WO2015098545A1 - Hybrid type work vehicle - Google Patents

Hybrid type work vehicle Download PDF

Info

Publication number
WO2015098545A1
WO2015098545A1 PCT/JP2014/082846 JP2014082846W WO2015098545A1 WO 2015098545 A1 WO2015098545 A1 WO 2015098545A1 JP 2014082846 W JP2014082846 W JP 2014082846W WO 2015098545 A1 WO2015098545 A1 WO 2015098545A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative
torque
power
motor
speed
Prior art date
Application number
PCT/JP2014/082846
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 歌代
徳孝 伊藤
秀一 森木
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2015098545A1 publication Critical patent/WO2015098545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2083Control of vehicle braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a hybrid work vehicle.
  • the work vehicle of Patent Document 1 does not have a speed stage of a transmission unlike a torque converter vehicle because of a configuration in which a traveling motor is driven to travel. Therefore, for an operator who is used to a torque converter vehicle, a work vehicle driven by a traveling motor has a different traveling feeling. Therefore, if the hybrid vehicle is set to the same speed stage as that of the torque converter vehicle and the brake force corresponding to the driving feeling corresponding to the speed stage similar to that of the torque converter vehicle is obtained by the regenerative braking force, the output performance of the traveling motor is obtained. Regenerative braking force exceeding 1 is required. During power running, it is possible to set a driving feeling corresponding to the speed stage similar to that of a conventional torque converter vehicle.
  • the hybrid work vehicle includes a traveling motor that applies traveling driving torque to the wheels, and a power storage device that is charged by regenerative power generated by the traveling motor and supplies driving power to the traveling motor.
  • the power is driven by the engine to generate power.
  • the generator motor is driven by regenerative power from the traveling motor, and is driven by being mechanically connected to the generator motor and the engine.
  • a hydraulic pump that supplies pressure oil to the vehicle, a speed stage setting device that sets one of a plurality of speed stages, and a control device that controls driving of the traveling motor and the generator motor. The control apparatus is set for each speed stage.
  • the hybrid work vehicle Based on the characteristics of the drive torque with respect to the set number of revolutions and the characteristics of the regenerative braking force with respect to the vehicle speed set for each speed stage. It calculates a smaller large regenerative braking force with a driving control unit that performs regeneration control.
  • the hybrid work vehicle further includes a braking device that applies a frictional braking force to the wheels, and the control device has a regenerative braking force calculated in the regenerative control, It is preferable to further include a braking control unit that controls the braking device so as to add an insufficient braking force when the vehicle speed exceeds an upper limit value that is set to a smaller value as the vehicle speed increases.
  • the control device determines the regenerative power charged in the power storage device according to the rotational speed. It is preferable to further include a charge control unit that performs regenerative power restriction control to limit the regenerative braking force, and the upper limit value of the regenerative braking force is determined by regenerative power restriction control.
  • the control device compares the electric power that can be charged to the power storage device in a region where the rotational speed of the generator motor is higher than a predetermined value.
  • the generator motor When the regenerative power is large, the generator motor is controlled so that the surplus power is consumed by the generator motor, and the reduction amount of the regenerative power consumed by the generator motor according to the amount of deviation between the rotation speed and the predetermined value It is preferable to further include a power generation control unit that performs control to greatly reduce the deviation amount as the deviation amount increases, and the braking control unit performs control to apply a frictional braking force corresponding to the reduction amount of the regenerative power to the wheels.
  • the control device includes an accelerator required torque calculated based on an accelerator pedal depression amount and a vehicle speed, and a brake pedal.
  • the travel request torque is calculated based on the regenerative braking torque calculated based on the stepping amount of the engine and the regenerative braking torque calculated based on the speed stage, and the rotation is performed in a region where the rotational speed of the generator motor is higher than the predetermined value.
  • the amount of regenerative power consumed by the generator motor is calculated according to the difference between the number and the predetermined value, the regenerative reduction torque is calculated by converting the amount of regenerative power reduction by the number of revolutions of the traveling motor, and the required travel torque Subtract the regenerative reduction torque calculated from, calculate the running motor torque command, and subtract the running motor torque command from the required travel torque to calculate the insufficient braking torque Calculates the braking signal the braking force braking device adds the missing brake control device preferably controls the driving of the braking device by the braking signal.
  • the characteristics of the regenerative braking force with respect to the vehicle speed are made different for each of the plurality of speed stages, and a larger regenerative braking force is obtained as the set speed stage is smaller. Therefore, when descending a steep slope, a sufficient regenerative braking force that matches the speed stage can be obtained in the same manner as a conventional torque converter vehicle.
  • FIG. 2 is an external side view of a hybrid work vehicle according to an embodiment of the present invention.
  • Circuit block diagram of hybrid work vehicle according to embodiment Block diagram explaining the functions of the main controller The figure which shows an example of an allowable charging power map Figure showing an example of the pump request flow map The figure which shows an example of an accelerator demand torque map The figure explaining regenerative braking power with respect to vehicle speed The flowchart explaining operation
  • the circuit diagram explaining the hydraulic circuit of the hybrid type work vehicle by 2nd Embodiment The figure explaining the relationship between the rotation speed of a cooling fan and the temperature of hydraulic fluid The figure explaining the rotation speed of the cooling fan controlled according to the temperature of hydraulic oil and the required regenerative braking force The flowchart explaining operation
  • FIG. 1 is an external side view of a wheel loader shown as an example of a hybrid work vehicle 200 according to the embodiment
  • FIG. 2 is a circuit block diagram showing a main configuration of the hybrid work vehicle 200.
  • a hybrid work vehicle 200 includes a front vehicle body 202 having an arm 201, a bucket 20, front wheels 18a, 18b and the like, and a rear vehicle body 203 having a cab 19, rear wheels 18c, 18d and the like.
  • the arm 201 rotates up and down (up and down) by driving the arm cylinder 13
  • the bucket 20 rotates up and down (dump or cloud) by driving the bucket cylinder 14.
  • the front wheels 18a and 18b and the rear wheels 18c and 18d will be described as wheels 18 when collectively referred to.
  • This hybrid work vehicle 200 is an articulated work vehicle in which a front vehicle body 202 and a rear vehicle body 203 are bent at a connecting shaft.
  • One end and the other end of a pair of steering cylinders (hereinafter referred to as steering cylinders) 12 around the connecting shaft are rotatably locked to the front vehicle body 202 and the rear vehicle body 203, respectively.
  • One of the pair of steering cylinders 12 is extended and the other is retracted by a hydraulic device to be described later, thereby rotating the front vehicle body 202 and the rear vehicle body 203 about the connecting shaft.
  • the relative mounting angle between the front vehicle body 202 and the rear vehicle body 203 changes, and the vehicle body bends and turns.
  • the hybrid work vehicle 200 includes an engine 1, an engine control device (hereinafter referred to as an engine controller) 2 that controls driving of the engine 1, a power storage device (hereinafter referred to as a capacitor) 3, a converter 4, and a generator motor 5. , A power generation inverter 6, traveling motors 7 F and 7 R, traveling inverters 8 F and 8 R, a hydraulic pump 9, an operating device 31, and a shift switch 40.
  • the hybrid work vehicle 200 includes a main control device (hereinafter referred to as a main controller) 100 that controls the above components.
  • the hydraulic pump 9 is a variable displacement hydraulic pump that supplies pressure oil to each hydraulic actuator of the hybrid work vehicle 200, that is, the steering cylinder 12, the lift cylinder 13, and the bucket cylinder 14.
  • the rotation shaft of the hydraulic pump 9 is provided coaxially with the drive shaft of the engine 1.
  • hydraulic oil in the oil tank 10 is supplied to the steering cylinder 12, the lift cylinder 13, and the bucket cylinder 14 via the control valve 11.
  • the control valve 11 is a control valve that controls the flow of hydraulic oil to the bottom chamber or the rod chamber of the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14.
  • the control valve 11 is controlled by a signal (hydraulic signal or electric signal) output from an operating device 31 installed in the cab 19.
  • the hydraulic fluid guided from the hydraulic pump 9 to the control valve 11 is distributed to the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 in accordance with the operation of the operating device 31.
  • a rotor is attached to a rotating shaft that is coaxial with the drive shaft of the engine 1, and a stator is disposed on the outer periphery of the rotor.
  • the generator motor 5 is driven in either a generator mode or a motor mode. When the generator mode is selected, the generator motor 5 generates power when the rotor is rotated by the engine 1.
  • the generator inverter 6 converts AC power generated by the generator motor 5 into DC power having a predetermined voltage.
  • the generator motor 5 is supplied with AC power from the generator inverter 6 and functions as a motor.
  • the rotating shaft of the generator motor 5 is connected to the rotating shaft of the engine 1 and the rotating shaft of the hydraulic pump 9. Therefore, the output torque of the generator motor 5 is given to the hydraulic pump 9.
  • the converter 4 boosts DC power obtained from the electric charge stored in the capacitor 3 to a predetermined voltage and supplies it to the generator motor 5 and the traveling motors 7F and 7R.
  • the converter 4 is controlled by a main controller 100 described later.
  • a secondary battery such as a lead storage battery or a lithium ion battery may be used.
  • a power generation brake such as a retarder may be connected to the power line between the power generation inverter 6 and the travel inverter 8. In this case, the regenerative energy is converted into heat.
  • the traveling motors 7F and 7R are connected to the capacitor 3 and the generator motor 5 via a power line, and drive the wheels 18 with electric power supplied from one or both of the capacitor 3 and the generator motor 5.
  • the traveling motors 7F and 7R are powered by driving inverters 8F and 8R described later.
  • the power running torque generated by the power running drive is transmitted to the front wheels 18a, 18b and the rear wheels 18c, 18d via the propeller shafts 15f, 15r, the differential gears 16f, 16r and the drive shafts 17a, 17b, 17c, 17d, and the hybrid work
  • the vehicle 200 is accelerated.
  • the regenerative torque (braking torque) generated by the traveling electric motors 7F and 7R is transmitted to the wheels 18 and the hybrid work vehicle 200 is decelerated.
  • the traveling inverters 8F and 8R are driven by supplying AC traveling driving power to the traveling motors 7F and 7R during traveling acceleration, respectively. Further, the traveling inverters 8F and 8R convert the regenerative power (AC power) generated by the traveling motors 7F and 7R during traveling braking into DC power having a predetermined voltage and supply it to the capacitor 3.
  • Converter 4 power generation inverter 6 and traveling inverters 8F and 8R are connected to the same power line and configured to be able to supply power to each other.
  • Converter 4 also monitors the DC voltage (DC voltage) of a smoothing capacitor (not shown) attached to the power line, and controls charging / discharging of capacitor 3 so as to keep the DC voltage of the smoothing capacitor constant.
  • the operating device 31 provided in the cab 19 includes a steering wheel, a lift lever, a bucket lever, and the like.
  • the steering wheel is operated when the steering cylinder 12 is expanded and contracted.
  • the operator operates the steering wheel to expand and contract the steering cylinder 12 to adjust the steering angle of the hybrid work vehicle 200 and turn the hybrid work vehicle 200.
  • the lift lever is operated when the lift cylinder 13 is expanded and contracted.
  • the bucket lever is operated when the bucket cylinder 14 is expanded and contracted.
  • the operator operates the lift lever, bucket lever and the like to expand and contract the lift cylinder 13 and the bucket cylinder 14 to control the height and inclination of the bucket 20 to perform excavation and loading work.
  • the cab 19 is provided with a shift switch 40, an accelerator pedal (not shown), a brake pedal, and a forward / reverse switch operation unit.
  • the operator can set the speed stage between the first speed and the third speed by operating the shift switch 40, for example.
  • the shift switch 40 outputs a signal (speed stage signal) indicating the set speed stage to the main controller 100 described later.
  • the operator can drive the hybrid work vehicle 200 by driving the wheels 18 by operating the shift switch 40, the accelerator pedal, the brake pedal, and the forward / reverse switch operation unit.
  • the depression amount of the accelerator pedal is detected by a sensor 290 that outputs an accelerator signal according to the depression amount of the accelerator pedal, and the depression amount of the brake pedal is detected by a sensor 291 that outputs a brake signal according to the depression amount of the brake pedal.
  • These sensors 290 and 291 respectively output an accelerator signal and a brake signal to the main controller 100 described later in accordance with an operation amount by the operator, that is, a depression amount.
  • the forward / backward switch 292 detects that the forward / reverse switch operation unit has been operated forward or backward, and the forward / backward switch 292 transmits a forward signal or a reverse signal to the main controller 100.
  • a predetermined hydraulic pressure is introduced into the hydraulic brake control valves 35a and 35b according to the operation of the brake pedal, and the hydraulic brakes 36a and 36b, which are disc brakes, generate frictional force.
  • the rotation of the wheels 18a and 18b is mechanically braked.
  • the regenerative braking force by the regenerative torque of the traveling motors 7F and 7R described above is also taken into consideration.
  • the speed sensor 21 detects the traveling speed of the hybrid work vehicle 200 and outputs a speed signal to the main controller 100.
  • the motor rotation speed sensor 22 detects the rotation speed of the traveling motors 7F and 7R, A motor rotation number signal is output to the main controller 100.
  • the main controller 100 includes a CPU, a ROM, a RAM, and the like, and is an arithmetic circuit that controls each component of the hybrid work vehicle 200 based on a control program and executes various data processing. Further, the main controller 100 performs vehicle speed control using the accelerator signal, the brake signal, and the speed stage signal respectively input from the accelerator pedal depression amount sensor 290, the brake pedal depression amount sensor 291 and the shift switch 40 described above.
  • the main controller 100 includes a power storage management unit 110, a hydraulic pressure request calculation unit 120, a travel request calculation unit 130, an output management unit 140, a target rotational speed calculation unit 150, and a generator motor control unit. 160, a tilt angle control unit 170, a traveling motor / brake control unit 180, and a brake control unit 190 are functionally provided.
  • the power storage management unit 110 calculates the allowable charging power of the capacitor 3 and outputs it to the output calculation unit 140.
  • the storage voltage of the capacitor 3 detected by the converter 4 is input to the storage management unit 110.
  • the power storage management unit 110 calculates the allowable charging power of the capacitor 3 based on the storage voltage of the capacitor 3 input from the converter 4 and the allowable charging power map stored in a storage device (not shown) in the main controller 100. To do.
  • FIG. 4 shows an example of the allowable charging power map.
  • Vcmin and Vcmax are the lowest voltage and the highest voltage in the use range where the capacitor 3 is unlikely to deteriorate.
  • the allowable charging power map is set so that the allowable charging power becomes 0 or less near the maximum voltage Vcmax so that the stored voltage of the capacitor 3 does not exceed the maximum voltage Vcmax.
  • Icmax is set based on the maximum current limit of converter 4.
  • the allowable charging power map is also set such that the allowable charging power decreases as the stored voltage decreases so that the charging current does not exceed the maximum current limit Icmax.
  • the above demonstrates the example at the time of charge, the same calculation is performed also at the time of discharge.
  • the hydraulic pressure request calculation unit 120 calculates the hydraulic pressure request output P wr_pmp_req of the hydraulic pump 9.
  • the hydraulic pressure request calculation unit 120 receives a lift lever and a bucket lever, that is, a lever signal from the operation device 31, and a pump pressure p pmp from a pressure sensor (not shown) provided between the hydraulic pump 9 and the control valve 11. Is entered.
  • a lift lever and a bucket lever that is, a lever signal from the operation device 31, and a pump pressure p pmp from a pressure sensor (not shown) provided between the hydraulic pump 9 and the control valve 11. Is entered.
  • the operation of the steering wheel and the operation of the steering cylinder 12 are not included in the calculation.
  • FIG. 5 is a diagram illustrating an example of a pump request flow map.
  • the pump request flow map is set so that the pump request flow is substantially proportional to the lever signal, and is stored in a storage device (not shown) of the main controller 100.
  • the hydraulic pressure request calculation unit 120 calculates the pump required flow rate q pmp_req based on the received lever signal and the pump required flow rate map.
  • the hydraulic demand calculation unit 120 includes a pump required flow q Pmp_req the calculated, received using a pump pressure p pmp, calculates the oil pressure required output P Wr_pmp_req by the following equation (1).
  • P wr_pmp_req q pmp_req ⁇ p pmp ... (1)
  • the efficiency of the hydraulic pump 9 is not taken into account, and the efficiency of the hydraulic pump 9 is not included in the following calculation formula as well.
  • the travel request calculation unit 130 calculates and outputs a travel request torque T rq_drv_req that is a torque required for the travel motors 7F and 7R during travel based on the formula (2), and is consumed or generated by the travel motor 7 during travel (
  • the travel request output P wr_drv_req which is the electric power to be regenerated is calculated based on the equation (3) and output.
  • the travel request calculation unit 130 performs a calculation using an accelerator request torque map stored in a storage device (not shown) of the main controller 100.
  • FIG. 6 shows an example of the accelerator required torque map.
  • the accelerator required torque map is provided for each speed stage.
  • (A) is the first speed
  • (b) is the second speed
  • (c) is the third speed.
  • Accelerator required torque T rq_acc_req is calculated based on the accelerator signal and the absolute value of the rotational speed of traveling electric motors 7F and 7R. That is, the travel request calculation unit 130 is a speed sensor that corresponds to the speed stage signal input from the shift switch 40, the accelerator signal input from the sensor 290 that detects the depression amount of the accelerator pedal, and the travel speed of the vehicle.
  • the accelerator request torque map corresponding to the set speed stage is selected to calculate the accelerator request torque T rq_acc_req .
  • the travel request calculation unit 130 travels input from the rotational speed sensor 22 corresponding to the calculated accelerator request torque T rq_acc_req , the forward / reverse switch signal V FNR input from the forward / reverse switch, and the travel speed of the vehicle.
  • a motor speed N mot with a brake signal V brk inputted from a sensor 291 for detecting the amount of depression of the brake pedal, calculates the travel required torque T Rq_drv_req by the following equation (2).
  • T rq_drv_req sign (V FNR ) ⁇ T rq_acc_req ⁇ sign (N mot ) ⁇ K brk ⁇ V brk -Sign (N mot ) ⁇ ⁇ ⁇ N mot (2)
  • sign is a sign function, and “1” is returned when the argument is positive, “ ⁇ 1” is returned when it is negative, and “0” is returned when it is 0.
  • the forward / reverse switch signal VFNR indicates “1” when the forward / reverse switch is in the forward direction, “ ⁇ 1” when it is in the reverse direction, and “0” when it is neutral.
  • Kbrk is a proportionality constant, and is set in advance so that deceleration without excess or deficiency can be obtained by operating the brake pedal.
  • is a function of the speed stage and the accelerator pedal depression amount, and a larger value is set as the speed stage is smaller, and a larger value is set as the accelerator pedal depression amount is smaller.
  • Equation (2) The third term on the right side of Equation (2) is introduced to obtain an engine brake feeling equivalent to the engine brake obtained in a torque converter vehicle in a hybrid wheel loader.
  • a regenerative braking force corresponding to the vehicle speed similar to that of a torque converter vehicle is obtained.
  • FIG. 7 shows the regenerative braking force for the first speed, the second speed, and the third speed when neither the accelerator pedal nor the brake pedal is depressed.
  • it is not possible to charge the capacitor 3 with all of the regenerative power during high-speed traveling. For this reason, in regenerative operation during high-speed traveling, control for reducing regenerative power is performed as described in Equation (6).
  • the regenerative braking force is limited by its upper limit line L4, and the regenerative braking forces L1 to L3 of each speed stage have a maximum value on the upper limit line L4. Limited. Therefore, in the present invention, the shortage above the line L4 in FIG. 7C is compensated by the hydraulic brake.
  • the traveling DC current is a DC current flowing through the power line side of the traveling inverters 8F and 8R, where the consumption side is positive and the regeneration side is negative.
  • Travel request calculating unit 130 uses the DC voltage V DC, and a travel DC current I DC_mot, calculates the following (3) travel request output P Wr_drv_req by formula.
  • P wr_drv_req V DC ⁇ I DC_mot (3)
  • the travel request output P wr_drv_req during the regenerative operation takes a negative value.
  • the output management unit 140 includes an engine speed N eng from the engine controller 2, an allowable charging power P wr_chg_max from the power storage management unit 110, a hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120, and a travel request calculation unit
  • the travel request output P wr_drv_req from 130 is input.
  • the output management unit 140 calculates surplus power P wr_sup based on equation (4). Further, the tilt angle increase command dD pmp is calculated and output based on the equation (5), the regenerative power reduction command dP wr_mot_t is calculated and output based on the equation (6), and based on the equation (8).
  • the power generation output command Pwr_gen_t is calculated and output, and the engine output command Pwr_eng_t is calculated and output based on the equation (9).
  • the output management unit 140 receives the engine speed and uses it for calculation. However, since the engine 1, the generator motor 5 and the hydraulic pump 9 are mechanically connected, the generator motor is used instead of the engine speed. 5 and the number of rotations of the hydraulic pump 9 may be appropriately received via a sensor or the like and used for calculation.
  • the difference is calculated as the surplus power P wr_sup .
  • the surplus power P wr_sup is the power at which the regenerative power by the traveling motors 7F and 7R during the regenerative operation exceeds the allowable charge power that can charge the capacitor 3. Therefore, it is necessary to drive the generator motor 5 to consume this surplus power, or to reduce the regenerative power itself to reduce the surplus power itself. Consumption of surplus power P wr_sup is consumed by driving the generator motor 5 with the generator motor torque command T rq_gen_t calculated by the equation (10).
  • the surplus power P Wr_sup is reduced by the regenerative power reduction command calculated from the difference between the engine speed N eng and its second threshold value N eng_th2 (N eng -N eng_th2) in equation (6). This point will be described in detail later.
  • the output management unit 140 monitors whether or not the calculated surplus power P wr_sup is 0, so that it is possible to charge all the regenerative power generated in the traveling motors 7F and 7R to the capacitor 3, that is, surplus power P wr_sup. It is determined whether or not the error occurs. However, when it is determined that the power running is in progress , the surplus power P wr_sup is set to zero. That is, the output management unit 140 can recognize the following from the surplus power Pwr_sup calculated by the equation (4). (A) When the surplus power Pwr_sup is 0, it is recognized that the capacitor 3 can be charged with regenerative power.
  • the output management unit 140 determines whether the rotational speed N eng of the engine 1 is equal to or lower than the first set threshold value N eng_th1 or further equal to or lower than the second set threshold value N eng_th2. judge.
  • the first set threshold value N eng_th1 and the second set threshold value N eng_th2 are expressed as follows: “idle speed of engine 1 ⁇ first set threshold value N eng_th1 ⁇ second set threshold value N eng_th2 ⁇ min (maximum engine speed of engine 1, hydraulic pressure It is set so as to satisfy the “maximum rotational speed of the pump 9)”.
  • the first setting threshold N eng_th1 and the second setting threshold N eng_th2 are stored in the storage device of the main controller 100, and can be reset as appropriate.
  • the rotation speed of the engine 1 the rotation speed of the generator motor 5 may be used, or the rotation speed of the hydraulic pump 9 may be used.
  • the output management unit 140 compares the input engine speed, the first setting threshold N eng — th1 and the second setting threshold N eng — th2, and determines whether the engine 1 is in the low rotation mode, the rotation suppression mode, or the high rotation mode. Determine whether. In this case, if the rotation speed N eng of the engine 1 is equal to or less than the first set threshold value N eng — th1 , the output management unit 140 determines that the engine 1 is in the low rotation mode. If the rotational speed N eng of the engine 1 and the second set threshold value N Eng_th2 less greater than the first preset threshold N eng_th1, output management unit 140 determines the engine 1 and the rotation suppression mode. When the rotation speed N eng of the engine 1 is larger than the second setting threshold N eng — th2 , the output management unit 140 determines that the engine 1 is in the high rotation mode.
  • the output management unit 140 determines that the engine 1 is in the normal mode regardless of the magnitude of the engine speed N eng .
  • the operation mode of the engine 1 is classified into the following four modes. At the time of regenerative operation, it is classified into a low rotation mode, a rotation suppression mode, and a high rotation mode.
  • the output management unit 140 determines which one of the lift cylinder 13 and the bucket cylinder 14 is in operation based on the hydraulic request output P wr_pmp_req calculated from the equation (1) by the hydraulic request calculation unit 120. If the required hydraulic pressure output P wr_pmp_req is equal to or greater than a set value calculated by, for example, pump pressure ⁇ minimum discharge flow rate, the output management unit 140 determines that the lift cylinder 13 and the bucket cylinder 14 are operating.
  • the operation of the operation device 31 may be detected to determine which one of the lift cylinder 13 and the bucket cylinder 14 is operating.
  • a sensor for detecting that the lever signal is output from the operation device 31 is provided, for example, when the lever signal is a hydraulic signal, a pressure sensor is provided, and the output management unit 140 uses the detection value detected by the sensor.
  • the sensor which detects the expansion-contraction speed of the lift cylinder 13 and the bucket cylinder 14 may be provided, and the output management part 140 may determine using the detection speed detected by the sensor.
  • tilt angle increase command Further, the output management unit 140 outputs a tilt angle increase command dD pmp_t for increasing the tilt angle of the hydraulic pump 9 when the following three conditions (i) to (iii) are satisfied: Calculate according to (I) It is determined that the hybrid work vehicle 200 is in regenerative operation. (Ii) When the generator motor 5 is driven by the surplus power of the traveling motors 7F and 7R, it is determined that neither the lift cylinder 13 nor the bucket cylinder 14 is in operation. (Iii) The engine 1 is determined to be in the high rotation mode.
  • Output management unit 140 calculates the engine speed N eng input from the engine controller 2, by using the first set threshold value N Eng_th1, the tilt angle increase instruction dD Pmp_t by the following expression (5).
  • dD pmp_t max ⁇ K nD (N eng ⁇ N eng — th1 ), 0 ⁇ (5)
  • K nD is a proportional constant for calculating a tilt angle increase command from the difference between the first set threshold value N eng — th1 and the actual rotational speed N eng , and is stored in the main controller 100 in advance.
  • the output management unit 140 Even when the motor generator 5 is driven by the surplus power of the traveling motors 7F and 7R, if either the lift cylinder 13 or the bucket cylinder 14 is operating, the output management unit 140 The tilt angle increase command dD pmp_t is set to 0. In addition, when it is determined that the power running operation is being performed, the output management unit 140 sets the tilt angle increase command dD pmp_t to 0. Further, during the regenerative operation, when the total amount of regenerative power cannot be charged in the capacitor 3 and the surplus power is not 0 and the load of the hydraulic pump 9 is small, the output management unit 140 calculates by the equation (5). The tilt angle increase command dD pmp_t is output. As a result, the tilt angle of the hydraulic pump 9 is increased and the consumption of surplus power is increased.
  • tilt angle increase instruction dD Pmp_t is calculated, the tilt angle increase instruction dD Pmp_t as the engine rotational speed N eng is increased becomes larger, the discharge of the hydraulic pump 9 Capacity increases. As a result, as the engine speed N eng increases, the load torque of the hydraulic pump 9, that is, the regenerative power consumption can be increased. As a result, the regenerative braking force also increases.
  • the output management unit 140 reduces the regenerative torque generated by the traveling motors 7F and 7R when the generator motor 5 is driven by the surplus power of the traveling motors 7F and 7R and the engine 1 is determined to be in the high rotation mode.
  • the regenerative power reduction command dP wr_mot_t is calculated.
  • the output management unit 140 uses the engine speed N eng input from the engine controller 2 and the second set threshold value N eng — th2 to calculate a regenerative power reduction command (regenerative power reduction target value) dP according to the following equation (6).
  • wr_mot_t is calculated.
  • K nP is a proportionality constant that calculates a regenerative power reduction command from the difference between the second set threshold value N eng — th2 and the actual engine speed N eng .
  • the output management unit 140 uses the power consumption P wr_cns that is the power that should be consumed by the generator motor 5 among the regenerative power generated by the traveling motors 7F and 7R. calculate.
  • the output management unit 140 calculates the power consumption P wr_cns from the following formula (7) using the surplus power P wr_sup calculated by the formula (4) and the regenerative power reduction command dP wr_mot_t calculated by the formula (6). To do.
  • P wr — cns max (P wr — sup ⁇ dP wr — mot — t , 0) (7)
  • the output management unit 140 sets the power consumption P wr_cns to 0.
  • the output management unit 140 When the power consumption P wr_cns is calculated using the above equation (7), the output management unit 140 generates a power generation output command (power generation output) from the following equation (8) based on the travel request output P wr_drv_req and the power consumption P wr_cns. Target value) P wr_gen_t is calculated.
  • P wr — gen — t max (P wr — drv — req , 0) ⁇ P wr — cns (8)
  • the power generation output command P wr_gen_t calculated by the equation (8) at the time of power running operation and regenerative operation is summarized as follows.
  • the power consumption P wr_cns is set to 0, and the travel request output P wr_drv_req takes a positive value. Therefore, the power generation output command P wr_gen_t of equation (8) is calculated by equation (3).
  • the request output P wr_drv_req is obtained.
  • the power generation output command P wr_gen_t in the equation (8) becomes the power consumption P wr_cns calculated by the equation (7).
  • the power generation output command P wr_gen_t during power running is the travel request output P wr_drv_req
  • the power generation output command P wr_gen_t during regeneration is the power consumption P wr_cns and takes a negative value.
  • the output management unit 140 uses the hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120 and the power generation output command P wr_gen_t calculated by the formula (8) to calculate an engine output command (engine output) by the following formula (9).
  • Target value) Pwr_eng_t is calculated.
  • Pwr_eng_t Pwr_pmp_req + Pwr_gen_t (9)
  • the engine output command P wr_eng_t calculated by the equation (9) during the power running operation and the regenerative operation is summarized as follows. Power running operation, the engine output command P Wr_eng_t the output management unit 140 is calculated, the hydraulic request output P Wr_pmp_req is the product of the pump required flow q Pmp_req the pump pressure p pmp ((1) is calculated by the formula), (8) becomes the plus power generation output command P Wr_gen_t a travel request output P Wr_drv_req calculated by the formula.
  • the engine output command P Wr_eng_t the output management unit 140 is calculated
  • the hydraulic request output P Wr_pmp_req is the product of the pump required flow q Pmp_req the pump pressure p pmp ((1) is calculated by the formula)
  • the power generation output command P wr_gen_t which is the power consumption P wr_cn calculated by the equation (7) is added.
  • the engine output command P Wr_eng_t of power running is obtained by adding the travel request output P Wr_drv_req to the hydraulic request output P Wr_pmp_req
  • the engine output command P Wr_eng_t during regeneration is the power consumption P Wr_cns from the hydraulic request output P Wr_pmp_req Subtracted.
  • the engine output command P wr_eng_t becomes the power consumption P wr_cns .
  • the target rotational speed calculation unit 150 calculates an engine rotational speed command (engine rotational speed target value) N eng_t to be transmitted to the engine controller 2. Based on the engine output command Pwr_eng_t calculated by the output management unit 140, the target rotational speed calculation unit 150 calculates an operating point at which the engine efficiency is highest using a fuel consumption map such as an engine. Then, the target engine speed calculation unit 150 sets the engine speed at the calculated operating point as the engine speed command N eng — t . When the engine controller 2 receives the engine speed command N eng — t from the target speed calculator 150, the engine controller 2 rotates the engine 1 at the engine speed indicated by the engine speed command.
  • the generator motor controller 160 receives the engine speed N eng from the engine controller 2, the power generation output command P wr_gen_t from the output manager 140, and the engine speed command N eng_t from the target speed calculator 150. Is done. Using these values, the generator motor control unit 160 calculates a generator motor torque command (generator motor torque target value) T rq_gen_t by the following equation (10).
  • T rq_gen_t max ⁇ K p (N eng — t ⁇ N eng ), 0 ⁇ ⁇ P wr — gen — t / N eng (10)
  • K p is the proportional constant for calculating the generator motor torque from the difference between the engine speed N eng and the engine rotational speed command N eng_t. Then, the generator motor control unit 160 transmits the calculated generator motor torque command T rq_gen_t to the generator inverter 6. Thereby, the generator motor 5 is drive-controlled.
  • the generator motor torque command T rq_gen_t calculated by the equation (10) during power running and regenerative operation is summarized as follows.
  • the engine speed command N eng — t is greater than the engine speed N eng . Therefore, during power running, the generator motor control unit 160 subtracts the torque obtained by dividing the engine output command P wr_eng_t by the engine speed N eng from the required torque obtained by K p (N eng_t ⁇ N eng ).
  • the generator motor torque command T rq_gen_t is calculated.
  • the engine output command P wr_eng_t during power running is obtained by adding the travel request output P wr_drv_req to the hydraulic pressure request output P wr_pmp_req .
  • the engine speed command N eng — t is smaller than the engine speed N eng .
  • the engine output command P wr_eng_t during regeneration is obtained by adding the power consumption P wr_cns to the hydraulic pressure request output P wr_pmp_req . Therefore, the generator motor torque command T rq_gen_t calculated by the generator motor controller 160 during the regenerative operation is a torque obtained by dividing the value obtained by subtracting the power consumption P wr_cns from the hydraulic pressure request output P wr_pmp_req by the engine speed N eng. .
  • the tilt angle control unit 170 calculates a tilt angle control signal V Dp_t based on the following equation (11), and drives a regulator (not shown) of the hydraulic pump 9 based on the tilt angle control signal.
  • the tilt angle of the hydraulic pump 9, that is, the capacity is controlled.
  • the tilt angle control unit 170 uses the engine speed N eng from the engine controller 2, the pump request flow rate q pmp_req from the hydraulic pressure request calculation unit 120, and the tilt angle increase command dD pmp_t from the output management unit 140.
  • the tilt angle control signal V Dp_t is calculated by the following equation (11).
  • V Dp_t K Dp ⁇ (q pmp_req / N eng ) + dD pmp_t ⁇ (11)
  • K Dp is a proportional constant for calculating a tilt control signal necessary for setting the tilt angle of the hydraulic pump as a target value.
  • the output management unit 140 sets the tilt angle increase command dD pmp_t to 0.
  • the output management unit 140 calculates by the equation (5).
  • the tilt angle increase command dD pmp_t is output. As a result, the tilt angle of the hydraulic pump 9 is increased and the consumption of surplus power is increased.
  • the tilt angle control signal V Dp_t is set as follows. That is, the tilt angle control signal V Dp_t is set so that the actual pump discharge flow rate is maintained at the pump required flow rate requested by the operator via the operation device 31. Accordingly, the tilt angle of the hydraulic pump 9 increases the rotational speed of the engine 1, the generator motor 5 or the hydraulic pump 9 so that the discharge amount of the hydraulic pump 9 is maintained at a value required by the operator (pump required flow rate). It is controlled so as to become smaller in accordance with.
  • the travel motor / brake control unit 180 includes a travel request torque T rq_drv_req calculated from the equation (2) by the travel request calculation unit 130, a travel motor rotational speed N mot from the rotational speed sensor 22, and an output management unit 140.
  • the regenerative power reduction command dP wr_mot_t calculated from the equation (6) is input.
  • the traveling motor / brake control unit 180 uses these values to calculate a traveling motor torque command T rq_mot_t by the following equation (12).
  • T rq_mot_t sign (T rq_drv_req ) ⁇ max ⁇
  • sign is a sign function, and returns 1 when the argument is positive, “ ⁇ 1” when it is negative, and “0” when it is 0.
  • the traveling motor / brake control unit 180 transmits the calculated traveling motor torque command T rq_mot_t to the traveling inverters 8F and 8R. Thereby, the power running / regeneration of the traveling motors 7F, 7R is controlled. That is, the travel motor / brake control unit 180 calculates the absolute value of the travel request torque T rq_drv_req calculated by the equation (2) based on the accelerator pedal depression amount, the brake pedal depression amount, and the selected speed stage. .
  • the travel request torque T rq_drv_req is positive and the regenerative power reduction command dP wr_mot_t is zero, so the travel motor torque command T rq_mot_t calculated by the equation (12) becomes the travel request torque T rq_drv_req .
  • the regenerative power reduction command value dP wr_mot_t is calculated from the equation (6).
  • the regenerative power reduction torque obtained by dividing the regenerative power reduction command dP wr_mot_t by the absolute value of the travel motor rotation speed N mot is subtracted from the absolute value
  • This subtraction result becomes a negative value when the travel request torque T rq_drv_req is negative, and becomes a travel motor torque command T rq_mot_t having a negative value , that is, a regenerative braking torque command.
  • the braking torque command T rq_brk_t is calculated as follows using the equation (13). First, the travel motor torque command T rq_mot_t calculated by the equation (12) from the required travel torque T rq_drv_req calculated by the equation (2) based on the accelerator pedal depression amount, the brake pedal depression amount, and the selected speed stage. Is subtracted. During the power running operation, the travel motor torque command T rq_mot_t is the travel request torque T rq_drv_req , so the braking torque command T rq_brk_ t is zero.
  • both the travel request torque T rq_drv_req and the travel motor torque command T rq_mot_t are negative, and the absolute value of the travel request torque T rq_drv_req is larger than the absolute value of the travel motor torque command T rq_mot_t.
  • rq_drv_req ⁇ T rq_mot_t is negative.
  • the sign function ⁇ sign (N mot ) ⁇ is “ ⁇ 1” when the motor is moving forward (forward rotation), and is “1” when the motor is moving backward (reverse rotation).
  • ⁇ -sign (N mot ) ⁇ (T rq_drv_req ⁇ T rq_mot_t ) ⁇ is positive during regenerative operation during forward movement, and this positive value is selected and used as the braking torque command T rq_brk_t during regenerative operation.
  • the regenerative braking force for each speed stage will be described in relation to the equations (2), (6), (12), and (13).
  • the regenerative power reduction command dP wr_mot_t is calculated based on the equation (6).
  • the regenerative power reduction command dP wr_mot_t is generated when the generator motor 5 is driven by surplus power and the engine speed N eng driven by the generator motor 5 exceeds the second set threshold N eng_th2. This reduces the regenerative power generated.
  • the regenerative power reduction command dP wr_mot_t increases as the engine speed N eng increases.
  • the regenerative power reduction command dP wr_mot_t increases as the vehicle speed increases, which means that the regenerative power reaches its peak when the vehicle speed is high. Since electric power is represented by the product of the vehicle speed and the braking force, the higher the vehicle speed, the smaller the regenerative braking force. This phenomenon is shown by the regenerative braking force upper limit line L4 in FIG.
  • an engine braking force equivalent to that of the torque converter vehicle that is, a regenerative braking force can be obtained by setting ⁇ according to the speed stage.
  • is set so that the regenerative braking force corresponding to the vehicle speed increases as the speed stage increases.
  • the regenerative braking force is increased as the engine speed is higher, that is, the vehicle speed is faster, according to the equation (6). Get smaller. For this reason, as shown in FIG.
  • the regenerative braking force set by the equation (2) cannot be obtained in the region where the line segments L1 to L3 of the respective speed stages exceed the regenerative braking force upper limit line L4. . Therefore, in the present invention, in the region above the regenerative braking force upper limit line L4, a hydraulic brake is used together to obtain an engine brake equivalent to that of a torque converter vehicle.
  • Vbrk_t K brk T rq_brk_t ... (14)
  • K brk is preset proportional constant as the actual braking torque of the braking torque command T Rq_brk_t and hydraulic brakes are matched.
  • the hydraulic brake control valves 35a and 35b are driven based on the brake control signal Vbrk_t , and the hydraulic brakes 36a and 36b brake the wheels 18. This is the mechanical braking force during regenerative coordination.
  • the output management unit 140 of the main controller 100 determines that the hybrid work vehicle 200 is in a power running operation when the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is 0 or more. Then, the main controller 100 calculates a power generation output command P wr_gen_t by the equation (8) and an engine output command P wr_eng_t by the equation (9) in order to supply the necessary electric power to the traveling motors 7F and 7R. Motor generator 6 by the power generation output command P Wr_gen_t is driven, the engine is driven and controlled by the engine output command P wr_eng_t.
  • the traveling motor / brake control unit 180 calculates the braking torque command T rq_brk_t by the above-described equation (13). As described above, during the power running operation, the braking torque command T rq_brk_t calculated from the equation (13) is zero.
  • a travel motor torque command T rq_mot_t output from the travel motor / brake control unit 180 during regeneration will be described.
  • the traveling motor torque command T rq_mot_t is calculated from the equation (12).
  • the travel request torque T rq_drv_req is negative, and the regeneration power reduction command dP wr_mot_t becomes a predetermined value in the high rotation mode.
  • the inverters 8F and 8R are driven based on the regenerative braking torque command, take out the regenerative power from the traveling motors 7F and 7R, and drive-control the generator motor 5 by the generator inverter 6.
  • the output management unit 140 of the main controller 100 determines that the hybrid work vehicle 200 is in a regenerative operation when the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is negative. In this case, the output management unit 140 of the main controller 100 distributes the regenerative power generated by the traveling motors 7F and 7R to the capacitor 3 and the generator motor 5 by using the power generation output command P wr_gen_t , (9 ) To calculate engine output command P wr_eng_t , tilt angle increase command dD pmp_t from equation (5), and regenerative power reduction command value dP wr_mot_t from equation (6). Motor generator 6 by the power generation output command P Wr_gen_t is driven, the engine is driven and controlled by the engine output command P wr_eng_t. The pump regulator is driven and controlled by the tilt angle increase command dD pmp_t .
  • the output management unit 140 of the main controller 100 determines that the capacitor 3 can be charged when the surplus power P wr_sup calculated using the above-described equation (4) is zero. Then, during regenerative operation, the generator motor controller 160 calculates the generator motor torque command T rq_gen_t according to the equation (10). That is, the generator motor torque command T rq_gen_t during regenerative operation is obtained by dividing the power generation output command P wr_gen_t by the engine speed N eng from the torque obtained by multiplying the difference between the engine speed command and the actual engine speed by a constant. The value obtained by subtracting the torque obtained in this way. The main controller 100 drives the generator inverter 6 by the generator motor torque command T rq_gen_t calculated by the equation (10), and the generator motor 5 consumes the regenerative power in the motor mode by the regenerative power.
  • the output management unit 140 determines that the capacitor 3 cannot be charged when the surplus power P wr_sup calculated during the regenerative operation is other than zero. In this case, the output management unit 140 determines whether the engine 1 is in the low rotation mode, the rotation suppression mode, or the high rotation mode, and then the power consumption P that is the power to be consumed by the generator motor 5 in the surplus power P wr_sup. wr_cns is calculated.
  • the power consumption Pwr_cns in each mode is as follows.
  • the output management unit 140 performs the tilt angle increasing process if none of the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 is in operation, and then the above equation (7)
  • the power consumption P wr_cns is calculated from the above.
  • output management unit 140 calculates the engine speed N eng, using the first set threshold value N Eng_th1, the tilt angle increase instruction dD Pmp_t by the above equation (5).
  • the output management part 140 calculates power consumption Pwr_cns from said (7) Formula similarly to the case of the low rotation mode.
  • the output management unit 140 sets the regenerative power reduction command value dP wr_mot_t to 0. Therefore, even in the rotation suppression mode, the surplus power P wr_sup is the power consumption. Pwr_cns .
  • the output management unit 140 calculates the power consumption P wr_cns from the above equation (7) after performing the regenerative power reduction process.
  • the output management unit 140 calculates the regenerative power reduction command value dP wr_mot_t according to the above equation (6) using the engine speed N eng and the second set threshold value N eng_th2 .
  • the output management unit 140 performs the tilt angle increasing process as in the rotation suppression mode if neither the lift cylinder 13 nor the bucket cylinder 14 is in operation.
  • the brake control unit 190 calculates a brake control signal Vbrk_t using the equation (14) based on the braking torque command T rq_brk_t calculated using the equation (13), and outputs the brake control signal Vbrk_t to the hydraulic brake control valve.
  • the brake control unit 190 causes the hydraulic brakes 36a and 36b to generate a braking torque corresponding to the regenerative torque of the traveling motors 7F and 7R that is reduced by the regenerative power reduction command dP wt_mot_t .
  • the output management unit 140 uses the above equation (8) to generate the power generation output command P wr_gen_t. Is calculated.
  • the generator motor control unit 160 uses the engine speed N eng , the power generation output command P wr_gen_t calculated by the output management unit 140, and the engine speed command N eng_t according to the above equation (10).
  • the command T rq_gen_t is calculated.
  • the generator motor controller 160 controls the generator motor 5 by transmitting the calculated generator motor torque command T rq_gen_t to the generator inverter 6. As a result, the generator motor 5 is driven by a torque value obtained by appropriately reducing the torque generated by surplus power.
  • the output management unit 140 uses the hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120 and the power generation output command P wr_gen_t to output the engine according to the above equation (9).
  • the command P wr_eng_t is calculated.
  • the target speed calculation unit 150 calculates the engine speed command N eng_t using the engine fuel efficiency map as described above, and the engine controller Output to 2.
  • the engine controller 2 receives the engine speed command N eng — t from the target speed calculator 150, the engine controller 2 rotates the engine 1 at the engine speed indicated by the engine speed command.
  • Hybrid work vehicle 200 in the present embodiment when neither the accelerator pedal nor the brake pedal is depressed, according to the speed stage set by the operator and the traveling motor rotation speed N mot corresponding to the traveling speed of the vehicle, The amount of braking is controlled by the traveling motors 7F and 7R and the hydraulic brakes 36a and 36b.
  • FIG. 7 shows the relationship between the braking force for each speed stage and the traveling speed of the vehicle.
  • the solid line L1 indicates the first speed
  • the broken line L2 indicates the second speed
  • the alternate long and short dash line L3 indicates the third speed.
  • FIG. 7A shows the relationship between the traveling speed for each speed stage and the required regenerative braking force. As shown in the figure, the smaller the speed stage is set, the greater the required regenerative braking force with increasing travel speed.
  • the regenerative braking force by the traveling motors 7F and 7R has an upper limit due to the above equation (6).
  • this upper limit is indicated by a two-dot chain line L4.
  • L4 the regenerative braking force gradually decreases as the traveling speed of the vehicle increases.
  • FIG. 7B in the case of the first speed, the regenerative braking force increases along L1 until the traveling speed reaches V1, and when the traveling speed exceeds V1, the regenerative braking force follows L4. Gradually decrease. For this reason, when the traveling speed exceeds V1, the required regenerative braking force cannot be obtained with the regenerative braking force by the traveling motors 7F and 7R.
  • the traveling speeds V1, V2, and V3 are referred to as upper limit speeds.
  • FIG. 7C shows that the required regenerative braking force is B1a exceeding the regenerative braking force B1 if the traveling speed is V1a (> V1) in the first speed.
  • the brake control unit 190 calculates the brake control signal Vbrk_t so that the hydraulic brakes 36a and 36b generate a braking force corresponding to the difference between the required regenerative braking force B1a and the regenerative braking force B1.
  • the characteristics L1 to L3 of the regenerative braking force with respect to the vehicle speed as described above are set for each speed stage, but this is realized by setting ⁇ in equation (2) according to the speed stage.
  • the hydraulic braking force with respect to the vehicle speed in the region above the upper limit line L4 of the regenerative braking force can be realized by equations (12) to (14). That is, in the output management unit 140, the required travel torque T rq_drv_req calculated from the expression (2), the traveling motor rotation speed N mot from the rotation speed sensor 22, and the regenerative power reduction command dP calculated from the expression (6).
  • wr_mot_t a traveling motor torque command T rq_mot_t is calculated from the equation (12).
  • the traveling motor / brake control unit 180 uses the traveling motor torque command T rq_mot_t calculated from the equation (12), the required traveling torque T rq_drv_req calculated from the equation (2), and the traveling motor rotation speed N mot.
  • the braking torque command T rq_brk_t is calculated by the above equation (13).
  • the processing by the main controller 100 will be described using the flowchart shown in FIG.
  • the processing in FIG. 8 is performed by executing a program on the main controller 100.
  • This program is stored in a memory (not shown).
  • an ignition switch (not shown) of the hybrid work vehicle 200 is turned on, the program is started and executed by the main controller 100.
  • step S1A the speed stage selected by the shift switch 40 is read, a constant corresponding to the speed stage is set in the coefficient ⁇ used in equation (2), and the process proceeds to step S1.
  • the coefficient ⁇ is larger as the speed stage is smaller.
  • step S1 it is determined whether or not the traveling motors 7F and 7R are in a regenerative operation. If the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is 0 or more, that is, if the travel motors 7F and 7R are in power running, step S1 is affirmed and the process proceeds to step S2. In step S2, running motor drive control is performed, and the process ends.
  • the output management unit 140 of the main controller 100 calculates a power generation output command and an engine output command in order to supply necessary electric power to the traveling motors 7F and 7R.
  • a torque command and an engine speed command are output to the engine 1 to control driving of the generator motor 5 and the engine 1.
  • step S3 it is determined whether sufficient regenerative power can be obtained by charging. If sufficient regenerative power is obtained by charging, that is, if the surplus power P wr_sup is 0, an affirmative determination is made in step S3 and the process proceeds to step S9A described later. If sufficient regenerative power cannot be obtained by charging, that is, if the surplus power P wr_sup is a positive or negative value, a negative determination is made in step S3 and the process proceeds to step S4.
  • step S4 it is determined whether or not the engine 1 is in the low rotation mode.
  • step S4 is affirmed and the process proceeds to step S9 described later. If the engine 1 is not in the low speed mode, a negative determination is made in step S4 and the process proceeds to step S5.
  • step S5 it is determined whether any one of the lift cylinder 13 and the bucket cylinder 14 is operating. If the lift cylinder 13 and the bucket cylinder 14 are not operating, a negative determination is made in step S5 and the process proceeds to step S6. In step S6, the tilt angle increasing process described above is performed, and the process proceeds to step S7.
  • step S7 it is determined whether or not the engine 1 is in the rotation suppression mode. If the engine 1 is rotated suppression mode, i.e. when the rotation speed N eng of the engine 1 is in the second set threshold value N Eng_th2 less larger than the first set threshold value N Eng_th1 proceeds step S7 is affirmative decision to step S9. If the engine 1 is in the high speed mode, that is, if the engine speed N eng is equal to or greater than the second set threshold value N eng — th2 , step S7 is negatively determined and the process proceeds to step S8.
  • step S8 a regenerative electric power reduction process is performed and it progresses to step S9.
  • step S9 power consumption Pwr_cns consumed in the generator motor 5 is calculated from the surplus power Pwr_sup, and the process proceeds to step S9A.
  • step S9A charge control is performed and the process proceeds to step S10.
  • step S10 the generator motor 5 is controlled, and the process proceeds to step S11.
  • the generator motor control unit 160 uses the engine speed N eng , the power generation output command P wr_gen_t calculated by the output management unit 140 using the above equation (8), and the engine speed command N eng_t. Then, the generator motor torque command T rq_gen_t is calculated using the equation (10). Then, the generator motor controller 160 controls the generator motor 5 by transmitting the calculated generator motor torque command T rq_gen_t to the generator inverter 6.
  • step S11 the rotational speed of the engine 1 is controlled via the engine controller 2, and the process proceeds to step S13.
  • the target engine speed calculation unit 150 calculates the engine speed command N eng_t using the engine fuel consumption map, as described above, based on the engine output command P wr_eng_t calculated by the output management unit 140. To the engine controller 2. As a result, the engine 1 rotates at the engine speed indicated by the calculated engine speed command Neng_t .
  • step S13 the brake control signal Vbrk_t is calculated using the above-described equation (14), is output to the hydraulic brake control valve, the hydraulic brakes 36a and 36b are driven, and the process ends.
  • the hybrid work vehicle according to the first embodiment is charged by the traveling motors 7F and 7R that apply traveling driving torque to the wheels 18a to 18d, and the regenerative electric power generated by the traveling motors 7F and 7R.
  • the power storage device that supplies driving power to 7R, that is, the capacitor 3, and the power generation mode are driven by the engine 1 in the power generation mode, and the power generation is driven by the regenerative power from the traveling motors 7F and 7R in the electric mode.
  • the regenerative control is performed by calculating a larger regenerative braking force as the set speed stage is smaller. Therefore, a sufficient regenerative braking force that matches the speed stage is obtained as in the conventional torque converter vehicle.
  • the main controller 100 determines that the required regenerative braking force exceeds the limit of regenerative braking by the traveling motors 7F and 7R, the main controller 100 activates the hydraulic brakes 36a and 36b that apply braking force to the wheels, and during regenerative braking Necessary braking force was obtained at each speed stage. Therefore, even if it is a hybrid work vehicle that obtains a large regenerative braking force as the speed stage is small and does not obtain a regenerative braking force required at high speed traveling as a result of performing regenerative power limitation at high speed, Sufficient braking force can be obtained at high speeds at each speed stage.
  • the upper limit value of the regenerative braking force becomes smaller as the vehicle speed increases, and the regenerative braking force calculated by the main controller 100 in the regenerative control exceeds the upper limit value.
  • the braking force that is insufficient by the hydraulic brake control valves 35a and 35b that apply frictional braking force to the wheels is added. Therefore, even if the regenerative power is limited in a driving state where the vehicle speed is high such that the engine 1 is driven in the high rotation mode, a shortage of the regenerative braking force can be obtained by the mechanical brake.
  • the upper limit value of the regenerative braking force is defined by a decrease in the regenerative braking force that increases as the vehicle speed increases. A braking force can be obtained.
  • the surplus The generator motor 5 is controlled so that electric power is consumed by the generator motor 5.
  • the amount of regenerative power consumed by the generator motor 5 is reduced according to the amount of deviation between the rotational speed of the generator motor 5 and the predetermined value.
  • the main controller 100 applies a mechanical brake corresponding to the reduction amount of the regenerative power to the wheels.
  • FIG. 9 is a circuit diagram showing a hydraulic circuit HC included in the hybrid work vehicle 200 according to the present embodiment.
  • the hydraulic circuit HC includes a variable displacement hydraulic pump 9, an oil tank 10, a control valve 11, a variable displacement motor hydraulic pump 301, a first proportional valve 302, a second proportional valve 303, A hydraulic motor 304, a cooling fan 305, a cooling core 306, a temperature sensor 307, and a relief valve 310 are provided.
  • the hydraulic pump 9, the relief valve 310, and the control valve 11 are connected to the first pipeline 400 in this order with the oil tank 10 as the upstream side.
  • a hydraulic pump for motor 301, a hydraulic motor 304, and a cooling core 306 are connected to the second pipe line 401 in this order with the oil tank 10 at the upstream side.
  • the hydraulic pump 9 is driven by the engine 1 to supply the hydraulic oil in the oil tank 10 to the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 via the control valve 11.
  • the first proportional valve 302 controls the tilt amount (capacity) of the first hydraulic pump 9 to be changeable in accordance with a control signal from the main controller 100.
  • the relief valve 310 protects the circuit by releasing part or all of the hydraulic oil to the return side and keeping the circuit pressure constant.
  • the control valve 11 includes a first directional control valve 308 and a second directional control valve 309.
  • the first directional control valve 308 supplies hydraulic oil supplied from the first hydraulic pump 9 to the steering cylinder 12 in response to a signal output from the operating device 31 installed in the cab 19.
  • the second direction control valve 309 supplies hydraulic oil supplied from the hydraulic pump 9 to the pair of lift cylinders 13 in response to a signal output from the operation device 31 installed in the cab 19.
  • the bucket cylinder 14 is not shown.
  • the rotating shaft of the motor hydraulic pump 301 is provided coaxially with the drive shaft of the engine 1.
  • the hydraulic oil in the oil tank 10 is supplied to the hydraulic motor 304 to drive the hydraulic motor 304.
  • the second proportional valve 303 controls the tilt amount (capacity) of the motor hydraulic pump 301 so as to be changeable in accordance with a control signal from the main controller 100.
  • the tilt amount of the motor hydraulic pump 301 is controlled based on the temperature of the hydraulic oil in the oil tank 10 detected by the temperature sensor 307.
  • the cooling fan 305 is driven by a hydraulic motor 304 and cools the hydraulic oil flowing into the cooling core 306 provided downstream of the cooling fan 305. For this reason, the rotation speed of the cooling fan 305 is controlled according to the amount of tilt of the second hydraulic pump 301. In other words, the rotation speed of the cooling fan 305 is controlled according to the temperature of the hydraulic oil detected by the temperature sensor 307.
  • FIG. 10 is a diagram showing the relationship between the number of rotations of the cooling fan 305 and the temperature of the hydraulic oil detected by the temperature sensor 307.
  • the rotation speed of the cooling fan 305 when the temperature of the hydraulic oil is lower than a predetermined temperature t1, the rotation speed of the cooling fan 305 is controlled to be a specified minimum rotation speed Min.
  • the rotation speed of the cooling fan 305 is controlled to increase in proportion to the increase in the temperature of the hydraulic oil.
  • the cooling fan 305 is controlled so as to have a specified maximum rotational speed Max.
  • the main controller 100 calculates the travel calculated by the above equation (2). It is determined whether the required torque T rq_drv_req , that is, the required regenerative braking force exceeds a predetermined threshold value T rq_drv_th1 . When the required regenerative braking force is equal to or greater than the threshold value T rq_drv_th1 , the main controller 100 sets the motor hydraulic pump 304 so that the cooling fan 305 has the maximum rotation speed Max regardless of the temperature of the hydraulic oil detected by the temperature sensor 307. Control the amount of tilt (capacity).
  • the main controller 100 controls the rotational speed of the cooling fan 305 according to the temperature of the hydraulic oil detected by the temperature sensor 307.
  • the amount of tilt of the cooling motor hydraulic pump 301 is controlled.
  • the threshold value T rq_drv_th1 is set as a value of the regenerative braking force corresponding to the maximum absorption horsepower of the generator motor 5, and is stored in advance in a memory (not shown) or the like. That is, when the regenerative power from the traveling motors 7F and 7R exceeds the maximum power consumption of the generator motor 5, the amount of regenerative power consumption is increased by increasing the tilt amount of the cooling motor hydraulic pump 301.
  • FIG. 11 shows the number of rotations of the cooling fan 305 controlled as described above according to the temperature of the hydraulic oil and the required regenerative braking force.
  • the cooling fan 305 is controlled so as to be driven at the maximum rotational speed Max regardless of the detected temperature of the hydraulic oil.
  • the required regenerative braking force is less than the threshold value T rq_drv_th1 , or when the required regenerative braking force is 0, the cooling fan is proportional to the detected temperature increase of the hydraulic oil as shown in FIG.
  • the number of rotations of 305 is controlled to increase.
  • the main controller 100 controls the hydraulic pump 301 for the cooling motor. Increase hydraulic load. As a result, the load on the generator motor 5 driven by surplus power is increased, and the braking force during regeneration can be increased.
  • the processing by the main controller 100 will be described using the flowchart shown in FIG.
  • the processing in FIG. 12 is performed by executing a program on the main controller 100.
  • This program is stored in a memory (not shown).
  • an ignition switch (not shown) of the hybrid work vehicle 200 is turned on, the program is started and executed by the main controller 100.
  • step S30 it is determined whether or not the required regenerative braking force exceeds a threshold th1 based on the power consumption Pwr_cns and the regenerative braking force when the cooling fan 305 is driven at the maximum rotation speed Max. If the requested regenerative braking force is greater than or equal to the threshold value T rq_drv_th1 , an affirmative determination is made in step S30 and the process proceeds to step S31.
  • step S31 the amount of tilt of the second hydraulic pump 304 is controlled to drive the cooling fan 305 at the maximum rotation speed Max, and the process proceeds to step S29A. If the requested regenerative braking force is less than the threshold value T rq_drv_th1 , a negative determination is made in step S30, and the process proceeds to step S32.
  • step S32 the tilt amount of the second hydraulic pump is controlled in accordance with the temperature of the hydraulic oil detected by the temperature sensor 307, the cooling fan 305 is driven, and the process proceeds to step S29A.
  • Each process from step S29A (charge control) to step S36 (hydraulic brake drive) is the same as each process from step S9A (charge control) to step S13 (hydraulic brake drive) in FIG.
  • the main controller 100 controls the flow rate of the pressure oil discharged from the second hydraulic pump 301 based on the pressure oil temperature and the required regenerative braking force. Therefore, when the regenerative power exceeds the maximum power consumption of the generator motor 5, the amount of tilt of the cooling motor hydraulic pump 301 is increased to increase the pump load. Therefore, the load on the generator motor 5 driven by surplus power is increased, and the braking force during regeneration can be increased. Furthermore, since an increase in braking force during regeneration can be realized using an existing configuration, an increase in manufacturing cost can be reduced.
  • the hybrid work vehicle 200 of the first and second embodiments described above can be modified as follows.
  • a pair of travel motors 7F and 7R are used, but a work vehicle using one travel motor may be used.
  • the engine 1, the generator motor 5, the traveling motors 7F and 7R, the brake valve 35b, and the like are driven and controlled by the equations (1) to (14). It is an example. It is also possible to employ a main controller designed to drive and control similar devices using different mathematical formulas.
  • the work vehicle of the embodiment has set the first to third speed stages, but may be a work vehicle having first and second speed stages, and may have four or more speed stages. Good.
  • (4) instead of using a series hybrid system in which the wheels 18 are driven by the generator motor 5 driven by the engine 1, travel driving force is obtained by the engine 1, and electric power generated by the generator motor 5 driven by the engine 1 is used. You may use the parallel hybrid type which obtained the driving motor driven.
  • the vehicle is charged with a traveling motor that applies traveling driving torque to the wheels, a control device that performs power running control and regenerative control of the traveling motor, and regenerative power generated by the traveling motor.
  • a power storage device that supplies driving power to the traveling motor, and in the power generation mode, the power is driven by the engine to generate electric power, and in the electric mode, the generator motor that is driven by regenerative power, the generator motor, and the engine
  • a hydraulic pump that is mechanically connected and driven to supply pressure oil to the hydraulic actuator and a speed stage setting device that sets a plurality of speed stages are provided.
  • the control device determines the characteristics of the regenerative braking force with respect to the vehicle speed. Each type has a different regenerative braking force when the accelerator pedal is not depressed and the set speed stage is smaller.
  • the present invention can be applied to a hybrid working vehicle.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Abstract

A hybrid type work vehicle is provided with: a running electric motor; an electricity storage device that is charged with regenerative electric power generated by the running electric motor and that supplies driving electric power to the running electric motor; an electric generator/motor that generates electric power by being driven by an engine in electric power generation mode and that is driven with the regenerative electric power in powering mode; a hydraulic pump mechanically connected to and driven by the electric generator/motor and the engine; a speed level setting device that sets any of a plurality of speed levels; and a control device that drivingly controls the running electric motor and the electric generator/motor. The control device includes a drive control unit that implements regenerative control by computing a greater regenerative braking force as the speed level that is set becomes lower, on the basis of drive torque characteristics with respect to a rotating speed set for each speed level, and regenerative braking force characteristics with respect to a vehicle speed set for each speed level.

Description

ハイブリッド式作業車両Hybrid work vehicle
 本発明は、ハイブリッド式作業車両に関する。 The present invention relates to a hybrid work vehicle.
 従来から、エンジンに機械的に接続された発電機から走行電動機へ電力を供給して走行を行うシリーズハイブリッド式の作業車両であって、回生制動を行う作業車両が知られている(たとえば特許文献1)。 2. Description of the Related Art Conventionally, a series hybrid work vehicle that travels by supplying electric power from a generator mechanically connected to an engine to a traveling motor and that performs regenerative braking is known (for example, Patent Documents). 1).
国際公開WO2012-099255号International Publication WO2012-099255
 しかしながら、特許文献1の作業車両は、走行電動機を駆動して走行する構成のためトルコン車両のように変速機の速度段を有していない。そのため、トルコン車両に乗り慣れたオペレータにとっては、走行電動機により駆動走行する作業車両は走行フィーリングが異なる。そこで、ハイブリッド車両にはトルコン車両と同様の速度段を設定し、トルコン車両と同様な速度段に応じた走行フィーリングに相応するブレーキ力を回生制動力で得ようとすると、走行電動機の出力性能を超える回生制動力が必要になる。力行時は、従来のトルコン車両と同様な速度段に応じた走行フィーリングを設定することが可能である。ところが、エンジンブレーキに相当する回生制動力を得ようとした場合、最大の性能を超える力を出力する必要性が生じる。とくに小さい速度段において、トルコン車両の制動力と同様な回生制動力が得られ難い。これは、車体搭載にあたっての走行電動機の容積の制約による。
 本発明は、従来のトルコン車両と同様に速度段に合致した十分な回生制動力が得られるようにしたハイブリッド式作業車両を提供することを目的とする。
However, the work vehicle of Patent Document 1 does not have a speed stage of a transmission unlike a torque converter vehicle because of a configuration in which a traveling motor is driven to travel. Therefore, for an operator who is used to a torque converter vehicle, a work vehicle driven by a traveling motor has a different traveling feeling. Therefore, if the hybrid vehicle is set to the same speed stage as that of the torque converter vehicle and the brake force corresponding to the driving feeling corresponding to the speed stage similar to that of the torque converter vehicle is obtained by the regenerative braking force, the output performance of the traveling motor is obtained. Regenerative braking force exceeding 1 is required. During power running, it is possible to set a driving feeling corresponding to the speed stage similar to that of a conventional torque converter vehicle. However, when a regenerative braking force equivalent to an engine brake is to be obtained, it is necessary to output a force exceeding the maximum performance. Particularly at a small speed stage, it is difficult to obtain a regenerative braking force similar to the braking force of a torque converter vehicle. This is due to the limitation of the volume of the traveling motor when mounted on the vehicle body.
It is an object of the present invention to provide a hybrid work vehicle that can obtain a sufficient regenerative braking force that matches a speed stage in the same manner as a conventional torque converter vehicle.
 本発明の第1の態様によると、ハイブリッド式作業車両は、車輪に走行駆動トルクを与える走行電動機と、走行電動機で発生する回生電力により充電され、走行電動機に駆動用電力を供給する蓄電装置と、発電モード時は、エンジンで駆動されて発電するとともに、力行モード時は、走行電動機からの回生電力で駆動される発電電動機と、発電電動機およびエンジンに機械的に接続されて駆動され、油圧アクチュエータに圧油を供給する油圧ポンプと、複数の速度段のいずれかを設定する速度段設定装置と、走行電動機および発電電動機を駆動制御する制御装置とを備え、制御装置は、速度段ごとに設定された回転数に対する駆動トルクの特性、および、速度段ごとに設定された車速に対する回生制動力の特性に基づいて、設定された速度段が小さいほど大きな回生制動力を演算して回生制御を行う駆動制御部を有する。
 本発明の第2の態様によると、第1の態様のハイブリッド式作業車両において、車輪に摩擦式制動力を与える制動装置をさらに備え、制御装置は、回生制御において演算された回生制動力が、車速が早いほど小さい値となるように設定された上限値を超えているときは、不足する制動力を付加するように制動装置を制御する制動制御部をさらに有することが好ましい。
 本発明の第3の態様によると、第2の態様のハイブリッド式作業車両において、制御装置は、発電電動機の回転数が所定値以上の時、蓄電装置に充電される回生電力を回転数に応じて制限する回生電力制限制御を行う充電制御部をさらに有し、回生制動力の上限値は回生電力制限制御により定められることが好ましい。
 本発明の第4の態様によると、第2または3の態様のハイブリッド式作業車両において、制御装置は、発電電動機の回転数が所定値よりも高い領域において、蓄電装置に充電可能な電力に比べて回生電力が大きいとき、その余剰電力が発電電動機により消費されるように発電電動機を制御するとともに、その回転数と所定値との乖離量に応じて、発電電動機で消費する回生電力の低減量を乖離量が大きいほど大きく低減する制御を行う発電制御部をさらに有し、制動制御部は、回生電力の低減量に見合った摩擦式制動力を車輪に加える制御を行うことが好ましい。
 本発明の第5の態様によると、第2乃至4のいずれか1態様のハイブリッド式作業車両において、制御装置は、アクセルペダルの踏込み量と車速とに基づいて演算したアクセル要求トルクと、ブレーキペダルの踏込み量に基づいて演算した回生制動トルクと、速度段に基づいて演算した回生制動トルクとに基づいて走行要求トルクを算出し、発電電動機の回転数が所定値よりも高い領域において、その回転数と所定値との乖離量に応じて、発電電動機で消費する回生電力の低減量を演算し、回生電力の低減量を走行電動機の回転数により変換した回生低減トルクを演算し、走行要求トルクから演算した回生低減トルクを減算して走行電動機トルク指令を演算し、走行要求トルクから走行電動機トルク指令を減算して不足する制動トルクを演算し、不足する制動力を制動装置が付加する制動信号を演算し、制動制御装置は、制動信号により制動装置を駆動制御することが好ましい。
According to the first aspect of the present invention, the hybrid work vehicle includes a traveling motor that applies traveling driving torque to the wheels, and a power storage device that is charged by regenerative power generated by the traveling motor and supplies driving power to the traveling motor. In the power generation mode, the power is driven by the engine to generate power. In the power running mode, the generator motor is driven by regenerative power from the traveling motor, and is driven by being mechanically connected to the generator motor and the engine. A hydraulic pump that supplies pressure oil to the vehicle, a speed stage setting device that sets one of a plurality of speed stages, and a control device that controls driving of the traveling motor and the generator motor. The control apparatus is set for each speed stage. Based on the characteristics of the drive torque with respect to the set number of revolutions and the characteristics of the regenerative braking force with respect to the vehicle speed set for each speed stage. It calculates a smaller large regenerative braking force with a driving control unit that performs regeneration control.
According to the second aspect of the present invention, the hybrid work vehicle according to the first aspect further includes a braking device that applies a frictional braking force to the wheels, and the control device has a regenerative braking force calculated in the regenerative control, It is preferable to further include a braking control unit that controls the braking device so as to add an insufficient braking force when the vehicle speed exceeds an upper limit value that is set to a smaller value as the vehicle speed increases.
According to the third aspect of the present invention, in the hybrid work vehicle according to the second aspect, when the rotational speed of the generator motor is equal to or higher than a predetermined value, the control device determines the regenerative power charged in the power storage device according to the rotational speed. It is preferable to further include a charge control unit that performs regenerative power restriction control to limit the regenerative braking force, and the upper limit value of the regenerative braking force is determined by regenerative power restriction control.
According to the fourth aspect of the present invention, in the hybrid work vehicle according to the second or third aspect, the control device compares the electric power that can be charged to the power storage device in a region where the rotational speed of the generator motor is higher than a predetermined value. When the regenerative power is large, the generator motor is controlled so that the surplus power is consumed by the generator motor, and the reduction amount of the regenerative power consumed by the generator motor according to the amount of deviation between the rotation speed and the predetermined value It is preferable to further include a power generation control unit that performs control to greatly reduce the deviation amount as the deviation amount increases, and the braking control unit performs control to apply a frictional braking force corresponding to the reduction amount of the regenerative power to the wheels.
According to a fifth aspect of the present invention, in the hybrid work vehicle according to any one of the second to fourth aspects, the control device includes an accelerator required torque calculated based on an accelerator pedal depression amount and a vehicle speed, and a brake pedal. The travel request torque is calculated based on the regenerative braking torque calculated based on the stepping amount of the engine and the regenerative braking torque calculated based on the speed stage, and the rotation is performed in a region where the rotational speed of the generator motor is higher than the predetermined value. The amount of regenerative power consumed by the generator motor is calculated according to the difference between the number and the predetermined value, the regenerative reduction torque is calculated by converting the amount of regenerative power reduction by the number of revolutions of the traveling motor, and the required travel torque Subtract the regenerative reduction torque calculated from, calculate the running motor torque command, and subtract the running motor torque command from the required travel torque to calculate the insufficient braking torque Calculates the braking signal the braking force braking device adds the missing brake control device preferably controls the driving of the braking device by the braking signal.
 本発明によれば、複数の速度段ごとに、車速に対する回生制動力の特性を異なるようにし、設定された速度段が小さいほど大きな回生制動力が得られるようにした。そのため、急勾配の坂を降坂する際には、従来のトルコン車両と同様に速度段に合致した十分な回生制動力が得られる。 According to the present invention, the characteristics of the regenerative braking force with respect to the vehicle speed are made different for each of the plurality of speed stages, and a larger regenerative braking force is obtained as the set speed stage is smaller. Therefore, when descending a steep slope, a sufficient regenerative braking force that matches the speed stage can be obtained in the same manner as a conventional torque converter vehicle.
本発明の実施の形態によるハイブリッド式作業車両の外観側面図FIG. 2 is an external side view of a hybrid work vehicle according to an embodiment of the present invention. 実施の形態によるハイブリッド式作業車両の回路ブロック図Circuit block diagram of hybrid work vehicle according to embodiment メインコントローラの機能を説明するブロック図Block diagram explaining the functions of the main controller 許容充電電力マップの一例を示す図The figure which shows an example of an allowable charging power map ポンプ要求流量マップの一例を示す図Figure showing an example of the pump request flow map アクセル要求トルクマップの一例を示す図The figure which shows an example of an accelerator demand torque map 車速に対する回生制動力を説明する図The figure explaining regenerative braking power with respect to vehicle speed 第1の実施の形態によるハイブリッド式作業車両の動作を説明するフローチャートThe flowchart explaining operation | movement of the hybrid type work vehicle by 1st Embodiment. 第2の実施の形態によるハイブリッド式作業車両の油圧回路を説明する回路図The circuit diagram explaining the hydraulic circuit of the hybrid type work vehicle by 2nd Embodiment 冷却ファンの回転数と作動油の温度との関係を説明する図The figure explaining the relationship between the rotation speed of a cooling fan and the temperature of hydraulic fluid 作動油の温度と要求回生制動力とに応じて制御される冷却ファンの回転数を説明する図The figure explaining the rotation speed of the cooling fan controlled according to the temperature of hydraulic oil and the required regenerative braking force 第2の実施の形態によるハイブリッド式作業車両の動作を説明するフローチャートThe flowchart explaining operation | movement of the hybrid type work vehicle by 2nd Embodiment.
-第1の実施の形態-
 図面を参照しながら、本発明の実施の形態によるハイブリッド式作業車両について説明する。図1は実施の形態のハイブリッド式作業車両200の一例として示されるホイールローダの外観側面図であり、図2はハイブリッド式作業車両200の主要構成を示す回路ブロック図である。
-First embodiment-
A hybrid work vehicle according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external side view of a wheel loader shown as an example of a hybrid work vehicle 200 according to the embodiment, and FIG. 2 is a circuit block diagram showing a main configuration of the hybrid work vehicle 200.
 図1に示すように、ハイブリッド式作業車両200は、アーム201、バケット20、前輪18a,18b等を有する前部車体202と、運転室19、後輪18c,18d等を有する後部車体203とを有する。アーム201はアームシリンダ13の駆動により上下方向に回動(俯仰動)し、バケット20はバケットシリンダ14の駆動により上下方向に回動(ダンプまたはクラウド)する。なお、前輪18a,18bと後輪18c,18dについて、総称する場合には車輪18として説明する。 As shown in FIG. 1, a hybrid work vehicle 200 includes a front vehicle body 202 having an arm 201, a bucket 20, front wheels 18a, 18b and the like, and a rear vehicle body 203 having a cab 19, rear wheels 18c, 18d and the like. Have. The arm 201 rotates up and down (up and down) by driving the arm cylinder 13, and the bucket 20 rotates up and down (dump or cloud) by driving the bucket cylinder 14. The front wheels 18a and 18b and the rear wheels 18c and 18d will be described as wheels 18 when collectively referred to.
 前部車体202と後部車体203とは、不図示の連結軸により互いに回動自在に連結されている。このハイブリッド式作業車両200は、連結軸にて前部車体202と後部車体203とが屈曲されるアーティキュレート式の作業車両である。前部車体202と後部車体203には、連結軸を中心とする一対のステアリングシリンダ(以下、ステアリングシリンダ)12の一端と他端とが、それぞれ回転可能に係止されている。後述する油圧装置により一対のステアリングシリンダ12のうち一方を伸長、他方を縮退させることにより、前部車体202と後部車体203とをそれぞれ連結軸を中心に回転させる。これにより、前部車体202と後部車体203との相対的な取付角度が変化し、車体が屈曲して換向する。 The front vehicle body 202 and the rear vehicle body 203 are rotatably connected to each other by a connection shaft (not shown). This hybrid work vehicle 200 is an articulated work vehicle in which a front vehicle body 202 and a rear vehicle body 203 are bent at a connecting shaft. One end and the other end of a pair of steering cylinders (hereinafter referred to as steering cylinders) 12 around the connecting shaft are rotatably locked to the front vehicle body 202 and the rear vehicle body 203, respectively. One of the pair of steering cylinders 12 is extended and the other is retracted by a hydraulic device to be described later, thereby rotating the front vehicle body 202 and the rear vehicle body 203 about the connecting shaft. As a result, the relative mounting angle between the front vehicle body 202 and the rear vehicle body 203 changes, and the vehicle body bends and turns.
 図2に示すように、ハイブリッド式作業車両200は、エンジン1、エンジン1の駆動を制御するエンジン制御装置(以下、エンジンコントローラ)2、蓄電装置(以下、キャパシタ)3、コンバータ4、発電電動機5、発電インバータ6、走行電動機7F,7R、走行インバータ8F,8R、油圧ポンプ9、操作装置31およびシフトスイッチ40を備えている。またハイブリッド式作業車両200は、以上の構成部を制御する主制御装置(以下、メインコントローラ)100を備えている。 As shown in FIG. 2, the hybrid work vehicle 200 includes an engine 1, an engine control device (hereinafter referred to as an engine controller) 2 that controls driving of the engine 1, a power storage device (hereinafter referred to as a capacitor) 3, a converter 4, and a generator motor 5. , A power generation inverter 6, traveling motors 7 F and 7 R, traveling inverters 8 F and 8 R, a hydraulic pump 9, an operating device 31, and a shift switch 40. The hybrid work vehicle 200 includes a main control device (hereinafter referred to as a main controller) 100 that controls the above components.
 油圧ポンプ9はハイブリッド式作業車両200の各油圧アクチュエータ、すなわちステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14に圧油を供給する可変容量型油圧ポンプである。油圧ポンプ9の回転軸はエンジン1の駆動軸と同軸上に設けられている。油圧ポンプ9がエンジン1により駆動されると、オイルタンク10の作動油がコントロールバルブ11を介してステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14に供給される。コントロールバルブ11は、ステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14のボトム室またはロッド室への作動油の流れを制御する制御弁である。コントロールバルブ11は、運転室19内に設置された操作装置31から出力される信号(油圧信号または電気信号)によって制御される。油圧ポンプ9からコントロールバルブ11に導かれた作動油は、操作装置31の操作に応じてステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14に分配される。 The hydraulic pump 9 is a variable displacement hydraulic pump that supplies pressure oil to each hydraulic actuator of the hybrid work vehicle 200, that is, the steering cylinder 12, the lift cylinder 13, and the bucket cylinder 14. The rotation shaft of the hydraulic pump 9 is provided coaxially with the drive shaft of the engine 1. When the hydraulic pump 9 is driven by the engine 1, hydraulic oil in the oil tank 10 is supplied to the steering cylinder 12, the lift cylinder 13, and the bucket cylinder 14 via the control valve 11. The control valve 11 is a control valve that controls the flow of hydraulic oil to the bottom chamber or the rod chamber of the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14. The control valve 11 is controlled by a signal (hydraulic signal or electric signal) output from an operating device 31 installed in the cab 19. The hydraulic fluid guided from the hydraulic pump 9 to the control valve 11 is distributed to the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 in accordance with the operation of the operating device 31.
 発電電動機5は、エンジン1の駆動軸と同軸上にある回転軸にロータが取り付けられ、ロータの外周にステータが配置されている。発電電動機5は発電機モードと電動機モードのいずれかのモードで駆動される。発電機モードが選択されているとき、発電電動機5は、エンジン1によってロータが回転することにより発電する。発電インバータ6は発電電動機5で発電された交流電力を所定電圧の直流電力に変換する。電動機モードが選択されているとき、発電電動機5は、発電インバータ6から交流電力が供給されて電動機として機能する。発電電動機5の回転軸はエンジン1の回転軸と油圧ポンプ9の回転軸に連結されている。そのため、発電電動機5の出力トルクは油圧ポンプ9に与えられる。 In the generator motor 5, a rotor is attached to a rotating shaft that is coaxial with the drive shaft of the engine 1, and a stator is disposed on the outer periphery of the rotor. The generator motor 5 is driven in either a generator mode or a motor mode. When the generator mode is selected, the generator motor 5 generates power when the rotor is rotated by the engine 1. The generator inverter 6 converts AC power generated by the generator motor 5 into DC power having a predetermined voltage. When the motor mode is selected, the generator motor 5 is supplied with AC power from the generator inverter 6 and functions as a motor. The rotating shaft of the generator motor 5 is connected to the rotating shaft of the engine 1 and the rotating shaft of the hydraulic pump 9. Therefore, the output torque of the generator motor 5 is given to the hydraulic pump 9.
 コンバータ4は、キャパシタ3に蓄電された電荷により得られる直流電力を所定電圧に昇圧して、発電電動機5、走行電動機7F,7Rに供給する。コンバータ4は、後述するメインコントローラ100により制御される。
 なお、キャパシタ3に代えて、たとえば鉛蓄電池や、リチウムイオンバッテリのような2次電池を用いてもよい。また、リターダーのような発電ブレーキを発電インバータ6と走行インバータ8間の電力線に接続しても良い。この場合、回生エネルギー分は熱に変換される。
The converter 4 boosts DC power obtained from the electric charge stored in the capacitor 3 to a predetermined voltage and supplies it to the generator motor 5 and the traveling motors 7F and 7R. The converter 4 is controlled by a main controller 100 described later.
Instead of the capacitor 3, a secondary battery such as a lead storage battery or a lithium ion battery may be used. A power generation brake such as a retarder may be connected to the power line between the power generation inverter 6 and the travel inverter 8. In this case, the regenerative energy is converted into heat.
 走行電動機7F,7Rは、キャパシタ3および発電電動機5に電力線を介して接続され、キャパシタ3および発電電動機5の一方、または双方から供給される電力によって車輪18を駆動する。走行加速時には、走行電動機7F,7Rは、後述する走行インバータ8F,8Rにより力行駆動される。力行駆動により発生した力行トルクはプロペラシャフト15f,15r、ディファレンシャルギア16f,16rおよびドライブシャフト17a,17b,17c,17dを介して前輪18a,18bおよび後輪18c,18dへと伝えられ、ハイブリッド式作業車両200が加速する。走行制動時には、走行電動機7F,7Rが発生した回生トルク(制動トルク)は、車輪18へと伝えられ、ハイブリッド式作業車両200が減速する。 The traveling motors 7F and 7R are connected to the capacitor 3 and the generator motor 5 via a power line, and drive the wheels 18 with electric power supplied from one or both of the capacitor 3 and the generator motor 5. At the time of traveling acceleration, the traveling motors 7F and 7R are powered by driving inverters 8F and 8R described later. The power running torque generated by the power running drive is transmitted to the front wheels 18a, 18b and the rear wheels 18c, 18d via the propeller shafts 15f, 15r, the differential gears 16f, 16r and the drive shafts 17a, 17b, 17c, 17d, and the hybrid work The vehicle 200 is accelerated. At the time of traveling braking, the regenerative torque (braking torque) generated by the traveling electric motors 7F and 7R is transmitted to the wheels 18 and the hybrid work vehicle 200 is decelerated.
 走行インバータ8F,8Rは、走行加速時には走行電動機7F,7Rに交流走行駆動電力を供給してそれぞれ駆動する。また、走行インバータ8F,8Rは、走行制動時に走行電動機7F,7Rで発生した回生電力(交流電力)を所定電圧の直流電力に変換してキャパシタ3に供給する。コンバータ4、発電インバータ6および走行インバータ8F,8Rは、同一の電力線に接続され、相互に電力の供給が可能となるように構成されている。また、コンバータ4は、電力線に取り付けられた平滑コンデンサ(不図示)の直流電圧(DC電圧)を監視し、この平滑コンデンサのDC電圧を一定に保つようにキャパシタ3の充放電を制御する。 The traveling inverters 8F and 8R are driven by supplying AC traveling driving power to the traveling motors 7F and 7R during traveling acceleration, respectively. Further, the traveling inverters 8F and 8R convert the regenerative power (AC power) generated by the traveling motors 7F and 7R during traveling braking into DC power having a predetermined voltage and supply it to the capacitor 3. Converter 4, power generation inverter 6 and traveling inverters 8F and 8R are connected to the same power line and configured to be able to supply power to each other. Converter 4 also monitors the DC voltage (DC voltage) of a smoothing capacitor (not shown) attached to the power line, and controls charging / discharging of capacitor 3 so as to keep the DC voltage of the smoothing capacitor constant.
 運転室19に設けられた操作装置31は、ステアリングホイール、リフトレバー、バケットレバー等を含んで構成される。ステアリングホイールはステアリングシリンダ12を伸縮させる際に操作される。オペレータはステアリングホイールを操作することで、ステアリングシリンダ12を伸縮させてハイブリッド式作業車両200の操舵角を調整して、ハイブリッド式作業車両200を旋回させる。リフトレバーはリフトシリンダ13を伸縮する際に操作される。バケットレバーはバケットシリンダ14を伸縮する際に操作される。オペレータはリフトレバー、バケットレバー等を操作することにより、リフトシリンダ13およびバケットシリンダ14を伸縮させて、バケット20の高さと傾きとを制御し、掘削および積込作業を行う。 The operating device 31 provided in the cab 19 includes a steering wheel, a lift lever, a bucket lever, and the like. The steering wheel is operated when the steering cylinder 12 is expanded and contracted. The operator operates the steering wheel to expand and contract the steering cylinder 12 to adjust the steering angle of the hybrid work vehicle 200 and turn the hybrid work vehicle 200. The lift lever is operated when the lift cylinder 13 is expanded and contracted. The bucket lever is operated when the bucket cylinder 14 is expanded and contracted. The operator operates the lift lever, bucket lever and the like to expand and contract the lift cylinder 13 and the bucket cylinder 14 to control the height and inclination of the bucket 20 to perform excavation and loading work.
 運転室19には、シフトスイッチ40、図示しないアクセルペダル、ブレーキペダル、前後進スイッチ操作部が設けられている。オペレータはシフトスイッチ40を操作することによって、たとえば1速~3速の間で速度段を設定することができる。シフトスイッチ40は、設定された速度段を示す信号(速度段信号)を後述するメインコントローラ100へ出力する。オペレータは、上記のシフトスイッチ40、アクセルペダル、ブレーキペダル、前後進スイッチ操作部を操作することによって、車輪18を駆動してハイブリッド式作業車両200を走行させることができる。アクセルペダルの踏込量はアクセルペダル踏込量に応じアクセル信号を出力するセンサ290で検出され、ブレーキペダルの踏込量はブレーキペダル踏込量に応じたブレーキ信号を出力するセンサ291で検出される。それらのセンサ290,291は、オペレータによる操作量、すなわち踏込量に応じて、それぞれアクセル信号とブレーキ信号とを後述するメインコントローラ100へ出力する。また、前後進スイッチ操作部が前進側または後進側に操作されたことは前後進スイッチ292により検出され、この前後進スイッチ292は前進信号または後進信号をメインコントローラ100に送信する。 The cab 19 is provided with a shift switch 40, an accelerator pedal (not shown), a brake pedal, and a forward / reverse switch operation unit. The operator can set the speed stage between the first speed and the third speed by operating the shift switch 40, for example. The shift switch 40 outputs a signal (speed stage signal) indicating the set speed stage to the main controller 100 described later. The operator can drive the hybrid work vehicle 200 by driving the wheels 18 by operating the shift switch 40, the accelerator pedal, the brake pedal, and the forward / reverse switch operation unit. The depression amount of the accelerator pedal is detected by a sensor 290 that outputs an accelerator signal according to the depression amount of the accelerator pedal, and the depression amount of the brake pedal is detected by a sensor 291 that outputs a brake signal according to the depression amount of the brake pedal. These sensors 290 and 291 respectively output an accelerator signal and a brake signal to the main controller 100 described later in accordance with an operation amount by the operator, that is, a depression amount. The forward / backward switch 292 detects that the forward / reverse switch operation unit has been operated forward or backward, and the forward / backward switch 292 transmits a forward signal or a reverse signal to the main controller 100.
 なお、本実施の形態のハイブリッド式作業車両200は、ブレーキペダルの操作に応じて油圧ブレーキ制御弁35a,35bに所定の油圧力が導入され、ディスクブレーキである油圧ブレーキ36a,36bにより摩擦力で車輪18a,18bの回転を機械的に制動する。そして、上述した走行電動機7F,7Rの回生トルクによる回生制動力も加味される。 In the hybrid work vehicle 200 according to the present embodiment, a predetermined hydraulic pressure is introduced into the hydraulic brake control valves 35a and 35b according to the operation of the brake pedal, and the hydraulic brakes 36a and 36b, which are disc brakes, generate frictional force. The rotation of the wheels 18a and 18b is mechanically braked. And the regenerative braking force by the regenerative torque of the traveling motors 7F and 7R described above is also taken into consideration.
 また、速度センサ21は、ハイブリッド式作業車両200の走行速度を検出して、速度信号をメインコントローラ100へ出力し、モータ回転数センサ22は、走行電動機7F,7Rの回転数を検出して、モータ回転数信号をメインコントローラ100へ出力する。 The speed sensor 21 detects the traveling speed of the hybrid work vehicle 200 and outputs a speed signal to the main controller 100. The motor rotation speed sensor 22 detects the rotation speed of the traveling motors 7F and 7R, A motor rotation number signal is output to the main controller 100.
 メインコントローラ100は、CPU、ROM、RAMなどを有し、制御プログラムに基づいてハイブリッド式作業車両200の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。また、メインコントローラ100は、上述したアクセルペダル踏込量センサ290、ブレーキペダル踏込量センサ291、シフトスイッチ40からそれぞれ入力したアクセル信号とブレーキ信号と速度段信号とを用いて車速制御を行う。 The main controller 100 includes a CPU, a ROM, a RAM, and the like, and is an arithmetic circuit that controls each component of the hybrid work vehicle 200 based on a control program and executes various data processing. Further, the main controller 100 performs vehicle speed control using the accelerator signal, the brake signal, and the speed stage signal respectively input from the accelerator pedal depression amount sensor 290, the brake pedal depression amount sensor 291 and the shift switch 40 described above.
 図3に示すように、メインコントローラ100は、蓄電管理部110と、油圧要求演算部120と、走行要求演算部130と、出力管理部140と、目標回転数演算部150と、発電電動機制御部160と、傾転角制御部170と、走行電動機・ブレーキ制御部180と、ブレーキ制御部190とを機能的に備える。 As shown in FIG. 3, the main controller 100 includes a power storage management unit 110, a hydraulic pressure request calculation unit 120, a travel request calculation unit 130, an output management unit 140, a target rotational speed calculation unit 150, and a generator motor control unit. 160, a tilt angle control unit 170, a traveling motor / brake control unit 180, and a brake control unit 190 are functionally provided.
 以下の数式(1)~(14)で用いる主な表記は以下のとおりである。
 「トルク」     Trq
 「出力」      Pwr
 「ポンプ」     Ppmp
 「走行」      drv
 「アクセル」    acc 
 「発電」      gen
 「要求」      req
 「指令(目標値)」  
 「走行電動機」、「回生電力」   mot 
Main notations used in the following formulas (1) to (14) are as follows.
"Torque" T rq
“Output” P wr
"Pump" P pmp
"Running" drv
"Accel" acc
"Power generation" gen
"Request" req
“Command (target value)” t
“Travel motor”, “Regenerative power” mot
 油圧要求出力            Pwr_pmp_req    …(1)式
 アクセル要求トルク   Trq_acc_req   …図6のアクセル要求トルクマップ
 走行要求トルク     Trq_drv_req     …(2)式
 走行要求出力      Pwr_drv_req  …(3)式
 エンジン出力指令    Pwr_eng_t    …(9)式
 回生電力低減指令    dPwr_mot_t  …(6)式
 発電出力指令      Pwr_gen_t    …(8)式
 発電電動機トルク指令  Trq_gen_t    …(10)式
 走行電動機トルク指令    Trq_mot_t    …(12)式
 エンジン回転数指令       Neng_t
 制動トルク指令      Trq_brk_t    …(13)式
 エンジン回転数           Neng
 走行電動機回転数         Nmot
Hydraulic pressure required output P wr_pmp_req (1) Accelerator required torque T rq_acc_req ... Accelerator required torque map of FIG. 6 Travel required torque T rq_drv_req (2) Formula Travel required output P wr_drv_req (3) Engine output command P wr_eng_t (3) 9) Formula Regenerative power reduction command dP wr_mot_t (6) Formula Power generation output command P wr_gen_t (8) Formula Generator motor torque command T rq_gen_t (10) Formula Running motor torque command T rq_mot_t (12) Formula Engine speed command N eng_t
Brake torque command T rq_brk_t (13) Engine speed N eng
Running motor speed N mot
-許容充電電力-
 蓄電管理部110は、キャパシタ3の許容充電電力を演算して出力演算部140に出力する。蓄電管理部110には、コンバータ4で検出されるキャパシタ3の蓄電電圧が入力される。蓄電管理部110は、コンバータ4から入力したキャパシタ3の蓄電電圧と、メインコントローラ100内の記憶装置(不図示)に記憶された許容充電電力マップとに基づいて、キャパシタ3の許容充電電力を算出する。
-Allowable charging power-
The power storage management unit 110 calculates the allowable charging power of the capacitor 3 and outputs it to the output calculation unit 140. The storage voltage of the capacitor 3 detected by the converter 4 is input to the storage management unit 110. The power storage management unit 110 calculates the allowable charging power of the capacitor 3 based on the storage voltage of the capacitor 3 input from the converter 4 and the allowable charging power map stored in a storage device (not shown) in the main controller 100. To do.
 図4に許容充電電力マップの一例を示す。図4では、Vcmin、Vcmaxはそれぞれキャパシタ3が劣化しにくい使用範囲における最低電圧、最高電圧である。許容充電電力マップは、キャパシタ3の蓄電電圧が最高電圧Vcmaxを超えないように、許容充電電力が最高電圧Vcmax付近で0以下になるように設定されている。一方、図4において、Icmaxはコンバータ4の最大電流制限に基づいて設定される。許容充電電力マップは、充電電流が最大電流制限Icmaxを超えないように蓄電電圧が低いほど許容充電電力が小さくなるようにも設定されている。
 なお、上記は充電時における例を説明するものであるが、放電時においても同様の演算が成される。
FIG. 4 shows an example of the allowable charging power map. In FIG. 4, Vcmin and Vcmax are the lowest voltage and the highest voltage in the use range where the capacitor 3 is unlikely to deteriorate. The allowable charging power map is set so that the allowable charging power becomes 0 or less near the maximum voltage Vcmax so that the stored voltage of the capacitor 3 does not exceed the maximum voltage Vcmax. On the other hand, in FIG. 4, Icmax is set based on the maximum current limit of converter 4. The allowable charging power map is also set such that the allowable charging power decreases as the stored voltage decreases so that the charging current does not exceed the maximum current limit Icmax.
In addition, although the above demonstrates the example at the time of charge, the same calculation is performed also at the time of discharge.
-油圧要求演算部120-
 油圧要求演算部120は、油圧ポンプ9の油圧要求出力Pwr_pmp_reqを演算する。油圧要求演算部120には、リフトレバーおよびバケットレバー、すなわち操作装置31からレバー信号が入力され、油圧ポンプ9とコントロールバルブ11との間に設けられた圧力センサ(不図示)からポンプ圧ppmpが入力される。なお、説明を簡略化するため、ステアリングホイールの操作およびステアリングシリンダ12の動作については演算に含めないものとする。
-Hydraulic demand calculation unit 120-
The hydraulic pressure request calculation unit 120 calculates the hydraulic pressure request output P wr_pmp_req of the hydraulic pump 9. The hydraulic pressure request calculation unit 120 receives a lift lever and a bucket lever, that is, a lever signal from the operation device 31, and a pump pressure p pmp from a pressure sensor (not shown) provided between the hydraulic pump 9 and the control valve 11. Is entered. In order to simplify the description, the operation of the steering wheel and the operation of the steering cylinder 12 are not included in the calculation.
 図5は、ポンプ要求流量マップの一例を示す図である。ポンプ要求流量マップは、レバー信号にポンプ要求流量がほぼ比例するように設定され、メインコントローラ100の記憶装置(不図示)に記憶されている。油圧要求演算部120は、受信したレバー信号とポンプ要求流量マップとに基づいて、ポンプ要求流量qpmp_reqを算出する。そして油圧要求演算部120は、算出したポンプ要求流量qpmp_reqと、受信したポンプ圧力ppmpとを用いて、以下の(1)式により油圧要求出力Pwr_pmp_reqを算出する。
 Pwr_pmp_req=qpmp_req・ppmp …(1)
 なお、説明を簡略化するため、油圧ポンプ9の効率は考慮しないものとし、以下の計算式においても同様に油圧ポンプ9の効率は含まれない。
FIG. 5 is a diagram illustrating an example of a pump request flow map. The pump request flow map is set so that the pump request flow is substantially proportional to the lever signal, and is stored in a storage device (not shown) of the main controller 100. The hydraulic pressure request calculation unit 120 calculates the pump required flow rate q pmp_req based on the received lever signal and the pump required flow rate map. The hydraulic demand calculation unit 120 includes a pump required flow q Pmp_req the calculated, received using a pump pressure p pmp, calculates the oil pressure required output P Wr_pmp_req by the following equation (1).
P wr_pmp_req = q pmp_req · p pmp ... (1)
In order to simplify the description, it is assumed that the efficiency of the hydraulic pump 9 is not taken into account, and the efficiency of the hydraulic pump 9 is not included in the following calculation formula as well.
-走行要求演算部130-
 走行要求演算部130は、走行時に走行電動機7F,7Rに要求されるトルクである走行要求トルクTrq_drv_reqを(2)式に基づいて算出して出力し、走行時に走行電動機7で消費または発生(回生)される電力である走行要求出力Pwr_drv_reqを(3)式に基づいて算出して出力する。このとき、走行要求演算部130は、メインコントローラ100の記憶装置(不図示)に記憶されたアクセル要求トルクマップを用いて演算を行う。
-Running request calculation unit 130-
The travel request calculation unit 130 calculates and outputs a travel request torque T rq_drv_req that is a torque required for the travel motors 7F and 7R during travel based on the formula (2), and is consumed or generated by the travel motor 7 during travel ( The travel request output P wr_drv_req which is the electric power to be regenerated is calculated based on the equation (3) and output. At this time, the travel request calculation unit 130 performs a calculation using an accelerator request torque map stored in a storage device (not shown) of the main controller 100.
 図6にアクセル要求トルクマップの一例を示す。アクセル要求トルクマップは速度段ごとに設けられる。(a)が1速、(b)が2速、(c)が3速の特性である。アクセル要求トルクTrq_acc_reqは、アクセル信号と、走行電動機7F,7Rの回転数の絶対値とに基づいて算出される。すなわち、走行要求演算部130は、シフトスイッチ40から入力される速度段信号と、アクセルペダルの踏込量を検出するセンサ290から入力されるアクセル信号と、車両の走行速度に相当する、回転数センサ22から入力される走行電動機回転数Nmotとに基づいて、設定された速度段に対応するアクセル要求トルクマップを選択してアクセル要求トルクTrq_acc_reqを算出する。そして、走行要求演算部130は、算出したアクセル要求トルクTrq_acc_reqと、前後進スイッチから入力される前後進スイッチ信号VFNRと、車両の走行速度に相当する、回転数センサ22から入力される走行電動機回転数Nmotと、ブレーキペダルの踏込量を検出するセンサ291から入力されるブレーキ信号Vbrkとを用いて、以下の(2)式により走行要求トルクTrq_drv_reqを算出する。
 Trq_drv_req=sign(VFNR)・Trq_acc_req-sign(Nmot)・Kbrk・Vbrk
      ―sign(Nmot)・α・Nmot       …(2)
 ただし、signは符号関数であり、引数が正の場合は「1」を、負の場合は「-1」を、0の場合は「0」を返すものとする。さらに、前後進スイッチ信号VFNRは、前後進スイッチが前進方向の場合は「1」を、後進方向の場合は「-1」を、中立の場合は「0」を示す。Kbrkは比例定数であり、ブレーキペダルの操作によって過不足のない減速が得られるように予め設定されている。また、αは、速度段とアクセルペダル踏込量の関数であり、速度段が小さいほど大きな値を、アクセルペダル踏込量が小さいほど大きな値を設定している。
FIG. 6 shows an example of the accelerator required torque map. The accelerator required torque map is provided for each speed stage. (A) is the first speed, (b) is the second speed, and (c) is the third speed. Accelerator required torque T rq_acc_req is calculated based on the accelerator signal and the absolute value of the rotational speed of traveling electric motors 7F and 7R. That is, the travel request calculation unit 130 is a speed sensor that corresponds to the speed stage signal input from the shift switch 40, the accelerator signal input from the sensor 290 that detects the depression amount of the accelerator pedal, and the travel speed of the vehicle. On the basis of the traveling motor rotation speed N mot input from 22, the accelerator request torque map corresponding to the set speed stage is selected to calculate the accelerator request torque T rq_acc_req . Then, the travel request calculation unit 130 travels input from the rotational speed sensor 22 corresponding to the calculated accelerator request torque T rq_acc_req , the forward / reverse switch signal V FNR input from the forward / reverse switch, and the travel speed of the vehicle. a motor speed N mot, with a brake signal V brk inputted from a sensor 291 for detecting the amount of depression of the brake pedal, calculates the travel required torque T Rq_drv_req by the following equation (2).
T rq_drv_req = sign (V FNR ) · T rq_acc_req −sign (N mot ) · K brk · V brk
-Sign (N mot ) · α · N mot (2)
However, sign is a sign function, and “1” is returned when the argument is positive, “−1” is returned when it is negative, and “0” is returned when it is 0. Further, the forward / reverse switch signal VFNR indicates “1” when the forward / reverse switch is in the forward direction, “−1” when it is in the reverse direction, and “0” when it is neutral. Kbrk is a proportionality constant, and is set in advance so that deceleration without excess or deficiency can be obtained by operating the brake pedal. Α is a function of the speed stage and the accelerator pedal depression amount, and a larger value is set as the speed stage is smaller, and a larger value is set as the accelerator pedal depression amount is smaller.
 式(2)の右辺の第3項は、ハイブリッドホイールローダにおいて、トルコン車両で得られるエンジンブレーキと同等のエンジンブレーキフィーリングを得るために導入するものである。たとえば、本発明の実施形態では、図7に示すように、トルコン車両と同様な車速に応じた回生制動力を得るようにしている。図7は、アクセルペダルとブレーキペダルのいずれも踏み込んでいない場合の回生制動力を1速、2速、3速について示している。
 ただし、後述するように、高速走行中は回生電力のすべてをキャパシタ3に充電することができない。そのため、高速走行中の回生運転においては、式(6)で説明するように回生電力を低減する制御を行う。その結果、図7(b)により後で詳細に説明するように、回生制動力がその上限限界線L4で制限され、各速度段の回生制動力L1~L3は上限限界線L4で最大値が制限される。そこで、本発明では、図7(c)の線L4よりも上側の不足分を油圧ブレーキで補うものである。これらの制御は後で詳細に説明する。
The third term on the right side of Equation (2) is introduced to obtain an engine brake feeling equivalent to the engine brake obtained in a torque converter vehicle in a hybrid wheel loader. For example, in the embodiment of the present invention, as shown in FIG. 7, a regenerative braking force corresponding to the vehicle speed similar to that of a torque converter vehicle is obtained. FIG. 7 shows the regenerative braking force for the first speed, the second speed, and the third speed when neither the accelerator pedal nor the brake pedal is depressed.
However, as will be described later, it is not possible to charge the capacitor 3 with all of the regenerative power during high-speed traveling. For this reason, in regenerative operation during high-speed traveling, control for reducing regenerative power is performed as described in Equation (6). As a result, as will be described in detail later with reference to FIG. 7B, the regenerative braking force is limited by its upper limit line L4, and the regenerative braking forces L1 to L3 of each speed stage have a maximum value on the upper limit line L4. Limited. Therefore, in the present invention, the shortage above the line L4 in FIG. 7C is compensated by the hydraulic brake. These controls will be described later in detail.
 走行要求演算部130には、コンバータ4で検出されるDC電圧VDCと、走行インバータ8F,8Rで検出される走行直流電流(DC電流)IDC_motが入力されている。ただし、走行DC電流は走行インバータ8F,8Rの電力線側を流れるDC電流であり、消費側を正とし、回生側を負とする。走行要求演算部130は、DC電圧VDCと、走行DC電流IDC_motとを用いて、以下の(3)式により走行要求出力Pwr_drv_reqを算出する。
 Pwr_drv_req=VDC・IDC_mot …(3)
 (3)式によれば、回生運転時の走行要求出力Pwr_drv_reqは負の値をとる。
Traveling to the request operation unit 130, and the DC voltage V DC detected by the converter 4, the running inverter 8F, running a direct current (DC current) I DC_mot is detected by the 8R are input. However, the traveling DC current is a DC current flowing through the power line side of the traveling inverters 8F and 8R, where the consumption side is positive and the regeneration side is negative. Travel request calculating unit 130 uses the DC voltage V DC, and a travel DC current I DC_mot, calculates the following (3) travel request output P Wr_drv_req by formula.
P wr_drv_req = V DC · I DC_mot (3)
According to the equation (3), the travel request output P wr_drv_req during the regenerative operation takes a negative value.
-出力管理部140-
 出力管理部140には、エンジンコントローラ2からのエンジン回転数Nengと、蓄電管理部110からの許容充電電力Pwr_chg_maxと、油圧要求演算部120からの油圧要求出力Pwr_pmp_reqと、走行要求演算部130からの走行要求出力Pwr_drv_reqとが入力される。
 出力管理部140は、(4)式に基づいて余剰電力Pwr_supを算出する。また、(5)式に基づいて傾転角増加指令dDpmpを算出して出力し、(6)式に基づいて回生電力低減指令dPwr_mot_tを算出して出力し、(8)式に基づいて発電出力指令Pwr_gen_tを算出して出力し、(9)式に基づいてエンジン出力指令Pwr_eng_tを算出して出力する。
 なお、出力管理部140は、エンジン回転数を受信して演算に用いているが、エンジン1、発電電動機5および油圧ポンプ9が機械的に接続されているため、エンジン回転数に代えて発電電動機5および油圧ポンプ9の回転数をセンサ等を介して適宜受信して演算に用いてもよい。
-Output management unit 140-
The output management unit 140 includes an engine speed N eng from the engine controller 2, an allowable charging power P wr_chg_max from the power storage management unit 110, a hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120, and a travel request calculation unit The travel request output P wr_drv_req from 130 is input.
The output management unit 140 calculates surplus power P wr_sup based on equation (4). Further, the tilt angle increase command dD pmp is calculated and output based on the equation (5), the regenerative power reduction command dP wr_mot_t is calculated and output based on the equation (6), and based on the equation (8). The power generation output command Pwr_gen_t is calculated and output, and the engine output command Pwr_eng_t is calculated and output based on the equation (9).
The output management unit 140 receives the engine speed and uses it for calculation. However, since the engine 1, the generator motor 5 and the hydraulic pump 9 are mechanically connected, the generator motor is used instead of the engine speed. 5 and the number of rotations of the hydraulic pump 9 may be appropriately received via a sensor or the like and used for calculation.
(余剰電力)
 出力管理部140は、走行要求演算部130で(3)式で算出した走行要求出力Pwr_drv_reqを受信する。この走行要求出力Pwr_drv_reqが0以上であれば、出力管理部140はハイブリッド式作業車両200が力行運転中と判断し、走行要求出力Pwr_drv_reqが負であればハイブリッド式作業車両200が回生運転中と判断する。ハイブリッド式作業車両200が回生運転中と判断すると、出力管理部140は、蓄電管理部110からの許容充電電力Pwr_chg_maxと、走行要求演算部130からの走行要求出力Pwr_drv_reqとを用いて、以下の(4)式により、余剰電力Pwr_supを算出する。
 Pwr_sup=max(|Pwr_drv_req|-Pwr_chg_max,0)…(4)
(Surplus power)
The output management unit 140 receives the travel request output P wr_drv_req calculated by the travel request calculation unit 130 using equation (3). If the travel request output Pwr_drv_req is 0 or more, the output management unit 140 determines that the hybrid work vehicle 200 is in a power running operation, and if the travel request output Pwr_drv_req is negative, the hybrid work vehicle 200 is in a regenerative operation. Judge. When it is determined that the hybrid work vehicle 200 is in regenerative operation, the output management unit 140 uses the allowable charging power P wr_chg_max from the power storage management unit 110 and the travel request output P wr_drv_req from the travel request calculation unit 130 to be described below. The surplus power P wr_sup is calculated by the equation (4).
P wr_sup = max (| P wr_drv_req | −P wr_chg_max , 0) (4)
 回生時の走行要求出力Pwr_drv_reqの絶対値が許容充電電力Pwr_chg_maxより大きいとき、その差が余剰電力Pwr_supとして計算される。
 すなわち、余剰電力Pwr_supとは、回生運転中の走行電動機7F,7Rによる回生電力がキャパシタ3に充電可能な許容充電電力を上回っている電力である。したがって、この余剰電力は、発電電動機5を駆動して消費するか、あるいは、回生電力自体を低減して余剰電力自体を低減する必要がある。
 余剰電力Pwr_supの消費は、(10)式で算出される発電電動機トルク指令Trq_gen_tにより発電電動機5を駆動することで消費される。また、余剰電力Pwr_supは、エンジン回転数Nengとその第2閾値Neng_th2との差(Neng-Neng_th2)から(6)式で算出される回生電力低減指令により低減される。この点は後に詳述する。
When the absolute value of the travel request output P wr_drv_req at the time of regeneration is larger than the allowable charging power P wr_chg_max , the difference is calculated as the surplus power P wr_sup .
In other words, the surplus power P wr_sup is the power at which the regenerative power by the traveling motors 7F and 7R during the regenerative operation exceeds the allowable charge power that can charge the capacitor 3. Therefore, it is necessary to drive the generator motor 5 to consume this surplus power, or to reduce the regenerative power itself to reduce the surplus power itself.
Consumption of surplus power P wr_sup is consumed by driving the generator motor 5 with the generator motor torque command T rq_gen_t calculated by the equation (10). Further, the surplus power P Wr_sup is reduced by the regenerative power reduction command calculated from the difference between the engine speed N eng and its second threshold value N eng_th2 (N eng -N eng_th2) in equation (6). This point will be described in detail later.
 出力管理部140は、算出した余剰電力Pwr_supが0か否かを監視することで、走行電動機7F,7Rで発生した全ての回生電力をキャパシタ3に充電可能か否か、すなわち余剰電力Pwr_supが発生するか否かを判定する。ただし、力行運転中と判断されている場合には、余剰電力Pwr_supは0に設定される。
 すなわち、出力管理部140は、(4)式で算出される余剰電力Pwr_supから以下のことを認識することができる。
(a)余剰電力Pwr_supが0のときは、回生電力でキャパシタ3を充電することができると認識する。
(b)余剰電力Pwr_supが0ではないときは、回生電力でキャパシタ3を充電することができないと認識する。
 出力管理部140は(b)を認識すると、発電電動機5を電動モードで駆動して回生電力を消費するか、もしくは、回生電力低減指令により余剰電力自体を低減する。
The output management unit 140 monitors whether or not the calculated surplus power P wr_sup is 0, so that it is possible to charge all the regenerative power generated in the traveling motors 7F and 7R to the capacitor 3, that is, surplus power P wr_sup. It is determined whether or not the error occurs. However, when it is determined that the power running is in progress , the surplus power P wr_sup is set to zero.
That is, the output management unit 140 can recognize the following from the surplus power Pwr_sup calculated by the equation (4).
(A) When the surplus power Pwr_sup is 0, it is recognized that the capacitor 3 can be charged with regenerative power.
(B) When the surplus power P wr_sup is not 0, it is recognized that the capacitor 3 cannot be charged with regenerative power.
When recognizing (b), the output management unit 140 drives the generator motor 5 in the electric mode to consume regenerative power, or reduces the surplus power itself by a regenerative power reduction command.
(エンジン回転数判定)
 出力管理部140は、ハイブリッド式作業車両200が回生運転中と判断すると、エンジン1の回転数Nengが第1設定閾値Neng_th1以下であるか、さらに第2設定閾値Neng_th2以下であるかを判定する。ここで、第1設定閾値Neng_th1および第2設定閾値Neng_th2は、「エンジン1のアイドル回転数<第1設定閾値Neng_th1<第2設定閾値Neng_th2<min(エンジン1の最高回転数、油圧ポンプ9の最高回転数)」を満たすように設定されている。第1設定閾値Neng_th1および第2設定閾値Neng_th2は、メインコントローラ100の記憶装置に記憶され、必要に応じて適宜再設定が可能である。なお、エンジン1の回転数に代えて、発電電動機5の回転数を用いても良いし、油圧ポンプ9の回転数を用いても良い。
(Engine speed determination)
When the output management unit 140 determines that the hybrid work vehicle 200 is in a regenerative operation, the output management unit 140 determines whether the rotational speed N eng of the engine 1 is equal to or lower than the first set threshold value N eng_th1 or further equal to or lower than the second set threshold value N eng_th2. judge. Here, the first set threshold value N eng_th1 and the second set threshold value N eng_th2 are expressed as follows: “idle speed of engine 1 <first set threshold value N eng_th1 <second set threshold value N eng_th2 <min (maximum engine speed of engine 1, hydraulic pressure It is set so as to satisfy the “maximum rotational speed of the pump 9)”. The first setting threshold N eng_th1 and the second setting threshold N eng_th2 are stored in the storage device of the main controller 100, and can be reset as appropriate. Instead of the rotation speed of the engine 1, the rotation speed of the generator motor 5 may be used, or the rotation speed of the hydraulic pump 9 may be used.
 出力管理部140は、入力されたエンジン1の回転数と第1設定閾値Neng_th1と第2設定閾値Neng_th2とを比較して、エンジン1が低回転モードか、回転抑制モードか、高回転モードかを判定する。この場合、エンジン1の回転数Nengが第1設定閾値Neng_th1以下であれば、出力管理部140はエンジン1を低回転モードと判定する。エンジン1の回転数Nengが第1設定閾値Neng_th1よりも大きく第2設定閾値Neng_th2以下であれば、出力管理部140はエンジン1を回転抑制モードと判定する。エンジン1の回転数Nengが第2設定閾値Neng_th2よりも大きい場合は、出力管理部140はエンジン1を高回転モードと判定する。 The output management unit 140 compares the input engine speed, the first setting threshold N eng — th1 and the second setting threshold N eng — th2, and determines whether the engine 1 is in the low rotation mode, the rotation suppression mode, or the high rotation mode. Determine whether. In this case, if the rotation speed N eng of the engine 1 is equal to or less than the first set threshold value N eng — th1 , the output management unit 140 determines that the engine 1 is in the low rotation mode. If the rotational speed N eng of the engine 1 and the second set threshold value N Eng_th2 less greater than the first preset threshold N eng_th1, output management unit 140 determines the engine 1 and the rotation suppression mode. When the rotation speed N eng of the engine 1 is larger than the second setting threshold N eng — th2 , the output management unit 140 determines that the engine 1 is in the high rotation mode.
 なお、ハイブリッド式作業車両200が力行運転中と判断された場合には、出力管理部140は、エンジン回転数Nengの大小にかかわらず、エンジン1を通常モードと判定する。
 以上のように、この実施の形態のハイブリッド作業車両200ではエンジン1の運転モードを以下の4つのモードに分類している。
 回生運転時は、低回転モードと、回転抑制モードと、高回転モードに分類し、力行運転時は、通常モードに分類する。
When it is determined that the hybrid work vehicle 200 is in a power running operation, the output management unit 140 determines that the engine 1 is in the normal mode regardless of the magnitude of the engine speed N eng .
As described above, in the hybrid work vehicle 200 of this embodiment, the operation mode of the engine 1 is classified into the following four modes.
At the time of regenerative operation, it is classified into a low rotation mode, a rotation suppression mode, and a high rotation mode.
(掘削装置動作判定)
 出力管理部140は、油圧要求演算部120で(1)式から算出された油圧要求出力Pwr_pmp_reqに基づいて、リフトシリンダ13およびバケットシリンダ14のいずれが動作中であるかを判定する。油圧要求出力Pwr_pmp_reqが、たとえばポンプ圧力×最小吐出流量で算出される設定値以上であれば、出力管理部140はリフトシリンダ13およびバケットシリンダ14が動作中であると判定する。
(Excavator operation judgment)
The output management unit 140 determines which one of the lift cylinder 13 and the bucket cylinder 14 is in operation based on the hydraulic request output P wr_pmp_req calculated from the equation (1) by the hydraulic request calculation unit 120. If the required hydraulic pressure output P wr_pmp_req is equal to or greater than a set value calculated by, for example, pump pressure × minimum discharge flow rate, the output management unit 140 determines that the lift cylinder 13 and the bucket cylinder 14 are operating.
 なお、油圧要求出力Pwr_pmp_reqに代えて、操作装置31の操作を検出してリフトシリンダ13およびバケットシリンダ14のいずれが動作中であるかを判定してもよい。この場合、操作装置31からレバー信号が出力されていることを検出するセンサ、たとえば、レバー信号が油圧信号の場合は圧力センサを設け、出力管理部140は、センサによって検出された検出値を用いて上記シリンダ13~14のいずれかが動作中であると判定すればよい。また、リフトシリンダ13およびバケットシリンダ14の伸縮速度を検出するセンサを設け、出力管理部140は、センサにより検出された検出速度を用いて判定してもよい。 Instead of the hydraulic pressure request output P wr_pmp_req , the operation of the operation device 31 may be detected to determine which one of the lift cylinder 13 and the bucket cylinder 14 is operating. In this case, a sensor for detecting that the lever signal is output from the operation device 31 is provided, for example, when the lever signal is a hydraulic signal, a pressure sensor is provided, and the output management unit 140 uses the detection value detected by the sensor. Thus, it may be determined that any of the cylinders 13 to 14 is operating. Moreover, the sensor which detects the expansion-contraction speed of the lift cylinder 13 and the bucket cylinder 14 may be provided, and the output management part 140 may determine using the detection speed detected by the sensor.
(傾転角増加指令)
 さらに、出力管理部140は、以下の3つの条件(i)~(iii)を満たす場合に、油圧ポンプ9の傾転角を増加するための傾転角増加指令dDpmp_tを下記(5)式にしたがって算出する。
(i)ハイブリッド式作業車両200が回生運転中と判定されている。
(ii)走行電動機7F,7Rの余剰電力で発電電動機5が駆動されているとき、リフトシリンダ13およびバケットシリンダ14のいずれも動作中でないと判定されている。
(iii)エンジン1が高回転モードと判定されている。
(Tilt angle increase command)
Further, the output management unit 140 outputs a tilt angle increase command dD pmp_t for increasing the tilt angle of the hydraulic pump 9 when the following three conditions (i) to (iii) are satisfied: Calculate according to
(I) It is determined that the hybrid work vehicle 200 is in regenerative operation.
(Ii) When the generator motor 5 is driven by the surplus power of the traveling motors 7F and 7R, it is determined that neither the lift cylinder 13 nor the bucket cylinder 14 is in operation.
(Iii) The engine 1 is determined to be in the high rotation mode.
 出力管理部140は、エンジンコントローラ2から入力されたエンジン回転数Nengと、第1設定閾値Neng_th1とを用いて、以下の(5)式により傾転角増加指令dDpmp_tを算出する。
 dDpmp_t=max{KnD(Neng-Neng_th1),0}…(5)
 ただし、KnDは、第1設定閾値Neng_th1と実回転数Nengの差から傾転角増加指令を算出する比例定数であり、あらかじめメインコントローラ100に記憶されている。
Output management unit 140 calculates the engine speed N eng input from the engine controller 2, by using the first set threshold value N Eng_th1, the tilt angle increase instruction dD Pmp_t by the following expression (5).
dD pmp_t = max {K nD (N eng −N eng — th1 ), 0} (5)
However, K nD is a proportional constant for calculating a tilt angle increase command from the difference between the first set threshold value N eng — th1 and the actual rotational speed N eng , and is stored in the main controller 100 in advance.
 なお、走行電動機7F,7Rの余剰電力で電動発電機5が駆動されている場合であっても、リフトシリンダ13およびバケットシリンダ14のいずれかが動作中である場合には、出力管理部140は傾転角増加指令dDpmp_tを0に設定する。また、力行運転中と判定された場合には、出力管理部140は傾転角増加指令dDpmp_tを0に設定する。さらに、回生運転中、回生電力の全量がキャパシタ3に充電することができず余剰電力が0でなく、かつ、油圧ポンプ9の負荷が小さいときには、出力管理部140は、(5)式で算出された傾転角増加指令dDpmp_tを出力する。その結果、油圧ポンプ9の傾転角が大きくなって余剰電力の消費量が増加する。 Even when the motor generator 5 is driven by the surplus power of the traveling motors 7F and 7R, if either the lift cylinder 13 or the bucket cylinder 14 is operating, the output management unit 140 The tilt angle increase command dD pmp_t is set to 0. In addition, when it is determined that the power running operation is being performed, the output management unit 140 sets the tilt angle increase command dD pmp_t to 0. Further, during the regenerative operation, when the total amount of regenerative power cannot be charged in the capacitor 3 and the surplus power is not 0 and the load of the hydraulic pump 9 is small, the output management unit 140 calculates by the equation (5). The tilt angle increase command dD pmp_t is output. As a result, the tilt angle of the hydraulic pump 9 is increased and the consumption of surplus power is increased.
 回生運転中に上記の(5)式に基づいて傾転角増加指令dDpmp_tが算出された場合、エンジン回転数Nengが高くなるほど傾転角増加指令dDpmp_tが大きくなり、油圧ポンプ9の吐出容量が大きくなる。この結果、エンジン回転数Nengが高くなるほど、油圧ポンプ9の負荷トルク、すなわち回生電力消費量を大きくすることができる。その結果、回生制動力も大きくなる。 If during regenerative operation based on the above equation (5) tilt angle increase instruction dD Pmp_t is calculated, the tilt angle increase instruction dD Pmp_t as the engine rotational speed N eng is increased becomes larger, the discharge of the hydraulic pump 9 Capacity increases. As a result, as the engine speed N eng increases, the load torque of the hydraulic pump 9, that is, the regenerative power consumption can be increased. As a result, the regenerative braking force also increases.
(回生電力低減指令)
 出力管理部140は、走行電動機7F,7Rの余剰電力で発電電動機5が駆動され、かつエンジン1が高回転モードと判定された場合に、走行電動機7F,7Rが発電する回生トルクを低減するための回生電力低減指令dPwr_mot_tを算出する。出力管理部140は、エンジンコントローラ2から入力されたエンジン回転数Nengと、第2設定閾値Neng_th2とを用いて、以下の(6)式により回生電力低減指令(回生電力低減目標値)dPwr_mot_tを算出する。
 dPwr_mot_t=max{KnP(Neng-Neng_th2),0}…(6)
 なお、(6)式において、KnPは、第2設定閾値Neng_th2と実エンジン回転数Nengとの差から回生電力低減指令を算出する比例定数である。
 エンジン1が通常モード、低回転モード、回転抑制モードのいずれかの場合には、出力管理部140は回生電力低減指令dPwr_mot_tを0に設定する。
(Regenerative power reduction directive)
The output management unit 140 reduces the regenerative torque generated by the traveling motors 7F and 7R when the generator motor 5 is driven by the surplus power of the traveling motors 7F and 7R and the engine 1 is determined to be in the high rotation mode. The regenerative power reduction command dP wr_mot_t is calculated. The output management unit 140 uses the engine speed N eng input from the engine controller 2 and the second set threshold value N eng — th2 to calculate a regenerative power reduction command (regenerative power reduction target value) dP according to the following equation (6). wr_mot_t is calculated.
dP wr_mot_t = max {K nP (N eng −N eng — th2 ), 0} (6)
In Equation (6), K nP is a proportionality constant that calculates a regenerative power reduction command from the difference between the second set threshold value N eng — th2 and the actual engine speed N eng .
When the engine 1 is in any of the normal mode, the low rotation mode, and the rotation suppression mode, the output management unit 140 sets the regenerative power reduction command dP wr_mot_t to 0.
 上記の(6)式に基づいて回生電力低減指令dPwr_mot_tが算出されると、エンジン回転数Nengが高くなるほど、回生電力低減指令dPwr_mot_tが大きくなり、走行電動機7F,7Rの回生電力が小さくなる。この結果、エンジン回転数Nengが高くなるほど、余剰電力Pwr_supを小さくすることができる。
 この回生電力低減指令制御は、エンジン1の回転数が高速域で走行しているときに、例えば、アクセルペダルを解放して作業車両200が回生運転に入るような場合にて、余剰電力Pwr_supが大きすぎることに伴うエンジン回転数Nengの過回転を防止することができる。
When the above (6) regenerative power reduction command dP Wr_mot_t based on equation are calculated, as the engine rotational speed N eng is increased, the regenerative power reduction command dP Wr_mot_t increases, traveling motor 7F, the regenerative power of the 7R small Become. As a result, the surplus power P wr_sup can be reduced as the engine speed N eng increases.
The regenerative power reduction command control is performed when the engine 1 is traveling in a high speed range, for example, when the work vehicle 200 enters a regenerative operation by releasing the accelerator pedal, and the surplus power P wr_sup. It is possible to prevent over-rotation of the engine speed N eng due to the excessively large.
(消費電力)
 出力管理部140は、ハイブリッド式作業車両200が回生運転中であると判定した場合に、走行電動機7F,7Rで発生する回生電力のうち発電電動機5で消費すべき電力である消費電力Pwr_cnsを算出する。出力管理部140は、(4)式で算出した余剰電力Pwr_supと、(6)式で算出した回生電力低減指令dPwr_mot_tとを用いて、以下の(7)式から消費電力Pwr_cnsを算出する。
 Pwr_cns=max(Pwr_sup-dPwr_mot_t,0)…(7)
 ただし、出力管理部140は、ハイブリッド式作業車両200が力行運転中と判定した場合には、消費電力Pwr_cnsを0に設定する。
(power consumption)
When it is determined that the hybrid work vehicle 200 is in the regenerative operation, the output management unit 140 uses the power consumption P wr_cns that is the power that should be consumed by the generator motor 5 among the regenerative power generated by the traveling motors 7F and 7R. calculate. The output management unit 140 calculates the power consumption P wr_cns from the following formula (7) using the surplus power P wr_sup calculated by the formula (4) and the regenerative power reduction command dP wr_mot_t calculated by the formula (6). To do.
P wrcns = max (P wr — sup −dP wrmott , 0) (7)
However, when it is determined that the hybrid work vehicle 200 is in power running, the output management unit 140 sets the power consumption P wr_cns to 0.
 上記の(7)式を用いて消費電力Pwr_cnsを算出すると、出力管理部140は、走行要求出力Pwr_drv_reqと消費電力Pwr_cnsに基づいて、以下の式(8)から発電出力指令(発電出力目標値)Pwr_gen_tを算出する。
 Pwr_gen_t=max(Pwr_drv_req,0)-Pwr_cns  …(8)
When the power consumption P wr_cns is calculated using the above equation (7), the output management unit 140 generates a power generation output command (power generation output) from the following equation (8) based on the travel request output P wr_drv_req and the power consumption P wr_cns. Target value) P wr_gen_t is calculated.
P wrgent = max (P wrdrvreq , 0) −P wr — cns (8)
 力行運転時と回生運転時に(8)式で算出される発電出力指令Pwr_gen_tをまとめると以下のとおりである。
 力行運転時、消費電力Pwr_cnsは0に設定され、また、走行要求出力Pwr_drv_reqは正の値をとるので、(8)式の発電出力指令Pwr_gen_tは、(3)式で算出される走行要求出力Pwr_drv_reqとなる。一方、回生運転時、走行要求出力Pwr_drv_reqは負の値をとるので、(8)式の発電出力指令Pwr_gen_tは、(7)式で算出される消費電力Pwr_cnsとなる。
 換言すると、力行時の発電出力指令Pwr_gen_tは走行要求出力Pwr_drv_reqであり、回生時の発電出力指令Pwr_gen_tは消費電力Pwr_cnsであり、負の値をとる。
The power generation output command P wr_gen_t calculated by the equation (8) at the time of power running operation and regenerative operation is summarized as follows.
During power running, the power consumption P wr_cns is set to 0, and the travel request output P wr_drv_req takes a positive value. Therefore, the power generation output command P wr_gen_t of equation (8) is calculated by equation (3). The request output P wr_drv_req is obtained. On the other hand, since the travel request output P wr_drv_req takes a negative value during the regenerative operation, the power generation output command P wr_gen_t in the equation (8) becomes the power consumption P wr_cns calculated by the equation (7).
In other words, the power generation output command P wr_gen_t during power running is the travel request output P wr_drv_req , and the power generation output command P wr_gen_t during regeneration is the power consumption P wr_cns and takes a negative value.
 出力管理部140は、油圧要求演算部120からの油圧要求出力Pwr_pmp_reqと、(8)式で算出した発電出力指令Pwr_gen_tとを用いて、以下の(9)式によりエンジン出力指令(エンジン出力目標値)Pwr_eng_tを算出する。
 Pwr_eng_t=Pwr_pmp_req+Pwr_gen_t  …(9)
The output management unit 140 uses the hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120 and the power generation output command P wr_gen_t calculated by the formula (8) to calculate an engine output command (engine output) by the following formula (9). Target value) Pwr_eng_t is calculated.
Pwr_eng_t = Pwr_pmp_req + Pwr_gen_t (9)
 力行運転時と回生運転時に(9)式で算出されるエンジン出力指令Pwr_eng_tをまとめると以下のとおりである。
 力行運転時、出力管理部140が算出するエンジン出力指令Pwr_eng_tは、ポンプ要求流量qpmp_reqとポンプ圧力ppmpとの積である油圧要求出力Pwr_pmp_req((1)式で算出される)に、(8)式で算出した走行要求出力Pwr_drv_reqである発電出力指令Pwr_gen_tを加算したものとなる。
 回生運転時、出力管理部140が算出するエンジン出力指令Pwr_eng_tは、ポンプ要求流量qpmp_reqとポンプ圧力ppmpとの積である油圧要求出力Pwr_pmp_req((1)式で算出される)に、(7)式で算出した消費電力Pwr_cnである発電出力指令Pwr_gen_tを加算したものとなる。
 換言すると、力行時のエンジン出力指令Pwr_eng_tは油圧要求出力Pwr_pmp_reqに走行要求出力Pwr_drv_reqを加算したものであり、回生時のエンジン出力指令Pwr_eng_tは油圧要求出力Pwr_pmp_reqから消費電力Pwr_cnsを減算したものである。油圧要求出力Pwr_pmp_reqが0の場合、エンジン出力指令Pwr_eng_tは消費電力Pwr_cnsとなる。
The engine output command P wr_eng_t calculated by the equation (9) during the power running operation and the regenerative operation is summarized as follows.
Power running operation, the engine output command P Wr_eng_t the output management unit 140 is calculated, the hydraulic request output P Wr_pmp_req is the product of the pump required flow q Pmp_req the pump pressure p pmp ((1) is calculated by the formula), (8) becomes the plus power generation output command P Wr_gen_t a travel request output P Wr_drv_req calculated by the formula.
During regenerative operation, the engine output command P Wr_eng_t the output management unit 140 is calculated, the hydraulic request output P Wr_pmp_req is the product of the pump required flow q Pmp_req the pump pressure p pmp ((1) is calculated by the formula), The power generation output command P wr_gen_t which is the power consumption P wr_cn calculated by the equation (7) is added.
In other words, the engine output command P Wr_eng_t of power running is obtained by adding the travel request output P Wr_drv_req to the hydraulic request output P Wr_pmp_req, the engine output command P Wr_eng_t during regeneration is the power consumption P Wr_cns from the hydraulic request output P Wr_pmp_req Subtracted. When the hydraulic pressure request output P wr_pmp_req is 0, the engine output command P wr_eng_t becomes the power consumption P wr_cns .
-目標回転数演算部150-
 目標回転数演算部150は、エンジンコントローラ2に送信するエンジン回転数指令(エンジン回転数目標値)Neng_tを算出する。目標回転数演算部150は、出力管理部140で算出されたエンジン出力指令Pwr_eng_tに基づいて、エンジン等燃費マップを用いて、最もエンジン効率が高くなる動作点を算出する。そして、目標回転数演算部150は、算出した動作点でのエンジン回転数をエンジン回転数指令Neng_tとする。エンジンコントローラ2は、エンジン回転数指令Neng_tを目標回転数演算部150から受信すると、そのエンジン回転数指令が示すエンジン回転数でエンジン1を回転させる。
-Target rotational speed calculation unit 150-
The target rotational speed calculation unit 150 calculates an engine rotational speed command (engine rotational speed target value) N eng_t to be transmitted to the engine controller 2. Based on the engine output command Pwr_eng_t calculated by the output management unit 140, the target rotational speed calculation unit 150 calculates an operating point at which the engine efficiency is highest using a fuel consumption map such as an engine. Then, the target engine speed calculation unit 150 sets the engine speed at the calculated operating point as the engine speed command N eng — t . When the engine controller 2 receives the engine speed command N eng — t from the target speed calculator 150, the engine controller 2 rotates the engine 1 at the engine speed indicated by the engine speed command.
-発電電動機制御部160-
 発電電動機制御部160には、エンジンコントローラ2からのエンジン回転数Nengと、出力管理部140からの発電出力指令Pwr_gen_tと、目標回転数演算部150からのエンジン回転数指令Neng_tとが入力される。発電電動機制御部160は、これらの値を用いて、以下の(10)式によって発電電動機トルク指令(発電電動機トルク目標値)Trq_gen_tを算出する。
 Trq_gen_t=max{K(Neng_t-Neng),0}-Pwr_gen_t/Neng …(10)
 ただし、Kは、エンジン回転数Nengとエンジン回転数指令Neng_tとの差から発電電動機トルクを算出する比例定数である。
 そして、発電電動機制御部160は、算出した発電電動機トルク指令Trq_gen_tを発電インバータ6へ送信する。これにより、発電電動機5が駆動制御される。
-Generator motor controller 160-
The generator motor controller 160 receives the engine speed N eng from the engine controller 2, the power generation output command P wr_gen_t from the output manager 140, and the engine speed command N eng_t from the target speed calculator 150. Is done. Using these values, the generator motor control unit 160 calculates a generator motor torque command (generator motor torque target value) T rq_gen_t by the following equation (10).
T rq_gen_t = max {K p (N eng — t −N eng ), 0} −P wr — gen — t / N eng (10)
However, K p is the proportional constant for calculating the generator motor torque from the difference between the engine speed N eng and the engine rotational speed command N eng_t.
Then, the generator motor control unit 160 transmits the calculated generator motor torque command T rq_gen_t to the generator inverter 6. Thereby, the generator motor 5 is drive-controlled.
 力行運転時と回生運転時に(10)式で算出される発電電動機トルク指令Trq_gen_tをまとめると以下のとおりである。
 力行運転時、エンジン回転数指令Neng_tはエンジン回転数Nengより大きい。したがって、力行運転時、発電電動機制御部160は、K(Neng_t-Neng)で求めた要求トルクから、エンジン出力指令Pwr_eng_tをエンジン回転数Nengで除して得られるトルクを減算することにより、発電電動機トルク指令Trq_gen_tを算出する。力行運転時のエンジン出力指令Pwr_eng_tは、油圧要求出力Pwr_pmp_reqに走行要求出力Pwr_drv_reqを加算したものである。
 一方、回生運転時、エンジン回転数指令Neng_tはエンジン回転数Nengより小さい。また、回生時のエンジン出力指令Pwr_eng_tは油圧要求出力Pwr_pmp_reqに消費電力Pwr_cnsを加算したものである。したがって、回生運転時に発電電動機制御部160が算出する発電電動機トルク指令Trq_gen_tは、油圧要求出力Pwr_pmp_reqから消費電力Pwr_cnsを減算した値をエンジン回転数Nengで除して得られるトルクとなる。
The generator motor torque command T rq_gen_t calculated by the equation (10) during power running and regenerative operation is summarized as follows.
During power running, the engine speed command N eng — t is greater than the engine speed N eng . Therefore, during power running, the generator motor control unit 160 subtracts the torque obtained by dividing the engine output command P wr_eng_t by the engine speed N eng from the required torque obtained by K p (N eng_t −N eng ). Thus, the generator motor torque command T rq_gen_t is calculated. The engine output command P wr_eng_t during power running is obtained by adding the travel request output P wr_drv_req to the hydraulic pressure request output P wr_pmp_req .
On the other hand, during regenerative operation, the engine speed command N eng — t is smaller than the engine speed N eng . The engine output command P wr_eng_t during regeneration is obtained by adding the power consumption P wr_cns to the hydraulic pressure request output P wr_pmp_req . Therefore, the generator motor torque command T rq_gen_t calculated by the generator motor controller 160 during the regenerative operation is a torque obtained by dividing the value obtained by subtracting the power consumption P wr_cns from the hydraulic pressure request output P wr_pmp_req by the engine speed N eng. .
-傾転角制御部170-
 傾転角制御部170は、下記の(11)式に基づいて傾転角制御信号VDp_tを算出して、この傾転角制御信号に基づいて油圧ポンプ9の図示しないレギュレータを駆動することによって、油圧ポンプ9の傾転角、すなわち容量を制御する。傾転角制御部170は、エンジンコントローラ2からのエンジン回転数Nengと、油圧要求演算部120からのポンプ要求流量qpmp_reqと、出力管理部140からの傾転角増加指令dDpmp_tとを用いて、以下の(11)式によって傾転角制御信号VDp_tを算出する。
 VDp_t=KDp{(qpmp_req/Neng)+dDpmp_t} …(11)
 なお、KDpは、油圧ポンプの傾転角を目標値とするために必要な傾転制御信号を算出するための比例定数である。
 また、力行運転中と判定された場合には、出力管理部140は傾転角増加指令dDpmp_tを0に設定する。さらに、回生運転中、回生電力の全量がキャパシタ3に充電することができず余剰電力が0でなく、かつ、油圧ポンプ9の負荷が小さいときには、出力管理部140は、(5)式で算出された傾転角増加指令dDpmp_tを出力する。その結果、油圧ポンプ9の傾転角が大きくなって余剰電力の消費量が増加する。
-Tilt angle controller 170-
The tilt angle control unit 170 calculates a tilt angle control signal V Dp_t based on the following equation (11), and drives a regulator (not shown) of the hydraulic pump 9 based on the tilt angle control signal. The tilt angle of the hydraulic pump 9, that is, the capacity is controlled. The tilt angle control unit 170 uses the engine speed N eng from the engine controller 2, the pump request flow rate q pmp_req from the hydraulic pressure request calculation unit 120, and the tilt angle increase command dD pmp_t from the output management unit 140. Thus, the tilt angle control signal V Dp_t is calculated by the following equation (11).
V Dp_t = K Dp {(q pmp_req / N eng ) + dD pmp_t } (11)
K Dp is a proportional constant for calculating a tilt control signal necessary for setting the tilt angle of the hydraulic pump as a target value.
In addition, when it is determined that the power running operation is being performed, the output management unit 140 sets the tilt angle increase command dD pmp_t to 0. Further, during the regenerative operation, when the total amount of regenerative power cannot be charged in the capacitor 3 and the surplus power is not 0 and the load of the hydraulic pump 9 is small, the output management unit 140 calculates by the equation (5). The tilt angle increase command dD pmp_t is output. As a result, the tilt angle of the hydraulic pump 9 is increased and the consumption of surplus power is increased.
 傾転角増加指令dDpmp_tが0の場合、すなわち、(1)力行運転中と判定された場合、または、(2)走行電動機7F,7Rの余剰電力で発電電動機5が駆動され、リフトシリンダ13およびバケットシリンダ14のいずれかが動作中の場合には、傾転角制御信号VDp_tが以下のように設定される。すなわち、操作装置31を介してオペレータから要求されるポンプ要求流量に実際のポンプ吐出流量が保持されるように傾転角制御信号VDp_tが設定される。したがって、油圧ポンプ9の傾転角は、油圧ポンプ9の吐出量がオペレータによって要求する値(ポンプ要求流量)に保持されるように、エンジン1、発電電動機5または油圧ポンプ9の回転数の増加に合わせて小さくなるように制御される。 When the tilt angle increase command dD pmp_t is 0, that is, (1) when it is determined that the power running operation is being performed, or (2) the generator motor 5 is driven by the surplus power of the traveling motors 7F and 7R, and the lift cylinder 13 When either of the bucket cylinder 14 and the bucket cylinder 14 is operating, the tilt angle control signal V Dp_t is set as follows. That is, the tilt angle control signal V Dp_t is set so that the actual pump discharge flow rate is maintained at the pump required flow rate requested by the operator via the operation device 31. Accordingly, the tilt angle of the hydraulic pump 9 increases the rotational speed of the engine 1, the generator motor 5 or the hydraulic pump 9 so that the discharge amount of the hydraulic pump 9 is maintained at a value required by the operator (pump required flow rate). It is controlled so as to become smaller in accordance with.
-走行電動機・ブレーキ制御部180-
 走行電動機・ブレーキ制御部180には、走行要求演算部130で(2)式から算出された走行要求トルクTrq_drv_reqと、回転数センサ22からの走行電動機回転数Nmotと、出力管理部140で(6)式から算出された回生電力低減指令dPwr_mot_tとが入力されている。走行電動機・ブレーキ制御部180は、これらの値を用いて、以下の(12)式によって走行電動機トルク指令Trq_mot_tを算出する。
 Trq_mot_t=sign(Trq_drv_req)・max{|Trq_drv_req
                     -(dPwr_mot_t)/|Nmot|,0} …(12)
 ただし、signは符号関数であり、引数が正の場合は1を、負の場合は「-1」を、0の場合は「0」を返すものとする。
-Travel motor / brake control unit 180-
The travel motor / brake control unit 180 includes a travel request torque T rq_drv_req calculated from the equation (2) by the travel request calculation unit 130, a travel motor rotational speed N mot from the rotational speed sensor 22, and an output management unit 140. The regenerative power reduction command dP wr_mot_t calculated from the equation (6) is input. The traveling motor / brake control unit 180 uses these values to calculate a traveling motor torque command T rq_mot_t by the following equation (12).
T rq_mot_t = sign (T rq_drv_req ) · max {| T rq_drv_req |
-( DP wr_mot_t ) / | N mot |, 0} (12)
However, sign is a sign function, and returns 1 when the argument is positive, “−1” when it is negative, and “0” when it is 0.
 走行電動機・ブレーキ制御部180は、算出した走行電動機トルク指令Trq_mot_tを走行インバータ8F,8Rに送信する。これにより、走行電動機7F,7Rの力行・回生が制御される。すなわち、走行電動機・ブレーキ制御部180は、アクセルペダル踏込量と、ブレーキペダル踏込量と、選択された速度段とに基づいて(2)式で算出した走行要求トルクTrq_drv_reqの絶対値を算出する。力行運転時、走行要求トルクTrq_drv_reqは正、回生電力低減指令dPwr_mot_tがゼロなので、(12)式で算出される走行電動機トルク指令Trq_mot_tは走行要求トルクTrq_drv_reqとなる。 The traveling motor / brake control unit 180 transmits the calculated traveling motor torque command T rq_mot_t to the traveling inverters 8F and 8R. Thereby, the power running / regeneration of the traveling motors 7F, 7R is controlled. That is, the travel motor / brake control unit 180 calculates the absolute value of the travel request torque T rq_drv_req calculated by the equation (2) based on the accelerator pedal depression amount, the brake pedal depression amount, and the selected speed stage. . During power running, the travel request torque T rq_drv_req is positive and the regenerative power reduction command dP wr_mot_t is zero, so the travel motor torque command T rq_mot_t calculated by the equation (12) becomes the travel request torque T rq_drv_req .
 回生運転時、回生電力の全量をキャパシタ3に充電することができず余剰電力が0でなく、かつ、エンジンが第2設定閾値Neng_th2以上の高速で運転されているとき(エンジンが高速モードのとき)、(6)式から回生電力低減指令値dPwr_mot_tが算出される。走行要求トルクの絶対値|Trq_drv_req|から、回生電力低減指令dPwr_mot_tを走行電動機回転数Nmotの絶対値で除して求めた回生電力低減トルクを減算する。この減算結果は、走行要求トルクTrq_drv_reqが負のときは負の値となり、負の値を有する走行電動機トルク指令Trq_mot_t、すなわち、回生制動トルク指令となる。 During regenerative operation, when the total amount of regenerative power cannot be charged in the capacitor 3, the surplus power is not 0, and the engine is operated at a high speed equal to or higher than the second set threshold N eng — th2 (the engine is in the high speed mode). ), The regenerative power reduction command value dP wr_mot_t is calculated from the equation (6). The regenerative power reduction torque obtained by dividing the regenerative power reduction command dP wr_mot_t by the absolute value of the travel motor rotation speed N mot is subtracted from the absolute value | T rq_drv_req | of the travel request torque. This subtraction result becomes a negative value when the travel request torque T rq_drv_req is negative, and becomes a travel motor torque command T rq_mot_t having a negative value , that is, a regenerative braking torque command.
 また、走行電動機・ブレーキ制御部180は、(12)式から算出した走行電動機トルク指令Trq_mot_tと、走行要求トルクTrq_drv_reqと、走行電動機回転数Nmotとを用いて、以下の(13)式により制動トルク指令Trq_brk_tを算出する。
 Trq_brk_t=max{-sign(Nmot)・(Trq_drv_req-Trq_mot_t),0}
                                  …(13)
 ただし、signは符号関数であり、引数が正の場合は1を、負の場合は「-1」を、0の場合は「0」を返すものとする。
Further, the traveling motor / brake control unit 180 uses the traveling motor torque command T rq_mot_t calculated from the equation (12), the requested traveling torque T rq_drv_req, and the traveling motor rotation speed N mot to express the following equation (13). Is used to calculate the braking torque command T rq_brk_t .
T rq_brk_t = max {−sign (N mot ) · (T rq_drv_req −T rq_mot_t ), 0}
... (13)
However, sign is a sign function, and returns 1 when the argument is positive, “−1” when it is negative, and “0” when it is 0.
 (13)式により制動トルク指令Trq_brk_tは次のように算出される。まず、アクセルペダル踏込量と、ブレーキペダル踏込量と、選択された速度段とに基づいて(2)式で算出した走行要求トルクTrq_drv_reqから、(12)式で算出した走行電動機トルク指令Trq_mot_tが減算される。力行運転時、走行電動機トルク指令Trq_mot_tは走行要求トルクTrq_drv_reqであるから、制動トルク指令Trq_brk_tはゼロである。
 回生運転時、走行要求トルクTrq_drv_reqも走行電動機トルク指令Trq_mot_tもいずれも負であり、また、走行要求トルクTrq_drv_reqの絶対値は走行電動機トルク指令Trq_mot_tの絶対値よりも大きいので、(Trq_drv_req-Trq_mot_t)は負である。符号関数{-sign(Nmot)}は電動機が前進(正転)しているときは「-1」、電動機が後進(逆転)しているときは「1」である。したがって、前進時の回生運転時は、{-sign(Nmot)・(Trq_drv_req-Trq_mot_t)}が正となり、この正の値が回生運転時の制動トルク指令Trq_brk_tとして選択されて使用される。
The braking torque command T rq_brk_t is calculated as follows using the equation (13). First, the travel motor torque command T rq_mot_t calculated by the equation (12) from the required travel torque T rq_drv_req calculated by the equation (2) based on the accelerator pedal depression amount, the brake pedal depression amount, and the selected speed stage. Is subtracted. During the power running operation, the travel motor torque command T rq_mot_t is the travel request torque T rq_drv_req , so the braking torque command T rq_brk_ t is zero.
During the regenerative operation, both the travel request torque T rq_drv_req and the travel motor torque command T rq_mot_t are negative, and the absolute value of the travel request torque T rq_drv_req is larger than the absolute value of the travel motor torque command T rq_mot_t. rq_drv_req− T rq_mot_t ) is negative. The sign function {−sign (N mot )} is “−1” when the motor is moving forward (forward rotation), and is “1” when the motor is moving backward (reverse rotation). Therefore, { -sign (N mot ) · (T rq_drv_req −T rq_mot_t )} is positive during regenerative operation during forward movement, and this positive value is selected and used as the braking torque command T rq_brk_t during regenerative operation. The
 ここで、本発明による速度段ごとの回生制動力について、上記(2)、(6)、(12)、(13)式に関連して説明する。
 上述したように、エンジン1が高回転モードで運転されているときに回生電力低減指令dPwr_mot_tが式(6)に基づき算出される。この回生電力低減指令dPwr_mot_tは、余剰電力により発電電動機5が駆動され、かつ、発電電動機5により駆動されるエンジン回転数Nengが第2設定閾値Neng_th2を超えているときに、発電電動機5が発生する回生電力を低減するものである。そして、エンジン回転数Nengが大きいほど回生電力低減指令dPwr_mot_tは大きくなる。ここで、走行電動機7F,7Rの回転数が大きいとき、すなわち、車速が大きいときに余剰電力が大きくなり、その結果として発電電動機5で駆動されるエンジン回転数も大きくなる。
 このように車速が速いほど回生電力低減指令dPwr_mot_tが大きくなるということは、車速が速いとき、回生電力は頭打ちになる。電力は車速と制動力との積で表されるので、車速が速いほど回生制動力が小さくなるということである。この現象が図7(c)に回生制動力上限限界線L4で示されている。
Here, the regenerative braking force for each speed stage according to the present invention will be described in relation to the equations (2), (6), (12), and (13).
As described above, when the engine 1 is operated in the high rotation mode, the regenerative power reduction command dP wr_mot_t is calculated based on the equation (6). The regenerative power reduction command dP wr_mot_t is generated when the generator motor 5 is driven by surplus power and the engine speed N eng driven by the generator motor 5 exceeds the second set threshold N eng_th2. This reduces the regenerative power generated. The regenerative power reduction command dP wr_mot_t increases as the engine speed N eng increases. Here, when the rotational speeds of the traveling motors 7F and 7R are large, that is, when the vehicle speed is high, the surplus electric power increases, and as a result, the engine rotational speed driven by the generator motor 5 also increases.
Thus, the regenerative power reduction command dP wr_mot_t increases as the vehicle speed increases, which means that the regenerative power reaches its peak when the vehicle speed is high. Since electric power is represented by the product of the vehicle speed and the braking force, the higher the vehicle speed, the smaller the regenerative braking force. This phenomenon is shown by the regenerative braking force upper limit line L4 in FIG.
 一方、式(2)の右辺第3項によれば、速度段に応じてαを設定することにより、トルコン車両と同等のエンジンブレーキ力、すなわち回生制動力が得られる。たとえば、図7(a)の直線L1~L3のように、速度段が大きいほど、車速に応じた回生制動力が大きくなるようにαが設定される。ところが、上述したように、本発明では、回生走行中にエンジンが高回転モードで運転されている時は、(6)式により、エンジン回転数が高いほど、すなわち車速が速いほど回生制動力が小さくなる。そのため、図7(b)に示されるように、各速度段の線分L1~L3が回生制動力上限限界線L4を超えた領域では、式(2)で設定した回生制動力が得られない。そこで、本発明では、回生制動力上限限界線L4よりも上側の領域内では油圧ブレーキを併用してトルコン車両と同等のエンジンブレーキを得るようにしている。 On the other hand, according to the third term on the right side of the equation (2), an engine braking force equivalent to that of the torque converter vehicle, that is, a regenerative braking force can be obtained by setting α according to the speed stage. For example, as shown by the straight lines L1 to L3 in FIG. 7A, α is set so that the regenerative braking force corresponding to the vehicle speed increases as the speed stage increases. However, as described above, in the present invention, when the engine is operated in the high rotation mode during the regenerative travel, the regenerative braking force is increased as the engine speed is higher, that is, the vehicle speed is faster, according to the equation (6). Get smaller. For this reason, as shown in FIG. 7B, the regenerative braking force set by the equation (2) cannot be obtained in the region where the line segments L1 to L3 of the respective speed stages exceed the regenerative braking force upper limit line L4. . Therefore, in the present invention, in the region above the regenerative braking force upper limit line L4, a hydraulic brake is used together to obtain an engine brake equivalent to that of a torque converter vehicle.
-ブレーキ制御部190-
 走行電動機・ブレーキ制御部180で演算された制動トルク指令Trq_brk_tから次式(14)を用いてブレーキ制御信号Vbrk_tを演算する。
 Vbrk_t=Kbrkrq_brk_t …(14)
 ただし、Kbrkは、制動トルク指令Trq_brk_tと油圧ブレーキの実際の制動トルクとが一致するように予め設定された比例定数である。
 ブレーキ制御信号Vbrk_tに基づいて油圧ブレーキ制御弁35a,35bが駆動され、油圧ブレーキ36a,36bが車輪18を制動する。これが回生協調時の機械的ブレーキ力である。
-Brake control unit 190-
A brake control signal Vbrk_t is calculated from the braking torque command T rq_brk_t calculated by the traveling motor / brake control unit 180 using the following equation (14).
V brk_t = K brk T rq_brk_t ... (14)
However, K brk is preset proportional constant as the actual braking torque of the braking torque command T Rq_brk_t and hydraulic brakes are matched.
The hydraulic brake control valves 35a and 35b are driven based on the brake control signal Vbrk_t , and the hydraulic brakes 36a and 36b brake the wheels 18. This is the mechanical braking force during regenerative coordination.
-メインコントローラ100の処理-
 以下、メインコントローラ100により行われる処理について詳細に説明する。以下の説明は、ハイブリッド式作業車両200が力行運転中の場合と、回生運転中の場合とに分けて行う。
-力行運転の場合-
 力行運転時に走行電動機・ブレーキ制御部180から出力される走行電動機トルク指令Trq_mot_tを説明する。上述したように、走行電動機トルク指令Trq_mot_tは(12)式から算出される。力行運転時、走行電動機・ブレーキ制御部180は、走行電動機トルク指令Trq_mot_tとして、走行要求トルクTrq_drv_reqを出力する。走行用インバータ8F,8Rはこの走行要求トルク指令Trq_drv_reqにより駆動され、走行電動機7F,7Rは要求されたトルクを出力する。
-Processing of main controller 100-
Hereinafter, processing performed by the main controller 100 will be described in detail. The following description is divided into a case where the hybrid work vehicle 200 is in a power running operation and a case in which a regenerative operation is being performed.
-For power running-
The travel motor torque command T rq_mot_t output from the travel motor / brake control unit 180 during the power running operation will be described. As described above, the traveling motor torque command T rq_mot_t is calculated from the equation (12). During the power running operation, the travel motor / brake control unit 180 outputs the travel request torque T rq_drv_req as the travel motor torque command T rq_mot_t . The travel inverters 8F and 8R are driven by the travel request torque command Trq_drv_req , and the travel motors 7F and 7R output the requested torque.
 メインコントローラ100の出力管理部140は、上述したように、走行要求演算部130で算出された走行要求出力Pwr_drv_reqが0以上の場合に、ハイブリッド式作業車両200が力行運転中と判断する。そして、メインコントローラ100は、走行電動機7F,7Rに必要な電力を供給するために、(8)式により発電出力指令Pwr_gen_tおよび(9)式によりエンジン出力指令Pwr_eng_tを算出する。発電出力指令Pwr_gen_tにより発電電動機6が駆動され、エンジン出力指令Pwr_eng_tによりエンジンが駆動制御される。 As described above, the output management unit 140 of the main controller 100 determines that the hybrid work vehicle 200 is in a power running operation when the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is 0 or more. Then, the main controller 100 calculates a power generation output command P wr_gen_t by the equation (8) and an engine output command P wr_eng_t by the equation (9) in order to supply the necessary electric power to the traveling motors 7F and 7R. Motor generator 6 by the power generation output command P Wr_gen_t is driven, the engine is driven and controlled by the engine output command P wr_eng_t.
 走行電動機・ブレーキ制御部180は上述した(13)式により制動トルク指令Trq_brk_tを算出する。上述したように、力行運転時、(13)式から算出され制動トルク指令Trq_brk_tはゼロである。 The traveling motor / brake control unit 180 calculates the braking torque command T rq_brk_t by the above-described equation (13). As described above, during the power running operation, the braking torque command T rq_brk_t calculated from the equation (13) is zero.
-回生運転の場合-
 回生時に走行電動機・ブレーキ制御部180から出力される走行電動機トルク指令Trq_mot_tを説明する。上述したように、走行電動機トルク指令Trq_mot_tは式(12)から算出される。回生時、走行要求トルクTrq_drv_reqは負であり、高回転モードでは回生電力低減指令dPwr_mot_tが所定値となる。走行要求トルクの絶対値|Trq_drv_req|から、回生電力低減指令dPwr_mot_tを走行電動機回転数Nmotの絶対値で除して求めた回生電力低減トルクを減算した値の負の値が走行電動機トルク指令Trq_mot_tとなる。これが回生制動トルクである。インバータ8F,8Rはこの回生制動トルク指令に基づいて駆動され、走行電動機7F,7Rからの回生電力を取り出し、発電機インバータ6により発電電動機5を駆動制御する。
-For regenerative operation-
A travel motor torque command T rq_mot_t output from the travel motor / brake control unit 180 during regeneration will be described. As described above, the traveling motor torque command T rq_mot_t is calculated from the equation (12). During regeneration, the travel request torque T rq_drv_req is negative, and the regeneration power reduction command dP wr_mot_t becomes a predetermined value in the high rotation mode. The negative value of the value obtained by subtracting the regenerative power reduction torque obtained by dividing the regenerative power reduction command dP wr_mot_t by the absolute value of the travel motor rotational speed N mot from the absolute value | T rq_drv_req | The command becomes T rq_mot_t . This is the regenerative braking torque. The inverters 8F and 8R are driven based on the regenerative braking torque command, take out the regenerative power from the traveling motors 7F and 7R, and drive-control the generator motor 5 by the generator inverter 6.
 メインコントローラ100の出力管理部140は、上述したように、走行要求演算部130で算出された走行要求出力Pwr_drv_reqが負の場合に、ハイブリッド式作業車両200が回生運転中と判断する。この場合、メインコントローラ100の出力管理部140は、走行電動機7F,7Rで発電された回生電力をキャパシタ3および発電電動機5へ配分するために、(8)式により発電出力指令Pwr_gen_t、(9)式によりエンジン出力指令Pwr_eng_t、(5)式より傾転角増加指令dDpmp_t、(6)式より回生電力低減指令値dPwr_mot_tを算出する。発電出力指令Pwr_gen_tにより発電電動機6が駆動され、エンジン出力指令Pwr_eng_tによりエンジンが駆動制御される。傾転角増加指令dDpmp_tによりポンプレギュレータが駆動制御される。 As described above, the output management unit 140 of the main controller 100 determines that the hybrid work vehicle 200 is in a regenerative operation when the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is negative. In this case, the output management unit 140 of the main controller 100 distributes the regenerative power generated by the traveling motors 7F and 7R to the capacitor 3 and the generator motor 5 by using the power generation output command P wr_gen_t , (9 ) To calculate engine output command P wr_eng_t , tilt angle increase command dD pmp_t from equation (5), and regenerative power reduction command value dP wr_mot_t from equation (6). Motor generator 6 by the power generation output command P Wr_gen_t is driven, the engine is driven and controlled by the engine output command P wr_eng_t. The pump regulator is driven and controlled by the tilt angle increase command dD pmp_t .
 メインコントローラ100の出力管理部140は、上述した(4)式を用いて算出した余剰電力Pwr_supが0の場合には、キャパシタ3への充電が可能と判断する。そして、回生運転時、発電電動機制御部160は、(10)式にしたがって発電電動機トルク指令Trq_gen_tを算出する。すなわち、回生運転時の発電電動機トルク指令Trq_gen_tは、エンジン回転数指令と実エンジン回転数との差分に定数を乗じて得たトルクから、発電出力指令Pwr_gen_tをエンジン回転数Nengで除して得られるトルクを減算した値となる。メインコントローラ100が(10)式で算出された発電電動機トルク指令Trq_gen_tにより発電インバータ6を駆動し、発電電動機5が回生電力により電動機モードで回生電力を消費する。 The output management unit 140 of the main controller 100 determines that the capacitor 3 can be charged when the surplus power P wr_sup calculated using the above-described equation (4) is zero. Then, during regenerative operation, the generator motor controller 160 calculates the generator motor torque command T rq_gen_t according to the equation (10). That is, the generator motor torque command T rq_gen_t during regenerative operation is obtained by dividing the power generation output command P wr_gen_t by the engine speed N eng from the torque obtained by multiplying the difference between the engine speed command and the actual engine speed by a constant. The value obtained by subtracting the torque obtained in this way. The main controller 100 drives the generator inverter 6 by the generator motor torque command T rq_gen_t calculated by the equation (10), and the generator motor 5 consumes the regenerative power in the motor mode by the regenerative power.
 出力管理部140は、回生運転中に算出した余剰電力Pwr_supが0以外の場合には、キャパシタ3への充電ができないと判断する。この場合、出力管理部140は、エンジン1が低回転モードか、回転抑制モードか、高回転モードかを判定した後、余剰電力Pwr_supのうち発電電動機5で消費すべき電力である消費電力Pwr_cnsを算出する。各モードでの消費電力Pwr_cnsは次のとおりである。 The output management unit 140 determines that the capacitor 3 cannot be charged when the surplus power P wr_sup calculated during the regenerative operation is other than zero. In this case, the output management unit 140 determines whether the engine 1 is in the low rotation mode, the rotation suppression mode, or the high rotation mode, and then the power consumption P that is the power to be consumed by the generator motor 5 in the surplus power P wr_sup. wr_cns is calculated. The power consumption Pwr_cns in each mode is as follows.
--低回転モード--
 エンジン1が低回転モードの場合、すなわちエンジン1の回転数Nengが第1設定閾値Neng_th1以下の場合、出力管理部140は、余剰電力Pwr_supと、回生電力低減指令値dPwr_mot_tとを用いて、上記の(7)式から消費電力Pwr_cnsを算出する。上述したように、エンジン1が低回転モードの場合には、出力管理部140は回生電力低減指令値dPwr_mot_tを0に設定するので、低回転モードの場合には、余剰電力Pwr_supが消費電力Pwr_cnsとなる。
--- Low rotation mode ---
When the engine 1 is in the low rotation mode, that is, when the rotation speed N eng of the engine 1 is equal to or less than the first setting threshold N eng — th1 , the output management unit 140 uses the surplus power P wr_sup and the regenerative power reduction command value dP wr_mot_t. Thus, the power consumption P wr_cns is calculated from the above equation (7). As described above, when the engine 1 is in the low rotation mode, the output management unit 140 sets the regenerative power reduction command value dP wr_mot_t to 0. Therefore, in the low rotation mode, the surplus power P wr_sup is the power consumption. Pwr_cns .
--回転抑制モード--
 エンジン1が回転抑制モードの場合、出力管理部140は、ステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14のいずれも動作中でなければ傾転角増加処理を行った後、上記の(7)式から消費電力Pwr_cnsを算出する。傾転角増加処理では、出力管理部140は、エンジン回転数Nengと、第1設定閾値Neng_th1とを用いて、上記の(5)式により傾転角増加指令dDpmp_tを算出する。そして、出力管理部140は、低回転モードの場合と同様に上記の(7)式から消費電力Pwr_cnsを算出する。上述したように、エンジン1が回転抑制モードの場合には、出力管理部140は回生電力低減指令値dPwr_mot_tを0に設定するので、回転抑制モードの場合においても、余剰電力Pwr_supが消費電力Pwr_cnsとなる。
--Rotation suppression mode--
When the engine 1 is in the rotation suppression mode, the output management unit 140 performs the tilt angle increasing process if none of the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 is in operation, and then the above equation (7) The power consumption P wr_cns is calculated from the above. In the tilting angle increases processing, output management unit 140 calculates the engine speed N eng, using the first set threshold value N Eng_th1, the tilt angle increase instruction dD Pmp_t by the above equation (5). And the output management part 140 calculates power consumption Pwr_cns from said (7) Formula similarly to the case of the low rotation mode. As described above, when the engine 1 is in the rotation suppression mode, the output management unit 140 sets the regenerative power reduction command value dP wr_mot_t to 0. Therefore, even in the rotation suppression mode, the surplus power P wr_sup is the power consumption. Pwr_cns .
--高回転モード--
 エンジン1が高回転モードの場合、出力管理部140は、回生電力低減処理を行った後、上記の(7)式から消費電力Pwr_cnsを算出する。回生電力低減処理では、出力管理部140は、エンジン回転数Nengと、第2設定閾値Neng_th2とを用いて、上記の(6)式により回生電力低減指令値dPwr_mot_tを算出する。なお、高回転モードの場合であっても、出力管理部140は、リフトシリンダ13およびバケットシリンダ14のいずれも動作中でなければ、回転抑制モードの場合と同様に傾転角増加処理を行う。
--High speed mode--
When the engine 1 is in the high rotation mode, the output management unit 140 calculates the power consumption P wr_cns from the above equation (7) after performing the regenerative power reduction process. In the regenerative power reduction process, the output management unit 140 calculates the regenerative power reduction command value dP wr_mot_t according to the above equation (6) using the engine speed N eng and the second set threshold value N eng_th2 . Even in the high rotation mode, the output management unit 140 performs the tilt angle increasing process as in the rotation suppression mode if neither the lift cylinder 13 nor the bucket cylinder 14 is in operation.
 ブレーキ制御部190は、(13)式を用いて算出された制動トルク指令Trq_brk_tに基づいて、(14)式を用いてブレーキ制御信号Vbrk_tを算出し、油圧ブレーキ制御弁に出力する。これにより、ブレーキ制御部190は、回生電力低減指令dPwt_mot_tにより低減される走行電動機7F、7Rの回生トルクに相当する制動トルクを油圧ブレーキ36a、36bにて発生させる。 The brake control unit 190 calculates a brake control signal Vbrk_t using the equation (14) based on the braking torque command T rq_brk_t calculated using the equation (13), and outputs the brake control signal Vbrk_t to the hydraulic brake control valve. Thus, the brake control unit 190 causes the hydraulic brakes 36a and 36b to generate a braking torque corresponding to the regenerative torque of the traveling motors 7F and 7R that is reduced by the regenerative power reduction command dP wt_mot_t .
 上述したように、低回転モード、回転抑制モード、高回転モードのいずれかにおいて消費電力Pwr_cnsが算出されると、出力管理部140は、上記の(8)式を用いて発電出力指令Pwr_gen_tを算出する。発電電動機制御部160は、エンジン回転数Nengと、出力管理部140により算出された発電出力指令Pwr_gen_tと、エンジン回転数指令Neng_tとを用いて、上記の(10)式によって発電電動機トルク指令Trq_gen_tを算出する。そして、発電電動機制御部160は、算出した発電電動機トルク指令Trq_gen_tを発電インバータ6へ送信することによって、発電電動機5を制御する。その結果、余剰電力により生じるトルクが適宜減じられたトルク値によって発電電動機5が駆動される。 As described above, when the power consumption P wr_cns is calculated in any one of the low rotation mode, the rotation suppression mode, and the high rotation mode, the output management unit 140 uses the above equation (8) to generate the power generation output command P wr_gen_t. Is calculated. The generator motor control unit 160 uses the engine speed N eng , the power generation output command P wr_gen_t calculated by the output management unit 140, and the engine speed command N eng_t according to the above equation (10). The command T rq_gen_t is calculated. Then, the generator motor controller 160 controls the generator motor 5 by transmitting the calculated generator motor torque command T rq_gen_t to the generator inverter 6. As a result, the generator motor 5 is driven by a torque value obtained by appropriately reducing the torque generated by surplus power.
 発電出力指令Pwr_gen_tが算出されると、出力管理部140は、油圧要求演算部120からの油圧要求出力Pwr_pmp_reqと、発電出力指令Pwr_gen_tとを用いて、上記の(9)式によりエンジン出力指令Pwr_eng_tを算出する。目標回転数演算部150は、出力管理部140で算出されたエンジン出力指令Pwr_eng_tに基づいて、上述したように、エンジン等燃費マップを用いて、エンジン回転数指令Neng_tを算出し、エンジンコントローラ2へ出力する。エンジンコントローラ2は、エンジン回転数指令Neng_tを目標回転数演算部150から受信すると、そのエンジン回転数指令が示すエンジン回転数でエンジン1を回転させる。 When the power generation output command P wr_gen_t is calculated, the output management unit 140 uses the hydraulic pressure request output P wr_pmp_req from the hydraulic pressure request calculation unit 120 and the power generation output command P wr_gen_t to output the engine according to the above equation (9). The command P wr_eng_t is calculated. Based on the engine output command P wr_eng_t calculated by the output management unit 140, the target speed calculation unit 150 calculates the engine speed command N eng_t using the engine fuel efficiency map as described above, and the engine controller Output to 2. When the engine controller 2 receives the engine speed command N eng — t from the target speed calculator 150, the engine controller 2 rotates the engine 1 at the engine speed indicated by the engine speed command.
 本実施の形態におけるハイブリッド式作業車両200は、アクセルペダルもブレーキペダルも踏み込んでいない場合、オペレータにより設定された速度段と、車両の走行速度に相当する走行電動機回転数Nmotとに応じて、走行電動機7F、7Rおよび油圧ブレーキ36a、36bにより、制動量を制御する。
 図7に、速度段ごとの制動力と車両の走行速度との関係を示す。なお、図7においては、実線のL1は1速を、破線のL2は2速を、一点鎖線のL3は3速を示している。図7(a)は、各速度段ごとの走行速度と要求回生制動力との関係を示す。図示のように、小さい速度段が設定されているほど、走行速度の増加に伴う要求回生制動力が大きくなる。
Hybrid work vehicle 200 in the present embodiment, when neither the accelerator pedal nor the brake pedal is depressed, according to the speed stage set by the operator and the traveling motor rotation speed N mot corresponding to the traveling speed of the vehicle, The amount of braking is controlled by the traveling motors 7F and 7R and the hydraulic brakes 36a and 36b.
FIG. 7 shows the relationship between the braking force for each speed stage and the traveling speed of the vehicle. In FIG. 7, the solid line L1 indicates the first speed, the broken line L2 indicates the second speed, and the alternate long and short dash line L3 indicates the third speed. FIG. 7A shows the relationship between the traveling speed for each speed stage and the required regenerative braking force. As shown in the figure, the smaller the speed stage is set, the greater the required regenerative braking force with increasing travel speed.
 しかし、走行電動機7F、7Rによる回生制動力には、上記(6)式に起因する上限が存在する。図7(b)では、この上限を二点鎖線のL4で示す。L4が表すように、車両の走行速度が増加するほど回生制動力は漸減する。図7(b)に示すように、1速の場合には、走行速度がV1になるまでは回生制動力はL1に沿って増加し、走行速度がV1を超えると回生制動力はL4に沿って漸減する。このため、走行速度がV1を超える場合には、走行電動機7F、7Rによる回生制動力では、必要な要求回生制動力を得ることができなくなる。2速、3速の場合にも、それぞれ走行速度がV2、V3を超えると、回生制動力がL4に沿って漸減するので、必要な要求回生制動力を得ることができなくなる。なお、以後の説明では、走行速度V1、V2、V3を上限速度と呼ぶ。 However, the regenerative braking force by the traveling motors 7F and 7R has an upper limit due to the above equation (6). In FIG. 7 (b), this upper limit is indicated by a two-dot chain line L4. As indicated by L4, the regenerative braking force gradually decreases as the traveling speed of the vehicle increases. As shown in FIG. 7B, in the case of the first speed, the regenerative braking force increases along L1 until the traveling speed reaches V1, and when the traveling speed exceeds V1, the regenerative braking force follows L4. Gradually decrease. For this reason, when the traveling speed exceeds V1, the required regenerative braking force cannot be obtained with the regenerative braking force by the traveling motors 7F and 7R. Even in the case of the second speed and the third speed, if the traveling speed exceeds V2 and V3, respectively, the regenerative braking force gradually decreases along L4, so that the required required regenerative braking force cannot be obtained. In the following description, the traveling speeds V1, V2, and V3 are referred to as upper limit speeds.
 本実施の形態では、上述のように走行電動機7F、7Rによる回生制動力では要求回生制動力を得られない場合に、不足する制動力を油圧ブレーキ36a、36bによる制動力により補うものである。図7(c)においては、1速の場合に走行速度がV1a(>V1)であれば、要求回生制動力は、回生制動力B1を上回るB1aとなることを示している。この場合、ブレーキ制御部190は、要求回生制動力B1aと回生制動力B1との差分に相当する制動力を油圧ブレーキ36a、36bにより発生させるように、ブレーキ制御信号Vbrk_tを算出する。 In the present embodiment, as described above, when the regenerative braking force by the traveling motors 7F and 7R cannot obtain the required regenerative braking force, the insufficient braking force is compensated by the braking force by the hydraulic brakes 36a and 36b. FIG. 7C shows that the required regenerative braking force is B1a exceeding the regenerative braking force B1 if the traveling speed is V1a (> V1) in the first speed. In this case, the brake control unit 190 calculates the brake control signal Vbrk_t so that the hydraulic brakes 36a and 36b generate a braking force corresponding to the difference between the required regenerative braking force B1a and the regenerative braking force B1.
 以上のような車速に対する回生制動力の特性L1~L3は各速度段ごとに設定されているが、これは、(2)式のαを速度段に応じて設定して実現される。また、回生制動力の上限限界線L4の上側の領域における車速に対する油圧制動力は、(12)式~(14)式により実現できる。すなわち、出力管理部140では、(2)式から算出された走行要求トルクTrq_drv_reqと、回転数センサ22からの走行電動機回転数Nmotと、(6)式から算出された回生電力低減指令dPwr_mot_tとを用いて、(12)式から走行電動機トルク指令Trq_mot_tが算出される。また、走行電動機・ブレーキ制御部180は、(12)式から算出した走行電動機トルク指令Trq_mot_tと、(2)式から算出した走行要求トルクTrq_drv_reqと、走行電動機回転数Nmotとを用いて、上記(13)式により制動トルク指令Trq_brk_tが算出される。 The characteristics L1 to L3 of the regenerative braking force with respect to the vehicle speed as described above are set for each speed stage, but this is realized by setting α in equation (2) according to the speed stage. Further, the hydraulic braking force with respect to the vehicle speed in the region above the upper limit line L4 of the regenerative braking force can be realized by equations (12) to (14). That is, in the output management unit 140, the required travel torque T rq_drv_req calculated from the expression (2), the traveling motor rotation speed N mot from the rotation speed sensor 22, and the regenerative power reduction command dP calculated from the expression (6). Using wr_mot_t , a traveling motor torque command T rq_mot_t is calculated from the equation (12). Further, the traveling motor / brake control unit 180 uses the traveling motor torque command T rq_mot_t calculated from the equation (12), the required traveling torque T rq_drv_req calculated from the equation (2), and the traveling motor rotation speed N mot. The braking torque command T rq_brk_t is calculated by the above equation (13).
 なお、(2)式の係数αは速度段が小さいほど大きな値が設定されると説明したが。このαの大きさの比率は、図7(b)のL1~L3の傾きに対応する。 In addition, although the coefficient α in the equation (2) has been explained that a larger value is set as the speed stage is smaller. The ratio of the magnitude of α corresponds to the slopes L1 to L3 in FIG.
 図8に示すフローチャートを用いて、メインコントローラ100による処理を説明する。図8の処理はメインコントローラ100でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、ハイブリッド式作業車両200の図示しないイグニッションスイッチがオンされると、メインコントローラ100によってプログラムが起動され、実行される。 The processing by the main controller 100 will be described using the flowchart shown in FIG. The processing in FIG. 8 is performed by executing a program on the main controller 100. This program is stored in a memory (not shown). When an ignition switch (not shown) of the hybrid work vehicle 200 is turned on, the program is started and executed by the main controller 100.
 ステップS1Aでは、シフトスイッチ40で選択されている速度段を読み込み、式(2)で使用する係数αに速度段に応じた定数を設定しステップS1へ進む。係数αは、速度段が小さいほど、大きな値である。ステップS1では、走行電動機7F,7Rが回生運転中であるか否かを判定する。走行要求演算部130で算出された走行要求出力Pwr_drv_reqが0以上の場合、すなわち走行電動機7F,7Rが力行運転中の場合には、ステップS1が肯定判定されてステップS2へ進む。ステップS2では、走行電動機駆動制御を行い、処理を終了する。この場合、メインコントローラ100の出力管理部140は、走行電動機7F,7Rに必要な電力を供給するために、発電出力指令およびエンジン出力指令を算出し、メインコントローラ100から発電電動機5には発電電動機トルク指令を、エンジン1にはエンジン回転数指令を出力し、発電電動機5とエンジン1の駆動を制御する。 In step S1A, the speed stage selected by the shift switch 40 is read, a constant corresponding to the speed stage is set in the coefficient α used in equation (2), and the process proceeds to step S1. The coefficient α is larger as the speed stage is smaller. In step S1, it is determined whether or not the traveling motors 7F and 7R are in a regenerative operation. If the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is 0 or more, that is, if the travel motors 7F and 7R are in power running, step S1 is affirmed and the process proceeds to step S2. In step S2, running motor drive control is performed, and the process ends. In this case, the output management unit 140 of the main controller 100 calculates a power generation output command and an engine output command in order to supply necessary electric power to the traveling motors 7F and 7R. A torque command and an engine speed command are output to the engine 1 to control driving of the generator motor 5 and the engine 1.
 走行要求演算部130で算出された走行要求出力Pwr_drv_reqが0未満の場合、すなわち走行電動機7F,7Rが回生運転中の場合には、ステップS1が否定判定されてステップS3へ進む。ステップS3では、充電によって十分な回生力が得られるか否かを判定する。充電により十分な回生力が得られる場合、すなわち余剰電力Pwr_supが0の場合、ステップS3が肯定判定されて、後述するステップS9Aへ進む。充電により十分な回生力が得られない場合、すなわち余剰電力Pwr_supが正または負の値である場合、ステップS3が否定判定されて、ステップS4へ進む。 When the travel request output P wr_drv_req calculated by the travel request calculation unit 130 is less than 0, that is, when the travel motors 7F and 7R are in the regenerative operation, a negative determination is made in step S1 and the process proceeds to step S3. In step S3, it is determined whether sufficient regenerative power can be obtained by charging. If sufficient regenerative power is obtained by charging, that is, if the surplus power P wr_sup is 0, an affirmative determination is made in step S3 and the process proceeds to step S9A described later. If sufficient regenerative power cannot be obtained by charging, that is, if the surplus power P wr_sup is a positive or negative value, a negative determination is made in step S3 and the process proceeds to step S4.
 ステップS4では、エンジン1が低回転モードか否かを判定する。エンジン1が低回転モードの場合、すなわちエンジン1の回転数Nengが第1設定閾値Neng_th1以下の場合には、ステップS4が肯定判定されて後述するステップS9へ進む。エンジン1が低回転モードではない場合は、ステップS4が否定判定されてステップS5へ進む。 In step S4, it is determined whether or not the engine 1 is in the low rotation mode. When the engine 1 is in the low rotation mode, that is, when the engine speed N eng is equal to or lower than the first set threshold value N eng — th1 , step S4 is affirmed and the process proceeds to step S9 described later. If the engine 1 is not in the low speed mode, a negative determination is made in step S4 and the process proceeds to step S5.
 ステップS5では、リフトシリンダ13およびバケットシリンダ14のうち何れかが動作中であるか否かを判定する。リフトシリンダ13およびバケットシリンダ14が動作中ではない場合には、ステップS5が否定判定されてステップS6へ進む。ステップS6では、上述した傾転角増加処理を行ってステップS7へ進む。 In step S5, it is determined whether any one of the lift cylinder 13 and the bucket cylinder 14 is operating. If the lift cylinder 13 and the bucket cylinder 14 are not operating, a negative determination is made in step S5 and the process proceeds to step S6. In step S6, the tilt angle increasing process described above is performed, and the process proceeds to step S7.
 リフトシリンダ13およびバケットシリンダ14のうち何れかが動作中の場合には、ステップS5が肯定判定されてステップS7へ進む。ステップS7では、エンジン1が回転抑制モードか否かを判定する。エンジン1が回転抑制モードの場合、すなわちエンジン1の回転数Nengが第1設定閾値Neng_th1より大きく第2設定閾値Neng_th2以下の場合には、ステップS7が肯定判定されてステップS9へ進む。エンジン1が高回転モードの場合、すなわちエンジン1の回転数Nengが第2設定閾値Neng_th2以上の場合には、ステップS7が否定判定されてステップS8へ進む。 When either the lift cylinder 13 or the bucket cylinder 14 is operating, an affirmative determination is made in step S5 and the process proceeds to step S7. In step S7, it is determined whether or not the engine 1 is in the rotation suppression mode. If the engine 1 is rotated suppression mode, i.e. when the rotation speed N eng of the engine 1 is in the second set threshold value N Eng_th2 less larger than the first set threshold value N Eng_th1 proceeds step S7 is affirmative decision to step S9. If the engine 1 is in the high speed mode, that is, if the engine speed N eng is equal to or greater than the second set threshold value N eng — th2 , step S7 is negatively determined and the process proceeds to step S8.
 ステップS8では、回生電力低減処理を行ってステップS9へ進む。ステップS9では、余剰電力Pwr_supのうち発電電動機5で消費される消費電力Pwr_cnsを算出してステップS9Aへ進む。ステップS9Aでは、充電制御を行ってステップS10へ進む。ステップS10では、発電電動機5を制御してステップS11へ進む。この場合、発電電動機制御部160は、エンジン回転数Nengと、出力管理部140によって上記の式(8)を用いて算出された発電出力指令Pwr_gen_tと、エンジン回転数指令Neng_tとを用いて、(10)式を用いて発電電動機トルク指令Trq_gen_tを算出する。そして、発電電動機制御部160は、算出した発電電動機トルク指令Trq_gen_tを発電インバータ6へ送信することによって、発電電動機5を制御する。 In step S8, a regenerative electric power reduction process is performed and it progresses to step S9. In step S9, power consumption Pwr_cns consumed in the generator motor 5 is calculated from the surplus power Pwr_sup, and the process proceeds to step S9A. In step S9A, charge control is performed and the process proceeds to step S10. In step S10, the generator motor 5 is controlled, and the process proceeds to step S11. In this case, the generator motor control unit 160 uses the engine speed N eng , the power generation output command P wr_gen_t calculated by the output management unit 140 using the above equation (8), and the engine speed command N eng_t. Then, the generator motor torque command T rq_gen_t is calculated using the equation (10). Then, the generator motor controller 160 controls the generator motor 5 by transmitting the calculated generator motor torque command T rq_gen_t to the generator inverter 6.
 ステップS11では、エンジンコントローラ2を介してエンジン1の回転数を制御してステップS13へ進む。この場合、目標回転数演算部150は、出力管理部140で算出されたエンジン出力指令Pwr_eng_tに基づいて、上述したように、エンジン等燃費マップを用いて、エンジン回転数指令Neng_tを算出し、エンジンコントローラ2へ出力する。その結果、算出されたエンジン回転数指令Neng_tが示すエンジン回転数でエンジン1が回転する。 In step S11, the rotational speed of the engine 1 is controlled via the engine controller 2, and the process proceeds to step S13. In this case, the target engine speed calculation unit 150 calculates the engine speed command N eng_t using the engine fuel consumption map, as described above, based on the engine output command P wr_eng_t calculated by the output management unit 140. To the engine controller 2. As a result, the engine 1 rotates at the engine speed indicated by the calculated engine speed command Neng_t .
 ステップS11に続いてステップS13に進み、油圧ブレーキ制御処理を実行する。ステップS13では、上述した式(14)を用いてブレーキ制御信号Vbrk_tを算出し、油圧ブレーキ制御弁に出力し、油圧ブレーキ36a、36bを駆動させて処理を終了する。 Progressing to step S13 following step S11, hydraulic brake control processing is executed. In step S13, the brake control signal Vbrk_t is calculated using the above-described equation (14), is output to the hydraulic brake control valve, the hydraulic brakes 36a and 36b are driven, and the process ends.
 以上説明した第1の実施形態によるハイブリッド式作業車両の作用効果について説明する。
(1)第1の実施形態によるハイブリッド式作業車両は、車輪18a~18dに走行駆動トルクを与える走行電動機7F,7Rと、走行電動機7F,7Rで発生する回生電力により充電され、走行電動機7F,7Rに駆動用電力を供給する蓄電装置、すなわちキャパシタ3と、発電モード時は、エンジン1で駆動されて発電するとともに、電動モード時は、走行電動機7F,7Rからの回生電力で駆動される発電電動機5と、発電電動機5およびエンジン1に機械的に接続されて駆動され、油圧アクチュエータ12~14に圧油を供給する油圧ポンプ9と、複数の速度段のいずれかを設定する速度段設定装置、すなわち、シストスイッチ40と、走行電動機7F,7Rおよび発電電動機5を駆動制御する制御装置、すなわちメインコントローラ100とを備える。制御装置100は、速度段ごとに設定された回転数に対する駆動トルクの特性に基づいて、設定された速度段が大きいほど大きな走行駆動トルクを演算して力行制御を行い、速度段ごとに設定された車速に対する回生制動力の特性に基づいて、設定された速度段が小さいほど大きな回生制動力を演算して回生制御を行う。
 そのため、従来のトルコン車両と同様に速度段に合致した十分な回生制動力が得られる。
The effects of the hybrid work vehicle according to the first embodiment described above will be described.
(1) The hybrid work vehicle according to the first embodiment is charged by the traveling motors 7F and 7R that apply traveling driving torque to the wheels 18a to 18d, and the regenerative electric power generated by the traveling motors 7F and 7R. The power storage device that supplies driving power to 7R, that is, the capacitor 3, and the power generation mode are driven by the engine 1 in the power generation mode, and the power generation is driven by the regenerative power from the traveling motors 7F and 7R in the electric mode. A motor 5, a hydraulic pump 9 that is mechanically connected to and driven by the generator motor 5 and the engine 1 and supplies pressure oil to the hydraulic actuators 12 to 14, and a speed stage setting device that sets one of a plurality of speed stages That is, a control device that drives and controls the cyst switch 40, the traveling motors 7F and 7R, and the generator motor 5, that is, a main controller. And a 100. Based on the characteristics of the drive torque with respect to the number of revolutions set for each speed stage, the control device 100 performs power running control by calculating a larger travel drive torque as the set speed stage is larger, and is set for each speed stage. Based on the characteristics of the regenerative braking force with respect to the vehicle speed, the regenerative control is performed by calculating a larger regenerative braking force as the set speed stage is smaller.
Therefore, a sufficient regenerative braking force that matches the speed stage is obtained as in the conventional torque converter vehicle.
(2)メインコントローラ100は、要求回生制動力が走行電動機7F,7Rによる回生制動の限界を超えると判断した場合には、車輪に制動力を与える油圧ブレーキ36a、36bを作動させ、回生制動時に必要な制動力を各速度段において得られるようにした。したがって、速度段が小さいほど大きな回生制動力を得るようにし、かつ、高速時に回生電力制限を行う結果として高速走行時に必要な回生制動力が得られないようなハイブリッド式作業車両であっても、各速度段において高速走行時でも十分な制動力を得ることができる。 (2) When the main controller 100 determines that the required regenerative braking force exceeds the limit of regenerative braking by the traveling motors 7F and 7R, the main controller 100 activates the hydraulic brakes 36a and 36b that apply braking force to the wheels, and during regenerative braking Necessary braking force was obtained at each speed stage. Therefore, even if it is a hybrid work vehicle that obtains a large regenerative braking force as the speed stage is small and does not obtain a regenerative braking force required at high speed traveling as a result of performing regenerative power limitation at high speed, Sufficient braking force can be obtained at high speeds at each speed stage.
(3)第1の実施形態のハイブリッド式作業車両では、回生制動力はその上限値は車速が速いほど小さい値とされ、回生制御においてメインコントローラ100により演算された回生制動力が上限値を超えているときは、車輪に摩擦式制動力を与える油圧ブレーキ制御弁35a、35bで不足する制動力を付加する。したがって、高回転モードでエンジン1が駆動されるような車速が速い運転状態において回生電力制限を行っても、回生制動力の不足分が機械的ブレーキで得られる。
(4)例えば、第1の実施形態のハイブリッド式作業車両では、回生制動力の上限値は、車速が大きいほど大きい回生制動力の減少分で規定されるが、機械的ブレーキで1速でも大きな制動力を得ることが可能となる。
(5)例えば、第1の実施形態のハイブリッド式作業車両では、発電電動機5の回転数が所定値よりも高い領域において、キャパシタ3に充電可能な電力に比べて回生電力が大きいとき、その余剰電力が発電電動機5により消費されるように発電電動機5を制御するようにした。また、発電電動機5の回転数と所定値との乖離量に応じて、発電電動機5で消費する回生電力の低減量を低減した。この場合、メインコントローラ100は、回生電力の低減量に見合った機械的ブレーキを車輪に加える。
(3) In the hybrid work vehicle of the first embodiment, the upper limit value of the regenerative braking force becomes smaller as the vehicle speed increases, and the regenerative braking force calculated by the main controller 100 in the regenerative control exceeds the upper limit value. When this is the case, the braking force that is insufficient by the hydraulic brake control valves 35a and 35b that apply frictional braking force to the wheels is added. Therefore, even if the regenerative power is limited in a driving state where the vehicle speed is high such that the engine 1 is driven in the high rotation mode, a shortage of the regenerative braking force can be obtained by the mechanical brake.
(4) For example, in the hybrid work vehicle according to the first embodiment, the upper limit value of the regenerative braking force is defined by a decrease in the regenerative braking force that increases as the vehicle speed increases. A braking force can be obtained.
(5) For example, in the hybrid work vehicle of the first embodiment, when the regenerative power is larger than the power that can be charged in the capacitor 3 in the region where the rotational speed of the generator motor 5 is higher than a predetermined value, the surplus The generator motor 5 is controlled so that electric power is consumed by the generator motor 5. In addition, the amount of regenerative power consumed by the generator motor 5 is reduced according to the amount of deviation between the rotational speed of the generator motor 5 and the predetermined value. In this case, the main controller 100 applies a mechanical brake corresponding to the reduction amount of the regenerative power to the wheels.
-第2の実施の形態-
 図面を参照して、本発明によるハイブリッド式作業車両の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、要求回生制動力に応じて油圧回路に設けた冷却ファンの回転数をさらに制御する点で第1の実施の形態とは異なる。
-Second Embodiment-
A second embodiment of a hybrid work vehicle according to the present invention will be described with reference to the drawings. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment is different from the first embodiment in that the number of rotations of the cooling fan provided in the hydraulic circuit is further controlled according to the required regenerative braking force.
 図9は、本実施の形態によるハイブリッド式作業車両200が有する油圧回路HCを示す回路図である。油圧回路HCには、可変容量式の油圧ポンプ9と、オイルタンク10と、コントロールバルブ11と、可変容量式のモータ用油圧ポンプ301と、第1比例弁302と、第2比例弁303と、油圧モータ304と、冷却ファン305と、冷却用コア306と、温度センサ307と、リリーフ弁310とが設けられている。第1管路400には、オイルタンク10を上流側として、油圧ポンプ9と、リリーフ弁310と、コントロールバルブ11とがこの順序で接続されている。第2管路401には、オイルタンク10を上流側として、モータ用油圧ポンプ301と、油圧モータ304と、冷却コア306とがこの順序で接続されている。 FIG. 9 is a circuit diagram showing a hydraulic circuit HC included in the hybrid work vehicle 200 according to the present embodiment. The hydraulic circuit HC includes a variable displacement hydraulic pump 9, an oil tank 10, a control valve 11, a variable displacement motor hydraulic pump 301, a first proportional valve 302, a second proportional valve 303, A hydraulic motor 304, a cooling fan 305, a cooling core 306, a temperature sensor 307, and a relief valve 310 are provided. The hydraulic pump 9, the relief valve 310, and the control valve 11 are connected to the first pipeline 400 in this order with the oil tank 10 as the upstream side. A hydraulic pump for motor 301, a hydraulic motor 304, and a cooling core 306 are connected to the second pipe line 401 in this order with the oil tank 10 at the upstream side.
 油圧ポンプ9は、上述したように、エンジン1によって駆動されることにより、オイルタンク10の作動油をコントロールバルブ11を介してステアリングシリンダ12、リフトシリンダ13およびバケットシリンダ14に供給する。第1比例弁302は、メインコントローラ100からの制御信号に従って第1油圧ポンプ9の傾転量(容量)を変更可能に制御する。リリーフ弁310は、第1管路400の圧力が高圧となった場合に、作動油の一部または全部をもどり側へ逃がし、回路圧力を一定に保つことで回路を保護する。コントロールバルブ11は、第1方向制御弁308と、第2方向制御弁309とを含んで構成される。第1方向制御弁308は、運転室19内に設置された操作装置31から出力される信号に応じて第1油圧ポンプ9から供給される作動油をステアリングシリンダ12へ供給する。第2方向制御弁309は、運転室19内に設置された操作装置31から出力される信号に応じて油圧ポンプ9から供給される作動油を一対のリフトシリンダ13へ供給する。バケットシリンダ14は図示を省略した。 As described above, the hydraulic pump 9 is driven by the engine 1 to supply the hydraulic oil in the oil tank 10 to the steering cylinder 12, the lift cylinder 13 and the bucket cylinder 14 via the control valve 11. The first proportional valve 302 controls the tilt amount (capacity) of the first hydraulic pump 9 to be changeable in accordance with a control signal from the main controller 100. When the pressure in the first pipe line 400 becomes high, the relief valve 310 protects the circuit by releasing part or all of the hydraulic oil to the return side and keeping the circuit pressure constant. The control valve 11 includes a first directional control valve 308 and a second directional control valve 309. The first directional control valve 308 supplies hydraulic oil supplied from the first hydraulic pump 9 to the steering cylinder 12 in response to a signal output from the operating device 31 installed in the cab 19. The second direction control valve 309 supplies hydraulic oil supplied from the hydraulic pump 9 to the pair of lift cylinders 13 in response to a signal output from the operation device 31 installed in the cab 19. The bucket cylinder 14 is not shown.
 モータ用油圧ポンプ301の回転軸はエンジン1の駆動軸と同軸上に設けられている。モータ用油圧ポンプ301がエンジン1により駆動されると、オイルタンク10の作動油を油圧モータ304へ供給して油圧モータ304を駆動させる。第2比例弁303は、メインコントローラ100からの制御信号に従ってモータ用油圧ポンプ301の傾転量(容量)を変更可能に制御する。モータ用油圧ポンプ301の傾転量は、温度センサ307により検出されたオイルタンク10内の作動油の温度に基づいて制御される。冷却ファン305は油圧モータ304により駆動され、冷却ファン305の下流に設けられた冷却用コア306に流入した作動油を冷却する。このため、冷却ファン305の回転数は、第2油圧ポンプ301の傾転量に応じて制御される。換言すると、冷却ファン305の回転数は、温度センサ307により検出された作動油の温度に応じて制御される。 The rotating shaft of the motor hydraulic pump 301 is provided coaxially with the drive shaft of the engine 1. When the motor hydraulic pump 301 is driven by the engine 1, the hydraulic oil in the oil tank 10 is supplied to the hydraulic motor 304 to drive the hydraulic motor 304. The second proportional valve 303 controls the tilt amount (capacity) of the motor hydraulic pump 301 so as to be changeable in accordance with a control signal from the main controller 100. The tilt amount of the motor hydraulic pump 301 is controlled based on the temperature of the hydraulic oil in the oil tank 10 detected by the temperature sensor 307. The cooling fan 305 is driven by a hydraulic motor 304 and cools the hydraulic oil flowing into the cooling core 306 provided downstream of the cooling fan 305. For this reason, the rotation speed of the cooling fan 305 is controlled according to the amount of tilt of the second hydraulic pump 301. In other words, the rotation speed of the cooling fan 305 is controlled according to the temperature of the hydraulic oil detected by the temperature sensor 307.
 図10は、冷却ファン305の回転数と、温度センサ307により検出される作動油の温度との関係を示す図である。図10に示すように、作動油の温度が所定温度t1未満の場合には、冷却ファン305の回転数は、規定の最小回転数Minとなるように制御される。作動油の温度が所定温度t1以上となる場合には、作動油の温度の上昇に比例して冷却ファン305の回転数も増加するように制御される。そして、作動油の温度が所定温度t2(>t1)以上となった場合には、冷却ファン305は、規定の最大回転数Maxとなるように制御される。 FIG. 10 is a diagram showing the relationship between the number of rotations of the cooling fan 305 and the temperature of the hydraulic oil detected by the temperature sensor 307. As shown in FIG. 10, when the temperature of the hydraulic oil is lower than a predetermined temperature t1, the rotation speed of the cooling fan 305 is controlled to be a specified minimum rotation speed Min. When the temperature of the hydraulic oil is equal to or higher than the predetermined temperature t1, the rotation speed of the cooling fan 305 is controlled to increase in proportion to the increase in the temperature of the hydraulic oil. When the temperature of the hydraulic oil becomes equal to or higher than a predetermined temperature t2 (> t1), the cooling fan 305 is controlled so as to have a specified maximum rotational speed Max.
 (油圧モータ304の回転数増加)
 回生運転中にキャパシタ3が満充電でさらなる充電ができない場合、走行電動機7F,7Rの発電電力で発電電動機5を駆動して回生電力を消費する。本発明によるハイブリッド式作業車両では、回生運転中に冷却モータ用油圧ポンプ301の傾転量を大きくしてポンプ吸収馬力を大きくし、これにより、発電電動機5の負荷を大きする。その結果、発電電動機5で消費する回生電力を増加させることができ、回生ブレーキ力を増大化することができる。
(Increase the rotation speed of the hydraulic motor 304)
When the capacitor 3 is fully charged during the regenerative operation and cannot be further charged, the regenerative power is consumed by driving the generator motor 5 with the power generated by the traveling motors 7F and 7R. In the hybrid work vehicle according to the present invention, the amount of tilt of the cooling motor hydraulic pump 301 is increased during the regenerative operation to increase the pump absorption horsepower, thereby increasing the load on the generator motor 5. As a result, the regenerative power consumed by the generator motor 5 can be increased, and the regenerative braking force can be increased.
 出力管理部140により、回生運転中に算出した余剰電力Pwr_supが0以外の場合にキャパシタ3への充電ができないと判断されたとき、メインコントローラ100は、上記(2)式で算出された走行要求トルクTrq_drv_req、すなわち、要求回生制動力が所定の閾値Trq_drv_th1を超えるか否かを判定する。要求回生制動力が閾値Trq_drv_th1以上のときには、温度センサ307により検出された作動油の温度に関わらず、メインコントローラ100は、冷却ファン305が最大回転数Maxとなるように、モータ用油圧ポンプ304の傾転量(容量)を制御する。要求回生制動力が閾値Trq_drv_th1未満のときには、上述したように、温度センサ307により検出された作動油の温度に応じて、メインコントローラ100は、冷却ファン305の回転数が制御されるように、冷却モータ用油圧ポンプ301の傾転量を制御する。 When the output controller 140 determines that the capacitor 3 cannot be charged when the surplus power P wr_sup calculated during the regenerative operation is other than 0, the main controller 100 calculates the travel calculated by the above equation (2). It is determined whether the required torque T rq_drv_req , that is, the required regenerative braking force exceeds a predetermined threshold value T rq_drv_th1 . When the required regenerative braking force is equal to or greater than the threshold value T rq_drv_th1 , the main controller 100 sets the motor hydraulic pump 304 so that the cooling fan 305 has the maximum rotation speed Max regardless of the temperature of the hydraulic oil detected by the temperature sensor 307. Control the amount of tilt (capacity). When the required regenerative braking force is less than the threshold value T rq_drv_th1 , as described above, the main controller 100 controls the rotational speed of the cooling fan 305 according to the temperature of the hydraulic oil detected by the temperature sensor 307. The amount of tilt of the cooling motor hydraulic pump 301 is controlled.
 なお、上記の閾値Trq_drv_th1は、発電電動機5の最大吸収馬力に相当する回生制動力の値として設定され、予めメモリ(不図示)等に格納されている。すなわち、走行電動機7F,7Rからの回生電力が発電電動機5の最大消費電力を超えるときは、冷却モータ用油圧ポンプ301の傾転量を増加させて回生電力消費量を増加させる。 The threshold value T rq_drv_th1 is set as a value of the regenerative braking force corresponding to the maximum absorption horsepower of the generator motor 5, and is stored in advance in a memory (not shown) or the like. That is, when the regenerative power from the traveling motors 7F and 7R exceeds the maximum power consumption of the generator motor 5, the amount of regenerative power consumption is increased by increasing the tilt amount of the cooling motor hydraulic pump 301.
 図11に、作動油の温度と要求回生制動力とに応じて上記のようにして制御される冷却ファン305の回転数を示す。図に示すように、要求回生制動力が閾値Trq_drv_th1以上の場合には、検出された作動油の温度によることなく冷却ファン305を最大回転数Maxで駆動されるように制御される。これに対して、要求回生制動力が閾値Trq_drv_th1未満の場合、または要求回生制動力が0の場合には、図11に示すように検出された作動油の温度の上昇に比例して冷却ファン305の回転数が増加するように制御される。 FIG. 11 shows the number of rotations of the cooling fan 305 controlled as described above according to the temperature of the hydraulic oil and the required regenerative braking force. As shown in the figure, when the required regenerative braking force is greater than or equal to the threshold value T rq_drv_th1 , the cooling fan 305 is controlled so as to be driven at the maximum rotational speed Max regardless of the detected temperature of the hydraulic oil. On the other hand, when the required regenerative braking force is less than the threshold value T rq_drv_th1 , or when the required regenerative braking force is 0, the cooling fan is proportional to the detected temperature increase of the hydraulic oil as shown in FIG. The number of rotations of 305 is controlled to increase.
 その結果、出力管理部140により、回生運転中に算出した余剰電力Pwr_supが0以外の場合にキャパシタ3への充電ができないと判断されたとき、メインコントローラ100は、冷却モータ用油圧ポンプ301の油圧負荷を増加させる。その結果、余剰電力で駆動されている発電電動機5の負荷が大きくなり、回生時のブレーキ力を大きくすることができる。 As a result, when the output controller 140 determines that the capacitor 3 cannot be charged when the surplus power P wr_sup calculated during the regenerative operation is other than 0, the main controller 100 controls the hydraulic pump 301 for the cooling motor. Increase hydraulic load. As a result, the load on the generator motor 5 driven by surplus power is increased, and the braking force during regeneration can be increased.
 図12に示すフローチャートを用いて、メインコントローラ100による処理を説明する。図12の処理はメインコントローラ100でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、ハイブリッド式作業車両200の図示しないイグニッションスイッチがオンされると、メインコントローラ100によってプログラムが起動され、実行される。 The processing by the main controller 100 will be described using the flowchart shown in FIG. The processing in FIG. 12 is performed by executing a program on the main controller 100. This program is stored in a memory (not shown). When an ignition switch (not shown) of the hybrid work vehicle 200 is turned on, the program is started and executed by the main controller 100.
 ステップS21A(α設定)からステップS29(消費電力算出)までの各処理は、図8のステップS1A(α設定)からステップS9(消費電力算出)までの各処理と同様である。ステップS30では、要求回生制動力が消費電力Pwr_cnsと冷却ファン305が最大回転数Maxで駆動した際の回生制動力とに基づく閾値th1を超えるか否かを判定する。要求回生制動力が閾値Trq_drv_th1以上の場合には、ステップS30が肯定判定されてステップS31へ進む。ステップS31では、第2油圧ポンプ304の傾転量を制御して、冷却ファン305を最大回転数Maxにて駆動させてステップS29Aへ進む。要求回生制動力が閾値Trq_drv_th1未満の場合には、ステップS30が否定判定されてステップS32へ進む。ステップS32では、温度センサ307により検出された作動油の温度に応じて第2油圧ポンプの傾転量を制御して、冷却ファン305を駆動させてステップS29Aへ進む。ステップS29A(充電制御)からステップS36(油圧ブレーキ駆動)までの各処理は、図8のステップS9A(充電制御)からステップS13(油圧ブレーキ駆動)までの各処理と同様である。 Each process from step S21A (α setting) to step S29 (power consumption calculation) is the same as each process from step S1A (α setting) to step S9 (power consumption calculation) in FIG. In step S30, it is determined whether or not the required regenerative braking force exceeds a threshold th1 based on the power consumption Pwr_cns and the regenerative braking force when the cooling fan 305 is driven at the maximum rotation speed Max. If the requested regenerative braking force is greater than or equal to the threshold value T rq_drv_th1 , an affirmative determination is made in step S30 and the process proceeds to step S31. In step S31, the amount of tilt of the second hydraulic pump 304 is controlled to drive the cooling fan 305 at the maximum rotation speed Max, and the process proceeds to step S29A. If the requested regenerative braking force is less than the threshold value T rq_drv_th1 , a negative determination is made in step S30, and the process proceeds to step S32. In step S32, the tilt amount of the second hydraulic pump is controlled in accordance with the temperature of the hydraulic oil detected by the temperature sensor 307, the cooling fan 305 is driven, and the process proceeds to step S29A. Each process from step S29A (charge control) to step S36 (hydraulic brake drive) is the same as each process from step S9A (charge control) to step S13 (hydraulic brake drive) in FIG.
 上述した第2の実施の形態によるハイブリッド式作業車両によれば、次の作用効果が得られる。
 メインコントローラ100は、圧油の温度と要求回生制動力とに基づいて、第2油圧ポンプ301から吐出される圧油の流量を制御するようにした。したがって、回生電力が発電電動機5の最大消費電力を超える場合は、冷却モータ用油圧ポンプ301の傾転量を大きくしてポンプ負荷を大きくした。したがって、余剰電力で駆動されている発電電動機5の負荷が大きくなり、回生時のブレーキ力を大きくすることができる。さらに、既存の構成を用いて回生時のブレーキ力の増加を実現することができるので、製造コストの増加を低減できる。
According to the hybrid work vehicle according to the second embodiment described above, the following operational effects can be obtained.
The main controller 100 controls the flow rate of the pressure oil discharged from the second hydraulic pump 301 based on the pressure oil temperature and the required regenerative braking force. Therefore, when the regenerative power exceeds the maximum power consumption of the generator motor 5, the amount of tilt of the cooling motor hydraulic pump 301 is increased to increase the pump load. Therefore, the load on the generator motor 5 driven by surplus power is increased, and the braking force during regeneration can be increased. Furthermore, since an increase in braking force during regeneration can be realized using an existing configuration, an increase in manufacturing cost can be reduced.
 以上で説明した第1および第2の実施の形態のハイブリッド式作業車両200を次のように変形できる。
(1)実施形態の作業車両200では、一対の走行電動機7F,7Rを使用しているが、一つの走行電動機を使用した作業車両でもよい。
(2)実施形態のメインコントローラ100では、(1)式~(14)式により、エンジン1、発電電動機5,走行電動機7F,7R、ブレーキ弁35bなどを駆動制御するようにしたが、これは一例である。異なる数式を採用して同様の装置を駆動制御するように設計されたメインコントローラを採用することもできる。
The hybrid work vehicle 200 of the first and second embodiments described above can be modified as follows.
(1) In the work vehicle 200 of the embodiment, a pair of travel motors 7F and 7R are used, but a work vehicle using one travel motor may be used.
(2) In the main controller 100 of the embodiment, the engine 1, the generator motor 5, the traveling motors 7F and 7R, the brake valve 35b, and the like are driven and controlled by the equations (1) to (14). It is an example. It is also possible to employ a main controller designed to drive and control similar devices using different mathematical formulas.
(3)実施形態の作業車両は、1速~3速の速度段を設定したが、1速と2速の速度段を有する作業車両でもよく、4段以上の速度段を有するようにしてもよい。
(4)エンジン1により駆動された発電電動機5によって車輪18を駆動するシリーズハイブリッド式を用いるものに代えて、エンジン1により走行駆動力を得るとともに、エンジン1により駆動された発電電動機5による電力で駆動される走行電動機を得るようにしたパラレルハイブリッド式を用いてもよい。
(3) The work vehicle of the embodiment has set the first to third speed stages, but may be a work vehicle having first and second speed stages, and may have four or more speed stages. Good.
(4) Instead of using a series hybrid system in which the wheels 18 are driven by the generator motor 5 driven by the engine 1, travel driving force is obtained by the engine 1, and electric power generated by the generator motor 5 driven by the engine 1 is used. You may use the parallel hybrid type which obtained the driving motor driven.
(5)実施形態の作業車両はホイールローダで説明したが、車輪に走行駆動トルクを与える走行電動機と、走行電動機を力行制御、および回生制御する制御装置と、走行電動機で発生する回生電力により充電され、走行電動機に駆動用電力を供給する蓄電装置と、発電モード時は、エンジンで駆動されて発電するとともに、電動モード時は、回生電力で駆動される発電電動機と、発電電動機および前記エンジンに機械的に接続されて駆動され、油圧アクチュエータに圧油を供給する油圧ポンプと、複数の速度段を設定する速度段設定装置とを備え、制御装置が、車速に対する回生制動力の特性を速度段ごとにそれぞれ有し、アクセルペダルが踏み込まれていないとき、設定された速度段が小さいほど大きな回生制動力を得ることができる種々のハイブリッド式作業車両に本発明を適用できる。 (5) Although the work vehicle of the embodiment has been described with the wheel loader, the vehicle is charged with a traveling motor that applies traveling driving torque to the wheels, a control device that performs power running control and regenerative control of the traveling motor, and regenerative power generated by the traveling motor. And a power storage device that supplies driving power to the traveling motor, and in the power generation mode, the power is driven by the engine to generate electric power, and in the electric mode, the generator motor that is driven by regenerative power, the generator motor, and the engine A hydraulic pump that is mechanically connected and driven to supply pressure oil to the hydraulic actuator and a speed stage setting device that sets a plurality of speed stages are provided. The control device determines the characteristics of the regenerative braking force with respect to the vehicle speed. Each type has a different regenerative braking force when the accelerator pedal is not depressed and the set speed stage is smaller. The present invention can be applied to a hybrid working vehicle.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2013年第265719号(2013年12月24日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2013-265719 (filed on December 24, 2013)
1…エンジン、 3…蓄電装置、
5…発電電動機、 7F,7R…走行電動機、
9…油圧ポンプ、 12…ステアリングシリンダ、
13…リフトシリンダ、 14…バケットシリンダ、
21…車速センサ、 22…走行電動機回転数センサ
31…操作装置、 40…シフトスイッチ
35a…ブレーキ装置、 36b…ブレーキ弁
100…メインコントローラ、 110…蓄電管理部、
120…油圧要求演算部、 130…走行要求演算部、
140…出力管理部、 150…目標回転数演算部、
160…発電電動機制御部、 170…傾転角制御部、
180…走行電動機・ブレーキ制御部、 200…ハイブリッド式作業車両、
301…モータ用油圧ポンプ、 304…油圧モータ、
305…冷却ファン、 307…温度センサ
1 ... Engine, 3 ... Power storage device,
5 ... generator motor, 7F, 7R ... traveling motor,
9 ... hydraulic pump, 12 ... steering cylinder,
13 ... lift cylinder, 14 ... bucket cylinder,
DESCRIPTION OF SYMBOLS 21 ... Vehicle speed sensor, 22 ... Traveling motor rotation speed sensor 31 ... Operating device, 40 ... Shift switch 35a ... Brake device, 36b ... Brake valve 100 ... Main controller, 110 ... Power storage management part,
120 ... Hydraulic pressure request calculation unit, 130 ... Travel request calculation unit,
140 ... output management unit, 150 ... target rotational speed calculation unit,
160 ... generator motor control unit, 170 ... tilt angle control unit,
180: traveling motor / brake control unit, 200 ... hybrid work vehicle,
301 ... Hydraulic pump for motor, 304 ... Hydraulic motor,
305 ... Cooling fan, 307 ... Temperature sensor

Claims (9)

  1.  車輪に走行駆動トルクを与える走行電動機(7F,7R)と、
     前記走行電動機で発生する回生電力により充電され、前記走行電動機に駆動用電力を供給する蓄電装置(3)と、
     発電モード時は、エンジンで駆動されて発電するとともに、力行モード時は、前記走行電動機からの回生電力で駆動される発電電動機(5)と、
     前記発電電動機および前記エンジンに機械的に接続されて駆動され、油圧アクチュエータに圧油を供給する油圧ポンプ(9)と、
     複数の速度段のいずれかを設定する速度段設定装置(40)と、
     前記走行電動機および前記発電電動機を駆動制御する制御装置(100)とを備え、
     前記制御装置は、前記速度段ごとに設定された回転数に対する駆動トルクの特性、および、前記速度段ごとに設定された車速に対する回生制動力の特性に基づいて、前記設定された速度段が小さいほど大きな回生制動力を演算して回生制御を行う駆動制御部(130)を有するハイブリッド式作業車両。
    A traveling motor (7F, 7R) that applies traveling driving torque to the wheels;
    A power storage device (3) that is charged by regenerative power generated by the traveling motor and supplies driving power to the traveling motor;
    During the power generation mode, the generator is driven by the engine to generate power, and during the power running mode, the generator motor (5) driven by the regenerative power from the traveling motor;
    A hydraulic pump (9) that is mechanically connected to and driven by the generator motor and the engine and supplies pressure oil to a hydraulic actuator;
    A speed stage setting device (40) for setting any one of a plurality of speed stages;
    A control device (100) for driving and controlling the traveling motor and the generator motor,
    The control device is configured such that the set speed stage is small based on the characteristics of the driving torque with respect to the rotational speed set for each speed stage and the characteristics of the regenerative braking force with respect to the vehicle speed set for each speed stage. A hybrid work vehicle having a drive control unit (130) that performs regenerative control by calculating a large regenerative braking force.
  2.  請求項1に記載のハイブリッド式作業車両において、
     前記車輪に摩擦式制動力を与える制動装置(36a、36b)をさらに備え、
     前記制御装置は、前記回生制御において演算された回生制動力が、車速が早いほど小さい値となるように設定された上限値を超えているときは、不足する制動力を付加するように制動装置を制御する制動制御部(180)をさらに有するハイブリッド式作業車両。
    The hybrid work vehicle according to claim 1,
    A braking device (36a, 36b) for applying a frictional braking force to the wheel;
    When the regenerative braking force calculated in the regenerative control exceeds an upper limit set so that the regenerative braking force is smaller as the vehicle speed is faster, the control device adds a deficient braking force. A hybrid work vehicle further including a braking control unit (180) for controlling the motor.
  3.  請求項2に記載のハイブリッド式作業車両において、
     前記制御装置は、前記発電電動機の回転数が所定値以上の時、前記蓄電装置に充電される回生電力を前記回転数に応じて制限する回生電力制限制御を行う充電制御部(140)をさらに有し、
     前記回生制動力の上限値は前記回生電力制限制御により定められるハイブリッド式作業車両。
    The hybrid work vehicle according to claim 2,
    The control device further includes a charge control unit (140) that performs regenerative power restriction control that restricts regenerative power charged in the power storage device according to the rotation speed when the rotation speed of the generator motor is equal to or greater than a predetermined value. Have
    The hybrid work vehicle wherein the upper limit value of the regenerative braking force is determined by the regenerative power limit control.
  4.  請求項2に記載のハイブリッド式作業車両において、
     前記制御装置は、前記発電電動機の回転数が所定値よりも高い領域において、前記蓄電装置に充電可能な電力に比べて前記回生電力が大きいとき、その余剰電力が前記発電電動機により消費されるように前記発電電動機を制御するとともに、その回転数と所定値との乖離量に応じて、発電電動機で消費する回生電力の低減量を乖離量が大きいほど大きく低減する制御を行う発電制御部(160)をさらに有し、
     前記制動制御部は、前記回生電力の低減量に見合った摩擦式制動力を前記車輪に加える制御を行うハイブリッド式作業車両。
    The hybrid work vehicle according to claim 2,
    In the region where the rotational speed of the generator motor is higher than a predetermined value, the control device causes the surplus power to be consumed by the generator motor when the regenerative power is larger than the power that can be charged to the power storage device. The power generation control unit (160) that controls the generator motor and controls the reduction of the regenerative electric power consumed by the generator motor as the deviation amount increases according to the deviation amount between the rotation speed and the predetermined value. )
    The brake control unit is a hybrid work vehicle that performs control to apply a frictional braking force corresponding to a reduction amount of the regenerative power to the wheels.
  5.  請求項2に記載のハイブリッド式作業車両において、
     前記制御装置は、
     アクセルペダルの踏込み量と車速とに基づいて演算したアクセル要求トルクと、ブレーキペダルの踏込み量に基づいて演算した回生制動トルクと、前記速度段に基づいて演算した回生制動トルクとに基づいて走行要求トルクを算出し、
     前記発電電動機の回転数が所定値よりも高い領域において、その回転数と所定値との乖離量に応じて、前記発電電動機で消費する回生電力の低減量を演算し、
     前記回生電力の低減量を前記走行電動機の回転数により変換した回生低減トルクを演算し、前記走行要求トルクから前記演算した回生低減トルクを減算して走行電動機トルク指令を演算し、
     走行要求トルクから走行電動機トルク指令を減算して不足する制動トルクを演算し、
     前記不足する制動力を前記制動装置が付加する制動信号を演算し、
     前記制動制御装置は、前記制動信号により前記制動装置を駆動制御するハイブリッド式作業車両。
    The hybrid work vehicle according to claim 2,
    The controller is
    A travel request based on the accelerator required torque calculated based on the accelerator pedal depression amount and the vehicle speed, the regenerative braking torque calculated based on the brake pedal depression amount, and the regenerative braking torque calculated based on the speed stage Calculate the torque,
    In a region where the rotational speed of the generator motor is higher than a predetermined value, according to the amount of deviation between the rotational speed and the predetermined value, a reduction amount of regenerative power consumed by the generator motor is calculated,
    Calculate a regenerative reduction torque obtained by converting the reduction amount of the regenerative power by the number of revolutions of the travel motor, subtract the calculated regenerative reduction torque from the travel request torque to calculate a travel motor torque command,
    Subtract the travel motor torque command from the travel request torque to calculate the insufficient braking torque,
    Calculating a braking signal to which the braking device adds the insufficient braking force;
    The braking control device is a hybrid work vehicle that drives and controls the braking device according to the braking signal.
  6.  請求項3に記載のハイブリッド式作業車両において、
     前記制御装置は、前記発電電動機の回転数が所定値よりも高い領域において、前記蓄電装置に充電可能な電力に比べて前記回生電力が大きいとき、その余剰電力が前記発電電動機により消費されるように前記発電電動機を制御するとともに、その回転数と所定値との乖離量に応じて、発電電動機で消費する回生電力の低減量を乖離量が大きいほど大きく低減する制御を行う発電制御部(160)をさらに有し、
     前記制動制御部は、前記回生電力の低減量に見合った摩擦式制動力を前記車輪に加える制御を行うハイブリッド式作業車両。
    The hybrid work vehicle according to claim 3, wherein
    In the region where the rotational speed of the generator motor is higher than a predetermined value, the control device causes the surplus power to be consumed by the generator motor when the regenerative power is larger than the power that can be charged to the power storage device. The power generation control unit (160) that controls the generator motor and controls the reduction of the regenerative electric power consumed by the generator motor as the deviation amount increases according to the deviation amount between the rotation speed and the predetermined value. )
    The brake control unit is a hybrid work vehicle that performs control to apply a frictional braking force corresponding to a reduction amount of the regenerative power to the wheels.
  7.  請求項3に記載のハイブリッド式作業車両において、
     前記制御装置は、
     アクセルペダルの踏込み量と車速とに基づいて演算したアクセル要求トルクと、ブレーキペダルの踏込み量に基づいて演算した回生制動トルクと、前記速度段に基づいて演算した回生制動トルクとに基づいて走行要求トルクを算出し、
     前記発電電動機の回転数が所定値よりも高い領域において、その回転数と所定値との乖離量に応じて、前記発電電動機で消費する回生電力の低減量を演算し、
     前記回生電力の低減量を前記走行電動機の回転数により変換した回生低減トルクを演算し、前記走行要求トルクから前記演算した回生低減トルクを減算して走行電動機トルク指令を演算し、
     走行要求トルクから走行電動機トルク指令を減算して不足する制動トルクを演算し、
     前記不足する制動力を前記制動装置が付加する制動信号を演算し、
     前記制動制御装置は、前記制動信号により前記制動装置を駆動制御するハイブリッド式作業車両。
    The hybrid work vehicle according to claim 3, wherein
    The controller is
    A travel request based on the accelerator required torque calculated based on the accelerator pedal depression amount and the vehicle speed, the regenerative braking torque calculated based on the brake pedal depression amount, and the regenerative braking torque calculated based on the speed stage Calculate the torque,
    In a region where the rotational speed of the generator motor is higher than a predetermined value, according to the amount of deviation between the rotational speed and the predetermined value, a reduction amount of regenerative power consumed by the generator motor is calculated,
    Calculate a regenerative reduction torque obtained by converting the reduction amount of the regenerative power by the number of revolutions of the travel motor, subtract the calculated regenerative reduction torque from the travel request torque to calculate a travel motor torque command,
    Subtract the travel motor torque command from the travel request torque to calculate the insufficient braking torque,
    Calculating a braking signal to which the braking device adds the insufficient braking force;
    The braking control device is a hybrid work vehicle that drives and controls the braking device according to the braking signal.
  8.  請求項4に記載のハイブリッド式作業車両において、
     前記制御装置は、
     アクセルペダルの踏込み量と車速とに基づいて演算したアクセル要求トルクと、ブレーキペダルの踏込み量に基づいて演算した回生制動トルクと、前記速度段に基づいて演算した回生制動トルクとに基づいて走行要求トルクを算出し、
     前記発電電動機の回転数が所定値よりも高い領域において、その回転数と所定値との乖離量に応じて、前記発電電動機で消費する回生電力の低減量を演算し、
     前記回生電力の低減量を前記走行電動機の回転数により変換した回生低減トルクを演算し、前記走行要求トルクから前記演算した回生低減トルクを減算して走行電動機トルク指令を演算し、
     走行要求トルクから走行電動機トルク指令を減算して不足する制動トルクを演算し、
     前記不足する制動力を前記制動装置が付加する制動信号を演算し、
     前記制動制御装置は、前記制動信号により前記制動装置を駆動制御するハイブリッド式作業車両。
    The hybrid work vehicle according to claim 4,
    The controller is
    A travel request based on the accelerator required torque calculated based on the accelerator pedal depression amount and the vehicle speed, the regenerative braking torque calculated based on the brake pedal depression amount, and the regenerative braking torque calculated based on the speed stage Calculate the torque,
    In a region where the rotational speed of the generator motor is higher than a predetermined value, according to the amount of deviation between the rotational speed and the predetermined value, a reduction amount of regenerative power consumed by the generator motor is calculated,
    Calculate a regenerative reduction torque obtained by converting the reduction amount of the regenerative power by the number of revolutions of the travel motor, subtract the calculated regenerative reduction torque from the travel request torque to calculate a travel motor torque command,
    Subtract the travel motor torque command from the travel request torque to calculate the insufficient braking torque,
    Calculating a braking signal to which the braking device adds the insufficient braking force;
    The braking control device is a hybrid work vehicle that drives and controls the braking device according to the braking signal.
  9.  請求項6に記載のハイブリッド式作業車両において、
     前記制御装置は、
     アクセルペダルの踏込み量と車速とに基づいて演算したアクセル要求トルクと、ブレーキペダルの踏込み量に基づいて演算した回生制動トルクと、前記速度段に基づいて演算した回生制動トルクとに基づいて走行要求トルクを算出し、
     前記発電電動機の回転数が所定値よりも高い領域において、その回転数と所定値との乖離量に応じて、前記発電電動機で消費する回生電力の低減量を演算し、
     前記回生電力の低減量を前記走行電動機の回転数により変換した回生低減トルクを演算し、前記走行要求トルクから前記演算した回生低減トルクを減算して走行電動機トルク指令を演算し、
     走行要求トルクから走行電動機トルク指令を減算して不足する制動トルクを演算し、
     前記不足する制動力を前記制動装置が付加する制動信号を演算し、
     前記制動制御装置は、前記制動信号により前記制動装置を駆動制御するハイブリッド式作業車両。
     
    The hybrid work vehicle according to claim 6, wherein
    The controller is
    A travel request based on the accelerator required torque calculated based on the accelerator pedal depression amount and the vehicle speed, the regenerative braking torque calculated based on the brake pedal depression amount, and the regenerative braking torque calculated based on the speed stage Calculate the torque,
    In a region where the rotational speed of the generator motor is higher than a predetermined value, according to the amount of deviation between the rotational speed and the predetermined value, a reduction amount of regenerative power consumed by the generator motor is calculated,
    Calculate a regenerative reduction torque obtained by converting the reduction amount of the regenerative power by the number of revolutions of the travel motor, subtract the calculated regenerative reduction torque from the travel request torque to calculate a travel motor torque command,
    Subtract the travel motor torque command from the travel request torque to calculate the insufficient braking torque,
    Calculating a braking signal to which the braking device adds the insufficient braking force;
    The braking control device is a hybrid work vehicle that drives and controls the braking device according to the braking signal.
PCT/JP2014/082846 2013-12-24 2014-12-11 Hybrid type work vehicle WO2015098545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-265719 2013-12-24
JP2013265719A JP6276021B2 (en) 2013-12-24 2013-12-24 Hybrid work vehicle

Publications (1)

Publication Number Publication Date
WO2015098545A1 true WO2015098545A1 (en) 2015-07-02

Family

ID=53478409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082846 WO2015098545A1 (en) 2013-12-24 2014-12-11 Hybrid type work vehicle

Country Status (2)

Country Link
JP (1) JP6276021B2 (en)
WO (1) WO2015098545A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492663A4 (en) * 2017-09-29 2020-11-04 Hitachi Construction Machinery Co., Ltd. Wheel loader
CN111936363A (en) * 2018-03-27 2020-11-13 三菱自动车工业株式会社 Power generation control device for hybrid vehicle
WO2023078990A1 (en) * 2021-11-04 2023-05-11 Zf Friedrichshafen Ag Control device for an electric drive train of a working machine
WO2024068432A1 (en) * 2022-09-26 2024-04-04 Zf Friedrichshafen Ag Method for controlling an electric drivetrain of a work machine, and corresponding control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119256A1 (en) * 2017-08-23 2019-02-28 Fraport Ag Frankfurt Airport Services Worldwide Utility or commercial vehicle for a limited area of application
CN111827402A (en) * 2020-06-18 2020-10-27 青岛吉兴车辆技术有限公司 Tandem type hybrid power system for loader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143478A (en) * 2007-12-17 2009-07-02 Komatsu Ltd Hybrid working vehicle
JP2010173389A (en) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd Controller for series hybrid car
JP2011245948A (en) * 2010-05-25 2011-12-08 Kawasaki Heavy Ind Ltd Construction machine and control method thereof
WO2012099255A1 (en) * 2011-01-21 2012-07-26 日立建機株式会社 Work vehicle control apparatus and work vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768766B2 (en) * 2008-02-19 2011-09-07 日立建機株式会社 Construction machine monitoring equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143478A (en) * 2007-12-17 2009-07-02 Komatsu Ltd Hybrid working vehicle
JP2010173389A (en) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd Controller for series hybrid car
JP2011245948A (en) * 2010-05-25 2011-12-08 Kawasaki Heavy Ind Ltd Construction machine and control method thereof
WO2012099255A1 (en) * 2011-01-21 2012-07-26 日立建機株式会社 Work vehicle control apparatus and work vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492663A4 (en) * 2017-09-29 2020-11-04 Hitachi Construction Machinery Co., Ltd. Wheel loader
US11242672B2 (en) 2017-09-29 2022-02-08 Hitachi Construction Machinery Co., Ltd. Wheel loader
CN111936363A (en) * 2018-03-27 2020-11-13 三菱自动车工业株式会社 Power generation control device for hybrid vehicle
CN111936363B (en) * 2018-03-27 2023-10-13 三菱自动车工业株式会社 Power generation control device for hybrid vehicle
WO2023078990A1 (en) * 2021-11-04 2023-05-11 Zf Friedrichshafen Ag Control device for an electric drive train of a working machine
WO2024068432A1 (en) * 2022-09-26 2024-04-04 Zf Friedrichshafen Ag Method for controlling an electric drivetrain of a work machine, and corresponding control device

Also Published As

Publication number Publication date
JP2015120437A (en) 2015-07-02
JP6276021B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5688418B2 (en) Work vehicle control device and work vehicle
WO2015098545A1 (en) Hybrid type work vehicle
JP5611147B2 (en) Work vehicle
JP5855487B2 (en) Electric drive work vehicle
KR101834598B1 (en) Hybrid construction machine
KR101746760B1 (en) System for controlling the torque applied to the wheels of a vehicle provided with at least one electric motor
JP5387343B2 (en) Travel drive device for work vehicle
JP2008137524A (en) Travel driving device of working vehicle
WO2014141955A1 (en) Hybrid work vehicle
JP5560797B2 (en) Work vehicle traveling device
JP6002105B2 (en) Hybrid work vehicle
JP6148617B2 (en) Hybrid work vehicle
JP5604884B2 (en) Work vehicle
JP6223291B2 (en) Hybrid work vehicle
JP6243808B2 (en) Hybrid work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875347

Country of ref document: EP

Kind code of ref document: A1