 34 can be well transmitted to the impeller 28 (reducing magnetic decoupling) and rotated.
  • the centrifugal pump system 10 can easily control the fluctuation of the magnetic force while simplifying the structure of the rotation control of the impeller 28 by integrally displacing the drive transmission unit 34 and the motor 37.
  • the load applied to the bearing 70 can be appropriately controlled by changing the magnetic force applied to the impeller 28 by the drive transmission unit 34.
  • the blood guide path 84 of the impeller 28 is linearly extended outward in the rotational radial direction while being surrounded by the flow path forming wall 91, so that blood (fluid) is centrifuged in the impeller 28. Can be guided linearly in the direction. Thereby, even if the rotational speed of the impeller 28 is low, the amount of blood delivered can be improved. Further, when the impeller 28 rotates at a low speed, the load in the rotation axis direction of the impeller 28 can be reduced as described above.
  • the centrifugal pump system 10 is not limited to the above-described embodiment, and various modifications and application examples can be adopted.
  • the centrifugal pump 11 of the centrifugal pump system 10 only needs to have a structure capable of rotating the impeller 28 within the housing 26, and the shaft support structure by the shaft 62 and the bearing 70 may have other designs.
  • the shaft support structure of the centrifugal pump 11 may be a one-point pivot support structure, and may employ a ball bearing as the bearing.
  • the impeller may not have a rotating shaft.
  • the displacement of the drive transmission unit 34 may be configured to mechanically displace the vertical position in conjunction with a low-speed rotation or high-speed rotation switch operation of the impeller 28 by the user without being controlled by the control unit 45, for example. .
  • the displacement of the drive transmission unit 34 is not limited to switching between the low speed rotation and the high speed rotation of the motor 37 (that is, the impeller 28), and the drive transmission unit 34 is displaced continuously or stepwise according to a change in the rotation speed of the impeller 28. You may let them. At this time, it is preferable to control the state of the drive transmission unit 34 (the separation distance between the drive side magnet 36 and the driven side magnet 86, the magnetic force of the electromagnet 36b) based on the change in the coupling force shown in FIG.
  • the centrifugal pump system 10A includes a sensor device 94 (detection unit) in each of the first arrangement unit 54 and the second arrangement unit 60 of the centrifugal pump 11A, and the control unit 45A includes the sensor device. It is configured to receive 94 output signals.
  • the sensor device 94 includes a load sensor (or pressure sensor) that detects a load received from the shaft 62 via the first bearing 70A or the second bearing 70B, and a transmitter that outputs a detection value of the load sensor.
  • examples of the load sensor include a strain gauge and a load cell.
  • the transmitter for example, an RFID (also referred to as a wireless tag, an IC tag, or a mu chip) that stores individual information in a minute IC chip and transmits information wirelessly can be applied.
  • the axial load of the shaft 62 acts on the first sensor device 94A on the first bearing 70A side via the first bearing 70A.
  • the axial load of the shaft 62 acts on the second sensor device 94B on the second bearing 70B side via the second bearing 70B.
  • the control unit 45A receives the load detection signals from the first and second sensor devices 94A and 94B during the rotation of the impeller 28 of the centrifugal pump 11A, and performs control to correct the fluctuation of the magnetic force applied to the impeller 28. Specifically, the control unit 45A largely (roughly) fluctuates the vertical position of the drive transmission unit 34 as described above with reference to the setting of the low speed rotation or the high speed rotation of the impeller 28, and the electromagnet 36b is turned on / off. Switch. During actual rotation of the impeller 28, the vertical position of the drive transmission unit 34 is finely adjusted based on the load applied to the first bearing 70A and the load applied to the second bearing 70B.
  • the control unit 45A compares the load detected by the first sensor device 94A with the load detected by the second sensor device 94B, and the height position of the drive transmission unit 34 so that the load difference approaches zero. Adjust. For example, when the load on the first sensor device 94A side is large, it can be said that the attractive force between the drive-side magnet 36 and the driven-side magnet 86 is large, so the control unit 45A displaces the drive transmission unit 34 downward. On the other hand, when the load on the second sensor device 94B side is large, it can be said that the attractive force between the driving side magnet 36 and the driven side magnet 86 is small, so the control unit 45A displaces the drive transmission unit 34 upward. .
  • the centrifugal pump system 10A can adjust the magnetic force applied to the impeller 28 with higher accuracy by using the loads of the first and second bearings 70A and 70B during the rotation of the impeller 28. Generation can be further suppressed.
  • the sensor device 94 may be installed only on either the first bearing 70A or the second bearing 70B. If one load of the bearing 70 is detected, the load of the whole shaft 62 can be estimated and the drive transmission part 34 can be displaced (magnetic force is fluctuated).
  • centrifugal pump systems 10 and 10A can adjust the fluctuation of the magnetic force applied to the impeller 28 (displacement of the drive transmission unit 34) using various sensors in addition to the load sensor and the pressure sensor.
  • a magnetic sensor for detecting the magnetic force between the drive side magnet 36 and the driven side magnet 86 may be provided on the top of the pump drive unit 16 and the drive transmission unit 34 may be displaced based on the magnetic force detected by the magnetic sensor.
  • the centrifugal pump system 10B according to the second modified example shown in FIGS. 7A to 7C has a configuration in which the driving side magnet 36A of the pump driving unit 16A exerts a repulsive force (repulsive force) with the driven side magnet 86 of the impeller 28. (See also FIG. 1). That is, the upper surface side where the drive side magnet 36A faces the driven side magnet 86 is set to the same polarity as the lower surface side where the driven side magnet 86 faces the drive side magnet 36A.
  • the driving magnet 36A and the driven magnet 86 are stable in mutual position due to the mutual repulsive force that causes the phases to shift in the circumferential direction.
  • the driving side magnet 36 ⁇ / b> A and the driven side magnet 86 according to the second modification are also impeller with the rotation of the drive transmission unit 34, as in the state in which an attractive force acts between the driving side magnet 36 and the driven side magnet 86. 28 can be rotated. Even in this case, it goes without saying that both the permanent magnet 36a and the electromagnet 36b can be used.
  • the drive side magnet 36 ⁇ / b> A causes an effect of floating the impeller 28 in the housing 26, contrary to the action of attraction, by exerting a repulsive force with the driven side magnet 86. That is, when the magnetic force between the driving side magnet 36A and the driven side magnet 86 is strong, the impeller 28 is floated upward.
  • a centrifugal pump system 10C according to the third modified example shown in FIG. 8A has a drive transmission unit 34A having a drive-side magnet 36 above the centrifugal pump 11 (see also FIG. 1).
  • the drive side magnet 36 applies a magnetic force (attractive force or repulsive force) to the driven side magnet 86 provided on the impeller 28 in the centrifugal pump 11 to rotate the impeller 28 as the drive transmission unit 34A rotates.
  • the drive transmission unit 34A can change the magnetic force applied to the impeller 28 by a displacement mechanism unit or magnetic force changing means (not shown). Therefore, also in this centrifugal pump system 10C, the load in the rotation axis direction of the impeller 28 can be appropriately adjusted.
  • the location of the drive transmission unit 34 that rotates the impeller 28 is not particularly limited.
  • the centrifugal pump system 10D according to the fourth modification shown in FIG. 8B is different from the centrifugal pump system 10 according to the present embodiment in the arrangement relationship between the permanent magnet 36a and the electromagnet 36b of the drive side magnet 36. Specifically, the permanent magnet 36 a is disposed closer to the radially outer side of the rotating member 35, and the electromagnet 36 b is disposed closer to the radially inner side of the rotating member 35. Even if comprised in this way, it is possible to perform the same control as the centrifugal pump system 10, and the same effect can be acquired.
  • the drive-side magnet 36 is not particularly limited with respect to the arrangement relationship between the permanent magnet 36a and the electromagnet 36b, and various structures that can change the magnetic force applied to the driven-side magnet 86 can be adopted. Further, for example, the drive-side magnet 36 can be composed of only the electromagnet 36b. In this case, when the drive transmission unit 34 (impeller 28) rotates at a low speed, the magnetic force is weakened by supplying a lower supply amount of current to the electromagnet 36b than at the time of high speed rotation, and the load on the impeller 28 can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Power Engineering (AREA)
  • Vascular Medicine (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

This centrifugal pump system (10) is provided with: a centrifugal pump (11) provided with a housing (26), and an impeller (28) which is rotatably disposed inside the housing (26), and which reacts to magnetism; and a drive transmission unit (34) which, while magnetically attracting or repelling the impeller (28), transmits the rotational force of a motor (37) to the impeller (28). The drive transmission unit (34) is capable of changing the magnetic force applied to the impeller (28), in accordance with the rotational speed of the motor (37).

Description

遠心ポンプシステムCentrifugal pump system
 本発明は、血液等の液体を送液する遠心ポンプシステムに関する。 The present invention relates to a centrifugal pump system for feeding a liquid such as blood.
 心臓手術時には、人工心肺装置が用いられる。人工心肺装置は、体外循環回路を構成し、患者から脱血された血液の酸素化、異物の除去等を行う。人工心肺装置としては、人工肺の種類、ポンプの種類、ポンプの配置位置等の相違により種々のタイプのものがあるが、通常、リザーバ(貯血槽)、人工肺、熱交換器、ポンプならびにそれらを接続する複数のチューブにより構成される(特開2009-160265号公報参照)。 During heart surgery, a heart-lung machine is used. The artificial heart-lung machine constitutes an extracorporeal circuit, and performs oxygenation of blood removed from a patient, removal of foreign substances, and the like. There are various types of cardiopulmonary apparatus depending on the type of oxygenator, the type of pump, the position of the pump, etc., but usually a reservoir (blood reservoir), oxygenator, heat exchanger, pump and those (See Japanese Patent Application Laid-Open No. 2009-160265).
 人工心肺装置に用いられるポンプとしては遠心ポンプが挙げられる。遠心ポンプは、一般的に、ハウジングと、ハウジング内に回転可能に配置されたインペラと、インペラの中央に設けられたシャフトと、シャフトを回転自在に支持する軸受とを備える。この遠心ポンプは、ポンプ駆動部に取り付けられることで遠心ポンプシステムとして動作する。遠心ポンプシステムは、ポンプ駆動部によりハウジング内でインペラを回転させて、その回転中心に患者の血液を引き込み、回転時の遠心力によりインペラの外周側に血液を押し出すことで、体外循環回路内における血液の送液を実施する。 A centrifugal pump is an example of a pump used in an oxygenator. A centrifugal pump generally includes a housing, an impeller rotatably disposed in the housing, a shaft provided in the center of the impeller, and a bearing that rotatably supports the shaft. This centrifugal pump operates as a centrifugal pump system by being attached to a pump drive unit. A centrifugal pump system rotates an impeller in a housing by a pump drive unit, draws the blood of the patient to the center of rotation, and pushes the blood to the outer peripheral side of the impeller by the centrifugal force at the time of rotation. Perform blood pumping.
 ところで、遠心ポンプシステムのインペラは、低速回転時にハウジング内の下側寄りに位置し、高速回転時に浮力によりハウジング内の上側に変位する、すなわち回転中の回転速度に応じてハウジング内で変位する現象を見せる。このため、例えば低速回転を連続的に行って血液を送液する際には、インペラを軸支する下側の軸受にインペラから大きな負荷がかかり続けることになる。これにより、軸支箇所の血液性状を著しく変化させ、血栓を発生させる不都合が生じる。一方、高速回転を行う際には、インペラがハウジング内の上側に変位することにより、ポンプ駆動部とインペラの間のトルク伝達率が低下し、インペラを円滑に回転させることが困難になるという問題がある。 By the way, the impeller of the centrifugal pump system is located closer to the lower side in the housing at the time of low speed rotation, and is displaced to the upper side in the housing by buoyancy at the time of high speed rotation. Show. For this reason, for example, when blood is sent by continuously performing low-speed rotation, a large load is continuously applied from the impeller to the lower bearing that pivotally supports the impeller. As a result, the blood property of the pivot support portion is remarkably changed, resulting in inconvenience of generating a thrombus. On the other hand, when performing high-speed rotation, the impeller is displaced upward in the housing, so that the torque transmission rate between the pump drive unit and the impeller is reduced, and it is difficult to smoothly rotate the impeller. There is.
 本発明は、上記の課題を解決するためになされたものであって、インペラの回転時の荷重を適切に設定可能な構成とすることで、体液を良好に送液することができる遠心ポンプシステムを提供することを目的とする。 The present invention has been made to solve the above-described problem, and is a centrifugal pump system capable of satisfactorily feeding body fluid by adopting a configuration capable of appropriately setting a load during rotation of an impeller. The purpose is to provide.
 前記の目的を達成するために、本発明に係る遠心ポンプシステムは、ハウジングと、前記ハウジング内に回転可能に配置され、且つ磁気に反応するインペラと、を備える遠心ポンプ、及び前記インペラの軸方向に磁気的に引き合い又は反発し合いながら、駆動源の回転力を前記インペラに伝達する駆動伝達部を有し、前記駆動伝達部は、前記インペラ又は前記駆動源の回転速度に基づき前記インペラにかかる磁力を変動可能であることを特徴とする。 In order to achieve the above object, a centrifugal pump system according to the present invention includes a centrifugal pump including a housing, an impeller rotatably disposed in the housing and responsive to magnetism, and an axial direction of the impeller A drive transmission unit that transmits the rotational force of the drive source to the impeller while magnetically attracting or repelling, and the drive transmission unit is applied to the impeller based on the rotational speed of the impeller or the drive source The magnetic force can be varied.
 上記によれば、遠心ポンプシステムは、駆動伝達部がインペラ又は駆動源の回転速度に対応してインペラにかかる磁力を変動することで、インペラの回転時の荷重を適切に設定することができる。すなわち、インペラを磁気的に回転させる構造では、インペラの回転時に該インペラにかかる磁力を変動させることにより、インペラの軸方向の荷重を適宜制御することができる。これにより、遠心ポンプシステムは、体液がインペラの荷重の影響を受けて変化すること(例えば、血栓の発生)を抑制することができ、体液を良好に送液することが可能となる。 According to the above, in the centrifugal pump system, the load when the impeller rotates can be appropriately set by the drive transmission unit changing the magnetic force applied to the impeller in accordance with the rotation speed of the impeller or the drive source. That is, in the structure in which the impeller is rotated magnetically, the load in the axial direction of the impeller can be appropriately controlled by changing the magnetic force applied to the impeller when the impeller rotates. As a result, the centrifugal pump system can suppress the body fluid from changing under the influence of the load of the impeller (for example, the occurrence of a thrombus), and the body fluid can be sent well.
 この場合、前記駆動伝達部は、前記ハウジングの下方に配置され、且つ前記インペラの第1回転速度時にかかる磁力よりも、前記インペラの前記第1回転速度よりも遅い第2回転速度時にかかる磁力を弱めることが好ましい。 In this case, the drive transmission unit is arranged below the housing and has a magnetic force applied at a second rotational speed that is lower than the first rotational speed of the impeller than a magnetic force applied at the first rotational speed of the impeller. It is preferable to weaken.
 このように、駆動伝達部が第1回転速度時にかかる磁力よりも第2回転速度時にかかる磁力を弱めることで、第2回転速度時にインペラがハウジングの下方向にかける荷重を低減することができる。よって、例えば、血液の溶血を抑えるためにインペラを低速回転した場合でも、血液を良好に送液することができる。 As described above, the load applied to the impeller in the downward direction at the second rotational speed can be reduced by weakening the magnetic force applied at the second rotational speed rather than the magnetic force applied at the first rotational speed. Therefore, for example, even when the impeller is rotated at a low speed in order to suppress hemolysis of the blood, the blood can be fed satisfactorily.
 また、遠心ポンプシステムは、前記駆動伝達部を変位させ、前記インペラの前記第1回転速度における前記インペラと前記駆動伝達部の間の離間距離よりも、前記インペラの前記第2回転速度における前記離間距離を長くする変位機構部をさらに有するとよい。 Further, the centrifugal pump system displaces the drive transmission unit, and the separation at the second rotation speed of the impeller is greater than a separation distance between the impeller and the drive transmission unit at the first rotation speed of the impeller. It is good to further have a displacement mechanism part which lengthens distance.
 このように、遠心ポンプシステムは、インペラと駆動伝達部の離間距離を変化させる変位機構部を備えることで、インペラにかかる磁力を簡単に変動することができる。つまり、インペラの第2回転速度時の離間距離を第1回転速度時の離間距離よりも長くすることで、第2回転速度時の磁力が容易に弱まり、インペラの荷重を確実に低減することができる。 As described above, the centrifugal pump system can easily change the magnetic force applied to the impeller by including the displacement mechanism unit that changes the separation distance between the impeller and the drive transmission unit. That is, by making the separation distance at the second rotational speed of the impeller longer than the separation distance at the first rotational speed, the magnetic force at the second rotational speed can be easily weakened, and the load on the impeller can be reliably reduced. it can.
 上記構成に加えて、前記駆動伝達部は、前記インペラにかける磁力を供給電力により制御可能な電磁石を有し、前記電磁石は、前記第2回転速度時の磁力よりも前記第1回転速度時の磁力を強めるように制御されることが好ましい。 In addition to the above configuration, the drive transmission unit includes an electromagnet capable of controlling the magnetic force applied to the impeller by supply power, and the electromagnet is more effective at the first rotational speed than the magnetic force at the second rotational speed. It is preferable to be controlled so as to increase the magnetic force.
 このように、駆動伝達部が電磁石を有することで、第1回転速度でインペラを回転させる際(高速回転時)に、強い磁力をインペラにかけることができ、インペラを充分に引きつけて回転させることができる。このため、遠心ポンプシステムは、高速回転時でも駆動伝達部からインペラに回転力を良好に伝達することができる。 Thus, when the drive transmission unit has an electromagnet, when the impeller is rotated at the first rotation speed (at high speed rotation), a strong magnetic force can be applied to the impeller, and the impeller can be sufficiently attracted to rotate. Can do. For this reason, the centrifugal pump system can satisfactorily transmit the rotational force from the drive transmission unit to the impeller even during high-speed rotation.
 さらに、前記変位機構部は、前記駆動伝達部と前記駆動源を一体的に変位させる構成としてもよい。 Furthermore, the displacement mechanism unit may be configured to displace the drive transmission unit and the drive source integrally.
 このように、駆動伝達部と駆動源を一体的に変位させる構成とすれば、遠心ポンプシステムは、インペラの回転制御の構造を簡単化しつつ、磁力の変動制御を容易に行うことができる。 As described above, when the drive transmission unit and the drive source are integrally displaced, the centrifugal pump system can easily control the fluctuation of the magnetic force while simplifying the structure of the rotation control of the impeller.
 ここで、前記遠心ポンプは、前記インペラの中央に設けられ、軸方向両端に軸端を有するシャフトと、前記軸端の各々をピボット支持する軸受と、を備えていてもよい。 Here, the centrifugal pump may include a shaft that is provided at the center of the impeller and has shaft ends at both ends in the axial direction, and a bearing that pivotally supports each of the shaft ends.
 このようなシャフトと軸受によるピボット支持構造は、シャフトから軸受に向かって集中的に応力をかけることになるが、駆動伝達部がインペラにかかる磁力を変動させることで、軸受にかかる荷重を良好に制御することができる。 Such a pivot support structure with a shaft and a bearing concentrates stress from the shaft toward the bearing, but the drive transmission unit fluctuates the magnetic force applied to the impeller, thereby improving the load applied to the bearing. Can be controlled.
 この場合、少なくとも一方の前記軸受と前記ハウジングとの間の圧力又は荷重を検出する検出部と、検出された前記圧力又は前記荷重に基づき前記インペラにかかる磁力を変動させる制御部と、をさらに備えていてもよい。 In this case, a detection unit that detects a pressure or load between at least one of the bearings and the housing, and a control unit that varies the magnetic force applied to the impeller based on the detected pressure or load. It may be.
 このように、制御部が軸受にかかる圧力又は荷重に基づきインペラにかかる磁力を変動させることで、インペラの荷重をより精度よく制御することができ、体液の変化を一層抑制することが可能となる。 In this way, the load of the impeller can be controlled with higher accuracy by changing the magnetic force applied to the impeller based on the pressure or load applied to the bearing by the control unit, and the change in body fluid can be further suppressed. .
 さらに、前記インペラは、回転中心から回転半径方向外側に流体を流動させる複数の誘導路を有し、前記誘導路は、前記インペラを構成する壁部により周囲が囲われつつ、前記回転半径方向外側に向かって直線状に延在していることが好ましい。 Furthermore, the impeller has a plurality of guide passages for allowing fluid to flow from the center of rotation outward in the rotational radial direction, and the guide passage is surrounded by a wall portion constituting the impeller, and the outer periphery in the rotational radial direction. It is preferable that it extends linearly toward.
 このように、誘導路がインペラを構成する壁部により周囲が囲われつつ、回転半径方向外側に向かって直線状に延在していることで、インペラにおいて体液(流体)を遠心方向に直線的に導くことができる。これにより、インペラの回転速度が低速(第2回転速度)でも体液の送液量の向上が図られる。また、低速回転時でも、上記のとおりインペラの軸方向の荷重を低減することができる。 As described above, the guide path is linearly extended outward in the rotational radial direction while being surrounded by the wall portion constituting the impeller, so that the body fluid (fluid) is linearly centrifuged in the impeller. Can lead to. Thereby, even if the rotational speed of an impeller is low speed (2nd rotational speed), the improvement of the amount of body fluids delivered is achieved. Moreover, the load in the axial direction of the impeller can be reduced as described above even during low-speed rotation.
 本発明によれば、遠心ポンプシステムは、インペラの回転時の荷重を適切に設定可能な構成とすることで、体液を良好に送液することができる。 According to the present invention, the centrifugal pump system can supply body fluid satisfactorily by adopting a configuration in which the load during rotation of the impeller can be appropriately set.
本発明の一実施形態に係る遠心ポンプシステムを備えた人工心肺装置を示す概略説明図である。It is a schematic explanatory drawing which shows the heart-lung machine provided with the centrifugal pump system which concerns on one Embodiment of this invention. 図1の遠心ポンプシステムの遠心ポンプ及びポンプ駆動部の上部を示す断面図である。It is sectional drawing which shows the upper part of the centrifugal pump and pump drive part of the centrifugal pump system of FIG. 図3Aは、図1の遠心ポンプを示す平面図であり、図3Bは、図1の駆動伝達部を示す平面図である。3A is a plan view showing the centrifugal pump of FIG. 1, and FIG. 3B is a plan view showing the drive transmission unit of FIG. 図4Aは、図1の遠心ポンプの低速回転時の状態を示す断面図であり、図4Bは、図1の遠心ポンプの高速回転時の状態を示す断面図である。4A is a cross-sectional view showing a state of the centrifugal pump of FIG. 1 during low-speed rotation, and FIG. 4B is a cross-sectional view of a state of the centrifugal pump of FIG. 1 during high-speed rotation. 遠心ポンプシステムの駆動側磁石と従動側磁石の離間距離と、インペラへの伝達トルク及び磁石間のカップリング力の関係性を示す参考グラフである。It is a reference graph which shows the relationship between the separation distance of the drive side magnet of a centrifugal pump system, and a driven side magnet, the transmission torque to an impeller, and the coupling force between magnets. 第1変形例に係る遠心ポンプシステムの断面図である。It is sectional drawing of the centrifugal pump system which concerns on a 1st modification. 図7Aは、第2変形例に係る遠心ポンプシステムの概要を説明するための平面図であり、図7Bは、第2変形例に係る遠心ポンプシステムの低速回転時の状態を示す断面図であり、図7Cは、第2変形例に係る遠心ポンプシステムの高速回転時の状態を示す断面図である。FIG. 7A is a plan view for explaining an outline of a centrifugal pump system according to a second modification, and FIG. 7B is a cross-sectional view showing a state of the centrifugal pump system according to the second modification during low-speed rotation. FIG. 7C is a cross-sectional view showing a state of the centrifugal pump system according to the second modification during high-speed rotation. 図8Aは、第3変形例に係る遠心ポンプシステムの概要を示す一部側面図であり、図8Bは、第4変形例に係る遠心ポンプシステムの駆動伝達部の構成を概略的に示す平面図である。FIG. 8A is a partial side view illustrating an outline of a centrifugal pump system according to a third modification, and FIG. 8B is a plan view schematically illustrating a configuration of a drive transmission unit of the centrifugal pump system according to the fourth modification. It is.
 以下、本発明に係る遠心ポンプシステムについて好適な実施形態を挙げ、添付の図面を参照しながら説明する。 Hereinafter, preferred embodiments of the centrifugal pump system according to the present invention will be described with reference to the accompanying drawings.
 本発明の一実施形態に係る遠心ポンプシステム10は、図1に示すように人工心肺装置12に適用される。人工心肺装置12は、例えば、心臓手術等において使用され、患者から脱血された血液の酸素化、異物の除去等を行い、血液を患者に戻すものである。 A centrifugal pump system 10 according to an embodiment of the present invention is applied to a heart-lung machine 12 as shown in FIG. The heart-lung machine 12 is used, for example, in cardiac surgery, etc., and performs oxygenation of blood removed from a patient, removal of foreign substances, and the like, and returns the blood to the patient.
 人工心肺装置12は、遠心ポンプシステム10の他に、例えばリザーバ14と人工肺18を含み、これらの構成がチューブを介して接続されることで患者との間で循環回路構造をとる。より具体的には、送液の上流側(患者側)から順に、リザーバ14、遠心ポンプシステム10及び人工肺18がチューブで直列接続される。チューブは、例えば可撓性及び透明性を有するものが適用され、血液の流路として脱血ライン24、第1接続ライン23、第2接続ライン33及び返血ライン44を構成する。 The artificial heart-lung machine 12 includes, for example, a reservoir 14 and an artificial lung 18 in addition to the centrifugal pump system 10, and these components are connected via a tube to form a circulation circuit structure with a patient. More specifically, the reservoir 14, the centrifugal pump system 10, and the oxygenator 18 are connected in series with a tube in order from the upstream side (patient side) of the liquid feeding. For example, a tube having flexibility and transparency is applied, and a blood removal line 24, a first connection line 23, a second connection line 33, and a blood return line 44 are configured as a blood flow path.
 人工心肺装置12のリザーバ14は、患者から脱血された血液(静脈血)を一時的に貯留する。リザーバ14は、リザーバ本体20と、リザーバ本体20の上部に設けられる血液流入ポート21と、リザーバ本体20の下部に設けられる血液流出ポート22とを有する。血液流入ポート21は、患者に挿入された脱血カニューレからの血液を送血する脱血ライン24に接続される。血液流出ポート22は、第1接続ライン23を介して遠心ポンプシステム10に接続される。 The reservoir 14 of the heart-lung machine 12 temporarily stores blood (venous blood) removed from the patient. The reservoir 14 includes a reservoir body 20, a blood inflow port 21 provided at the upper part of the reservoir body 20, and a blood outflow port 22 provided at the lower part of the reservoir body 20. The blood inflow port 21 is connected to a blood removal line 24 for delivering blood from a blood removal cannula inserted into the patient. The blood outflow port 22 is connected to the centrifugal pump system 10 via the first connection line 23.
 リザーバ本体20内には、血液流入ポート21を介して流入した血液を濾過する血液フィルタ(図示せず)が配置される。なお、リザーバ本体20には、さらに、患者の術野からの血液を送血するカーディオトミーラインに接続される流入ポート(図示せず)が設けられる。 In the reservoir body 20, a blood filter (not shown) for filtering blood that has flowed in through the blood inflow port 21 is disposed. The reservoir body 20 is further provided with an inflow port (not shown) connected to a cardiotomy line for feeding blood from the patient's operative field.
 そして、本実施形態に係る遠心ポンプシステム10は、リザーバ14の下流側に配置され、リザーバ14から血液を引き込み、さらに下流側の人工肺18へ送血する機能を有する。この遠心ポンプシステム10は、遠心ポンプ11と、ポンプ駆動部16と、制御部45とを備える。 The centrifugal pump system 10 according to the present embodiment is disposed on the downstream side of the reservoir 14 and has a function of drawing blood from the reservoir 14 and further sending the blood to the artificial lung 18 on the downstream side. The centrifugal pump system 10 includes a centrifugal pump 11, a pump driving unit 16, and a control unit 45.
 遠心ポンプ11は、内部において患者の血液を流動させるため、1回の手技毎に取り替えられて、使い捨て又は滅菌処理される機構部である。この遠心ポンプ11は、少なくとも、ハウジング26と、ハウジング26内に回転可能に配置されたインペラ28とを備える。 Centrifugal pump 11 is a mechanism part that is replaced for each procedure and is disposable or sterilized in order to cause the patient's blood to flow inside. The centrifugal pump 11 includes at least a housing 26 and an impeller 28 that is rotatably disposed in the housing 26.
 ハウジング26は、第1接続ライン23を介してリザーバ14の血液流出ポート22と接続される血液流入ポート30と、第2接続ライン33を介して人工肺18と接続される血液流出ポート32とを有する。また、図2に示すように、ハウジング26は、下部を構成するベース48と、上部を構成するカバー50とを備える。ベース48とカバー50によって、その内側にインペラ28が収容される空間26a(以下、「収容空間26a」という)が形成される。 The housing 26 includes a blood inflow port 30 connected to the blood outflow port 22 of the reservoir 14 through the first connection line 23, and a blood outflow port 32 connected to the oxygenator 18 through the second connection line 33. Have. As shown in FIG. 2, the housing 26 includes a base 48 that forms the lower part and a cover 50 that forms the upper part. The base 48 and the cover 50 form a space 26a (hereinafter referred to as “accommodating space 26a”) in which the impeller 28 is accommodated.
 ベース48は、全体として略円盤形状であって、円形の底壁51と、底壁51の外周部から上方に突出し且つ周方向に一周連続した周壁52とを有する。底壁51の中心部には、凹状の第1配置部54が設けられる。また、底壁51の下面には、略円筒状の被装着部53が下方に向かって突出形成されている。 The base 48 has a substantially disc shape as a whole, and has a circular bottom wall 51 and a peripheral wall 52 that protrudes upward from the outer peripheral portion of the bottom wall 51 and that is continuous in the circumferential direction. A concave first arrangement portion 54 is provided at the center of the bottom wall 51. Further, a substantially cylindrical mounted portion 53 is formed on the bottom surface of the bottom wall 51 so as to protrude downward.
 カバー50は、円盤状の天壁56と、天壁56の外周から下方に突出し且つ周方向に一周連続した周壁57とを有する。カバー50の周壁57の下端と、ベース48の周壁52の上端とは、互いに嵌合した状態で、接着剤等の適宜の接合手段によって相互固定されている。なお、図2では、カバー50の周壁57の下端が、ベース48の周壁52の上端の内側に嵌合しているが、ベース48の周壁52の上端が、カバー50の周壁57の下端の内側に嵌合していてもよい。 The cover 50 has a disk-shaped top wall 56 and a peripheral wall 57 that protrudes downward from the outer periphery of the top wall 56 and is continuous in the circumferential direction. The lower end of the peripheral wall 57 of the cover 50 and the upper end of the peripheral wall 52 of the base 48 are fixed to each other by an appropriate joining means such as an adhesive while being fitted to each other. In FIG. 2, the lower end of the peripheral wall 57 of the cover 50 is fitted inside the upper end of the peripheral wall 52 of the base 48, but the upper end of the peripheral wall 52 of the base 48 is inside the lower end of the peripheral wall 57 of the cover 50. May be fitted.
 カバー50には、天壁56の中央から上方に突出した突出筒部58が設けられる。突出筒部58は、上端が閉じ、下方に開放した中空構造に構成される。突出筒部58の上部内側には、凹状の第2配置部60が設けられる。 The cover 50 is provided with a protruding cylindrical portion 58 protruding upward from the center of the top wall 56. The protruding cylinder 58 has a hollow structure with the upper end closed and opened downward. A concave second arrangement portion 60 is provided inside the upper portion of the protruding cylinder portion 58.
 また、カバー50には、上述した血液流入ポート30が設けられる。血液流入ポート30は、突出筒部58に対して交差する方向(図示例では傾斜方向)に延出する。血液流入ポート30の内腔30aは、突出筒部58の内腔58aを介して、収容空間26aと連通する。 The cover 50 is provided with the blood inflow port 30 described above. The blood inflow port 30 extends in a direction intersecting with the protruding cylinder portion 58 (inclined direction in the illustrated example). The lumen 30a of the blood inflow port 30 communicates with the accommodation space 26a via the lumen 58a of the protruding cylinder portion 58.
 カバー50にはさらに、上述した血液流出ポート32が設けられる。血液流出ポート32は、カバー50の周壁57の外側面から接線方向に延出する。血液流出ポート32の内腔32aは、収容空間26aと連通する。 The cover 50 is further provided with the blood outflow port 32 described above. The blood outflow port 32 extends tangentially from the outer surface of the peripheral wall 57 of the cover 50. The lumen 32a of the blood outflow port 32 communicates with the accommodation space 26a.
 ハウジング26(ベース48及びカバー50)の構成材料としては、例えば、各種ガラスや、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、環状ポリオレフィン、ポリスチレン、ポリ-(4-メチルペンテン-1)、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ブタジエン-スチレン共重合体、ポリアミド(例えば、ナイロン6、ナイロン6・6、ナイロン6・10、ナイロン12)等の各種樹脂材料が挙げられる。ハウジング26は、ハウジング26内を流れる血液を視認できるように、透明な材料により構成されるとよい。 Examples of the constituent material of the housing 26 (base 48 and cover 50) include various types of glass, polyvinyl chloride, polyethylene, polypropylene, cyclic polyolefin, polystyrene, poly- (4-methylpentene-1), polycarbonate, acrylic resin, Various resins such as acrylonitrile-butadiene-styrene copolymers, polyesters such as polyethylene terephthalate, polyethylene naphthalate, butadiene-styrene copolymers, polyamides (eg nylon 6, nylon 6,6, nylon 6,10, nylon 12) Materials. The housing 26 may be made of a transparent material so that blood flowing in the housing 26 can be visually recognized.
 ハウジング26内に収容されるインペラ28は、ポンプ駆動部16から回転力が伝達されることで、ハウジング26と相対的に回転する。インペラ28は、底部を構成する第1ロータ87と、第1ロータ87上に同心状に重ねられた第2ロータ88と、第2ロータ88上に同心状に重ねられたロータカバー89とを有する。 The impeller 28 accommodated in the housing 26 is rotated relative to the housing 26 when the rotational force is transmitted from the pump drive unit 16. The impeller 28 includes a first rotor 87 that constitutes a bottom portion, a second rotor 88 that is concentrically stacked on the first rotor 87, and a rotor cover 89 that is concentrically stacked on the second rotor 88. .
 また、インペラ28内には、図3Aに示すように、インペラ28の略中央から外周側に向かって放射状且つ斜め下方に延在する複数の血液誘導路84が設けられる。複数の血液誘導路84は、第2ロータ88とロータカバー89との間に形成される。ロータカバー89の下面から下方に突出した複数の流路形成壁91は、血液誘導路84の両側の壁部を構成する。この流路形成壁91は、径方向外側に向かって連続して延びることで回転方向に血液を流出させない(ウォッシュアウトホールがない)構造となっている。ロータカバー89の上面は円錐状となっており、その中央部には開口92が形成される。なお、血液誘導路84は、図3Aに示すような直線状に限らず、曲線状であってもよい。 Further, as shown in FIG. 3A, a plurality of blood guide paths 84 extending radially and obliquely downward from the approximate center of the impeller 28 are provided in the impeller 28. The plurality of blood guide paths 84 are formed between the second rotor 88 and the rotor cover 89. The plurality of flow path forming walls 91 projecting downward from the lower surface of the rotor cover 89 constitute wall portions on both sides of the blood guide path 84. The flow path forming wall 91 has a structure in which blood does not flow out in the rotation direction (no washout hole) by continuously extending outward in the radial direction. The upper surface of the rotor cover 89 has a conical shape, and an opening 92 is formed at the center thereof. The blood guiding path 84 is not limited to a straight line as shown in FIG. 3A, but may be a curved line.
 血液流入ポート30からインペラ28の中心部に流入した血液は、開口92を介して血液誘導路84に入り込む。そして、インペラ28の回転の遠心力で加速されながら血液誘導路84内を回転半径方向外側へと流れる。血液誘導路84の端部(インペラ28の外周側)から排出された血液は、血液流出ポート32に流動して血液流出ポート32から第2接続ライン33に吐出される。 Blood that has flowed from the blood inflow port 30 into the center of the impeller 28 enters the blood guide path 84 through the opening 92. Then, while being accelerated by the centrifugal force of rotation of the impeller 28, the blood flows in the blood guide path 84 outward in the rotational radial direction. The blood discharged from the end of the blood guide path 84 (the outer peripheral side of the impeller 28) flows to the blood outflow port 32 and is discharged from the blood outflow port 32 to the second connection line 33.
 ハウジング26内でインペラ28を回転させるため、図2に示すように、インペラ28の中央部にはシャフト62(回転軸)が設けられる。シャフト62は、直線の棒状部材であり、軸方向の両端に球面状の軸端66を有する。シャフト62は、インペラ28の中央部を軸方向に貫通する挿通孔63に挿入された状態で、インペラ28に固定されている。シャフト62とインペラ28とは、相対回転不可能であり、且つ、軸方向の相対変位が不可能な状態で相互固定されている。本実施形態では、シャフト62に設けられた溝64に、インペラ28の挿通孔63を形成する内周壁に設けられた突起65が係合することにより、シャフト62とインペラ28との相互固定がなされる。 In order to rotate the impeller 28 within the housing 26, a shaft 62 (rotary shaft) is provided at the center of the impeller 28 as shown in FIG. The shaft 62 is a straight bar-like member and has spherical shaft ends 66 at both ends in the axial direction. The shaft 62 is fixed to the impeller 28 in a state where the shaft 62 is inserted into an insertion hole 63 that passes through the central portion of the impeller 28 in the axial direction. The shaft 62 and the impeller 28 are mutually fixed in a state in which relative rotation is impossible and relative displacement in the axial direction is impossible. In the present embodiment, the protrusions 65 provided on the inner peripheral wall forming the insertion hole 63 of the impeller 28 are engaged with the grooves 64 provided in the shaft 62, whereby the shaft 62 and the impeller 28 are mutually fixed. The
 シャフト62の軸端66は、インペラ28から下方及び上方にそれぞれ突出する。以下、2つの軸端66を互いに区別する場合には、下側の軸端66を「第1軸端66A」と呼び、上側の軸端66を「第2軸端66B」と呼ぶ。 The shaft end 66 of the shaft 62 protrudes downward and upward from the impeller 28, respectively. Hereinafter, when the two shaft ends 66 are distinguished from each other, the lower shaft end 66 is referred to as a “first shaft end 66A” and the upper shaft end 66 is referred to as a “second shaft end 66B”.
 シャフト62の構成材料は、例えば、ハウジング26の構成材料として上記に例示した材料から選択され得る。特に、シャフト62は、耐摩耗性や摺動性に優れるアルミナセラミック等のセラミック系材料で構成されると好適である。 The constituent material of the shaft 62 can be selected from the materials exemplified above as the constituent material of the housing 26, for example. In particular, the shaft 62 is preferably made of a ceramic material such as alumina ceramic having excellent wear resistance and slidability.
 遠心ポンプ11(ハウジング26)は、このシャフト62の軸端66の各々をピボット支持する軸受70を備える。以下、第1軸端66Aをピボット支持する下側の軸受を「第1軸受70A」と呼び、第2軸端66Bをピボット支持する上側の軸受を「第2軸受70B」と呼ぶ。シャフト62は、ハウジング26内で軸方向に所定の締付荷重を掛けられた状態で、第1軸受70Aと第2軸受70Bとの間に回転自在に保持される。 The centrifugal pump 11 (housing 26) includes a bearing 70 that pivotally supports each shaft end 66 of the shaft 62. Hereinafter, the lower bearing that pivotally supports the first shaft end 66A is referred to as “first bearing 70A”, and the upper bearing that pivotally supports the second shaft end 66B is referred to as “second bearing 70B”. The shaft 62 is rotatably held between the first bearing 70A and the second bearing 70B in a state where a predetermined tightening load is applied in the axial direction in the housing 26.
 第1軸受70Aは、第1軸端66Aに接触する球面状に凹んだ軸受面73を有する。軸受面73の曲率半径は、第1軸端66Aの曲率半径よりも大きい。第1軸受70Aは、ベース48の中央部に設けられた第1配置部54に配置される。 The first bearing 70A has a spherically recessed bearing surface 73 that contacts the first shaft end 66A. The radius of curvature of the bearing surface 73 is larger than the radius of curvature of the first shaft end 66A. 70 A of 1st bearings are arrange | positioned at the 1st arrangement | positioning part 54 provided in the center part of the base 48. As shown in FIG.
 第2軸受70Bは、第2軸端66Bと接触する球面状に凹んだ軸受面73を有する。軸受面73の曲率半径は、第2軸端66Bの曲率半径よりも大きい。第2軸受70Bは、カバー50の突出筒部58に設けられた第2配置部60に配置される。 The second bearing 70B has a spherically recessed bearing surface 73 that contacts the second shaft end 66B. The radius of curvature of the bearing surface 73 is larger than the radius of curvature of the second shaft end 66B. The second bearing 70 </ b> B is arranged in the second arrangement part 60 provided in the protruding cylinder part 58 of the cover 50.
 軸受70の構成材料は、例えば、ハウジング26の構成材料として上記に例示した材料から選択され得る。特に軸受70の構成材料は、耐摩耗性や自己潤滑性に優れる超高分子量ポリエチレンにより構成されると好適である。 The constituent material of the bearing 70 can be selected from the materials exemplified above as the constituent material of the housing 26, for example. In particular, the constituent material of the bearing 70 is preferably composed of ultrahigh molecular weight polyethylene having excellent wear resistance and self-lubricating properties.
 そして、図1~図3Aに示すように、インペラ28内には、従動側磁石86が周方向に間隔をおいて複数(図3A中では6個)設けられる。従動側磁石86は、ポンプ駆動部16から伝達される磁気に反応して、シャフト62を中心としてインペラ28を回転させる磁気反応体である。複数の従動側磁石86は、第1ロータ87の上面に設けられた複数の磁石保持部90によって保持される。従動側磁石86は永久磁石を好適に用いることができるが、特に限定されるものではなく、従動側磁石86に代わる磁気反応体として、例えば強磁性金属を適用してもよい。 1 to 3A, a plurality (six in FIG. 3A) of driven side magnets 86 are provided in the impeller 28 at intervals in the circumferential direction. The driven magnet 86 is a magnetic reactant that rotates the impeller 28 around the shaft 62 in response to the magnetism transmitted from the pump drive unit 16. The plurality of driven magnets 86 are held by a plurality of magnet holding portions 90 provided on the upper surface of the first rotor 87. The driven magnet 86 can be preferably a permanent magnet, but is not particularly limited. For example, a ferromagnetic metal may be used as a magnetic reactant in place of the driven magnet 86.
 一方、遠心ポンプシステム10のポンプ駆動部16は、上述した遠心ポンプ11のインペラ28を駆動させる機構部である。遠心ポンプシステム10は、患者毎又は手技毎に遠心ポンプ11のみを取り替えて、ポンプ駆動部16を使い回すことが可能となっている。 On the other hand, the pump drive unit 16 of the centrifugal pump system 10 is a mechanism unit that drives the impeller 28 of the centrifugal pump 11 described above. The centrifugal pump system 10 can use the pump drive unit 16 by replacing only the centrifugal pump 11 for each patient or procedure.
 ポンプ駆動部16は、従動側磁石86と磁気的に引き合う(インペラ28との間で磁気カップリングを形成する)駆動伝達部34を有し、駆動伝達部34の回転力を磁気により伝達してインペラ28を回転させる。また、ポンプ駆動部16は、駆動伝達部34の他に、この駆動伝達部34を回転するモータ37(駆動源)と、駆動伝達部34及びモータ37を一体的に上下に変位させる変位機構部38と、これらを収容するケース39とを有する。 The pump drive unit 16 includes a drive transmission unit 34 that magnetically attracts the driven magnet 86 (forms a magnetic coupling with the impeller 28), and transmits the rotational force of the drive transmission unit 34 by magnetism. The impeller 28 is rotated. In addition to the drive transmission unit 34, the pump drive unit 16 includes a motor 37 (drive source) that rotates the drive transmission unit 34, and a displacement mechanism unit that integrally displaces the drive transmission unit 34 and the motor 37 up and down. 38 and a case 39 for housing them.
 駆動伝達部34は、回転部材35と、回転部材35に取り付けられる駆動側磁石36(磁気反応体)とを有する。回転部材35は、例えば円盤状に形成され、その中心部分がモータ37の回転軸37aに固定支持される。回転部材35の上面には、駆動側磁石36の磁石保持部35aが設けられ、この磁石保持部35aに対し駆動側磁石36が配置される。磁石保持部35aは、駆動側磁石36の磁気が周囲に与える影響を低減して磁気に指向性をもたせることが可能な磁気シールド機能を有することが好ましい。 The drive transmission unit 34 includes a rotating member 35 and a driving magnet 36 (magnetic reactant) attached to the rotating member 35. The rotating member 35 is formed in a disk shape, for example, and its central portion is fixedly supported on the rotating shaft 37 a of the motor 37. On the upper surface of the rotating member 35, a magnet holding portion 35a of the driving side magnet 36 is provided, and the driving side magnet 36 is disposed with respect to the magnet holding portion 35a. The magnet holding part 35a preferably has a magnetic shield function capable of reducing the influence of the magnetism of the drive-side magnet 36 on the surroundings so that the magnetism has directivity.
 駆動側磁石36は、図3Bに示すように、モータ37の回転軸37aを中心として周方向に間隔をおいて複数個(例えば、従動側磁石86に対応する数)配置されるとよい。上記の磁石保持部35aも駆動側磁石36の配置数に対応して回転部材35上に設けられる。なお、駆動側磁石36及び従動側磁石86の配置数は特に限定されるものではく、さらに駆動側磁石36と従動側磁石86の配置数が異なっていてもよい。 As shown in FIG. 3B, a plurality of drive side magnets 36 (for example, the number corresponding to the driven side magnets 86) may be arranged at intervals in the circumferential direction around the rotation shaft 37a of the motor 37. The magnet holding portion 35a is also provided on the rotating member 35 corresponding to the number of drive side magnets 36 arranged. The number of arrangement of the drive side magnet 36 and the driven side magnet 86 is not particularly limited, and the number of arrangement of the drive side magnet 36 and the driven side magnet 86 may be different.
 また、本実施形態に係る駆動側磁石36は、永久磁石36aと電磁石36bの2種類の磁気反応体を含む。例えば、永久磁石36aと電磁石36bは、回転部材35の周方向に沿って交互に配置されるとよい。電磁石36bは、芯材46bに導線46aをコイル状に巻き付けて芯材46bの上端に極性を有するように構成される。この電磁石36bは、導線46aを介して供給された電流により永久磁石36aよりも強力な磁力を生じることが可能である。複数の導線46aは、中空に形成された回転軸37a内に配線され、回転軸37aの途中位置で回転を許容しつつ電力供給可能な接続手段(例えば、スリップリングと端子の接続)により外部の電力供給ライン47a(図1参照)に接続される。電力供給ライン47aは、制御部45により出力が制御される外部電源47(図1参照)に接続されている。 Further, the drive-side magnet 36 according to the present embodiment includes two types of magnetic reactants, a permanent magnet 36a and an electromagnet 36b. For example, the permanent magnets 36 a and the electromagnets 36 b may be arranged alternately along the circumferential direction of the rotating member 35. The electromagnet 36b is configured such that a conducting wire 46a is wound around the core material 46b in a coil shape and has a polarity at the upper end of the core material 46b. The electromagnet 36b can generate a stronger magnetic force than the permanent magnet 36a by the current supplied through the conducting wire 46a. The plurality of conductive wires 46a are wired in a hollow rotating shaft 37a and externally connected by connecting means (for example, connection of a slip ring and a terminal) capable of supplying power while allowing rotation at an intermediate position of the rotating shaft 37a. It is connected to the power supply line 47a (see FIG. 1). The power supply line 47a is connected to an external power supply 47 (see FIG. 1) whose output is controlled by the control unit 45.
 複数の駆動側磁石36と複数の従動側磁石86は、相互間で引力を作用させるため、互いの対向面を反対の極性として配置される。例えば、駆動側磁石36の上面がN極の場合は従動側磁石86の下面がS極であり、駆動側磁石36の上面がS極の場合は従動側磁石86の下面がN極である。電磁石36bもこの極性を満たすように、導線46aの巻回状態及び電流の供給方向が設定される。 The plurality of drive-side magnets 36 and the plurality of driven-side magnets 86 are arranged with their opposite surfaces having opposite polarities in order to exert an attractive force between them. For example, when the upper surface of the drive-side magnet 36 is N-pole, the lower surface of the driven-side magnet 86 is S-pole, and when the upper surface of the drive-side magnet 36 is S-pole, the lower surface of the driven-side magnet 86 is N-pole. The winding state of the conducting wire 46a and the current supply direction are set so that the electromagnet 36b also satisfies this polarity.
 また、駆動側磁石36は、平面視で、例えば従動側磁石86の平面形状よりも大きな扇状に形成される。これにより、駆動側磁石36は、従動側磁石86との間で磁気カップリングを良好に形成することができる。なお、駆動側磁石36及び従動側磁石86の形状も特に限定されないことは勿論である。 Further, the driving side magnet 36 is formed in a fan shape larger than the planar shape of the driven side magnet 86 in a plan view, for example. Thereby, the drive side magnet 36 can form a magnetic coupling favorably with the driven side magnet 86. Of course, the shapes of the drive side magnet 36 and the driven side magnet 86 are not particularly limited.
 また、駆動伝達部34は、図3B中で2点鎖線に示す位置に、隣接する駆動側磁石36とは反対の極性を臨ませた補助磁石40を配置してもよい。この補助磁石40は、従動側磁石86に対し斥力を付与することで、インペラ28間に回転駆動力を伝達する際に、回転方向にかかる剪断力を低減することができる。勿論、補助磁石40は従動側磁石86側に配置されてもよい。 Further, the drive transmission unit 34 may be arranged with the auxiliary magnet 40 facing the opposite polarity to the adjacent drive side magnet 36 at the position indicated by the two-dot chain line in FIG. 3B. The auxiliary magnet 40 applies a repulsive force to the driven magnet 86, thereby reducing the shearing force applied in the rotation direction when the rotational driving force is transmitted between the impellers 28. Of course, the auxiliary magnet 40 may be disposed on the driven magnet 86 side.
 図1に戻り、上記の駆動伝達部34を回転させるモータ37は、上述したように中空状の回転軸37aを有し、この回転軸37aは、制御部45の設定速度に基づき回転する。回転軸37aの先端(上端)には回転部材35が取り付けられる。なお、モータ37としては、ACモータ、DCモータのいずれでもよいが、可変速モータが好適である。例えば、モータ37としてステッピングモータを用いると、遠心ポンプ11における血液の流量制御が容易である。また、駆動伝達部34は、回転軸37aに取り付けられるだけでなく、モータ37のロータ(図示せず)の一部を構成してステータ(図示せず)からの駆動力を直接受ける構成でもよい。 1, the motor 37 that rotates the drive transmission unit 34 has the hollow rotation shaft 37a as described above, and the rotation shaft 37a rotates based on the set speed of the control unit 45. A rotating member 35 is attached to the tip (upper end) of the rotating shaft 37a. The motor 37 may be either an AC motor or a DC motor, but a variable speed motor is preferable. For example, when a stepping motor is used as the motor 37, blood flow control in the centrifugal pump 11 is easy. Moreover, the drive transmission part 34 may be configured not only to be attached to the rotating shaft 37a but also to constitute a part of the rotor (not shown) of the motor 37 and directly receive the driving force from the stator (not shown). .
 また、ポンプ駆動部16の変位機構部38は、遠心ポンプ11(インペラ28の従動側磁石86)に対する駆動伝達部34(駆動側磁石36)の離間距離を変動させる。すなわち、変位機構部38は、離間距離を変動させることにより、駆動側磁石36と従動側磁石86間に働く磁力を調整する機能を有する。 Also, the displacement mechanism unit 38 of the pump drive unit 16 varies the separation distance of the drive transmission unit 34 (drive side magnet 36) with respect to the centrifugal pump 11 (the driven side magnet 86 of the impeller 28). That is, the displacement mechanism unit 38 has a function of adjusting the magnetic force acting between the driving side magnet 36 and the driven side magnet 86 by changing the separation distance.
 変位機構部38は、例えば、モータ37を固定支持する台座38aと、台座38aを支持及び変位させる台座38aの四隅に設けられた油圧シリンダ38bと、油圧シリンダ38bの油圧の供給又は排出を行う供給部38cとにより構成される。供給部38cは、制御部45の制御下に各油圧シリンダ38bに所定量の油を均等に供給して台座38aの高さを調整する。これにより変位機構部38は、駆動伝達部34の駆動側磁石36を従動側磁石86に対して傾けることなく、駆動側磁石36全体を均一的に上下動させることができる。 The displacement mechanism unit 38 includes, for example, a pedestal 38a that fixes and supports the motor 37, hydraulic cylinders 38b provided at four corners of the pedestal 38a that supports and displaces the pedestal 38a, and a supply that supplies or discharges hydraulic pressure from the hydraulic cylinder 38b. Part 38c. The supply unit 38c adjusts the height of the pedestal 38a by uniformly supplying a predetermined amount of oil to each hydraulic cylinder 38b under the control of the control unit 45. Accordingly, the displacement mechanism unit 38 can move the entire drive side magnet 36 up and down uniformly without inclining the drive side magnet 36 of the drive transmission unit 34 with respect to the driven side magnet 86.
 油圧シリンダ38bの設置数及び配置位置は、自由に設計してよく、例えば台座38aの中央部を1つの油圧シリンダ38bで支持する構成でもよい。また、変位機構部38の構成は、上記構成に限定されるものではなく、モータや歯車等による機械的構造、或いは電動アクチュエータやエアシリンダ等を適用し得る。 The number and arrangement positions of the hydraulic cylinders 38b may be freely designed. For example, the central part of the base 38a may be supported by one hydraulic cylinder 38b. Moreover, the structure of the displacement mechanism part 38 is not limited to the said structure, A mechanical structure by a motor, a gear, etc., or an electric actuator, an air cylinder, etc. can be applied.
 ポンプ駆動部16のケース39は、駆動伝達部34、モータ37、変位機構部38を収容する筐体として構成されている。ケース39の上部には、遠心ポンプ11を装着及び固定するための装着部39aと、インペラ28の回転速度を検出する検出センサ39bが設けられている。 The case 39 of the pump drive unit 16 is configured as a housing that houses the drive transmission unit 34, the motor 37, and the displacement mechanism unit 38. At the upper part of the case 39, a mounting part 39a for mounting and fixing the centrifugal pump 11 and a detection sensor 39b for detecting the rotational speed of the impeller 28 are provided.
 装着部39aは、ケース39の上面中央部に設けられた環状の溝部として構成され、この装着部39aに対し、遠心ポンプ11のベース48下面に設けられた被装着部53が装着される。遠心ポンプ11の被装着部53は、内側の断面が軸方向に沿ってテーパ状に形成された環状の嵌合壁53aを備える。遠心ポンプシステム10は、装着部39a(溝部)に対し嵌合壁53aをテーパ嵌合することで遠心ポンプ11をポンプ駆動部16に強固に固定することが可能となる。 The mounting portion 39a is configured as an annular groove provided in the center of the upper surface of the case 39, and the mounted portion 53 provided on the lower surface of the base 48 of the centrifugal pump 11 is mounted on the mounting portion 39a. The mounted portion 53 of the centrifugal pump 11 includes an annular fitting wall 53a whose inner cross section is formed in a tapered shape along the axial direction. The centrifugal pump system 10 can firmly fix the centrifugal pump 11 to the pump drive unit 16 by taper fitting the fitting wall 53a to the mounting portion 39a (groove portion).
 なお、遠心ポンプ11とポンプ駆動部16の装着機構も特に限定されるものではない。例えば、装着部39a(溝部)の所定位置に上下方向に延びる凹部を切り欠き、嵌合壁53aに凹部に嵌る凸部を形成したスプライン嵌合構造でもよい。この他にも、装着機構としてネジ機構やロック機構等のように遠心ポンプ11を安定的に固定可能な種々の構造を採用し得る。 In addition, the mounting mechanism of the centrifugal pump 11 and the pump drive unit 16 is not particularly limited. For example, a spline fitting structure in which a concave portion extending in the vertical direction is cut out at a predetermined position of the mounting portion 39a (groove portion) and a convex portion that fits into the concave portion is formed on the fitting wall 53a. In addition, various structures that can stably fix the centrifugal pump 11 such as a screw mechanism and a lock mechanism can be adopted as the mounting mechanism.
 検出センサ39bは、ケース39上面の所定位置に設けられ、制御部45に対し検出信号を伝達可能に接続される(図1参照)。検出センサ39bは、例えばエンコーダを適用することができ、遠心ポンプ11がポンプ駆動部16に配置された状態でインペラ28の回転速度(回転数)を検出し、制御部45に出力する。このため、インペラ28側には、検出センサ39bが検出を行うための構造(例えば、光学的な検出では一部が透過部になった構造等)が設けられるとよい。なお、検出センサ39bは、回転速度を計測可能な種々のセンサを適用することができ、また回転部材35や駆動側磁石36の回転速度を検出してもよく、或いは遠心ポンプ11側に設けられてもよい。検出信号の伝達手段も有線又は無線のいずれでもよい。 The detection sensor 39b is provided at a predetermined position on the upper surface of the case 39, and is connected to the control unit 45 so that a detection signal can be transmitted (see FIG. 1). For example, an encoder can be applied to the detection sensor 39 b, and the rotational speed (the number of rotations) of the impeller 28 is detected in a state where the centrifugal pump 11 is disposed in the pump drive unit 16, and is output to the control unit 45. For this reason, it is preferable to provide a structure for the detection sensor 39b to perform detection (for example, a structure in which a part is a transmission part in optical detection) on the impeller 28 side. As the detection sensor 39b, various sensors capable of measuring the rotation speed can be applied, and the rotation speed of the rotation member 35 and the drive side magnet 36 may be detected, or provided on the centrifugal pump 11 side. May be. The detection signal transmission means may be either wired or wireless.
 図1に戻り、制御部45は、図示しない入力部、表示部、記憶部及び演算部を有するコンピュータにより構成され、モータ37の駆動、変位機構部38の駆動及び電磁石36bの磁力を制御する。制御部45の入力部は、インペラ28の回転速度を複数段階、例えば3000rpm(高速回転:第1回転速度)と1500rpm(低速回転:第2回転速度)に切替可能なスイッチを含む。これによりユーザは、手技や患者の血液状態に応じて回転速度を設定することができる。なお、インペラ28の回転速度は、0~3000rpmの範囲で設定されることが好ましく、入力部は、段階的に回転速度を切り替える構成だけでなく、回転速度の数値入力や回転速度をアナログ的に切り替える構成であってもよい。 Referring back to FIG. 1, the control unit 45 includes a computer having an input unit, a display unit, a storage unit, and a calculation unit (not shown), and controls the driving of the motor 37, the driving of the displacement mechanism unit 38, and the magnetic force of the electromagnet 36b. The input unit of the control unit 45 includes a switch capable of switching the rotation speed of the impeller 28 to a plurality of stages, for example, 3000 rpm (high speed rotation: first rotation speed) and 1500 rpm (low speed rotation: second rotation speed). Thereby, the user can set a rotation speed according to the procedure and the blood state of the patient. The rotational speed of the impeller 28 is preferably set in the range of 0 to 3000 rpm, and the input unit is not only configured to switch the rotational speed in stages, but also numerically input the rotational speed and the rotational speed in an analog manner. It may be configured to switch.
 制御部45は、設定された回転速度に基づきモータ37を回転させ、駆動伝達部34を介して遠心ポンプ11のインペラ28を回転させる。インペラ28の回転速度を3000rpm以下に設定すると、溶血や血栓の形成を抑制しやすい。なお、インペラ28は、3000rpm以上で回転可能であってもよい。制御部45によるインペラ28の回転制御時には、検出センサ39bの検出信号に基づきフィードバッグ制御を行うとよい。これにより、インペラ28の回転速度を高精度に制御することができる。 The control unit 45 rotates the motor 37 based on the set rotation speed, and rotates the impeller 28 of the centrifugal pump 11 via the drive transmission unit 34. When the rotation speed of the impeller 28 is set to 3000 rpm or less, hemolysis and thrombus formation are easily suppressed. The impeller 28 may be rotatable at 3000 rpm or higher. When the rotation of the impeller 28 is controlled by the control unit 45, feedback control may be performed based on the detection signal of the detection sensor 39b. Thereby, the rotational speed of the impeller 28 can be controlled with high accuracy.
 また、本実施形態に係る制御部45は、検出センサ39bの検出信号に基づき変位機構部38の駆動も制御する。すなわち、制御部45は、インペラ28の回転速度に応じて供給部38cの油圧量を調整し、油圧シリンダ38bを介して台座38aの変位を調整する。これにより、インペラ28の回転速度に基づき、台座38aに載置された駆動伝達部34及びモータ37の上下位置が変動する。 Also, the control unit 45 according to the present embodiment controls the driving of the displacement mechanism unit 38 based on the detection signal of the detection sensor 39b. That is, the control unit 45 adjusts the hydraulic amount of the supply unit 38c according to the rotational speed of the impeller 28, and adjusts the displacement of the pedestal 38a via the hydraulic cylinder 38b. Thereby, based on the rotational speed of the impeller 28, the vertical position of the drive transmission part 34 and the motor 37 mounted on the base 38a fluctuate | varies.
 さらに、制御部45は、インペラ28の回転速度に応じて外部電源47を動作させ、駆動側磁石36の電磁石36bに電流を供給する。これにより、電磁石36bは、従動側磁石86に対し所定のタイミングで強い磁力をかけることができ、インペラ28との磁気カップリングを強めることができる。この制御部45による駆動伝達部34の制御については後に詳述する。 Furthermore, the control unit 45 operates the external power supply 47 according to the rotational speed of the impeller 28 and supplies a current to the electromagnet 36 b of the drive side magnet 36. Thereby, the electromagnet 36b can apply a strong magnetic force to the driven magnet 86 at a predetermined timing, and can strengthen the magnetic coupling with the impeller 28. The control of the drive transmission unit 34 by the control unit 45 will be described in detail later.
 一方、人工心肺装置12の人工肺18は、本体41と、本体41の上流側に設けられる血液流入ポート42と、本体41の下流側に設けられる血液流出ポート43とを有する。血液流入ポート42は、第2接続ライン33を介して遠心ポンプシステム10に接続される。血液流出ポート43は、血液を患者に戻す返血ライン44に接続される。 On the other hand, the oxygenator 18 of the oxygenator 12 includes a main body 41, a blood inflow port 42 provided on the upstream side of the main body 41, and a blood outflow port 43 provided on the downstream side of the main body 41. The blood inflow port 42 is connected to the centrifugal pump system 10 via the second connection line 33. The blood outflow port 43 is connected to a return line 44 that returns blood to the patient.
 人工肺18の本体41は、遠心ポンプシステム10から血液流入ポート42を介して流入した血液に酸素を添加すると共に二酸化炭素を除去するガス交換を行う。なお、人工肺18は、血液の温度を変える熱交換機能も有する。上述した制御部45は、人工肺18の動作を制御する構成(すなわち、人工心肺装置12の動作全体を制御する構成)であってもよい。これにより、手技時に患者の血液の流動を精度よく且つ簡単に制御することができる。 The main body 41 of the artificial lung 18 performs gas exchange for adding oxygen to the blood flowing from the centrifugal pump system 10 via the blood inlet port 42 and removing carbon dioxide. The artificial lung 18 also has a heat exchange function for changing the temperature of blood. The control unit 45 described above may be configured to control the operation of the oxygenator 18 (that is, a configuration to control the entire operation of the heart-lung machine 12). Thereby, the blood flow of the patient can be accurately and easily controlled during the procedure.
 本実施形態に係る遠心ポンプシステム10は、基本的には以上のように構成され、以下、その作用及び効果について述べていく。 The centrifugal pump system 10 according to the present embodiment is basically configured as described above, and the operation and effect will be described below.
 本発明の理解の容易化のため、先に遠心ポンプのインペラの一般的な動作について説明する。遠心ポンプのインペラは、回転時に径方向外側且つ斜め下方に血液を導くことにより、回転速度の増加に伴ってインペラ自体を上方に浮かせる現象を生じさせる。このため、インペラの低速回転(例えば、1500rpm)時に、インペラのシャフトから下側の軸受にかかる荷重は、インペラの高速回転(例えば、3000rpm)時にかかる荷重よりも大きい。そして、下側の軸受の荷重が大きい状態でインペラの回転中に血液が軸受に巻き込まれると、荷重を受けた軸受では摩擦エネルギーも大きくなることから、血栓が生じる可能性が高くなる。 In order to facilitate understanding of the present invention, the general operation of the centrifugal pump impeller will be described first. The impeller of the centrifugal pump guides blood radially outward and obliquely downward when rotating, thereby causing a phenomenon that the impeller itself floats upward as the rotational speed increases. For this reason, when the impeller rotates at a low speed (for example, 1500 rpm), the load applied to the lower bearing from the impeller shaft is larger than the load applied when the impeller rotates at a high speed (for example, 3000 rpm). When blood is caught in the bearing while the impeller is rotating in a state where the load on the lower bearing is large, the friction energy also increases in the bearing that receives the load, so that there is a high possibility that thrombus will occur.
 このため、本実施形態に係る遠心ポンプシステム10は、ポンプ駆動部16がインペラ28を回転駆動する際に、インペラ28の回転速度に基づき、従動側磁石86にかかる磁力を変動する制御を行う。これにより、インペラ28は、回転時に、下方向に引き寄せられる度合い(回転軸方向下側の荷重)が調整され、第1軸受70Aに適切な荷重をかけることができる。 Therefore, the centrifugal pump system 10 according to the present embodiment performs control to vary the magnetic force applied to the driven magnet 86 based on the rotational speed of the impeller 28 when the pump driving unit 16 rotationally drives the impeller 28. As a result, the degree to which the impeller 28 is attracted downward during rotation (the load on the lower side in the rotational axis direction) is adjusted, and an appropriate load can be applied to the first bearing 70A.
 つまり、遠心ポンプシステム10は、図4Aに示すインペラ28の低速回転(第2回転速度)時に駆動側磁石36を下側に変位させ、図4Bに示すインペラ28の高速回転(第1回転速度)時に駆動側磁石36を上側に変位させる。また、遠心ポンプシステム10は、低速回転時に駆動側磁石36の電磁石36bの駆動を停止させ、高速回転時に電磁石36bを駆動させる。これらの制御により、低速回転時と高速回転時に、駆動側磁石36と従動側磁石86の間に働く引力(磁力)を良好に調整することが可能となる。 That is, the centrifugal pump system 10 displaces the driving magnet 36 downward during the low-speed rotation (second rotation speed) of the impeller 28 shown in FIG. 4A, and the high-speed rotation (first rotation speed) of the impeller 28 shown in FIG. 4B. Sometimes the drive side magnet 36 is displaced upward. Further, the centrifugal pump system 10 stops the driving of the electromagnet 36b of the driving side magnet 36 at the time of low speed rotation, and drives the electromagnet 36b at the time of high speed rotation. With these controls, it is possible to satisfactorily adjust the attractive force (magnetic force) that acts between the drive-side magnet 36 and the driven-side magnet 86 during low-speed rotation and high-speed rotation.
 詳細には、ユーザは、図1に示すように構築した人工心肺装置12の使用において、遠心ポンプ11の被装着部53をポンプ駆動部16の装着部39aに装着して、インペラ28を回転可能状態とする。回転可能状態では、制御部45により外部電源47から電磁石36bへの電流供給が停止されることで、永久磁石36aとこの永久磁石36aに対向する従動側磁石86が磁気カップリング(相互間の引力の作用状態)を形成する。なお、本実施形態では、電磁石36bの駆動又は駆動停止の切換により制御の簡単化を図っているが、インペラ28と駆動伝達部34間にかかる磁力全体を調整するため、外部電源47の出力を制御して電磁石36bを適宜駆動させてもよい。その後、ユーザは、制御部45の入力部により遠心ポンプ11の回転速度(低速回転又は高速回転)を設定し、遠心ポンプシステム10を駆動する。 More specifically, the user can rotate the impeller 28 by mounting the mounted portion 53 of the centrifugal pump 11 on the mounting portion 39a of the pump driving portion 16 in the use of the heart-lung machine 12 constructed as shown in FIG. State. In the rotatable state, current supply from the external power supply 47 to the electromagnet 36b is stopped by the control unit 45, whereby the permanent magnet 36a and the driven magnet 86 facing the permanent magnet 36a are magnetically coupled (mutual attractive force between them). The working state). In the present embodiment, the control is simplified by switching between driving or stopping of the electromagnet 36b. However, in order to adjust the entire magnetic force applied between the impeller 28 and the drive transmission unit 34, the output of the external power supply 47 is output. The electromagnet 36b may be appropriately driven by control. Thereafter, the user sets the rotational speed (low-speed rotation or high-speed rotation) of the centrifugal pump 11 by the input unit of the control unit 45 and drives the centrifugal pump system 10.
 制御部45は、設定された回転速度に応じてモータ37を回転駆動させる。これにより、ポンプ駆動部16は、回転軸37a上端の駆動伝達部34を回転させて、駆動伝達部34の駆動側磁石36が従動側磁石86を連れ回りさせる。遠心ポンプ11は、ハウジング26内でシャフト62を中心にしてインペラ28を回転させ、その結果、血液流入ポート30からハウジング26内に血液を吸引すると共に、ハウジング26内から血液流出ポート32に血液を排出する。 The control unit 45 drives the motor 37 to rotate according to the set rotation speed. Thereby, the pump drive unit 16 rotates the drive transmission unit 34 at the upper end of the rotation shaft 37 a, and the drive side magnet 36 of the drive transmission unit 34 rotates the driven side magnet 86. The centrifugal pump 11 rotates the impeller 28 around the shaft 62 in the housing 26. As a result, the centrifugal pump 11 sucks blood into the housing 26 from the blood inflow port 30 and draws blood from the housing 26 into the blood outflow port 32. Discharge.
 また、制御部45は、インペラ28の回転時に、実際のインペラ28の回転速度を検出センサ39bにより検出して、モータ37の回転速度を調整する。すなわち、ポンプ駆動部16は、ユーザが設定した回転速度にインペラ28の回転を精度よく合わせることができ、例えば、図4Aに示す低速回転(1500rpm)を保ってインペラ28の回転を継続することができる。 Further, the control unit 45 adjusts the rotational speed of the motor 37 by detecting the actual rotational speed of the impeller 28 by the detection sensor 39b when the impeller 28 rotates. That is, the pump drive unit 16 can accurately adjust the rotation of the impeller 28 to the rotation speed set by the user. For example, the pump drive unit 16 can continue the rotation of the impeller 28 while maintaining the low speed rotation (1500 rpm) shown in FIG. 4A. it can.
 そして、遠心ポンプシステム10は、インペラ28の低速回転において、制御部45が変位機構部38(図1参照)の駆動を制御して、駆動伝達部34(駆動側磁石36)の高さ位置を調整する。この際、電磁石36bの駆動停止により、駆動伝達部34は永久磁石36aの一定した磁束を上下方向に出力している。高さ位置の調整において、制御部45は、検出センサ39bによる低速回転の検出(又は入力部の設定)に基づき、駆動側磁石36と従動側磁石86の間を低速回転用の離間距離DLに設定する。制御部45は、回転検出において閾値(例えば、2000rpm)を予め用意しておき、低速回転又は高速回転を判別するとよい。 In the centrifugal pump system 10, in the low speed rotation of the impeller 28, the control unit 45 controls the driving of the displacement mechanism unit 38 (see FIG. 1), and sets the height position of the drive transmission unit 34 (drive side magnet 36). adjust. At this time, the drive transmission unit 34 outputs the constant magnetic flux of the permanent magnet 36a in the vertical direction by stopping the driving of the electromagnet 36b. In the adjustment of the height position, the control unit 45 performs a low-speed rotation separation distance D L between the drive-side magnet 36 and the driven-side magnet 86 based on the detection of the low-speed rotation (or setting of the input unit) by the detection sensor 39b. Set to. The control unit 45 may prepare a threshold value (for example, 2000 rpm) in advance for rotation detection and determine low-speed rotation or high-speed rotation.
 変位機構部38は、制御部45の制御下に、供給部38cの油圧供給量を変動して油圧シリンダ38bに支持されている台座38aを適切な高さ位置に変位する。これにより、設定された低速回転用の離間距離DLと一致する位置に駆動側磁石36を変位(つまり、高速回転時よりも離間)させ、永久磁石36aと従動側磁石86の間に働く引力を弱める。 Under the control of the control unit 45, the displacement mechanism unit 38 varies the hydraulic supply amount of the supply unit 38c to displace the base 38a supported by the hydraulic cylinder 38b to an appropriate height position. Attraction Thus, acting displacement driving side magnet 36 in a position matching the distance D L for low-speed rotation that is set (i.e., than during high-speed rotation spaced) is, between the permanent magnets 36a and the driven side magnet 86 Weaken.
 インペラ28は、上記のように引力が弱まることで、低速回転時においてハウジング26内で上方への浮力が高まる。つまり、離間距離DLを長くして磁力を弱めることで、永久磁石36aと従動側磁石86の間の磁力を良好に調節することができる。その結果、遠心ポンプシステム10は、インペラ28の低速回転時に、シャフト62から第1軸受70Aにかかる荷重を小さくしてシャフト62が血液に与える影響を少なくすることができる。 As the impeller 28 is weakened as described above, the upward buoyancy in the housing 26 increases during low-speed rotation. In other words, by by increasing the distance D L weaken the magnetic force, it is possible to adjust the magnetic force between the permanent magnets 36a and the driven side magnet 86 satisfactorily. As a result, the centrifugal pump system 10 can reduce the influence of the shaft 62 on the blood by reducing the load applied to the first bearing 70A from the shaft 62 when the impeller 28 rotates at a low speed.
 逆に、制御部45は、インペラ28の高速回転において、駆動側磁石36と従動側磁石86の間を高速回転用の離間距離DHに設定する。高速回転用の離間距離DHは、低速回転用の離間距離DLよりも短く設定される。離間距離DL、DHは、実験等により適切な磁力を得るように予め求めておき、制御部45の記憶部に記憶しておくとよい。変位機構部38は、設定された離間距離DHと一致する位置に駆動側磁石36を変位(つまり、低速回転時よりも近接)させて、永久磁石36aが従動側磁石86にかける引力を低速回転時よりも強める。 Conversely, the control unit 45 sets the separation distance D H for high-speed rotation between the drive-side magnet 36 and the driven-side magnet 86 in the high-speed rotation of the impeller 28. The separation distance D H for high speed rotation is set shorter than the separation distance D L for low speed rotation. The separation distances D L and D H may be obtained in advance so as to obtain an appropriate magnetic force through experiments or the like, and stored in the storage unit of the control unit 45. The displacement mechanism unit 38 displaces the drive side magnet 36 to a position that coincides with the set separation distance DH (that is, closer to that at the time of low speed rotation), and reduces the attractive force applied to the driven side magnet 86 by the permanent magnet 36a. Strengthen than during rotation.
 さらに、制御部45は、高速回転を判別すると外部電源47を制御して、電磁石36bに所定量の電流を供給させることにより、電磁石36bを駆動させる。電磁石36bは、永久磁石36aよりも強い磁力を従動側磁石86にかけることで、従動側磁石86を一層強力に下方向に引きつける。 Further, when the control unit 45 determines high-speed rotation, the control unit 45 controls the external power supply 47 to drive the electromagnet 36b by supplying a predetermined amount of current to the electromagnet 36b. The electromagnet 36b attracts the driven magnet 86 downward more strongly by applying a stronger magnetic force to the driven magnet 86 than the permanent magnet 36a.
 インペラ28は、上記のように引力が強まることで、高速回転時においてハウジング26内での上方への浮力が抑えられる。つまり、遠心ポンプシステム10は、インペラ28の高速回転時に、シャフト62から第1軸受70Aにかかる荷重を従来よりも重く(低速回転時の荷重と同程度に)することができる。 The impeller 28 is attracted as described above, so that upward buoyancy in the housing 26 can be suppressed during high-speed rotation. That is, the centrifugal pump system 10 can make the load applied from the shaft 62 to the first bearing 70 </ b> A heavier than the conventional one when the impeller 28 rotates at high speed (similar to the load during low-speed rotation).
 ここで、インペラは、従来の永久磁石の磁力では高速回転時に比較的簡単に浮いてしまっていた。これに対し本実施形態に係る遠心ポンプシステム10は、電磁石36bがより強い磁力を生じさせることで、インペラ28の浮きを充分に抑制することができる。その結果、遠心ポンプシステム10は、インペラ28の低速回転及び高速回転において、シャフト62から第1軸受70Aにかける荷重を大きく変動させないように制御して、低速回転及び高速回転のいずれでも血栓の発生を抑制して血液を送血することができる。なお、インペラ28の高速回転時には、インペラ28による血液への影響が強まるので、シャフト62と第1軸受70A間の荷重を低速回転時よりも多少弱めてもよい。 Here, the impeller floats relatively easily during high-speed rotation by the magnetic force of the conventional permanent magnet. On the other hand, the centrifugal pump system 10 according to the present embodiment can sufficiently prevent the impeller 28 from floating by causing the electromagnet 36b to generate a stronger magnetic force. As a result, the centrifugal pump system 10 controls so that the load applied from the shaft 62 to the first bearing 70A does not fluctuate greatly during the low-speed rotation and the high-speed rotation of the impeller 28. Suppresses blood and can send blood. Note that, when the impeller 28 rotates at high speed, the influence of the impeller 28 on blood is increased, so the load between the shaft 62 and the first bearing 70A may be slightly weaker than at low speed.
 参考までに、駆動側磁石36と従動側磁石86の離間距離DL、DHと、駆動伝達部34によるインペラ28への伝達トルク及び磁力(カップリング力)の変動について図5の実測結果を参照して説明する。図5から理解可能なとおり、離間距離DL、DHが長くなるに従って、伝達トルクとカップリング力は減少する。よって、インペラ28の低速回転時に離間距離DLを長くすると、インペラ28にかける磁力を減少させ得ることが分かる。なお、離間距離DLが長くなると、伝達トルクも減少するが、低速回転では伝達トルクが小さくても充分にインペラ28を回転させることができる。逆に、インペラ28の高速回転時に離間距離DHを短くすると、インペラ28にかける磁力を増加させ、さらに大きな伝達トルクでインペラ28を回転させることができる。なお、図5に示すように伝達トルクやカップリング力は、離間距離の増加に伴いなだらかな曲線を描いて(非線形に)減少するため、制御部45は、インペラ28の回転速度に対し最適な離間距離(伝達トルク、カップリング力)となるように制御設計がなされることが好ましい。 For reference, the measurement results of FIG. 5 are shown for the separation distances D L and D H between the drive side magnet 36 and the driven side magnet 86 and the fluctuations in the transmission torque and magnetic force (coupling force) to the impeller 28 by the drive transmission unit 34. The description will be given with reference. As can be understood from FIG. 5, the transmission torque and the coupling force decrease as the separation distances D L and D H increase. Therefore, the longer the distance D L during low-speed rotation of the impeller 28, it can be seen that may reduce the force applied to the impeller 28. Incidentally, the distance D L becomes longer, but also decreases the transmission torque, can be rotated sufficiently impeller 28 even with a small transmission torque at low speed rotation. Conversely, if the separation distance DH is shortened when the impeller 28 rotates at high speed, the magnetic force applied to the impeller 28 can be increased, and the impeller 28 can be rotated with a larger transmission torque. As shown in FIG. 5, the transmission torque and the coupling force decrease along a gentle curve (non-linearly) as the separation distance increases, so the control unit 45 is optimal for the rotational speed of the impeller 28. It is preferable to design the control so that the separation distance (transmission torque, coupling force) is obtained.
 以上のように、本実施形態に係る遠心ポンプシステム10は、駆動伝達部34がモータ37の回転速度に対応してインペラ28にかかる磁力を変動することで、インペラ28の回転時の荷重を適切に設定することができる。すなわち、インペラ28を磁気的に回転させる遠心ポンプシステム10は、インペラ28の回転時に従動側磁石86にかかる磁力を変動することで、インペラ28の回転軸方向の荷重を適宜調整することができる。これにより、遠心ポンプシステム10は、血液がインペラ28の荷重の影響を受けて変化すること(例えば、血栓の発生)を抑制することができ、血液を良好に送液することが可能となる。 As described above, in the centrifugal pump system 10 according to this embodiment, the drive transmission unit 34 varies the magnetic force applied to the impeller 28 in accordance with the rotation speed of the motor 37, so that the load during rotation of the impeller 28 is appropriately set. Can be set to In other words, the centrifugal pump system 10 that magnetically rotates the impeller 28 can appropriately adjust the load in the rotation axis direction of the impeller 28 by changing the magnetic force applied to the driven magnet 86 when the impeller 28 rotates. Thereby, the centrifugal pump system 10 can suppress the change of blood due to the influence of the load of the impeller 28 (for example, the generation of a thrombus), and the blood can be fed satisfactorily.
 この場合、駆動伝達部34は、高速回転時にかかる磁力よりも低速回転時にかかる磁力を弱めることで、低速回転時にインペラ28のシャフト62が第1軸受70Aにかける荷重を低減することができる。よって、血液の溶血を抑えるためにインペラ28を低速回転した場合でも、血液を良好に送液することができる。また、遠心ポンプシステム10は、変位機構部38により、インペラ28の低速回転時の離間距離DLを高速回転時の離間距離DHよりも長くすることで、低速回転時の磁力を容易に弱め、インペラ28の荷重を確実に低減することができる。さらに、駆動伝達部34が電磁石36bを有することで、インペラ28を高速回転させる際に、強い磁力をインペラ28にかけることができ、インペラ28を充分に引きつけて回転させることができる。このため、高速回転時でも、駆動伝達部34の回転力をインペラ28に良好に伝達して(磁気のデカップリングを低減して)回転させることができる。そして、遠心ポンプシステム10は、駆動伝達部34とモータ37を一体的に変位させることで、インペラ28の回転制御の構造を簡単化しつつ、磁力の変動制御を容易に行うことができる。 In this case, the drive transmission unit 34 can reduce the load applied to the first bearing 70A by the shaft 62 of the impeller 28 during low-speed rotation by weakening the magnetic force applied during low-speed rotation than the magnetic force applied during high-speed rotation. Therefore, even when the impeller 28 is rotated at a low speed in order to suppress hemolysis of the blood, the blood can be fed satisfactorily. Furthermore, the centrifugal pump system 10, the displacement mechanism 38, the distance D L of the low speed rotation of the impeller 28 by longer than the distance D H of the high-speed rotation, weakened easily force during low-speed rotation The load on the impeller 28 can be reliably reduced. Further, since the drive transmission unit 34 includes the electromagnet 36b, when the impeller 28 is rotated at a high speed, a strong magnetic force can be applied to the impeller 28, and the impeller 28 can be sufficiently attracted and rotated. For this reason, even during high-speed rotation, the rotational force of the drive transmission unit 34 can be well transmitted to the impeller 28 (reducing magnetic decoupling) and rotated. The centrifugal pump system 10 can easily control the fluctuation of the magnetic force while simplifying the structure of the rotation control of the impeller 28 by integrally displacing the drive transmission unit 34 and the motor 37.
 ここで、シャフト62と軸受70によるピボット支持構造では、シャフト62から軸受70に向かって集中的に応力をかけることになる。しかしながら、駆動伝達部34がインペラ28にかかる磁力を変動させることで、軸受70にかかる荷重を適度に制御することができる。 Here, in the pivot support structure including the shaft 62 and the bearing 70, stress is applied intensively from the shaft 62 toward the bearing 70. However, the load applied to the bearing 70 can be appropriately controlled by changing the magnetic force applied to the impeller 28 by the drive transmission unit 34.
 さらに、インペラ28の血液誘導路84は、流路形成壁91により周囲が囲われつつ、回転半径方向外側に向かって直線状に延在していることで、インペラ28において血液(流体)を遠心方向に直線的に導くことができる。これにより、インペラ28の回転速度が低速でも血液の送液量の向上が図られる。また、インペラ28の低速回転時には、上記のとおりインペラ28の回転軸方向の荷重を低減することができる。 Further, the blood guide path 84 of the impeller 28 is linearly extended outward in the rotational radial direction while being surrounded by the flow path forming wall 91, so that blood (fluid) is centrifuged in the impeller 28. Can be guided linearly in the direction. Thereby, even if the rotational speed of the impeller 28 is low, the amount of blood delivered can be improved. Further, when the impeller 28 rotates at a low speed, the load in the rotation axis direction of the impeller 28 can be reduced as described above.
 なお、遠心ポンプシステム10は、上述した実施形態に限定されるものではなく、種々の変形例及び応用例を採用することができる。一例として、遠心ポンプシステム10の遠心ポンプ11は、ハウジング26内でインペラ28を回転可能な構造であればよく、シャフト62や軸受70による軸支構造は他の設計でもよい。例えば、遠心ポンプ11の軸支構造は、1点ピボット支持構造でもよく、軸受として玉軸受を採用してもよい。インペラは回転軸を有しないものでもよい。 The centrifugal pump system 10 is not limited to the above-described embodiment, and various modifications and application examples can be adopted. As an example, the centrifugal pump 11 of the centrifugal pump system 10 only needs to have a structure capable of rotating the impeller 28 within the housing 26, and the shaft support structure by the shaft 62 and the bearing 70 may have other designs. For example, the shaft support structure of the centrifugal pump 11 may be a one-point pivot support structure, and may employ a ball bearing as the bearing. The impeller may not have a rotating shaft.
 また、駆動伝達部34の変位は、制御部45の制御によらず、例えば、ユーザによるインペラ28の低速回転又は高速回転のスイッチ操作に連動して、上下位置を機械的に変位する構成でもよい。 Further, the displacement of the drive transmission unit 34 may be configured to mechanically displace the vertical position in conjunction with a low-speed rotation or high-speed rotation switch operation of the impeller 28 by the user without being controlled by the control unit 45, for example. .
 さらに、駆動伝達部34の変位は、モータ37(すなわちインペラ28)の低速回転と高速回転の切り替えに限定されず、インペラ28の回転速度の変化に従って駆動伝達部34を連続的又は段階的に変位させてもよい。この際、駆動伝達部34の状態(駆動側磁石36と従動側磁石86の離間距離、電磁石36bの磁力)は、図5に示すカップリング力の変化に基づき制御を行うことが好ましい。 Further, the displacement of the drive transmission unit 34 is not limited to switching between the low speed rotation and the high speed rotation of the motor 37 (that is, the impeller 28), and the drive transmission unit 34 is displaced continuously or stepwise according to a change in the rotation speed of the impeller 28. You may let them. At this time, it is preferable to control the state of the drive transmission unit 34 (the separation distance between the drive side magnet 36 and the driven side magnet 86, the magnetic force of the electromagnet 36b) based on the change in the coupling force shown in FIG.
 以下、本実施形態の変形例について幾つかの図示例に基づき説明する。なお、以降の説明において、本実施形態に係る遠心ポンプシステム10と同一の構成又は同様の機能を奏する構成については、同一の符号を付しその詳細な説明は省略する。 Hereinafter, modified examples of the present embodiment will be described based on some illustrated examples. In the following description, the same configuration as the centrifugal pump system 10 according to the present embodiment or the configuration having the same function is denoted by the same reference numeral, and the detailed description thereof is omitted.
 図6に示す第1変形例に係る遠心ポンプシステム10Aは、遠心ポンプ11Aの第1配置部54及び第2配置部60の各々にセンサ装置94(検出部)を備え、制御部45Aがセンサ装置94の出力信号を受信する構成となっている。センサ装置94は、第1軸受70A又は第2軸受70Bを介してシャフト62から受ける荷重を検出する荷重センサ(又は圧力センサ)と、荷重センサの検出値を出力する送信機とを有する。この場合、荷重センサとしては、例えば歪ゲージ、ロードセル等が挙げられる。送信機としては、例えば、微小なICチップに個別情報を格納し無線により情報の送信を行うRFID(無線タグ、ICタグ又はミューチップとも呼ばれる)を適用し得る。 The centrifugal pump system 10A according to the first modification shown in FIG. 6 includes a sensor device 94 (detection unit) in each of the first arrangement unit 54 and the second arrangement unit 60 of the centrifugal pump 11A, and the control unit 45A includes the sensor device. It is configured to receive 94 output signals. The sensor device 94 includes a load sensor (or pressure sensor) that detects a load received from the shaft 62 via the first bearing 70A or the second bearing 70B, and a transmitter that outputs a detection value of the load sensor. In this case, examples of the load sensor include a strain gauge and a load cell. As the transmitter, for example, an RFID (also referred to as a wireless tag, an IC tag, or a mu chip) that stores individual information in a minute IC chip and transmits information wirelessly can be applied.
 第1軸受70A側の第1センサ装置94Aには、第1軸受70Aを介してシャフト62の軸方向荷重が作用する。第2軸受70B側の第2センサ装置94Bには、第2軸受70Bを介してシャフト62の軸方向荷重が作用する。 The axial load of the shaft 62 acts on the first sensor device 94A on the first bearing 70A side via the first bearing 70A. The axial load of the shaft 62 acts on the second sensor device 94B on the second bearing 70B side via the second bearing 70B.
 制御部45Aは、遠心ポンプ11Aのインペラ28の回転中に、第1及び第2センサ装置94A、94Bからの荷重の検出信号を受信し、インペラ28にかかる磁力の変動を補正する制御を行う。具体的には、制御部45Aは、インペラ28の低速回転又は高速回転の設定を基準として、上述したように駆動伝達部34の上下位置を大きく(粗く)変動し、且つ電磁石36bのオン/オフを切り替える。そして、実際のインペラ28の回転中に、第1軸受70Aにかかる荷重と第2軸受70Bにかかる荷重に基づき、駆動伝達部34の上下位置の微調整を行う。 The control unit 45A receives the load detection signals from the first and second sensor devices 94A and 94B during the rotation of the impeller 28 of the centrifugal pump 11A, and performs control to correct the fluctuation of the magnetic force applied to the impeller 28. Specifically, the control unit 45A largely (roughly) fluctuates the vertical position of the drive transmission unit 34 as described above with reference to the setting of the low speed rotation or the high speed rotation of the impeller 28, and the electromagnet 36b is turned on / off. Switch. During actual rotation of the impeller 28, the vertical position of the drive transmission unit 34 is finely adjusted based on the load applied to the first bearing 70A and the load applied to the second bearing 70B.
 インペラ28の回転においては、第1軸受70Aにかかる荷重と第2軸受70Bにかかる荷重が略同一であることが好ましい。このため、制御部45Aは、第1センサ装置94Aが検出した荷重と、第2センサ装置94Bが検出した荷重とを比較し、荷重の差分が0に近づくように駆動伝達部34の高さ位置を調整する。例えば、第1センサ装置94A側の荷重が大きい場合には、駆動側磁石36と従動側磁石86間の引力が大きいと言えるため、制御部45Aは、駆動伝達部34を下方向に変位させる。逆に、第2センサ装置94B側の荷重が大きい場合には、駆動側磁石36と従動側磁石86間の引力が小さいと言えるため、制御部45Aは、駆動伝達部34を上方向に変位させる。 In the rotation of the impeller 28, it is preferable that the load applied to the first bearing 70A and the load applied to the second bearing 70B are substantially the same. For this reason, the control unit 45A compares the load detected by the first sensor device 94A with the load detected by the second sensor device 94B, and the height position of the drive transmission unit 34 so that the load difference approaches zero. Adjust. For example, when the load on the first sensor device 94A side is large, it can be said that the attractive force between the drive-side magnet 36 and the driven-side magnet 86 is large, so the control unit 45A displaces the drive transmission unit 34 downward. On the other hand, when the load on the second sensor device 94B side is large, it can be said that the attractive force between the driving side magnet 36 and the driven side magnet 86 is small, so the control unit 45A displaces the drive transmission unit 34 upward. .
 このように、遠心ポンプシステム10Aは、インペラ28の回転中に第1及び第2軸受70A、70Bの荷重を用いることで、インペラ28にかかる磁力をより高精度に調整することができ、血栓の発生を一層抑制することが可能となる。なお、センサ装置94は、第1軸受70A又は第2軸受70Bのいずれか一方に設置するだけでもよい。軸受70の一方の荷重を検出すれば、シャフト62全体の荷重を推定して、駆動伝達部34を変位(磁力を変動)させることができる。 As described above, the centrifugal pump system 10A can adjust the magnetic force applied to the impeller 28 with higher accuracy by using the loads of the first and second bearings 70A and 70B during the rotation of the impeller 28. Generation can be further suppressed. The sensor device 94 may be installed only on either the first bearing 70A or the second bearing 70B. If one load of the bearing 70 is detected, the load of the whole shaft 62 can be estimated and the drive transmission part 34 can be displaced (magnetic force is fluctuated).
 また、遠心ポンプシステム10、10Aは、荷重センサや圧力センサの他にも種々のセンサを用いてインペラ28にかかる磁力の変動(駆動伝達部34の変位)を調整することができる。例えば、ポンプ駆動部16の上部等に、駆動側磁石36と従動側磁石86間の磁力を検出する磁気センサを備え、磁気センサが検出した磁力に基づき、駆動伝達部34を変位させてもよい。 Moreover, the centrifugal pump systems 10 and 10A can adjust the fluctuation of the magnetic force applied to the impeller 28 (displacement of the drive transmission unit 34) using various sensors in addition to the load sensor and the pressure sensor. For example, a magnetic sensor for detecting the magnetic force between the drive side magnet 36 and the driven side magnet 86 may be provided on the top of the pump drive unit 16 and the drive transmission unit 34 may be displaced based on the magnetic force detected by the magnetic sensor. .
 図7A~図7Cに示す第2変形例に係る遠心ポンプシステム10Bは、ポンプ駆動部16Aの駆動側磁石36Aが、インペラ28の従動側磁石86との間で斥力(反発力)を働かせる構成となっている(図1も参照)。すなわち、駆動側磁石36Aが従動側磁石86を臨む上面側は、従動側磁石86が駆動側磁石36Aを臨む下面側と同じ極性に設定される。 The centrifugal pump system 10B according to the second modified example shown in FIGS. 7A to 7C has a configuration in which the driving side magnet 36A of the pump driving unit 16A exerts a repulsive force (repulsive force) with the driven side magnet 86 of the impeller 28. (See also FIG. 1). That is, the upper surface side where the drive side magnet 36A faces the driven side magnet 86 is set to the same polarity as the lower surface side where the driven side magnet 86 faces the drive side magnet 36A.
 この場合、図7Aに示すように、遠心ポンプ11の装着状態において、駆動側磁石36Aと従動側磁石86は、互いに斥力が働いていることで周方向に位相がずれるかたちで相互の位置が安定化する。そのため、本実施形態において駆動側磁石36と従動側磁石86間に引力が働く状態と同様に、第2変形例に係る駆動側磁石36Aと従動側磁石86も駆動伝達部34の回転に伴いインペラ28を回転させることができる。なお、この場合でも、永久磁石36aと電磁石36bの両方を使用可能なことは勿論である。 In this case, as shown in FIG. 7A, when the centrifugal pump 11 is mounted, the driving magnet 36A and the driven magnet 86 are stable in mutual position due to the mutual repulsive force that causes the phases to shift in the circumferential direction. Turn into. Therefore, in the present embodiment, the driving side magnet 36 </ b> A and the driven side magnet 86 according to the second modification are also impeller with the rotation of the drive transmission unit 34, as in the state in which an attractive force acts between the driving side magnet 36 and the driven side magnet 86. 28 can be rotated. Even in this case, it goes without saying that both the permanent magnet 36a and the electromagnet 36b can be used.
 ここで、駆動側磁石36Aは、従動側磁石86との間で斥力を働かせることで、引力の作用とは逆にハウジング26内でインペラ28を浮かせる作用を生じさせる。つまり、駆動側磁石36Aと従動側磁石86間の磁力が強い場合には、インペラ28をより上方に浮かせることになる。 Here, the drive side magnet 36 </ b> A causes an effect of floating the impeller 28 in the housing 26, contrary to the action of attraction, by exerting a repulsive force with the driven side magnet 86. That is, when the magnetic force between the driving side magnet 36A and the driven side magnet 86 is strong, the impeller 28 is floated upward.
 そのため、図7B及び図7Cに示すように、インペラ28の低速回転時においては、駆動側磁石36Aと従動側磁石86間の離間距離DLを短くし、インペラ28の高速回転時においては、駆動側磁石36Aと従動側磁石86間の離間距離DHを長くするように制御を行う。これにより、遠心ポンプシステム10Bでも、インペラ28の回転軸方向の荷重を精度良く制御することができる。 Therefore, as shown in FIGS. 7B and 7C, at the time of low-speed rotation of the impeller 28, the distance D L between the driving-side magnet 36A and the driven magnet 86 to shorten, at the high-speed rotation of the impeller 28 is driven Control is performed so that the separation distance DH between the side magnet 36A and the driven magnet 86 is increased. Thereby, also in the centrifugal pump system 10B, the load in the rotation axis direction of the impeller 28 can be controlled with high accuracy.
 図8Aに示す第3変形例に係る遠心ポンプシステム10Cは、遠心ポンプ11の上方に、駆動側磁石36を有する駆動伝達部34Aを備えた構成となっている(図1も参照)。駆動側磁石36は、遠心ポンプ11内のインペラ28に設けられた従動側磁石86との間で、磁力(引力又は斥力)を作用し合い、駆動伝達部34Aの回転にともないインペラ28を回転させる。そして、駆動伝達部34Aは、図示しない変位機構部又は磁力変動手段により、インペラ28にかかる磁力を変動することが可能となっている。従って、この遠心ポンプシステム10Cでも、インペラ28の回転軸方向の荷重を適宜調整することができる。要するに、本発明において、インペラ28を回転させる駆動伝達部34の配置箇所は特に限定されない。 A centrifugal pump system 10C according to the third modified example shown in FIG. 8A has a drive transmission unit 34A having a drive-side magnet 36 above the centrifugal pump 11 (see also FIG. 1). The drive side magnet 36 applies a magnetic force (attractive force or repulsive force) to the driven side magnet 86 provided on the impeller 28 in the centrifugal pump 11 to rotate the impeller 28 as the drive transmission unit 34A rotates. . The drive transmission unit 34A can change the magnetic force applied to the impeller 28 by a displacement mechanism unit or magnetic force changing means (not shown). Therefore, also in this centrifugal pump system 10C, the load in the rotation axis direction of the impeller 28 can be appropriately adjusted. In short, in the present invention, the location of the drive transmission unit 34 that rotates the impeller 28 is not particularly limited.
 図8Bに示す第4変形例に係る遠心ポンプシステム10Dは、駆動側磁石36の永久磁石36aと電磁石36bの配置関係が本実施形態に係る遠心ポンプシステム10と異なっている。具体的には、回転部材35の径方向外側寄りに永久磁石36aを配置し、回転部材35の径方向内側寄りに電磁石36bを配置した構成となっている。このように構成しても、遠心ポンプシステム10と同様の制御を行うことが可能であり、同様の効果を得ることができる。 The centrifugal pump system 10D according to the fourth modification shown in FIG. 8B is different from the centrifugal pump system 10 according to the present embodiment in the arrangement relationship between the permanent magnet 36a and the electromagnet 36b of the drive side magnet 36. Specifically, the permanent magnet 36 a is disposed closer to the radially outer side of the rotating member 35, and the electromagnet 36 b is disposed closer to the radially inner side of the rotating member 35. Even if comprised in this way, it is possible to perform the same control as the centrifugal pump system 10, and the same effect can be acquired.
 要するに、駆動側磁石36は、永久磁石36aと電磁石36bの配置関係について特に限定されず、従動側磁石86にかかる磁力を変化させ得る種々の構造を採用できる。また例えば、駆動側磁石36を電磁石36bだけで構成することも可能である。この場合、駆動伝達部34(インペラ28)の低速回転時には、高速回転時よりも低い供給量の電流を電磁石36bに供給することで磁力を弱め、インペラ28の荷重を低減することができる。 In short, the drive-side magnet 36 is not particularly limited with respect to the arrangement relationship between the permanent magnet 36a and the electromagnet 36b, and various structures that can change the magnetic force applied to the driven-side magnet 86 can be adopted. Further, for example, the drive-side magnet 36 can be composed of only the electromagnet 36b. In this case, when the drive transmission unit 34 (impeller 28) rotates at a low speed, the magnetic force is weakened by supplying a lower supply amount of current to the electromagnet 36b than at the time of high speed rotation, and the load on the impeller 28 can be reduced.
 上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。 In the above description, the present invention has been described with reference to preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Yes.

Claims (8)

  1.  ハウジング(26)と、前記ハウジング(26)内に回転可能に配置され、且つ磁気に反応するインペラ(28)と、を備える遠心ポンプ(11)、
     及び前記インペラ(28)の軸方向に磁気的に引き合い又は反発し合いながら、駆動源(37)の回転力を前記インペラ(28)に伝達する駆動伝達部(34)を有し、
     前記駆動伝達部(34)は、前記インペラ(28)又は前記駆動源(37)の回転速度に基づき前記インペラ(28)にかかる磁力を変動可能である
     ことを特徴とする遠心ポンプシステム(10、10A~10D)。
    A centrifugal pump (11) comprising a housing (26) and an impeller (28) rotatably disposed in the housing (26) and responsive to magnetism;
    And a drive transmission portion (34) for transmitting the rotational force of the drive source (37) to the impeller (28) while magnetically attracting or repelling in the axial direction of the impeller (28),
    The drive transmission unit (34) can vary the magnetic force applied to the impeller (28) based on the rotational speed of the impeller (28) or the drive source (37). 10A-10D).
  2.  請求項1記載の遠心ポンプシステム(10、10A、10D)において、
     前記駆動伝達部(34)は、前記ハウジング(26)の下方に配置され、且つ前記インペラ(28)の第1回転速度時にかかる磁力よりも、前記インペラ(28)の前記第1回転速度よりも遅い第2回転速度時にかかる磁力を弱める
     ことを特徴とする遠心ポンプシステム(10、10A、10D)。
    The centrifugal pump system (10, 10A, 10D) according to claim 1,
    The drive transmission unit (34) is disposed below the housing (26), and is more than the first rotational speed of the impeller (28) than the magnetic force applied at the first rotational speed of the impeller (28). A centrifugal pump system (10, 10A, 10D) characterized by weakening a magnetic force applied at a slow second rotation speed.
  3.  請求項2記載の遠心ポンプシステム(10、10A、10D)において、
     前記駆動伝達部(34)を変位させ、前記インペラ(28)の前記第1回転速度における前記インペラ(28)と前記駆動伝達部(34)の間の離間距離よりも、前記インペラ(28)の前記第2回転速度における前記離間距離を長くする変位機構部(38)をさらに有する
     ことを特徴とする遠心ポンプシステム(10、10A、10D)。
    The centrifugal pump system (10, 10A, 10D) according to claim 2,
    The drive transmission part (34) is displaced, and the impeller (28) has a larger distance than the separation distance between the impeller (28) and the drive transmission part (34) at the first rotational speed of the impeller (28). The centrifugal pump system (10, 10A, 10D) further comprising a displacement mechanism (38) for increasing the separation distance at the second rotational speed.
  4.  請求項3記載の遠心ポンプシステム(10、10A、10D)において、
     前記駆動伝達部(34)は、前記インペラ(28)にかける磁力を供給電力により制御可能な電磁石(36b)を有し、
     前記電磁石(36b)は、前記第2回転速度時の磁力よりも前記第1回転速度時の磁力を強めるように制御される
     ことを特徴とする遠心ポンプシステム(10、10A、10D)。
    The centrifugal pump system (10, 10A, 10D) according to claim 3,
    The drive transmission unit (34) has an electromagnet (36b) capable of controlling the magnetic force applied to the impeller (28) by supply power,
    The centrifugal pump system (10, 10A, 10D), wherein the electromagnet (36b) is controlled so as to increase the magnetic force at the first rotational speed than the magnetic force at the second rotational speed.
  5.  請求項3記載の遠心ポンプシステム(10、10A、10D)において、
     前記変位機構部(38)は、前記駆動伝達部(34)と前記駆動源(37)を一体的に変位させる
     ことを特徴とする遠心ポンプシステム(10、10A、10D)。
    The centrifugal pump system (10, 10A, 10D) according to claim 3,
    The centrifugal mechanism (10, 10A, 10D) characterized in that the displacement mechanism (38) integrally displaces the drive transmission unit (34) and the drive source (37).
  6.  請求項1記載の遠心ポンプシステム(10、10A~10D)において、
     前記遠心ポンプ(11)は、
     前記インペラ(28)の中央に設けられ、軸方向両端に軸端(66)を有するシャフト(62)と、
     前記軸端(66)の各々をピボット支持する軸受(70)と、を備える
     ことを特徴とする遠心ポンプシステム(10、10A~10D)。
    The centrifugal pump system (10, 10A-10D) according to claim 1,
    The centrifugal pump (11)
    A shaft (62) provided in the center of the impeller (28) and having axial ends (66) at both axial ends;
    A centrifugal pump system (10, 10A to 10D), comprising: a bearing (70) pivotally supporting each of the shaft ends (66).
  7.  請求項6記載の遠心ポンプシステム(10A)において、
     少なくとも一方の前記軸受(70)と前記ハウジング(26)との間の圧力又は荷重を検出する検出部(94)と、
     検出された前記圧力又は前記荷重に基づき前記インペラ(28)にかかる磁力を変動させる制御部(45A)と、をさらに備える
     ことを特徴とする遠心ポンプシステム(10A)。
    The centrifugal pump system (10A) according to claim 6,
    A detector (94) for detecting pressure or load between at least one of the bearings (70) and the housing (26);
    A centrifugal pump system (10A), further comprising: a control unit (45A) that varies a magnetic force applied to the impeller (28) based on the detected pressure or the load.
  8.  請求項1記載の遠心ポンプシステム(10、10A~10D)において、
     前記インペラ(28)は、回転中心から回転半径方向外側に流体を流動させる複数の誘導路(84)を有し、
     前記誘導路(84)は、前記インペラ(28)を構成する壁部(91)により周囲が囲われつつ、前記回転半径方向外側に向かって直線状に延在している
     ことを特徴とする遠心ポンプシステム(10、10A~10D)。
    The centrifugal pump system (10, 10A-10D) according to claim 1,
    The impeller (28) has a plurality of guide paths (84) for allowing fluid to flow outward from the center of rotation in the radial direction of rotation,
    The guide path (84) extends linearly toward the outer side in the rotational radial direction while being surrounded by a wall (91) constituting the impeller (28). Pump system (10, 10A-10D).
PCT/JP2014/083612 2013-12-27 2014-12-18 Centrifugal pump system WO2015098709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554807A JP6434423B2 (en) 2013-12-27 2014-12-18 Centrifugal pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272872 2013-12-27
JP2013-272872 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098709A1 true WO2015098709A1 (en) 2015-07-02

Family

ID=53478568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083612 WO2015098709A1 (en) 2013-12-27 2014-12-18 Centrifugal pump system

Country Status (2)

Country Link
JP (1) JP6434423B2 (en)
WO (1) WO2015098709A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042976A1 (en) * 2014-09-19 2016-03-24 テルモ株式会社 Centrifugal pump
WO2019063593A1 (en) * 2017-09-29 2019-04-04 Fresenius Medical Care Deutschland Gmbh Medical pump drive, pump and medical treatment device
JP2019154572A (en) * 2018-03-08 2019-09-19 テルモ株式会社 Pump device
CN110944691A (en) * 2017-07-18 2020-03-31 费森尤斯医疗护理德国有限责任公司 Method and device for emptying an outflow bag after a blood treatment
JP2021514787A (en) * 2018-03-09 2021-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Magnetic coupler for hemostatic rotor seal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091354A1 (en) * 2002-11-13 2004-05-13 Jms Co., Ltd. Turbo blood pump
JP2006167173A (en) * 2004-12-16 2006-06-29 Terumo Corp Centrifugal type blood pump apparatus
JP2010041742A (en) * 2008-07-31 2010-02-18 Asmo Co Ltd Axially levitated rotating motor, and turbo-type pump using axially levitated rotating motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233491B2 (en) * 2008-08-06 2013-07-10 株式会社ニコン Electronic camera, data distribution method and server

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091354A1 (en) * 2002-11-13 2004-05-13 Jms Co., Ltd. Turbo blood pump
JP2006167173A (en) * 2004-12-16 2006-06-29 Terumo Corp Centrifugal type blood pump apparatus
JP2010041742A (en) * 2008-07-31 2010-02-18 Asmo Co Ltd Axially levitated rotating motor, and turbo-type pump using axially levitated rotating motor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016042976A1 (en) * 2014-09-19 2017-04-27 テルモ株式会社 Centrifugal pump
US10363348B2 (en) 2014-09-19 2019-07-30 Terumo Kabushiki Kaisha Centrifugal pump
WO2016042976A1 (en) * 2014-09-19 2016-03-24 テルモ株式会社 Centrifugal pump
CN110944691A (en) * 2017-07-18 2020-03-31 费森尤斯医疗护理德国有限责任公司 Method and device for emptying an outflow bag after a blood treatment
US11724019B2 (en) 2017-07-18 2023-08-15 Fresenius Medical Care Deutschland Gmbh Method and devices for emptying an effluent bag after blood treatment
JP2020534958A (en) * 2017-09-29 2020-12-03 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Medical pump drives, pumps, and medical processing equipment
CN111183573A (en) * 2017-09-29 2020-05-19 费森尤斯医疗护理德国有限责任公司 Medical pump driver, pump and medical treatment equipment
US20200306433A1 (en) * 2017-09-29 2020-10-01 Fresenius Medical Care Deutschland Gmbh Medical Pump Drive, Pump And Medical Treatment Apparatus
TWI796365B (en) * 2017-09-29 2023-03-21 德商費森尤斯醫療護理德國有限責任公司 Medical pump drive, medical pump, induction charging station, medical set, medical tube set, medical treatment apparatus, method for charging the rechargeable battery and method for bringing together a pump drive with a pump section
WO2019063593A1 (en) * 2017-09-29 2019-04-04 Fresenius Medical Care Deutschland Gmbh Medical pump drive, pump and medical treatment device
JP7434149B2 (en) 2017-09-29 2024-02-20 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Medical pump drives, pumps, and medical processing equipment
JP2019154572A (en) * 2018-03-08 2019-09-19 テルモ株式会社 Pump device
JP7050534B2 (en) 2018-03-08 2022-04-08 テルモ株式会社 Pump device
JP2021514787A (en) * 2018-03-09 2021-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Magnetic coupler for hemostatic rotor seal
US11813443B2 (en) 2018-03-09 2023-11-14 Boston Scientific Scimed, Inc. Magnetic coupler for hemostatic rotor sealing
JP7563977B2 (en) 2018-03-09 2024-10-08 ボストン サイエンティフィック サイムド,インコーポレイテッド Magnetic Coupler for Hemostatic Rotary Seal

Also Published As

Publication number Publication date
JP6434423B2 (en) 2018-12-05
JPWO2015098709A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6434423B2 (en) Centrifugal pump system
JP4472612B2 (en) Centrifugal blood pump device
JP4472610B2 (en) Centrifugal blood pump device
JP6067606B2 (en) Rotary blood pump
JP4456857B2 (en) Centrifugal blood pump device
JP5171953B2 (en) Blood pump device
US8672611B2 (en) Stabilizing drive for contactless rotary blood pump impeller
EP2145108B1 (en) Centrifugal rotary blood pump
JP2006525460A (en) Fluid pump
JPH09313600A (en) Centrifugal liquid pump
JP2005127222A (en) Magnetic levitating pump
WO2015098708A1 (en) Centrifugal pump
US20200155740A1 (en) Centrifugal blood pump device
AU2012261669B2 (en) Rotary blood pump
JPH11244377A (en) Centrifugal blood pump
JP4472611B2 (en) Centrifugal blood pump device
JP2010041742A (en) Axially levitated rotating motor, and turbo-type pump using axially levitated rotating motor
JP4685227B2 (en) Magnetic levitation pump
JP4340182B2 (en) Blood pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873722

Country of ref document: EP

Kind code of ref document: A1