WO2015098382A1 - Electricity storage module unit and electricity storage module unit manufacturing method - Google Patents
Electricity storage module unit and electricity storage module unit manufacturing method Download PDFInfo
- Publication number
- WO2015098382A1 WO2015098382A1 PCT/JP2014/080782 JP2014080782W WO2015098382A1 WO 2015098382 A1 WO2015098382 A1 WO 2015098382A1 JP 2014080782 W JP2014080782 W JP 2014080782W WO 2015098382 A1 WO2015098382 A1 WO 2015098382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- heat transfer
- storage module
- heat
- transfer sheet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/244—Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/262—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
- H01M50/264—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
- H01M50/293—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a power storage module unit and a method for manufacturing a power storage module unit.
- the electricity storage module a plurality of electricity storage devices arranged along a predetermined arrangement direction are constrained between end plates. Since each power storage device generates heat, in order to dissipate the heat, the power storage module includes a heat dissipation member, and a plurality of power storage devices constrained between the end plates are fastened to the heat dissipation member. . Furthermore, in order to improve heat transfer from each power storage device to the heat dissipation member, the power storage module includes a heat transfer sheet, and the heat transfer sheet is disposed between the plurality of power storage devices and the heat dissipation member.
- Patent Document 1 discloses a battery in which a heat transfer sheet is deformed and sandwiched between a cooling surface of a battery module in which a plurality of battery cells are stacked and a cooling plate.
- the distances between the opposed surfaces facing the heat radiating members of the plurality of power storage devices constrained between the end plates and the heat radiating members are not uniform (there is a positional deviation between the opposed surfaces).
- the distance between each opposing surface and the heat dissipation member is not uniform, the opposing surface of some power storage devices and the heat transfer sheet may not contact each other, and there is a difference in heat dissipation between the plurality of power storage devices. And temperature variation occurs between the plurality of power storage devices. As a result, the performance and life of the power storage module are reduced.
- the battery module is composed of 12 battery cells restrained between the end holders, and the two battery modules arranged between the end plates fastened by the fastening band are arranged. It is integrated.
- the end plate is integrally provided with a mounting flange, and two battery modules between the end plates are fixed to the cooling plate with bolts passing through the mounting flange with a heat transfer sheet interposed therebetween.
- the distance between the opposing surfaces facing the cooling plates of the 12 battery cells between the end holders is not uniform, or even between the two battery modules arranged between the end plates.
- the case where the distance between the plates is not uniform is considered. In this case, the opposed surfaces of some of the battery cells may not contact the heat transfer sheet.
- An electricity storage module unit includes a plurality of electricity storage units having an electricity storage device, and an electricity storage unit fixing member that fixes the plurality of electricity storage units in a state where the plurality of electricity storage units are stacked.
- Module A heat radiating member that radiates heat received from each of the power storage units to the outside; A fastening member for fastening the power storage module to the heat dissipation member; A heat transfer sheet provided between the plurality of power storage units and the heat dissipation member, and having elasticity; The distance between the heat dissipation member and each of the power storage units is not the same, The heat transfer sheet is compressed by at least one of the power storage units such that all the power storage units are in contact with the heat transfer sheet.
- This power storage module unit has a structure in which the power storage module is fastened by a fastening member with a heat transfer sheet interposed between the heat radiating member.
- a plurality of power storage units each having a power storage device are arranged and restrained by a power storage unit fixing member along a predetermined arrangement direction thereof.
- the heat generated in the power storage device of each power storage unit is transferred to the heat radiating member via the heat transfer sheet, and is radiated by the heat radiating member.
- the heat transfer sheet is formed of a material having elasticity.
- the heat transfer sheet is compressed by at least one power storage unit, so that all the power storage units and the heat transfer sheets are Contact. Therefore, since the plurality of power storage units are in contact with the heat transfer sheet, the heat generated by the power storage devices of the plurality of power storage units can be transferred to the heat radiating member via the heat transfer sheet.
- the power storage module unit can improve heat dissipation by suppressing a difference in heat transfer through the heat transfer sheets of a plurality of power storage units (power storage devices). As a result, temperature variations among a plurality of power storage devices can be reduced, and a decrease in performance and life of the power storage module can be suppressed.
- each of the power storage units may further include a heat transfer plate having an external heat transfer surface, and the power storage unit fixing member has one external heat transfer surface of each of the heat transfer plates.
- the plurality of power storage units can be fixed so as to be exposed to the side, and the distance between the heat dissipation member and each of the external heat transfer surfaces may not be the same, and all the external heat transfer surfaces and the The heat transfer sheet may be compressed by at least one of the external heat transfer surfaces such that the heat transfer sheet is in contact with the heat transfer sheet.
- This power storage module unit can bring the external heat transfer surface of the heat transfer plate of all the power storage units into contact with the heat transfer sheet.
- the fastening member is a pair of brackets having an attachment part attached to the electricity storage module with a bolt or the like and a fastening part fastened to the heat dissipation member.
- the power storage module is sandwiched between the bracket mounting portion on one side and the bracket mounting portion on the other side and mounted with bolts or the like, and each fastening portion of the pair of brackets dissipates heat.
- the power storage module is fastened to the heat dissipation member with the heat transfer sheet interposed by being fastened to the fastening surface of the member.
- the heat transfer sheet can be easily compressed by fastening the power storage module to the heat radiating member with the pair of brackets.
- a method for manufacturing a power storage module unit includes a plurality of power storage units having a power storage device and a power storage unit fixing member that fixes the plurality of power storage units in a state where the plurality of power storage units are stacked.
- the surfaces of the plurality of power storage units that face the heat radiating member are displaced from each other in a direction perpendicular to the surface, and in the step B, the heat transfer sheet is compressed on the surface closest to the heat radiating member.
- the surfaces of all the power storage units are brought into contact with the heat transfer sheet.
- the power storage module unit manufactured by this manufacturing method all of the plurality of power storage units (power storage devices) can come into contact with the heat transfer sheet, and the heat generated by each of the plurality of power storage devices is radiated through the heat transfer sheet. Can tell each. Therefore, according to the manufacturing method of this power storage module unit, the heat transfer difference through the heat transfer sheets of the plurality of power storage units (power storage devices) of the manufactured power storage module unit is suppressed, and heat dissipation is improved. Can do.
- each power storage unit may further include a heat transfer plate having an external heat transfer surface, and the power storage unit fixing member exposes the external heat transfer surface of each heat transfer plate on one side.
- the plurality of power storage units can be fixed to each other, and the external heat transfer surfaces of the plurality of heat transfer plates can be displaced from each other in a direction perpendicular to the surface.
- the heat transfer sheet can be compressed with the external heat transfer surface closest to the member to bring all the external heat transfer surfaces into contact with the heat transfer sheet.
- the method may further include a C step of attaching a pair of brackets to the power storage module before the B step, wherein the pair of brackets are fastened to an attachment portion attached to the power storage module and the heat dissipation member.
- the fastening portion can be fastened to the heat dissipating member in the step B.
- step C of the method of manufacturing the power storage module unit the plate is placed on the predetermined plane portion, the surface of at least one power storage unit is in contact with the upper surface of the plate, and the predetermined plane portion With the fastening portions of the pair of brackets being in contact with each other, the attachment portions of the pair of brackets can be attached to the power storage module.
- the heat dissipation member on the surface of the power storage module facing the heat dissipation members of the plurality of power storage units can be easily and highly accurately.
- the positions of the pair of brackets can be adjusted so that the distance between the surface closest to the heat dissipation member and the heat dissipation member becomes the thickness after compression.
- the present invention it is possible to improve the heat dissipation by suppressing the difference in heat transfer between the plurality of power storage devices.
- FIG. 2A is a diagram illustrating the maximum amount of positional deviation between the heat transfer surfaces of the heat transfer plate
- FIG. 2B is a diagram illustrating the thickness of the heat transfer sheet before and after compression.
- FIG. 2 is a diagram in which the holder 4 and the restraint bolts 6 are omitted from the plan view of the power storage module unit in FIG. 1 and the power storage device 2 and the heat transfer plate 3 are simplified so as to represent only their outer shapes.
- the present invention is applied to a power storage module mounted on a forklift.
- the power storage module according to the present embodiment is constrained in a state where a plurality of power storage units (power storage devices to which a heat transfer plate is attached and stored in a holder) are arranged along a predetermined arrangement direction between end plates. Yes.
- the power storage module unit according to the present embodiment uses a counterweight disposed on the forklift as a heat radiating member, and the power storage module is fastened by a pair of brackets with a heat transfer sheet interposed between the side walls of the counterweight.
- the power storage device according to the present embodiment is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
- the power storage module 1 will be described with reference to FIGS.
- the power storage module unit 1 ′ to which the heat dissipation structure of the power storage module 1 is added will be described in detail.
- the holder 4 and the restraining bolt 6 of the power storage unit U shown in FIG. 1 are omitted so that the positions of the heat transfer plate and the power storage device can be easily understood.
- the drawing is simplified so as to represent only the outer shape.
- the power storage module unit 1 ′ In order to improve the heat dissipation even when there is a positional deviation perpendicular to each other between the heat transfer surfaces of the plurality of power storage units U in a state of being constrained between the end plates in the power storage module 1, the power storage module unit 1 ′ It has a structure in which the difference in heat transfer from the plurality of power storage units to the counterweight is suppressed. For this reason, the power storage module unit 1 ′ has reliable heat transfer surfaces (especially heat transfer surfaces of heat transfer plates attached to the power storage device in the power storage unit) and heat transfer sheets of the plurality of power storage units in the power storage module 1. To be able to touch.
- the power storage module 1 includes a plurality of power storage units U (in the case of the power storage module 1 according to the present embodiment, seven as shown in FIG. 1 and the like), a pair of end plates 5, and restraint bolts 6.
- the power storage unit U is a unit including the power storage device 2, the heat transfer plate 3, and the holder 4.
- the power storage module unit 1 ′ includes a power storage module 1, a heat transfer sheet 7, a counterweight 8, a pair of brackets 9, and fastening bolts 10 and 11.
- the power storage module 1 corresponds to the power storage module described in the claims
- the power storage module unit 1 ′ corresponds to the power storage module unit described in the claims
- the power storage device 2 claims It corresponds to the power storage device described in the range
- the heat transfer plate 3 and the holder 4 corresponds to the power storage unit described in the claims
- the heat transfer sheet 7 corresponds to the claims.
- the counterweight 8 corresponds to the heat transfer sheet described in the claims
- the bracket 9 corresponds to the fastening member and the bracket described in the claims.
- the power storage device 2 is a rectangular power storage device. Below, the structure of the electrical storage apparatus 2 (especially lithium ion secondary battery) is demonstrated. Note that the configuration of the power storage device 2 described below is an example, and power storage devices having other various configurations can be applied.
- the power storage device 2 mainly includes a case, an electrolytic solution, and an electrode assembly.
- the case is a case for accommodating the electrolytic solution and the electrode assembly.
- the electrolytic solution is accommodated in the case and impregnated in the electrode assembly.
- the electrolytic solution is, for example, an organic solvent-based or non-aqueous electrolytic solution.
- the electrode assembly includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
- the electrode assembly is configured by laminating a plurality of sheet-like positive electrodes, a plurality of negative electrodes, and a plurality of sheet-like (or bag-like) separators.
- the electrode assembly is housed in a case and filled with an electrolyte in the case.
- the positive electrode is composed of a metal foil and a positive electrode active material layer formed on at least one surface of the metal foil.
- the positive electrode has a tab on which the positive electrode active material layer is not formed at the end of the metal foil.
- the tab is provided on the upper edge of the positive electrode (the edge on the positive electrode terminal 2a side), and is connected to the positive electrode terminal 2a via a conductive member.
- the metal foil is, for example, an aluminum foil or an aluminum alloy foil.
- the positive electrode active material layer includes a positive electrode active material and a binder.
- the positive electrode active material layer may contain a conductive additive.
- the positive electrode active material is, for example, a composite oxide, metallic lithium, or sulfur.
- the composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium.
- the binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilanol group-containing resin.
- a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber
- a thermoplastic resin such as polypropylene or polyethylene
- an imide resin such as polyimide or polyamideimide
- alkoxysilanol group-containing resin e.g., a conductive auxiliary agent
- the conductive auxiliary agent include carbon black, graphite, acetylene black, and ketjen black (registered trademark).
- the negative electrode is composed of a metal foil and a negative electrode active material layer formed on at least one surface of the metal foil.
- the negative electrode has a tab on which the negative electrode active material layer is not formed at the end of the metal foil.
- the tab is provided on the upper edge of the negative electrode (the edge on the negative electrode terminal 2b side), and is connected to the negative electrode terminal 2b via a conductive member.
- the metal foil is, for example, a copper foil or a copper alloy foil.
- the negative electrode active material layer includes a negative electrode active material and a binder.
- the negative electrode active material layer may contain a conductive additive.
- Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ⁇ x ⁇ 1.5). ) And the like, and boron-added carbon.
- the binder and the conductive auxiliary the same binder and conductive auxiliary as shown in the positive electrode can be applied.
- As the binder carboxymethyl cellulose, methyl cellulose, styrene butadiene rubber, alkoxysilyl group-containing resin, and the like can be applied in addition to the positive electrode examples.
- the separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
- the separator is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose or the like.
- the case includes a bottomed cylindrical main body and a lid that covers the opening of the main body. More specifically, the main body portion includes a rectangular flat plate-shaped bottom plate and four rectangular flat plate-shaped side plates extending vertically upward from four sides of the bottom plate. The main body portion contains the electrolytic solution and the electrode assembly, and the power storage device 2 is formed by covering the opening of the main body portion with the lid portion.
- the plurality of power storage devices 2 have a pair of ends in a state in which they are arrayed along a predetermined arrangement direction (in this embodiment, the widest surfaces of each power storage device 2 face each other through the heat transfer plate 3). It is sandwiched between the plates 5.
- the terminals 2b are arranged adjacent to each other.
- the positive electrode terminal 2a and the negative electrode terminal 2b are each connected by the connection member 2c, and the some electrical storage apparatus 2 is electrically connected in series.
- the direction along the arrangement direction in one power storage device 2 is the thickness direction
- the parallel direction of the positive electrode terminal 2a and the negative electrode terminal 2b in one power storage device 2 is the width direction
- the thickness in one power storage device 2 is the same.
- the direction perpendicular to the vertical direction and the width direction will be referred to as the height direction and will be described.
- the heat transfer plate 3 is a member for transmitting heat generated in the power storage device 2 to the heat transfer sheet 7 and is attached to each power storage device 2.
- the heat transfer plate 3 is formed of a material having high thermal conductivity.
- the heat transfer plate 3 is plate-shaped and has a L-shaped cross section as shown in FIG.
- the heat transfer plate 3 includes a heat absorbing portion 3b disposed to face a surface intersecting with the thickness direction of the power storage device 2, and a heat transfer portion 3c facing a surface intersecting the width direction of the power storage device 2.
- the heat transfer portion 3 c in the heat transfer plate 3 is disposed to face the portion of the counterweight 8 where the heat transfer sheet 7 is provided.
- a part of the heat transfer plate 3 is hidden behind the holder 4 and cannot be seen.
- the holder 4 is a member for storing a part of the power storage device 2 and holding the power storage device 2, and is provided for each power storage device 2.
- the holder 4 has a size and shape that can accommodate a part of the power storage device 2 in a state where the heat transfer plate 3 is attached without a gap.
- the holder 4 has a through hole (not shown) having a diameter slightly larger than the shaft diameter of the restraint bolt 6. There are a plurality of through holes, for example, four.
- a power storage unit U is formed by one power storage device 2, one heat transfer plate 3 and one holder 4.
- the plurality of power storage units U are arranged along the arrangement direction.
- the pair of end plates 5 are arranged to face two power storage units U located at both ends in the arrangement direction (thickness direction) of the plurality of power storage units U, and the plurality of power storage devices 2 arranged. It is a member for applying restraint pressure to both sides and restraining.
- the end plate 5 is plate-shaped and has a thickness sufficient to apply a restraining pressure.
- the surface to which the end plate 5 applies the restraining pressure is slightly smaller than the area of the widest surface of the rectangular power storage device 2.
- a through hole (not shown) having a diameter slightly larger than the shaft diameter of the restraint bolt 6 is opened corresponding to the through hole opened in the holder 4.
- the number of through holes is the same as the number of through holes opened in the holder 4.
- the position of the through hole is a position corresponding to the position of the through hole opened in the holder 4.
- the same screw diameter as that of the fastening bolt 10 is used.
- a hole (not shown) is opened. This hole is a bottomed hole and is internally threaded.
- the number of holes is the same as the number of through holes opened in the attachment portion 9 a of the bracket 9.
- the power storage unit U arranged on one end side in the arrangement direction and one end plate 5 are arranged so as to face each other, and the power storage unit U arranged on the other end side in the arrangement direction and the other end plate 5 are arranged so as to face each other.
- each restraint bolt 6 is passed through the through hole of one end plate 5, the through hole of each holder 4 arranged, and the through hole of the other end plate 5, and bolted.
- a nut may be arranged on the outer surface 5a side of the other end plate 5 and the bolt tightening may be performed with the male screw of the restraining bolt 6 and the female screw of the nut.
- a female screw may be cut in the through hole, and bolt tightening may be performed with the male screw of the restraining bolt 6 and the female screw of the through hole of the end plate 5. Due to the tightening force of the bolt tightening, a restraining force is applied to the plurality of power storage units U arranged between the one end plate 5 and the other end plate 5, thereby being restrained.
- a power storage module 1 includes a plurality of power storage units U arrayed along the array direction and constrained by a pair of end plates 5.
- the restraint bolt 6 has a length sufficiently longer than the length between the pair of end plates 5.
- the pair of end plates 5 and the plurality of restraining bolts 6 correspond to the power storage unit fixing member.
- the plurality of power storage units U that is, the power storage module 1 constrained between the pair of end plates 5, there may be a relative displacement in each direction.
- Misalignment between the heat transfer surfaces 3a of the plurality of heat transfer plates 3 (the heat transfer surfaces of the heat transfer plates 3 facing the counterweight 8 in a state where the power storage module 1 is fastened to the counterweight 8 by the pair of brackets 9) 3a (a difference in distance from the facing surface) may occur.
- the diameter of each through hole of the holder 4 is slightly larger than the shaft diameter of the restraint bolt 6, there is a possibility that the positional deviation occurs with the maximum difference between the shaft diameter and the hole diameter as an upper limit. is there.
- this position shift may also occur in other directions.
- the cause of such positional deviation varies depending on the method of constraining the plurality of power storage devices 2 between the pair of end plates 5.
- a plurality of power storage devices 2 are juxtaposed while regulating the position using a jig having a U-shaped cross section, and the plurality of power storage devices 2 arranged side by side are sandwiched between a pair of end plates 5 and restrained. There is a way.
- the width of the U-shaped jig is slightly wider than the width of the power storage device 2 in order to fit and stack the power storage device 2, so the difference in width is limited to the upper limit. As a result, a positional deviation may occur.
- the heat transfer sheet 7 is a member for transmitting the heat generated in each power storage device 2 and transferred to each heat transfer plate 3 to the counterweight 8.
- the heat transfer sheet 7 is arranged between the heat transfer surface 3 a of each heat transfer plate 3 attached to each of the plurality of power storage units U in a state of being constrained between the pair of end plates 5 and the counterweight 8.
- the heat transfer sheet 7 is formed of a material having high thermal conductivity and elasticity (compresses when stress is applied).
- this material for example, there is a sheet-like TIM [Thermal Interface Material].
- this sheet-like TIM for example, there is one in which silicon rubber (having high elastic modulus) contains powdered ceramic filler (having high thermal conductivity).
- the area of the heat transfer sheet 7 is the total area of the heat transfer surfaces 3a of the plurality of heat transfer plates 3 constrained between the pair of end plates 5 (the area of the surface that intersects the width direction of the power storage device 2 in the power storage unit). ).
- the maximum positional deviation amount ⁇ L can be estimated in advance according to a method of constraining a plurality of power storage units between the pair of end plates 5.
- the maximum positional deviation amount ⁇ L can be estimated from the difference between the diameter of the through hole of the holder 4 and the shaft diameter of the restraint bolt 6. If the heat transfer sheet 7 can be compressed by the maximum displacement amount ⁇ L, the heat transfer sheet 7 can be brought into contact with the heat transfer surfaces 3 a of all the heat transfer plates 3. Therefore, in order to bring the heat transfer sheet 7 into contact with the heat transfer surfaces 3a of all the heat transfer plates 3, the heat transfer sheet 7 that can be compressed by the maximum displacement amount ⁇ L or more is used.
- the post-compression thickness T of the heat transfer sheet 7 necessary for compression by the maximum displacement amount ⁇ L.
- the post-compression thickness T ′ may be derived using the maximum compression rate as it is, or the post-compression thickness T using a compression rate (for example, a recommended compression rate) smaller than the maximum compression rate with a margin. ' May be derived.
- the thickness T of the heat transfer sheet 7 can be equal to or greater than the value obtained by adding the post-compression thickness T ′ to the maximum displacement amount ⁇ L.
- the thickness T of the heat transfer sheet 7 is set to 2 mm or more (the thickness T ′ after compression is 1 mm). If ⁇ L is 1 mm and the recommended compression rate is 40%, the thickness T of the heat transfer sheet 7 is set to 2.5 mm or more (the thickness T ′ after compression is 1.5 mm). Since the heat transfer sheet 7 is thinner, the heat transfer property is higher. Therefore, the thickness T of the heat transfer sheet 7 can be made the smallest by adding the minimum post-compression thickness T ′ to the maximum displacement amount ⁇ L.
- the counterweight 8 is used as a member for radiating the heat transmitted by the heat transfer sheet 7. Since the counterweight 8 is a member having a large thermal mass in the forklift, it is suitable as a heat radiating member.
- the counterweight 8 has a sufficiently large surface on which the power storage module 1 can be disposed.
- the power storage module 1 is fastened to the side wall of the counterweight 8 with a pair of brackets 9 with the heat transfer sheet 7 interposed therebetween.
- a side surface 8a of the counterweight 8 becomes a fastening surface.
- the positions of the holes are positions corresponding to the positions of the through holes opened in the fastening portion 9 b of the bracket 9 when the power storage module 1 is fastened by the pair of brackets 9.
- the number of holes is the same as the number of through holes opened in the fastening portion 9 b of the bracket 9.
- the pair of brackets 9 are members for fastening the power storage module 1 to the side wall of the counterweight 8 and are members for adjusting the interval between the power storage module 1 and the counterweight 8.
- the bracket 9 is substantially L-shaped.
- the bracket 9 includes an attachment portion 9 a that is attached to the power storage module 1 with fastening bolts 10, and a fastening portion 9 b that is fastened to the counterweight 8 with fastening bolts 11.
- the attachment portion 9a is attached to the outer surface 5a of the end plate 5 with its position adjusted.
- a plurality of through holes (not shown) having a diameter larger than the shaft diameter of the fastening bolt 10 are opened in the mounting portion 9a. The size of the through hole is sufficiently large so that the position of the bracket 9 can be adjusted with respect to the end plate 5.
- the bracket 9 is attached to the end plate 5 by bolt fastening with the fastening bolt 10. Further, the fastening portion 9 b has a fastening surface 9 c that is fastened to the counterweight 8 and is in contact with the fastening surface 8 a of the counterweight 8. A plurality of holes (not shown) having the same screw diameter as that of the fastening bolt 11 are opened in the fastening portion 9b.
- the bracket 9 fastens the power storage module 1 to the counterweight 8 by bolt fastening with the fastening bolt 11.
- the attachment portion 9a corresponds to the bracket attachment portion described in the claims
- the fastening portion 9b corresponds to the bracket fastening portion described in the claims.
- the power storage module unit 1 ′ in which the power storage module 1 is fastened to the side wall of the counterweight 8 will be described.
- the power storage module unit 1 ′ is configured such that the upper surface 7 a of the heat transfer sheet 7 is the heat transfer surface 3 a of all the heat transfer plates 3 in a state where the power storage module 1 is fastened to the side wall of the counterweight 8 by a pair of brackets 9. (3a 1 to 3a 7 ). Since the distance between the counterweight 8 and each heat transfer surface 3a is not the same, the heat transfer sheet 7 is formed by at least one heat transfer surface 3a so that all the heat transfer surfaces 3a and the heat transfer sheets 7 are in contact with each other. It is compressed.
- brackets 9 and 9 are attached to the outer surfaces 5a and 5a of the pair of end plates 5 that restrain the plurality of power storage units U, the positions of the plurality of heat transfer plates 3 are adjusted. its fastening surface 8a and the minimum distance MN become heat transfer surface 3a 4 the fastening surface 9c of the bracket 9 of the counterweight 8 opposite to the heat transfer face 3a of the heat surface 3a (fastening surface 8a of the counterweight 8)
- the brackets 9 are attached to the end plates 5 with their positions adjusted so that the distance between them becomes the thickness T ′ after compression.
- the heat transfer surface 3a 4 having the minimum interval MN is the heat transfer surface 3a at a position closest to the counterweight 8 in the fastened state.
- the fastening bolt 10 When this position adjustment is performed, the fastening bolt 10 is inserted into a through hole having a diameter sufficiently larger than the shaft diameter of the fastening bolt 10 opened in the mounting portion 9 a of the bracket 9, and the male screw of the fastening bolt 10 is connected to the outer surface of the end plate 5.
- Position adjustment can be easily performed by moving the bracket 9 up and down and left and right in a state of being screwed into the female screw of the hole opened in 5a.
- the heat sheet 7 can be brought into contact with the upper surface 7a.
- the heat transfer surface 3a 6 having the maximum interval MX is the heat transfer surface 3a farthest from the counterweight 8 in the fastened state.
- the heat transfer plates 102 are respectively attached to the respective power storage devices 101, and the plurality of power storage devices 101 to which the heat transfer plates 102 are respectively attached are constrained by a pair of end plates 103.
- the power storage module 100 is fastened to the counterweight 105 by a pair of brackets 104, and the heat transfer sheet 106 is disposed between the power storage module 100 and the counterweight 105.
- This heat transfer sheet 106 does not have the same thickness as the thickness of the heat transfer sheet 7 according to the present embodiment (thickness equal to or greater than the value obtained by adding the thickness T ′ after compression to the maximum displacement amount ⁇ L), It has a predetermined thickness determined as appropriate.
- the pair of brackets 104 are attached to the end plate 103 so that only the heat transfer surface 102a closest to the counterweight 105 is in contact with the heat transfer sheet 106. Therefore, there is a heat transfer plate 102 in which the heat transfer surface 102 a is not in contact with the heat transfer sheet 106, and a gap is formed between the heat transfer surface 102 a and the heat transfer sheet 106.
- the thickness of the heat transfer sheet 7 is set to the maximum position shift amount ⁇ L between the heat transfer surfaces 3 a of the heat transfer plate 3.
- Heat transfer from the heat transfer surface 3a having the minimum distance MN from the fastening surface 8a of the counterweight 8 to the maximum distance MX is set to a thickness T that is equal to or greater than the value of the post-compression thickness T ′ necessary for compressing by the shift amount ⁇ L.
- the power storage module 1 is fastened to the counterweight 8 by a pair of brackets 9 so that all the heat transfer sheets 7 come into contact with the surface 3 a so that at least a part of the heat transfer surface 3 a compresses the heat transfer sheet 7.
- the position of the bracket 9 can be easily adjusted by using the through holes having a diameter larger than the shaft diameter of the fastening bolt 10 opened in the mounting portion 9 a of the bracket 9 and the fastening bolt 10.
- the position of the bracket 9 is adjusted so that the distance between the heat transfer surface 3a having the minimum interval MN and the fastening surface 9c of the bracket 9 (fastening surface 8a of the counterweight 8) becomes the thickness T ′ after compression. Can do.
- FIGS. 1 to 5 A method for manufacturing the power storage module unit 1 ′ having the above configuration will be described with reference to FIGS. 1 to 5.
- the holder 4 and the restraining bolt 6 of the power storage unit U shown in FIG. 1 are omitted so that the positions of the heat transfer plate and the power storage device can be easily understood.
- the drawing is simplified so as to represent only the outer shape.
- the heat transfer plate 3 is attached to each power storage device 2 and stored in the holder 4 by the same manufacturing process as in the prior art to form a power storage unit U as shown in FIG.
- a plurality of power storage units U are arranged in the arrangement direction described above. Further, among the plurality of arranged storage units U, the storage unit U arranged on one end side in the arrangement direction and the one end plate 5 are arranged to face each other, and arranged on the other end side in the arrangement direction.
- the storage unit U and the other end plate 5 are arranged so as to face each other, and each restraint bolt 6 is connected to a through hole of one end plate 5, a through hole of each holder 4 arranged, and the other end plate 5. Pass through the through-hole and tighten the bolt.
- the power storage module 1 in a state in which the plurality of power storage devices 2 housed in the holders 4 are constrained between the pair of end plates 5 is formed.
- the positions of the heat transfer surfaces 3 a of the heat transfer plate 3 may also be shifted.
- a plate B having the same thickness as the post-compression thickness T ′ is placed on a flat surface (horizontal surface) P as shown in FIG.
- the flat portion P may be a work table or the like, or may be a fastening surface 8 a on the side wall of the counterweight 8.
- the plane portion P corresponds to a predetermined plane portion described in the claims.
- the plate B is a strong plate that is not deformed by the weight of the power storage module 1.
- the size and shape of the plate B are the same size and shape as the heat transfer sheet 7.
- the power storage module 1 is placed on the plate B.
- brackets 9 are respectively placed on both sides of the pair of end plates 5 so as to sandwich the power storage module 1.
- the fastening bolts 10 are inserted into the respective through holes of the mounting portion 9 a of the bracket 9, and the male screws of the fastening bolts 10 are slightly inserted into the female screws of the holes opened in the outer surface 5 a of the end plate 5.
- the counterweight 8 is arranged so that the fastening surface 8 a on the side wall of the counterweight 8 faces upward.
- the heat transfer sheet 7 is placed on the fastening surface 8a.
- seat 7 is arrange
- the power storage module 1 to which the pair of brackets 9 are attached is mounted on the heat transfer sheet 7.
- the heat transfer sheet 7 takes only the own weight of the battery module 1, the fastening surface of the counterweight 8 of the most popping and has heat transfer surfaces 3a 4 (the engaged state of the heat transfer face 3a of the heat transfer plate 3 Only the heat transfer surface 3 a 4 ) having the minimum distance MN from 8 a is placed in contact with the upper surface 7 a of the heat transfer sheet 7.
- the heat transfer surface 3 a other than the heat transfer surface 3 a 4 may be in contact with the upper surface 7 a of the heat transfer sheet 7 due to its own weight. Therefore, the fastening surface 9c of each bracket 9 does not contact the fastening surface 8a of the counterweight 8, and is in a floating state.
- the power storage module 1 to which the pair of brackets 9 are attached can be easily moved on the heat transfer sheet 7.
- the positions of the through holes opened in the fastening portions 9b of the brackets 9 are aligned with the positions of the bolt fastening holes opened on both sides of the fastening surface 8a, respectively.
- the position of the power storage module 1 to which the pair of brackets 9 are attached is adjusted on the heat transfer sheet 7.
- the fastening bolts 11 are respectively passed through the through holes opened in the fastening portions 9b of the brackets 9, and the tips of the fastening bolts 11 are connected to the counterweights 8 respectively.
- Each of the holes is opened in the fastening surface 8a.
- a fastening force is applied to each fastening bolt 11, and the male screw of each fastening bolt 11 is screwed into the female screw of each hole opened in the fastening surface 8a.
- heat transfer surfaces 3a 4 serving as a fastening surface 8a and the maximum distance MX counterweight 8 of the heat transfer face 3a of the heat transfer plate 3 is also in contact with the upper surface 7a of the heat transfer sheet 7, all of the heat transfer plate 3 is in a state where the heat transfer surface 3 a is in contact with the upper surface 7 a of the heat transfer sheet 7.
- the storage module 1 is fastened to the side wall of the counterweight 8 with the heat transfer sheet 7 interposed therebetween by the plurality of brackets 9.
- said manufacturing method is an example and you may make it fasten with the bracket 9 to the side wall of the counterweight 8 with another manufacturing method.
- the power storage module 1 may be fastened to the side wall of the counterweight 8 by the bracket 9 in a state where the counterweight 8 is assembled to the forklift.
- the power storage module having the above-described configuration is obtained by fastening the power storage module 1 with the heat transfer sheet 7 interposed on the side wall of the counterweight 8 by the bracket 9 by the manufacturing method described above.
- Unit 1 ' can be manufactured.
- the manufactured power storage module unit 1 ′ has the effects described above.
- each bracket 9 is adjusted with respect to the end plate 5 by using the plate B having the same thickness as the post-compression thickness T ′, so that the minimum interval MN can be easily and highly accurately.
- the position of each bracket 9 can be adjusted such that the space between the heat transfer surface 3a 4 and the fastening surface 9c of each bracket 9 has a thickness T ′ after compression.
- the heat transfer sheet 7 can be easily compressed up to a thickness corresponding to the post-compression thickness T ′, and transferred from the heat transfer surface 3a 4 having the minimum interval MN to the heat transfer surface 3a 6 having the maximum interval MX.
- the heat transfer sheet 7 can be brought into contact with each other, and all the heat transfer surfaces 3 a can be brought into contact with the heat transfer sheet 7.
- the position is adjusted with respect to the end plate 5 of each bracket 9 using a through-hole having a diameter larger than the shaft diameter of the fastening bolt 10 opened in the attachment portion 9a of each bracket 9 and the fastening bolt 10.
- the position of the bracket 9 can be easily adjusted so that the post-compression thickness T ′ is between the heat transfer surface 3a 4 having the minimum interval MN and the fastening surface 9c of each bracket 9.
- the counterweight provided in the forklift is used as a heat dissipation member applied to the power storage module mounted on the forklift, but the heat dissipation member can be applied to various other things such as an automobile other than the forklift. Also, various other things such as a cooling plate can be applied.
- the present invention is applied to a power storage module in which seven power storage devices are connected in series, but the number of power storage devices may be other than seven, and a plurality of power storage devices are connected in parallel or in parallel and in series. It may be configured.
- the power storage device is housed in the holder, and the plurality of power storage devices housed in the holder are constrained between the end plates. It is good also as a structure restrained by. In addition, a configuration in which a plurality of power storage devices is constrained may be constrained in another form without an end plate.
- a heat transfer plate is attached to each power storage device, and the heat of the power storage device is transmitted to the heat transfer sheet via the heat transfer plate.
- the heat of the power storage device is stored. It is good also as a structure directly transmitted to a heat transfer sheet from an apparatus. In this case, one surface of the power storage device is a heat transfer surface.
- a plurality of brackets are used as fastening members, and the power storage module is fastened to the counterweight (heat radiating member).
- the fastening member can be adjusted in position and restrained. Any member may be applied as long as a plurality of heat storage devices can be fastened to the heat dissipation member.
- a hole larger than the shaft diameter of the bolt is opened in the mounting portion of the bracket, and the position is adjusted and fixed by the hole and the bolt.
- the bracket may be fixed to the end plate by welding or the like after the position of the bracket is adjusted with respect to the end plate without using a bolt.
- the distance between the fastening surface of the counterweight of the heat transfer surfaces of the plurality of heat transfer plates, the heat transfer surface that is the minimum interval, and the fastening surface of each bracket Adjust the position of the bracket with respect to the end plate so that the thickness of the heat transfer sheet becomes the compressed thickness of the heat transfer sheet, and transfer the heat transfer surface to the heat transfer surface that has the maximum distance from the counterweight fastening surface among the heat transfer surfaces of the heat transfer plates.
- the heat transfer sheet Although it is configured to contact the heat sheet (and hence the heat transfer surface of all the heat transfer plates contact the heat transfer sheet), if the heat transfer sheet can be contacted up to the maximum heat transfer surface, the minimum distance The distance between the heat transfer surface and the fastening surface of each bracket (the fastening surface of the counterweight) may not be the thickness after compression.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
In the present invention, an electricity storage module unit comprises: an electricity storage module which includes a plurality of electricity storage units having electricity storage devices, and electricity storage unit fixing members that fix the plurality of electricity storage units to each other in a state where the plurality of electricity storage units are overlapping; a heat dissipating member that diffuses heat received from the electricity storage units to the outside; fastening members that fasten the electricity storage module to the heat dissipating member; and a heat transferring sheet that is elastic and is disposed between the plurality of electricity storage units and the heat dissipating member. The distance between the heat dissipating member and each of the electricity storage units is not the same. The heat transferring sheet is compressed by at least one of the electricity storage units so that all of the electricity storage units and the heat transfer sheet are in contact.
Description
本発明は、蓄電モジュールユニット及び蓄電モジュールユニットの製造方法に関する。
The present invention relates to a power storage module unit and a method for manufacturing a power storage module unit.
蓄電モジュールは、所定の配列方向に沿って配列された複数の蓄電装置がエンドプレート間に拘束されている。各蓄電装置では熱を発生するので、その熱を放熱するために、蓄電モジュールは、放熱部材を備えており、エンドプレート間に拘束された状態の複数の蓄電装置が放熱部材に締結されている。さらに、各蓄電装置から放熱部材への伝熱性を向上させるために、蓄電モジュールは、伝熱シートを備えており、複数の蓄電装置と放熱部材との間に伝熱シートが配置されている。例えば、特許文献1には、複数のバッテリセルを積層したバッテリモジュールの冷却面と冷却プレートとの間に伝熱シートを変形させて挟持させたバッテリが開示されている。
In the electricity storage module, a plurality of electricity storage devices arranged along a predetermined arrangement direction are constrained between end plates. Since each power storage device generates heat, in order to dissipate the heat, the power storage module includes a heat dissipation member, and a plurality of power storage devices constrained between the end plates are fastened to the heat dissipation member. . Furthermore, in order to improve heat transfer from each power storage device to the heat dissipation member, the power storage module includes a heat transfer sheet, and the heat transfer sheet is disposed between the plurality of power storage devices and the heat dissipation member. For example, Patent Document 1 discloses a battery in which a heat transfer sheet is deformed and sandwiched between a cooling surface of a battery module in which a plurality of battery cells are stacked and a cooling plate.
エンドプレートの間に拘束された複数の蓄電装置の放熱部材に対向する各対向面と放熱部材との間の距離が揃っていない場合(対向面間に位置ずれがある場合)がある。このように各対向面と放熱部材との間の距離が揃っていないと、一部の蓄電装置の対向面と伝熱シートとが接触しない場合があり、複数の蓄電装置において放熱性に差ができ、複数の蓄電装置間で温度ばらつきが発生する。その結果、蓄電モジュールの性能や寿命が低下する。
There may be a case where the distances between the opposed surfaces facing the heat radiating members of the plurality of power storage devices constrained between the end plates and the heat radiating members are not uniform (there is a positional deviation between the opposed surfaces). Thus, if the distance between each opposing surface and the heat dissipation member is not uniform, the opposing surface of some power storage devices and the heat transfer sheet may not contact each other, and there is a difference in heat dissipation between the plurality of power storage devices. And temperature variation occurs between the plurality of power storage devices. As a result, the performance and life of the power storage module are reduced.
特許文献1に開示のバッテリの場合、端部ホルダー間に拘束された12個のバッテリセルでバッテリモジュールが構成さており、締結バンドで締結されたエンドプレート間に並べられた2個のバッテリモジュールが一体化されている。このエンドプレートには一体で取付フランジが設けられており、エンドプレート間の2個のバッテリモジュールを取付フランジを貫通するボルトによって伝熱シートを介在させて冷却プレートに固定している。このバッテリの場合、端部ホルダー間の12個のバッテリセルの冷却プレートに対向する各対向面との間の距離が揃っていない場合やエンドプレート間に並べられた2個のバッテリモジュール間でも冷却プレートとの間の距離が揃っていない場合が考えられる。この場合、一部のバッテリセルの対向面が伝熱シートに接しない場合がある。
In the case of the battery disclosed in Patent Document 1, the battery module is composed of 12 battery cells restrained between the end holders, and the two battery modules arranged between the end plates fastened by the fastening band are arranged. It is integrated. The end plate is integrally provided with a mounting flange, and two battery modules between the end plates are fixed to the cooling plate with bolts passing through the mounting flange with a heat transfer sheet interposed therebetween. In the case of this battery, when the distance between the opposing surfaces facing the cooling plates of the 12 battery cells between the end holders is not uniform, or even between the two battery modules arranged between the end plates. The case where the distance between the plates is not uniform is considered. In this case, the opposed surfaces of some of the battery cells may not contact the heat transfer sheet.
そこで、本技術分野においては、複数の蓄電装置の伝熱性の差を抑制して、放熱性を向上させる蓄電モジュールユニット及び蓄電モジュールユニットの製造方法が要請されている。
Therefore, in this technical field, there is a demand for a power storage module unit and a method for manufacturing the power storage module unit that suppress heat difference between the plurality of power storage devices and improve heat dissipation.
本発明の一側面に係る蓄電モジュールユニットは、蓄電装置を有する複数の蓄電ユニット、及び、前記複数の蓄電ユニット同士を複数の前記蓄電ユニットが重ねられた状態で固定する蓄電ユニット固定部材を有する蓄電モジュールと、
各前記蓄電ユニットから受ける熱を外部に放熱する放熱部材と、
蓄電モジュールを放熱部材に締結する締結部材と、
複数の前記蓄電ユニットと放熱部材との間に設けられ、弾性を有する伝熱シートと、を備え、
前記放熱部材と各前記蓄電ユニットとの間の距離は同一でなく、
全ての前記蓄電ユニットと前記伝熱シートとが接触するように、前記伝熱シートが少なくとも1つの前記蓄電ユニットにより圧縮されている。 An electricity storage module unit according to one aspect of the present invention includes a plurality of electricity storage units having an electricity storage device, and an electricity storage unit fixing member that fixes the plurality of electricity storage units in a state where the plurality of electricity storage units are stacked. Module,
A heat radiating member that radiates heat received from each of the power storage units to the outside;
A fastening member for fastening the power storage module to the heat dissipation member;
A heat transfer sheet provided between the plurality of power storage units and the heat dissipation member, and having elasticity;
The distance between the heat dissipation member and each of the power storage units is not the same,
The heat transfer sheet is compressed by at least one of the power storage units such that all the power storage units are in contact with the heat transfer sheet.
各前記蓄電ユニットから受ける熱を外部に放熱する放熱部材と、
蓄電モジュールを放熱部材に締結する締結部材と、
複数の前記蓄電ユニットと放熱部材との間に設けられ、弾性を有する伝熱シートと、を備え、
前記放熱部材と各前記蓄電ユニットとの間の距離は同一でなく、
全ての前記蓄電ユニットと前記伝熱シートとが接触するように、前記伝熱シートが少なくとも1つの前記蓄電ユニットにより圧縮されている。 An electricity storage module unit according to one aspect of the present invention includes a plurality of electricity storage units having an electricity storage device, and an electricity storage unit fixing member that fixes the plurality of electricity storage units in a state where the plurality of electricity storage units are stacked. Module,
A heat radiating member that radiates heat received from each of the power storage units to the outside;
A fastening member for fastening the power storage module to the heat dissipation member;
A heat transfer sheet provided between the plurality of power storage units and the heat dissipation member, and having elasticity;
The distance between the heat dissipation member and each of the power storage units is not the same,
The heat transfer sheet is compressed by at least one of the power storage units such that all the power storage units are in contact with the heat transfer sheet.
この蓄電モジュールユニットは、締結部材によって蓄電モジュールが放熱部材に伝熱シートを介在させて締結された構造を有している。蓄電モジュールは、蓄電装置を有する蓄電ユニットが複数配列され、その所定の配列方向に沿って蓄電ユニット固定部材により拘束されたものである。各蓄電ユニットの蓄電装置で発生した熱は、伝熱シートを介して放熱部材にそれぞれ伝熱され、放熱部材で放熱される。特に、伝熱シートは、弾性を有する材料で形成される。本発明では、放熱部材と各蓄電ユニットとの間の距離は同一でないにも関わらず、伝熱シートが少なくとも1つの前記蓄電ユニットにより圧縮されることにより、全ての蓄電ユニットと伝熱シートとが接触する。したがって、複数の蓄電ユニットが伝熱シートに接しているので、複数の蓄電ユニットの蓄電装置でそれぞれ発生した熱を伝熱シートを介して放熱部材にそれぞれ伝えることができる。このように、蓄電モジュールユニットは、複数の蓄電ユニット(蓄電装置)の伝熱シートを介した伝熱性の差を抑制して、放熱性を向上させることができる。その結果、複数の蓄電装置間の温度ばらつきを低減でき、蓄電モジュールの性能や寿命の低下を抑制できる。
This power storage module unit has a structure in which the power storage module is fastened by a fastening member with a heat transfer sheet interposed between the heat radiating member. In the power storage module, a plurality of power storage units each having a power storage device are arranged and restrained by a power storage unit fixing member along a predetermined arrangement direction thereof. The heat generated in the power storage device of each power storage unit is transferred to the heat radiating member via the heat transfer sheet, and is radiated by the heat radiating member. In particular, the heat transfer sheet is formed of a material having elasticity. In the present invention, although the distance between the heat dissipation member and each power storage unit is not the same, the heat transfer sheet is compressed by at least one power storage unit, so that all the power storage units and the heat transfer sheets are Contact. Therefore, since the plurality of power storage units are in contact with the heat transfer sheet, the heat generated by the power storage devices of the plurality of power storage units can be transferred to the heat radiating member via the heat transfer sheet. As described above, the power storage module unit can improve heat dissipation by suppressing a difference in heat transfer through the heat transfer sheets of a plurality of power storage units (power storage devices). As a result, temperature variations among a plurality of power storage devices can be reduced, and a decrease in performance and life of the power storage module can be suppressed.
一形態の蓄電モジュールユニットでは、各前記蓄電ユニットは、更に、外部伝熱面を有する伝熱プレートを有することができ、前記蓄電ユニット固定部材は、各前記伝熱プレートの外部伝熱面が一方側に露出するように前記複数の蓄電ユニット同士を固定することができ、前記放熱部材と各前記外部伝熱面との間の距離は同一でないことができ、全ての前記外部伝熱面と前記伝熱シートとが接触するように、前記伝熱シートが少なくとも1つの前記外部伝熱面により圧縮されていることができる。
In one form of the power storage module unit, each of the power storage units may further include a heat transfer plate having an external heat transfer surface, and the power storage unit fixing member has one external heat transfer surface of each of the heat transfer plates. The plurality of power storage units can be fixed so as to be exposed to the side, and the distance between the heat dissipation member and each of the external heat transfer surfaces may not be the same, and all the external heat transfer surfaces and the The heat transfer sheet may be compressed by at least one of the external heat transfer surfaces such that the heat transfer sheet is in contact with the heat transfer sheet.
この蓄電モジュールユニットは、全ての蓄電ユニットの伝熱プレートの外部伝熱面面を伝熱シートに接触させることができる。
This power storage module unit can bring the external heat transfer surface of the heat transfer plate of all the power storage units into contact with the heat transfer sheet.
一形態の蓄電モジュールユニットでは、締結部材は、蓄電モジュールにボルト等によって取付けられる取付け部と、前記放熱部材に締結される締結部とを有する一対のブラケットである。
In one form of the electricity storage module unit, the fastening member is a pair of brackets having an attachment part attached to the electricity storage module with a bolt or the like and a fastening part fastened to the heat dissipation member.
この蓄電モジュールユニットは、蓄電モジュールが一方側のブラケットの取付け部と他方側のブラケットの取付け部との間に挟み込まれてボルト等によって取付けられた状態で、その一対のブラケットの各締結部が放熱部材の締結面等にそれぞれ締結されることによって蓄電モジュールが伝熱シートを介在させて放熱部材に締結される。特に、蓄電モジュールユニットでは、その一対のブラケットによって蓄電モジュールを放熱部材に締結することによって伝熱シートを容易に圧縮できる。
In this power storage module unit, the power storage module is sandwiched between the bracket mounting portion on one side and the bracket mounting portion on the other side and mounted with bolts or the like, and each fastening portion of the pair of brackets dissipates heat. The power storage module is fastened to the heat dissipation member with the heat transfer sheet interposed by being fastened to the fastening surface of the member. In particular, in the power storage module unit, the heat transfer sheet can be easily compressed by fastening the power storage module to the heat radiating member with the pair of brackets.
本発明の一側面に係る蓄電モジュールユニットの製造方法は、蓄電装置を有する複数の蓄電ユニット及び前記複数の蓄電ユニット同士を複数の前記蓄電ユニットが重ねられた状態で固定する蓄電ユニット固定部材を有する蓄電モジュール、伝熱シート、及び、放熱部材を準備するA工程と、
前記蓄電ユニットと前記放熱部材との間に前記伝熱シートを介在させた状態で前記蓄電モジュールを前記放熱部材に対して締結するB工程を備える。
前記複数の蓄電ユニットの前記放熱部材と対向する面は、前記面に垂直な方向に互いにずれを有し、前記B工程において、前記放熱部材に最も近い前記面で前記伝熱シートを圧縮して全ての前記蓄電ユニットの前記面を前記伝熱シートに接触させる。 A method for manufacturing a power storage module unit according to an aspect of the present invention includes a plurality of power storage units having a power storage device and a power storage unit fixing member that fixes the plurality of power storage units in a state where the plurality of power storage units are stacked. A process for preparing a power storage module, a heat transfer sheet, and a heat dissipation member;
B step of fastening the power storage module to the heat dissipation member in a state where the heat transfer sheet is interposed between the power storage unit and the heat dissipation member.
The surfaces of the plurality of power storage units that face the heat radiating member are displaced from each other in a direction perpendicular to the surface, and in the step B, the heat transfer sheet is compressed on the surface closest to the heat radiating member. The surfaces of all the power storage units are brought into contact with the heat transfer sheet.
前記蓄電ユニットと前記放熱部材との間に前記伝熱シートを介在させた状態で前記蓄電モジュールを前記放熱部材に対して締結するB工程を備える。
前記複数の蓄電ユニットの前記放熱部材と対向する面は、前記面に垂直な方向に互いにずれを有し、前記B工程において、前記放熱部材に最も近い前記面で前記伝熱シートを圧縮して全ての前記蓄電ユニットの前記面を前記伝熱シートに接触させる。 A method for manufacturing a power storage module unit according to an aspect of the present invention includes a plurality of power storage units having a power storage device and a power storage unit fixing member that fixes the plurality of power storage units in a state where the plurality of power storage units are stacked. A process for preparing a power storage module, a heat transfer sheet, and a heat dissipation member;
B step of fastening the power storage module to the heat dissipation member in a state where the heat transfer sheet is interposed between the power storage unit and the heat dissipation member.
The surfaces of the plurality of power storage units that face the heat radiating member are displaced from each other in a direction perpendicular to the surface, and in the step B, the heat transfer sheet is compressed on the surface closest to the heat radiating member. The surfaces of all the power storage units are brought into contact with the heat transfer sheet.
この製造方法で製造される蓄電モジュールユニットは、複数の蓄電ユニット(蓄電装置)の全てが伝熱シートに接することができ、複数の蓄電装置でそれぞれ発生した熱を伝熱シートを介して放熱部材にそれぞれ伝えることができる。そのため、この蓄電モジュールユニットの製造方法によれば、製造された蓄電モジュールユニットの複数の蓄電ユニット(蓄電装置)の伝熱シートを介した伝熱性の差を抑制して、放熱性を向上させることができる。
In the power storage module unit manufactured by this manufacturing method, all of the plurality of power storage units (power storage devices) can come into contact with the heat transfer sheet, and the heat generated by each of the plurality of power storage devices is radiated through the heat transfer sheet. Can tell each. Therefore, according to the manufacturing method of this power storage module unit, the heat transfer difference through the heat transfer sheets of the plurality of power storage units (power storage devices) of the manufactured power storage module unit is suppressed, and heat dissipation is improved. Can do.
上記方法において、各前記蓄電ユニットは、更に、外部伝熱面を有する伝熱プレートを有することができ、前記蓄電ユニット固定部材は、各前記伝熱プレートの外部伝熱面が一方側に露出するように前記複数の蓄電ユニット同士を固定することができ、複数の前記伝熱プレートの外部伝熱面は、前記面に垂直な方向に互いにずれを有することができ、前記B工程において、前記放熱部材に最も近い前記外部伝熱面で前記伝熱シートを圧縮して全ての前記外部伝熱面を前記伝熱シートに接触させることができる。
In the above method, each power storage unit may further include a heat transfer plate having an external heat transfer surface, and the power storage unit fixing member exposes the external heat transfer surface of each heat transfer plate on one side. The plurality of power storage units can be fixed to each other, and the external heat transfer surfaces of the plurality of heat transfer plates can be displaced from each other in a direction perpendicular to the surface. The heat transfer sheet can be compressed with the external heat transfer surface closest to the member to bring all the external heat transfer surfaces into contact with the heat transfer sheet.
上記方法において、前記B工程の前に、一対のブラケットを前記蓄電モジュールに取り付けるC工程を更に備えることができ、前記一対のブラケットは、前記蓄電モジュールに取付けられる取付け部と、前記放熱部材に締結される締結部とをそれぞれ有することができ、前記B工程では、前記締結部を前記放熱部材に締結することができる。
The method may further include a C step of attaching a pair of brackets to the power storage module before the B step, wherein the pair of brackets are fastened to an attachment portion attached to the power storage module and the heat dissipation member. The fastening portion can be fastened to the heat dissipating member in the step B.
一形態の蓄電モジュールユニットの製造方法のC工程では、所定の平面部に板を載置し、少なくとも1つの蓄電ユニットの前記面と板の上面とが接した状態で、かつ、所定の平面部に一対のブラケットにおける締結部のそれぞれが接した状態で、一対のブラケットの取付け部を蓄電モジュールに取付けることができる。このように、板を用いて一対のブラケットの位置をそれぞれ調整して蓄電モジュールに取付けることにより、簡単かつ高精度に、蓄電モジュールの複数の蓄電ユニットの放熱部材と対向する面のうちの放熱部材から最も近い面と放熱部材との間の距離が圧縮後厚みになるように一対のブラケットの位置を調整することができる。
In step C of the method of manufacturing the power storage module unit according to one aspect, the plate is placed on the predetermined plane portion, the surface of at least one power storage unit is in contact with the upper surface of the plate, and the predetermined plane portion With the fastening portions of the pair of brackets being in contact with each other, the attachment portions of the pair of brackets can be attached to the power storage module. As described above, by adjusting the positions of the pair of brackets using the plates and attaching the brackets to the power storage module, the heat dissipation member on the surface of the power storage module facing the heat dissipation members of the plurality of power storage units can be easily and highly accurately. The positions of the pair of brackets can be adjusted so that the distance between the surface closest to the heat dissipation member and the heat dissipation member becomes the thickness after compression.
本発明によれば、複数の蓄電装置の伝熱性の差を抑制して、放熱性を向上させることができる。
According to the present invention, it is possible to improve the heat dissipation by suppressing the difference in heat transfer between the plurality of power storage devices.
以下、図面を参照して、本発明に係る蓄電モジュールユニット及びその製造方法の実施の形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。
Hereinafter, an embodiment of a power storage module unit and a method for manufacturing the same according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.
本実施の形態では、フォークリフトに搭載される蓄電モジュールに適用する。本実施の形態に係る蓄電モジュールは、エンドプレート間で複数の蓄電ユニット(伝熱プレートが取り付けられ、ホルダーに収納された蓄電装置)が所定の配列方向に沿って配列された状態で拘束されている。また、本実施の形態に係る蓄電モジュールユニットは、放熱部材としてフォークリフトに配置されるカウンターウエイトを利用し、蓄電モジュールが一対のブラケットによってカウンターウエイトの側壁に伝熱シートを介在させて締結されている。本実施の形態に係る蓄電装置は、例えば、リチウムイオン二次電池等の非水電解質二次電池である。
In this embodiment, the present invention is applied to a power storage module mounted on a forklift. The power storage module according to the present embodiment is constrained in a state where a plurality of power storage units (power storage devices to which a heat transfer plate is attached and stored in a holder) are arranged along a predetermined arrangement direction between end plates. Yes. Further, the power storage module unit according to the present embodiment uses a counterweight disposed on the forklift as a heat radiating member, and the power storage module is fastened by a pair of brackets with a heat transfer sheet interposed between the side walls of the counterweight. . The power storage device according to the present embodiment is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
図1~図3を参照して、本実施の形態に係る蓄電モジュール1について説明する。特に、蓄電モジュール1の放熱構造を付加した蓄電モジュールユニット1’について詳細に説明する。なお、図2~図3では伝熱プレート及び蓄電装置の位置を判り易くするように、図1で示す蓄電ユニットUのホルダー4及び拘束ボルト6を省略し、蓄電装置2および伝熱プレート3をその外形のみを表すように簡略化して描いている。
The power storage module 1 according to the present embodiment will be described with reference to FIGS. In particular, the power storage module unit 1 ′ to which the heat dissipation structure of the power storage module 1 is added will be described in detail. 2 to 3, the holder 4 and the restraining bolt 6 of the power storage unit U shown in FIG. 1 are omitted so that the positions of the heat transfer plate and the power storage device can be easily understood. The drawing is simplified so as to represent only the outer shape.
蓄電モジュールユニット1’は、蓄電モジュール1におけるエンドプレート間に拘束された状態の複数の蓄電ユニットUの伝熱面間に互いに垂直な方向位置ずれがある場合でも、放熱性を向上させるために、複数の蓄電ユニットからカウンターウエイトへの伝熱性の差が抑制される構造を有している。そのために、蓄電モジュールユニット1’は、蓄電モジュール1における複数の蓄電ユニットの全ての伝熱面(特に、蓄電ユニットにおける蓄電装置に取り付けられる伝熱プレートの伝熱面)と伝熱シートとが確実に接触できるようにしている。
In order to improve the heat dissipation even when there is a positional deviation perpendicular to each other between the heat transfer surfaces of the plurality of power storage units U in a state of being constrained between the end plates in the power storage module 1, the power storage module unit 1 ′ It has a structure in which the difference in heat transfer from the plurality of power storage units to the counterweight is suppressed. For this reason, the power storage module unit 1 ′ has reliable heat transfer surfaces (especially heat transfer surfaces of heat transfer plates attached to the power storage device in the power storage unit) and heat transfer sheets of the plurality of power storage units in the power storage module 1. To be able to touch.
蓄電モジュール1は、複数の蓄電ユニットU(本実施の形態に係る蓄電モジュール1の場合、図1等に示すように7個)、一対のエンドプレート5、拘束ボルト6を備えている。この蓄電ユニットUは、蓄電装置2、伝熱プレート3、ホルダー4からなるユニットである。蓄電モジュールユニット1’は、蓄電モジュール1、伝熱シート7、カウンターウエイト8、一対のブラケット9、締結ボルト10,11を備えている。
The power storage module 1 includes a plurality of power storage units U (in the case of the power storage module 1 according to the present embodiment, seven as shown in FIG. 1 and the like), a pair of end plates 5, and restraint bolts 6. The power storage unit U is a unit including the power storage device 2, the heat transfer plate 3, and the holder 4. The power storage module unit 1 ′ includes a power storage module 1, a heat transfer sheet 7, a counterweight 8, a pair of brackets 9, and fastening bolts 10 and 11.
本実施の形態では、蓄電モジュール1が特許請求の範囲に記載する蓄電モジュールに相当し、蓄電モジュールユニット1’が特許請求の範囲に記載する蓄電モジュールユニットに相当し、蓄電装置2が特許請求の範囲に記載する蓄電装置に相当し、蓄電装置2、伝熱プレート3、ホルダー4からなる蓄電ユニットUが特許請求の範囲に記載する蓄電ユニットに相当し、伝熱シート7が特許請求の範囲に記載する伝熱シートに相当し、カウンターウエイト8が特許請求の範囲に記載する放熱部材に相当し、ブラケット9が特許請求の範囲に記載する締結部材及びブラケットに相当する。
In the present embodiment, the power storage module 1 corresponds to the power storage module described in the claims, the power storage module unit 1 ′ corresponds to the power storage module unit described in the claims, and the power storage device 2 claims It corresponds to the power storage device described in the range, the power storage unit U including the power storage device 2, the heat transfer plate 3, and the holder 4 corresponds to the power storage unit described in the claims, and the heat transfer sheet 7 corresponds to the claims. The counterweight 8 corresponds to the heat transfer sheet described in the claims, and the bracket 9 corresponds to the fastening member and the bracket described in the claims.
蓄電装置2は、角型の蓄電装置である。以下に、蓄電装置2(特に、リチウムイオン二次電池)の構成について説明する。なお、以下で説明する蓄電装置2の構成は一例であり、他の様々な構成の蓄電装置を適用できる。
The power storage device 2 is a rectangular power storage device. Below, the structure of the electrical storage apparatus 2 (especially lithium ion secondary battery) is demonstrated. Note that the configuration of the power storage device 2 described below is an example, and power storage devices having other various configurations can be applied.
蓄電装置2は、ケース、電解液、電極組立体を主に備えている。ケースは、電解液及び電極組立体を収容するケースである。電解液は、ケース内に収容され、電極組立体内に含浸される。電解液は、例えば、有機溶媒系又は非水系の電解液である。
The power storage device 2 mainly includes a case, an electrolytic solution, and an electrode assembly. The case is a case for accommodating the electrolytic solution and the electrode assembly. The electrolytic solution is accommodated in the case and impregnated in the electrode assembly. The electrolytic solution is, for example, an organic solvent-based or non-aqueous electrolytic solution.
電極組立体は、正極、負極及び正極と負極とを絶縁するセパレータを備えている。電極組立体は、シート状の複数の正極と複数の負極及びシート状(または袋状)の複数のセパレータが積層されて構成されている。電極組立体は、ケース内に収容され、ケース内において電解液に満たされている。
The electrode assembly includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode. The electrode assembly is configured by laminating a plurality of sheet-like positive electrodes, a plurality of negative electrodes, and a plurality of sheet-like (or bag-like) separators. The electrode assembly is housed in a case and filled with an electrolyte in the case.
正極は、金属箔と、金属箔の少なくとも一面に形成された正極活物質層からなる。正極は、金属箔の端部に正極活物質層が形成されていないタブを有する。タブは、正極の上縁部(正極端子2a側の縁部)に設けられており、導電部材を介して正極端子2aに接続されている。金属箔は、例えば、アルミニウム箔、アルミニウム合金箔である。正極活物質層は、正極活物質、バインダを含んでいる。正極活物質層は、導電助剤を含んでいてもよい。正極活物質は、例えば、複合酸化物、金属リチウム、硫黄である。複合酸化物は、マンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つとリチウムとを含む。バインダは、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリノレ基含有樹脂などである。導電助剤は、例えば、カーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)である。
The positive electrode is composed of a metal foil and a positive electrode active material layer formed on at least one surface of the metal foil. The positive electrode has a tab on which the positive electrode active material layer is not formed at the end of the metal foil. The tab is provided on the upper edge of the positive electrode (the edge on the positive electrode terminal 2a side), and is connected to the positive electrode terminal 2a via a conductive member. The metal foil is, for example, an aluminum foil or an aluminum alloy foil. The positive electrode active material layer includes a positive electrode active material and a binder. The positive electrode active material layer may contain a conductive additive. The positive electrode active material is, for example, a composite oxide, metallic lithium, or sulfur. The composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium. The binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilanol group-containing resin. . Examples of the conductive auxiliary agent include carbon black, graphite, acetylene black, and ketjen black (registered trademark).
負極は、金属箔と、金属箔の少なくとも一面に形成された負極活物質層からなる。負極は、金属箔の端部に負極活物質層が形成されていないタブを有する。タブは、負極の上縁部(負極端子2b側の縁部)に設けられており、導電部材を介して負極端子2bに接続されている。金属箔は、例えば、銅箔、銅合金箔である。負極活物質層は、負極活物質、バインダを含んでいる。負極活物質層は、導電助剤を含んでいてもよい。負極活物質は、例えば、黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素である。バインダ、導電助剤は、正極で示した同様のバインダ、導電助剤を適用できる。なお、バインダは正極での例示に加え、カルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、アルコキシシリル基含有樹脂なども適用できる。
The negative electrode is composed of a metal foil and a negative electrode active material layer formed on at least one surface of the metal foil. The negative electrode has a tab on which the negative electrode active material layer is not formed at the end of the metal foil. The tab is provided on the upper edge of the negative electrode (the edge on the negative electrode terminal 2b side), and is connected to the negative electrode terminal 2b via a conductive member. The metal foil is, for example, a copper foil or a copper alloy foil. The negative electrode active material layer includes a negative electrode active material and a binder. The negative electrode active material layer may contain a conductive additive. Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ≦ x ≦ 1.5). ) And the like, and boron-added carbon. As the binder and the conductive auxiliary, the same binder and conductive auxiliary as shown in the positive electrode can be applied. As the binder, carboxymethyl cellulose, methyl cellulose, styrene butadiene rubber, alkoxysilyl group-containing resin, and the like can be applied in addition to the positive electrode examples.
セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布である。
The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose or the like.
ケースは、有底筒状の本体部と本体部の開口部を覆う蓋部とからなる。詳述すると、本体部は、矩形平板状の底板と、底板の4辺から鉛直方向上方に延びる矩形平板状の4つの側板とから構成される。本体部には、電解液及び電極組立体が収容され、蓋部で本体部の開口部を覆うことで蓄電装置2が形成される。
The case includes a bottomed cylindrical main body and a lid that covers the opening of the main body. More specifically, the main body portion includes a rectangular flat plate-shaped bottom plate and four rectangular flat plate-shaped side plates extending vertically upward from four sides of the bottom plate. The main body portion contains the electrolytic solution and the electrode assembly, and the power storage device 2 is formed by covering the opening of the main body portion with the lid portion.
複数の蓄電装置2は、所定の配列方向(本実施の形態では、各蓄電装置2における最も広い面同士が伝熱プレート3を介して対向する方向)に沿って配列された状態で一対のエンドプレート5間に挟み込まれる。
The plurality of power storage devices 2 have a pair of ends in a state in which they are arrayed along a predetermined arrangement direction (in this embodiment, the widest surfaces of each power storage device 2 face each other through the heat transfer plate 3). It is sandwiched between the plates 5.
複数の蓄電装置2は、上記の配列方向に沿って配列される際に、図1に示すように、任意の蓄電装置2の正極端子2aと、その蓄電装置2と隣り合う蓄電装置2の負極端子2bとが隣り合うように配列される。そして、正極端子2aと負極端子2bとが接続部材2cでそれぞれ接続され、複数の蓄電装置2が電気的に直列に接続されている。
When the plurality of power storage devices 2 are arranged along the above-described arrangement direction, as shown in FIG. 1, the positive electrode terminal 2 a of any power storage device 2 and the negative electrode of the power storage device 2 adjacent to the power storage device 2. The terminals 2b are arranged adjacent to each other. And the positive electrode terminal 2a and the negative electrode terminal 2b are each connected by the connection member 2c, and the some electrical storage apparatus 2 is electrically connected in series.
以降、1つの蓄電装置2における上記配列方向に沿う方向を厚さ方向とし、1つの蓄電装置2における正極端子2aと負極端子2bの並設方向を幅方向とし、1つの蓄電装置2における上記厚さ方向及び上記幅方向と直交する方向を高さ方向と称し、説明を行う。
Hereinafter, the direction along the arrangement direction in one power storage device 2 is the thickness direction, the parallel direction of the positive electrode terminal 2a and the negative electrode terminal 2b in one power storage device 2 is the width direction, and the thickness in one power storage device 2 is the same. The direction perpendicular to the vertical direction and the width direction will be referred to as the height direction and will be described.
伝熱プレート3は、蓄電装置2で発生した熱を伝熱シート7に伝えるための部材であり、蓄電装置2毎に取り付けられる。伝熱プレート3は、熱伝導率が高い材料で形成される。伝熱プレート3は、板状であり、図2等に示すように断面がL字形状である。伝熱プレート3は、蓄電装置2における厚さ方向と交わる面と対向して配置される吸熱部3bと、蓄電装置2における幅方向と交わる面と対向する伝熱部3cとを有する。伝熱プレート3における伝熱部3cは、カウンターウエイト8における伝熱シート7が設けられた部分と対向して配置される。この伝熱プレート3の伝熱部3cにおける伝熱シート7(カウンターウエイト8)側の面が、伝熱面(外部伝熱面)3aになる。なお、図1では、伝熱プレート3の一部がホルダー4に隠れて、見えない。
The heat transfer plate 3 is a member for transmitting heat generated in the power storage device 2 to the heat transfer sheet 7 and is attached to each power storage device 2. The heat transfer plate 3 is formed of a material having high thermal conductivity. The heat transfer plate 3 is plate-shaped and has a L-shaped cross section as shown in FIG. The heat transfer plate 3 includes a heat absorbing portion 3b disposed to face a surface intersecting with the thickness direction of the power storage device 2, and a heat transfer portion 3c facing a surface intersecting the width direction of the power storage device 2. The heat transfer portion 3 c in the heat transfer plate 3 is disposed to face the portion of the counterweight 8 where the heat transfer sheet 7 is provided. A surface on the heat transfer sheet 7 (counterweight 8) side in the heat transfer section 3c of the heat transfer plate 3 becomes a heat transfer surface (external heat transfer surface) 3a. In FIG. 1, a part of the heat transfer plate 3 is hidden behind the holder 4 and cannot be seen.
ホルダー4は、蓄電装置2の一部を収納して蓄電装置2を保持するための部材であり、蓄電装置2毎に設けられる。ホルダー4は、伝熱プレート3が取り付けられた状態の蓄電装置2の一部を隙間なく収納できる大きさ及び形状を有している。ホルダー4には、拘束ボルト6の軸径より若干大きい径の貫通孔(図示せず)が開口されている。この貫通孔の個数は、複数個であり、例えば、4個である。
The holder 4 is a member for storing a part of the power storage device 2 and holding the power storage device 2, and is provided for each power storage device 2. The holder 4 has a size and shape that can accommodate a part of the power storage device 2 in a state where the heat transfer plate 3 is attached without a gap. The holder 4 has a through hole (not shown) having a diameter slightly larger than the shaft diameter of the restraint bolt 6. There are a plurality of through holes, for example, four.
したがって、1つの蓄電装置2、1つの伝熱プレート3及び1つのホルダー4によって蓄電ユニットUが形成される。複数の蓄電ユニットUは、上記配列方向に沿って配列される。
Therefore, a power storage unit U is formed by one power storage device 2, one heat transfer plate 3 and one holder 4. The plurality of power storage units U are arranged along the arrangement direction.
一対のエンドプレート5は、複数の蓄電ユニットUのうち、配列方向(厚さ方向)の両端部に位置する2つの蓄電ユニットUと各々対向して配置されて、配列された複数の蓄電装置2に両側から拘束圧を付加して拘束するための部材である。エンドプレート5は、板状であり、拘束圧を付加できる十分な厚さを有している。エンドプレート5が拘束圧を付加する面は、角型の蓄電装置2の最も広い面の面積よりも少し小さい。エンドプレート5には、ホルダー4に開口される貫通孔に対応して、拘束ボルト6の軸径より若干大きい径の貫通孔(図示せず)が開口されている。この貫通孔の個数は、ホルダー4に開口される貫通孔の個数と同数である。この貫通孔の位置は、ホルダー4に開口される貫通孔の位置に対応した位置である。また、エンドプレート5の外面5a側(エンドプレート5における蓄電ユニットUと対向する面と反対側)には、ブラケット9を締結ボルト10で固定するために、締結ボルト10のねじ径と同じねじ径の孔(図示せず)が開口されている。この孔は、有底の孔であり、雌ねじが切られている。この孔の個数は、ブラケット9の取付け部9aに開口される貫通孔の個数と同数である。
The pair of end plates 5 are arranged to face two power storage units U located at both ends in the arrangement direction (thickness direction) of the plurality of power storage units U, and the plurality of power storage devices 2 arranged. It is a member for applying restraint pressure to both sides and restraining. The end plate 5 is plate-shaped and has a thickness sufficient to apply a restraining pressure. The surface to which the end plate 5 applies the restraining pressure is slightly smaller than the area of the widest surface of the rectangular power storage device 2. In the end plate 5, a through hole (not shown) having a diameter slightly larger than the shaft diameter of the restraint bolt 6 is opened corresponding to the through hole opened in the holder 4. The number of through holes is the same as the number of through holes opened in the holder 4. The position of the through hole is a position corresponding to the position of the through hole opened in the holder 4. Further, in order to fix the bracket 9 with the fastening bolt 10 on the outer surface 5a side of the end plate 5 (the side opposite to the surface facing the power storage unit U in the end plate 5), the same screw diameter as that of the fastening bolt 10 is used. A hole (not shown) is opened. This hole is a bottomed hole and is internally threaded. The number of holes is the same as the number of through holes opened in the attachment portion 9 a of the bracket 9.
この一対のエンドプレート5と複数の拘束ボルト6を用いて複数の蓄電ユニットUを拘束する場合、複数の蓄電ユニットUのうち、配列方向の一端側に配置される蓄電ユニットUと一方のエンドプレート5とが対向するように配置され、配列方向の他端側に配置される蓄電ユニットUと他方のエンドプレート5とが対向するように配置される。そして、各拘束ボルト6を、一方のエンドプレート5の貫通孔、配列される各ホルダー4の貫通孔、他方のエンドプレート5の貫通孔に通し、ボルト締めを行う。このボルト締めでは、他方のエンドプレート5の外面5a側にナットを配置させて、拘束ボルト6の雄ねじとナットの雌ねじとでボルト締めを行ってもよいし、あるいは、他方のエンドプレート5の各貫通孔に雌ねじが切られ、拘束ボルト6の雄ねじとエンドプレート5の貫通孔の雌ねじとでボルト締めを行ってもよい。このボルト締めの締付力により、一方のエンドプレート5と他方のエンドプレート5との間で配列された複数の蓄電ユニットUに拘束力が付加され、拘束された状態になる。この配列方向に沿って配列された複数の蓄電ユニットUが一対のエンドプレート5で拘束されたものが、蓄電モジュール1である。なお、拘束ボルト6は、この一対のエンドプレート5間の長さよりも十分に長い長さを有している。ここでは、一対のエンドプレート5と複数の拘束ボルト6が蓄電ユニット固定部材に対応する。
When the plurality of power storage units U are restrained using the pair of end plates 5 and the plurality of restraint bolts 6, among the plurality of power storage units U, the power storage unit U arranged on one end side in the arrangement direction and one end plate 5 are arranged so as to face each other, and the power storage unit U arranged on the other end side in the arrangement direction and the other end plate 5 are arranged so as to face each other. Then, each restraint bolt 6 is passed through the through hole of one end plate 5, the through hole of each holder 4 arranged, and the through hole of the other end plate 5, and bolted. In this bolt tightening, a nut may be arranged on the outer surface 5a side of the other end plate 5 and the bolt tightening may be performed with the male screw of the restraining bolt 6 and the female screw of the nut. A female screw may be cut in the through hole, and bolt tightening may be performed with the male screw of the restraining bolt 6 and the female screw of the through hole of the end plate 5. Due to the tightening force of the bolt tightening, a restraining force is applied to the plurality of power storage units U arranged between the one end plate 5 and the other end plate 5, thereby being restrained. A power storage module 1 includes a plurality of power storage units U arrayed along the array direction and constrained by a pair of end plates 5. The restraint bolt 6 has a length sufficiently longer than the length between the pair of end plates 5. Here, the pair of end plates 5 and the plurality of restraining bolts 6 correspond to the power storage unit fixing member.
この一対のエンドプレート5間に拘束された状態の複数の蓄電ユニットU(すなわち、蓄電モジュール1)では各方向で相対的な位置ずれが発生する場合があり、特に、図2等に示すように、複数の伝熱プレート3の伝熱面3a間で位置ずれ(一対のブラケット9によって蓄電モジュール1がカウンターウエイト8に締結された状態でカウンターウエイト8と対向する各伝熱プレート3の伝熱面3a(対向面)との間の距離の差)が発生する場合がある。この位置ずれの要因としては、拘束ボルト6の軸径よりもホルダー4の各貫通孔の径が若干大きいため、この軸径と孔径との最大差を上限として、位置ずれを発生する可能性がある。この位置ずれは、伝熱面3a間の位置ずれ(蓄電ユニットにおける蓄電装置2の幅方向への位置ずれ)の他にも、他の方向の位置ずれも発生する場合がある。なお、このような位置ずれの要因は、一対のエンドプレート5間に複数の蓄電装置2を拘束する方法によって変わる。例えば、断面がU字状の治具を用いて位置を規制しながら複数の蓄電装置2を並設し、その並設された複数の蓄電装置2を一対のエンドプレート5間で挟み込んで拘束する方法がある。この方法の場合、蓄電装置2を嵌め込んで積層していくために、U字状の治具の幅が蓄電装置2の幅よりも若干広い幅となっているので、その幅の差を上限として、位置ずれを発生する可能性がある。
In the plurality of power storage units U (that is, the power storage module 1) constrained between the pair of end plates 5, there may be a relative displacement in each direction. In particular, as shown in FIG. , Misalignment between the heat transfer surfaces 3a of the plurality of heat transfer plates 3 (the heat transfer surfaces of the heat transfer plates 3 facing the counterweight 8 in a state where the power storage module 1 is fastened to the counterweight 8 by the pair of brackets 9) 3a (a difference in distance from the facing surface) may occur. As a cause of this positional deviation, since the diameter of each through hole of the holder 4 is slightly larger than the shaft diameter of the restraint bolt 6, there is a possibility that the positional deviation occurs with the maximum difference between the shaft diameter and the hole diameter as an upper limit. is there. In addition to the position shift between the heat transfer surfaces 3a (position shift in the width direction of the power storage device 2 in the power storage unit), this position shift may also occur in other directions. Note that the cause of such positional deviation varies depending on the method of constraining the plurality of power storage devices 2 between the pair of end plates 5. For example, a plurality of power storage devices 2 are juxtaposed while regulating the position using a jig having a U-shaped cross section, and the plurality of power storage devices 2 arranged side by side are sandwiched between a pair of end plates 5 and restrained. There is a way. In the case of this method, the width of the U-shaped jig is slightly wider than the width of the power storage device 2 in order to fit and stack the power storage device 2, so the difference in width is limited to the upper limit. As a result, a positional deviation may occur.
伝熱シート7は、各蓄電装置2で発生し、各伝熱プレート3に伝熱された熱をカウンターウエイト8に伝えるための部材である。伝熱シート7は、一対のエンドプレート5間に拘束された状態の複数の蓄電ユニットU各々に取り付けられた各伝熱プレート3の伝熱面3aとカウンターウエイト8との間に配置される。伝熱シート7は、熱伝導率が高くかつ弾性(応力が加わると圧縮する)を有する材料で形成される。この材料としては、例えば、シート状のTIM[Thermal Interface Material]がある。このシート状のTIMとしては、例えば、シリコンゴム(弾性率が高い)に粉状のセラミックフィラー(熱伝導率が高い)を含有させたものがある。伝熱シート7の面積は、一対のエンドプレート5間に拘束された状態の複数の伝熱プレート3の伝熱面3aを合わせた面積(蓄電ユニットにおける蓄電装置2の幅方向と交わる面の面積)と同程度である。
The heat transfer sheet 7 is a member for transmitting the heat generated in each power storage device 2 and transferred to each heat transfer plate 3 to the counterweight 8. The heat transfer sheet 7 is arranged between the heat transfer surface 3 a of each heat transfer plate 3 attached to each of the plurality of power storage units U in a state of being constrained between the pair of end plates 5 and the counterweight 8. The heat transfer sheet 7 is formed of a material having high thermal conductivity and elasticity (compresses when stress is applied). As this material, for example, there is a sheet-like TIM [Thermal Interface Material]. As this sheet-like TIM, for example, there is one in which silicon rubber (having high elastic modulus) contains powdered ceramic filler (having high thermal conductivity). The area of the heat transfer sheet 7 is the total area of the heat transfer surfaces 3a of the plurality of heat transfer plates 3 constrained between the pair of end plates 5 (the area of the surface that intersects the width direction of the power storage device 2 in the power storage unit). ).
図2を参照して、伝熱シート7の厚みを決める方法について説明する。上記したように、各伝熱プレート3の伝熱面3aとカウンターウエイト8との間の距離の差(位置ずれ)が大きくなる場合がある。この最大位置ずれ量は、一対のブラケット9によって蓄電モジュール1がカウンターウエイト8に締結された際、複数の蓄電ユニットの伝熱プレート3がカウンターウエイト8と対向する伝熱面3a(対向面)のうちのカウンターウエイト8から最も遠い伝熱面3aとカウンターウエイト8との間の距離と、カウンターウエイト8から最も近い伝熱面3aとカウンターウエイト8との間の距離との差である。この最大位置ずれ量をΔLとすると、この最大位置ずれ量ΔLについては、一対のエンドプレート5間に複数の蓄電ユニットを拘束する方法に応じて予め推定することができる。例えば、ホルダー4の貫通孔の径と拘束ボルト6の軸径との差から最大位置ずれ量ΔLを推定できる。この最大位置ずれ量ΔL分圧縮できる伝熱シート7であれば、全ての伝熱プレート3の伝熱面3aに伝熱シート7を接触させることができる。したがって、全ての伝熱プレート3の伝熱面3aに伝熱シート7を接触させるためには、最大位置ずれ量ΔL以上圧縮させることができる伝熱シート7を用いる。そこで、伝熱シート7(伝熱シート7に用いられる材料)の最大圧縮率(最大弾性率)に基づいて、最大位置ずれ量ΔL分圧縮するために必要な伝熱シート7の圧縮後厚みT’を予め導出することができる。ここで、最大圧縮率をそのまま用いて圧縮後厚みT’を導出してもよいし、余裕を見て、最大圧縮率よりも小さい圧縮率(例えば、推奨圧縮率)を用いて圧縮後厚みT’を導出してもよい。そして、伝熱シート7の厚みTとしては、最大位置ずれ量ΔLに圧縮後厚みT’を加算した値以上の厚みとすることができる。この厚みTとすることにより、伝熱シート7を最大位置ずれ量ΔL以上圧縮させることが可能となる。例えば、ΔLが1mmと推定した場合、最大圧縮率が50%とすると、伝熱シート7の厚みTを2mm以上(圧縮後厚みT’は1mm)とする。また、ΔLが1mm、推奨圧縮率が40%とすると、伝熱シート7の厚みTを2.5mm以上(圧縮後厚みT’は1.5mm)とする。なお、伝熱シート7は薄いほど伝熱性が高くなるので、伝熱シート7の厚みTを最大位置ずれ量ΔLに最小の圧縮後厚みT’を加えた値の厚さとすると最も薄くできる。
Referring to FIG. 2, a method for determining the thickness of the heat transfer sheet 7 will be described. As described above, there may be a case where a difference (positional deviation) in the distance between the heat transfer surface 3a of each heat transfer plate 3 and the counterweight 8 becomes large. The maximum amount of displacement is that the heat transfer plate 3 of the plurality of power storage units faces the counterweight 8 when the power storage module 1 is fastened to the counterweight 8 by the pair of brackets 9. This is the difference between the distance between the heat transfer surface 3 a farthest from the counterweight 8 and the counterweight 8 and the distance between the heat transfer surface 3 a closest to the counterweight 8 and the counterweight 8. Assuming that the maximum positional deviation amount is ΔL, the maximum positional deviation amount ΔL can be estimated in advance according to a method of constraining a plurality of power storage units between the pair of end plates 5. For example, the maximum positional deviation amount ΔL can be estimated from the difference between the diameter of the through hole of the holder 4 and the shaft diameter of the restraint bolt 6. If the heat transfer sheet 7 can be compressed by the maximum displacement amount ΔL, the heat transfer sheet 7 can be brought into contact with the heat transfer surfaces 3 a of all the heat transfer plates 3. Therefore, in order to bring the heat transfer sheet 7 into contact with the heat transfer surfaces 3a of all the heat transfer plates 3, the heat transfer sheet 7 that can be compressed by the maximum displacement amount ΔL or more is used. Therefore, based on the maximum compression rate (maximum elastic modulus) of the heat transfer sheet 7 (the material used for the heat transfer sheet 7), the post-compression thickness T of the heat transfer sheet 7 necessary for compression by the maximum displacement amount ΔL. 'Can be derived in advance. Here, the post-compression thickness T ′ may be derived using the maximum compression rate as it is, or the post-compression thickness T using a compression rate (for example, a recommended compression rate) smaller than the maximum compression rate with a margin. 'May be derived. The thickness T of the heat transfer sheet 7 can be equal to or greater than the value obtained by adding the post-compression thickness T ′ to the maximum displacement amount ΔL. By setting the thickness T, it is possible to compress the heat transfer sheet 7 by the maximum displacement amount ΔL or more. For example, assuming that ΔL is 1 mm and the maximum compression ratio is 50%, the thickness T of the heat transfer sheet 7 is set to 2 mm or more (the thickness T ′ after compression is 1 mm). If ΔL is 1 mm and the recommended compression rate is 40%, the thickness T of the heat transfer sheet 7 is set to 2.5 mm or more (the thickness T ′ after compression is 1.5 mm). Since the heat transfer sheet 7 is thinner, the heat transfer property is higher. Therefore, the thickness T of the heat transfer sheet 7 can be made the smallest by adding the minimum post-compression thickness T ′ to the maximum displacement amount ΔL.
カウンターウエイト8は、伝熱シート7によって伝えられた熱を放熱するための部材として利用される。カウンターウエイト8は、フォークリフトにおいて熱マスの大きな部材であるので、放熱部材として好適である。また、カウンターウエイト8は、蓄電モジュール1を配置できる十分に大きな面を有している。このカウンターウエイト8の側壁に、一対のブラケット9によって、蓄電モジュール1が伝熱シート7を介在させた状態で締結される。このカウンターウエイト8の側壁の面8aが、締結面になる。このカウンターウエイト8の締結面8aには、各ブラケット9に対応して、締結ボルト11の軸径と同程度の径の孔(図示せず)が開口されている。この孔は、有底であり、雌ねじが切られている。この孔の位置は、一対のブラケット9によって蓄電モジュール1が締結される際に、ブラケット9の締結部9bに開口される貫通孔の位置に対応した位置である。この孔の個数は、ブラケット9の締結部9bに開口される貫通孔の個数と同数である。
The counterweight 8 is used as a member for radiating the heat transmitted by the heat transfer sheet 7. Since the counterweight 8 is a member having a large thermal mass in the forklift, it is suitable as a heat radiating member. The counterweight 8 has a sufficiently large surface on which the power storage module 1 can be disposed. The power storage module 1 is fastened to the side wall of the counterweight 8 with a pair of brackets 9 with the heat transfer sheet 7 interposed therebetween. A side surface 8a of the counterweight 8 becomes a fastening surface. On the fastening surface 8 a of the counterweight 8, a hole (not shown) having a diameter similar to the shaft diameter of the fastening bolt 11 is opened corresponding to each bracket 9. This hole is bottomed and is internally threaded. The positions of the holes are positions corresponding to the positions of the through holes opened in the fastening portion 9 b of the bracket 9 when the power storage module 1 is fastened by the pair of brackets 9. The number of holes is the same as the number of through holes opened in the fastening portion 9 b of the bracket 9.
一対のブラケット9は、蓄電モジュール1をカウンターウエイト8の側壁に締結させるための部材であり、かつ、蓄電モジュール1とカウンターウエイト8との間の間隔を調整するための部材である。ブラケット9は、略L字形状である。ブラケット9は、蓄電モジュール1に締結ボルト10によって取付けられる取付け部9aと、カウンターウエイト8に締結ボルト11によって締結される締結部9bとを有する。取付け部9aは、エンドプレート5の外面5aに位置調整されて取り付けられる。この取付け部9aには、締結ボルト10の軸径よりも大きい径の貫通孔(図示せず)が複数開口されている。この貫通孔の大きさは、ブラケット9のエンドプレート5に対する位置調整が可能な十分な大きさである。ブラケット9は、この締結ボルト10によるボルト締結によってエンドプレート5に取付けられる。また、締結部9bは、カウンターウエイト8に締結され、カウンターウエイト8の締結面8aに接する締結面9cを有している。締結部9bには、締結ボルト11のねじ径と同じねじ径の孔(図示せず)が複数開口されている。ブラケット9は、この締結ボルト11によるボルト締結によって蓄電モジュール1をカウンターウエイト8に締結する。本実施の形態では、取付け部9aが特許請求の範囲に記載するブラケットの取付け部に相当し、締結部9bが特許請求の範囲に記載するブラケットの締結部に相当する。
The pair of brackets 9 are members for fastening the power storage module 1 to the side wall of the counterweight 8 and are members for adjusting the interval between the power storage module 1 and the counterweight 8. The bracket 9 is substantially L-shaped. The bracket 9 includes an attachment portion 9 a that is attached to the power storage module 1 with fastening bolts 10, and a fastening portion 9 b that is fastened to the counterweight 8 with fastening bolts 11. The attachment portion 9a is attached to the outer surface 5a of the end plate 5 with its position adjusted. A plurality of through holes (not shown) having a diameter larger than the shaft diameter of the fastening bolt 10 are opened in the mounting portion 9a. The size of the through hole is sufficiently large so that the position of the bracket 9 can be adjusted with respect to the end plate 5. The bracket 9 is attached to the end plate 5 by bolt fastening with the fastening bolt 10. Further, the fastening portion 9 b has a fastening surface 9 c that is fastened to the counterweight 8 and is in contact with the fastening surface 8 a of the counterweight 8. A plurality of holes (not shown) having the same screw diameter as that of the fastening bolt 11 are opened in the fastening portion 9b. The bracket 9 fastens the power storage module 1 to the counterweight 8 by bolt fastening with the fastening bolt 11. In the present embodiment, the attachment portion 9a corresponds to the bracket attachment portion described in the claims, and the fastening portion 9b corresponds to the bracket fastening portion described in the claims.
図3を参照して、蓄電モジュール1がカウンターウエイト8の側壁に締結された蓄電モジュールユニット1’について説明する。蓄電モジュールユニット1’は、一対のブラケット9によって蓄電モジュール1をカウンターウエイト8の側壁にボルト締めで締結された状態で、伝熱シート7の上面7aが全ての伝熱プレート3の伝熱面3a(3a1~3a7)に接触している。カウンターウエイト8と各伝熱面3aとの間の距離は同一でないので、全ての伝熱面3aと伝熱シート7とが接触するように、伝熱シート7が少なくとも1つの伝熱面3aにより圧縮されている。このようにするために、複数の蓄電ユニットUを拘束している一対のエンドプレート5の外面5a,5aにブラケット9,9をそれぞれ位置調整して取付ける際に、複数の伝熱プレート3の伝熱面3aのうちのその各伝熱面3aに対向するカウンターウエイト8の締結面8aと最小間隔MNとなる伝熱面3a4と各ブラケット9の締結面9c(カウンターウエイト8の締結面8a)との間の距離が圧縮後厚みT’になるように、各ブラケット9がエンドプレート5に対してそれぞれ位置調整されて取り付けられる。最小間隔MNとなる伝熱面3a4は、締結された状態のカウンターウエイト8に最も近い位置の伝熱面3aである。この位置調整を行う場合、ブラケット9の取付け部9aに開口された締結ボルト10の軸径より十分に大きい径の貫通孔に締結ボルト10を挿入し、締結ボルト10の雄ねじをエンドプレート5の外面5aに開口された孔の雌ねじにねじ込んだ状態で、ブラケット9を上下左右に移動させることにより、簡単に位置調整を行うことができる。このような位置調整と、上記のように決定した厚みTの伝熱シート7を用いることによって、図3に示すように、伝熱プレート3の伝熱面3aのうちのカウンターウエイト8の締結面8aと最小間隔MNとなる伝熱面3a4から最大間隔MXとなる伝熱面3a6まで伝熱シート7の上面7aに接触させることでき、全ての伝熱プレート3の伝熱面3aを伝熱シート7の上面7aに接触させることができる。最大間隔MXとなる伝熱面3a6は、締結された状態のカウンターウエイト8から最も遠い位置の伝熱面3aである。全ての伝熱プレート3の伝熱面3aを伝熱シート7の上面7aに接触している場合、伝熱シート7は、最大間隔MXとなる伝熱面3a6の部分では最も圧縮されておらず(全く圧縮されていない場合もある)、最小間隔MNとなる伝熱面3a4の部分では最も圧縮されており、その圧縮量の差は最大で最大位置ずれ量ΔLである。
With reference to FIG. 3, the power storage module unit 1 ′ in which the power storage module 1 is fastened to the side wall of the counterweight 8 will be described. The power storage module unit 1 ′ is configured such that the upper surface 7 a of the heat transfer sheet 7 is the heat transfer surface 3 a of all the heat transfer plates 3 in a state where the power storage module 1 is fastened to the side wall of the counterweight 8 by a pair of brackets 9. (3a 1 to 3a 7 ). Since the distance between the counterweight 8 and each heat transfer surface 3a is not the same, the heat transfer sheet 7 is formed by at least one heat transfer surface 3a so that all the heat transfer surfaces 3a and the heat transfer sheets 7 are in contact with each other. It is compressed. Therefore, when the brackets 9 and 9 are attached to the outer surfaces 5a and 5a of the pair of end plates 5 that restrain the plurality of power storage units U, the positions of the plurality of heat transfer plates 3 are adjusted. its fastening surface 8a and the minimum distance MN become heat transfer surface 3a 4 the fastening surface 9c of the bracket 9 of the counterweight 8 opposite to the heat transfer face 3a of the heat surface 3a (fastening surface 8a of the counterweight 8) The brackets 9 are attached to the end plates 5 with their positions adjusted so that the distance between them becomes the thickness T ′ after compression. The heat transfer surface 3a 4 having the minimum interval MN is the heat transfer surface 3a at a position closest to the counterweight 8 in the fastened state. When this position adjustment is performed, the fastening bolt 10 is inserted into a through hole having a diameter sufficiently larger than the shaft diameter of the fastening bolt 10 opened in the mounting portion 9 a of the bracket 9, and the male screw of the fastening bolt 10 is connected to the outer surface of the end plate 5. Position adjustment can be easily performed by moving the bracket 9 up and down and left and right in a state of being screwed into the female screw of the hole opened in 5a. By using such a position adjustment and the heat transfer sheet 7 having the thickness T determined as described above, the fastening surface of the counterweight 8 in the heat transfer surface 3a of the heat transfer plate 3 as shown in FIG. can be contacted from the heat transfer surface 3a 4 serving as 8a and the minimum interval MN on the upper surface 7a of the heat transfer sheet 7 to the heat transfer surfaces 3a 6 with the maximum distance MX, heat all heat transfer surface 3a of the heat transfer plate 3 The heat sheet 7 can be brought into contact with the upper surface 7a. The heat transfer surface 3a 6 having the maximum interval MX is the heat transfer surface 3a farthest from the counterweight 8 in the fastened state. When the heat transfer surfaces 3a of all the heat transfer plates 3 are in contact with the upper surface 7a of the heat transfer sheet 7, the heat transfer sheet 7 is most compressed in the portion of the heat transfer surface 3a 6 that has the maximum interval MX. not (sometimes not at all compressed), in a portion of the heat transfer surfaces 3a 4 as a minimum interval MN are most compressed, the difference in the amount of compression is the maximum positional displacement amount ΔL at maximum.
このように蓄電モジュール1がカウンターウエイト8の側壁に締結された蓄電モジュールユニット1’の場合の伝熱及び放熱の作用について説明する。各蓄電装置2で熱をそれぞれ発生すると、その熱は各蓄電装置2に取り付けられている伝熱プレート3の吸熱部3bにそれぞれ伝わる。そして、各伝熱プレート3では、その熱を伝熱部3cの伝熱面3aから伝熱シート7にそれぞれ伝える。この際、全ての伝熱プレート3の伝熱面3aが伝熱シート7の上面7aに接触しているので、全ての伝熱プレート3で熱を伝熱シート7に伝えることができる。さらに、伝熱シート7では、全ての伝熱プレート3からそれぞれ伝えられた熱をカウンターウエイト8に伝える。カウンターウエイト8では、伝熱シート7から伝えられた熱を放熱する。
The operation of heat transfer and heat dissipation in the case of the power storage module unit 1 ′ in which the power storage module 1 is fastened to the side wall of the counterweight 8 will be described. When heat is generated in each power storage device 2, the heat is transmitted to the heat absorbing portion 3 b of the heat transfer plate 3 attached to each power storage device 2. And in each heat-transfer plate 3, the heat is each transmitted to the heat-transfer sheet | seat 7 from the heat-transfer surface 3a of the heat-transfer part 3c. At this time, since the heat transfer surfaces 3 a of all the heat transfer plates 3 are in contact with the upper surface 7 a of the heat transfer sheet 7, heat can be transferred to the heat transfer sheets 7 by all the heat transfer plates 3. Further, in the heat transfer sheet 7, the heat transferred from all the heat transfer plates 3 is transferred to the counterweight 8. The counterweight 8 radiates the heat transferred from the heat transfer sheet 7.
ここで、図4を参照して、蓄電モジュール100が一対のブラケット104によってカウンターウエイト105の側壁に締結された従来の蓄電モジュールユニット100’の場合の伝熱及び放熱の作用について説明する。蓄電モジュール100では、各蓄電装置101に伝熱プレート102がそれぞれ取り付けられており、この伝熱プレート102がそれぞれ取り付けられた複数の蓄電装置101が一対のエンドプレート103に拘束された状態である。この蓄電モジュール100が一対のブラケット104によってカウンターウエイト105に締結され、蓄電モジュール100とカウンターウエイト105との間に伝熱シート106が配置されている。この伝熱シート106は、本実施の形態に係る伝熱シート7の厚み(最大位置ずれ量ΔLに圧縮後厚みT’を加算した値以上の厚み)と同様の厚みを有しておらず、適宜に決められた所定の厚みを有している。また、一対のブラケット104は、カウンターウエイト105に最も近い伝熱面102aのみが伝熱シート106が接するようにエンドプレート103に取付けられている。そのため、伝熱面102aが伝熱シート106に接していない伝熱プレート102が存在し、伝熱面102aと伝熱シート106との間に隙間ができる。伝熱プレート102の伝熱面102aと伝熱シート106との間に隙間ができると、各伝熱プレート102からカウンターウエイト105への伝熱に差が発生する。その結果、複数の蓄電装置101において放熱性に差ができ、複数の蓄電装置101間で温度ばらつきが発生する。その結果、蓄電モジュール100の性能や寿命が低下する。
Here, with reference to FIG. 4, a description will be given of the heat transfer and heat dissipation in the case of the conventional power storage module unit 100 ′ in which the power storage module 100 is fastened to the side wall of the counterweight 105 by a pair of brackets 104. In the power storage module 100, the heat transfer plates 102 are respectively attached to the respective power storage devices 101, and the plurality of power storage devices 101 to which the heat transfer plates 102 are respectively attached are constrained by a pair of end plates 103. The power storage module 100 is fastened to the counterweight 105 by a pair of brackets 104, and the heat transfer sheet 106 is disposed between the power storage module 100 and the counterweight 105. This heat transfer sheet 106 does not have the same thickness as the thickness of the heat transfer sheet 7 according to the present embodiment (thickness equal to or greater than the value obtained by adding the thickness T ′ after compression to the maximum displacement amount ΔL), It has a predetermined thickness determined as appropriate. The pair of brackets 104 are attached to the end plate 103 so that only the heat transfer surface 102a closest to the counterweight 105 is in contact with the heat transfer sheet 106. Therefore, there is a heat transfer plate 102 in which the heat transfer surface 102 a is not in contact with the heat transfer sheet 106, and a gap is formed between the heat transfer surface 102 a and the heat transfer sheet 106. If there is a gap between the heat transfer surface 102 a of the heat transfer plate 102 and the heat transfer sheet 106, a difference occurs in heat transfer from each heat transfer plate 102 to the counterweight 105. As a result, there is a difference in heat dissipation between the plurality of power storage devices 101, and temperature variation occurs between the plurality of power storage devices 101. As a result, the performance and life of the power storage module 100 are reduced.
これに対して、図3に係る本実施形態に係る蓄電モジュールユニット1’によれば、伝熱シート7の厚みを伝熱プレート3の伝熱面3a間の最大位置ずれ量ΔLにその最大位置ずれ量ΔL分圧縮するために必要な圧縮後厚みT’を加算した値以上の厚みTとし、カウンターウエイト8の締結面8aと最小間隔MNとなる伝熱面3aから最大間隔MXとなる伝熱面3aまで全ての伝熱シート7が接触するように一対のブラケット9によって蓄電モジュール1をカウンターウエイト8に少なくとも一部の伝熱面3aが伝熱シート7を圧縮するように締結した構造とすることにより、複数の蓄電装置2でそれぞれ発生した熱の伝熱シート7への伝熱性の差を抑制でき、放熱性を向上させることができる。その結果、複数の蓄電装置2間の温度ばらつきを低減でき、蓄電モジュール1の性能や寿命の低下を抑制できる。
On the other hand, according to the electricity storage module unit 1 ′ according to the present embodiment shown in FIG. 3, the thickness of the heat transfer sheet 7 is set to the maximum position shift amount ΔL between the heat transfer surfaces 3 a of the heat transfer plate 3. Heat transfer from the heat transfer surface 3a having the minimum distance MN from the fastening surface 8a of the counterweight 8 to the maximum distance MX is set to a thickness T that is equal to or greater than the value of the post-compression thickness T ′ necessary for compressing by the shift amount ΔL. The power storage module 1 is fastened to the counterweight 8 by a pair of brackets 9 so that all the heat transfer sheets 7 come into contact with the surface 3 a so that at least a part of the heat transfer surface 3 a compresses the heat transfer sheet 7. Thereby, the difference in the heat transfer property to the heat transfer sheet 7 of the heat generated in each of the plurality of power storage devices 2 can be suppressed, and the heat dissipation can be improved. As a result, temperature variations among the plurality of power storage devices 2 can be reduced, and a decrease in performance and life of the power storage module 1 can be suppressed.
蓄電モジュールユニット1’によれば、一対のブラケット9によって蓄電モジュール1がカウンターウエイト8に締結された際の複数の伝熱プレート3の伝熱面3aのうちのカウンターウエイト8と最小間隔MNとなる伝熱面3aとブラケット9の締結面9c(カウンターウエイト8の締結面8a)との間の距離と伝熱シート7の圧縮後の厚みT’とが同じなので、伝熱シート7を最大で圧縮後厚みT’に相当する厚みになるまで圧縮できる。したがって、最小間隔MNとなる伝熱面3aから最大間隔MXとなる伝熱面3aまで伝熱シート7に接触させることができ、全ての伝熱面3aを伝熱シート7に接触させることができる。
According to the power storage module unit 1 ′, the minimum distance MN from the counterweight 8 among the heat transfer surfaces 3 a of the plurality of heat transfer plates 3 when the power storage module 1 is fastened to the counterweight 8 by the pair of brackets 9. Since the distance between the heat transfer surface 3a and the fastening surface 9c of the bracket 9 (the fastening surface 8a of the counterweight 8) and the thickness T ′ after compression of the heat transfer sheet 7 are the same, the heat transfer sheet 7 is compressed at the maximum. Compression is possible until a thickness corresponding to the post-thickness T ′ is reached. Therefore, the heat transfer sheet 7 can be contacted from the heat transfer surface 3a having the minimum interval MN to the heat transfer surface 3a having the maximum interval MX, and all the heat transfer surfaces 3a can be in contact with the heat transfer sheet 7. .
蓄電モジュールユニット1’によれば、ブラケット9の取付け部9aに開口された締結ボルト10の軸径より大きい径の貫通孔と締結ボルト10を用いてブラケット9の位置をそれぞれ調整することにより、簡単に、最小間隔MNとなる伝熱面3aとブラケット9の締結面9c(カウンターウエイト8の締結面8a)との間の距離が圧縮後厚みT’になるようにブラケット9の位置を調整することができる。
According to the power storage module unit 1 ′, the position of the bracket 9 can be easily adjusted by using the through holes having a diameter larger than the shaft diameter of the fastening bolt 10 opened in the mounting portion 9 a of the bracket 9 and the fastening bolt 10. In addition, the position of the bracket 9 is adjusted so that the distance between the heat transfer surface 3a having the minimum interval MN and the fastening surface 9c of the bracket 9 (fastening surface 8a of the counterweight 8) becomes the thickness T ′ after compression. Can do.
図1~図5を参照して、上記構成の蓄電モジュールユニット1’の製造方法について説明する。なお、図2~図5では伝熱プレート及び蓄電装置の位置を判り易くするように、図1で示す蓄電ユニットUのホルダー4及び拘束ボルト6を省略し、蓄電装置2および伝熱プレート3をその外形のみを表すように簡略化して描いている。
A method for manufacturing the power storage module unit 1 ′ having the above configuration will be described with reference to FIGS. 1 to 5. 2 to 5, the holder 4 and the restraining bolt 6 of the power storage unit U shown in FIG. 1 are omitted so that the positions of the heat transfer plate and the power storage device can be easily understood. The drawing is simplified so as to represent only the outer shape.
従来と同様の製造工程によって、各蓄電装置2に伝熱プレート3をそれぞれ取り付け、それをホルダー4にそれぞれ収納して、図1に示すような蓄電ユニットUを形成する。複数の蓄電ユニットUを上記した配列方向で配列させる。さらに、その配列された複数の蓄電ユニットUのうちの配列方向の一端側に配置される蓄電ユニットUと一方のエンドプレート5とが対向するように配置させ、配列方向の他端側に配置される蓄電ユニットUと他方のエンドプレート5とが対向するように配置させ、各拘束ボルト6を、一方のエンドプレート5の貫通孔、配列される各ホルダーの4の貫通孔、他方のエンドプレート5の貫通孔に通し、ボルト締めを行う。これによって、ホルダー4にそれぞれ収納された複数の蓄電装置2が一対のエンドプレート5間に拘束された状態の蓄電モジュール1が形成される。この際、図2および図3に示すように、複数の蓄電装置2間に位置ずれが発生する可能性があり、伝熱プレート3の各伝熱面3aの位置もずれている場合がある。
The heat transfer plate 3 is attached to each power storage device 2 and stored in the holder 4 by the same manufacturing process as in the prior art to form a power storage unit U as shown in FIG. A plurality of power storage units U are arranged in the arrangement direction described above. Further, among the plurality of arranged storage units U, the storage unit U arranged on one end side in the arrangement direction and the one end plate 5 are arranged to face each other, and arranged on the other end side in the arrangement direction. The storage unit U and the other end plate 5 are arranged so as to face each other, and each restraint bolt 6 is connected to a through hole of one end plate 5, a through hole of each holder 4 arranged, and the other end plate 5. Pass through the through-hole and tighten the bolt. As a result, the power storage module 1 in a state in which the plurality of power storage devices 2 housed in the holders 4 are constrained between the pair of end plates 5 is formed. At this time, as shown in FIG. 2 and FIG. 3, there is a possibility that displacement occurs between the plurality of power storage devices 2, and the positions of the heat transfer surfaces 3 a of the heat transfer plate 3 may also be shifted.
ブラケット取付け工程(C工程)では、まず、図5に示すように、平面部(水平面)Pに圧縮後厚みT’と同じ厚みを有する板Bを載置する。この平面部Pは、作業台等でもよいし、あるいは、カウンターウエイト8の側壁の締結面8aでもよい。本実施の形態では、この平面部Pが特許請求の範囲に記載する所定の平面部に相当する。板Bは、蓄電モジュール1の自重程度では変形しない強固な板である。板Bの大きさ及び形状は、伝熱シート7と同程度の大きさ及び形状である。取付け工程では、次に、その板Bの上に蓄電モジュール1を載置する。この際、伝熱プレート3の伝熱面3aのうちの最も飛び出している伝熱面3a4(締結され状態のカウンターウエイト8の締結面8aと最小間隔MNとなる伝熱面3a4)だけが板Bと接触した状態で載置されることになる。ブラケット取付け工程では、次に、蓄電モジュール1を挟み込むように、一対のエンドプレート5の両側にブラケット9をそれぞれ置く。ブラケット取付け工程では、次に、ブラケット9の取付け部9aの各貫通孔に締結ボルト10をそれぞれ挿入し、その各締結ボルト10の雄ねじをエンドプレート5の外面5aに開口された孔の雌ねじに少しねじ込んだ状態で各ブラケット9を移動させ、ブラケット9の取付け部9aがエンドプレート5の外面5aに確実に接触し、最小間隔MNとなる伝熱面3a4だけが板Bの上面と接触した状態でかつ一対のブラケット9の締結面9cが平面部Pに確実にそれぞれ接触した状態になると各締結ボルト10をエンドプレート5の孔に完全にねじ込んでボルト締めを行う。これによって各ブラケット9がエンドプレート5に対して取付けられると、ブラケット9の締結面9cと最小間隔MNとなる伝熱面3a4との間隔が圧縮後厚みT’になるように、ブラケット9がエンドプレート5に対して位置調整される。
In the bracket attachment step (step C), first, a plate B having the same thickness as the post-compression thickness T ′ is placed on a flat surface (horizontal surface) P as shown in FIG. The flat portion P may be a work table or the like, or may be a fastening surface 8 a on the side wall of the counterweight 8. In the present embodiment, the plane portion P corresponds to a predetermined plane portion described in the claims. The plate B is a strong plate that is not deformed by the weight of the power storage module 1. The size and shape of the plate B are the same size and shape as the heat transfer sheet 7. Next, in the attachment process, the power storage module 1 is placed on the plate B. At this time, most popping and has heat transfer surfaces 3a 4 (heat transfer surface 3a 4 serving as a fastening surface 8a and the minimum interval MN counterweight 8 fastened state) of the heat transfer face 3a of the heat transfer plate 3 only It will be placed in contact with the plate B. In the bracket attaching step, next, brackets 9 are respectively placed on both sides of the pair of end plates 5 so as to sandwich the power storage module 1. Next, in the bracket mounting step, the fastening bolts 10 are inserted into the respective through holes of the mounting portion 9 a of the bracket 9, and the male screws of the fastening bolts 10 are slightly inserted into the female screws of the holes opened in the outer surface 5 a of the end plate 5. moving each bracket 9 in a state of being screwed, state the mounting portion 9a of the bracket 9 is surely brought into contact with the outer surface 5a of the end plates 5, only the heat transfer surface 3a 4 with the smallest interval MN is in contact with the upper surface of the plate B In addition, when the fastening surfaces 9c of the pair of brackets 9 are surely in contact with the flat surface portion P, the fastening bolts 10 are completely screwed into the holes of the end plate 5 and bolted. If this by each bracket 9 is attached to the end plate 5, and the interval between the heat transfer surface 3a 4 serving as a fastening surface 9c and the minimum interval MN bracket 9 is the thickness T 'after compression, the bracket 9 The position is adjusted with respect to the end plate 5.
載置工程では、図6に示すように、まず、カウンターウエイト8の側壁の締結面8aが上方になるように、カウンターウエイト8を配置させる。載置工程では、次に、その締結面8a上に伝熱シート7を載置する。この際、締結面8aの両側にそれぞれ開口されているボルト締結用の各孔の間の中央に位置するように、伝熱シート7を配置させる。載置工程では、次に、その伝熱シート7の上に、一対のブラケット9が取り付けられた蓄電モジュール1を載置する。この際、伝熱シート7には蓄電モジュール1の自重だけがかかり、伝熱プレート3の伝熱面3aのうちの最も飛び出している伝熱面3a4(締結され状態のカウンターウエイト8の締結面8aと最小間隔MNとなる伝熱面3a4)だけが伝熱シート7の上面7aと接触した状態で載置されることになる。但し、その自重によって、伝熱面3a4以外の伝熱面3aも伝熱シート7の上面7aと接触した状態になる場合がある。そのため、各ブラケット9の締結面9cはカウンターウエイト8の締結面8aに接触することはなく、浮いた状態になっている。そのため、一対のブラケット9が取り付けられた蓄電モジュール1を伝熱シート7上で容易に移動させることができる。載置工程では、次に、締結面8aに両側にそれぞれ開口されているボルト締結用の各孔の位置に各ブラケット9の締結部9bにそれぞれ開口されている貫通孔の位置が合うように、伝熱シート7上で一対のブラケット9が取り付けられた蓄電モジュール1の位置を調整する。
In the placing step, as shown in FIG. 6, first, the counterweight 8 is arranged so that the fastening surface 8 a on the side wall of the counterweight 8 faces upward. Next, in the placing step, the heat transfer sheet 7 is placed on the fastening surface 8a. Under the present circumstances, the heat-transfer sheet | seat 7 is arrange | positioned so that it may be located in the center between each hole for bolt fastening each opened on the both sides of the fastening surface 8a. Next, in the mounting step, the power storage module 1 to which the pair of brackets 9 are attached is mounted on the heat transfer sheet 7. At this time, the heat transfer sheet 7 takes only the own weight of the battery module 1, the fastening surface of the counterweight 8 of the most popping and has heat transfer surfaces 3a 4 (the engaged state of the heat transfer face 3a of the heat transfer plate 3 Only the heat transfer surface 3 a 4 ) having the minimum distance MN from 8 a is placed in contact with the upper surface 7 a of the heat transfer sheet 7. However, the heat transfer surface 3 a other than the heat transfer surface 3 a 4 may be in contact with the upper surface 7 a of the heat transfer sheet 7 due to its own weight. Therefore, the fastening surface 9c of each bracket 9 does not contact the fastening surface 8a of the counterweight 8, and is in a floating state. Therefore, the power storage module 1 to which the pair of brackets 9 are attached can be easily moved on the heat transfer sheet 7. In the mounting step, next, the positions of the through holes opened in the fastening portions 9b of the brackets 9 are aligned with the positions of the bolt fastening holes opened on both sides of the fastening surface 8a, respectively. The position of the power storage module 1 to which the pair of brackets 9 are attached is adjusted on the heat transfer sheet 7.
締結工程(B工程)では、図6に示すように、まず、各ブラケット9の締結部9bに開口されている各貫通孔に締結ボルト11をそれぞれ通し、その締結ボルト11の先端をカウンターウエイト8の締結面8aに開口されている各孔にそれぞれ位置させる。締結工程では、次に、各締結ボルト11に締結力を付加し、各締結ボルト11の雄ねじを締結面8aに開口されている各孔の雌ねじにねじ込む。これによって、各ブラケット9の締結面9cとカウンターウエイト8の締結面8aとの間隔が徐々に狭くなり、伝熱シート7の上面7aが伝熱プレート3の伝熱面3aに当接するとその部分における伝熱シート7が圧縮されていく。そして、各ブラケット9の締結面9cがカウンターウエイト8の締結面8aに完全に接触まで各締結ボルト11の雄ねじが締結面8aに開口されている各孔の雌ねじにねじ込まれると、図3に示すように、伝熱プレート3の伝熱面3aのうちのカウンターウエイト8の締結面8aと最大間隔MXとなる伝熱面3a4も伝熱シート7の上面7aに接触し、全ての伝熱プレート3の伝熱面3aが伝熱シート7の上面7aに接触した状態になる。これによって、複数のブラケット9によって、カウンターウエイト8の側壁に、伝熱シート7を介在させて蓄電モジュール1が締結された状態になる。
In the fastening step (B step), as shown in FIG. 6, first, the fastening bolts 11 are respectively passed through the through holes opened in the fastening portions 9b of the brackets 9, and the tips of the fastening bolts 11 are connected to the counterweights 8 respectively. Each of the holes is opened in the fastening surface 8a. Next, in the fastening process, a fastening force is applied to each fastening bolt 11, and the male screw of each fastening bolt 11 is screwed into the female screw of each hole opened in the fastening surface 8a. As a result, the interval between the fastening surface 9c of each bracket 9 and the fastening surface 8a of the counterweight 8 is gradually narrowed, and when the upper surface 7a of the heat transfer sheet 7 comes into contact with the heat transfer surface 3a of the heat transfer plate 3, that portion. The heat transfer sheet 7 is compressed. Then, when the male screw of each fastening bolt 11 is screwed into the female screw of each hole opened in the fastening surface 8a until the fastening surface 9c of each bracket 9 comes into full contact with the fastening surface 8a of the counterweight 8 as shown in FIG. as such, heat transfer surfaces 3a 4 serving as a fastening surface 8a and the maximum distance MX counterweight 8 of the heat transfer face 3a of the heat transfer plate 3 is also in contact with the upper surface 7a of the heat transfer sheet 7, all of the heat transfer plate 3 is in a state where the heat transfer surface 3 a is in contact with the upper surface 7 a of the heat transfer sheet 7. As a result, the storage module 1 is fastened to the side wall of the counterweight 8 with the heat transfer sheet 7 interposed therebetween by the plurality of brackets 9.
なお、上記の製造方法は、一例であり、他の製造方法でカウンターウエイト8の側壁にブラケット9によって締結させてもよい。例えば、カウンターウエイト8がフォークリフトに組み付けられた状態で、ブラケット9によって蓄電モジュール1をそのカウンターウエイト8の側壁に締結させてもよい。
In addition, said manufacturing method is an example and you may make it fasten with the bracket 9 to the side wall of the counterweight 8 with another manufacturing method. For example, the power storage module 1 may be fastened to the side wall of the counterweight 8 by the bracket 9 in a state where the counterweight 8 is assembled to the forklift.
この蓄電モジュールユニット1’の製造方法によれば、上記した製造方法でブラケット9によってカウンターウエイト8の側壁に伝熱シート7を介在させて蓄電モジュール1を締結することによって、上記した構成の蓄電モジュールユニット1’を製造することができる。この製造された蓄電モジュールユニット1’は、上記した効果を有する。
According to the method for manufacturing the power storage module unit 1 ', the power storage module having the above-described configuration is obtained by fastening the power storage module 1 with the heat transfer sheet 7 interposed on the side wall of the counterweight 8 by the bracket 9 by the manufacturing method described above. Unit 1 'can be manufactured. The manufactured power storage module unit 1 ′ has the effects described above.
特に、この製造方法では、圧縮後厚みT’と同じ厚みを有する板Bを用いて各ブラケット9をエンドプレート5に対してそれぞれ位置調整することにより、簡単かつ高精度に、最小間隔MNとなる伝熱面3a4と各ブラケット9の締結面9cとの間が圧縮後厚みT’になるように各ブラケット9の位置を調整することができる。その結果、伝熱シート7が最大で圧縮後厚みT’に相当する厚みになるまで容易に圧縮でき、最小間隔MNとなる伝熱面3a4から最大間隔MXとなる伝熱面3a6まで伝熱シート7に接触させることができ、全ての伝熱面3aを伝熱シート7に接触させることができる。
In particular, in this manufacturing method, the position of each bracket 9 is adjusted with respect to the end plate 5 by using the plate B having the same thickness as the post-compression thickness T ′, so that the minimum interval MN can be easily and highly accurately. The position of each bracket 9 can be adjusted such that the space between the heat transfer surface 3a 4 and the fastening surface 9c of each bracket 9 has a thickness T ′ after compression. As a result, the heat transfer sheet 7 can be easily compressed up to a thickness corresponding to the post-compression thickness T ′, and transferred from the heat transfer surface 3a 4 having the minimum interval MN to the heat transfer surface 3a 6 having the maximum interval MX. The heat transfer sheet 7 can be brought into contact with each other, and all the heat transfer surfaces 3 a can be brought into contact with the heat transfer sheet 7.
この製造方法では、各ブラケット9の取付け部9aに開口された締結ボルト10の軸径より大きい径の貫通孔と締結ボルト10を用いて各ブラケット9のエンドプレート5に対してそれぞれ位置調整することにより、簡単に、最小間隔MNとなる伝熱面3a4と各ブラケット9の締結面9cとの間が圧縮後厚みT’になるようにブラケット9の位置を調整することができる。
In this manufacturing method, the position is adjusted with respect to the end plate 5 of each bracket 9 using a through-hole having a diameter larger than the shaft diameter of the fastening bolt 10 opened in the attachment portion 9a of each bracket 9 and the fastening bolt 10. Thus, the position of the bracket 9 can be easily adjusted so that the post-compression thickness T ′ is between the heat transfer surface 3a 4 having the minimum interval MN and the fastening surface 9c of each bracket 9.
以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
As mentioned above, although embodiment which concerns on this invention was described, this invention is implemented in various forms, without being limited to the said embodiment.
例えば、本実施の形態ではフォークリフトに搭載される蓄電モジュールに適用し、放熱部材としてフォークリフトに備えられるカウンターウエイトを利用したが、フォークリフト以外にも自動車等の他の様々なものに適用でき、放熱部材としても冷却プレート等の他の様々なものを適用できる。
For example, in the present embodiment, the counterweight provided in the forklift is used as a heat dissipation member applied to the power storage module mounted on the forklift, but the heat dissipation member can be applied to various other things such as an automobile other than the forklift. Also, various other things such as a cooling plate can be applied.
また、本実施の形態では7個の蓄電装置が直列に接続される蓄電モジュールに適用したが、蓄電装置の個数は7個以外でもよく、また、複数の蓄電装置が並列あるいは並列及び直列に接続される構成でもよい。
Further, in the present embodiment, the present invention is applied to a power storage module in which seven power storage devices are connected in series, but the number of power storage devices may be other than seven, and a plurality of power storage devices are connected in parallel or in parallel and in series. It may be configured.
また、本実施の形態では蓄電装置をホルダーに収容し、ホルダーに収容した状態の複数の蓄電装置をエンドプレート間で拘束する構成としたが、ホルダーがなく、ホルダー無しの蓄電装置をエンドプレート間で拘束する構成としてもよい。また、複数の蓄電装置を拘束する構成も、エンドプレートがない他の形態で拘束してもよい。
In the present embodiment, the power storage device is housed in the holder, and the plurality of power storage devices housed in the holder are constrained between the end plates. It is good also as a structure restrained by. In addition, a configuration in which a plurality of power storage devices is constrained may be constrained in another form without an end plate.
また、本実施の形態では各蓄電装置に伝熱プレートを取り付け、伝熱プレートを介して蓄電装置の熱を伝熱シートに伝える構成としたが、伝熱プレートがなく、蓄電装置の熱が蓄電装置から伝熱シートに直接伝わる構成としてもよい。この場合、蓄電装置の一面が伝熱面となる。また、伝熱プレート以外の部材を介して蓄電装置の熱が伝熱シートに伝わる構成としてもよい。
In this embodiment, a heat transfer plate is attached to each power storage device, and the heat of the power storage device is transmitted to the heat transfer sheet via the heat transfer plate. However, there is no heat transfer plate, and the heat of the power storage device is stored. It is good also as a structure directly transmitted to a heat transfer sheet from an apparatus. In this case, one surface of the power storage device is a heat transfer surface. Moreover, it is good also as a structure which the heat of an electrical storage apparatus is transmitted to a heat-transfer sheet | seat via members other than a heat-transfer plate.
また、本実施の形態では締結部材として複数のブラケットを用いて、蓄電モジュールをカウンターウエイト(放熱部材)に締結する構成としたが、締結部材として、位置調整が可能であり、拘束された状態の複数の蓄熱装置を放熱部材に締結できれば、どのような部材を適用してもよい。
In this embodiment, a plurality of brackets are used as fastening members, and the power storage module is fastened to the counterweight (heat radiating member). However, the fastening member can be adjusted in position and restrained. Any member may be applied as long as a plurality of heat storage devices can be fastened to the heat dissipation member.
また、本実施の形態ではブラケットをエンドプレートに対して位置調整して固定するためにブラケットの取付け部にボルトの軸径より大きい孔を開口し、この孔とボルトによって位置調整と固定をする構成としたが、ボルトを用いずに、ブラケットをエンドプレートに対して位置調整した後に、ブラケットを溶接等でエンドプレートに固定する構成としてもよい。
Further, in this embodiment, in order to adjust the position of the bracket relative to the end plate and fix the bracket, a hole larger than the shaft diameter of the bolt is opened in the mounting portion of the bracket, and the position is adjusted and fixed by the hole and the bolt. However, the bracket may be fixed to the end plate by welding or the like after the position of the bracket is adjusted with respect to the end plate without using a bolt.
また、本実施の形態では複数の伝熱プレートの伝熱面のうちのカウンターウエイトの締結面と最小間隔となる伝熱面と各ブラケットの締結面(カウンターウエイトの締結面)との間の距離が伝熱シートの圧縮後厚みとなるようにブラケットをエンドプレート対して位置調整して、複数の伝熱プレートの伝熱面のうちのカウンターウエイトの締結面と最大間隔となる伝熱面まで伝熱シートに接触(ひいては、全ての伝熱プレートの伝熱面を伝熱シートに接触)させる構成としたが、最大間隔となる伝熱面まで伝熱シートに接触させることができれば、最小間隔となる伝熱面と各ブラケットの締結面(カウンターウエイトの締結面)との間の距離が圧縮後厚さとなるようにしない構成でもよい。
Moreover, in this Embodiment, the distance between the fastening surface of the counterweight of the heat transfer surfaces of the plurality of heat transfer plates, the heat transfer surface that is the minimum interval, and the fastening surface of each bracket (the fastening surface of the counterweight) Adjust the position of the bracket with respect to the end plate so that the thickness of the heat transfer sheet becomes the compressed thickness of the heat transfer sheet, and transfer the heat transfer surface to the heat transfer surface that has the maximum distance from the counterweight fastening surface among the heat transfer surfaces of the heat transfer plates. Although it is configured to contact the heat sheet (and hence the heat transfer surface of all the heat transfer plates contact the heat transfer sheet), if the heat transfer sheet can be contacted up to the maximum heat transfer surface, the minimum distance The distance between the heat transfer surface and the fastening surface of each bracket (the fastening surface of the counterweight) may not be the thickness after compression.
1…蓄電モジュール、1’…蓄電モジュールユニット、2…蓄電装置、2a…正極端子、2b…負極端子、2c…接続部材、3…伝熱プレート、3a…伝熱面、4…ホルダー、5…エンドプレート、5a…外面、6…拘束ボルト、7…伝熱シート、7a…上面、8…カウンターウエイト、8a…締結面、9…ブラケット、9a…取付け部、9b…締結部、9c…締結面、10,11…締結ボルト、U…蓄電ユニット。
DESCRIPTION OF SYMBOLS 1 ... Power storage module, 1 '... Power storage module unit, 2 ... Power storage device, 2a ... Positive electrode terminal, 2b ... Negative electrode terminal, 2c ... Connection member, 3 ... Heat transfer plate, 3a ... Heat transfer surface, 4 ... Holder, 5 ... End plate, 5a ... outer surface, 6 ... restraining bolt, 7 ... heat transfer sheet, 7a ... upper surface, 8 ... counterweight, 8a ... fastening surface, 9 ... bracket, 9a ... mounting portion, 9b ... fastening portion, 9c ... fastening surface 10, 11 ... Fastening bolts, U ... Power storage unit.
Claims (7)
- 蓄電装置を有する複数の蓄電ユニット、及び、前記複数の蓄電ユニット同士を複数の前記蓄電ユニットが重ねられた状態で固定する蓄電ユニット固定部材を有する蓄電モジュールと、
各前記蓄電ユニットから受ける熱を外部に放熱する放熱部材と、
前記蓄電モジュールを前記放熱部材に締結する締結部材と、
複数の前記蓄電ユニットと前記放熱部材との間に設けられ、弾性を有する伝熱シートと、
を備え、
前記放熱部材と各前記蓄電ユニットとの間の距離は同一でなく、
全ての前記蓄電ユニットと前記伝熱シートとが接触するように、前記伝熱シートが少なくとも1つの前記蓄電ユニットにより圧縮されている、蓄電モジュールユニット。 A plurality of power storage units having a power storage device, and a power storage module having a power storage unit fixing member that fixes the plurality of power storage units in a state where the plurality of power storage units are stacked,
A heat radiating member that radiates heat received from each of the power storage units to the outside;
A fastening member for fastening the power storage module to the heat dissipation member;
A heat transfer sheet provided between the plurality of power storage units and the heat dissipating member, and having elasticity;
With
The distance between the heat dissipation member and each of the power storage units is not the same,
The power storage module unit, wherein the heat transfer sheet is compressed by at least one power storage unit such that all the power storage units and the heat transfer sheet are in contact with each other. - 各前記蓄電ユニットは、更に、外部伝熱面を有する伝熱プレートを有し、
前記蓄電ユニット固定部材は、各前記伝熱プレートの外部伝熱面が一方側に露出するように前記複数の蓄電ユニット同士を固定し、
前記放熱部材と各前記外部伝熱面との間の距離は同一でなく、
全ての前記外部伝熱面と前記伝熱シートとが接触するように、前記伝熱シートが少なくとも1つの前記外部伝熱面により圧縮されている、請求項1記載の蓄電モジュールユニット。 Each power storage unit further includes a heat transfer plate having an external heat transfer surface,
The power storage unit fixing member fixes the plurality of power storage units so that an external heat transfer surface of each heat transfer plate is exposed on one side,
The distance between the heat dissipation member and each external heat transfer surface is not the same,
The power storage module unit according to claim 1, wherein the heat transfer sheet is compressed by at least one of the external heat transfer surfaces so that all the external heat transfer surfaces are in contact with the heat transfer sheet. - 前記締結部材は、前記蓄電モジュールに取付けられる取付け部と、前記放熱部材に締結される締結部とを有する一対のブラケットである、請求項2に記載の蓄電モジュールユニット。 3. The power storage module unit according to claim 2, wherein the fastening member is a pair of brackets having an attachment part attached to the power storage module and a fastening part fastened to the heat dissipation member.
- 蓄電装置を有する複数の蓄電ユニット及び前記複数の蓄電ユニット同士を複数の前記蓄電ユニットが重ねられた状態で固定する蓄電ユニット固定部材を有する蓄電モジュール、伝熱シート、及び、放熱部材を準備するA工程と、
前記蓄電ユニットと前記放熱部材との間に前記伝熱シートを介在させた状態で前記蓄電モジュールを前記放熱部材に対して締結するB工程を備え、
前記複数の蓄電ユニットの前記放熱部材と対向する面は、前記面に垂直な方向に互いにずれを有し、
前記B工程において、前記放熱部材に最も近い前記面で前記伝熱シートを圧縮して全ての前記蓄電ユニットの前記面を前記伝熱シートに接触させる、蓄電モジュールユニットの製造方法。 A power storage module having a plurality of power storage units having a power storage device and a power storage unit fixing member for fixing the plurality of power storage units in a state where the plurality of power storage units are stacked, a heat transfer sheet, and a heat dissipation member are prepared. Process,
B step of fastening the power storage module to the heat radiating member in a state where the heat transfer sheet is interposed between the power storage unit and the heat radiating member,
The surfaces of the plurality of power storage units that face the heat radiating members are displaced from each other in a direction perpendicular to the surfaces.
In the step B, the method for manufacturing a power storage module unit, wherein the heat transfer sheet is compressed on the surface closest to the heat radiating member and the surfaces of all the power storage units are brought into contact with the heat transfer sheet. - 各前記蓄電ユニットは、更に、外部伝熱面を有する伝熱プレートを有し、
前記蓄電ユニット固定部材は、各前記伝熱プレートの外部伝熱面が一方側に露出するように前記複数の蓄電ユニット同士を固定し、
複数の前記伝熱プレートの外部伝熱面は、前記面に垂直な方向に互いにずれを有し、
前記B工程において、前記放熱部材に最も近い前記外部伝熱面で前記伝熱シートを圧縮して全ての前記外部伝熱面を前記伝熱シートに接触させる、請求項4記載の方法。 Each power storage unit further includes a heat transfer plate having an external heat transfer surface,
The power storage unit fixing member fixes the plurality of power storage units so that an external heat transfer surface of each heat transfer plate is exposed on one side,
The heat transfer surfaces of the plurality of heat transfer plates are displaced from each other in a direction perpendicular to the surfaces,
5. The method according to claim 4, wherein, in the step B, the heat transfer sheet is compressed by the external heat transfer surface closest to the heat radiating member to bring all the external heat transfer surfaces into contact with the heat transfer sheet. - 前記B工程の前に、一対のブラケットを前記蓄電モジュールに取り付けるC工程を更に備え、
前記一対のブラケットは、前記蓄電モジュールに取付けられる取付け部と、前記放熱部材に締結される締結部とをそれぞれ有し、
前記B工程では、前記締結部を前記放熱部材に締結する、請求項4に記載の方法。 Before the B step, further comprising a C step of attaching a pair of brackets to the power storage module,
The pair of brackets each have an attachment portion attached to the power storage module and a fastening portion fastened to the heat dissipation member,
The method according to claim 4, wherein in the step B, the fastening portion is fastened to the heat dissipation member. - 前記C工程では、所定の平面部に板を載置し、少なくとも1つの蓄電ユニットの前記面と前記板の上面とが接した状態で、かつ、前記所定の平面部に前記一対のブラケットにおける前記締結部のそれぞれが接した状態で、前記一対のブラケットの取付け部を前記蓄電モジュールに取付ける、請求項6に記載の方法。 In the step C, a plate is placed on a predetermined plane portion, the surface of at least one power storage unit is in contact with the upper surface of the plate, and the predetermined plane portion includes the pair of brackets. The method according to claim 6, wherein the attachment portions of the pair of brackets are attached to the power storage module in a state where the fastening portions are in contact with each other.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-268587 | 2013-12-26 | ||
JP2013268587A JP5835315B2 (en) | 2013-12-26 | 2013-12-26 | Power storage module unit and method for manufacturing power storage module unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098382A1 true WO2015098382A1 (en) | 2015-07-02 |
Family
ID=53478254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080782 WO2015098382A1 (en) | 2013-12-26 | 2014-11-20 | Electricity storage module unit and electricity storage module unit manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5835315B2 (en) |
WO (1) | WO2015098382A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108172929A (en) * | 2017-12-22 | 2018-06-15 | 银隆新能源股份有限公司 | Battery radiator structure and the battery pack with air-cooled radiating device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6627264B2 (en) * | 2015-06-08 | 2020-01-08 | 株式会社豊田自動織機 | Cell holder, battery module, and method of manufacturing battery module |
JP2017111872A (en) * | 2015-12-14 | 2017-06-22 | 株式会社豊田自動織機 | Method of manufacturing battery module and battery pack, battery module, and battery pack |
CN106935915A (en) * | 2015-12-31 | 2017-07-07 | 中科泰能科技发展有限公司 | Heat dissipation method for square nickel battery |
JP6561849B2 (en) * | 2016-01-08 | 2019-08-21 | 株式会社豊田自動織機 | Battery module |
JP6705285B2 (en) * | 2016-05-23 | 2020-06-03 | 株式会社豊田自動織機 | Battery pack and battery module |
JP6805606B2 (en) * | 2016-07-26 | 2020-12-23 | 株式会社豊田自動織機 | Battery module and manufacturing method of battery module |
WO2018047337A1 (en) * | 2016-09-12 | 2018-03-15 | 株式会社東芝 | Battery unit and vehicular storage battery device |
KR102088477B1 (en) | 2017-05-16 | 2020-03-12 | 주식회사 엘지화학 | Battery module |
CN112699334B (en) * | 2020-12-14 | 2023-06-09 | 中广核研究院有限公司 | Heat dissipation capacity estimation method and system for nuclear power electrical panel cabinet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147801A1 (en) * | 2011-04-27 | 2012-11-01 | 三洋電機株式会社 | Power supply device and vehicle equipped with power supply device |
JP2013125617A (en) * | 2011-12-13 | 2013-06-24 | Sanyo Electric Co Ltd | Power supply device and vehicle having the same, and power storage device |
JP2013246990A (en) * | 2012-05-25 | 2013-12-09 | Sanyo Electric Co Ltd | Power supply device, and vehicle and power storage device having this power supply device |
JP2014139881A (en) * | 2013-01-21 | 2014-07-31 | Sumitomo Heavy Ind Ltd | Power storage module and work machine equipped with power storage module |
JP2014238928A (en) * | 2013-06-06 | 2014-12-18 | 日立オートモティブシステムズ株式会社 | Power storage block and power storage module |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5478791B2 (en) * | 2009-07-17 | 2014-04-23 | 古河電池株式会社 | Assembled battery |
JP2011034775A (en) * | 2009-07-31 | 2011-02-17 | Sanyo Electric Co Ltd | Assembled battery cooling structure and battery system |
WO2012117681A1 (en) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | Battery module and method for manufacturing battery module |
-
2013
- 2013-12-26 JP JP2013268587A patent/JP5835315B2/en not_active Expired - Fee Related
-
2014
- 2014-11-20 WO PCT/JP2014/080782 patent/WO2015098382A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147801A1 (en) * | 2011-04-27 | 2012-11-01 | 三洋電機株式会社 | Power supply device and vehicle equipped with power supply device |
JP2013125617A (en) * | 2011-12-13 | 2013-06-24 | Sanyo Electric Co Ltd | Power supply device and vehicle having the same, and power storage device |
JP2013246990A (en) * | 2012-05-25 | 2013-12-09 | Sanyo Electric Co Ltd | Power supply device, and vehicle and power storage device having this power supply device |
JP2014139881A (en) * | 2013-01-21 | 2014-07-31 | Sumitomo Heavy Ind Ltd | Power storage module and work machine equipped with power storage module |
JP2014238928A (en) * | 2013-06-06 | 2014-12-18 | 日立オートモティブシステムズ株式会社 | Power storage block and power storage module |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108172929A (en) * | 2017-12-22 | 2018-06-15 | 银隆新能源股份有限公司 | Battery radiator structure and the battery pack with air-cooled radiating device |
CN108172929B (en) * | 2017-12-22 | 2024-03-15 | 银隆新能源股份有限公司 | Battery core heat radiation structure and battery pack with air cooling heat radiation device |
Also Published As
Publication number | Publication date |
---|---|
JP5835315B2 (en) | 2015-12-24 |
JP2015125854A (en) | 2015-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835315B2 (en) | Power storage module unit and method for manufacturing power storage module unit | |
JP5196876B2 (en) | Assembled battery | |
US9837691B2 (en) | Battery module | |
JP5113319B2 (en) | Storage cell package structure | |
JP6357439B2 (en) | Power storage module | |
US20190267686A1 (en) | Battery module | |
US20200006823A1 (en) | Battery module | |
JP2014513380A (en) | Energy storage device | |
KR20130105596A (en) | Power storage module | |
JP2006339032A (en) | Battery pack | |
JP6149670B2 (en) | Battery module | |
JP6681436B2 (en) | Power storage module | |
JP6277987B2 (en) | Battery module | |
WO2018163816A1 (en) | Separator, battery module and battery module production method | |
JP2014150039A (en) | Power storage device | |
US20220069400A1 (en) | Energy storage apparatus | |
JP5344237B2 (en) | Assembled battery | |
US11929480B2 (en) | Battery and battery apparatus | |
JP5633621B1 (en) | Power storage module | |
JP5150075B2 (en) | Sheet-like secondary battery unit and secondary battery module using the same | |
JP6681435B2 (en) | Power storage module | |
JP2020177851A (en) | Secondary battery module | |
US20220384879A1 (en) | Battery unit | |
JP2010050111A (en) | Secondary battery | |
JP2004273320A (en) | Battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14875879 Country of ref document: EP Kind code of ref document: A1 |