WO2015098549A1 - Ultraviolet curable resin composition, and laminate - Google Patents

Ultraviolet curable resin composition, and laminate Download PDF

Info

Publication number
WO2015098549A1
WO2015098549A1 PCT/JP2014/082858 JP2014082858W WO2015098549A1 WO 2015098549 A1 WO2015098549 A1 WO 2015098549A1 JP 2014082858 W JP2014082858 W JP 2014082858W WO 2015098549 A1 WO2015098549 A1 WO 2015098549A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
compound
curable resin
ultraviolet curable
Prior art date
Application number
PCT/JP2014/082858
Other languages
French (fr)
Japanese (ja)
Inventor
依慶 米山
裕一 松木
丈章 齋木
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to KR1020167015417A priority Critical patent/KR20160102986A/en
Priority to JP2015554734A priority patent/JP6597310B2/en
Priority to CN201480075434.6A priority patent/CN106029702A/en
Publication of WO2015098549A1 publication Critical patent/WO2015098549A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links

Definitions

  • the present invention relates to an ultraviolet curable resin composition and a laminate having a cured film formed using the same.
  • Patent Document 1 discloses that “(a) a polyfunctional (meth) acrylate and (b) a branch having a trunk made of an acrylic resin”.
  • An ultraviolet curable resin composition comprising a polymer and (c) a diluent solvent, wherein the ultraviolet curable resin composition does not contain a leveling agent, and the diluent solvent is a combination of solvents having different boiling points. ([Claim 1]).
  • the inventors of the present invention have studied the ultraviolet curable resin composition described in Patent Document 1. As a result, the hardness of the resulting cured film was good, but the flexibility was inferior, and the handleability when film-forming was performed. It was clarified that it was difficult to achieve both the hardness and the bending resistance.
  • an object of the present invention is to provide an ultraviolet curable resin composition capable of forming a cured film having both excellent hardness and bending resistance.
  • the present inventors have found that an ultraviolet curable type containing a (meth) acrylic block polymer having a specific block chain together with a polyfunctional (meth) acrylate compound and a photopolymerization initiator.
  • the present inventors have found that the cured film formed using the resin composition has good hardness and bending resistance, and completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the polyfunctional (meth) acrylate compound (A) is a urethane (meth) acrylate (A1) having a urethane bond and two or more (meth) acryloyloxy groups in one molecule.
  • the polyfunctional (meth) acrylate compound (A) is at least two nematic liquid crystalline compounds (A2) having two or more (meth) acryloyloxy groups in one molecule, and two in one molecule.
  • the glass transition temperature of the block chain (b1) is ⁇ 40 to ⁇ 50 ° C.
  • the glass transition temperature of the block chain (b2) is 100 to 120 ° C.
  • the (meth) acrylic block polymer (B) has at least the block chain (b2), the block chain (b1), and the block chain (b2) in this order, and the block chain (b2).
  • R 1 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom
  • R 2 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom.
  • the plurality of R 2 may be the same or different.
  • [7] The ultraviolet curable resin composition according to any one of [1] to [6], further comprising a compound (E) having a benzotriazole skeleton.
  • the nematic liquid crystalline compound (A2) is a compound represented by the following formula (2a), and the chiral agent (A3) is a compound represented by the following formula (3a).
  • the ultraviolet curable resin composition according to any one of [7]. (In formula (2a), n represents an integer of 2 to 5, and in formula (3a), m represents an integer of 2 to 5)
  • the content of the (meth) acrylic block polymer (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A).
  • the content of the chiral agent (A3) is 1.0 to 30.0% by mass based on the total mass of the nematic liquid crystal compound (A2) and the chiral agent (A3).
  • a resin layer is further provided between the substrate and the cured film, The laminate according to [11], wherein the resin layer is an acrylic resin layer having a surface tension of 32 mN / m or more.
  • the laminate according to [11] or [12] which is used for an electronic image display device or a spectacle lens.
  • an ultraviolet curable resin composition capable of forming a cured film having both excellent hardness and flexibility. Moreover, since the laminated body of this invention has the cured film formed using the ultraviolet curable resin composition of this invention, it can make it compatible with the outstanding hardness and bending resistance.
  • FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention.
  • the ultraviolet curable resin composition of the present invention (hereinafter also simply referred to as “the composition of the present invention”) is a polyfunctional (meth) acrylate compound having two or more (meth) acryloyloxy groups in one molecule (A ), A (meth) acrylic block polymer (B), and a photopolymerization initiator (C), and the (meth) acrylic block polymer (B) has a glass transition temperature of 0 ° C. or lower.
  • An ultraviolet curable resin composition having a chain (b1) and a block chain (b2) having a glass transition temperature of 60 ° C. or higher.
  • (meth) acryloyloxy group means an acryloyloxy group (CH 2 ⁇ CHCOO—) or a methacryloyloxy group (CH 2 ⁇ C (CH 3 ) COO—).
  • (meth) acrylic means acrylic or methacrylic.
  • the hardness and bending resistance of the cured film formed by using the composition containing the polyfunctional (meth) acrylate compound (A) and the (meth) acrylic block polymer (B). Property is improved.
  • the block chain (b1) in which the glass transition temperature of the (meth) acrylic block polymer (B) is 0 ° C. or lower contributes to the flexibility of the cured film, and the glass transition temperature.
  • the block chain (b2) having a temperature of 60 ° C. or higher contributes to the maintenance of the rigidity of the cured film, it can impart bending resistance without impairing the excellent hardness expressed by the polyfunctional (meth) acrylate compound. It is thought that it was made.
  • the polyfunctional (meth) acrylate compound (A) contained in the composition of the present invention is not particularly limited as long as it is a compound having two or more (meth) acryloyloxy groups in one molecule.
  • the number of (meth) acryloyloxy groups contained in one molecule of the polyfunctional (meth) acrylic compound (A) improves the coating property of the composition of the present invention and further improves the hardness of the cured film. For reasons, 3 or more are preferable, and 4 to 15 are more preferable.
  • polyfunctional (meth) acrylate compound (A) examples include (meth) acrylic acid ester of polyhydric alcohol, urethane (meth) acrylate (A1) having a urethane bond in the molecule, and nematic liquid crystal compound (A2). And chiral agents (A3) and the like, and these may be used alone or in combination of two or more.
  • urethane (meth) acrylate (A1) is preferable because the curability of the composition of the present invention is improved and the optical properties and hardness of the cured film are further improved.
  • the resulting cured film reflects at least part of light in the blue light region (wavelength region of 385 nm to 495 nm) and exhibits a blue light cut function, so that the nematic liquid crystalline compound (A2) and the chiral agent (A3 ) Is preferably used in combination.
  • the reason why the blue light function is exhibited in this way is that a specific uneven pattern is formed on the surface of the cured film depending on a predetermined orientation (twisted) state of the nematic liquid crystalline compound resulting from the addition of the chiral agent. This is probably because at least part of the light in the region (wavelength region of 385 nm to 495 nm) was reflected. In addition, it is considered that such a reflection can reduce the problem that the yellowishness of the cured film becomes strong due to the reflection of blue light in natural light in spite of having a blue light cut function.
  • polyhydric alcohol (meth) acrylic acid esters include trifunctional groups such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol tri (meth) acrylate; pentaerythritol tetra Tetrafunctional system such as (meth) acrylate, dipentaerythritol tetra (meth) acrylate, tripentaerythritol tetra (meth) acrylate; dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol Penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (me
  • urethane (meth) acrylate (A1) examples include a reaction product of a polyhydric alcohol (meth) acrylic acid ester and a polyisocyanate compound.
  • the (meth) acrylic acid ester of the polyhydric alcohol used when producing the urethane (meth) acrylate for example, at least one of the (meth) acrylic acid ester of the polyhydric alcohol described above. What has a hydroxy group is mentioned.
  • polyisocyanate compound used when manufacturing urethane (meth) acrylate for example, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, Aromatic polyisocyanates such as tolidine diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, Bis (isocyanate methyl) ) Cyclohexane, aliphatic polyisocyanates such as dicyclohexylmethane
  • the nematic liquid crystalline compound (A2) is not particularly limited as long as it is a nematic liquid crystalline compound having two or more (meth) acryloyloxy groups in one molecule.
  • a chiral agent (A3) described later blue light A compound that expresses a cutting function is preferred.
  • nematic liquid crystalline compound for example, a rod-like liquid crystalline compound having two or more (meth) acryloyloxy groups in one molecule is preferable.
  • the nematic liquid crystalline compound is represented by the following formula (I). It is preferable that it is a compound. R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 ...
  • R 3 and R 4 are (meth) acryloyloxy groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group, allyl group, fumarate group, cinnamoyl group, an oxazoline group, a mercapto group, iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and represents a group selected from the group consisting of alkoxysilyl group .
  • D 3 and D 4 is selected from the group consisting of a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
  • nematic liquid crystalline compound represented by the above formula (I) the alignment (twisted) state can be easily adjusted by a chiral agent (A3) described later, and polymerization using a photopolymerization initiator (C) described later can be performed.
  • a compound represented by the following formula (2a) is preferable because it easily proceeds.
  • n represents an integer of 2 to 5
  • nematic liquid crystal compound (A2) other than the compound represented by the above formula (2a) include the following compounds.
  • the chiral agent (A3) is not particularly limited as long as it is a chiral agent having two or more (meth) acryloyloxy groups in one molecule.
  • the blue light cut function It is preferable that the compound expresses.
  • a compound having an isosorbide skeleton structure is preferable, and specifically, a compound represented by the following formula (II) is preferable.
  • P 1 and P 2 each independently represents a hydrocarbon group having 10 to 20 carbon atoms including one 1,4-cyclohexylene group, and the group has an etheric oxygen atom or ester. It may have a bond, and a hydrogen atom in the group may be substituted with a fluorine atom, provided that P 1 and P 2 further include a (meth) acryloyloxy group.
  • the blue light cut function of the cured film cured together with the liquid crystalline compound represented by the above formula (2a) becomes better, so that the following formula (3a) It is preferable that it is a compound represented by these.
  • m represents an integer of 2 to 5.
  • chiral agent (A3) other than the compound represented by the above formula (3a) specifically, for example, a compound represented by the following formula (3b) and a compound represented by the following formula (3c) are preferable. It is mentioned in.
  • Examples of the chiral agent (A3) other than the compounds represented by the above formulas (3a) to (3c) include, for example, JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, Published in JP2003-313187, JP2003-342219, JP2000-290315, JP6-072962, U.S. Pat. No. 6,468,444, WO98 / 00428, etc.
  • Commercially available products such as BASF's Palio Color LC756, ADEKA Kiracol's CNL617R, and CNL-686L can also be used as appropriate.
  • the content of the chiral agent (A3) is the total mass of the nematic liquid crystalline compound (A2) and the chiral agent (A3) because the blue light cut function of the cured film becomes better.
  • the content is preferably 1.0 to 30.0% by mass.
  • the chiral agent (A3) is preferably 4.0 to 6.5% by mass with respect to the total mass of the nematic liquid crystal compound (A2) and the chiral agent (A3).
  • the (meth) acrylic block polymer (B) contained in the composition of the present invention has a block chain (b1) having a glass transition temperature of 0 ° C. or lower and a block chain (b2) having a glass transition temperature of 60 ° C. or higher.
  • the polyfunctional (meth) acrylate compound (A) and the (meth) acrylic block polymer (B) are separate compounds, and the (meth) acrylic block polymer is (meth) acryloyl. When it has two or more oxy groups, it corresponds to the (meth) acrylic block polymer (B).
  • the “block chain having a desired glass transition temperature” means a block chain having a homopolymer glass transition temperature obtained by homopolymerizing monomers constituting the repeating unit of the corresponding block chain.
  • the glass transition temperature is a value measured using a differential thermal analyzer (DSC) manufactured by DuPont in accordance with ASTM D3418-82 at a heating rate of 10 ° C./min.
  • DSC differential thermal analyzer
  • the block chain (b1) is a soft segment having a glass transition temperature of ⁇ 40 to ⁇ 50 ° C.
  • the block chain (b2) is preferably a hard segment exhibiting a glass transition temperature of 100 to 120 ° C.
  • the block polymer having each segment has at least the block chain (b2) [hard segment], the block chain (b1) [soft segment] and the block chain (b2) [hard segment] in this order.
  • the block chain (b2) [hard segment] in total is preferably 20% by mass or more.
  • Such (meth) acrylic block polymer (B) is prepared by living radical polymerization using two or more (meth) acrylate monomers and optionally other ethylenically unsaturated copolymerizable monomers. Block polymers to be used.
  • examples of the monomer constituting the repeating unit of the block chain (b1) include butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, and isononyl acrylate. Etc.
  • a monomer which comprises the repeating unit of the said block chain (b2) among the said (meth) acrylate monomers specifically, for example, lauryl (meth) acrylate, mistyryl (meth) acrylate, and isomustryl (meth) Examples include acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, docosanyl (meth) acrylate, tetracosanyl (meth) acrylate, hexacosanyl (meth) acrylate, and octacosanyl (meth) acrylate.
  • ethylenically unsaturated copolymerizable monomer examples include styrene monomers such as ⁇ -methylstyrene, vinyltoluene, styrene and divinylbenzene; and maleimides such as phenylmaleimide and cyclohexylmaleimide.
  • Monomeric monomers such as methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether; fumaric acid, mono- and dialkyl esters of fumaric acid; maleic acid; mono- and dialkyl esters of maleic acid; Itaconic acid; mono and dialkyl esters of itaconic acid; (meth) acrylonitrile, butadiene, isoprene, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketone, vinyl pyridine, vinyl carbazole, etc.
  • the It may be used in the seed alone or in combination of two or more thereof.
  • the polymerization method of living anionic polymerization using such a monomer is not particularly limited, and a transition metal and its ligand are used as an activator, and the polymerization reaction proceeds in the presence of these using a polymerization initiator.
  • a polymerization initiator an ester having bromine or chlorine at the ⁇ -position or a styrene derivative is suitable. Examples thereof include 2-bromo (or chloro) propionic acid derivatives or chloro (or bromide) 1-phenyl derivatives.
  • methyl 2-bromo (or chloro) propionate 2-bromo (or chloro) Selected from ethyl propionate, methyl 2-bromo (or chloro) -2-propionate, ethyl 2-bromo (or chloro) -2-propionate, 1-phenylethyl chloride (or bromide), ethyl 2-bromoisobutyrate Halogen compounds that can be used can be used.
  • the content of the (meth) acrylic block polymer (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A).
  • the amount is preferably 1 to 5 parts by mass.
  • the weight average molecular weight of the (meth) acrylic block polymer (B) is determined from the viewpoints of coating properties of the composition of the present invention, the appearance and optical properties of the resulting cured film, and the like.
  • the resulting cured film has better bending resistance and further improved hardness, so that it is preferably 20,000 to 200,000, more preferably 50,000 to 100,000.
  • the weight average molecular weight (Mw) of the (meth) acrylic block polymer (B) is measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • a commercially available product can be used as such a (meth) acrylic block polymer (B).
  • a commercially available product can be used as such a (meth) acrylic block polymer (B).
  • Specific examples thereof include Clarity LA-2250 (weight average molecular weight: 85000, manufactured by Kuraray Co., Ltd.), Clarity LA-4285 (weight average molecular weight: 85000, manufactured by Kuraray Co., Ltd.), Clarity LA2140e (weight average molecular weight: 80000, manufactured by Kuraray Co., Ltd.), and the like.
  • the photopolymerization initiator (C) contained in the composition of the present invention is not particularly limited as long as it can polymerize the polyfunctional (meth) acrylate compound (A) by light.
  • Examples of the photopolymerization initiator (C) include acetophenone compounds, benzoin ether compounds, benzophenone compounds, sulfur compounds, azo compounds, peroxide compounds, phosphine oxide compounds, and the like.
  • benzoin benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, acetoin, butyroin, toluoin, benzyl, benzophenone, p-methoxybenzophenone, diethoxyacetophenone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone Methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylaminobenzophenone), 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-1, Carbonyl compounds such as 2-diphenylethane-1-one and 1-hydroxycyclohexyl phenyl ketone; Sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; Azobis Azo compounds such as sobutyronitrile and azobis
  • 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl are preferred from the viewpoints of light stability, high efficiency of photocleavage, surface curability, compatibility, low volatility, low odor and the like.
  • 2-hydroxy-2-methyl-1-phenyl are preferred from the viewpoints of light stability, high efficiency of photocleavage, surface curability, compatibility, low volatility, low odor and the like.
  • -Propan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one is preferred.
  • the content of the photopolymerization initiator (C) is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A). More preferably, it is ⁇ 10 parts by mass.
  • Compound (D) having naphthalimide skeleton The composition of the present invention can absorb a region on the low wavelength side (385 to 420 nm) in the blue light region, and the blue light cut function as a whole becomes better.
  • the compound (D) having a phthalimide skeleton is preferably contained.
  • R 1 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom
  • R 2 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom.
  • the plurality of R 2 may be the same or different.
  • hydrocarbon group optionally having a hetero atom represented by R 1 and R 2 in the above formula (1) examples include, for example, an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic Group hydrocarbon groups and combinations thereof, which may have an unsaturated bond.
  • the hydrocarbon group represented by R 1 is preferably a linear or branched alkyl group, and preferably has 1 to 12 carbon atoms.
  • the hydrocarbon group represented by R 2 is preferably an alkoxy group, and more preferably a methoxy group or an ethoxy group.
  • the content of the compound (D) having a naphthalimide skeleton is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A), and 0.5 to 3 More preferably, it is 0.0 parts by mass.
  • composition of the present invention can absorb the low wavelength region (385 to 430 nm) in the blue light region and improve the blue light cut function as a whole. It is preferable to contain.
  • Examples of the compound (E) having a benzotriazole skeleton include a compound represented by the following formula (4).
  • R 3 represents a hydrogen atom or a hydrocarbon group which may have a hetero atom.
  • Examples of the hydrocarbon group optionally having a hetero atom represented by R 3 in the above formula (4) include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and the like. Combinations may be mentioned and may have an unsaturated bond.
  • Examples of commercially available compounds (E) having such a benzotriazole skeleton include Tinuvin Carbo protect (manufactured by BASF) and Tinuvin ⁇ 384-2 (manufactured by BASF).
  • the content of the compound (E) having a benzotriazole skeleton is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A), preferably 0.5 to 3 More preferably, it is 0.0 parts by mass.
  • the composition of the present invention preferably further contains a solvent from the viewpoint of good coatability.
  • a solvent will not be specifically limited if it can melt
  • ketones such as methyl ethyl ketone (MEK), methyl isobutyketone (MIBK), cyclohexanone; alcohols such as propylene glycol monomethyl ether (PGME) and isopropyl alcohol (IPA); cycloalkanes such as cyclohexane; toluene, xylene And aromatic hydrocarbon compounds such as benzyl alcohol.
  • PGME propylene glycol monomethyl ether
  • IPA isopropyl alcohol
  • cycloalkanes such as cyclohexane
  • toluene xylene
  • aromatic hydrocarbon compounds such as benzyl alcohol.
  • cyclohexanone and MIBK are preferred from the viewpoint of excellent solubility, drying properties, and paintability.
  • a solvent can be
  • the content of an arbitrary solvent is preferably 85 to 5% by mass in the total amount of the composition from the viewpoint of coating properties.
  • the composition of the present invention preferably further contains a leveling agent because the blue light cut function of the cured film becomes better.
  • a leveling agent examples include silicone leveling agents, acrylic leveling agents, vinyl leveling agents, and fluorine leveling agents. Among these, it is preferable to use an acrylic leveling agent because the uniformity of the cured film is improved and, as a result, the transparency of the cured film is improved.
  • the content of an arbitrary leveling agent is preferably 0.01 to 3% by mass in the total amount of the composition from the viewpoint of coatability.
  • composition of the present invention is, for example, an ultraviolet absorber, a filler, an anti-aging agent, an antistatic agent, a flame retardant, an adhesion-imparting agent, a dispersant, an antioxidant, Additives such as foaming agents, matting agents, light stabilizers, dyes, pigments can be further contained.
  • the production method of the composition of the present invention is not particularly limited, and the above-described polyfunctional (meth) acrylate compound (A), (meth) acrylic block polymer (B), photopolymerization initiator (C), and any compound ( D), a compound (E), a solvent, a leveling agent, and an additive can be manufactured by mixing uniformly.
  • the laminate of the present invention is a laminate having a substrate and a cured film, and the cured film is formed using the above-described composition of the present invention. Since the laminated body of this invention has a cured film formed using the composition of this invention, it is excellent in a blue light cut function.
  • the laminated body 100 shown in FIG. 1 has the base material 102 and the cured film 104 formed using the composition of this invention.
  • the thickness of the substrate and the cured film is not particularly limited, but the thickness of the substrate is preferably about 50 to 300 ⁇ m, and the thickness of the cured film is preferably about 0.1 to 100 ⁇ m. .
  • the said base material is not specifically limited, As a constituent material, plastics, rubber
  • the plastic may be either a thermosetting resin or a thermoplastic resin. Specific examples thereof include polyethylene terephthalate (PET), cycloolefin polymer (homopolymer, copolymer, hydrogenated). For example, COP and COC), polymethyl methacrylate resin (PMMA resin), polycarbonate resin, polystyrene resin, acrylonitrile / styrene copolymer resin, polyvinyl chloride resin, acetate resin, ABS resin, polyester resin, polyamide resin, etc. Is mentioned.
  • the base material may be subjected to a surface treatment such as a corona treatment.
  • the form of the substrate is not particularly limited, but is preferably a film.
  • COC is a copolymer (cycloolefin copolymer) of tetracyclododecene and an olefin such as ethylene.
  • COP is a polymer (cycloolefin polymer) obtained by ring-opening polymerization of norbornene and hydrogenation. Examples of COC and COP structures are shown below.
  • the orientation (twist) state of the liquid crystal compound constituting the cured film becomes good, and the adhesiveness with the base material is also good. Further, it is preferable to have a resin layer.
  • the resin layer is preferably an acrylic resin layer having a surface tension of 32 mN / m or more.
  • the surface tension is applied to the cured acrylic resin layer with a wet pen (8 sets of pen numbers 30, 32, 34, 36, 38, 40, 42 and 44 mN / m, manufactured by Alcotest).
  • a wet pen 8 sets of pen numbers 30, 32, 34, 36, 38, 40, 42 and 44 mN / m, manufactured by Alcotest.
  • an acrylic resin layer has a surface tension of 32 mN / m or more, it is abbreviated as, for example, an ultraviolet curable resin composition (hereinafter referred to as “hard coat resin composition”) used in a conventionally known hard coat. ) Is preferably an acrylic resin layer formed using The surface tension can be adjusted by adding a conventionally known leveling agent.
  • the resin composition for hard coat for example, a composition containing a polyfunctional (meth) acrylate (a) and a photopolymerization initiator (b) described later can be used.
  • the said polyfunctional (meth) acrylate (a) can select and use the thing similar to the said polyfunctional (meth) acrylate compound (A) which the composition of this invention contains suitably.
  • the photopolymerization initiator (b) is not particularly limited as long as it can polymerize the polyfunctional (meth) acrylate (a) by light, and the photopolymerization contained in the composition of the present invention.
  • a thing similar to an initiator (C) can be selected suitably, and can be used.
  • the hard coat resin composition is, for example, an ultraviolet absorber, a filler, an anti-aging agent, an antistatic agent, a flame retardant, an adhesion-imparting agent, a dispersant, and an antioxidant as long as the object of the present invention is not impaired. Further, additives such as an antifoaming agent, a leveling agent, a matting agent, a light stabilizer, a dye and a pigment can be further contained. Examples of the leveling agent include silicone leveling agents, acrylic leveling agents, vinyl leveling agents, and fluorine leveling agents.
  • the thickness of the resin layer is preferably about 0.1 to 100 ⁇ m, more preferably 1 to 5 ⁇ m, because the adhesion between the substrate and the cured film becomes better. .
  • the laminate of the present invention may have a hard coat layer on the surface of the cured film opposite to the substrate.
  • the hard coat layer is preferably an acrylic resin layer formed using the hard coat resin composition described in the resin layer described above, and the formation method thereof is the same as the resin layer formation method described above. A similar method can be mentioned.
  • the thickness of the hard coat layer is not particularly limited, but is preferably about 0.01 to 50 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the method for producing a laminate of the present invention includes, for example, a step of coating the composition of the present invention on a film-like substrate (or the above resin layer if the resin layer is provided), drying, and irradiating ultraviolet rays The method which has this is mentioned.
  • the method of coating the composition of the present invention on the substrate is not particularly limited, and for example, a known coating method such as brush coating, flow coating, dip coating, spray coating, spin coating or the like can be employed.
  • the temperature for drying after coating is preferably 20 to 110 ° C.
  • the ultraviolet irradiation after drying is 50 to 3,000 mJ / cm 2 from the viewpoint of fast curability and workability as the irradiation amount (integrated light amount) of the ultraviolet rays used when the composition of the present invention is cured.
  • the apparatus used for irradiating ultraviolet rays is not particularly limited. For example, a conventionally well-known thing is mentioned. Heating may be used in combination for curing.
  • the formation method of the said resin layer is a method similar to the composition of this invention, It can form by the process of apply
  • the laminate of the present invention can be used for, for example, an electronic image display device, a spectacle lens, a protective cover for lighting (particularly LED lighting), a solar cell module member, and the like.
  • the electronic image display device include display-use electronic device components such as a personal computer, a television, a touch panel, and a wearable terminal (for example, a computer terminal that can be worn on the body such as a glasses type or a wrist watch type).
  • the laminated body of the present invention can be incorporated in an electronic image display device or the like, or can be retrofitted (for example, attached from the outside).
  • the laminate of the present invention When the laminate of the present invention is built in an electronic image display device or the like, it can be applied to a portion other than the reflector, for example. Specifically, for example, it can be applied to a lens sheet, a diffusion sheet, and a light guide plate.
  • the composition of the present invention can be directly applied to an electronic image display device to form a cured film.
  • Examples 1 to 11 and Comparative Examples 1 to 7 ⁇ Preparation of composition> Each component of the following Table 1 was mixed with the composition (parts by mass) shown in Table 1 using a stirrer to prepare a composition.
  • UV ultraviolet rays
  • UV irradiation condition illumination 300 mW /
  • the composition was cured by cm 2 , an integrated light quantity of 300 mJ / cm 2 , and the UV irradiation device was a high-pressure mercury lamp) to prepare a laminate.
  • ⁇ Bending resistance (winding test)> The PET base material side of the prepared specimen (thickness: 5 ⁇ m, 10 ⁇ m) was wrapped around a circular container, and the diameter of the container in which “cracks” were found in the cured film was measured. As a result, the case where the diameter of the container was less than 10 mm was evaluated as “ ⁇ ” as being excellent in bending resistance, and the case where the diameter of the container was 10 mm or more was evaluated as “x” as being poor in bending resistance. .
  • ⁇ 6.0 indicates that “crack” did not enter the cured film even when a circular container having a diameter of 6.0 mm was used
  • 6.0 indicates that “crack” was found in the cured film when a circular container having a diameter of 6.0 mm was used.
  • (Meth) acrylic block polymer B-1 Clarity LA-2250 (weight average molecular weight: 85000, glass transition temperature of block chain (b1): ⁇ 40 ° C., glass transition temperature of block chain (b2): 105 ° C.
  • Block chain (b2) content 23% by mass, manufactured by Kuraray Co., Ltd.
  • PMMA homopolymer polymethyl methacrylate (Delpet 72, glass transition temperature: 105 ° C., manufactured by Asahi Kasei Chemicals)
  • PMMA-PBA random copolymer: random copolymer of methyl methacrylate (MMA) and butyl acrylate (BA) (PX47-6, MMA / BA 67/33, glass transition temperature: 30 ° C., manufactured by Asia Industries, Ltd. )
  • PBA homopolymer butyl acrylate polymer (weight average molecular weight: 50000, glass transition temperature
  • Photopolymerization initiator C-1 Irgacure 184 (manufactured by BASF)
  • Compound D-1 Compound having a naphthalimide skeleton (R 1 in the above formula (1) is —CH 2 CH (CH 2 CH 2 CH 3 ) 2 , and R 2 is —O—CH 3 .
  • Compound E-1 Compound having a benzotriazole skeleton (Tinuvin Carbo protect, manufactured by BASF) ⁇ Methyl ethyl ketone: solvent ⁇ Anisole: solvent ⁇ Ethyl acetate: solvent ⁇ Cyclohexanone: solvent
  • Example 12 to 15 Using the composition prepared in Example 1, laminate A and laminate B were prepared by the following method, and the adhesion of the cured film was evaluated by the following method.
  • PET film ⁇ Manufacture of laminate A-base material (PET film)> After drying a polyethylene terephthalate film (PET fabric: trade name U46, manufactured by Toray Industries, Inc., thickness 125 ⁇ m) with an acrylic resin composition having the product numbers shown in Table 2 below (both manufactured by Yokohama Rubber Co., Ltd.) using a bar coater. The film was applied with a clearance setting such that the film thickness was 1.5 ⁇ m, dried for 1 minute under the condition of 80 ° C., and then UV (UV) using GS UV SYSTEM manufactured by Kawaguchi Spring Manufacturing Co., Ltd.
  • UV UV
  • UV irradiation conditions illuminance: 300 mW / cm 2 , integrated light quantity: 300 mJ / cm 2 , UV irradiation apparatus: high-pressure mercury lamp
  • a wet pen 8 sets of pen numbers 30, 32, 34, 36, 38, 40, 42, and 44 mN / m, manufactured by Alcotest
  • the time passed the state of the pen streaks was visually confirmed, the largest pen number that did not repel ink was selected, and the surface tension was determined.
  • Example 1 the composition prepared in Example 1 was applied to the acrylic resin layer using a bar coater with a clearance setting such that the film thickness after drying was 1.5 ⁇ m. After drying for a minute, this was irradiated with ultraviolet rays (UV) using a GS UV SYSTEM manufactured by Kawaguchi Spring Mfg. Co., Ltd. (UV irradiation conditions: illuminance 300 mW / cm 2 , integrated light quantity 300 mJ / cm 2 , UV irradiation apparatus was a high-pressure mercury lamp The composition was cured to prepare a laminate.
  • UV ultraviolet rays
  • Laminate B was prepared in the same manner as laminate A except that a cycloolefin film (COP fabric: trade name ZF16-100, manufactured by Nippon Zeon Co., Ltd., thickness 100 ⁇ m) subjected to corona treatment was used as the substrate.
  • COP fabric trade name ZF16-100, manufactured by Nippon Zeon Co., Ltd., thickness 100 ⁇ m
  • ⁇ Adhesion> The produced laminates A and B were subjected to a cross-cut peel test based on JIS K5400 to evaluate the adhesion. Specifically, using a cutter, cut only 1mm pitch in the cured film part and resin layer part of each laminate to make 100 bases (10x10), and cellophane adhesive on the bases A tape (18 mm in width) was completely attached, and immediately pulled off while keeping one end of the tape at a right angle to the substrate, and the number of remaining bases without being completely peeled was examined. When the number of remaining bases was 75 or more, it was evaluated as “ ⁇ ” as being excellent in adhesion, and when it was less than 75, it was evaluated as “x” as being slightly inferior in adhesion. The results are shown in Table 2 below.

Abstract

The purpose of the present invention is to provide an ultraviolet curable resin composition capable of forming a cured coating film exhibiting excellent hardness and flex resistance. This ultraviolet curable resin composition contains a multifunctional (meth)acrylate compound (A) having two or more (meth)acryloyloxy groups in one molecule, a (meth)acryl block polymer (B), and a photopolymerization initiator (C), wherein the (meth)acryl block polymer (B) has a block chain (b1) having a glass transition temperature of 0°C or lower, and a block chain (b2) having a glass transition temperature of 60°C or higher.

Description

紫外線硬化型樹脂組成物および積層体Ultraviolet curable resin composition and laminate
 本発明は、紫外線硬化型樹脂組成物およびこれを用いて形成される硬化皮膜を有する積層体に関する。 The present invention relates to an ultraviolet curable resin composition and a laminate having a cured film formed using the same.
 近年、タッチパネル装置、有機EL表示装置、液晶表示装置、電子ペーパー等の様々な薄型の電子デバイスが実用化されている。
 これらの電子デバイスには、一般的に、PETフィルムなどの基材と、基材上に設けられた硬化皮膜(ハードコート層)とを有する積層体(ハードコートフィルム)が用いられている。
 このようなハードコートフィルムを形成するための紫外線硬化型樹脂組成物として、例えば、特許文献1には、「(a)多官能(メタ)アクリレートと、(b)幹がアクリル樹脂からなる枝状ポリマーと、(c)希釈溶剤を含有する紫外線硬化型樹脂組成物において、レベリング剤を含まず、希釈溶剤は沸点の異なる溶剤の併用であることを特徴とする紫外線硬化型樹脂組成物。」が記載されている([請求項1])。
In recent years, various thin electronic devices such as a touch panel device, an organic EL display device, a liquid crystal display device, and electronic paper have been put into practical use.
In these electronic devices, a laminate (hard coat film) having a base material such as a PET film and a cured film (hard coat layer) provided on the base material is generally used.
As an ultraviolet curable resin composition for forming such a hard coat film, for example, Patent Document 1 discloses that “(a) a polyfunctional (meth) acrylate and (b) a branch having a trunk made of an acrylic resin”. An ultraviolet curable resin composition comprising a polymer and (c) a diluent solvent, wherein the ultraviolet curable resin composition does not contain a leveling agent, and the diluent solvent is a combination of solvents having different boiling points. ([Claim 1]).
特開2013-043907号公報JP 2013-043907 A
 本発明者らは、特許文献1に記載された紫外線硬化型樹脂組成物について検討したところ、得られる硬化皮膜の硬度は良好であったが、耐屈曲性に劣り、フィルム成形した際の取り扱い性に問題があり、硬度および耐屈曲性の両立を図ることが困難であることを明らかとした。 The inventors of the present invention have studied the ultraviolet curable resin composition described in Patent Document 1. As a result, the hardness of the resulting cured film was good, but the flexibility was inferior, and the handleability when film-forming was performed. It was clarified that it was difficult to achieve both the hardness and the bending resistance.
 そこで、本発明は、優れた硬度および耐屈曲性を両立した硬化皮膜を形成することができる紫外線硬化型樹脂組成物を提供することを課題とする。 Therefore, an object of the present invention is to provide an ultraviolet curable resin composition capable of forming a cured film having both excellent hardness and bending resistance.
 本発明者らは、上記課題を解決するため鋭意検討した結果、多官能(メタ)アクリレート化合物および光重合開始剤とともに、特定のブロック鎖を有する(メタ)アクリル系ブロックポリマーを含有する紫外線硬化型樹脂組成物を用いて形成される硬化皮膜が、硬度および耐屈曲性が良好となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies to solve the above problems, the present inventors have found that an ultraviolet curable type containing a (meth) acrylic block polymer having a specific block chain together with a polyfunctional (meth) acrylate compound and a photopolymerization initiator. The present inventors have found that the cured film formed using the resin composition has good hardness and bending resistance, and completed the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
 [1] 1分子中に(メタ)アクリロイルオキシ基を2個以上有する多官能(メタ)アクリレート化合物(A)と、(メタ)アクリル系ブロックポリマー(B)と、光重合開始剤(C)とを含有し、
 上記(メタ)アクリル系ブロックポリマー(B)が、ガラス転移温度が0℃以下となるブロック鎖(b1)と、ガラス転移温度が60℃以上となるブロック鎖(b2)とを有する、紫外線硬化型樹脂組成物。
 [2] 上記多官能(メタ)アクリレート化合物(A)が、1分子中にウレタン結合と2個以上の(メタ)アクリロイルオキシ基とを有するウレタン(メタ)アクリレート(A1)である、[1]に記載の紫外線硬化型樹脂組成物。
 [3] 上記多官能(メタ)アクリレート化合物(A)が、少なくとも、1分子中に2個以上の(メタ)アクリロイルオキシ基を有するネマチック液晶性化合物(A2)、および、1分子中に2個以上の(メタ)アクリロイルオキシ基を有するカイラル剤(A3)である、[1]または[2]に記載の紫外線硬化型樹脂組成物。
 [4] 上記ブロック鎖(b1)のガラス転移温度が-40~-50℃であり、
 上記ブロック鎖(b2)のガラス転移温度が100~120℃であり、
 上記(メタ)アクリル系ブロックポリマー(B)が、少なくとも、上記ブロック鎖(b2)、上記ブロック鎖(b1)および上記ブロック鎖(b2)をこの順に有し、かつ、上記ブロック鎖(b2)を20質量%以上含有するブロックポリマーである、[1]~[3]のいずれかに記載の紫外線硬化型樹脂組成物。
 [5] 上記(メタ)アクリル系ブロックポリマー(B)のJIS A硬度が50以上である、[1]~[4]のいずれかに記載の紫外線硬化型樹脂組成物。
 [6] 更に、下記式(1)で表されるナフタルイミド骨格を有する化合物(D)を含有する、[1]~[5]のいずれかに記載の紫外線硬化型樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

 (式(1)中、R1は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、R2は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、複数のR2は同一であっても異なっていてもよい。)
 [7] 更に、ベンゾトリアゾール骨格を有する化合物(E)を含有する、[1]~[6]のいずれかに記載の紫外線硬化型樹脂組成物。
 [8] 上記ネマチック液晶性化合物(A2)が下記式(2a)で表される化合物であり、上記カイラル剤(A3)が下記式(3a)で表される化合物である、[3]~[7]のいずれかに記載の紫外線硬化型樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

 (式(2a)中、nは2~5の整数を表し、式(3a)中、mは2~5の整数を表す。)
 [9] 上記(メタ)アクリル系ブロックポリマー(B)の含有量が、上記多官能(メタ)アクリレート化合物(A)100質量部に対して0.1~10質量部である、[1]~[8]のいずれかに記載の紫外線硬化型樹脂組成物。
 [10] 上記カイラル剤(A3)の含有量が、上記ネマチック液晶性化合物(A2)および上記カイラル剤(A3)の合計質量に対して1.0~30.0質量%である、[3]~[9]のいずれかに記載の紫外線硬化型樹脂組成物。
 [11] 基材と、硬化皮膜とを有する積層体であって、
 上記硬化皮膜が、[1]~[10]のいずれかに記載の紫外線硬化型樹脂組成物を用いて形成される、積層体。
 [12] 上記基材と上記硬化皮膜との間に、更に樹脂層を有し、
 上記樹脂層が、表面張力が32mN/m以上のアクリル系樹脂層である、[11]に記載の積層体。
 [13] 電子画像表示装置または眼鏡レンズに使用される[11]または[12]に記載の積層体。
[1] A polyfunctional (meth) acrylate compound (A) having two or more (meth) acryloyloxy groups in one molecule, a (meth) acrylic block polymer (B), a photopolymerization initiator (C), Containing
The UV-curable type, wherein the (meth) acrylic block polymer (B) has a block chain (b1) having a glass transition temperature of 0 ° C. or lower and a block chain (b2) having a glass transition temperature of 60 ° C. or higher. Resin composition.
[2] The polyfunctional (meth) acrylate compound (A) is a urethane (meth) acrylate (A1) having a urethane bond and two or more (meth) acryloyloxy groups in one molecule. [1] The ultraviolet curable resin composition described in 1.
[3] The polyfunctional (meth) acrylate compound (A) is at least two nematic liquid crystalline compounds (A2) having two or more (meth) acryloyloxy groups in one molecule, and two in one molecule. The ultraviolet curable resin composition according to [1] or [2], which is a chiral agent (A3) having the above (meth) acryloyloxy group.
[4] The glass transition temperature of the block chain (b1) is −40 to −50 ° C.,
The glass transition temperature of the block chain (b2) is 100 to 120 ° C.,
The (meth) acrylic block polymer (B) has at least the block chain (b2), the block chain (b1), and the block chain (b2) in this order, and the block chain (b2). The ultraviolet curable resin composition according to any one of [1] to [3], which is a block polymer containing 20% by mass or more.
[5] The ultraviolet curable resin composition according to any one of [1] to [4], wherein the (meth) acrylic block polymer (B) has a JIS A hardness of 50 or more.
[6] The ultraviolet curable resin composition according to any one of [1] to [5], further comprising a compound (D) having a naphthalimide skeleton represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003

(In the formula (1), R 1 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom, and R 2 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom. The plurality of R 2 may be the same or different.)
[7] The ultraviolet curable resin composition according to any one of [1] to [6], further comprising a compound (E) having a benzotriazole skeleton.
[8] The nematic liquid crystalline compound (A2) is a compound represented by the following formula (2a), and the chiral agent (A3) is a compound represented by the following formula (3a). 7] The ultraviolet curable resin composition according to any one of [7].
Figure JPOXMLDOC01-appb-C000004

(In formula (2a), n represents an integer of 2 to 5, and in formula (3a), m represents an integer of 2 to 5)
[9] The content of the (meth) acrylic block polymer (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A). [8] The ultraviolet curable resin composition according to any one of [8].
[10] The content of the chiral agent (A3) is 1.0 to 30.0% by mass based on the total mass of the nematic liquid crystal compound (A2) and the chiral agent (A3). [3] The ultraviolet curable resin composition according to any one of to [9].
[11] A laminate having a substrate and a cured film,
A laminate in which the cured film is formed using the ultraviolet curable resin composition according to any one of [1] to [10].
[12] A resin layer is further provided between the substrate and the cured film,
The laminate according to [11], wherein the resin layer is an acrylic resin layer having a surface tension of 32 mN / m or more.
[13] The laminate according to [11] or [12], which is used for an electronic image display device or a spectacle lens.
 本発明によれば、優れた硬度および耐屈曲性を両立した硬化皮膜を形成することができる紫外線硬化型樹脂組成物を提供することができる。
 また、本発明の積層体は、本発明の紫外線硬化型樹脂組成物を用いて形成される硬化皮膜を有するため、優れた硬度および耐屈曲性を両立することができる。
According to the present invention, it is possible to provide an ultraviolet curable resin composition capable of forming a cured film having both excellent hardness and flexibility.
Moreover, since the laminated body of this invention has the cured film formed using the ultraviolet curable resin composition of this invention, it can make it compatible with the outstanding hardness and bending resistance.
図1は、本発明の積層体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention.
[紫外線硬化型樹脂組成物]
 本発明の紫外線硬化型樹脂組成物(以下、単に「本発明の組成物」ともいう。)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有する多官能(メタ)アクリレート化合物(A)と、(メタ)アクリル系ブロックポリマー(B)と、光重合開始剤(C)とを含有し、上記(メタ)アクリル系ブロックポリマー(B)が、ガラス転移温度が0℃以下となるブロック鎖(b1)と、ガラス転移温度が60℃以上となるブロック鎖(b2)とを有する、紫外線硬化型樹脂組成物である。
 ここで、本明細書においては、「(メタ)アクリロイルオキシ基」とは、アクリロイルオキシ基(CH2=CHCOO-)またはメタクリロイルオキシ基(CH2=C(CH3)COO-)を意味するものとする。同様に、「(メタ)アクリル系」とは、アクリル系またはメタクリル系を意味するものとする。
[Ultraviolet curable resin composition]
The ultraviolet curable resin composition of the present invention (hereinafter also simply referred to as “the composition of the present invention”) is a polyfunctional (meth) acrylate compound having two or more (meth) acryloyloxy groups in one molecule (A ), A (meth) acrylic block polymer (B), and a photopolymerization initiator (C), and the (meth) acrylic block polymer (B) has a glass transition temperature of 0 ° C. or lower. An ultraviolet curable resin composition having a chain (b1) and a block chain (b2) having a glass transition temperature of 60 ° C. or higher.
Here, in this specification, “(meth) acryloyloxy group” means an acryloyloxy group (CH 2 ═CHCOO—) or a methacryloyloxy group (CH 2 ═C (CH 3 ) COO—). And Similarly, “(meth) acrylic” means acrylic or methacrylic.
 本発明においては、上述した通り、多官能(メタ)アクリレート化合物(A)および(メタ)アクリル系ブロックポリマー(B)を含有する組成物を用いることにより、形成される硬化皮膜の硬度および耐屈曲性が良好となる。
 これは、詳細には明らかではないが、(メタ)アクリル系ブロックポリマー(B)が有するガラス転移温度が0℃以下となるブロック鎖(b1)が硬化皮膜の柔軟性に寄与し、ガラス転移温度が60℃以上となるブロック鎖(b2)が硬化皮膜の剛性の維持に寄与するため、多官能(メタ)アクリレート化合物により発現する優れた硬度を阻害せずに、耐屈曲性を付与することができたためと考えられる。
 このことは、後述する比較例に示すように、ガラス転移温度が0℃以下となる(メタ)アクリル系のホモポリマーや、ガラス転移温度が60℃以上となる(メタ)アクリル系のホモポリマーや、これらの混合物を配合した場合には得られない効果であることからも推察することができる。
 以下に、多官能(メタ)アクリレート化合物(A)、(メタ)アクリル系ブロックポリマー(B)および光重合開始剤(C)ならびに他の任意成分について詳述する。
In the present invention, as described above, the hardness and bending resistance of the cured film formed by using the composition containing the polyfunctional (meth) acrylate compound (A) and the (meth) acrylic block polymer (B). Property is improved.
Although this is not clear in detail, the block chain (b1) in which the glass transition temperature of the (meth) acrylic block polymer (B) is 0 ° C. or lower contributes to the flexibility of the cured film, and the glass transition temperature. Since the block chain (b2) having a temperature of 60 ° C. or higher contributes to the maintenance of the rigidity of the cured film, it can impart bending resistance without impairing the excellent hardness expressed by the polyfunctional (meth) acrylate compound. It is thought that it was made.
This is because, as shown in a comparative example described later, a (meth) acrylic homopolymer having a glass transition temperature of 0 ° C. or lower, a (meth) acrylic homopolymer having a glass transition temperature of 60 ° C. or higher, It can also be inferred from the effects that cannot be obtained when these mixtures are blended.
Hereinafter, the polyfunctional (meth) acrylate compound (A), the (meth) acrylic block polymer (B), the photopolymerization initiator (C), and other optional components will be described in detail.
 〔多官能(メタ)アクリレート化合物(A)〕
 本発明の組成物が含有する多官能(メタ)アクリレート化合物(A)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有する化合物であれば特に制限されない。
 ここで、多官能(メタ)アクリル化合物(A)が1分子中に有する(メタ)アクリロイルオキシ基の数は、本発明の組成物の塗工性が良好となり、硬化皮膜の硬度がより向上する理由から、3個以上が好ましく、4~15個がより好ましい。
[Polyfunctional (meth) acrylate compound (A)]
The polyfunctional (meth) acrylate compound (A) contained in the composition of the present invention is not particularly limited as long as it is a compound having two or more (meth) acryloyloxy groups in one molecule.
Here, the number of (meth) acryloyloxy groups contained in one molecule of the polyfunctional (meth) acrylic compound (A) improves the coating property of the composition of the present invention and further improves the hardness of the cured film. For reasons, 3 or more are preferable, and 4 to 15 are more preferable.
 上記多官能(メタ)アクリレート化合物(A)としては、例えば、多価アルコールの(メタ)アクリル酸エステル、分子内にウレタン結合を有するウレタン(メタ)アクリレート(A1)、ネマチック液晶性化合物(A2)、カイラル剤(A3)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the polyfunctional (meth) acrylate compound (A) include (meth) acrylic acid ester of polyhydric alcohol, urethane (meth) acrylate (A1) having a urethane bond in the molecule, and nematic liquid crystal compound (A2). And chiral agents (A3) and the like, and these may be used alone or in combination of two or more.
 これらのうち、本発明においては、本発明の組成物の硬化性が良好となり、硬化皮膜の光学特性や硬度がより向上する理由から、ウレタン(メタ)アクリレート(A1)であるのが好ましい。
 また、得られる硬化皮膜がブルーライト領域(385nm~495nmの波長領域)の光の少なくとも一部を反射し、ブルーライトカット機能を発現する理由から、ネマチック液晶性化合物(A2)およびカイラル剤(A3)を併用するのが好ましい。なお、このようにブルーライト機能を発現する理由は、カイラル剤の添加に起因したネマチック液晶性化合物の所定の配向(ねじれ)状態により、硬化皮膜の表面に特定の凹凸パターンが形成され、ブルーライト領域(385nm~495nmの波長領域)の光の少なくとも一部が反射したためと考えられる。また、このような反射によって、ブルーライトカット機能を有するにも関わらず、自然光における青色光の反射により、硬化皮膜の黄色味の強くなるという問題を軽減することも可能になったと考えられる。
Among these, in the present invention, urethane (meth) acrylate (A1) is preferable because the curability of the composition of the present invention is improved and the optical properties and hardness of the cured film are further improved.
In addition, the resulting cured film reflects at least part of light in the blue light region (wavelength region of 385 nm to 495 nm) and exhibits a blue light cut function, so that the nematic liquid crystalline compound (A2) and the chiral agent (A3 ) Is preferably used in combination. The reason why the blue light function is exhibited in this way is that a specific uneven pattern is formed on the surface of the cured film depending on a predetermined orientation (twisted) state of the nematic liquid crystalline compound resulting from the addition of the chiral agent. This is probably because at least part of the light in the region (wavelength region of 385 nm to 495 nm) was reflected. In addition, it is considered that such a reflection can reduce the problem that the yellowishness of the cured film becomes strong due to the reflection of blue light in natural light in spite of having a blue light cut function.
 <多価アルコールの(メタ)アクリル酸エステル>
 多価アルコールの(メタ)アクリル酸エステルとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートのような3官能系;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレートのような4官能系;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレートのような5官能以上の系が挙げられる。
<(Meth) acrylic acid ester of polyhydric alcohol>
Examples of polyhydric alcohol (meth) acrylic acid esters include trifunctional groups such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol tri (meth) acrylate; pentaerythritol tetra Tetrafunctional system such as (meth) acrylate, dipentaerythritol tetra (meth) acrylate, tripentaerythritol tetra (meth) acrylate; dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol Penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol o Data (meth) 5 or higher functional systems such as acrylate.
 <ウレタン(メタ)アクリレート(A1)>
 ウレタン(メタ)アクリレート(A1)としては、例えば、多価アルコールの(メタ)アクリル酸エステルとポリイソシアネート化合物との反応物が挙げられる。
 ここで、ウレタン(メタ)アクリレートを製造する際に使用される、多価アルコールの(メタ)アクリル酸エステルとしては、例えば、上述した多価アルコールの(メタ)アクリル酸エステルのうち、少なくとも1つのヒドロキシ基を有するものが挙げられる。
 また、ウレタン(メタ)アクリレートを製造する際に使用される、ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネートなどの芳香族系ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネートなどの脂肪族系ポリイソシアネート;これらのイソシアヌレート体、ビューレット体、アダクト体;等が挙げられる。
<Urethane (meth) acrylate (A1)>
Examples of the urethane (meth) acrylate (A1) include a reaction product of a polyhydric alcohol (meth) acrylic acid ester and a polyisocyanate compound.
Here, as the (meth) acrylic acid ester of the polyhydric alcohol used when producing the urethane (meth) acrylate, for example, at least one of the (meth) acrylic acid ester of the polyhydric alcohol described above. What has a hydroxy group is mentioned.
Moreover, as a polyisocyanate compound used when manufacturing urethane (meth) acrylate, for example, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, Aromatic polyisocyanates such as tolidine diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, Bis (isocyanate methyl) ) Cyclohexane, aliphatic polyisocyanates such as dicyclohexylmethane diisocyanate; these isocyanurate, biuret body, an adduct; and the like are.
 <ネマチック液晶性化合物(A2)>
 ネマチック液晶性化合物(A2)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有するネマチック液晶性化合物であれば特に限定されず、後述するカイラル剤(A3)との組み合わせにおいて、ブルーライトカット機能を発現する化合物であるのが好ましい。
<Nematic liquid crystalline compound (A2)>
The nematic liquid crystalline compound (A2) is not particularly limited as long as it is a nematic liquid crystalline compound having two or more (meth) acryloyloxy groups in one molecule. In combination with a chiral agent (A3) described later, blue light A compound that expresses a cutting function is preferred.
 このようなネマチック液晶性化合物としては、例えば、1分子中に2個以上の(メタ)アクリロイルオキシ基を有する棒状液晶性化合物であるのが好ましく、具体的には、下記式(I)で表される化合物であるのが好ましい。
 R3-C3-D3-C5-M-C6-D4-C4-R4 ・・・式(I)
(式中、R3及びR4は(メタ)アクリロイルオキシ基であり、それぞれ独立して(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。D3及びD4は単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。C3~C6は単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-C=N-N=C-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-からなる群より選択される基を表す。Mはメソゲン基を表し、具体的には、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類の群から選択された2~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-C=N-N=C-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-等の結合基によって結合されて形成される。)
As such a nematic liquid crystalline compound, for example, a rod-like liquid crystalline compound having two or more (meth) acryloyloxy groups in one molecule is preferable. Specifically, the nematic liquid crystalline compound is represented by the following formula (I). It is preferable that it is a compound.
R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 ... Formula (I)
(In the formula, R 3 and R 4 are (meth) acryloyloxy groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group, allyl group, fumarate group, cinnamoyl group, an oxazoline group, a mercapto group, iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and represents a group selected from the group consisting of alkoxysilyl group .D 3 and D 4 is selected from the group consisting of a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms. C 3 to C 6 are a single bond, —O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, -C = N-N = C -, - NHCO -, - OCOO -, - CH 2 COO-, and .M represents a group selected from the group consisting of -CH 2 OCO- represents a mesogenic group, specifically, unsubstituted or Optionally substituted azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano Two to four skeletons selected from the group of substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are represented by —O—, —S—, —SS— , -CO -, - CS -, - OCO -, - CH 2 -, - OCH 2 -, - C = N-N = C -, - NHCO- -OCOO -, - CH 2 COO-, and is formed are joined by a linking group of -CH 2 OCO-, etc.).
 上記式(I)で表されるネマチック液晶性化合物としては、後述するカイラル剤(A3)により配向(ねじれ)状態を調整しやすく、また、後述する光重合開始剤(C)を用いた重合が進行し易い理由から、下記式(2a)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000005

 (式(2a)中、nは2~5の整数を表す。)
As the nematic liquid crystalline compound represented by the above formula (I), the alignment (twisted) state can be easily adjusted by a chiral agent (A3) described later, and polymerization using a photopolymerization initiator (C) described later can be performed. A compound represented by the following formula (2a) is preferable because it easily proceeds.
Figure JPOXMLDOC01-appb-C000005

(In the formula (2a), n represents an integer of 2 to 5)
 上記式(2a)で表される化合物以外のネマチック液晶性化合物(A2)としては、具体的には、例えば、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
Specific examples of the nematic liquid crystal compound (A2) other than the compound represented by the above formula (2a) include the following compounds.
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
 これらのうち、下記式(2b)で表される化合物、下記式(2c)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000012
Among these, a compound represented by the following formula (2b) and a compound represented by the following formula (2c) are preferable.
Figure JPOXMLDOC01-appb-C000012
 <カイラル剤(A3)>
 カイラル剤(A3)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有するカイラル剤であれば特に限定されず、上述したネマチック液晶性化合物(A2)との組み合わせにおいて、ブルーライトカット機能を発現する化合物であるのが好ましい。
<Chiral agent (A3)>
The chiral agent (A3) is not particularly limited as long as it is a chiral agent having two or more (meth) acryloyloxy groups in one molecule. In combination with the nematic liquid crystalline compound (A2) described above, the blue light cut function It is preferable that the compound expresses.
 このようなカイラル剤としては、例えば、イソソルビド骨格構造を有する化合物であるのが好ましく、具体的には、下記式(II)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000013

(式中、P1及びP2は、それぞれ独立に、1,4-シクロヘキシレン基を1個含む炭素数が10~20の炭化水素基を表し、基中にエーテル結合性の酸素原子またはエステル結合を有していてもよく、基中の水素原子がフッ素原子に置換されていてもよい。但し、P1及びP2は、さらに(メタ)アクリロイルオキシ基を含む。)
As such a chiral agent, for example, a compound having an isosorbide skeleton structure is preferable, and specifically, a compound represented by the following formula (II) is preferable.
Figure JPOXMLDOC01-appb-C000013

(In the formula, P 1 and P 2 each independently represents a hydrocarbon group having 10 to 20 carbon atoms including one 1,4-cyclohexylene group, and the group has an etheric oxygen atom or ester. It may have a bond, and a hydrogen atom in the group may be substituted with a fluorine atom, provided that P 1 and P 2 further include a (meth) acryloyloxy group.
 上記式(II)で表されるカイラル剤としては、上記式(2a)で表される液晶性化合物とともに硬化させた硬化皮膜のブルーライトカット機能がより良好となる理由から、下記式(3a)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000014

 (式(3a)中、mは2~5の整数を表す。)
As the chiral agent represented by the above formula (II), the blue light cut function of the cured film cured together with the liquid crystalline compound represented by the above formula (2a) becomes better, so that the following formula (3a) It is preferable that it is a compound represented by these.
Figure JPOXMLDOC01-appb-C000014

(In the formula (3a), m represents an integer of 2 to 5.)
 上記式(3a)で表される化合物以外のカイラル剤(A3)としては、具体的には、例えば、下記式(3b)で表される化合物、下記式(3c)で表される化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000015
As the chiral agent (A3) other than the compound represented by the above formula (3a), specifically, for example, a compound represented by the following formula (3b) and a compound represented by the following formula (3c) are preferable. It is mentioned in.
Figure JPOXMLDOC01-appb-C000015
 上記式(3a)~(3c)で表される化合物以外のカイラル剤(A3)としては、例えば、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号公報、WO98/00428号公報等に掲載されるものを適宜使用することができ、また、BASF社パリオカラーのLC756、ADEKA社キラコールのCNL617R、CNL-686Lなどの市販品も適宜使用することができる。 Examples of the chiral agent (A3) other than the compounds represented by the above formulas (3a) to (3c) include, for example, JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, Published in JP2003-313187, JP2003-342219, JP2000-290315, JP6-072962, U.S. Pat. No. 6,468,444, WO98 / 00428, etc. Commercially available products such as BASF's Palio Color LC756, ADEKA Kiracol's CNL617R, and CNL-686L can also be used as appropriate.
 本発明においては、硬化皮膜のブルーライトカット機能がより良好となる理由から、上記カイラル剤(A3)の含有量が、上記ネマチック液晶性化合物(A2)および上記カイラル剤(A3)の合計質量に対して1.0~30.0質量%であるのが好ましい。
 特に、上記ネマチック液晶性化合物(A2)として上記式(2)で表される化合物を用い、上記カイラル剤(A3)として上記式(3)で表される化合物を用いた場合には、上記カイラル剤(A3)の含有量が、上記ネマチック液晶性化合物(A2)および上記カイラル剤(A3)の合計質量に対して4.0~6.5質量%であるのが好ましい。
In the present invention, the content of the chiral agent (A3) is the total mass of the nematic liquid crystalline compound (A2) and the chiral agent (A3) because the blue light cut function of the cured film becomes better. The content is preferably 1.0 to 30.0% by mass.
In particular, when the compound represented by the formula (2) is used as the nematic liquid crystalline compound (A2) and the compound represented by the formula (3) is used as the chiral agent (A3), the chiral The content of the agent (A3) is preferably 4.0 to 6.5% by mass with respect to the total mass of the nematic liquid crystal compound (A2) and the chiral agent (A3).
 〔(メタ)アクリル系ブロックポリマー(B)〕
 本発明の組成物が含有する(メタ)アクリル系ブロックポリマー(B)は、ガラス転移温度が0℃以下となるブロック鎖(b1)と、ガラス転移温度が60℃以上となるブロック鎖(b2)とを有する(メタ)アクリル系のブロックポリマーである。なお、本発明においては、上記多官能(メタ)アクリレート化合物(A)と上記(メタ)アクリル系ブロックポリマー(B)とは別々の化合物であり、(メタ)アクリル系ブロックポリマーが(メタ)アクリロイルオキシ基を2個以上有する場合は、(メタ)アクリル系ブロックポリマー(B)に該当するものとする。
 ここで、「ガラス転移温度が所望の温度のブロック鎖」とは、該当するブロック鎖の繰返し単位を構成するモノマーを単独重合させたホモポリマーのガラス転移温度を有するブロック鎖のことをいう。
 また、ガラス転移温度は、デュポン社製の示差熱分析計(DSC)を用い、ASTM D3418-82に従い、昇温速度10℃/minで測定した値である。
[(Meth) acrylic block polymer (B)]
The (meth) acrylic block polymer (B) contained in the composition of the present invention has a block chain (b1) having a glass transition temperature of 0 ° C. or lower and a block chain (b2) having a glass transition temperature of 60 ° C. or higher. (Meth) acrylic block polymer. In the present invention, the polyfunctional (meth) acrylate compound (A) and the (meth) acrylic block polymer (B) are separate compounds, and the (meth) acrylic block polymer is (meth) acryloyl. When it has two or more oxy groups, it corresponds to the (meth) acrylic block polymer (B).
Here, the “block chain having a desired glass transition temperature” means a block chain having a homopolymer glass transition temperature obtained by homopolymerizing monomers constituting the repeating unit of the corresponding block chain.
The glass transition temperature is a value measured using a differential thermal analyzer (DSC) manufactured by DuPont in accordance with ASTM D3418-82 at a heating rate of 10 ° C./min.
 本発明においては、得られる硬化皮膜の耐屈曲性がより良好となる理由から、上記ブロック鎖(b1)のガラス転移温度が-40~-50℃を示すソフトセグメントであり、上記ブロック鎖(b2)のガラス転移温度が100~120℃を示すハードセグメントであるブロックポリマーであるのが好ましい。
 また、このような各セグメントを有するブロックポリマーは、少なくとも、上記ブロック鎖(b2)〔ハードセグメント〕、上記ブロック鎖(b1)〔ソフトセグメント〕および上記ブロック鎖(b2)〔ハードセグメント〕をこの順に有し、かつ、上記ブロック鎖(b2)〔ハードセグメント〕を合計して20質量%以上含有しているのが好ましい。
In the present invention, because the bending resistance of the cured film obtained is better, the block chain (b1) is a soft segment having a glass transition temperature of −40 to −50 ° C., and the block chain (b2 The block polymer is preferably a hard segment exhibiting a glass transition temperature of 100 to 120 ° C.
In addition, the block polymer having each segment has at least the block chain (b2) [hard segment], the block chain (b1) [soft segment] and the block chain (b2) [hard segment] in this order. And the block chain (b2) [hard segment] in total is preferably 20% by mass or more.
 このような(メタ)アクリル系ブロックポリマー(B)としては、2種以上の(メタ)アクリレートモノマーとともに、所望により他のエチレン系不飽和共重合性モノマーを用いて、リビングラジカル重合させることで調製されるブロックポリマーが挙げられる。 Such (meth) acrylic block polymer (B) is prepared by living radical polymerization using two or more (meth) acrylate monomers and optionally other ethylenically unsaturated copolymerizable monomers. Block polymers to be used.
 上記(メタ)アクリレートモノマーのうち、上記ブロック鎖(b1)の繰返し単位を構成するモノマーとしては、具体的には、例えば、ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、イソオクチルアクリレート、イソノニルアクリレート等が挙げられる。
 また、上記(メタ)アクリレートモノマーのうち、上記ブロック鎖(b2)の繰返し単位を構成するモノマーとしては、具体的には、例えば、ラウリル(メタ)アクリレート、ミスチリル(メタ)アクリレート、イソミスチリル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ドコサニル(メタ)アクリレート、テトラコサニル(メタ)アクリレート、ヘキサコサニル(メタ)アクリレート、及びオクタコサニル(メタ)アクリレート等が挙げられる。
Among the (meth) acrylate monomers, examples of the monomer constituting the repeating unit of the block chain (b1) include butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, and isononyl acrylate. Etc.
Moreover, as a monomer which comprises the repeating unit of the said block chain (b2) among the said (meth) acrylate monomers, specifically, for example, lauryl (meth) acrylate, mistyryl (meth) acrylate, and isomustryl (meth) Examples include acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, docosanyl (meth) acrylate, tetracosanyl (meth) acrylate, hexacosanyl (meth) acrylate, and octacosanyl (meth) acrylate.
 一方、任意のエチレン系不飽和共重合性モノマーとしては、具体的には、例えば、α-メチルスチレン、ビニルトルエン、スチレン、ジビニルベンゼンなどのスチレン系単量体;フェニルマレイミド、シクロヘキシルマレイミドなどのマレイミド系単量体;メチルビニルエ-テル、エチルビニルエ-テル、イソブチルビニルエ-テルなどのビニルエ-テル系単量体;フマル酸、フマル酸のモノおよびジアルキルエステル;マレイン酸;マレイン酸のモノおよびジアルキルエステル;イタコン酸;イタコン酸のモノおよびジアルキルエステル;(メタ)アクリロニトリル、ブタジエン、イソプレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、ビニルケトン、ビニルピリジン、ビニルカルバゾ-ル等のその他単量体;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 On the other hand, specific examples of the ethylenically unsaturated copolymerizable monomer include styrene monomers such as α-methylstyrene, vinyltoluene, styrene and divinylbenzene; and maleimides such as phenylmaleimide and cyclohexylmaleimide. Monomeric monomers; vinyl etheric monomers such as methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether; fumaric acid, mono- and dialkyl esters of fumaric acid; maleic acid; mono- and dialkyl esters of maleic acid; Itaconic acid; mono and dialkyl esters of itaconic acid; (meth) acrylonitrile, butadiene, isoprene, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketone, vinyl pyridine, vinyl carbazole, etc. The It may be used in the seed alone or in combination of two or more thereof.
 このようなモノマーを用いたリビングアニオン重合の重合方法は特に限定されず、活性化剤として遷移金属とその配位子を使用し、これらの存在下、重合開始剤を用いて、重合反応を進行させることができる。
 なお、重合開始剤としては、臭素もしくは塩素をα位に有するエステルまたはスチレンの誘導体が好適である。例えば、2-ブロモ(もしくはクロロ)プロピオン酸誘導体もしくは塩化(もしくは臭化)1-フェニル誘導体が挙げられ、具体的には、2-ブロモ(もしくはクロロ)プロピオン酸メチル、2-ブロモ(もしくはクロロ)プロピオン酸エチル、2-ブロモ(もしくはクロロ)-2-プロピオン酸メチル、2-ブロモ(もしくはクロロ)-2-プロピオン酸エチル、塩化(もしくは臭化)1-フェニルエチル、2-ブロモイソ酪酸エチルから選ばれるハロゲン系化合物を用いることができる。
The polymerization method of living anionic polymerization using such a monomer is not particularly limited, and a transition metal and its ligand are used as an activator, and the polymerization reaction proceeds in the presence of these using a polymerization initiator. Can be made.
As the polymerization initiator, an ester having bromine or chlorine at the α-position or a styrene derivative is suitable. Examples thereof include 2-bromo (or chloro) propionic acid derivatives or chloro (or bromide) 1-phenyl derivatives. Specifically, methyl 2-bromo (or chloro) propionate, 2-bromo (or chloro) Selected from ethyl propionate, methyl 2-bromo (or chloro) -2-propionate, ethyl 2-bromo (or chloro) -2-propionate, 1-phenylethyl chloride (or bromide), ethyl 2-bromoisobutyrate Halogen compounds that can be used can be used.
 本発明においては、上記(メタ)アクリル系ブロックポリマー(B)の含有量は、上記多官能(メタ)アクリレート化合物(A)100質量部に対して、0.1~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。 In the present invention, the content of the (meth) acrylic block polymer (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A). The amount is preferably 1 to 5 parts by mass.
 また、本発明においては、上記(メタ)アクリル系ブロックポリマー(B)の重量平均分子量は、本発明の組成物の塗工性や、得られる硬化皮膜の外観および光学特性などの観点、ならびに得られる硬化皮膜の耐屈曲性がより良好となり、硬度がより向上する理由から、20000~200000であるのが好ましく、50000~100000であることがより好ましい。
 ここで、(メタ)アクリル系ブロックポリマー(B)の重量平均分子量(Mw)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
In the present invention, the weight average molecular weight of the (meth) acrylic block polymer (B) is determined from the viewpoints of coating properties of the composition of the present invention, the appearance and optical properties of the resulting cured film, and the like. The resulting cured film has better bending resistance and further improved hardness, so that it is preferably 20,000 to 200,000, more preferably 50,000 to 100,000.
Here, the weight average molecular weight (Mw) of the (meth) acrylic block polymer (B) is measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
 本発明においては、このような(メタ)アクリル系ブロックポリマー(B)として市販品を用いることができ、その具体例としては、クラリティ LA-2250(重量平均分子量:85000、クラレ社製)、クラリティ LA-4285(重量平均分子量:85000、クラレ社製)、クラリティ LA2140e(重量平均分子量:80000、クラレ社製)等が挙げられる。 In the present invention, a commercially available product can be used as such a (meth) acrylic block polymer (B). Specific examples thereof include Clarity LA-2250 (weight average molecular weight: 85000, manufactured by Kuraray Co., Ltd.), Clarity LA-4285 (weight average molecular weight: 85000, manufactured by Kuraray Co., Ltd.), Clarity LA2140e (weight average molecular weight: 80000, manufactured by Kuraray Co., Ltd.), and the like.
 〔光重合開始剤(C)〕
 本発明の組成物が含有する光重合開始剤(C)は、光によって上記多官能(メタ)アクリレート化合物(A)を重合することができるものであれば特に限定されない。
 光重合開始剤(C)としては、例えば、アセトフェノン系化合物、ベンゾインエーテル系化合物、ベンゾフェノン系化合物、硫黄化合物、アゾ化合物、パーオキサイド化合物、ホスフィンオキサイド系化合物等が挙げられる。
 具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アセトイン、ブチロイン、トルオイン、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4′-ビス(ジメチルアミノベンゾフェノン)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどの硫黄化合物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロなどのアゾ化合物;ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイドなどのパーオキサイド化合物;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
[Photopolymerization initiator (C)]
The photopolymerization initiator (C) contained in the composition of the present invention is not particularly limited as long as it can polymerize the polyfunctional (meth) acrylate compound (A) by light.
Examples of the photopolymerization initiator (C) include acetophenone compounds, benzoin ether compounds, benzophenone compounds, sulfur compounds, azo compounds, peroxide compounds, phosphine oxide compounds, and the like.
Specifically, for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, acetoin, butyroin, toluoin, benzyl, benzophenone, p-methoxybenzophenone, diethoxyacetophenone, α, α-dimethoxy-α-phenylacetophenone Methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylaminobenzophenone), 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-1, Carbonyl compounds such as 2-diphenylethane-1-one and 1-hydroxycyclohexyl phenyl ketone; Sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; Azobis Azo compounds such as sobutyronitrile and azobis-2,4-dimethylvalero; peroxide compounds such as benzoyl peroxide and di-t-butyl peroxide; and the like. These may be used alone or in combination. You may use the above together.
 これらのうち、光安定性、光開裂の高効率性、表面硬化性、相溶性、低揮発、低臭気などの観点から、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンが好ましい。 Of these, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl are preferred from the viewpoints of light stability, high efficiency of photocleavage, surface curability, compatibility, low volatility, low odor and the like. -Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one is preferred.
 本発明においては、上記光重合開始剤(C)の含有量は、上記多官能(メタ)アクリレート化合物(A)100質量部に対して、0.1~15質量部であるのが好ましく、1~10質量部であるのがより好ましい。 In the present invention, the content of the photopolymerization initiator (C) is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A). More preferably, it is ˜10 parts by mass.
 〔ナフタルイミド骨格を有する化合物(D)〕
 本発明の組成物は、ブルーライト領域の中でも低波長側の領域(385~420nm)を吸収でき、ブルーライトカット機能が全体としてより良好となる理由から、下記式(1)で表されるナフタルイミド骨格を有する化合物(D)を含有するのが好ましい。
Figure JPOXMLDOC01-appb-C000016

 (式(1)中、R1は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、R2は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、複数のR2は同一であっても異なっていてもよい。)
[Compound (D) having naphthalimide skeleton]
The composition of the present invention can absorb a region on the low wavelength side (385 to 420 nm) in the blue light region, and the blue light cut function as a whole becomes better. The compound (D) having a phthalimide skeleton is preferably contained.
Figure JPOXMLDOC01-appb-C000016

(In the formula (1), R 1 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom, and R 2 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom. The plurality of R 2 may be the same or different.)
 上記式(1)中のR1およびR2で示されるヘテロ原子を有していてもよい炭化水素基としては、それぞれ独立に、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらの組み合わせが挙げられ、不飽和結合を有してもよい。
 また、R1で示される炭化水素基は、直鎖状または分岐状のアルキル基であるのが好ましく、炭素数は1~12であるのが好ましい。
 また、R2で示される炭化水素基は、アルコキシ基であるのが好ましく、メトキシ基またはエトキシ基であるのがより好ましい。
Examples of the hydrocarbon group optionally having a hetero atom represented by R 1 and R 2 in the above formula (1) include, for example, an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic Group hydrocarbon groups and combinations thereof, which may have an unsaturated bond.
Further, the hydrocarbon group represented by R 1 is preferably a linear or branched alkyl group, and preferably has 1 to 12 carbon atoms.
Further, the hydrocarbon group represented by R 2 is preferably an alkoxy group, and more preferably a methoxy group or an ethoxy group.
 ナフタルイミド骨格を有する化合物(D)の含有量は、上記多官能(メタ)アクリレート化合物(A)100質量部に対して、0.1~5質量部であるのが好ましく、0.5~3.0質量部であるのがより好ましい。 The content of the compound (D) having a naphthalimide skeleton is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A), and 0.5 to 3 More preferably, it is 0.0 parts by mass.
 〔ベンゾトリアゾール骨格を有する化合物(E)〕
 本発明の組成物は、ブルーライト領域の中でも低波長側の領域(385~430nm)を吸収でき、ブルーライトカット機能が全体としてより良好となる理由から、ベンゾトリアゾール骨格を有する化合物(E)を含有するのが好ましい。
[Compound (E) having benzotriazole skeleton]
The composition of the present invention can absorb the low wavelength region (385 to 430 nm) in the blue light region and improve the blue light cut function as a whole. It is preferable to contain.
 ベンゾトリアゾール骨格を有する化合物(E)としては、例えば、下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017

 (式(4)中、R3は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表す。)
Examples of the compound (E) having a benzotriazole skeleton include a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000017

(In formula (4), R 3 represents a hydrogen atom or a hydrocarbon group which may have a hetero atom.)
 上記式(4)中のR3で示されるヘテロ原子を有していてもよい炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらの組み合わせが挙げられ、不飽和結合を有してもよい。 Examples of the hydrocarbon group optionally having a hetero atom represented by R 3 in the above formula (4) include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and the like. Combinations may be mentioned and may have an unsaturated bond.
 このようなベンゾトリアゾール骨格を有する化合物(E)の市販品としては、例えば、チヌビン Carbo protect(BASF社製)、チヌビン 384-2(BASF社製)等が挙げられる。 Examples of commercially available compounds (E) having such a benzotriazole skeleton include Tinuvin Carbo protect (manufactured by BASF) and Tinuvin 社 384-2 (manufactured by BASF).
 ベンゾトリアゾール骨格を有する化合物(E)の含有量は、上記多官能(メタ)アクリレート化合物(A)100質量部に対して、0.1~5質量部であるのが好ましく、0.5~3.0質量部であるのがより好ましい。 The content of the compound (E) having a benzotriazole skeleton is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A), preferably 0.5 to 3 More preferably, it is 0.0 parts by mass.
 〔溶剤〕
 本発明の組成物は、塗工性が良好となる観点から、更に、溶剤を含むのが好ましい。
 溶剤は、上述した各成分を溶解することができるものであれば特に限定されない。例えば、メチルエチルケトン(MEK)、メチルイソブチケトン(MIBK)、シクロヘキサノンのようなケトン類;プロピレングリコールモノメチルエーテル(PGME)、イソプロピルアルコール(IPA)のようなアルコール;シクロヘキサンのようなシクロアルカン;トルエン、キシレン、ベンジルアルコールのような芳香族炭化水素化合物が挙げられる。なかでも、溶解性、乾燥性や塗装性に優れるという観点から、シクロヘキサノン、MIBKが好ましい。
 溶剤は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
〔solvent〕
The composition of the present invention preferably further contains a solvent from the viewpoint of good coatability.
A solvent will not be specifically limited if it can melt | dissolve each component mentioned above. For example, ketones such as methyl ethyl ketone (MEK), methyl isobutyketone (MIBK), cyclohexanone; alcohols such as propylene glycol monomethyl ether (PGME) and isopropyl alcohol (IPA); cycloalkanes such as cyclohexane; toluene, xylene And aromatic hydrocarbon compounds such as benzyl alcohol. Of these, cyclohexanone and MIBK are preferred from the viewpoint of excellent solubility, drying properties, and paintability.
A solvent can be used individually or in combination of 2 types or more, respectively.
 本発明においては、任意の溶剤の含有量は、塗工性の観点から、組成物の全量中、85~5質量%であるのが好ましい。 In the present invention, the content of an arbitrary solvent is preferably 85 to 5% by mass in the total amount of the composition from the viewpoint of coating properties.
 〔レベリング剤〕
 本発明の組成物は、硬化皮膜のブルーライトカット機能がより良好となる理由から、更に、レベリング剤を含むのが好ましい。
 レベリング剤としては、例えば、シリコーン系レベリング剤、アクリル系レベリング剤、ビニル系レベリング剤、フッ素系レベリング剤等が挙げられる。
 これらのうち、硬化皮膜の均一性を高め、結果として、硬化皮膜の透明性が良好となるという理由から、アクリル系レベリング剤を用いるのが好ましい。
(Leveling agent)
The composition of the present invention preferably further contains a leveling agent because the blue light cut function of the cured film becomes better.
Examples of the leveling agent include silicone leveling agents, acrylic leveling agents, vinyl leveling agents, and fluorine leveling agents.
Among these, it is preferable to use an acrylic leveling agent because the uniformity of the cured film is improved and, as a result, the transparency of the cured film is improved.
 本発明においては、任意のレベリング剤の含有量は、塗工性の観点から、組成物の全量中、0.01~3質量%であるのが好ましい。 In the present invention, the content of an arbitrary leveling agent is preferably 0.01 to 3% by mass in the total amount of the composition from the viewpoint of coatability.
 本発明の組成物は、本発明の目的を損なわない範囲で、例えば、紫外線吸収剤、充填剤、老化防止剤、帯電防止剤、難燃剤、接着性付与剤、分散剤、酸化防止剤、消泡剤、艶消し剤、光安定剤、染料、顔料のような添加剤を更に含有することができる。 The composition of the present invention is, for example, an ultraviolet absorber, a filler, an anti-aging agent, an antistatic agent, a flame retardant, an adhesion-imparting agent, a dispersant, an antioxidant, Additives such as foaming agents, matting agents, light stabilizers, dyes, pigments can be further contained.
 本発明の組成物の製造方法は特に限定されず、上述した多官能(メタ)アクリレート化合物(A)、(メタ)アクリル系ブロックポリマー(B)および光重合開始剤(C)ならびに任意の化合物(D)、化合物(E)、溶剤、レベリング剤および添加剤を均一に混合することによって製造することができる。 The production method of the composition of the present invention is not particularly limited, and the above-described polyfunctional (meth) acrylate compound (A), (meth) acrylic block polymer (B), photopolymerization initiator (C), and any compound ( D), a compound (E), a solvent, a leveling agent, and an additive can be manufactured by mixing uniformly.
[積層体]
 本発明の積層体は、基材と、硬化皮膜とを有する積層体であって、上記硬化皮膜が、上述した本発明の組成物を用いて形成される積層体である。
 本発明の積層体は、本発明の組成物を用いて形成される硬化皮膜を有するため、ブルーライトカット機能に優れる。
[Laminate]
The laminate of the present invention is a laminate having a substrate and a cured film, and the cured film is formed using the above-described composition of the present invention.
Since the laminated body of this invention has a cured film formed using the composition of this invention, it is excellent in a blue light cut function.
 次に、本発明の積層体の構成について、図1を用いて説明する。
 図1に示す積層体100は、基材102と、本発明の組成物を用いて形成される硬化皮膜104とを有する。
 ここで、基材および硬化皮膜の厚さは特に制限されないが、基材の厚さは50~300μm程度であるのが好ましく、硬化皮膜の厚さは0.1~100μm程度であるのが好ましい。
Next, the structure of the laminated body of this invention is demonstrated using FIG.
The laminated body 100 shown in FIG. 1 has the base material 102 and the cured film 104 formed using the composition of this invention.
Here, the thickness of the substrate and the cured film is not particularly limited, but the thickness of the substrate is preferably about 50 to 300 μm, and the thickness of the cured film is preferably about 0.1 to 100 μm. .
 〔基材〕
 上記基材は特に限定されず、その構成材料としては、例えば、プラスチック、ゴム、ガラス、金属、セラミック等が挙げられる。
 ここで、プラスチックは、熱硬化性樹脂および熱可塑性樹脂のいずれであってもよく、その具体例としては、ポリエチレンテレフタレート(PET)、シクロオレフィン系重合体(単独重合体、共重合体、水素添加物を含む。例えば、COPやCOC)、ポリメチルメタクリレート樹脂(PMMA樹脂)、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル・スチレン共重合樹脂、ポリ塩化ビニル樹脂、アセテート樹脂、ABS樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。
 また、上記基材は、例えば、コロナ処理のような表面処理がなされていてもよい。
 また、上記基材の形態は特に限定されないが、フィルム状であるのが好ましい。
〔Base material〕
The said base material is not specifically limited, As a constituent material, plastics, rubber | gum, glass, a metal, a ceramic etc. are mentioned, for example.
Here, the plastic may be either a thermosetting resin or a thermoplastic resin. Specific examples thereof include polyethylene terephthalate (PET), cycloolefin polymer (homopolymer, copolymer, hydrogenated). For example, COP and COC), polymethyl methacrylate resin (PMMA resin), polycarbonate resin, polystyrene resin, acrylonitrile / styrene copolymer resin, polyvinyl chloride resin, acetate resin, ABS resin, polyester resin, polyamide resin, etc. Is mentioned.
The base material may be subjected to a surface treatment such as a corona treatment.
The form of the substrate is not particularly limited, but is preferably a film.
 ここで、COCは、テトラシクロドデセンとエチレン等のオレフィンとの共重合体(シクロオレフィンコポリマー)である。また、COPは、ノルボルネン類を開環重合し、水素添加して得られる重合体(シクロオレフィンポリマー)である。
 以下に、COCおよびCOPの構造の例を示す。
Here, COC is a copolymer (cycloolefin copolymer) of tetracyclododecene and an olefin such as ethylene. COP is a polymer (cycloolefin polymer) obtained by ring-opening polymerization of norbornene and hydrogenation.
Examples of COC and COP structures are shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 〔樹脂層〕
 本発明の積層体は、上記硬化皮膜を構成する液晶性化合物の配向(ねじれ)状態が良好となり、上記基材との密着性も良好となる理由から、上記基材と上記硬化皮膜との間に、樹脂層を有しているのが好ましい。
 本発明においては、上記樹脂層を設ける場合、上記樹脂層は、表面張力が32mN/m以上のアクリル系樹脂層であるのが好ましい。
 ここで、表面張力は、硬化後のアクリル系樹脂層に、濡れペン(ペンナンバー30、32、34、36、38、40、42および44mN/mの8本セット、アルコテスト社製)を塗り、塗った後に2~5秒経過した際にペン筋の状態を目視により確認し、インクがはじかない最も大きなペンナンバーを選定して判定する。
[Resin layer]
In the laminate of the present invention, the orientation (twist) state of the liquid crystal compound constituting the cured film becomes good, and the adhesiveness with the base material is also good. Further, it is preferable to have a resin layer.
In the present invention, when the resin layer is provided, the resin layer is preferably an acrylic resin layer having a surface tension of 32 mN / m or more.
Here, the surface tension is applied to the cured acrylic resin layer with a wet pen (8 sets of pen numbers 30, 32, 34, 36, 38, 40, 42 and 44 mN / m, manufactured by Alcotest). When 2 to 5 seconds have elapsed after coating, the state of the pen streaks is visually confirmed, and the largest pen number that does not repel ink is selected and determined.
 このようなアクリル系樹脂層は、表面張力が32mN/m以上であれば、例えば、従来公知のハードコートに用いられる紫外線硬化型樹脂組成物(以下、「ハードコート用樹脂組成物」と略す。)を用いて形成されるアクリル系樹脂層であるのが好ましい。なお、表面張力の調整は、従来公知のレベリング剤を含有させることにより行うことができる。
 ここで、上記ハードコート用樹脂組成物としては、例えば、後述する多官能(メタ)アクリレート(a)および光重合開始剤(b)等を含有する組成物を用いることができる。
If such an acrylic resin layer has a surface tension of 32 mN / m or more, it is abbreviated as, for example, an ultraviolet curable resin composition (hereinafter referred to as “hard coat resin composition”) used in a conventionally known hard coat. ) Is preferably an acrylic resin layer formed using The surface tension can be adjusted by adding a conventionally known leveling agent.
Here, as the resin composition for hard coat, for example, a composition containing a polyfunctional (meth) acrylate (a) and a photopolymerization initiator (b) described later can be used.
 <多官能(メタ)アクリレート(a)>
 上記多官能(メタ)アクリレート(a)は、本発明の組成物が含有する上記多官能(メタ)アクリレート化合物(A)と同様のものを適宜選択して用いることができる。
<Polyfunctional (meth) acrylate (a)>
The said polyfunctional (meth) acrylate (a) can select and use the thing similar to the said polyfunctional (meth) acrylate compound (A) which the composition of this invention contains suitably.
 <光重合開始剤(b)>
 一方、上記光重合開始剤(b)は、光によって上記多官能(メタ)アクリレート(a)を重合することができるものであれば特に限定されず、本発明の組成物が含有する上記光重合開始剤(C)と同様のものを適宜選択して用いることができる。
<Photopolymerization initiator (b)>
On the other hand, the photopolymerization initiator (b) is not particularly limited as long as it can polymerize the polyfunctional (meth) acrylate (a) by light, and the photopolymerization contained in the composition of the present invention. A thing similar to an initiator (C) can be selected suitably, and can be used.
 上記ハードコート用樹脂組成物は、本発明の目的を損なわない範囲で、例えば、紫外線吸収剤、充填剤、老化防止剤、帯電防止剤、難燃剤、接着性付与剤、分散剤、酸化防止剤、消泡剤、レベリング剤、艶消し剤、光安定剤、染料、顔料のような添加剤を更に含有することができる。
 レベリング剤としては、例えば、シリコーン系レベリング剤、アクリル系レベリング剤、ビニル系レベリング剤、フッ素系レベリング剤等が挙げられる。
The hard coat resin composition is, for example, an ultraviolet absorber, a filler, an anti-aging agent, an antistatic agent, a flame retardant, an adhesion-imparting agent, a dispersant, and an antioxidant as long as the object of the present invention is not impaired. Further, additives such as an antifoaming agent, a leveling agent, a matting agent, a light stabilizer, a dye and a pigment can be further contained.
Examples of the leveling agent include silicone leveling agents, acrylic leveling agents, vinyl leveling agents, and fluorine leveling agents.
 また、上記樹脂層の厚さは、上記基材と上記硬化皮膜との密着性がより良好となる理由から、0.1~100μm程度であるのが好ましく、1~5μmであるのがより好ましい。 The thickness of the resin layer is preferably about 0.1 to 100 μm, more preferably 1 to 5 μm, because the adhesion between the substrate and the cured film becomes better. .
 〔ハードコート層〕
 本発明の積層体は、上記硬化皮膜の上記基材とは反対側の表面に、ハードコート層を有していてもよい。
 ここで、ハードコート層は、上述した樹脂層において説明したハードコート用樹脂組成物を用いて形成されるアクリル系樹脂層であるのが好ましく、その形成方法は、上述した樹脂層の形成方法と同様の方法が挙げられる。
 ハードコート層を有する場合、その厚さは特に限定されないが、0.01~50μm程度であるのが好ましく、1~10μmであるのがより好ましい。
[Hard coat layer]
The laminate of the present invention may have a hard coat layer on the surface of the cured film opposite to the substrate.
Here, the hard coat layer is preferably an acrylic resin layer formed using the hard coat resin composition described in the resin layer described above, and the formation method thereof is the same as the resin layer formation method described above. A similar method can be mentioned.
The thickness of the hard coat layer is not particularly limited, but is preferably about 0.01 to 50 μm, more preferably 1 to 10 μm.
 〔製造方法〕
 本発明の積層体の製造方法は、例えば、フィルム状の基材(上記樹脂層を有する場合は上記樹脂層)上に、本発明の組成物を塗工し、乾燥し、紫外線を照射する工程を有する方法が挙げられる。
 ここで、本発明の組成物を基材上に塗工する方法は特に限定されず、例えば、はけ塗り、流し塗り、浸漬塗り、スプレー塗り、スピンコート等の公知の塗布方法を採用できる。
 また、塗工後に乾燥させる温度は、20~110℃であるのが好ましい。
 また、乾燥後の紫外線照射は、本発明の組成物を硬化させる際に使用する紫外線の照射量(積算光量)として、速硬化性、作業性の観点から、50~3,000mJ/cm2が好ましい。紫外線を照射するために使用する装置は特に制限されない。例えば、従来公知のものが挙げられる。硬化させるに際し加熱を併用してもよい。
 なお、上記樹脂層の形成方法は、本発明の組成物と同様の方法で、基材上に塗工し、乾燥し、紫外線を照射する工程により形成することができる。
〔Production method〕
The method for producing a laminate of the present invention includes, for example, a step of coating the composition of the present invention on a film-like substrate (or the above resin layer if the resin layer is provided), drying, and irradiating ultraviolet rays The method which has this is mentioned.
Here, the method of coating the composition of the present invention on the substrate is not particularly limited, and for example, a known coating method such as brush coating, flow coating, dip coating, spray coating, spin coating or the like can be employed.
The temperature for drying after coating is preferably 20 to 110 ° C.
Further, the ultraviolet irradiation after drying is 50 to 3,000 mJ / cm 2 from the viewpoint of fast curability and workability as the irradiation amount (integrated light amount) of the ultraviolet rays used when the composition of the present invention is cured. preferable. The apparatus used for irradiating ultraviolet rays is not particularly limited. For example, a conventionally well-known thing is mentioned. Heating may be used in combination for curing.
In addition, the formation method of the said resin layer is a method similar to the composition of this invention, It can form by the process of apply | coating on a base material, drying, and irradiating an ultraviolet-ray.
 本発明の積層体は、例えば、電子画像表示装置、眼鏡レンズ、照明(特に、LED照明)用の保護カバー、太陽電池モジュール部材等に使用することができる。
 電子画像表示装置としては、例えば、パソコン、テレビ、タッチパネル、ウェラブル端末(例えば、眼鏡型、腕時計型などの身体に身につけることが可能なコンピューター端末)などのディスプレイ用途電子デバイス部品が挙げられる。
 本発明の積層体を電子画像表示装置等に内蔵または後付け(例えば外部からの貼付等)することができる。本発明の積層体を電子画像表示装置等に内蔵する場合、例えば反射板以外の部分に適用することができる。具体的には例えば、レンズシート、拡散シート、導光板に適用することができる。
 本発明の組成物を電子画像表示装置に直接適用して硬化皮膜を形成することができる。
The laminate of the present invention can be used for, for example, an electronic image display device, a spectacle lens, a protective cover for lighting (particularly LED lighting), a solar cell module member, and the like.
Examples of the electronic image display device include display-use electronic device components such as a personal computer, a television, a touch panel, and a wearable terminal (for example, a computer terminal that can be worn on the body such as a glasses type or a wrist watch type).
The laminated body of the present invention can be incorporated in an electronic image display device or the like, or can be retrofitted (for example, attached from the outside). When the laminate of the present invention is built in an electronic image display device or the like, it can be applied to a portion other than the reflector, for example. Specifically, for example, it can be applied to a lens sheet, a diffusion sheet, and a light guide plate.
The composition of the present invention can be directly applied to an electronic image display device to form a cured film.
 以下に、実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 〔実施例1~11および比較例1~7〕
 <組成物の調製>
 下記第1表の各成分を、第1表に示す組成(質量部)で、撹拌機を用いて混合し、組成物を調製した。
 <積層体の製造>
 上記のようにして得られた各組成物をポリエチレンテレフタレートフィルム(PET生地:商品名ルミラーU403、東レ社製、厚さ125μm)にバーコーターを用いて乾燥後の膜厚で1.5μmとなるようなクリアランス設定で塗布し、これを80℃の条件下で1分間乾燥させた後、これに川口スプリング製作所社製のGS UV SYSTEMを用いて紫外線(UV)を照射(UV照射条件:照度300mW/cm2、積算光量300mJ/cm2、UV照射装置は高圧水銀灯)して組成物を硬化させ、積層体を作製した。
[Examples 1 to 11 and Comparative Examples 1 to 7]
<Preparation of composition>
Each component of the following Table 1 was mixed with the composition (parts by mass) shown in Table 1 using a stirrer to prepare a composition.
<Manufacture of laminates>
Each composition obtained as described above is made to have a thickness of 1.5 μm after drying using a bar coater on a polyethylene terephthalate film (PET fabric: trade name Lumirror U403, manufactured by Toray Industries, Inc., thickness 125 μm). This was applied with a proper clearance setting, dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet rays (UV) using a GS UV SYSTEM manufactured by Kawaguchi Spring Mfg. Co., Ltd. (UV irradiation condition: illumination 300 mW / The composition was cured by cm 2 , an integrated light quantity of 300 mJ / cm 2 , and the UV irradiation device was a high-pressure mercury lamp) to prepare a laminate.
 <試験体の製造>
 積層体における硬化皮膜自体の評価に近づけるために、上記で作製した積層体と同じ条件で、ポリエチレンテレフタレートフィルム(PET生地:商品名ルミラーU403、東レ社製、厚さ125μm)上に、硬化後の硬化皮膜の膜厚が5μmまたは10μmとなるように、得られた各組成物を塗布し、硬化させたフィルム状の試験体を作製した。
 作製した積層体または試験体を用いて以下の評価を行った。結果を第1表に示す。
<Manufacture of specimen>
In order to approach the evaluation of the cured film itself in the laminate, on the polyethylene terephthalate film (PET fabric: trade name Lumirror U403, manufactured by Toray Industries, Inc., thickness 125 μm) under the same conditions as the laminate produced above, Each of the obtained compositions was applied and cured to prepare a film-like test body so that the film thickness of the cured film was 5 μm or 10 μm.
The following evaluation was performed using the produced laminated body or test body. The results are shown in Table 1.
 <硬度(鉛筆硬度)>
 JIS K5600-5-4:1999に準じて、750g荷重で、作製した試験体(厚み:5μm)の鉛筆硬度を測定した。
<Hardness (pencil hardness)>
According to JIS K5600-5-4: 1999, the pencil hardness of the produced test specimen (thickness: 5 μm) was measured under a load of 750 g.
 <耐屈曲性(巻きつけ試験)>
 作製した試験体(厚み:5μm,10μm)のPET基材側を円形容器に巻き付け、硬化皮膜に「ひび」が入る容器の直径の大きさを測定した。
 その結果、容器の直径が10mm未満である場合を耐屈曲性に優れるものとして「○」と評価し、容器の直径が10mm以上である場合を耐屈曲性に劣るものとして「×」と評価した。なお、下記第1表中に示す括弧内の数値に関して、例えば、「≦6.0」は直径6.0mmの円形容器を用いた場合でも硬化皮膜に「ひび」が入らなかったことを示し、「6.0」は直径6.0mmの円形容器を用いた際に硬化皮膜に「ひび」が入ったことを示す。
<Bending resistance (winding test)>
The PET base material side of the prepared specimen (thickness: 5 μm, 10 μm) was wrapped around a circular container, and the diameter of the container in which “cracks” were found in the cured film was measured.
As a result, the case where the diameter of the container was less than 10 mm was evaluated as “◯” as being excellent in bending resistance, and the case where the diameter of the container was 10 mm or more was evaluated as “x” as being poor in bending resistance. . Regarding the numerical values in parentheses shown in Table 1 below, for example, “≦ 6.0” indicates that “crack” did not enter the cured film even when a circular container having a diameter of 6.0 mm was used, “6.0” indicates that “crack” was found in the cured film when a circular container having a diameter of 6.0 mm was used.
 <ブルーライトの平均カット率>
 上述のとおり製造した積層体に、装置として日立分光光度計3900Hを用いて800~300nm領域の光を照射し、その385nm~495nm領域における平均透過率(%)を測定した。測定結果を下記式に当てはめて積層体のブルーライトの平均カット率を算出した。
 硬化皮膜のブルーライトの平均カット率(%)=100-(385~495nm領域の平均透過率)
<Average cut rate of blue light>
The laminate manufactured as described above was irradiated with light in the 800 to 300 nm region using a Hitachi spectrophotometer 3900H as an apparatus, and the average transmittance (%) in the 385 to 495 nm region was measured. The measurement result was applied to the following formula to calculate the average blue light cut rate of the laminate.
Average cut rate of blue light of cured film (%) = 100− (average transmittance in the region of 385 to 495 nm)
 <黄色味>
 上述のとおり製造した積層体の色差(L*a*b*表色系)について、ハンディタイプの簡易型分光色差計CM-500(コニカミノルタ社製)を用い、JIS Z 8730:2009で規定されている方法で測定した。b*値の測定結果を下記第1表に示す。
<Yellow taste>
The color difference (L * a * b * color system) of the laminate manufactured as described above is defined in JIS Z 8730: 2009 using a handy type simple spectral color difference meter CM-500 (manufactured by Konica Minolta). Measured by the method. The measurement results of b * values are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 第1表に示される各成分の詳細は以下のとおりである。
 ・ウレタン(メタ)アクリレートA1-1:ヘキサメチレンジイソシアネート(HDI)とジペンタエリスリトールペンタアクリレート(DPPA)とを反応させて得られるウレタンアクリレート(DPPA中の全活性水素基濃度に対するHDI中のイソシアネート基濃度の当量比(NCO/活性水素基)=0.6、重量平均分子量:944、1分子中の(メタ)アクリロイルオキシ基の数:8~10個)
 ・ネマチック液晶性化合物A2-1:上記式(2a)で表される化合物(n=4)
 ・カイラル剤A3-1:上記式(3a)で表される化合物(m=4)
The details of each component shown in Table 1 are as follows.
Urethane (meth) acrylate A1-1: urethane acrylate obtained by reacting hexamethylene diisocyanate (HDI) with dipentaerythritol pentaacrylate (DPPA) (isocyanate group concentration in HDI relative to the total active hydrogen group concentration in DPPA) Equivalent ratio (NCO / active hydrogen group) = 0.6, weight average molecular weight: 944, number of (meth) acryloyloxy groups in one molecule: 8 to 10)
Nematic liquid crystalline compound A2-1: compound represented by the above formula (2a) (n = 4)
Chiral agent A3-1: compound represented by the above formula (3a) (m = 4)
 ・(メタ)アクリル系ブロックポリマーB-1:クラリティ LA-2250(重量平均分子量:85000、ブロック鎖(b1)のガラス転移温度:-40℃、ブロック鎖(b2)のガラス転移温度:105℃、ブロック鎖(b2)の含有量:23質量%、クラレ社製)
 ・(メタ)アクリル系ブロックポリマーB-2:クラリティ LA-4285(重量平均分子量:85000、ブロック鎖(b1)のガラス転移温度:-40℃、ブロック鎖(b2)のガラス転移温度:105℃、ブロック鎖(b2)の含有量:33質量%、クラレ社製)
 ・(メタ)アクリル系ブロックポリマーB-3:クラリティ LA2140e(重量平均分子量:80000、ブロック鎖(b1)のガラス転移温度:-40℃、ブロック鎖(b2)のガラス転移温度:105℃、ブロック鎖(b2)の含有量:20質量%、クラレ社製)
 ・PMMAホモポリマー:ポリメチルメタクリレート(デルペット72、ガラス転移温度:105℃、旭化成ケミカルズ社製)
 ・PMMA-PBAランダム共重合体:メチルメタクリレート(MMA)とアクリル酸ブチル(BA)のランダム共重合体(PX47-6、MMA/BA=67/33、ガラス転移温度:30℃、亜細亜工業社製)
 ・PBAホモポリマー:アクリル酸ブチル重合体(重量平均分子量:50000、ガラス転移温度:-40℃、合成品)
(Meth) acrylic block polymer B-1: Clarity LA-2250 (weight average molecular weight: 85000, glass transition temperature of block chain (b1): −40 ° C., glass transition temperature of block chain (b2): 105 ° C. Block chain (b2) content: 23% by mass, manufactured by Kuraray Co., Ltd.
(Meth) acrylic block polymer B-2: Clarity LA-4285 (weight average molecular weight: 85000, glass transition temperature of block chain (b1): −40 ° C., glass transition temperature of block chain (b2): 105 ° C. Block chain (b2) content: 33% by mass, manufactured by Kuraray Co., Ltd.)
(Meth) acrylic block polymer B-3: Clarity LA2140e (weight average molecular weight: 80000, glass transition temperature of block chain (b1): −40 ° C., glass transition temperature of block chain (b2): 105 ° C., block chain (B2) content: 20% by mass, manufactured by Kuraray Co., Ltd.)
PMMA homopolymer: polymethyl methacrylate (Delpet 72, glass transition temperature: 105 ° C., manufactured by Asahi Kasei Chemicals)
PMMA-PBA random copolymer: random copolymer of methyl methacrylate (MMA) and butyl acrylate (BA) (PX47-6, MMA / BA = 67/33, glass transition temperature: 30 ° C., manufactured by Asia Industries, Ltd. )
PBA homopolymer: butyl acrylate polymer (weight average molecular weight: 50000, glass transition temperature: −40 ° C., synthetic product)
 ・光重合開始剤C-1:イルガキュア184(BASF社製)
 ・化合物D-1:ナフタルイミド骨格を有する化合物(上記式(1)におけるR1が、-CH2CH(CH2CH2CH32であり、R2が、-O-CH3である化合物)
 ・化合物E-1:ベンゾトリアゾール骨格を有する化合物(チヌビン Carbo protect、BASF社製)
 ・メチルエチルケトン:溶媒
 ・アニソール:溶媒
 ・酢酸エチル:溶媒
 ・シクロヘキサノン:溶媒
Photopolymerization initiator C-1: Irgacure 184 (manufactured by BASF)
Compound D-1: Compound having a naphthalimide skeleton (R 1 in the above formula (1) is —CH 2 CH (CH 2 CH 2 CH 3 ) 2 , and R 2 is —O—CH 3 . Compound)
Compound E-1: Compound having a benzotriazole skeleton (Tinuvin Carbo protect, manufactured by BASF)
・ Methyl ethyl ketone: solvent ・ Anisole: solvent ・ Ethyl acetate: solvent ・ Cyclohexanone: solvent
 第1表に示す結果から明らかなように、(メタ)アクリル系ブロックポリマーを配合しない場合は、硬度は良好であったが、耐屈曲性が劣ることが分かった(比較例1~3)。
 また、(メタ)アクリル系ブロックポリマーに代えて、ガラス転移温度が0℃以下となる(メタ)アクリル系のホモポリマーや、ガラス転移温度が60℃以上となる(メタ)アクリル系のホモポリマーや、ランダム共重合体を配合した場合には、硬度および耐屈曲性のいずれか一方が劣ることが分かった(比較例4~6)。
 更に、ガラス転移温度が0℃以下となる(メタ)アクリル系のホモポリマーと、ガラス転移温度が60℃以上となる(メタ)アクリル系のホモポリマーとをいずれも配合すると、硬度および耐屈曲性が劣ることが分かった(比較例7)。
As is clear from the results shown in Table 1, it was found that when the (meth) acrylic block polymer was not blended, the hardness was good but the bending resistance was poor (Comparative Examples 1 to 3).
In place of the (meth) acrylic block polymer, a (meth) acrylic homopolymer having a glass transition temperature of 0 ° C. or lower, a (meth) acrylic homopolymer having a glass transition temperature of 60 ° C. or higher, When a random copolymer was blended, it was found that either one of hardness and bending resistance was inferior (Comparative Examples 4 to 6).
Furthermore, when both a (meth) acrylic homopolymer having a glass transition temperature of 0 ° C. or lower and a (meth) acrylic homopolymer having a glass transition temperature of 60 ° C. or higher are blended, hardness and flex resistance Was found to be inferior (Comparative Example 7).
 これに対し、多官能(メタ)アクリレート化合物とともに、所望のブロック鎖を有する(メタ)アクリル系ブロックポリマーを配合して調製した組成物を用いると、硬化皮膜の硬度および耐屈曲性がいずれも良好となることが分かった(実施例1~11)。
 特に、実施例1と実施例4~6との対比から、ナフタルイミド骨格を有する化合物(D)、または、ベンゾトリアゾール骨格を有する化合物(E)を併用することにより、ブルーライトカット機能が発現することが分かった。
 また、実施例1と実施例7~9との対比から、多官能(メタ)アクリレート化合物としてネマチック液晶性化合物およびカイラル剤を用いることにより、ブルーライトカット機能が更に向上することが分かった。
 また、実施例5と実施例10との対比から、ハードセグメントであるブロック鎖(b2)の含有量が20質量%以上であると、硬度および耐屈曲性がより良好となることが分かった。
In contrast, when a composition prepared by blending a polyfunctional (meth) acrylate compound and a (meth) acrylic block polymer having a desired block chain is used, both the hardness and flex resistance of the cured film are good. (Examples 1 to 11).
In particular, from the comparison between Example 1 and Examples 4 to 6, the blue light cut function is exhibited by using the compound (D) having a naphthalimide skeleton or the compound (E) having a benzotriazole skeleton in combination. I understood that.
Further, from comparison between Example 1 and Examples 7 to 9, it was found that the blue light cut function was further improved by using a nematic liquid crystalline compound and a chiral agent as the polyfunctional (meth) acrylate compound.
Further, it was found from the comparison between Example 5 and Example 10 that when the content of the block chain (b2) which is a hard segment is 20% by mass or more, the hardness and the bending resistance are further improved.
 〔実施例12~15〕
 実施例1で調製した組成物を用いて、以下に示す方法で積層体Aおよび積層体Bを作製し、以下に示す方法で硬化皮膜の密着性を評価した。
[Examples 12 to 15]
Using the composition prepared in Example 1, laminate A and laminate B were prepared by the following method, and the adhesion of the cured film was evaluated by the following method.
 <積層体Aの製造-基材(PETフィルム)>
 ポリエチレンテレフタレートフィルム(PET生地:商品名U46、東レ社製、厚さ125μm)に、下記第2表に示す品番のアクリル系樹脂組成物(いずれも横浜ゴム社製)をバーコーターを用いて乾燥後の膜厚で1.5μmとなるようなクリアランス設定で塗布し、これを80℃の条件下で1分間乾燥させた後、これに川口スプリング製作所社製のGS UV SYSTEMを用いて紫外線(UV)を照射(UV照射条件:照度300mW/cm2、積算光量300mJ/cm2、UV照射装置は高圧水銀灯)して硬化させ、PET基材上にアクリル系樹脂層を形成した。形成したアクリル系樹脂層に、濡れペン(ペンナンバー30、32、34、36、38、40、42および44mN/mの8本セット、アルコテスト社製)を塗り、塗った後に2~5秒経過した際にペン筋の状態を目視により確認し、インクがはじかない最も大きなペンナンバーを選定し、表面張力を決定した。
 次いで、実施例1で調製した組成物を上記アクリル系樹脂層にバーコーターを用いて乾燥後の膜厚で1.5μmとなるようなクリアランス設定で塗布し、これを80℃の条件下で1分間乾燥させた後、これに川口スプリング製作所社製のGS UV SYSTEMを用いて紫外線(UV)を照射(UV照射条件:照度300mW/cm2、積算光量300mJ/cm2、UV照射装置は高圧水銀灯)して組成物を硬化させ、積層体を作製した。
<Manufacture of laminate A-base material (PET film)>
After drying a polyethylene terephthalate film (PET fabric: trade name U46, manufactured by Toray Industries, Inc., thickness 125 μm) with an acrylic resin composition having the product numbers shown in Table 2 below (both manufactured by Yokohama Rubber Co., Ltd.) using a bar coater. The film was applied with a clearance setting such that the film thickness was 1.5 μm, dried for 1 minute under the condition of 80 ° C., and then UV (UV) using GS UV SYSTEM manufactured by Kawaguchi Spring Manufacturing Co., Ltd. (UV irradiation conditions: illuminance: 300 mW / cm 2 , integrated light quantity: 300 mJ / cm 2 , UV irradiation apparatus: high-pressure mercury lamp) and cured to form an acrylic resin layer on the PET substrate. Apply a wet pen (8 sets of pen numbers 30, 32, 34, 36, 38, 40, 42, and 44 mN / m, manufactured by Alcotest) to the formed acrylic resin layer, and apply for 2 to 5 seconds. When the time passed, the state of the pen streaks was visually confirmed, the largest pen number that did not repel ink was selected, and the surface tension was determined.
Next, the composition prepared in Example 1 was applied to the acrylic resin layer using a bar coater with a clearance setting such that the film thickness after drying was 1.5 μm. After drying for a minute, this was irradiated with ultraviolet rays (UV) using a GS UV SYSTEM manufactured by Kawaguchi Spring Mfg. Co., Ltd. (UV irradiation conditions: illuminance 300 mW / cm 2 , integrated light quantity 300 mJ / cm 2 , UV irradiation apparatus was a high-pressure mercury lamp The composition was cured to prepare a laminate.
 <積層体Bの製造-基材(シクロオレフィン)>
 基材として、コロナ処理が施されたシクロオレフィンフィルム(COP生地:商品名ZF16-100、日本ゼオン社製、厚さ100μm)を用いた以外は、積層体Aと同様の方法により、積層体Bを作製した。
<Production of Laminate B-Base Material (Cycloolefin)>
Laminate B was prepared in the same manner as laminate A except that a cycloolefin film (COP fabric: trade name ZF16-100, manufactured by Nippon Zeon Co., Ltd., thickness 100 μm) subjected to corona treatment was used as the substrate. Was made.
 <密着性>
 作製した積層体AおよびBについて、JIS K5400に基づいた碁盤目剥離試験を行い、密着性を評価した。
 具体的には、カッターを用いて各積層体の硬化皮膜の部分と樹脂層の部分のみに1mmピッチで切れ込みを入れ、基盤目を100個(10×10)を作り、基盤目上にセロハン粘着テープ(幅18mm)を完全に付着させ、直ちにテープの一端を基板に対して直角に保ちながら瞬間的に引き離し、完全に剥がれないで残った基盤目の数を調べた。残った基盤目の数が75個以上の場合は密着性に優れるものとして「○」と評価し、75個未満の場合は密着性にやや劣るものとして「×」と評価した。結果を下記第2表に示す。
<Adhesion>
The produced laminates A and B were subjected to a cross-cut peel test based on JIS K5400 to evaluate the adhesion.
Specifically, using a cutter, cut only 1mm pitch in the cured film part and resin layer part of each laminate to make 100 bases (10x10), and cellophane adhesive on the bases A tape (18 mm in width) was completely attached, and immediately pulled off while keeping one end of the tape at a right angle to the substrate, and the number of remaining bases without being completely peeled was examined. When the number of remaining bases was 75 or more, it was evaluated as “◯” as being excellent in adhesion, and when it was less than 75, it was evaluated as “x” as being slightly inferior in adhesion. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 第2表に示す結果から、積層体として、基材と硬化皮膜との間に樹脂層を設ける場合、樹脂層を構成するアクリル系ポリマーの表面張力が32mN/m以上であると、基材と硬化皮膜との密着性が良好となることが分かった。 From the results shown in Table 2, when a resin layer is provided between the substrate and the cured film as a laminate, the surface tension of the acrylic polymer constituting the resin layer is 32 mN / m or more. It was found that the adhesion with the cured film was good.
 100 積層体
 102 基材
 104 硬化皮膜
100 Laminated body 102 Base material 104 Cured film

Claims (13)

  1.  1分子中に(メタ)アクリロイルオキシ基を2個以上有する多官能(メタ)アクリレート化合物(A)と、(メタ)アクリル系ブロックポリマー(B)と、光重合開始剤(C)とを含有し、
     前記(メタ)アクリル系ブロックポリマー(B)が、ガラス転移温度が0℃以下となるブロック鎖(b1)と、ガラス転移温度が60℃以上となるブロック鎖(b2)とを有する、紫外線硬化型樹脂組成物。
    It contains a polyfunctional (meth) acrylate compound (A) having two or more (meth) acryloyloxy groups in one molecule, a (meth) acrylic block polymer (B), and a photopolymerization initiator (C). ,
    The (meth) acrylic block polymer (B) has a block chain (b1) having a glass transition temperature of 0 ° C. or lower and a block chain (b2) having a glass transition temperature of 60 ° C. or higher. Resin composition.
  2.  前記多官能(メタ)アクリレート化合物(A)が、1分子中にウレタン結合と2個以上の(メタ)アクリロイルオキシ基とを有するウレタン(メタ)アクリレート(A1)である、請求項1に記載の紫外線硬化型樹脂組成物。 The polyfunctional (meth) acrylate compound (A) is a urethane (meth) acrylate (A1) having a urethane bond and two or more (meth) acryloyloxy groups in one molecule. UV curable resin composition.
  3.  前記多官能(メタ)アクリレート化合物(A)が、少なくとも、1分子中に2個以上の(メタ)アクリロイルオキシ基を有するネマチック液晶性化合物(A2)、および、1分子中に2個以上の(メタ)アクリロイルオキシ基を有するカイラル剤(A3)である、請求項1または2に記載の紫外線硬化型樹脂組成物。 The polyfunctional (meth) acrylate compound (A) is at least a nematic liquid crystalline compound (A2) having two or more (meth) acryloyloxy groups in one molecule, and two or more ( The ultraviolet curable resin composition according to claim 1, which is a chiral agent (A3) having a (meth) acryloyloxy group.
  4.  前記ブロック鎖(b1)のガラス転移温度が-40~-50℃であり、
     前記ブロック鎖(b2)のガラス転移温度が100~120℃であり、
     前記(メタ)アクリル系ブロックポリマー(B)が、少なくとも、前記ブロック鎖(b2)、前記ブロック鎖(b1)および前記ブロック鎖(b2)をこの順に有し、かつ、前記ブロック鎖(b2)を20質量%以上含有するブロックポリマーである、請求項1~3のいずれかに記載の紫外線硬化型樹脂組成物。
    The glass transition temperature of the block chain (b1) is −40 to −50 ° C.,
    The glass transition temperature of the block chain (b2) is 100 to 120 ° C.,
    The (meth) acrylic block polymer (B) has at least the block chain (b2), the block chain (b1), and the block chain (b2) in this order, and the block chain (b2). 4. The ultraviolet curable resin composition according to claim 1, which is a block polymer containing 20% by mass or more.
  5.  前記(メタ)アクリル系ブロックポリマー(B)のJIS A硬度が50以上である、請求項1~4のいずれかに記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition according to any one of claims 1 to 4, wherein the (meth) acrylic block polymer (B) has a JIS A hardness of 50 or more.
  6.  更に、下記式(1)で表されるナフタルイミド骨格を有する化合物(D)を含有する、請求項1~5のいずれかに記載の紫外線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     (式(1)中、R1は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、R2は、水素原子またはヘテロ原子を有していてもよい炭化水素基を表し、複数のR2は同一であっても異なっていてもよい。)
    6. The ultraviolet curable resin composition according to claim 1, further comprising a compound (D) having a naphthalimide skeleton represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 1 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom, and R 2 represents a hydrocarbon group which may have a hydrogen atom or a hetero atom. The plurality of R 2 may be the same or different.)
  7.  更に、ベンゾトリアゾール骨格を有する化合物(E)を含有する、請求項1~6のいずれかに記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition according to any one of claims 1 to 6, further comprising a compound (E) having a benzotriazole skeleton.
  8.  前記ネマチック液晶性化合物(A2)が下記式(2a)で表される化合物であり、前記カイラル剤(A3)が下記式(3a)で表される化合物である、請求項3~7のいずれかに記載の紫外線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

     (式(2a)中、nは2~5の整数を表し、式(3a)中、mは2~5の整数を表す。)
    The nematic liquid crystalline compound (A2) is a compound represented by the following formula (2a), and the chiral agent (A3) is a compound represented by the following formula (3a). The ultraviolet curable resin composition described in 1.
    Figure JPOXMLDOC01-appb-C000002

    (In formula (2a), n represents an integer of 2 to 5, and in formula (3a), m represents an integer of 2 to 5)
  9.  前記(メタ)アクリル系ブロックポリマー(B)の含有量が、前記多官能(メタ)アクリレート化合物(A)100質量部に対して0.1~10質量部である、請求項1~8のいずれかに記載の紫外線硬化型樹脂組成物。 The content of the (meth) acrylic block polymer (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound (A). An ultraviolet curable resin composition according to claim 1.
  10.  前記カイラル剤(A3)の含有量が、前記ネマチック液晶性化合物(A2)および前記カイラル剤(A3)の合計質量に対して1.0~30.0質量%である、請求項3~9のいずれかに記載の紫外線硬化型樹脂組成物。 The content of the chiral agent (A3) is 1.0 to 30.0 mass% with respect to the total mass of the nematic liquid crystal compound (A2) and the chiral agent (A3). The ultraviolet curable resin composition in any one.
  11.  基材と、硬化皮膜とを有する積層体であって、
     前記硬化皮膜が、請求項1~10のいずれかに記載の紫外線硬化型樹脂組成物を用いて形成される、積層体。
    A laminate having a substrate and a cured film,
    A laminate in which the cured film is formed using the ultraviolet curable resin composition according to any one of claims 1 to 10.
  12.  前記基材と前記硬化皮膜との間に、更に樹脂層を有し、
     前記樹脂層が、表面張力が32mN/m以上のアクリル系樹脂層である、請求項11に記載の積層体。
    Between the base material and the cured film, further having a resin layer,
    The laminate according to claim 11, wherein the resin layer is an acrylic resin layer having a surface tension of 32 mN / m or more.
  13.  電子画像表示装置または眼鏡レンズに使用される請求項11または12に記載の積層体。 The laminate according to claim 11 or 12, which is used for an electronic image display device or a spectacle lens.
PCT/JP2014/082858 2013-12-27 2014-12-11 Ultraviolet curable resin composition, and laminate WO2015098549A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167015417A KR20160102986A (en) 2013-12-27 2014-12-11 Ultraviolet curable resin composition, and laminate
JP2015554734A JP6597310B2 (en) 2013-12-27 2014-12-11 Ultraviolet curable resin composition and laminate
CN201480075434.6A CN106029702A (en) 2013-12-27 2014-12-11 Ultraviolet curable resin composition, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273316 2013-12-27
JP2013-273316 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098549A1 true WO2015098549A1 (en) 2015-07-02

Family

ID=53478413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082858 WO2015098549A1 (en) 2013-12-27 2014-12-11 Ultraviolet curable resin composition, and laminate

Country Status (5)

Country Link
JP (1) JP6597310B2 (en)
KR (1) KR20160102986A (en)
CN (1) CN106029702A (en)
TW (1) TWI665252B (en)
WO (1) WO2015098549A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002670A1 (en) * 2014-06-30 2016-01-07 横浜ゴム株式会社 Ultraviolet-curable resin composition and laminate using same
JP2017066368A (en) * 2015-09-29 2017-04-06 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure, and method for producing composite structure, and method for decomposing the same
JP2017161642A (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Transfer sheet, method for producing transfer sheet, optical laminate, and method for producing optical laminate
JP2017165807A (en) * 2016-03-14 2017-09-21 アイカ工業株式会社 Photocurable resin composition for tape
JP2018529807A (en) * 2015-09-04 2018-10-11 アルケマ フランス Photopolymerizable adhesive composition
EP3442047A1 (en) * 2017-08-09 2019-02-13 Samsung Display Co., Ltd. Organic light-emitting display apparatus
US11641754B2 (en) 2017-08-09 2023-05-02 Samsung Display Co., Ltd. Organic light-emitting device and electronic apparatus including the same
WO2023171546A1 (en) * 2022-03-10 2023-09-14 株式会社クラレ Thermoplastic resin composition, molded article, and laminated structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800376A (en) * 2016-12-29 2017-06-06 武汉华星光电技术有限公司 One kind filter blue light resists dizzy hand-set lid and preparation method thereof
KR101953367B1 (en) * 2017-12-07 2019-05-24 삼성디스플레이 주식회사 Photocurable resin composition and fabrication method of window member using the same
CN110305286B (en) * 2019-07-08 2021-08-31 东华大学 Waterborne polyurethane based on 1, 8-naphthalimide substituted s-triazine diol derivative and preparation and application thereof
JP7355559B2 (en) * 2019-08-28 2023-10-03 住友理工株式会社 Radical curable sealing material for fuel cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265207A (en) * 1991-11-19 1993-10-15 Wr Grace & Co Connecticut Photosensitive elastic polymer composition for flexographic printing plate being able to be treated in solution
JP2007199532A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Pattern forming method
JP2010222591A (en) * 2010-07-09 2010-10-07 Kuraray Co Ltd Curable resin composition, and flexographic printing plate material using the same
WO2010126123A1 (en) * 2009-04-30 2010-11-04 電気化学工業株式会社 Curable resin composition, adhesive composition, and cured object or composite
JP2014199414A (en) * 2013-03-11 2014-10-23 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured coating film formed by using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619848B2 (en) * 2005-03-31 2011-01-26 株式会社クラレ Curable resin composition and shaped article using the same
JP2013043907A (en) 2011-08-23 2013-03-04 Aica Kogyo Co Ltd Ultraviolet-curable resin composition and hard coat film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265207A (en) * 1991-11-19 1993-10-15 Wr Grace & Co Connecticut Photosensitive elastic polymer composition for flexographic printing plate being able to be treated in solution
JP2007199532A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Pattern forming method
WO2010126123A1 (en) * 2009-04-30 2010-11-04 電気化学工業株式会社 Curable resin composition, adhesive composition, and cured object or composite
JP2010222591A (en) * 2010-07-09 2010-10-07 Kuraray Co Ltd Curable resin composition, and flexographic printing plate material using the same
JP2014199414A (en) * 2013-03-11 2014-10-23 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured coating film formed by using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002670A1 (en) * 2014-06-30 2016-01-07 横浜ゴム株式会社 Ultraviolet-curable resin composition and laminate using same
JP2018529807A (en) * 2015-09-04 2018-10-11 アルケマ フランス Photopolymerizable adhesive composition
JP2017066368A (en) * 2015-09-29 2017-04-06 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure, and method for producing composite structure, and method for decomposing the same
US10688701B2 (en) 2016-03-08 2020-06-23 Fujifilm Corporation Transfer sheet, method for producing transfer sheet, optical laminate, and method for producing optical laminate
JP2017161642A (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Transfer sheet, method for producing transfer sheet, optical laminate, and method for producing optical laminate
EP3428699A4 (en) * 2016-03-08 2019-01-23 FUJIFILM Corporation Transfer sheet, method for producing transfer sheet, optical laminate and method for producing optical laminate
JP2017165807A (en) * 2016-03-14 2017-09-21 アイカ工業株式会社 Photocurable resin composition for tape
CN109390379A (en) * 2017-08-09 2019-02-26 三星显示有限公司 Organic light-emitting display device
US10381596B2 (en) 2017-08-09 2019-08-13 Samsung Display Co., Ltd. Organic light-emitting display apparatus with an encapsulation unit
EP3442047A1 (en) * 2017-08-09 2019-02-13 Samsung Display Co., Ltd. Organic light-emitting display apparatus
US11641754B2 (en) 2017-08-09 2023-05-02 Samsung Display Co., Ltd. Organic light-emitting device and electronic apparatus including the same
CN109390379B (en) * 2017-08-09 2023-08-08 三星显示有限公司 Organic light emitting display device
WO2023171546A1 (en) * 2022-03-10 2023-09-14 株式会社クラレ Thermoplastic resin composition, molded article, and laminated structure

Also Published As

Publication number Publication date
JP6597310B2 (en) 2019-10-30
CN106029702A (en) 2016-10-12
JPWO2015098549A1 (en) 2017-03-23
TWI665252B (en) 2019-07-11
TW201529693A (en) 2015-08-01
KR20160102986A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6597310B2 (en) Ultraviolet curable resin composition and laminate
JP6481530B2 (en) Ultraviolet curable resin composition and laminate
JP5850030B2 (en) Laminated body using ultraviolet curable resin composition
JP7158385B2 (en) Adhesive composition and adhesive film
US10308831B2 (en) Photocurable composition
JP5459446B1 (en) Ultraviolet curable resin composition and laminate using the same
JP6708126B2 (en) Ultraviolet curable resin composition and laminate using the same
CN103249796A (en) Optical adhesive resin composition, optical adhesive sheet, image display device, method for producing optical adhesive sheet, and method for producing image display device
JP2009128770A (en) Anti-reflection film having uv absorption, and manufacturing method thereof
TW200837160A (en) Anti-glare hard coating solution and hard coating film with high hardness using the same
US20210269563A1 (en) Decorative film for molding, method for producing same, molded article, and molding method
WO2016002670A1 (en) Ultraviolet-curable resin composition and laminate using same
JP6229802B2 (en) Ultraviolet curable resin composition and laminate
TW201514259A (en) Coating material composition for adjusting refractive index and laminate thereof
JP6631523B2 (en) UV curable resin composition and laminate using the same
JP2017102407A (en) Hard coat film, polarizing plate and transmissive liquid crystal display using the same, and manufacturing method of hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554734

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167015417

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875705

Country of ref document: EP

Kind code of ref document: A1