WO2015098631A1 - Radiation detector and x-ray ct device - Google Patents

Radiation detector and x-ray ct device Download PDF

Info

Publication number
WO2015098631A1
WO2015098631A1 PCT/JP2014/083330 JP2014083330W WO2015098631A1 WO 2015098631 A1 WO2015098631 A1 WO 2015098631A1 JP 2014083330 W JP2014083330 W JP 2014083330W WO 2015098631 A1 WO2015098631 A1 WO 2015098631A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
scintillator
radiation detector
ray
collimator plate
Prior art date
Application number
PCT/JP2014/083330
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 誠
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015554770A priority Critical patent/JPWO2015098631A1/en
Publication of WO2015098631A1 publication Critical patent/WO2015098631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/2019Shielding against direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20182Modular detectors, e.g. tiled scintillators or tiled photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector

Definitions

  • the present invention relates to a radiation detector for detecting X-rays, ⁇ -rays and the like, and more particularly to a medical image diagnostic apparatus such as a CT apparatus using the radiation detector.
  • an indirect conversion type detector in which a phosphor element such as a ceramic scintillator and a photodiode element are combined is mainly used.
  • This indirect conversion type detector has a detector element module in which a plurality of scintillator elements are arranged in a two-dimensional array, and a photodiode element is arranged on the back of each scintillator element. Many of the structures that are arranged on top are used.
  • the photodiode outputs a current signal corresponding to the X-ray dose that has passed through the subject. This output current signal is converted into a digital signal by the AD converter circuit board, and then transmitted to the image processing device to create a CT image. Is done.
  • a plurality of scintillator elements arranged in a two-dimensional array of detection element modules are separated by a reflective material such as a white resin between the scintillator elements, and one scintillator element corresponds to one pixel of a CT image. For this reason, the arrangement pitch of the scintillator elements dominates the spatial resolution of the radiation detector. Further, it is known that the thickness of the reflecting material separating the scintillator elements affects the amount of optical crosstalk between the scintillator elements, and consequently affects the spatial resolution.
  • a removal collimator is disposed in front of the detection element module.
  • the scattered radiation removing collimator includes a plurality of collimator plates arranged so that the main plane is substantially perpendicular to the upper surface of the scintillator element.
  • the collimator plates are arranged side by side so as to cover the reflective material in the gap between adjacent scintillator elements. Therefore, the larger the thickness of the collimator plate, the higher the scattered radiation removal capability, while the direct X-rays themselves that should be incident on the detector are also shielded.
  • Patent Documents 1 and 2 disclose a configuration in which the upper surface of the reflective material between the scintillator elements and the upper surface of the edge of the scintillator element are covered with a shielding member having a width wider than that of the reflective material.
  • the collimator plate is disposed on the shielding member with a gap from the shielding member.
  • the collimator plate can be a wedge-shaped cross-sectional shape, It has been proposed to have a laminated structure of plates with different thicknesses.
  • the upper surface of the reflective material between the scintillator elements and the upper surface of the edge of the scintillator element are covered with a shielding member having a width wider than that of the reflective material.
  • a shielding member having a width wider than that of the reflective material.
  • Patent Document 1 describes that the collimator plate may be connected to the shielding member, but there is no disclosure of a specific structure, and how the minute shielding member is connected to the collimator plate. Is not disclosed.
  • the collimator plate has a wedge-shaped cross-sectional shape and the like, and the structure corresponding to the focal movement of the X-rays needs to process the collimator plate into a complicated shape with high accuracy. Incurs an increase. Further, since the thickness of the collimator plate shown in Patent Document 3 is larger than the width of the reflector between the scintillator elements, the edge of the scintillator element is also covered with the collimator plate, and the aperture ratio of the scintillator element is increased. Substantially lower.
  • An object of the present invention is to provide a radiation detector having a structure for easily and accurately shielding X-rays directly incident on a photodiode element array and preventing vibration due to high-speed rotation.
  • the radiation detector according to the present invention includes a shielding portion that shields a reflective material between adjacent scintillator elements on the radiation incident surface of the scintillator element array.
  • the width Ws of the shielding part is smaller than the width Wr of the reflector and larger than the thickness Wc of the collimator plate.
  • An adhesive layer is disposed between the upper surface of the shielding part and the end face of the collimator plate, and the upper surface of the shielding part and the end face of the collimator plate are adhered by the adhesive layer.
  • X-rays directly incident on the photodiode element array can be easily and accurately shielded, and vibration due to high-speed rotation can be prevented.
  • FIG. 1 is a cross-sectional view of a detector module according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration in which a detector is provided in the detector module according to the first embodiment.
  • the graph which shows the relationship between the dynamic range of the output of the photodiode element of the radiation detector for CT apparatuses of this invention, and the noise component current contained in an output signal current.
  • FIG. 6 is a graph showing the relationship between the object size and the output signal of the photodiode element in the detector module of the first embodiment.
  • FIG. 11 is a partial cross-sectional view when the detector modules of FIG. 10 are arranged side by side.
  • the radiation detector of the present invention comprises a scintillator element array 13, a photodiode element 14, and a collimator plate 16.
  • the scintillator element array 13 includes a plurality of scintillator elements 11 that emit fluorescence by radiation, and a reflecting material 12, and the scintillator elements 11 are arranged in a one-dimensional or two-dimensional manner.
  • the reflective material 12 is disposed at least in a region between adjacent scintillator elements 11 and reflects fluorescence emitted inside the scintillator elements 11.
  • the photodiode element 14 is disposed on each surface of the plurality of scintillator elements 11 opposite to the radiation incident surface. That is, the photodiode elements 14 constitute a photodiode element array 15 arranged in an array at the same pitch as the scintillator element array 13. The photodiode element 14 detects the fluorescence emitted by the scintillator element 11.
  • the collimator plate 16 is disposed between the adjacent scintillator elements 11 on the radiation incident surface side of the scintillator element array 13.
  • the collimator plate 16 absorbs radiation scattered by the subject and prevents the scattered radiation from reaching the scintillator element 11.
  • a shielding portion 17 that shields the reflecting material 12 between the adjacent scintillator elements 11 is disposed on the radiation incident surface of the scintillator element array 13.
  • the width Ws of the shielding part 17 is set to be smaller than the width Wr of the reflector 12 and larger than the thickness Wc of the collimator plate 16.
  • the shielding unit 17 transmits radiation that passes through the subject from the focal point of the radiation source and directly reaches the radiation detector (hereinafter referred to as direct radiation) through the reflector 12 and reaches the photodiode element 14. It is preventing.
  • the width Ws of the shielding part 17 is smaller than the width Wr of the reflector 12 and larger than the thickness Wc of the collimator plate 16, the edge of the scintillator element 11 is prevented from being covered by the shielding part 17.
  • the aperture ratio of the radiation detector is prevented from decreasing.
  • an adhesive layer 18 is disposed between the upper surface of the shielding portion 17 and the end surface of the collimator plate 16.
  • the upper surface of the shielding part 17 and the end surface of the collimator plate 16 are bonded by the adhesive layer 18.
  • the radiation detector of the present invention preferably further includes a correction unit 20 that corrects the output of the photodiode element 14 as shown in FIG.
  • the correcting unit 20 outputs the photodiode element 14 for each of the plurality of scintillator elements 11 due to the radiation that has passed between the collimator plates 16 entering the edge of the scintillator element 11 and being converted into fluorescence. Correct variations in the signal.
  • the correction unit 20 can correct the output signal of the photodiode element 14 for each scintillator element 11 using a correction coefficient predetermined for each scintillator element 11 in order to correct variation. It is desirable that a correction coefficient is prepared for each radiation energy.
  • FIG. 1 shows a cross-sectional view of a detector module 101 of the radiation detector of the present invention.
  • the detector module 101 includes a detection element module 102 and a scattered radiation removal collimator 103.
  • the detection element module 102 includes a scintillator element array 13 and a photodiode element array 15.
  • the scintillator element array 13 has a configuration in which a plurality of scintillator elements 11 are arranged in a two-dimensional array with a reflector 12 interposed therebetween.
  • the scintillator element 11 is formed of a phosphor that emits fluorescence when X-rays enter.
  • the reflective material 12 is formed of a material that reflects fluorescence. In the example of FIG.
  • the reflecting material 12 is disposed not only in the gap between adjacent scintillator elements, but also on the upper surface of the scintillator element 11 (the surface on which X-rays are incident), and the fluorescence emitted upward is downward ( Reflected on the photodiode element 14 side).
  • the photodiode elements 14 are arranged in a two-dimensional array to constitute a photodiode element array 15.
  • the photodiode element array 15 is bonded and fixed to the scintillator element array 13 with a transparent adhesive.
  • the scattered radiation elimination collimator 103 includes a plurality of collimator plates 16 respectively installed at the positions of the gaps of the scintillator elements 11, and a shielding part 17 disposed on the reflection part 12 of the gaps of the scintillator elements 11.
  • the plurality of collimator plates 16 are supported by collimator support portions 31 arranged on both sides of the scintillator element array 13 as shown in the perspective view of FIG.
  • the collimator support unit 31 is supported by the substrate 115.
  • the direction of the collimator plate 16 is determined so that the focal point of the X-ray source is positioned on the extended line of the main plane.
  • the lower end of the collimator plate 16 is positioned and supported by a collimator support 31 so that a predetermined gap is generated with respect to the upper surface of the shield 17.
  • the adhesive layer 18 disposed so as to wrap the shielding part 17 adheres the lower end of the collimator plate 16 and the upper surface of the shielding part 17 and also adheres and fixes the shielding part 17 and the scintillator element array 13.
  • the shielding part 17 may be formed by printing a resin mixed with tungsten or molybdenum powder on the scintillator element array 13. Alternatively, the shielding part 17 may be formed by bonding the resin molded into a predetermined shape onto the scintillator element array 13. You may do it. Alternatively, the shielding portion 17 may be formed by bonding a metal sheet of tungsten or molybdenum to a predetermined size and bonding it onto the scintillator element array 13. As the collimator plate 16, for example, a heavy metal plate such as tungsten or molybdenum is used.
  • the radiation detector of the X-ray CT apparatus has a structure in which a plurality of detector modules 101 are arranged in the x direction and supported by polygons 120 as shown in FIG. 3 (b).
  • the detector modules 101 are arranged in an arc shape so as to face the X-ray tube focus.
  • the scattered X-rays scattered by the subject are incident on the detector module 101 at a certain angle with respect to the z direction, so that they are absorbed by the collimator plate 16 and do not reach the scintillator element 11.
  • the X-rays absorbed by the scintillator element 11 are converted into visible light fluorescence and detected by the photodiode element 14.
  • the photodiode element 14 generates an analog electric signal corresponding to the emission intensity.
  • the analog electric signal generated by the photodiode element 14 is converted into a digital signal through an AD conversion circuit in the detector circuit 316 disposed on the lower surface of the substrate 115, and is corrected by the correction unit 20 in FIG.
  • the corrected digital signal is used for image processing for reconstructing a CT image.
  • the direct X-rays that have passed through the collimator plate 16 are reflected by the reflector 12 by installing a shielding portion 17 having a width Ws that is larger than the width Wc of the collimator plate 16 and smaller than the width Wr of the reflector 12. And is incident on the photodiode element array 15.
  • the reason why the width Ws of the shielding part is made smaller than the width Wr of the reflector 12 is that the shielding part 17 does not shield the edge part of the scintillator element 11. Thereby, the shielding part 17 does not reduce the amount of direct X-rays that should be absorbed by the scintillator element 11, and it is possible to prevent the aperture ratio as a radiation detector from being lowered.
  • the shielding part 17 covers the edge (edge part) of the scintillator element 11 due to the dimensional tolerance of each part and the assembly tolerance. It is possible to reduce the possibility of being disposed or being disposed at a position that is not covered, and to suppress characteristic variation between pixels.
  • Fig. 4 shows a graph showing the relationship between the dynamic range of the output of the photodiode element 14 of the radiation detector for CT apparatus and the noise component current included in the output signal current, and the cause of noise.
  • the shielding unit 17 is designed to reduce quantum noise.
  • FIG. 5 (a) shows direct X-rays incident on the scintillator element 11 when the width Ws of the shielding portion 17 of the present embodiment is Ws ⁇ Wr with respect to the width Wr of the reflector 12.
  • FIG. 5B shows direct X-rays incident on the scintillator element 11 when Ws> Wr as a comparative example.
  • Ws ⁇ Wr direct X-rays in the angle range from B0 to B2 enter the scintillator element 11.
  • a component between B1 and B2 which is a part of direct X-rays that should be incident on the scintillator element 11, can be incident on the scintillator element 11.
  • FIG. 6 is a graph showing an example of the output of the photodiode element 14 with respect to incident X-ray energy in the case of Ws ⁇ Wr and Ws> Wr.
  • Wr is constant in order to keep the optical crosstalk amount constant.
  • the output change of the photodiode element 14 described above shows nonlinearity because the X-ray energy dependence characteristic is not linear. This is because direct X-rays (components between B1 and B2) that are not shielded by setting Ws ⁇ Wr in the present invention are components that enter the edge (edge) of the scintillator element 11. is there. Therefore, the relationship between the nonlinearity of the output of the photodiode element 14 and the shape of the edge portion (edge portion) of the scintillator element 11 was examined in more detail, and the graph of FIG. 7 was obtained.
  • FIG. 7 is a graph showing fluctuations in the output of the photodiode element 14 due to the X-ray component incident on the edge portion of the scintillator element 11.
  • FIG. 7 shows the ratio between the output when the X-ray is irradiated to the edge (edge) of the scintillator element 11 and the output when the X-ray is not irradiated to the edge (edge) of the scintillator element 11. Show. That is, the output fluctuation of the photodiode element 14 when the edge portion becomes the smallest due to variations in processing accuracy or the like is shown for each X-ray energy.
  • the edge part shape of the scintillator element 11 fluctuates, the absorbed dose of X-rays absorbed at the edge part fluctuates, but the rate at which the absorbed dose fluctuates is not constant depending on the X-ray energy.
  • the ratio of the output fluctuation to each X-ray energy is not constant as shown in FIG.
  • the element at the end of the module increases the proportion of X-rays incident on the edge portion, and thus the influence of characteristic variation becomes significant.
  • This nonlinear output fluctuation with respect to the X-ray energy varies for each photodiode element 14 and may appear as an artifact in the CT image.
  • the energy of transmitted X-rays that have passed through the subject is surfaced by a phenomenon called beam hardening that varies depending on the size of the subject. That is, the average energy of transmitted X-rays shifts to the higher energy side as the subject is larger. Therefore, in order to accurately measure the X-ray absorption coefficient of the subject, it is necessary to correct the output fluctuation generated in each detection element for each individual photodiode element. Since this output fluctuation correction needs to correct nonlinear fluctuations as shown in FIGS. 6 and 7, it cannot be corrected by conventional linearity sensitivity correction such as fluctuation of aperture ratio.
  • nonlinear fluctuations in the output signal are corrected for each photodiode element 14 by the correction unit 20 arranged in the detector circuit 316. Specifically, output correction is performed on the output of the photodiode element 14 in consideration of the amount of energy shift due to transmission through the subject.
  • FIG. 8 is a flowchart showing the procedure of energy characteristic correction.
  • a plurality of phantoms simulating subjects of various sizes are used, and these are irradiated with X-rays and detected by a radiation detector, whereby a plurality of photodiode elements 14 are obtained.
  • steps 801 and 802 are respectively measured.
  • the relationship between the object size and the output signal is obtained for each photodiode element.
  • a correction coefficient for output correction taking into account the amount of energy shift due to transmission through the object is calculated based on the correction equation.
  • This correction coefficient is obtained for each radiation energy, and a correction coefficient table representing the relationship between the output of the photodiode element 14 and the correction coefficient is created (step 803).
  • This correction coefficient table is created for each photodiode element 14 and stored in the correction coefficient table storage unit 21 in the correction unit 20.
  • the output signals of the plurality of photodiode elements 14 are measured by irradiating the subject with X-rays and detecting with a radiation detector (step 804).
  • the measured output signal of the photodiode element 14 is transferred to the correction unit 20, and the correction unit 20 reads the correction coefficient corresponding to the received output signal from the table in the correction coefficient table storage unit 21, and outputs the correction signal to the output signal.
  • Correction is performed by multiplication (step 805).
  • the corrected output signal is output to the image processing unit of the CT apparatus and used to create a CT image (step 806).
  • Factors that affect the energy characteristics of the photodiode element 14 include non-linear fluctuations caused by the incidence of X-rays on the edge of the scintillator element described in the present embodiment, the homogeneity of the scintillator element 11, and the detector module 101. There are mounting angles. As in steps 801 and 802 described above, by irradiating X-rays and measuring the output signal of the photodiode element 14 to obtain the correction coefficient, the correction coefficient can be obtained including the influence of factors other than those described above. . Therefore, a preferable CT image can be acquired.
  • the radiation detector of the present embodiment has a structure in which the collimator plate 16 and the shielding portion 17 are both bonded and fixed to the scintillator element array 13 by the adhesive layer 18, the collimator plate 16 is rotated along with the rotation of the X-ray CT apparatus. It is possible to prevent vibration. Therefore, it is possible to prevent an output error of the photodiode element 14 due to the position fluctuation of the collimator plate 16.
  • the collimator plate 16 can be formed into a simple plate shape using a heavy metal such as tungsten or molybdenum as in the prior art, so that it can be manufactured very simply and inexpensively. There are also benefits.
  • FIG. 10 shows a detector module 101 according to the second embodiment of the present invention.
  • the detector module of the second embodiment has the same structure as the detector module of FIG. 1, but differs from the first embodiment in that it does not include the collimator plate 16-r at the module end. Yes.
  • the reflecting material 12 is arranged on both end faces of the scintillator element array as in the first embodiment, but the collimator plate 16-r is arranged on one of the reflecting materials 12 on both end faces. Only the shielding part 17 is provided.
  • the radiation detector of the X-ray CT apparatus is configured by arranging the detector modules 101 in an arc shape as shown in FIG. 3 (b) by adopting a structure that does not include a collimator plate at one end in this way. Further, as shown in FIG. 11, the collimator plate 16-r does not physically interfere with the collimator plate 16-l of the adjacent detector module.
  • a predetermined angle is set so that each detector module faces the focal point of the X-ray tube.
  • All the collimator plates 16 are installed by changing the angle of the collimator plate 16 little by little so that the X-ray tube focal point is located on the extended line of the main plane.
  • the collimator plate 16-r deleted in the second embodiment is directed to the X-ray tube focal point at substantially the same angle as the collimator plate 16-l of the adjacent detector module as shown in FIG. Will be. That is, only the collimator plate 16-l of the adjacent detector module can also serve as the collimator plate 16-r.
  • the direct X-ray shielding effect is maintained as in the first embodiment.
  • the function of the scattered radiation elimination collimator is not impaired.
  • FIG. 12 shows a detector module according to the third embodiment of the present invention.
  • This embodiment has the same structure as the detector module of FIG. 1 of the first embodiment, but the first embodiment is that the module end shields 17-l and 17-r are not provided. Is different.
  • the width Wr-e of the reflector 12 at the end of the scintillator element array 13 is made smaller than the width Wr of the reflector 12 inside the scintillator element array 13. be able to.
  • positioning a detector module in circular arc shape and comprising a radiation detector it can prevent that adjacent modules interfere.
  • the end portion is not provided with the shielding portion 17, but since the shielding portion 17 is provided between the scintillator elements 11 other than the end portion, the first detector module is the first.
  • the substantially same effect as the embodiment can be obtained. Further, since the end shielding portion 17 is not provided, the assembling of the shielding portion can be facilitated.
  • FIG. 13 shows a detector module 101 according to the fourth embodiment of the present invention.
  • the present embodiment has the same structure as the detector module of FIG. 1 of the first embodiment, but does not include the collimator plate 16-r at one end of the detector module, and the shielding portions 17- l and 17-r are not provided.
  • the width Wr-e of the reflecting material 12 at both ends is smaller than the width Wr of the reflecting material 12 inside the scintillator element array 13.
  • FIG. 14 is a block diagram showing an outline of the X-ray CT apparatus of the present invention.
  • This apparatus includes a scan gantry unit 310 and an image reconstruction unit 320.
  • the scan gantry unit 310 is attached to a rotating disk 311 having an opening 314 into which a subject is carried, an X-ray tube 312 that is a radiation source mounted on the rotating disk 311, and an X-ray tube 312.
  • a detector circuit 316 for conversion and the like, and a scan control circuit 317 for controlling the rotation of the rotating disk 311 and the width of the X-ray bundle are provided. Any of the radiation detectors of the first to fourth embodiments is used for the X-ray detector 315.
  • the image reconstruction unit 320 includes an input device 321 for inputting a subject name, examination date and time, examination conditions, and the like, and an image computation circuit 322 that performs CT image reconstruction by computing the measurement data S1 sent from the detector circuit 316.
  • An image information adding unit 323 for adding information such as the subject name, examination date and time, and examination conditions input from the input device 321 to the CT image created by the image calculation circuit 322, and a CT image to which the image information is added
  • a display circuit 324 that adjusts the display gain of the signal S2 and outputs the adjusted signal S2 to the display monitor 330.
  • X-rays are irradiated from the X-ray tube 312 in a state where the subject is laid on a bed (not shown) installed in the opening 314 of the scan gantry unit 310.
  • This X-ray obtains directivity by the collimator 313 and is detected by the X-ray detector 315.
  • the direction of X-ray irradiation is changed.
  • the X-ray transmitted through the subject is detected.
  • a tomographic image created by the image reconstruction unit 320 based on the measurement data is displayed on the display monitor 330.
  • the correction unit 20 can be arranged in the image calculation circuit 322 in addition to the arrangement arranged in the X-ray detection circuit 316.
  • the radiation detector of the present invention has a high S / N ratio by preventing the generation of noise components caused by direct X-rays that have passed through the collimator plate entering the photodiode element array, and also prevents the deterioration of characteristics due to high-speed rotation.
  • X-ray CT apparatus equipped with a scanner can be provided at low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

To provide a radiation detector structured such that X-rays directly irradiated onto a photodiode element array are simply and accurately blocked and vibration resulting from high-speed rotation is prevented, a shielding part (17) is provided that shields a reflective material (12) between adjacent scintillator elements (11) on a surface of a scintillator element array (13) onto which radiation is incident. The width (Ws) of the shielding part (17) is narrower than the width (Wr) of the reflective material (12) and thicker than the thickness (Wc) of a collimator plate (16). In addition, an adhesion layer (18) is disposed between the upper surface of the shielding part (17) and an end surface of the collimator plate (16), and the upper surface of the shielding part (17) and the end surface of the collimator plate (16) are adhered by the adhesion layer.

Description

放射線検出器及びX線CT装置Radiation detector and X-ray CT apparatus
 本発明は、X線、γ線などを検出する放射線検出器、特に、放射線検出器を用いたCT装置等の医用画像診断装置に関する。 The present invention relates to a radiation detector for detecting X-rays, γ-rays and the like, and more particularly to a medical image diagnostic apparatus such as a CT apparatus using the radiation detector.
 現在、X線CT装置の放射線検出器としては、セラミックシンチレータなどの蛍光体素子とフォトダイオード素子を組み合わせた間接変換型検出器が主流となっている。この間接変換型検出器は、複数個のシンチレータ素子を2次元アレイ状に配列し、それぞれのシンチレータ素子の背面にフォトダイオード素子を配置した検出素子モジュールを、X線管焦点を中心とした円弧の上に複数個並べた構造のものが多く採用されている。フォトダイオードは、被検体を透過したX線量に対応した電流信号を出力し、この出力電流信号はAD変換回路基板にてディジタル信号に変換された後、画像処理装置へ伝送され、CT画像が作成される。 At present, as a radiation detector of an X-ray CT apparatus, an indirect conversion type detector in which a phosphor element such as a ceramic scintillator and a photodiode element are combined is mainly used. This indirect conversion type detector has a detector element module in which a plurality of scintillator elements are arranged in a two-dimensional array, and a photodiode element is arranged on the back of each scintillator element. Many of the structures that are arranged on top are used. The photodiode outputs a current signal corresponding to the X-ray dose that has passed through the subject. This output current signal is converted into a digital signal by the AD converter circuit board, and then transmitted to the image processing device to create a CT image. Is done.
 検出素子モジュールの2次元アレイ状に配列された複数のシンチレータ素子は、各シンチレータ素子の間に白色樹脂などの反射材で隔てられ、一つのシンチレータ素子が、CT画像の一つの画素に相当する。このため、シンチレータ素子の配列ピッチが、放射線検出器の空間分解能を支配している。また、シンチレータ素子間を隔てる反射材の厚さが、シンチレータ素子間の光クロストーク量を左右し、結果的に空間分解能にも影響を与えることが知られている。 A plurality of scintillator elements arranged in a two-dimensional array of detection element modules are separated by a reflective material such as a white resin between the scintillator elements, and one scintillator element corresponds to one pixel of a CT image. For this reason, the arrangement pitch of the scintillator elements dominates the spatial resolution of the radiation detector. Further, it is known that the thickness of the reflecting material separating the scintillator elements affects the amount of optical crosstalk between the scintillator elements, and consequently affects the spatial resolution.
 また、X線管焦点から直線的に検出素子モジュールに向かう直接X線のみをシンチレータ素子に入射させ、被検体によって散乱された散乱X線が検出素子に入射することを防止するために、散乱線除去コリメータが検出素子モジュールの前面に配置されている。この散乱線除去コリメータは、シンチレータ素子の上面に対して、主平面がほぼ垂直になるように配置された複数のコリメータ板を含む。コリメータ板は、隣接するシンチレータ素子の間隙の反射材を覆うように並べて配置される。よって、コリメータ板の厚さが厚いほど散乱線除去能力は高くなる一方で、検出器に入射されるべき直接X線自体も遮蔽してしまうため、適切なバランスの厚さに設計される。 In addition, in order to prevent only scattered X-rays scattered by the subject from being incident on the detection element by direct incidence of the direct X-ray directed from the focal point of the X-ray tube linearly toward the detection element module to the scintillator element. A removal collimator is disposed in front of the detection element module. The scattered radiation removing collimator includes a plurality of collimator plates arranged so that the main plane is substantially perpendicular to the upper surface of the scintillator element. The collimator plates are arranged side by side so as to cover the reflective material in the gap between adjacent scintillator elements. Therefore, the larger the thickness of the collimator plate, the higher the scattered radiation removal capability, while the direct X-rays themselves that should be incident on the detector are also shielded.
 特許文献1および2の技術は、シンチレータ素子間の反射材の上面およびシンチレータ素子の辺縁の上面を、反射材よりも幅の大きな遮蔽用部材で覆った構成を開示している。
コリメータ板は、遮蔽用部材の上に、遮蔽用部材と間隙を空けて配置される。このように遮蔽用部材を配置することにより、反射材にX線が入射することにより反射材が劣化するのを防止するとともに、X線が反射材を通り抜けてフォトダイオードで検出されて雑音が生じるのを防止し、さらに、反射材の辺縁が製造工程中に損なわれることを防止している。
Patent Documents 1 and 2 disclose a configuration in which the upper surface of the reflective material between the scintillator elements and the upper surface of the edge of the scintillator element are covered with a shielding member having a width wider than that of the reflective material.
The collimator plate is disposed on the shielding member with a gap from the shielding member. By arranging the shielding member in this way, the reflection material is prevented from deteriorating due to the incidence of X-rays on the reflection material, and the X-ray passes through the reflection material and is detected by the photodiode to generate noise. In addition, the edge of the reflector is prevented from being damaged during the manufacturing process.
 特許文献3では、X線の焦点位置の移動に対応し、各シンチレータ素子に入射する散乱線を同じように除去するため、コリメータ板を楔形断面形状とすることや、傾斜配置とすることや、厚みを変えたプレートの積層構造とすることが提案されている。 In Patent Document 3, corresponding to the movement of the focal position of the X-ray, in order to remove the scattered radiation incident on each scintillator element in the same way, the collimator plate can be a wedge-shaped cross-sectional shape, It has been proposed to have a laminated structure of plates with different thicknesses.
米国特許第6934354号明細書US Pat. No. 6,934,354 米国特許第7010083号明細書U.S. Pat.No.7010083 特開平11-218578号公報Japanese Patent Laid-Open No. 11-218578
 特許文献1および2に開示されている構造は、シンチレータ素子間の反射材の上面およびシンチレータ素子の辺縁の上面を、反射材よりも幅の大きな遮蔽用部材で覆うため、反射材に直接入射するX線を低減できるだけでなく、シンチレータ素子を透過してシンチレータ素子の側面から反射材に入射するX線も低減することができる。しかしながら、シンチレータ素子の辺縁が遮蔽用部材で覆われるため、シンチレータ素子の開口率を実質的に減少させ、シンチレータ素子に入射するX線の量を減少させる問題を招いている。また、特許文献1および2に開示されている技術では、コリメータ板と遮蔽用部材とが分離しており、近年の0.3秒/回転前後という高速回転のCT装置に用いた場合、コリメータ板が振動してしまう可能性がある。また、特許文献1には、コリメータ板を遮蔽用部材に連結してもよいと記載されているが、具体的な構造の開示はなく、微小な遮蔽用部材をコリメータ板にどのように連結するかについては開示されていない。 In the structures disclosed in Patent Documents 1 and 2, the upper surface of the reflective material between the scintillator elements and the upper surface of the edge of the scintillator element are covered with a shielding member having a width wider than that of the reflective material. Not only can X-rays to be reduced be reduced, but also X-rays that pass through the scintillator element and enter the reflector from the side surface of the scintillator element can be reduced. However, since the edge of the scintillator element is covered with the shielding member, there is a problem that the aperture ratio of the scintillator element is substantially reduced and the amount of X-rays incident on the scintillator element is reduced. Further, in the technologies disclosed in Patent Documents 1 and 2, the collimator plate and the shielding member are separated, and when used in a high-speed CT apparatus of about 0.3 seconds / revolution in recent years, the collimator plate vibrates. There is a possibility that. Patent Document 1 describes that the collimator plate may be connected to the shielding member, but there is no disclosure of a specific structure, and how the minute shielding member is connected to the collimator plate. Is not disclosed.
 一方、特許文献3に記載のように、コリメータ板を楔形断面形状等にして、X線の焦点移動に対応する構造は、コリメータ板を複雑な形状に精度よく加工する必要があり、製造コストの増加を招く。また、特許文献3に図示されているコリメータ板の厚さは、いずれもシンチレータ素子間の反射材の幅よりも大きいたため、シンチレータ素子の辺縁もコリメータ板で覆われ、シンチレータ素子の開口率を実質的に低下させる。 On the other hand, as described in Patent Document 3, the collimator plate has a wedge-shaped cross-sectional shape and the like, and the structure corresponding to the focal movement of the X-rays needs to process the collimator plate into a complicated shape with high accuracy. Incurs an increase. Further, since the thickness of the collimator plate shown in Patent Document 3 is larger than the width of the reflector between the scintillator elements, the edge of the scintillator element is also covered with the collimator plate, and the aperture ratio of the scintillator element is increased. Substantially lower.
 本発明の目的は、フォトダイオード素子アレイに直接入射するX線を簡便に精度良く遮蔽し、かつ、高速回転による振動を防止する構造を備えた放射線検出器を提供することにある。 An object of the present invention is to provide a radiation detector having a structure for easily and accurately shielding X-rays directly incident on a photodiode element array and preventing vibration due to high-speed rotation.
 本発明の放射線検出器は、シンチレータ素子アレイの放射線の入射面の、隣り合うシンチレータ素子の間の反射材を遮蔽する遮蔽部を備える。遮蔽部の幅Wsは、反射材の幅Wrより小さく、コリメータ板の厚さWcより大きい。また、遮蔽部の上面とコリメータ板の端面との間には接着層が配置され、遮蔽部の上面とコリメータ板の端面とが接着層により接着されている。 The radiation detector according to the present invention includes a shielding portion that shields a reflective material between adjacent scintillator elements on the radiation incident surface of the scintillator element array. The width Ws of the shielding part is smaller than the width Wr of the reflector and larger than the thickness Wc of the collimator plate. An adhesive layer is disposed between the upper surface of the shielding part and the end face of the collimator plate, and the upper surface of the shielding part and the end face of the collimator plate are adhered by the adhesive layer.
 本発明により、フォトダイオード素子アレイに直接入射するX線を簡便に精度良く遮蔽し、かつ、高速回転による振動を防止することができる。 According to the present invention, X-rays directly incident on the photodiode element array can be easily and accurately shielded, and vibration due to high-speed rotation can be prevented.
本発明の第1の実施形態の検出器モジュールの断面図。1 is a cross-sectional view of a detector module according to a first embodiment of the present invention. 第1の実施形態の検出器モジュールに補正部を備えた構成を示すブロック図。FIG. 2 is a block diagram showing a configuration in which a detector is provided in the detector module according to the first embodiment. (a)図1の検出器モジュールの斜視図、(b)第1の実施形態の放射線検出器の斜視図。(a) A perspective view of the detector module of FIG. 1, (b) a perspective view of the radiation detector of the first embodiment. 本発明のCT装置用放射線検出器のフォトダイオード素子の出力のダイナミックレンジと、出力信号電流に含まれるノイズ成分電流との関係を示すグラフ。The graph which shows the relationship between the dynamic range of the output of the photodiode element of the radiation detector for CT apparatuses of this invention, and the noise component current contained in an output signal current. (a)第1の実施形態の検出器モジュールのシンチレータ素子11に入射する直接X線を示す説明図、(b)比較例の検出器モジュールのシンチレータ素子11に入射する直接X線を示す説明図。(a) Explanatory diagram showing direct X-rays incident on the scintillator element 11 of the detector module of the first embodiment, (b) Explanatory diagram showing direct X-rays incident on the scintillator element 11 of the detector module of the comparative example . X線エネルギーに対するフォトダイオード素子14の出力の例を、Ws<WrおよびWs>Wrの場合についてそれぞれ示すグラフ。6 is a graph showing an example of the output of the photodiode element 14 with respect to X-ray energy for Ws <Wr and Ws> Wr, respectively. シンチレータ素子11のエッジ部に入射するX線成分に起因する、フォトダイオード素子14の出力の変動を示すグラフ。6 is a graph showing fluctuations in the output of the photodiode element due to X-ray components incident on the edge portion of the scintillator element. 第1の実施形態のエネルギー特性補正の手順を示すフローチャート。6 is a flowchart showing a procedure of energy characteristic correction according to the first embodiment. 第1の実施形態の検出器モジュールにおいて、被検体寸法とフォトダイオード素子の出力信号との関係を示すグラフ。6 is a graph showing the relationship between the object size and the output signal of the photodiode element in the detector module of the first embodiment. 第2の実施形態の検出器モジュールの断面図。Sectional drawing of the detector module of 2nd Embodiment. 図10の検出器モジュールを並べて配置した場合の一部断面図。FIG. 11 is a partial cross-sectional view when the detector modules of FIG. 10 are arranged side by side. 第3の実施形態の検出器モジュールの断面図。Sectional drawing of the detector module of 3rd Embodiment. 第4の実施形態の検出器モジュールの断面図。Sectional drawing of the detector module of 4th Embodiment. 第5の実施形態のX線CT装置のブロック図。The block diagram of the X-ray CT apparatus of 5th Embodiment.
 本発明の実施形態について図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 本発明の放射線検出器は、図1のように、シンチレータ素子アレイ13と、フォトダイオード素子14と、コリメータ板16とを備えて構成される。
(First embodiment)
As shown in FIG. 1, the radiation detector of the present invention comprises a scintillator element array 13, a photodiode element 14, and a collimator plate 16.
 シンチレータ素子アレイ13は、放射線により蛍光を発する複数のシンチレータ素子11と、反射材12とを含み、シンチレータ素子11は一次元状または二次元状に配列されている。反射材12は、隣り合うシンチレータ素子11の間の領域に少なくとも配置され、シンチレータ素子11の内部で発せられる蛍光を反射する。 The scintillator element array 13 includes a plurality of scintillator elements 11 that emit fluorescence by radiation, and a reflecting material 12, and the scintillator elements 11 are arranged in a one-dimensional or two-dimensional manner. The reflective material 12 is disposed at least in a region between adjacent scintillator elements 11 and reflects fluorescence emitted inside the scintillator elements 11.
 フォトダイオード素子14は、複数のシンチレータ素子11の、放射線の入射面とは逆側の面にそれぞれ配置されている。すなわち、フォトダイオード素子14は、シンチレータ素子アレイ13のピッチと同ピッチでアレイ状に配置されたフォトダイオード素子アレイ15を構成している。フォトダイオード素子14は、シンチレータ素子11の発した蛍光を検出する。 The photodiode element 14 is disposed on each surface of the plurality of scintillator elements 11 opposite to the radiation incident surface. That is, the photodiode elements 14 constitute a photodiode element array 15 arranged in an array at the same pitch as the scintillator element array 13. The photodiode element 14 detects the fluorescence emitted by the scintillator element 11.
 コリメータ板16は、シンチレータ素子アレイ13の放射線の入射面側の、隣り合うシンチレータ素子11の間の上方に配置されている。コリメータ板16は、被検体によって散乱された放射線を吸収し、散乱放射線がシンチレータ素子11に到達するのを防いでいる。 The collimator plate 16 is disposed between the adjacent scintillator elements 11 on the radiation incident surface side of the scintillator element array 13. The collimator plate 16 absorbs radiation scattered by the subject and prevents the scattered radiation from reaching the scintillator element 11.
 また、シンチレータ素子アレイ13の放射線の入射面には、隣り合うシンチレータ素子11の間の反射材12を遮蔽する遮蔽部17が配置されている。遮蔽部17の幅Wsは、反射材12の幅Wrより小さく、コリメータ板16の厚さWcより大きく設定されている。遮蔽部17は、放射線源の焦点から被検体を透過して直接放射線検出器に到達する放射線(以下、直接放射線と称する)が、反射材12を透過してフォトダイオード素子14に到達するのを防いでいる。また、遮蔽部17の幅Wsを反射材12の幅Wrより小さく、コリメータ板16の厚さWcより大きく設定することにより、シンチレータ素子11の辺縁部が、遮蔽部17によって覆われるのを防ぎ、放射線検出器の開口率が低下するのを防止している。 Further, on the radiation incident surface of the scintillator element array 13, a shielding portion 17 that shields the reflecting material 12 between the adjacent scintillator elements 11 is disposed. The width Ws of the shielding part 17 is set to be smaller than the width Wr of the reflector 12 and larger than the thickness Wc of the collimator plate 16. The shielding unit 17 transmits radiation that passes through the subject from the focal point of the radiation source and directly reaches the radiation detector (hereinafter referred to as direct radiation) through the reflector 12 and reaches the photodiode element 14. It is preventing. In addition, by setting the width Ws of the shielding part 17 to be smaller than the width Wr of the reflector 12 and larger than the thickness Wc of the collimator plate 16, the edge of the scintillator element 11 is prevented from being covered by the shielding part 17. The aperture ratio of the radiation detector is prevented from decreasing.
 また、遮蔽部17の上面とコリメータ板16の端面との間には接着層18が配置されている。接着層18によって、遮蔽部17の上面とコリメータ板16の端面とは接着されている。これにより、放射線検出器をCT装置に用い、高速回転させた場合でも、コリメータ板16が振動するのを防止できるため、コリメータ16の位置の変動により放射線の検出誤差が生じるのを防ぐことができる。 Further, an adhesive layer 18 is disposed between the upper surface of the shielding portion 17 and the end surface of the collimator plate 16. The upper surface of the shielding part 17 and the end surface of the collimator plate 16 are bonded by the adhesive layer 18. Thereby, even when the radiation detector is used in the CT apparatus and rotated at high speed, the collimator plate 16 can be prevented from vibrating, so that it is possible to prevent the occurrence of radiation detection errors due to fluctuations in the position of the collimator 16. .
 また、本発明の放射線検出器は、図2のように、フォトダイオード素子14の出力を補正する補正部20をさらに備えることが望ましい。補正部20は、コリメータ板16の間を通過した放射線がシンチレータ素子11の辺縁部に入射し、蛍光に変換されることに起因して、複数のシンチレータ素子11ごとのフォトダイオード素子14の出力信号に生じるばらつきを補正する。例えば、補正部20は、ばらつきを補正するためにシンチレータ素子11ごとに予め定められた補正係数を用いて、シンチレータ素子11ごとのフォトダイオード素子14の出力信号を補正することができる。補正係数は、放射線のエネルギーごとに用意されていることが望ましい。 The radiation detector of the present invention preferably further includes a correction unit 20 that corrects the output of the photodiode element 14 as shown in FIG. The correcting unit 20 outputs the photodiode element 14 for each of the plurality of scintillator elements 11 due to the radiation that has passed between the collimator plates 16 entering the edge of the scintillator element 11 and being converted into fluorescence. Correct variations in the signal. For example, the correction unit 20 can correct the output signal of the photodiode element 14 for each scintillator element 11 using a correction coefficient predetermined for each scintillator element 11 in order to correct variation. It is desirable that a correction coefficient is prepared for each radiation energy.
 以下、本発明の第一の実施形態の放射線検出器の具体例について詳しく説明する。以下の実施形態では、放射線検出器は、X線CT装置の放射線検出器である場合について説明する。図1は、本発明の放射線検出器の検出器モジュール101の断面図を示している。
検出器モジュール101は、検出素子モジュール102と、散乱線除去コリメータ103とを備えて構成されている。
Hereinafter, specific examples of the radiation detector according to the first embodiment of the present invention will be described in detail. In the following embodiments, a case will be described in which the radiation detector is a radiation detector of an X-ray CT apparatus. FIG. 1 shows a cross-sectional view of a detector module 101 of the radiation detector of the present invention.
The detector module 101 includes a detection element module 102 and a scattered radiation removal collimator 103.
 検出素子モジュール102は、シンチレータ素子アレイ13とフォトダイオード素子アレイ15とを含む。シンチレータ素子アレイ13は、複数のシンチレータ素子11を反射材12を挟んで二次元アレイ状に配列した構成である。シンチレータ素子11は、X線が入射すると蛍光を発する蛍光体によって形成されている。反射材12は、蛍光を反射する材料によって形成されている。反射材12は、図1の例では、隣り合うシンチレータ素子の間隙のみならず、シンチレータ素子11の上面(X線が入射する面)にも配置され、上方に向かって放出される蛍光を下方(フォトダイオード素子14側)に反射している。 The detection element module 102 includes a scintillator element array 13 and a photodiode element array 15. The scintillator element array 13 has a configuration in which a plurality of scintillator elements 11 are arranged in a two-dimensional array with a reflector 12 interposed therebetween. The scintillator element 11 is formed of a phosphor that emits fluorescence when X-rays enter. The reflective material 12 is formed of a material that reflects fluorescence. In the example of FIG. 1, the reflecting material 12 is disposed not only in the gap between adjacent scintillator elements, but also on the upper surface of the scintillator element 11 (the surface on which X-rays are incident), and the fluorescence emitted upward is downward ( Reflected on the photodiode element 14 side).
 シンチレータ素子アレイ13の配列と同様に、フォトダイオード素子14は二次元アレイ状に配列され、フォトダイオード素子アレイ15を構成している。フォトダイオード素子アレイ15は、透明接着剤によってシンチレータ素子アレイ13に接着固定されている。 As with the arrangement of the scintillator element array 13, the photodiode elements 14 are arranged in a two-dimensional array to constitute a photodiode element array 15. The photodiode element array 15 is bonded and fixed to the scintillator element array 13 with a transparent adhesive.
 散乱線除去コリメータ103は、図1のように、シンチレータ素子11の間隙の位置にそれぞれ設置された複数のコリメータ板16と、シンチレータ素子11の間隙の反射部12上に配置された遮蔽部17とを有する。複数のコリメータ板16は、図3(a)の斜視図のように、シンチレータ素子アレイ13の両脇に配置されたコリメータ支持部31によって支持されている。コリメータ支持部31は、基板115によって支持されている。コリメータ板16の向きは、主平面の延長線上にX線源の焦点が位置するように定められている。 As shown in FIG. 1, the scattered radiation elimination collimator 103 includes a plurality of collimator plates 16 respectively installed at the positions of the gaps of the scintillator elements 11, and a shielding part 17 disposed on the reflection part 12 of the gaps of the scintillator elements 11. Have The plurality of collimator plates 16 are supported by collimator support portions 31 arranged on both sides of the scintillator element array 13 as shown in the perspective view of FIG. The collimator support unit 31 is supported by the substrate 115. The direction of the collimator plate 16 is determined so that the focal point of the X-ray source is positioned on the extended line of the main plane.
 コリメータ板16の下端は、遮蔽部17の上面に対して所定の間隙が生じるようにコリメータ支持部31によって位置決めされて支持されている。遮蔽部17を包むように配置された接着層18は、コリメータ板16の下端と遮蔽部17の上面を接着すると共に、遮蔽部17とシンチレータ素子アレイ13とを接着固定している。 The lower end of the collimator plate 16 is positioned and supported by a collimator support 31 so that a predetermined gap is generated with respect to the upper surface of the shield 17. The adhesive layer 18 disposed so as to wrap the shielding part 17 adheres the lower end of the collimator plate 16 and the upper surface of the shielding part 17 and also adheres and fixes the shielding part 17 and the scintillator element array 13.
 遮蔽部17は、タングステンやモリブデンの粉末を混合した樹脂をシンチレータ素子アレイ13上に印刷することで形成しても良いし、前記樹脂を所定の形状に成型したものをシンチレータ素子アレイ13上に接着しても良い。またタングステンやモリブデンの金属シートを所定の寸法に加工したものをシンチレータ素子アレイ13の上に接着することにより遮蔽部17を形成しても良い。コリメータ板16は、例えばタングステンやモリブデンなどの重金属の板を用いる。 The shielding part 17 may be formed by printing a resin mixed with tungsten or molybdenum powder on the scintillator element array 13. Alternatively, the shielding part 17 may be formed by bonding the resin molded into a predetermined shape onto the scintillator element array 13. You may do it. Alternatively, the shielding portion 17 may be formed by bonding a metal sheet of tungsten or molybdenum to a predetermined size and bonding it onto the scintillator element array 13. As the collimator plate 16, for example, a heavy metal plate such as tungsten or molybdenum is used.
 X線CT装置の放射線検出器は、図3(b)のように検出器モジュール101を複数個x方向に並べてポリゴン120によって支持した構造である。これにより、各検出器モジュール101は、X線管焦点を向くように円弧状に配列される。 The radiation detector of the X-ray CT apparatus has a structure in which a plurality of detector modules 101 are arranged in the x direction and supported by polygons 120 as shown in FIG. 3 (b). Thus, the detector modules 101 are arranged in an arc shape so as to face the X-ray tube focus.
 次に、本発明の検出器モジュール101の動作について説明する。X線管の焦点(図1では不図示)から照射され、被検体(不図示)を透過した直接X線は、図1の上方よりz方向に沿って検出器モジュール101に入射し、コリメータ板16の間を通過してシンチレータ素子11で吸収される。このとき被検体によって散乱された散乱X線は、z方向に対してある角度を持って検出器モジュール101に入射するため、コリメータ板16で吸収されてシンチレータ素子11へは到達しない。シンチレータ素子11で吸収されたX線は可視光の蛍光に変換され、フォトダイオード素子14にて検出される。フォトダイオード素子14は、発光強度に応じたアナログ電気信号を発生する。 Next, the operation of the detector module 101 of the present invention will be described. Direct X-rays irradiated from the focal point of the X-ray tube (not shown in FIG. 1) and transmitted through the subject (not shown) enter the detector module 101 along the z direction from above in FIG. It passes between 16 and is absorbed by the scintillator element 11. At this time, the scattered X-rays scattered by the subject are incident on the detector module 101 at a certain angle with respect to the z direction, so that they are absorbed by the collimator plate 16 and do not reach the scintillator element 11. The X-rays absorbed by the scintillator element 11 are converted into visible light fluorescence and detected by the photodiode element 14. The photodiode element 14 generates an analog electric signal corresponding to the emission intensity.
 フォトダイオード素子14の発生したアナログ電気信号は、基板115の下面に配置された検出器回路316内のAD変換回路を経てディジタル信号に変換され、図2の補正部20によって補正される。補正後のディジタル信号は、CT画像を再構成するための画像処理に用いられる。 The analog electric signal generated by the photodiode element 14 is converted into a digital signal through an AD conversion circuit in the detector circuit 316 disposed on the lower surface of the substrate 115, and is corrected by the correction unit 20 in FIG. The corrected digital signal is used for image processing for reconstructing a CT image.
 この時本実施形態においては、コリメータ板16の幅Wcより大きく、反射材12の幅Wrより小さい幅Wsの遮蔽部17を設置することによって、コリメータ板16を通過した直接X線が反射材12を透過してフォトダイオード素子アレイ15へ入射することを防いでいる。反射材12の幅Wrより遮蔽部の幅Wsを小さくしているのは、遮蔽部17がシンチレータ素子11の辺縁部を遮蔽しないためである。これにより、本来シンチレータ素子11で吸収されるべき直接X線の量を遮蔽部17が低減させることがなく、放射線検出器としての開口率が低下するのを防ぐことができる。さらに、遮蔽部17の幅Wsを反射材12の幅Wrよりも小さくしたことによって、各部品の寸法公差や、組立て公差によって遮蔽部17がシンチレータ素子11のエッジ(辺縁部)を覆う位置に配置されたり、覆わない位置に配置されたりする恐れを低減でき、画素間の特性バラツキを抑制できる。 At this time, in the present embodiment, the direct X-rays that have passed through the collimator plate 16 are reflected by the reflector 12 by installing a shielding portion 17 having a width Ws that is larger than the width Wc of the collimator plate 16 and smaller than the width Wr of the reflector 12. And is incident on the photodiode element array 15. The reason why the width Ws of the shielding part is made smaller than the width Wr of the reflector 12 is that the shielding part 17 does not shield the edge part of the scintillator element 11. Thereby, the shielding part 17 does not reduce the amount of direct X-rays that should be absorbed by the scintillator element 11, and it is possible to prevent the aperture ratio as a radiation detector from being lowered. Furthermore, by making the width Ws of the shielding part 17 smaller than the width Wr of the reflecting material 12, the shielding part 17 covers the edge (edge part) of the scintillator element 11 due to the dimensional tolerance of each part and the assembly tolerance. It is possible to reduce the possibility of being disposed or being disposed at a position that is not covered, and to suppress characteristic variation between pixels.
 ここで、遮蔽部17によるX線の遮蔽と、補正部20によるばらつき補正についてさらに説明する。 Here, X-ray shielding by the shielding unit 17 and variation correction by the correction unit 20 will be further described.
 図4にCT装置用放射線検出器のフォトダイオード素子14の出力のダイナミックレンジと、出力信号電流に含まれるノイズ成分電流との関係を示すグラフ、ならびノイズの要因を示す。図4から明らかなように、出力信号電流が極微弱な領域は、回路ノイズが支配的であるが、ある程度以上の大きさの出力信号電流の領域は、量子ノイズが支配的であり、CT画像のノイズの大部分は、量子ノイズであることがわかる。そこで、本発明は、量子ノイズを低減すべく、遮蔽部17を設計している。 Fig. 4 shows a graph showing the relationship between the dynamic range of the output of the photodiode element 14 of the radiation detector for CT apparatus and the noise component current included in the output signal current, and the cause of noise. As is clear from FIG. 4, in the region where the output signal current is extremely weak, the circuit noise is dominant, but in the region of the output signal current that is larger than a certain level, the quantum noise is dominant, and the CT image It can be seen that most of the noise is quantum noise. Therefore, in the present invention, the shielding unit 17 is designed to reduce quantum noise.
 図5(a)に本実施形態の遮蔽部17の幅Wsを反射材12の幅Wrに対してWs<Wrとした場合に、シンチレータ素子11に入射する直接X線を示す。図5(b)は、比較例としてWs>Wrとした場合に、シンチレータ素子11に入射する直接X線を示す。図5(a)のように、Ws<Wrとした場合には、B0からB2までの角度範囲の直接X線がシンチレータ素子11に入射する。特に、シンチレータ素子11に入射すべき直接X線の一部であるB1とB2の間の成分をシンチレータ素子11に入射させることができる。 FIG. 5 (a) shows direct X-rays incident on the scintillator element 11 when the width Ws of the shielding portion 17 of the present embodiment is Ws <Wr with respect to the width Wr of the reflector 12. FIG. 5B shows direct X-rays incident on the scintillator element 11 when Ws> Wr as a comparative example. As shown in FIG. 5A, when Ws <Wr, direct X-rays in the angle range from B0 to B2 enter the scintillator element 11. In particular, a component between B1 and B2, which is a part of direct X-rays that should be incident on the scintillator element 11, can be incident on the scintillator element 11.
 これに対し、図5(b)の比較例のように、Ws>Wrとした場合には、B1とB2の間の成分が、遮蔽部17によって遮蔽され、シンチレータ素子11に入射させることができない。 In contrast, as in the comparative example of FIG. 5B, when Ws> Wr, the component between B1 and B2 is shielded by the shielding part 17 and cannot be incident on the scintillator element 11. .
 図6は、入射したX線エネルギーに対するフォトダイオード素子14の出力の例を、Ws<WrおよびWs>Wrの場合についてそれぞれ示すグラフである。これらの例では、光クロストーク量を一定とするために、Wrを一定とした。 FIG. 6 is a graph showing an example of the output of the photodiode element 14 with respect to incident X-ray energy in the case of Ws <Wr and Ws> Wr. In these examples, Wr is constant in order to keep the optical crosstalk amount constant.
 図6のグラフから明らかなように、比較例のWs>Wrの場合には、シンチレータ素子11に入射すべき好ましい直接X線の一部が遮蔽されるため、フォトダイオード素子14の出力低下が見られる。この出力低下は、X線検出器の開口率低下を意味しており、量子ノイズ増加にともなうSN比低下をもたらす。その結果、再構成されるCT画像の画質の低下につながる。これに対し、本発明のWs<Wrとした場合には、開口率が増加するため、フォトダイオード素子14の出力も増加して、量子ノイズが減少し、SN比が高い良好なCT画像を得ることが出来る。 As is apparent from the graph of FIG. 6, when Ws> Wr of the comparative example, a part of preferable direct X-rays that should be incident on the scintillator element 11 is shielded, so that the output of the photodiode element 14 decreases. It is done. This decrease in output means a decrease in the aperture ratio of the X-ray detector and causes a decrease in the S / N ratio accompanying an increase in quantum noise. As a result, the quality of the reconstructed CT image is degraded. On the other hand, when Ws <Wr of the present invention, since the aperture ratio increases, the output of the photodiode element 14 also increases, the quantum noise decreases, and a good CT image with a high SN ratio is obtained. I can do it.
 但し、図6から明らかなように、上述したフォトダイオード素子14の出力変化は、X線エネルギー依存特性が直線的にならず、非線形性を示している。これは、本発明においてWs<Wrとすることによって遮蔽されなかった直接X線(B1とB2の間の成分)が、シンチレータ素子11の辺縁部(エッジ部)に入射する成分であるためである。そこで、フォトダイオード素子14の出力の非線形性と、シンチレータ素子11の辺縁部(エッジ部)の形状との関係をさらに詳しく調べ、図7のグラフを得た。 However, as is clear from FIG. 6, the output change of the photodiode element 14 described above shows nonlinearity because the X-ray energy dependence characteristic is not linear. This is because direct X-rays (components between B1 and B2) that are not shielded by setting Ws <Wr in the present invention are components that enter the edge (edge) of the scintillator element 11. is there. Therefore, the relationship between the nonlinearity of the output of the photodiode element 14 and the shape of the edge portion (edge portion) of the scintillator element 11 was examined in more detail, and the graph of FIG. 7 was obtained.
 図7は、シンチレータ素子11のエッジ部に入射するX線成分に起因する、フォトダイオード素子14の出力の変動を示すグラフである。図7は、シンチレータ素子11の辺縁部(エッジ部)までX線を照射したときの出力と、シンチレータ素子11の辺縁部(エッジ部)にX線が照射されないときの出力との比を示している。すなわち、加工精度ばらつきなどによりエッジ部が、最も小さくなったときのフォトダイオード素子14の出力変動を、各X線エネルギーに対して示している。シンチレータ素子11のエッジ部形状が変動すると、当該エッジ部にて吸収されるX線の吸収線量が変動するが、その吸収線量が変動する割合はX線エネルギーによって一定とはならない。その結果として、図7のように各X線エネルギーに対する出力変動の割合も一定とはならないことがわかる。また、検出素子モジュール中央のシンチレータ素子と比較すると、モジュール端部の素子は、エッジ部に入射するX線の割合が増加するため、特性変動の影響が顕著になる。 FIG. 7 is a graph showing fluctuations in the output of the photodiode element 14 due to the X-ray component incident on the edge portion of the scintillator element 11. FIG. 7 shows the ratio between the output when the X-ray is irradiated to the edge (edge) of the scintillator element 11 and the output when the X-ray is not irradiated to the edge (edge) of the scintillator element 11. Show. That is, the output fluctuation of the photodiode element 14 when the edge portion becomes the smallest due to variations in processing accuracy or the like is shown for each X-ray energy. When the edge part shape of the scintillator element 11 fluctuates, the absorbed dose of X-rays absorbed at the edge part fluctuates, but the rate at which the absorbed dose fluctuates is not constant depending on the X-ray energy. As a result, it can be seen that the ratio of the output fluctuation to each X-ray energy is not constant as shown in FIG. Further, as compared with the scintillator element at the center of the detection element module, the element at the end of the module increases the proportion of X-rays incident on the edge portion, and thus the influence of characteristic variation becomes significant.
 このX線エネルギーに対する非線形な出力変動は、フォトダイオード素子14毎にばらつき、CT画像にアーティファクトとして現れることがある。例えば被検体を透過した透過X線のエネルギーが、被検体の大きさによって変化するビームハードニングと呼ばれる現象などにより表面化する。すなわち、透過X線の平均エネルギーは、被検体が大きいほど高エネルギー側へシフトする。このため、被検体のX線吸収係数を正確に計測するためには、各検出素子に生じる出力変動を個々のフォトダイオード素子14ごとに補正する必要がある。この出力変動補正は、図6および図7に示したように非線形な変動を補正する必要があるため、開口率の変動等のような従来の線形性の感度補正では補正できない。 This nonlinear output fluctuation with respect to the X-ray energy varies for each photodiode element 14 and may appear as an artifact in the CT image. For example, the energy of transmitted X-rays that have passed through the subject is surfaced by a phenomenon called beam hardening that varies depending on the size of the subject. That is, the average energy of transmitted X-rays shifts to the higher energy side as the subject is larger. Therefore, in order to accurately measure the X-ray absorption coefficient of the subject, it is necessary to correct the output fluctuation generated in each detection element for each individual photodiode element. Since this output fluctuation correction needs to correct nonlinear fluctuations as shown in FIGS. 6 and 7, it cannot be corrected by conventional linearity sensitivity correction such as fluctuation of aperture ratio.
 そこで、本実施形態では、検出器回路316内に配置した補正部20によって、フォトダイオード素子14ごとに出力信号の非線形な変動を補正する。具体的には、被検体を透過することによるエネルギーシフト量を加味した出力補正を、フォトダイオード素子14の出力に施す。 Therefore, in the present embodiment, nonlinear fluctuations in the output signal are corrected for each photodiode element 14 by the correction unit 20 arranged in the detector circuit 316. Specifically, output correction is performed on the output of the photodiode element 14 in consideration of the amount of energy shift due to transmission through the subject.
 補正の手順を図8を用いてさらに具体的に説明する。図8は、エネルギー特性補正の手順を示すフローチャートである。まず、製品出荷時又は定期点検時に、種々の大きさの被検体を模擬した複数個のファントムを用い、これらにX線を照射して放射線検出器で検出することにより、複数のフォトダイオード素子14の出力信号をそれぞれ計測する(ステップ801、802)。これにより、図9のように、被検体寸法と出力信号との関係を、フォトダイオード素子14ごとに求める。求めた被検体寸法と出力信号との関係から、被検体を透過することによるエネルギーシフト量を加味した出力補正のための補正係数を補正式に基づいて算出する。この補正係数は、放射線のエネルギーごとに求め、フォトダイオード素子14の出力と補正係数の関係を表す補正係数テーブルを作成する(ステップ803)。この補正係数テーブルは、フォトダイオード素子14ごとに作成し、補正部20内の補正係数テーブル格納部21に格納する。 The correction procedure will be described more specifically with reference to FIG. FIG. 8 is a flowchart showing the procedure of energy characteristic correction. First, at the time of product shipment or regular inspection, a plurality of phantoms simulating subjects of various sizes are used, and these are irradiated with X-rays and detected by a radiation detector, whereby a plurality of photodiode elements 14 are obtained. Are respectively measured (steps 801 and 802). As a result, as shown in FIG. 9, the relationship between the object size and the output signal is obtained for each photodiode element. Based on the relationship between the obtained object size and the output signal, a correction coefficient for output correction taking into account the amount of energy shift due to transmission through the object is calculated based on the correction equation. This correction coefficient is obtained for each radiation energy, and a correction coefficient table representing the relationship between the output of the photodiode element 14 and the correction coefficient is created (step 803). This correction coefficient table is created for each photodiode element 14 and stored in the correction coefficient table storage unit 21 in the correction unit 20.
 実際の被検体のCT画像の撮影時には、被検体にX線を照射して放射線検出器で検出することにより、複数のフォトダイオード素子14の出力信号をそれぞれ計測する(ステップ804)。計測されたフォトダイオード素子14の出力信号は、補正部20に受け渡され、補正部20は、受け取った出力信号に対応する補正係数を補正係数テーブル格納部21内のテーブルから読み出し、出力信号に掛け合わせることにより補正する(ステップ805)。補正後の出力信号は、CT装置の画像処理部に出力され、CT画像の作成に用いられる(ステップ806)。 When capturing an actual CT image of the subject, the output signals of the plurality of photodiode elements 14 are measured by irradiating the subject with X-rays and detecting with a radiation detector (step 804). The measured output signal of the photodiode element 14 is transferred to the correction unit 20, and the correction unit 20 reads the correction coefficient corresponding to the received output signal from the table in the correction coefficient table storage unit 21, and outputs the correction signal to the output signal. Correction is performed by multiplication (step 805). The corrected output signal is output to the image processing unit of the CT apparatus and used to create a CT image (step 806).
 フォトダイオード素子14のエネルギー特性に影響を与える要因は、本実施形態で説明したシンチレータ素子エッジ部にX線が入射することによる非線形な変動の他に、シンチレータ素子11の均質性、検出器モジュール101の取付け角度などがある。上述のステップ801、802のようにX線を照射してフォトダイオード素子14の出力信号をそれぞれ計測して補正係数を求めることにより、上記以外の要因による影響を含めて補正係数を求めることができる。よって、好ましいCT画像を取得することが可能となる。 Factors that affect the energy characteristics of the photodiode element 14 include non-linear fluctuations caused by the incidence of X-rays on the edge of the scintillator element described in the present embodiment, the homogeneity of the scintillator element 11, and the detector module 101. There are mounting angles. As in steps 801 and 802 described above, by irradiating X-rays and measuring the output signal of the photodiode element 14 to obtain the correction coefficient, the correction coefficient can be obtained including the influence of factors other than those described above. . Therefore, a preferable CT image can be acquired.
 また、本実施形態の放射線検出器は、コリメータ板16と遮蔽部17を共に接着層18によってシンチレータ素子アレイ13に接着固定する構造であるため、X線CT装置の回転に伴ってコリメータ板16が振動することを防止することが出来る。よって、コリメータ板16の位置変動に起因するフォトダイオード素子14の出力誤差を防止することができる。 In addition, since the radiation detector of the present embodiment has a structure in which the collimator plate 16 and the shielding portion 17 are both bonded and fixed to the scintillator element array 13 by the adhesive layer 18, the collimator plate 16 is rotated along with the rotation of the X-ray CT apparatus. It is possible to prevent vibration. Therefore, it is possible to prevent an output error of the photodiode element 14 due to the position fluctuation of the collimator plate 16.
 また、本実施形態においては、コリメータ板16は、従来技術と同様にタングステンやモリブデンなどの重金属を用いた単純な板形状にすることができるため、非常に簡便かつ安価に製造することができるというメリットもある。 Further, in the present embodiment, the collimator plate 16 can be formed into a simple plate shape using a heavy metal such as tungsten or molybdenum as in the prior art, so that it can be manufactured very simply and inexpensively. There are also benefits.
 (第2の実施形態)
 図10は、本発明の第2の実施形態の検出器モジュール101を示している。第2の実施形態の検出器モジュールは、図1の検出器モジュールと同様の構造であるが、モジュール端部のコリメータ板16-rを備えていない点が、第1の実施形態とは異なっている。
(Second embodiment)
FIG. 10 shows a detector module 101 according to the second embodiment of the present invention. The detector module of the second embodiment has the same structure as the detector module of FIG. 1, but differs from the first embodiment in that it does not include the collimator plate 16-r at the module end. Yes.
 具体的には、シンチレータ素子アレイの両端面には、第1の実施形態と同様に反射材12が配置されているが、両端面の反射材12の一方には、コリメータ板16-rが配置されておらず、遮蔽部17のみが備えられている。このように片側端部のコリメータ板を備えていない構造にすることにより、図3(b)のように検出器モジュール101を円弧状に配列してX線CT装置の放射線検出器を構成した場合に、図11のようにコリメータ板16-rが隣接する検出器モジュールのコリメータ板16-lと物理的に干渉しない。 Specifically, the reflecting material 12 is arranged on both end faces of the scintillator element array as in the first embodiment, but the collimator plate 16-r is arranged on one of the reflecting materials 12 on both end faces. Only the shielding part 17 is provided. When the radiation detector of the X-ray CT apparatus is configured by arranging the detector modules 101 in an arc shape as shown in FIG. 3 (b) by adopting a structure that does not include a collimator plate at one end in this way. Further, as shown in FIG. 11, the collimator plate 16-r does not physically interfere with the collimator plate 16-l of the adjacent detector module.
 図3(b)に示したように、X線CT装置の放射線検出器として検出器モジュールを配列する場合には、各々の検出器モジュールが、X線管焦点を向くように、所定の角度を持って配列されている。コリメータ板16は全て、主平面の延長線上にX線管焦点が位置するように、コリメータ板16の角度を少しずつ変えて設置されている。その結果、第2の実施形態では削除されたコリメータ板16-rは、図11のように隣接する検出器モジュールのコリメータ板16-lとほぼ同じ角度を持ってX線管焦点の方向を向いていることになる。すなわち、隣接する検出器モジュールのコリメータ板16-lだけで、コリメータ板16-rの役割も兼ねることが可能である。 As shown in FIG. 3 (b), when arranging detector modules as radiation detectors of an X-ray CT apparatus, a predetermined angle is set so that each detector module faces the focal point of the X-ray tube. Is arranged. All the collimator plates 16 are installed by changing the angle of the collimator plate 16 little by little so that the X-ray tube focal point is located on the extended line of the main plane. As a result, the collimator plate 16-r deleted in the second embodiment is directed to the X-ray tube focal point at substantially the same angle as the collimator plate 16-l of the adjacent detector module as shown in FIG. Will be. That is, only the collimator plate 16-l of the adjacent detector module can also serve as the collimator plate 16-r.
 上述したように、第2の実施形態のように片側の端部のコリメータ板16-rを備えない構成であっても、第1の実施形態と同様に、直接X線の遮蔽効果を維持しながら、散乱線除去コリメータの機能を損なわない。しかも、第2の実施形態の構造によれば、隣接する検出器モジュールとの干渉を回避することができる。 As described above, even in a configuration that does not include the collimator plate 16-r on one end as in the second embodiment, the direct X-ray shielding effect is maintained as in the first embodiment. However, the function of the scattered radiation elimination collimator is not impaired. Moreover, according to the structure of the second embodiment, it is possible to avoid interference with adjacent detector modules.
 (第3の実施形態)
 図12は、本発明の第3の実施形態の検出器モジュールを示している。本実施形態は、第1の実施形態の図1の検出器モジュールと同様の構造であるが、モジュール端部の遮蔽部17-lおよび17-rを備えていない点が、第1の実施形態とは異なっている。両端の遮蔽部17-1および17-rを備えないことにより、シンチレータ素子アレイ13端部の反射材12の幅Wr-eを、シンチレータ素子アレイ13内部の反射材12の幅Wrよりも小さくすることができる。これにより、検出器モジュールを円弧状に配列して放射線検出器を構成する際に、隣接するモジュール同士が干渉することを防ぐことができる。
(Third embodiment)
FIG. 12 shows a detector module according to the third embodiment of the present invention. This embodiment has the same structure as the detector module of FIG. 1 of the first embodiment, but the first embodiment is that the module end shields 17-l and 17-r are not provided. Is different. By not providing the shields 17-1 and 17-r at both ends, the width Wr-e of the reflector 12 at the end of the scintillator element array 13 is made smaller than the width Wr of the reflector 12 inside the scintillator element array 13. be able to. Thereby, when arrange | positioning a detector module in circular arc shape and comprising a radiation detector, it can prevent that adjacent modules interfere.
 なお、本実施形態は、端部のみ遮蔽部17を備えていないが、端部以外のシンチレータ素子11の間には遮蔽部17が備えられているため、検出器モジュール全体としては、第1の実施形態とほぼ同様の効果が得られる。また、端部の遮蔽部17が備えられていないため、遮蔽部の組立てを容易にすることが出来る。 In this embodiment, only the end portion is not provided with the shielding portion 17, but since the shielding portion 17 is provided between the scintillator elements 11 other than the end portion, the first detector module is the first. The substantially same effect as the embodiment can be obtained. Further, since the end shielding portion 17 is not provided, the assembling of the shielding portion can be facilitated.
 (第4の実施形態)
 図13は、本発明の第4の実施形態の検出器モジュール101を示している。本実施形態は、第1の実施形態の図1の検出器モジュールと同様の構造であるが、検出器モジュールの片側端部のコリメータ板16-rを備えず、かつ、両端の遮蔽部17-l並びに17-rを備えていない。両端の反射材12の幅Wr-eは、シンチレータ素子アレイ13内部の反射材12の幅Wrよりも小さい。
(Fourth embodiment)
FIG. 13 shows a detector module 101 according to the fourth embodiment of the present invention. The present embodiment has the same structure as the detector module of FIG. 1 of the first embodiment, but does not include the collimator plate 16-r at one end of the detector module, and the shielding portions 17- l and 17-r are not provided. The width Wr-e of the reflecting material 12 at both ends is smaller than the width Wr of the reflecting material 12 inside the scintillator element array 13.
 本実施形態の構造は、第2および第3の実施形態と同様の作用および効果が得られる。 The structure of this embodiment can obtain the same operations and effects as those of the second and third embodiments.
 (第5の実施形態)
 次に、本発明の放射線検出器を備えたX線CT装置を、図14を用いて説明する。
(Fifth embodiment)
Next, an X-ray CT apparatus provided with the radiation detector of the present invention will be described with reference to FIG.
 図14は、本発明のX線CT装置の概略を示すブロック図である。この装置はスキャンガントリ部310と画像再構成部320とを備えている。スキャンガントリ部310には、被検体が搬入される開口部314を備えた回転円盤311と、この回転円盤311に搭載された放射線源であるX線管312と、X線管312に取り付けられ、X線束の放射方向を制御するコリメータ313と、X線管312と対向して回転円盤311に搭載されたX線検出器315と、X線検出器315で検出されたX線を所定の信号に変換等する検出器回路316と、回転円盤311の回転及びX線束の幅を制御するスキャン制御回路317とが備えられている。X線検出器315には、第1~第4の実施形態の放射線検出器のいずれかを用いる。 FIG. 14 is a block diagram showing an outline of the X-ray CT apparatus of the present invention. This apparatus includes a scan gantry unit 310 and an image reconstruction unit 320. The scan gantry unit 310 is attached to a rotating disk 311 having an opening 314 into which a subject is carried, an X-ray tube 312 that is a radiation source mounted on the rotating disk 311, and an X-ray tube 312. A collimator 313 that controls the radiation direction of the X-ray bundle, an X-ray detector 315 mounted on the rotating disk 311 facing the X-ray tube 312, and X-rays detected by the X-ray detector 315 as predetermined signals A detector circuit 316 for conversion and the like, and a scan control circuit 317 for controlling the rotation of the rotating disk 311 and the width of the X-ray bundle are provided. Any of the radiation detectors of the first to fourth embodiments is used for the X-ray detector 315.
 画像再構成部320は、被検体氏名、検査日時、検査条件などを入力する入力装置321、検出器回路316から送出される計測データS1を演算処理してCT画像再構成を行う画像演算回路322、画像演算回路322で作成されたCT画像に、入力装置321から入力された被検体氏名、検査日時、検査条件などの情報を付加する画像情報付加部323と、画像情報を付加されたCT画像信号S2の表示ゲインを調整してディスプレイモニタ330へ出力するディスプレイ回路324とを備えている。 The image reconstruction unit 320 includes an input device 321 for inputting a subject name, examination date and time, examination conditions, and the like, and an image computation circuit 322 that performs CT image reconstruction by computing the measurement data S1 sent from the detector circuit 316. An image information adding unit 323 for adding information such as the subject name, examination date and time, and examination conditions input from the input device 321 to the CT image created by the image calculation circuit 322, and a CT image to which the image information is added And a display circuit 324 that adjusts the display gain of the signal S2 and outputs the adjusted signal S2 to the display monitor 330.
 このX線CT装置では、スキャンガントリ部310の開口部314に、設置された寝台(図示せず)に被検体を寝かせた状態で、X線管312からX線が照射される。このX線は、コリメータ313により指向性を得、X線検出器315により検出されるが、この際、回転円盤311を被検体の周りに回転させることにより、X線を照射する方向を変えながら、被検体を透過したX線を検出する。この計測データをもとに画像再構成部320で作成された断層像は、ディスプレイモニタ330に表示される。 In this X-ray CT apparatus, X-rays are irradiated from the X-ray tube 312 in a state where the subject is laid on a bed (not shown) installed in the opening 314 of the scan gantry unit 310. This X-ray obtains directivity by the collimator 313 and is detected by the X-ray detector 315. At this time, while rotating the rotating disk 311 around the subject, the direction of X-ray irradiation is changed. The X-ray transmitted through the subject is detected. A tomographic image created by the image reconstruction unit 320 based on the measurement data is displayed on the display monitor 330.
 補正部20は、X線検出回路316内に配置する構成の他、画像演算回路322に配置することも可能である。 The correction unit 20 can be arranged in the image calculation circuit 322 in addition to the arrangement arranged in the X-ray detection circuit 316.
 本発明の放射線検出器は、コリメータ板を通過した直接X線がフォトダイオード素子アレイへ入射することによる雑音成分の発生を防いで高いSN比を有すると共に、高速回転による特性劣化を防いだ放射線検出器を備えたX線CT装置を安価に提供することができる。 The radiation detector of the present invention has a high S / N ratio by preventing the generation of noise components caused by direct X-rays that have passed through the collimator plate entering the photodiode element array, and also prevents the deterioration of characteristics due to high-speed rotation. X-ray CT apparatus equipped with a scanner can be provided at low cost.
 なお、上述してきた第1~第5の実施形態は、本発明の構造を限定するためのものではなく、具体的な実施の形態を示す例であり、同一の効果を有する他の形態であっても本発明を実現することは可能である。 The first to fifth embodiments described above are not intended to limit the structure of the present invention, but are examples showing specific embodiments, and other embodiments having the same effect. However, the present invention can be realized.
 11 シンチレータ素子、12 反射材、13 シンチレータ素子アレイ、14 フォトダイオード素子、15 フォトダイオード素子アレイ、16 コリメータ板、17 遮蔽部、18 接着層、101 検出器モジュール、102 検出素子モジュール、103 散乱線除去コリメータ、310 スキャンガントリ部、311 回転円盤、312 X線管、313 コリメータ、314 開口部、315 X線検出器、316 検出器回路、317 スキャン制御回路、320 画像再構成部、321 入力装置、322 画像演算回路、323 画像情報付加部、324 ディスプレイ回路、330 ディスプレイモニタ、S1 計測データ、S2 CT画像信号 11 scintillator element, 12 reflector, 13 scintillator element array, 14 photodiode element, 15 photodiode element array, 16 collimator plate, 17 shielding part, 18 adhesive layer, 101 detector module, 102 detector element module, 103 scattered ray removal Collimator, 310 scan gantry, 311 rotating disk, 312 X-ray tube, 313 collimator, 314 opening, 315 X-ray detector, 316 detector circuit, 317 scan control circuit, 320 image reconstruction unit, 321 input device, 322 Image arithmetic circuit, 323 image information adding unit, 324 display circuit, 330 display monitor, S1 measurement data, S2 CT image signal

Claims (8)

  1.  配列された、放射線により蛍光を発する複数のシンチレータ素子と、隣り合う前記シンチレータ素子の間に少なくとも配置されて前記蛍光を反射する反射材とを備えたシンチレータ素子アレイと、
     複数の前記シンチレータ素子の前記放射線の入射面とは逆側の面にそれぞれ配置され、前記シンチレータ素子の発した前記蛍光を検出する複数のフォトダイオード素子と、
     隣り合う前記シンチレータ素子の間の、前記シンチレータ素子アレイの前記放射線の入射面側の空間に配置された複数のコリメータ板とを有し、
     前記シンチレータ素子アレイの前記放射線の入射面には、隣り合う前記シンチレータ素子の間の前記反射材を遮蔽する遮蔽部が配置され、前記遮蔽部の幅Wsは、前記反射材の幅Wrより小さく、前記コリメータ板の厚さWcより大きく、
     前記遮蔽部の上面と前記コリメータ板の端面との間には接着層が配置され、前記遮蔽部の上面と前記コリメータ板の端面とが前記接着層により接着されていることを特徴とする放射線検出器。
    A plurality of scintillator elements that are arranged to emit fluorescence by radiation, and a scintillator element array that is disposed at least between the adjacent scintillator elements and reflects the fluorescence; and
    A plurality of photodiode elements that are arranged on a surface opposite to the radiation incident surface of the plurality of scintillator elements, and that detect the fluorescence emitted by the scintillator elements;
    A plurality of collimator plates arranged in a space on the radiation incident side of the scintillator element array between the adjacent scintillator elements;
    On the radiation incident surface of the scintillator element array, a shielding part that shields the reflecting material between the adjacent scintillator elements is arranged, and the width Ws of the shielding part is smaller than the width Wr of the reflecting material, Larger than the thickness Wc of the collimator plate,
    An radiation layer is disposed between the upper surface of the shield and the end surface of the collimator plate, and the radiation detection is characterized in that the upper surface of the shield and the end surface of the collimator plate are adhered by the adhesive layer. vessel.
  2.  請求項1に記載の放射線検出器において、前記フォトダイオード素子の出力を補正する補正部をさらに有し、
     前記補正部は、前記コリメータ板の間を通過した前記放射線が前記シンチレータ素子の辺縁部に入射して蛍光に変換されることに起因する、前記複数のシンチレータ素子ごとの前記フォトダイオード素子の出力信号に生じるばらつきを補正することを特徴とする放射線検出器。
    The radiation detector according to claim 1, further comprising a correction unit that corrects the output of the photodiode element,
    The correction unit generates an output signal of the photodiode element for each of the plurality of scintillator elements resulting from the fact that the radiation that has passed between the collimator plates is incident on the edge of the scintillator element and converted into fluorescence. A radiation detector characterized by correcting variations that occur.
  3.  請求項2に記載の放射線検出器において、前記補正部は、前記ばらつきを補正するために前記シンチレータ素子ごとに予め定められた補正係数を用いて、前記シンチレータ素子ごとの前記フォトダイオード素子の出力信号を補正することを特徴とする放射線検出器。 3. The radiation detector according to claim 2, wherein the correction unit uses a correction coefficient predetermined for each scintillator element to correct the variation, and outputs an output signal of the photodiode element for each scintillator element. A radiation detector characterized by correcting the above.
  4.  請求項3に記載の放射線検出器において、前記補正係数は、前記放射線のエネルギーごとに用意されていることを特徴とする放射線検出器。 4. The radiation detector according to claim 3, wherein the correction coefficient is prepared for each energy of the radiation.
  5.  請求項1に記載の放射線検出器において、前記接着層は、前記遮蔽部を覆い、前記遮蔽部を前記シンチレータ素子アレイに接着していることを特徴とする放射線検出器。 2. The radiation detector according to claim 1, wherein the adhesive layer covers the shielding part, and the shielding part is adhered to the scintillator element array.
  6.  請求項1に記載の放射線検出器において、前記シンチレータ素子アレイの両端面には前記反射材が配置され、前記両端面の反射材の一方には、前記コリメータ板が配置されていないことを特徴とする放射線検出器。 2. The radiation detector according to claim 1, wherein the reflector is disposed on both end faces of the scintillator element array, and the collimator plate is not disposed on one of the reflectors on the both end faces. Radiation detector.
  7.  請求項1に記載の放射線検出器において、前記シンチレータ素子アレイの両端面には前記反射材が配置され、前記両端面の前記反射材の幅は、前記シンチレータ素子間に位置する前記反射材の幅Wrより小さく、前記両端面の反射材の少なくとも一方には、前記遮蔽部が配置されていないことを特徴とする放射線検出器。 2. The radiation detector according to claim 1, wherein the reflector is disposed on both end faces of the scintillator element array, and the width of the reflector on the both end faces is the width of the reflector located between the scintillator elements. The radiation detector is characterized in that it is smaller than Wr, and the shielding portion is not disposed on at least one of the reflecting materials on both end faces.
  8.  放射線源と、前記放射線源に対向して配置された放射線検出器と、前記放射線源及び放射線検出器を保持し、被検体の周りで回転駆動される回転円盤と、前記放射線検出器で検出された放射線の強度に基づき前記被検体の断層像を画像再構成する画像再構成部とを備えたX線CT装置において、
     前記放射線検出器として請求項1に記載の放射線検出器を用いることを特徴とするX線CT装置。
    A radiation source, a radiation detector disposed opposite to the radiation source, a rotating disk that holds the radiation source and the radiation detector and is driven to rotate around a subject, and is detected by the radiation detector In an X-ray CT apparatus comprising an image reconstruction unit that reconstructs a tomographic image of the subject based on the intensity of the received radiation,
    An X-ray CT apparatus using the radiation detector according to claim 1 as the radiation detector.
PCT/JP2014/083330 2013-12-27 2014-12-17 Radiation detector and x-ray ct device WO2015098631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554770A JPWO2015098631A1 (en) 2013-12-27 2014-12-17 Radiation detector and X-ray CT apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273114 2013-12-27
JP2013-273114 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098631A1 true WO2015098631A1 (en) 2015-07-02

Family

ID=53478495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083330 WO2015098631A1 (en) 2013-12-27 2014-12-17 Radiation detector and x-ray ct device

Country Status (2)

Country Link
JP (1) JPWO2015098631A1 (en)
WO (1) WO2015098631A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214044A (en) * 1985-07-11 1987-01-22 Toshiba Corp Radiation tomographic measuring apparatus
JPS6385484A (en) * 1986-09-30 1988-04-15 Toshiba Corp Radiation detector
JPH11133155A (en) * 1997-10-27 1999-05-21 Hitachi Medical Corp X-ray detector and x-ray ct device
JP2006189274A (en) * 2005-01-04 2006-07-20 Shimadzu Corp Nuclear medicine imaging system
JP2011224173A (en) * 2010-04-20 2011-11-10 Toshiba Corp X-ray ct apparatus
JP2013029495A (en) * 2011-06-17 2013-02-07 General Electric Co <Ge> Methods and apparatus for collimation of detector
JP2013040859A (en) * 2011-08-17 2013-02-28 Toshiba Corp X-ray detector and x-ray ct apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214044A (en) * 1985-07-11 1987-01-22 Toshiba Corp Radiation tomographic measuring apparatus
JPS6385484A (en) * 1986-09-30 1988-04-15 Toshiba Corp Radiation detector
JPH11133155A (en) * 1997-10-27 1999-05-21 Hitachi Medical Corp X-ray detector and x-ray ct device
JP2006189274A (en) * 2005-01-04 2006-07-20 Shimadzu Corp Nuclear medicine imaging system
JP2011224173A (en) * 2010-04-20 2011-11-10 Toshiba Corp X-ray ct apparatus
JP2013029495A (en) * 2011-06-17 2013-02-07 General Electric Co <Ge> Methods and apparatus for collimation of detector
JP2013040859A (en) * 2011-08-17 2013-02-28 Toshiba Corp X-ray detector and x-ray ct apparatus

Also Published As

Publication number Publication date
JPWO2015098631A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4840446B2 (en) Radiation imaging device
JP5438649B2 (en) Radiation imaging system and displacement determination method
JP5378335B2 (en) Radiography system
US8331536B2 (en) Apparatus for reducing scattered X-ray detection and method of same
WO2010150717A1 (en) X-ray ct device
CN110072459B (en) Self-calibrating CT detector, system and method for self-calibration
US20130083893A1 (en) Radiation imaging apparatus and image processing method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
US10732302B2 (en) Radiation grating detector and X-ray inspection apparatus
US7772561B2 (en) Apparatus and method for detecting an image
WO2013084658A1 (en) Radiography apparatus
US7711090B2 (en) Production of X-ray images containing a reduced proportion of scattered radiation
WO2012057022A1 (en) Radiography system and radiography method
JP6395703B2 (en) Radiation detector and X-ray CT apparatus provided with the same
JP6066629B2 (en) X-ray detector and X-ray imaging apparatus
WO2015098631A1 (en) Radiation detector and x-ray ct device
CN112006705B (en) X-ray imaging device comprising a detection unit with a scattered radiation collimator
JP2014223091A (en) Radiographic apparatus and image processing method
JP5635169B2 (en) Radiography system
JP2004125722A (en) Radiation detector and x-ray ct system using it
WO2012147749A1 (en) Radiography system and radiography method
JP5075490B2 (en) X-ray CT system
JP5877691B2 (en) X-ray detector and X-ray imaging apparatus
JP2012035050A (en) Radiographic system and photographe processing method for the same
US20230061406A1 (en) Radiation imaging apparatus and radiation imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875101

Country of ref document: EP

Kind code of ref document: A1